UTILITIES AND OFFSITES DESIGN BASELINE

May 25, 1984
Date Revised

Work Performed Under Contract No. AC05-78OR03054

The Rust Engineering Company
Birmingham, Alabama

Technical Information Center
Office of Scientific and Technical Information
United States Department of Energy
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Price: Printed Copy A10
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: Energy Research Abstracts (ERA); Government Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.
International Coal Refining Company

UTILITIES AND OFFSITES
DESIGN BASELINE

OUTSIDE BATTERY LIMITS FACILITY
6000 TPD SRC-I
DEMONSTRATION PLANT

FOR
U.S. DEPARTMENT OF ENERGY

VOLUME II

Prepared By

The Rust Engineering Company
Birmingham, Alabama
REVISED MAY 25, 1984
TABLE OF CONTENTS

VOLUME I

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1.1</td>
</tr>
<tr>
<td>1.1 SUMMARY</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2 TECHNICAL SCOPE</td>
<td>1.2</td>
</tr>
<tr>
<td>1.3 DESIGN BASIS MEMORANDUM</td>
<td>1.5</td>
</tr>
<tr>
<td>1.4 STANDARD DRAWING SYMBOLS</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0 UTILITY SYSTEMS</td>
<td>2.0-1</td>
</tr>
<tr>
<td>2.1 ELECTRICAL POWER DISTRIBUTION</td>
<td>2.1-1</td>
</tr>
<tr>
<td>2.1.1 161 KV Incoming Power</td>
<td>2.1-2</td>
</tr>
<tr>
<td>2.1.1.1 System Description</td>
<td>2.1-2</td>
</tr>
<tr>
<td>2.1.1.2 Single Line Diagram</td>
<td>2.1-2</td>
</tr>
<tr>
<td>2.1.1.3 Layout Drawing</td>
<td>2.1-3</td>
</tr>
<tr>
<td>2.1.1.4 Equipment List/Summary</td>
<td>2.1-4</td>
</tr>
<tr>
<td>2.1.2 Main Substation</td>
<td>2.1-5</td>
</tr>
<tr>
<td>2.1.2.1 System Description</td>
<td>2.1-5</td>
</tr>
<tr>
<td>2.1.2.2 Single Line Diagrams</td>
<td>2.1-5</td>
</tr>
<tr>
<td>2.1.2.3 Layout Drawings</td>
<td>2.1-6</td>
</tr>
<tr>
<td>2.1.2.4 Equipment List/Summary</td>
<td>2.1-7</td>
</tr>
<tr>
<td>2.1.3 13.8 KV Distribution System</td>
<td>2.1-8</td>
</tr>
<tr>
<td>2.1.3.1 System Description</td>
<td>2.1-8</td>
</tr>
<tr>
<td>2.1.3.2 Single Line Diagrams</td>
<td>2.1-8</td>
</tr>
<tr>
<td>2.1.3.3 Equipment List/Summary</td>
<td>2.1-10</td>
</tr>
<tr>
<td>2.1.4 Electrical Interconnecting Systems</td>
<td>2.1-11</td>
</tr>
<tr>
<td>2.1.4.1 System Description</td>
<td>2.1-11</td>
</tr>
<tr>
<td>2.1.4.2 Single Line Diagrams</td>
<td>2.1-12</td>
</tr>
<tr>
<td>2.1.5 Emergency Power</td>
<td>2.1-13</td>
</tr>
<tr>
<td>2.1.5.1 System Description</td>
<td>2.1-13</td>
</tr>
<tr>
<td>2.1.5.2 Process Flow Diagram</td>
<td>2.1-14</td>
</tr>
<tr>
<td>2.1.5.3 Single Line Diagram</td>
<td>2.1-15</td>
</tr>
<tr>
<td>2.1.5.4 Equipment List Summary</td>
<td>2.1-16</td>
</tr>
<tr>
<td>2.1.5.5 Equipment Data Sheets</td>
<td>2.1-17</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME I

(Continued)

Section Page

2.1.6 Lighting 2.1-18
 2.1.6.1 System Description 2.1-18
 2.1.6.2 Electrical Drawings 2.1-19

2.2 PLANT UTILITIES 2.2-1

 2.2.1 Fire Protection 2.2-2
 2.2.1.1 System Description 2.2-2
 2.2.1.2 Utility Flow Diagrams 2.2-7
 2.2.1.3 Equipment List Summary 2.2-8
 2.2.1.4 Equipment Data Sheets 2.2-9

 2.2.2 Boiler Feedwater Treatment System 2.2-10
 2.2.2.1 System Description 2.2-10
 2.2.2.2 Utility Flow Diagrams 2.2-12
 2.2.2.3 Utility Summary 2.2-12A
 2.2.2.4 Motor List 2.2-12B
 2.2.2.5 Equipment List/Summary 2.2-13
 2.2.2.6 Equipment Data Sheets 2.2-14

 2.2.3 Steam and Feed Water System 2.2-15
 2.2.3.1 System Description 2.2-15
 2.2.3.2 Process Flow Diagrams 2.2-18
 2.2.3.3 Material and Energy Balances 2.2-18A
 2.2.3.4 Utility Summary 2.2-18B
 2.2.3.5 Motor List 2.2-18C
 2.2.3.6 Layout Drawings 2.2-19
 2.2.3.7 Equipment List/Summary 2.2-20
 2.2.3.8 Equipment Data Sheets 2.2-21

VOLUME II

2.2.4 Cooling Water System 2.2-22
 2.2.4.1 System Description 2.2-22
 2.2.4.2 Utility Flow Diagrams 2.2-24
 2.2.4.3 Utility Summary 2.2-24A
 2.2.4.4 Motor List 2.2-24B
 2.2.4.5 Equipment List/Summary 2.2-25
 2.2.4.6 Equipment Data Sheets 2.2-26
TABLE OF CONTENTS

VOLUME II

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5 Process Water Supply</td>
<td>2.2-27</td>
</tr>
<tr>
<td>2.2.5.1 System Description</td>
<td>2.2-27</td>
</tr>
<tr>
<td>2.2.5.2 Utility Flow Diagrams</td>
<td>2.2-27</td>
</tr>
<tr>
<td>2.2.6 Potable Water Supply</td>
<td>2.2-28</td>
</tr>
<tr>
<td>2.2.6.1 System Description</td>
<td>2.2-28</td>
</tr>
<tr>
<td>2.2.6.2 Utility Flow Diagram</td>
<td>2.2-28</td>
</tr>
<tr>
<td>2.2.7 Nitrogen System</td>
<td>2.2-29</td>
</tr>
<tr>
<td>2.2.7.1 System Description</td>
<td>2.2-29</td>
</tr>
<tr>
<td>2.2.7.2 Utility Flow Diagrams</td>
<td>2.2-29</td>
</tr>
<tr>
<td>2.2.8 Compressed Air System</td>
<td>2.2-30</td>
</tr>
<tr>
<td>2.2.8.1 System Description</td>
<td>2.2-30</td>
</tr>
<tr>
<td>2.2.8.2 Utility Flow Diagram</td>
<td>2.2-31</td>
</tr>
<tr>
<td>2.2.8.3 Utility Summary</td>
<td>2.2-31A</td>
</tr>
<tr>
<td>2.2.8.4 Motor List</td>
<td>2.2-31B</td>
</tr>
<tr>
<td>2.2.8.5 Equipment List/Summary</td>
<td>2.2-32</td>
</tr>
<tr>
<td>2.2.8.6 Equipment Data Sheets</td>
<td>2.2-33</td>
</tr>
<tr>
<td>2.2.9 Flare and Incinerators</td>
<td>2.2-34</td>
</tr>
<tr>
<td>2.2.9.1 System Description</td>
<td>2.2-34</td>
</tr>
<tr>
<td>2.2.9.2 Utility Flow Diagrams</td>
<td>2.2-40</td>
</tr>
<tr>
<td>2.2.9.3 Material and Energy Balances</td>
<td>2.2-40A</td>
</tr>
<tr>
<td>2.2.9.4 Utility Summary</td>
<td>2.2-40B</td>
</tr>
<tr>
<td>2.2.9.5 Motor List</td>
<td>2.2-4OC</td>
</tr>
<tr>
<td>2.2.9.6 Equipment List/Summary</td>
<td>2.2-41</td>
</tr>
<tr>
<td>2.2.9.7 Equipment Data Sheets</td>
<td>2.2-42</td>
</tr>
<tr>
<td>2.2.10 Fuels</td>
<td>2.2-42</td>
</tr>
<tr>
<td>2.2.10.1 System Description</td>
<td>2.2-43</td>
</tr>
<tr>
<td>2.2.10.2 Utility Flow Diagrams</td>
<td>2.2-43</td>
</tr>
</tbody>
</table>

iv Rev. 5-25-84
TABLE OF CONTENTS

VOLUME II

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>INTERCONNECTING SYSTEMS</td>
<td>2.3-1</td>
</tr>
<tr>
<td>2.3.1 Facilities Description</td>
<td>2.3-1</td>
</tr>
<tr>
<td>2.3.1A ICRC Interface Integration</td>
<td>2.3-2A</td>
</tr>
<tr>
<td>2.3.2 Interconnecting Diagrams</td>
<td>2.3-3</td>
</tr>
<tr>
<td>2.3.3 Layout Drawings</td>
<td>2.3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>UTILITY SYSTEMS INTEGRATION</td>
<td>2.4-1</td>
</tr>
<tr>
<td>2.4.1 Instrumentation Requirements</td>
<td>2.4-1</td>
</tr>
</tbody>
</table>

VOLUME III

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>OFFSITES</td>
<td>3.0-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>WATER AND WASTE TREATMENT</td>
<td>3.1-1</td>
</tr>
<tr>
<td>3.1.1 Potable Water Treatment</td>
<td>3.1-2</td>
</tr>
<tr>
<td>3.1.1.1 Process Description</td>
<td>3.1-2</td>
</tr>
<tr>
<td>3.1.1.2 Process Flow Diagrams</td>
<td>3.1-3</td>
</tr>
<tr>
<td>3.1.1.3 Utility Summary</td>
<td>3.1-3A</td>
</tr>
<tr>
<td>3.1.1.4 Motor List</td>
<td>3.1-3B</td>
</tr>
<tr>
<td>3.1.1.5 Layout Drawing</td>
<td>3.1-4</td>
</tr>
<tr>
<td>3.1.1.6 Equipment List/Summary</td>
<td>3.1-5</td>
</tr>
<tr>
<td>3.1.1.7 Equipment Data Sheets</td>
<td>3.1-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2 Process Water Treatment</td>
<td>3.1-7</td>
</tr>
<tr>
<td>3.1.2.1 Process Description</td>
<td>3.1-7</td>
</tr>
<tr>
<td>3.1.2.2 Process Flow Diagrams</td>
<td>3.1-9</td>
</tr>
<tr>
<td>3.1.2.3 Utility Summary</td>
<td>3.1-9A</td>
</tr>
<tr>
<td>3.1.2.4 Motor List</td>
<td>3.1-9B</td>
</tr>
<tr>
<td>3.1.2.5 Layout Drawing</td>
<td>3.1-10</td>
</tr>
<tr>
<td>3.1.2.6 Equipment List/Summary</td>
<td>3.1-11</td>
</tr>
<tr>
<td>3.1.2.7 Equipment Data Sheets</td>
<td>3.1-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3 Wastewater Treatment</td>
<td>3.1-13</td>
</tr>
<tr>
<td>3.1.3.1 Process Description</td>
<td>3.1-13</td>
</tr>
<tr>
<td>3.1.3.2 Process Flow Diagrams</td>
<td>3.1-26</td>
</tr>
<tr>
<td>3.1.3.3 Material Balance</td>
<td>3.1-26A</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME III

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.4 Utilities Summary</td>
<td>3.1.26B</td>
</tr>
<tr>
<td>3.1.3.5 Motor List</td>
<td>3.1-26C</td>
</tr>
<tr>
<td>3.1.3.6 Layout Drawing</td>
<td>3.1-27</td>
</tr>
<tr>
<td>3.1.3.7 Equipment List/Summary</td>
<td>3.1-28</td>
</tr>
<tr>
<td>3.1.3.8 Equipment Data Sheets</td>
<td>3.1-29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.4 Waste Solids Handling</td>
<td>3.1-30</td>
</tr>
<tr>
<td>3.1.4.1 Process Description</td>
<td>3.1-30</td>
</tr>
<tr>
<td>3.1.4.2 Process Flow Diagram and Sketches</td>
<td>3.1-33</td>
</tr>
<tr>
<td>3.1.4.3 Utility Summary</td>
<td>3.1-33A</td>
</tr>
<tr>
<td>3.1.4.4 Motor List</td>
<td>3.1-33B</td>
</tr>
<tr>
<td>3.1.4.5 Layout Drawing</td>
<td>3.1-34</td>
</tr>
<tr>
<td>3.1.4.6 Equipment List/Summary</td>
<td>3.1-35</td>
</tr>
<tr>
<td>3.1.4.7 Equipment Data Sheets</td>
<td>3.1-36</td>
</tr>
</tbody>
</table>

VOLUME IV

3.2 SITE DEVELOPMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Railroads</td>
<td>3.2-1</td>
</tr>
<tr>
<td>3.2.1.1 Facilities Description</td>
<td>3.2-2</td>
</tr>
<tr>
<td>3.2.1.2 Layout Drawing</td>
<td>3.2-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2 Fencing, Roadways, and Parking</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2.2.1 Facilities Description</td>
<td>3.2-4</td>
</tr>
<tr>
<td>3.2.2.2 Layout Drawings</td>
<td>3.2-5A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 Site Preparation</td>
<td>3.2-6</td>
</tr>
<tr>
<td>3.2.3.1 Facilities Description</td>
<td>3.2-6</td>
</tr>
<tr>
<td>3.2.3.2 Site Plan and Related Drawings</td>
<td>3.2-7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4 River Structures</td>
<td>3.2-8</td>
</tr>
<tr>
<td>3.2.4.1 Facilities Description</td>
<td>3.2-8</td>
</tr>
<tr>
<td>3.2.4.2 Layout Drawings</td>
<td>3.2-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5 Final Grading and Landscaping</td>
<td>3.2-9</td>
</tr>
<tr>
<td>3.2.5.1 Facilities Description</td>
<td>3.2-9</td>
</tr>
<tr>
<td>3.2.5.3 Plot Plan</td>
<td>3.2-9</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME IV

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>BUILDINGS</td>
</tr>
<tr>
<td>3.3.1</td>
<td>General Description</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Central Control Building</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Administration Building</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Service Change Building</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Contract Maintenance Service Change Building</td>
</tr>
<tr>
<td>3.3.5.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.5.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.5.3</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Warehouse and Storage Building</td>
</tr>
<tr>
<td>3.3.6.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.6.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.6.3</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Maintenance Building</td>
</tr>
<tr>
<td>3.3.7.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.7.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Operators Shelters</td>
</tr>
<tr>
<td>3.3.8.1</td>
<td>Facilities Description</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME IV

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.9</td>
<td>3.3-18</td>
</tr>
<tr>
<td>Switchgear Building</td>
<td></td>
</tr>
<tr>
<td>3.3.9.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.9.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Motor Control Center Buildings</td>
</tr>
<tr>
<td>3.3.10.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>3.3.10.2</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>3.3.11</td>
<td>Heating, Ventilating, and Air Conditioning (HVAC)</td>
</tr>
<tr>
<td>3.3.11.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>4.0</td>
<td>RAW MATERIALS AND PRODUCT HANDLING AND STORAGE</td>
</tr>
<tr>
<td>4.1</td>
<td>LIQUID STORAGE</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Process Flow Diagrams</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Utility Summary</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Motor List</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Equipment Data Sheets</td>
</tr>
<tr>
<td>4.2</td>
<td>COAL STORAGE AND TRANSFER</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Facilities Description</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Process Flow Diagrams</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Utility Summary</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Motor List</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Layout Drawings</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Equipment List/Summary</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Equipment Data Sheets</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

VOLUME IV

(Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 COAL PULVERIZING</td>
<td>4.3-1</td>
</tr>
<tr>
<td>4.3.1 Facilities Description</td>
<td>4.3-1</td>
</tr>
<tr>
<td>4.3.2 Process Flow Diagram</td>
<td>4.3-4</td>
</tr>
<tr>
<td>4.3.3 Utility Summary</td>
<td>4.3-4A</td>
</tr>
<tr>
<td>4.3.4 Motor List</td>
<td>4.3-4B</td>
</tr>
<tr>
<td>4.3.5 Layout Drawings</td>
<td>4.3-5</td>
</tr>
<tr>
<td>4.3.6 Equipment List/Summary</td>
<td>4.3-6</td>
</tr>
<tr>
<td>4.3.7 Equipment Data Sheets</td>
<td>4.3-7</td>
</tr>
<tr>
<td>4.4 SRC HANDLING AND STORAGE</td>
<td>4.4-1</td>
</tr>
<tr>
<td>4.4.1 Facilities Description</td>
<td>4.4-1</td>
</tr>
<tr>
<td>4.4.2 Process Flow Diagrams</td>
<td>4.4-5</td>
</tr>
<tr>
<td>4.4.3 Utility Summary</td>
<td>4.4-5A</td>
</tr>
<tr>
<td>4.4.4 Motor List</td>
<td>4.4-5B</td>
</tr>
<tr>
<td>4.4.5 Layout Drawings</td>
<td>4.4-6</td>
</tr>
<tr>
<td>4.4.6 Equipment List/Summary</td>
<td>4.4-7</td>
</tr>
<tr>
<td>4.4.7 Equipment Data Sheets</td>
<td>4.4-8</td>
</tr>
</tbody>
</table>

VOLUME V

Wastewater Treatment System and Solid Wastes Landfill for 6,000 TPD SRC-I Demonstration Plant (DOE/OR/03054-71)

VOLUME VI

3.1.3 Wastewater Treatment (Confidential Version) | 3.1-13 |

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.1 Process Description</td>
<td>3.1-13</td>
</tr>
<tr>
<td>3.1.3.2 Process Flow Diagram</td>
<td>3.1-26</td>
</tr>
<tr>
<td>3.1.3.3 Material Balance</td>
<td>3.1-26A</td>
</tr>
<tr>
<td>3.1.3.4 Utility Summary</td>
<td>3.1-26B</td>
</tr>
<tr>
<td>3.1.3.5 Motor List</td>
<td>3.1-26C</td>
</tr>
<tr>
<td>3.1.3.6 Layout Drawing</td>
<td>3.1-27</td>
</tr>
<tr>
<td>3.1.3.7 Equipment List/Summary</td>
<td>3.1-28</td>
</tr>
<tr>
<td>3.1.3.8 Equipment Data Sheets</td>
<td>3.1-29</td>
</tr>
</tbody>
</table>

ix Rev. 5-25-84
2.2.4 Cooling Water System

2.2.4.1 System Description (Refer to Process Flow Diagrams No. 00-16-01014D and 00-16-01015D)

2.2.4.1.1 General

The cooling water system includes two cooling tower systems, cooling tower No. 1 and cooling tower No. 2. Each cooling tower system consists of a distribution header, a collection header, the cooling tower, and cooling tower associated equipment.

2.2.4.1.2 Cooling Tower No. 1

2.2.4.1.2.1 The cooling tower (CT-16601) will be cross-flow design. The hot water enters the distribution basin in the top of the tower and falls by gravity through the cooling tower fill into a cold water basin. The cooling water supply pumps (P-16603A through F) are located in a sump at the end of the cold water basin. Removable screens are provided to prevent large solids from entering the pump suctions. The vertical turbine cooling water supply pumps will maintain a constant pressure on the distribution header. The cooling tower fans (C-16601 A-K) can be started or shutdown to provide the proper water temperature for the distribution system header. The cooling water from all areas together with the blowdowns from boilers will be collected in a central header and returned to the cooling tower.

2.2.4.1.2.2 A cooling tower chlorinator (X-16603) is provided to prevent microbiological growth in the tower or in the cooling water system. An inhibitor feed system (X-16601) will meter inhibitor into the cooling water system to provide corrosion control. The cooling tower blowdown stream will flow to the wastewater treatment area through interconnecting piping systems. A sulfuric acid feed system (X-16602) will meter acid into the
cooling water system to maintain the proper pH level. Makeup water to the cooling tower will be supplied from the process water distribution system to maintain level in the cold water basin. Other makeup water sources include evaporator condensate, treated wastewater and boiler blowdowns.

2.2.4.1.3 Cooling Tower No. 2

2.2.4.1.3.1 The cooling tower (CT-16610) will be cross-flow design. The hot water enters the distribution basin in the top of the tower and falls by gravity through the cooling tower fill into a cold water basin. The cooling water supply pumps (P-16612 A-E) are located in a sump at the end of the cold water basin. Removable screens are provided to prevent large solids from entering the pump suction. The vertical turbine cooling water supply pumps will maintain a constant pressure on the distribution header. The cooling tower fans (C-16610 A-C) can be started or shutdown to provide the proper water temperature for the distribution system header. The cooling water from all areas will be collected in a central header and returned to the cooling tower.

2.2.4.1.3.2 A cooling tower chlorinator (X-16612) is provided to prevent microbiological growth in the tower or in the cooling water system. An inhibitor feed system (X-16610) will meter inhibitor into the cooling water system to provide corrosion control. The cooling tower blowdown stream will flow to the wastewater treatment area. A sulfuric acid feed system (X-16611) will meter acid into the cooling water system to maintain the proper pH level. Makeup water to the cooling tower will be supplied from the process water distribution system to maintain level in the cold water basin.
2.2.4.2 Utility Flow Diagrams

The following utility flow diagrams are included after this page:

00-16-01014D Cooling Water System Process and Control Diagram (Sheet 1)
00-16-01015D Cooling Water System Process and Control Diagram (Sheet 2)
2.2.4.3 Utility Summary

The utility summary for the cooling water system follows this page.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CT.16604 Cooling Tower NO.1</td>
<td>7635 psi</td>
<td>SEE</td>
<td>MOTOR</td>
<td></td>
<td>389</td>
<td>50</td>
<td>50</td>
<td>373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT.16610 Cooling Tower NO.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>50</td>
<td>50</td>
<td>349</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

| Work | 13,774 | 8,408 | 463 | 76 | 105 | 742 |

NOTES:

- [Image of the form with the data filled in]
2.2.4.4 Motor List

The motor list for the cooling water system follows this page.
<table>
<thead>
<tr>
<th>Equipment No.</th>
<th>Description</th>
<th>Installed Hp</th>
<th>Operating KW</th>
<th>Hours/Day</th>
<th>KWH/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-16601A</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601B</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601C</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601D</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601E</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601F</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601G</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601H</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>C-16601I</td>
<td>Cooling Tower Fan</td>
<td>250</td>
<td>150</td>
<td>24</td>
<td>3,600</td>
</tr>
<tr>
<td>P-16601A</td>
<td>Corrosion Inhibitor Pump</td>
<td>1</td>
<td>0.3</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>P-16601B</td>
<td>Corrosion Inhibitor Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16602A</td>
<td>Sulfuric Acid Pump</td>
<td>1</td>
<td>0.3</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>P-16602B</td>
<td>Sulfuric Acid Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16603A</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>1,120</td>
<td>24</td>
<td>26,880</td>
</tr>
<tr>
<td>P-16603B</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>1,120</td>
<td>24</td>
<td>26,880</td>
</tr>
<tr>
<td>P-16603C</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>1,120</td>
<td>24</td>
<td>26,880</td>
</tr>
<tr>
<td>P-16603D</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>1,120</td>
<td>24</td>
<td>26,880</td>
</tr>
<tr>
<td>P-16603E</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>1,120</td>
<td>24</td>
<td>26,880</td>
</tr>
<tr>
<td>P-16603F</td>
<td>Cooling Water Supply Pump</td>
<td>1,500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16610A</td>
<td>Corrosion Inhibitor Pump</td>
<td>1</td>
<td>0.3</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>P-16610B</td>
<td>Corrosion Inhibitor Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16611A</td>
<td>Sulfuric Acid Pump</td>
<td>1</td>
<td>0.3</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>P-16611B</td>
<td>Sulfuric Acid Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Equipment No.</td>
<td>Description</td>
<td>Installed Hp</td>
<td>Operating KW</td>
<td>Hours/Day</td>
<td>KWH/Day</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>P-16612A</td>
<td>Cooling Water Supply Pump</td>
<td>300</td>
<td>220</td>
<td>24</td>
<td>5,280</td>
</tr>
<tr>
<td>P-16612B</td>
<td>Cooling Water Supply Pump</td>
<td>300</td>
<td>220</td>
<td>24</td>
<td>5,280</td>
</tr>
<tr>
<td>P-16612C</td>
<td>Cooling Water Supply Pump</td>
<td>300</td>
<td>220</td>
<td>24</td>
<td>5,280</td>
</tr>
<tr>
<td>P-16612D</td>
<td>Cooling Water Supply Pump</td>
<td>300</td>
<td>200</td>
<td>24</td>
<td>5,280</td>
</tr>
<tr>
<td>P-16612E</td>
<td>Cooling Water Supply Pump</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X-16601A</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0.1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>X-16601B</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X-16602A</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0.1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>X-16602B</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X-16610A</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0.1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>X-16610B</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X-16611A</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0.1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>X-16611B</td>
<td>Chemical Feed Pump</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>13,371</td>
<td>8,402</td>
<td>201,636</td>
<td></td>
</tr>
</tbody>
</table>
2.2.4.5 Equipment List/Summary

The equipment list/summary for the cooling water system follows this page.
<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>QTY</th>
<th>EQUIPMENT</th>
<th>P.O.</th>
<th>SIZE/DESCRIPTION</th>
<th>P.O.</th>
<th>QTY</th>
<th>VENDOR ENG</th>
<th>DELV</th>
<th>EQUIP</th>
<th>PURCH</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C-16601</td>
<td>11</td>
<td>Fan, cooling tower</td>
<td>250hp S 11-82</td>
<td>S 1-83 inc</td>
<td>S 9-83 inc</td>
<td>CMC</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A thru K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CT-16601</td>
<td>1</td>
<td>Cooling tower, 100,000 gpm, cooling range 20°F, 10°F approach, wet bulb 78°F</td>
<td>S 11-82</td>
<td>S 1-83</td>
<td>227.7</td>
<td>S 9-83</td>
<td>1,297.5</td>
<td>CMC</td>
<td>FF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>Filter, side stream, ca, 720 gpm, flat top, 24" sand filter depth, top section for water storage; bottom section for sand filter, T = 88°F</td>
<td>12.5' dia x 15.75' high</td>
<td>P 10-82</td>
<td>S 12-82 5.4 ea</td>
<td>S 5-83</td>
<td>45.8 ea</td>
<td>CMC</td>
<td>SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A thru D</td>
<td></td>
<td>Ejector, chlorine, 230 lb/hour (included with chlorinator)</td>
<td>P 10-82</td>
<td>S 11-82 inc</td>
<td>S 3-83 inc</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P-16601</td>
<td>2</td>
<td>Pump, corrosion inhibitor, centrifugal, 15 gpm, 30 tdp, 110°F max, sp gr 1.84, Hastelloy C, with motor</td>
<td>1 hp</td>
<td>1,800 rpm</td>
<td>P 10-82</td>
<td>S 11-82 0.6 ea</td>
<td>S 2-83</td>
<td>4.7 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P-16602</td>
<td>2</td>
<td>Pump, sulfuric acid, centrifugal, 15 gpm, 30 tdp, 110°F max, sp gr 1.84, Hastelloy C, with motor</td>
<td>1 hp</td>
<td>1,800 rpm</td>
<td>P 10-82</td>
<td>S 11-82 0.6 ea</td>
<td>S 2-83</td>
<td>4.7 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-16603</td>
<td>6</td>
<td>Pump, cooling water supply, vertical turbine, ca, 20,000 gpm, 221 tdp, 108°F, with motor</td>
<td>1,500 hp ea.</td>
<td>rpm</td>
<td>P 10-82</td>
<td>S 11-82 30.3 ea</td>
<td>S 2-83</td>
<td>117.7 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB job site with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
RUST: Rust Engineering S: Scheduled FL: Field Labor N/A: Not Applicable
CNC: Stone & Webster P: Projected M: Material for field fab equipment
A: Actual SF: Shop Fabricated FF: Field Fabricated
Equipment List/Summary

WBS Element: 1.4.1.2
ICRC Area: 16
Cooling Water—Cooling Tower 1
Rev.: 4
Date: 03-26-82
Page 2 of 3

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>QTY</th>
<th>EQUIPMENT NO</th>
<th>DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP</th>
<th>PURCH BY</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TX-16601</td>
<td>Tank, inhibitor storage, fiberglass, 1,000 gal capacity, covered flat top, 0 psig, 90°F max</td>
<td>6' dia x 4.5' high</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>0.4</td>
<td>S 6-83</td>
<td>3.1</td>
<td>CMC</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TX-16602</td>
<td>Tank, sulfuric acid, ca, 10,000 gal capacity, horizontal, 0 psig, 110°F max</td>
<td>12' dia x 12' TT</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>1.6</td>
<td>S 4-83</td>
<td>13.4</td>
<td>CMC</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W-16601</td>
<td>Scale, chlorine, ton cylinder, 3,600 lb load, tank size 6.67' x 2.5' diameter</td>
<td></td>
<td>S 10-82</td>
<td>S 11-82</td>
<td>0.7 ea</td>
<td>S 3-83</td>
<td>6.0 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X-16601</td>
<td>Chemical feed system, inhibitor, inc vertical tank, 316 SS, 100 gal capacity, open top</td>
<td>2.58' dia x 3.1' high</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>0.8</td>
<td>S 4-83</td>
<td>7.0</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X-16602</td>
<td>Chemical feed system, sulfuric acid, inc vertical tank, 316 SS, 100 gal capacity, open top</td>
<td>2.58' dia x 3.1' high</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>0.6</td>
<td>S 4-83</td>
<td>4.5</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
 RUST: Rust Engineering
 SF: Shop Fabricated
 FL: Field Labor
 M: Material for field fab equipment
 N/A: Not Applicable
 S: Scheduled
 A: Actual
 P: Projected
 X: Actual
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
 CMC: Stone & Webster
3. This equipment is Appendix C Bulks.
Equipment List/Summary

WBS Element: 1.4.1.2
ICRC Area: 16
COOLING WATER—COOLING TOWER 1
Rev: 4
03-26-82
Page 3 of 3

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT</th>
<th>DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH BY</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-16603</td>
<td>1</td>
<td>Chiller, cooling tower, 6,000 lb/day max</td>
<td>S 10-82</td>
<td>S 11-82</td>
<td>2.8</td>
<td>S 3-83</td>
<td>28.1</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.

RUST: Rust Engineering
M/C: Stone & Webster
S: Scheduled
P: Projected
A: Actual
FL: Field Labor
N/A: Not Applicable
M: Material for field fab equipment
SF: Shop Fabricated
FF: Field Fabricated
Equipment List/Summary

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUSI</th>
<th>QTY</th>
<th>Equipment Description</th>
<th>P.O. Number</th>
<th>Size/Weight</th>
<th>P.O. Date</th>
<th>Inc/Proj</th>
<th>Cost</th>
<th>Delv Date</th>
<th>Equip Cost</th>
<th>Purch By</th>
<th>Type</th>
<th>Equip</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-16610</td>
<td>3 A thru C</td>
<td>Fan, Cooling tower</td>
<td>125 hp</td>
<td>S 11-82</td>
<td>P 1-83</td>
<td>Inc 9-83</td>
<td>Inc with</td>
<td>CT-16610</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT-16610</td>
<td>5</td>
<td>Cooling tower, 16,000 gpm, cooling range 20°F, 10°F approach, wet bulb 78°F</td>
<td>B 11-82</td>
<td>P 39.1</td>
<td>B 9-83</td>
<td>374.8</td>
<td>CHC</td>
<td>FF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL-16610</td>
<td>2 A and B</td>
<td>Filter, side stream, ca, 278 gpm, flat top, 24" sand filter depth, top section for water storage; bottom section for sand filter, T = 98°F</td>
<td>8' dia x 15.75' high</td>
<td>S 10-82</td>
<td>P 12-82</td>
<td>3.3 ea</td>
<td>B 5-83</td>
<td>12.5 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-16610</td>
<td>1</td>
<td>Ejector, chlorine (included with chlorinator)</td>
<td>S 10-82</td>
<td>P 11-82</td>
<td>Inc 3-83</td>
<td>Inc with</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-16610</td>
<td>2 A and B</td>
<td>Pump, corrosion inhibitor, centrifugal, 15 gpm, 30 tdbh, 90°F max, sp gr 1.1, Hastalloy C, with motor</td>
<td>1 hp</td>
<td>1,800 rpm</td>
<td>P 10-82</td>
<td>0.6 ea</td>
<td>S 2-83</td>
<td>4.7 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-16611</td>
<td>2 A and B</td>
<td>Pump, sulfuric acid, centrifugal, 15 gpm, 30 tdbh, 110°F max, sp gr 1.84, Hastalloy C, with motor</td>
<td>1 hp</td>
<td>1,800 rpm</td>
<td>P 10-82</td>
<td>0.6 ea</td>
<td>S 2-83</td>
<td>4.7 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-16612</td>
<td>5 A thru E</td>
<td>Pump, cooling water supply, vertical turbine, ca, 4,000 gpm, 221 tdbh, 108°F, sp gr 1.0, CI, with motor</td>
<td>300 hp ca.</td>
<td>rpm</td>
<td>B 10-82</td>
<td>7.2 ea</td>
<td>S 2-83</td>
<td>50.1 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars. RUST: Rust Engineering
2. Equipment costs are FDB job site with shipping & vendor field support less vendor engineering. 3. This equipment is Appendix C Bulks.
3. S: Scheduled FL: Field Labor M/A: Not Applicable
<table>
<thead>
<tr>
<th>REV. ICRC/RUST EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/ WEIGHT</th>
<th>P.O. DATE</th>
<th>P.O. NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH BY</th>
<th>TYPE EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK-16610</td>
<td>1</td>
<td>Tank, inhibitor storage, fiberglass, 1,000 gal capacity, covered flat top, 0 psig, 90°F max</td>
<td>6' dia x 4.5' high</td>
<td>S 10-82 P</td>
<td>S 12-82 0.4 P</td>
<td>S 4-83 3.1 CMC SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK-16610</td>
<td>1</td>
<td>Tank, sulfuric acid, ca, 10,000 gal capacity, horizontal, 0 psig, 190°F max</td>
<td>12' dia x 12' TT</td>
<td>S 10-82 P</td>
<td>S 12-82 1.6 P</td>
<td>S 4-83 13.4 CMC SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-16610</td>
<td>1</td>
<td>Scale, chlorine, ton cylinder, 3600 lb load, tank size 6.67' x 2.5' diameter</td>
<td></td>
<td>S 10-82 P</td>
<td>S 11-82 0.7 P</td>
<td>S 3-83 6.0 RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-16610</td>
<td>1</td>
<td>Chemical feed system, inhibitor, inc vertical tank, 316 SS, 100 gal capacity, open top</td>
<td>2.58' dia x 3.1' high</td>
<td>S 10-82 P</td>
<td>S 12-82 0.7 P</td>
<td>S 4-83 6.2 RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-16610</td>
<td>2</td>
<td>Pump, 316 SS, diaphragm, 0.5 gpm, 100 t/dh, ambient temp, sp gr 1.1, with motor</td>
<td>1 hp 1,800 rpm A</td>
<td>S 10-82 P with P</td>
<td>S 12-82 inc with P</td>
<td>S 4-83 inc with P</td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-16611</td>
<td>1</td>
<td>Chemical feed system, sulfuric acid, inc vertical tank, 316 SS, 100 gal capacity, open top</td>
<td>3.5' dia x 3.9' high</td>
<td>S 10-82 P</td>
<td>S 12-82 0.7 P</td>
<td>S 4-83 6.2 RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-16611</td>
<td>2</td>
<td>Pump, 316 SS, diaphragm, 0.5 gpm, 100 t/dh, ambient temp, sp gr 1.85, with motor</td>
<td>1 hp 1,800 rpm A</td>
<td>S 10-82 P with P</td>
<td>S 12-82 inc with P</td>
<td>S 4-83 inc with P</td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB job site with shipping & vendor field support less vendor engineering.
3. Material for field fab equipment.
4. This equipment is Appendice C Bulks.

RUST: Rust Engineering
CNC: Stone & Webster
P: Projected
FL: Field Labor
N/A: Not Applicable
S: Scheduled
SF: Shop Fabricated
FF: Field Fabricated
<table>
<thead>
<tr>
<th>REV. ICRC/RUST</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-16612</td>
<td>1</td>
<td>Chlorinator, cooling tower, 1200 lb/day max</td>
<td>S 10-82</td>
<td>P</td>
<td>1 1-82</td>
<td>1.7</td>
<td>S 3-83</td>
<td>17.6</td>
<td>RUST</td>
<td>SF</td>
</tr>
</tbody>
</table>

Notes:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
Equipment List/Summary

<table>
<thead>
<tr>
<th>WBS Element: 1.4.1.2.1</th>
<th>ICRC Area: 17</th>
<th>13.8 kV Distribution—Substation No. 7</th>
<th>REV. 4</th>
<th>03-26-82</th>
<th>Page 1 of 3</th>
</tr>
</thead>
</table>

REVIEW: ICRC/RUST

<table>
<thead>
<tr>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST DATE</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH BY</th>
<th>TYPE EQUIP</th>
</tr>
</thead>
</table>

CA-17014 A

- Capacitor, 4.16 kV, 200 kVAC, with vacuum switch and individually fused cans, complete with voltage control; all located in an all-weather metal enclosure.

CA-17014 con't.

- Enclosure with conduit entrance from bottom

GR-17012 A

- Resistor, neutral grounding, rated 2,500 volts, 600 amperes for 10 seconds; complete with mounting frame and screen enclosure

MC-17013 A

- Motor control center, medium voltage, 4.16 kV, NEMA type I, with incoming line module and terminal lugs

MC-17017 A

- Motor control center, 0.68 kV, NEMA type I with incoming line module and terminal lugs

SG-17011 A

- Switchgear, 3 phase, 4.16 kV, 1,200 amperes located in an outdoor, protected-isle, all-weather metal enclosure, complete with CPT, CT's.

SG-17011 con't.

- and PT's for load metering, dc power supply if required, (2) relay and metering cubicles in addition to breaker cubicles, and provisions for

Notes:

1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
Equipment List/Summary

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP TYPE</th>
<th>PURCH BY</th>
<th>VENDOR ENC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SC-17011</td>
<td></td>
<td>conduit entrance to each cubicle from top or bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CMC</td>
<td>SF</td>
</tr>
<tr>
<td>2.</td>
<td>SG-17016</td>
<td>1</td>
<td>Switchgear, 3 phase, 0.48 KV, 3,000 ampere, located in an outdoor, protected-isle, all-weather metal enclosure; complete with CT's and PT's</td>
<td>P</td>
<td>P</td>
<td>A</td>
<td>A</td>
<td>SG-17011</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>SG-17016</td>
<td></td>
<td>for load metering, dc power supply if required, and provisions for conduit entrance to each cubicle from top or bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CMC</td>
<td>SF</td>
</tr>
<tr>
<td>4.</td>
<td>TR-17010</td>
<td>1</td>
<td>Transformer, primary unit substation, 3 phase, rated 1,000/1,150/1,288 kVA (55/65C), 13,800 - 4,160 V/2,400 with (2) 24% taps above and below rated voltage; with fans for 480 volt 3 phase supply, top oil thermistor with alarm contacts, liquid level gauge; (1) 600V ampere mr ct on each hv bushing and lv neutral bushing, (1) 1,200V ampere mr ct for relaying and metering on each lv bushing; incoming line section to consist of oil filled fused load break switch rated 60 ampere with termination compartment for (1) 3/c 250CHM IAC and (1) 3/c 250CHM IAC; switch and power fuses to</td>
<td>P</td>
<td>P</td>
<td>A</td>
<td>A</td>
<td>42.3</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All costs are Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
EQUIPMENT LIST/SUMMARY

WBS ELEMENT: 1.4.1.2.1 **ICRC AREA:** 17
13.8 KV DISTRIBUTION--SUBSTATION NO. 7

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>QTY</th>
<th>EQUIPMENT NO.</th>
<th>DESCRIPTION</th>
<th>P.O.</th>
<th>SIZE/</th>
<th>P.O.</th>
<th>NEED</th>
<th>COST</th>
<th>DELV</th>
<th>EQUIP</th>
<th>PURCH</th>
<th>TYPE</th>
<th>EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TR-17010</td>
<td>be located in oil filled compartment separate from the main transformer tank; outgoing section to consist of throat connection to switchgear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TR-17010</td>
<td>located in an outdoor, protected-isle, all-weather metal enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
</tr>
<tr>
<td>TR-17015</td>
<td></td>
<td>1</td>
<td>A</td>
<td>Transformer, 3 phase, power center, rated 1,500/1,725/1,932 KVA (55/65)c, 13,800 - 480V/277 with (2) 25% tape above and below rated voltage; equipped with fans for 480 volt 3 phase supply, top oil thermometer with alarm contacts, and liquid level guage; incoming line section to consist of oil filled fused load break switch, rated 200 amperes, with termination compartment for (1) 3/0 250MCM IAC; switch and power fuse to</td>
<td>S 7-83</td>
<td>S 11-83</td>
<td>inc</td>
<td>S 5-84</td>
<td>inc</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
</tr>
<tr>
<td>TR-17015</td>
<td></td>
<td></td>
<td></td>
<td>be located in oil filled compartment separate from the main transformer tank outgoing section to consist of throat connection to switchgear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
</tr>
<tr>
<td>TR-17015</td>
<td></td>
<td></td>
<td></td>
<td>located in an outdoor, protected-isle, all-weather metal enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
</tr>
</tbody>
</table>

NOTES:

1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
EQUIPMENT LIST/Summary

WBS ELEMENT: 1.4.1.1.2
ICRC AREA: 16
13.8 KV DISTRIBUTION--SUBSTATION NO. 9
REV: 4
03-26-82
PAGE 1 OF 3

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH</th>
<th>TYPE</th>
<th>EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-16030</td>
<td>A</td>
<td>1</td>
<td>Capacitor, 4.16 KV, 1,000 KVAC, with vacuum switch and individually fused cans, complete with voltage control; all located in an all weather metal enclosure with conduit entrance from bottom</td>
<td>S 11-82</td>
<td>3-83 inc</td>
<td>S 6-83 inc</td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-16030</td>
<td>A</td>
<td>1</td>
<td>Capacitor, 4.16 KV, 1,000 KVAC, with vacuum switch and individually fused cans, complete with voltage control; all located in an all weather metal enclosure with conduit entrance from bottom</td>
<td>S 11-82</td>
<td>3-83 inc</td>
<td>S 6-83 inc</td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-16028</td>
<td>A</td>
<td>1</td>
<td>Resistor, neutral grounding, rated 2,400 volts, 400 amperes for 10 seconds; complete with mounting frame and screen</td>
<td>S 7-83</td>
<td>11-83 inc</td>
<td>S 5-84 inc</td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC-16029</td>
<td>A</td>
<td>1</td>
<td>Motor control center, medium voltage, 4.16 KV, NEMA TYPE I, with incoming line module and terminal lugs</td>
<td>S 11-82</td>
<td>2-83</td>
<td>13.6</td>
<td>S 6-83</td>
<td>114.9</td>
<td>CMC SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC-16033</td>
<td>A</td>
<td>1</td>
<td>Motor control center, 0.48 KV, NEMA TYPE I with incoming line module and terminal lugs</td>
<td>S 11-82</td>
<td>2-83</td>
<td>inc</td>
<td>S 6-83</td>
<td>inc</td>
<td>CMC SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG-16027</td>
<td>A</td>
<td>1</td>
<td>Switchgear, 3 phase, 4.16 KV, 1,200 amperes located in an outdoor, protective-isle, all-weather metal enclosure, complete with CPT, CT's, and PT's for load metering, dc power supply if required, (2) relay and metering cubicles in addition to breaker cubicles, and provisions for support less vendor engineering</td>
<td>S 11-82</td>
<td>3-83</td>
<td>72.0</td>
<td>S 6-83</td>
<td>608.5</td>
<td>CMC SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB job site with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
4. RUST: Rust Engineering
5. CMC: Stone & Webster
6. FL: Field Labor
7. M: Material for field fab equipment
8. N/A: Not Applicable
9. SF: Shop Fabricated
10. FF: Field Fabricated
<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SG-16027</td>
<td></td>
<td></td>
<td>Conduit entrance to each cubicle from top or bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CMC SF</td>
</tr>
<tr>
<td>SG-16032</td>
<td>1</td>
<td></td>
<td>Switchgear, 3 phase, 0.48 KV, 3,040 amperes, located in an outdoor, protected-isle, oil-weather, metal enclosure; complete with CT's and PT's</td>
<td>S 11-82</td>
<td>3-83 inc</td>
<td>S 6-83 inc</td>
<td></td>
<td>CMC SF</td>
<td></td>
</tr>
<tr>
<td>SG-16032</td>
<td></td>
<td></td>
<td>for load metering, dc power supply if required, and provisions for conduit entrance to each cubicle from top or bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CMC SF</td>
</tr>
<tr>
<td>TR-16026</td>
<td>1</td>
<td></td>
<td>Transformer, primary unit substation, 3 phase, rated 5,000/6,250/7,000 KVA (55/65C), 13,880 - 4,1601/2.400 with (2) 2-1/2% taps above and below rated</td>
<td>S 7-83 5-84</td>
<td>3-83 9.3</td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
</tr>
<tr>
<td>TR-16026</td>
<td></td>
<td></td>
<td>voltage; with fans for 480 volt 3 phase supply, top oil thermometers with alarm contacts, liquid level gauge, (1) 600/3 amperes MR CT on each HV</td>
<td>P 6-84</td>
<td>87.4</td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
</tr>
<tr>
<td>TR-16026</td>
<td></td>
<td></td>
<td>bushing and LV neutral bushing (1) 1,200/5 amperes MR CT for relaying and metering on each LV bushing; incoming line section to consist of oil filled</td>
<td>A 3-84</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
</tr>
<tr>
<td>TR-16026</td>
<td></td>
<td></td>
<td>fused load break switch rated 600 amperes with termination compartment for (1) 3/c, 250MCM IAC and (1) 3/c 250MCM IAC; switch and power fuse to</td>
<td>A 3-84</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.
<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST EQIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P.O. DATE</th>
<th>VENDOR ENG</th>
<th>DELV DATE</th>
<th>EQUIP COST</th>
<th>PURCH BY</th>
<th>TYPE EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-16026</td>
<td>con't.</td>
<td></td>
<td>be located in oil filled compartment separate from the main transformer tank; outgoing section to consist of throat connection to switchgear</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16026</td>
<td>con't.</td>
<td></td>
<td>located in an outdoor, protected-isle, all-weather metal enclosure</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16031</td>
<td>A</td>
<td>1</td>
<td>Transformer, 3 phase, power center, rated 1,500/1,725/1,932 KVA (55/65 c), 13,800 - 480V/277 with (2) 24% taps above and below rated voltage;</td>
<td>S 7-83</td>
<td>P</td>
<td>S 11-83</td>
<td>inc S 9-84</td>
<td>inc</td>
<td>RUST SF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TR-16026 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16031</td>
<td>con't.</td>
<td></td>
<td>equipped with fans for 480 volt 3 phase supply, top oil thermometer with alarm contacts, and liquid level gauge; incoming line section to</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16031</td>
<td>con't.</td>
<td></td>
<td>consist of oil filled fused load break switch, rated 200 amperes, with termination compartment for (1) 3/c 250MCM IAC; switch and power fuses to</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16031</td>
<td>con't.</td>
<td></td>
<td>be located in oil filled compartment separate from the main transformer tank; outgoing section to consist of throat connection to switchgear located</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR-16031</td>
<td>con't.</td>
<td></td>
<td>in an outdoor, protected-isle, all weather metal enclosure</td>
<td></td>
<td></td>
<td></td>
<td>RUST SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars. RUST: Rust Engineering S: Scheduled FL: Field Labor N/A: Not Applicable CMIC: Stone & Webster M: Material for field fab equipment P: Projected A: Actual SF: Shop Fabricated FF: Field Fabricated
2.2.4.6 Equipment Data Sheets

The equipment data sheets for the cooling tower system follow this page.
COOLING TOWER DATA SHEET

PROJECT
- **6000 TPD SRC-1 DEMONSTRATION PLANT**
- **PLANT LOCATION**: NEWMAN, KENTUCKY

SERVICE
- **PLANT COOLING WATER**

VENDOR
- **P.O. NO.**

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER QUANTITY (GPM)</td>
<td>100,000</td>
</tr>
<tr>
<td>SOLIDS IN MAKEUP WATER (mg/l)</td>
<td>20</td>
</tr>
<tr>
<td>WATER INLET TEMP (°F)</td>
<td>108 (NORM) 115 (MAX)</td>
</tr>
<tr>
<td>% BLOWDOWN</td>
<td>0.3</td>
</tr>
<tr>
<td>WATER OUTLET TEMP (°F)</td>
<td>88</td>
</tr>
<tr>
<td>% DRIFT LOSS</td>
<td>0.02</td>
</tr>
<tr>
<td>WET BULB TEMP (°F)</td>
<td>78</td>
</tr>
<tr>
<td>% EVAP LOSS</td>
<td>2</td>
</tr>
<tr>
<td>DRY BULB TEMP (°F)</td>
<td>88</td>
</tr>
<tr>
<td>% SPRAY LOSS</td>
<td>0</td>
</tr>
<tr>
<td>ELEV ABOVE SEA LEVEL</td>
<td>TOTAL MAKEUP (GPM) 2014</td>
</tr>
</tbody>
</table>

TOWER DESCRIPTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOWER EXPOSURE</td>
<td>UNOBSERVED</td>
</tr>
<tr>
<td>TOWER SITE DESCRIPTION</td>
<td>GROUND LEVEL</td>
</tr>
<tr>
<td>DESIGN WINDLOAD (LB/50SF)</td>
<td>30</td>
</tr>
<tr>
<td>PREVAILING WIND</td>
<td></td>
</tr>
</tbody>
</table>

TOWER DESCRIPTION (CONT.)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER RATE-GPM PER SQ FT OF TOWER AREA IN PATH OF WATER</td>
<td></td>
</tr>
<tr>
<td>AIR RATE-CFM PER SQ FT OF TOWER AREA IN PATH OF AIR</td>
<td></td>
</tr>
<tr>
<td>NO & SIZE OF DISTRIBUTOR PIPE CONNECTIONS</td>
<td></td>
</tr>
<tr>
<td>FRAME MATERIAL</td>
<td>DOUGLAS FIR</td>
</tr>
<tr>
<td>TYPE OF FILL</td>
<td>PVC, OR EPI</td>
</tr>
<tr>
<td>BASIN DIMENSIONS OUTSIDE (W' X L')</td>
<td></td>
</tr>
<tr>
<td>WATER RATE-GPM PER SQ FT OF TOWER AREA IN PATH OF WATER</td>
<td></td>
</tr>
<tr>
<td>AIR RATE-CFM PER SQ FT OF TOWER AREA IN PATH OF AIR</td>
<td></td>
</tr>
<tr>
<td>NO & SIZE OF DISTRIBUTOR PIPE CONNECTIONS</td>
<td></td>
</tr>
<tr>
<td>FRAME MATERIAL</td>
<td>DOUGLAS FIR</td>
</tr>
<tr>
<td>TYPE OF FILL</td>
<td>PVC, OR EPI</td>
</tr>
<tr>
<td>CROSS BRACES</td>
<td></td>
</tr>
<tr>
<td>HORIZONALS</td>
<td></td>
</tr>
<tr>
<td>CASING</td>
<td>FRP - 12 OZ.</td>
</tr>
<tr>
<td>DRIFT ELIMINATOR PVC</td>
<td></td>
</tr>
<tr>
<td>HARDWARE</td>
<td>STAINLESS STEEL</td>
</tr>
<tr>
<td>NAILS</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTORS</td>
<td></td>
</tr>
<tr>
<td>FANS, GEARS & MOTORS</td>
<td></td>
</tr>
<tr>
<td>NO OF FANS</td>
<td>11</td>
</tr>
<tr>
<td>DIA</td>
<td></td>
</tr>
<tr>
<td>NO OF BLADES</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td></td>
</tr>
<tr>
<td>MAKER OF FANS</td>
<td></td>
</tr>
<tr>
<td>FAN RPM</td>
<td></td>
</tr>
<tr>
<td>MAX SAFE RPM</td>
<td></td>
</tr>
<tr>
<td>CFM REQUIRED PER FAN AT TOWER RATING</td>
<td></td>
</tr>
<tr>
<td>FAN NOISE LEVEL 50 AWAY (INTERNATIONAL SCALE)</td>
<td></td>
</tr>
<tr>
<td>FAN NOISE LEVEL 50 AWAY (INTERNATIONAL SCALE)</td>
<td></td>
</tr>
<tr>
<td>FAN NOISE LEVEL 50 AWAY (INTERNATIONAL SCALE)</td>
<td></td>
</tr>
<tr>
<td>MOTOR HP REQUIRED</td>
<td></td>
</tr>
<tr>
<td>AGMA RATING</td>
<td></td>
</tr>
<tr>
<td>MAKER OF GEAR</td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td></td>
</tr>
<tr>
<td>GEAR LUBRICATION</td>
<td></td>
</tr>
<tr>
<td>DRIVE SHAFT TYPE</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td></td>
</tr>
<tr>
<td>MAKER</td>
<td></td>
</tr>
<tr>
<td>ELECTRIC AREA CLASS</td>
<td></td>
</tr>
<tr>
<td>GROUP</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS
- **FANS ARE EQUIPMENT NUMBERS C-16601 A thru K**

PREPARED BY: O.E. MITCHELL

APPROVED BY: [Signature] [Date]

FORM 8346 (8/80)
COOLING TOWER DATA SHEET

CLIENT: INTERNATIONAL COAL REFINING COMPANY
PROJECT: 6000 TPD SRC DEMONSTRATION PLANT
SERVICE: ASU COOLING WATER

OPERATING CONDITIONS

WATER QUANTITY (GPM) 16,000
WATER INLET TEMP (°F) 108
WATER OUTLET TEMP (°F) 88
WET BULB TEMP (°F) 78
DRY BULB TEMP (°F) 68
ELEV ABOVE SEA LEVEL
TOWER EXPOSURE UNOBSTRUCTED
TOWER SITE DESCRIPTION GROUND LEVEL
DESIGN WIND LOAD (LB/SQ FT) 30
TOWER PUMP HEAD (FT) 40

WATER INLET TEMP: 108°F
WATER OUTLET TEMP: 88°F
WET BULB TEMP: 78°F
DRY BULB TEMP: 68°F
ELEV ABOVE SEA LEVEL
TOWER EXPOSURE: UNOBSTRUCTED
TOWER SITE DESCRIPTION: GROUND LEVEL
DESIGN WIND LOAD: 30 LB/SQ FT
TOWER PUMP HEAD: 40 FT

TOWER DESCRIPTION

MOUNTED ON CROSS FLOW
OVERALL DIMENSIONS (W x L INCL STACKS)
BASIN DIMENSIONS OUTSIDE (W x L)
WATER RATE GPM PER SQ FT OF TOWER AREA IN PATH OF WATER
AIR RATE CFM PER SQ FT OF TOWER AREA IN PATH OF AIR
NO. & SIZE OF DISTRIBUTOR PIPE CONNECTIONS
FRAME MATERIAL DOUGLAS FIR
CROSS BRACES HORIZONTALS
CASING FRP - 12 OZ.
DRIFT ELIMINATOR PVC
HARDWARE STAINLESS STEEL
DISTRIBUTORS NOZZLES & SPRAY HEADS
FANS, GEARS & MOTORS
NO. OF FANS 3 DIA
NO. OF BLADES MATERIAL
MAKER OF FANS MAX SAFE RPM
CFM REQUIRED PER FAN AT TOWER RATING
INDUCED / FORCED
FAN NOISE LEVEL 50' AWAY (INTERNATIONAL SCALE)
MAKER OF GEAR AGMA RATING
GEAR LUBRICATION
DRIVE SHAFT TYPE MATERIAL
COUPLING TYPE MAKER
ELECTRIC AREA CLASS GROUP

REMARKS:
FANS ARE EQUIPMENT NUMBERS C-16610 A THRU C

PREPARED BY O.E. MITCHELL
DATE 3-26-82
APPROVED BY
DATE 7/6/84
REVISION △ △ △ A2
Each filter unit will be rated at 720 gpm. The units will be gravity type with integral backwash water storage. The filtering media will be 24" of sand. The tank dimensions are 12'6" diameter by 15'9" high.

The filters will have automatic controls and will serve Cooling Tower CT-16601.
Each filter unit will be rated at 278 gpm. The units will be gravity type with integral backwash water storage. The filtering media will be 24" of sand. The tank dimensions are 8'0" diameter by 15'9" high.

The filters will have automatic controls and will service Cooling Tower CT-16610.
Client: International Coal Refining Company
Project: 6000 TPSD SRC-I Demonstration Plant
Plant Location: Newman, Kentucky

Vendor: Corrosion Inhibitor Transfer Pump

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of Motors Req'd</th>
<th>Model</th>
<th>Serial No.</th>
<th>Item No.</th>
<th>Furr. By Purchaser</th>
<th>Mfr By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Indicates information to be completed by purchaser

Operating Conditions (Each Pump):

- Liquid: Corrosion Inhibitor GPM at PT NOR: 15.2
- PT: NPT Max: 90, Suction: Pslg Max: 2, RATED: 1
- SP Gr at PT: 1.1, Diff. Press. PSI: 14.2
- Vap Press at PT PSI: 25, Diff. Head FT: 30
- Vis at PT LB/MN/FT.HR: PSI: 30
- Corrosion Caused by:

Construction:

- Nozzles Size in. Rating Facing Location
- Suction Discharge
- Case Mt: Centerline Foot: Racket: Vert (Type)
- Sp H: Axial: Rad Type: Volume: Sgl: Dbl: Diffuser
- Press May Allow: Pslg F: Hydro Test: Pslg
- Connect: Vent: Drain: Gauge: Steam Jacket
- Impeller Dia: Rated: Max: Type
- Mount Between Brgs: Overhung
- Bearings: Type: Radial: Thrust
- Lube: Ring: Oil: Flood: Oil Mist: Finger: Pressure
- Coupling: Mfr: Model
- Driver Haf MTD By: Pump Mfr: Driver Mfr
- Mech Seal: Packing: Aux Seals/Sealing
- Mfr Type: Model
- Mfr Code: API Code

Auxiliary piping:

- C.W. Pipe Plan: Cu: SS: Tubing: Pipe
- Total Cooling Water Req'd GPM: Sight F. I. Req'd
- Packing Cool Injection Req'd: Total GPM: PSI
- External Seal Flush Fluid: GPM: PSI
- Aux. Seal Flush/Ouichen Fluid

Materials:

- Pump Case Trim: API Class
- Lining: Hastelloy C: Coat All: In
- Impeller: Hastelloy C: Wear Rings
- Shaft: Hastelloy C: Sleeves: Hastelloy C
- Case Int Coating/Finishing: Glenn
- Baseplate: GH: Pan

Elevation Ft: Dust/Fumes

Amb Temp: MAX: Min: Area: Elect Cl: Gr: Div

Cooling Water Supply: PSI: F Return: PSI: °F

Remarks:

Prepared By: R. Sciaccia
Date: 10-15-81

Approved By: Date: App'd Date: App'd Date: App'd Date:
Centrifugal Pump Data Sheet

Client: International Coal Refining Company
Project: 6000 TPD SNC Demonstration Plant
Plant Location: Newman, Kentucky
Vendor: Sulfuric Acid Transfer Pumps

Operating Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Sulfuric Acid US GPM at PT Nor</td>
<td>15.15</td>
</tr>
<tr>
<td>Discharge PSIG</td>
<td>24.9</td>
</tr>
<tr>
<td>PT F Nor Max</td>
<td>110</td>
</tr>
<tr>
<td>Suction PSIG Max</td>
<td>3</td>
</tr>
<tr>
<td>SP Gr at PT 1.84</td>
<td>23.9</td>
</tr>
<tr>
<td>Vap Press at PT FSIA</td>
<td>30</td>
</tr>
<tr>
<td>Vis at PT LBD FT-HH</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Construction

- **Nozzles:** Size in.
- **Suction:** Size in.
- **Discharge:** Size in.
- **Case MT:** Centerline
- **Bearing Type:** Radial
- **Lube:** Ring Oil
- **Coupling:** MFR
- **Driver HA F MTQ By:** Pump MFR
- **Mech Seal:** Packing
- **Mfr Type:** Model

Auxiliary piping

- **C/W Pipe Plan:** C
- **Total Cooling Water Reqd GPM:**
- **Packing Cool Injection Reqd:**
- **Seal Flush Pipe Plan:** C
- **Total GPM:**
- **Auxiliary Seal Flush Fluid:** C
- **Aux Seal FlushOUENCl Fluid:**

Materials

- **Pump Case Trim API Class:**
- **Casing:** Hastelloy C Corr All
- **Impeller:** Hastelloy C Wear Rings
- **Shaft:** Hastelloy C Sleeve(S) Hastelloy C
- **Case Int Coating/Lining:** Gland
- **Baseplate:** Drip Pan

Site Conditions

- **Elevation FT:**
- **Amb Temp F Max Min Area Elect Cl Gr Div:**
- **Cooling Water Supply PSIG F Return PSIG:**

Remarks

- **Remarks:** Pump to have vapor proof construction
Centrifugal Pump Data Sheet

Client:
INTERNATIONAL COAL REFINING COMPANY

Project:
BIGGS TPDS 34C-1 DEMONSTRATION PLANT

Location:
NEWARK, KENTUCKY

Service:
Cooling Water Supply Pumps

Details

Vessel Information
- **Type:**
- **Model:**
- **Serial No.:**
- **No. of Motors Reqd:** 6
- **No. of Turbines Reqd:**

Materials
- **Impeller:**
- **Shaft:**
- **Case Int Coating/Lining:**

Operation
- **Liquid:**
- **Operating Conditions Each Pump:**
- **Total Cooling Water Reqd GPM:**
- **Total GPM:**
- **Pressure:**
- **Inlet Pressure:**
- **Outlet Pressure:**

Performance
- **Proposal Curve No:**
- **RPM:**
- **No of Stages:**
- **NPSH:**
- **Eff:**
- **Max BHP Rated:**
- **Max Head Rated:**

Construction
- **Nozzles:**
- **Suction:**
- **Discharge:**
- **Case Mt:**
- **Impeller Dia:**
- **Mount:**
- **Bearings Type:**
- **Coupling:**
- **Driver Mfr:**
- **Mech Seal:**
- **Mfr Type Model:**
- **Mfr Code:**

Auxiliary
- **API Code:**
- **C W Pipe Plan:**
- **Tubing OD:**
- **Total Cooling Water Reqd GPM:**
- **Injection Reqd Total GPM:**
- **Seal Fluid Plan:**
- **External Seal Fluid:**
- **Inte AUX Seal Plan:**
- **Sump Depth:**

Materials
- **Case Trim:**
- **Shaft:**
- **Case Int Coating/Lining:**

Inspection and Tests
- **Shop Inspection:**
- **Hydrostatic Test:**
- **Performance Test:**
- **Int Test:**

Notes
- **API:**
- **Notes:**
- **Remarks:**

Prepared by: R. Sciacca

Date:
10-10-81

Revision:
- 1

Approved by:
- MWH

Date:
3-84

Contract No:
21-1997F

Equipment No:
E150603A/B/C/D/E/F/G

No Required:
3

Sheet:
1 of 1

31
Centrifugal Pump Data Sheet

Client: International Coal Refining Company
Project: 6000 TPD SRC-1 Demonstration Plant
Plant Location: Newman, Kentucky

Construction

<table>
<thead>
<tr>
<th>NO./LES</th>
<th>SIZE (IN)</th>
<th>RATING</th>
<th>FACING</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case MT</td>
<td>CENTERLINE FOOT BRACKET</td>
<td>VERT (TYPE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>AXIAL RAD. TYPE</td>
<td>VOLUTE</td>
<td>SGL DBL</td>
<td>DIFFUSER</td>
</tr>
<tr>
<td>Press</td>
<td>MAX ALLOW</td>
<td>PSIG</td>
<td>F</td>
<td>HYDRO TEST</td>
</tr>
<tr>
<td>Connect</td>
<td>TENT DRAIN GAUGE</td>
<td>STEAM JACKET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impeller Dia</td>
<td>RATED</td>
<td>MAX</td>
<td>TYPE</td>
<td></td>
</tr>
<tr>
<td>Mount</td>
<td>BETWEEN BRGS</td>
<td>OVERHANG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearings Type</td>
<td>RADIAL</td>
<td>THRUST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube</td>
<td>RING OIL</td>
<td>FLOOD</td>
<td>OIL MIST FLINGER</td>
<td>PRESSURE</td>
</tr>
<tr>
<td>Coupling</td>
<td>MFR</td>
<td>MODEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver Half MTD</td>
<td>PUMP</td>
<td>MFR</td>
<td>DRIVER MFR</td>
<td></td>
</tr>
<tr>
<td>Mech Seal</td>
<td>PACKING</td>
<td>AUX SEAL/PACKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR Type</td>
<td>MODEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR Code</td>
<td>API CODE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auxiliary Piping

- C W Pipe Plan: Co. SS Tubing Pipe
- Total Cooling Water Req'd GPM: SIGHT F.I. Req'd
- Packing Cool. Injection Req'd: Total GPM PSig
- External Seal Flush Plan: 11 C S S S Tubing Pipe
- External Seal Flush Fluid: C S C G M PSig
- Auxiliary Seal Plan: C S S S Tubing Pipe
- Aux Seal Flush/Quench Fluid

Materials

- Pump Case Trim API Class
- Casing Hastelloy C Cont'd All
- Impeller Hastelloy C Wear Rings
- Shaft Hastelloy C Sleeve(s) Hastelloy C
- Case Int Coating/Lining Gland
- Baseplate Drip Pan

Elevations

- Elevation Ft: Dust/Fumes
- Amb Temp F Max Min Area Elect Cl Gr Div
- Cooling Water Supply: PSig F Return PSig PF

Remarks

- Prepared by: R. Sciascia
- Date: 10-15-81
- Approved by: APP'D
- Date: 3-26-82

Client and Vendor Information

- **Vendor:** Corrosion Inhibitor Transfer
- **P.O. No.:**
- **Serial No.:**
- **Type:** Operating Conditions (each Pump)

Proposal Curve No.

- **RPM:** No of Stages
- **NPSH FT:** & Impeller T.O.F
- **Eff:** BHP Rated
- **Max BHP Rated:**
- **Max Head Rated:**
- **Min Continuous GPM:**
- **Rotation (viewed from CPLG End):**

Inspection and Tests

- **Shop Inspection:** Req'd
- **Hydrostatic Test:** WITNESS
- **Performance Test:** Req'd WITNESS
- **NPSH Test:** Req'd WITNESS
- **Int Inspec After:** Req'd WITNESS

Int. Wear Parts

- Wear Rings Case Imp
- Interstage Bushings DIA IN CLEARANCE

Vertical Pumps

- Pit or Sump DFTH C
- Pump Length
- Min Submergence Req'd
- Column Pipe Flanged Thru-Threaded
- Line Shaft Open Enclosed
- Briggs Bowl Line Shaft
- Brg. Lub Water Oil Grease
- Float & Rod C S S S Brz None
- Float Switch:

Weights and Dimensions

- Approx WT Pump & Base
- Motor
- LB Turbine
- Base Plate Dimensions

Applicable Specifications

- API 610
- ANSI B73.1 B73.2
- Project Specifications
<table>
<thead>
<tr>
<th>No.</th>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>B/S</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Motor</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Baseplate</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Impeller</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Seal</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Packing</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Driver</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Pump</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Case</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Gland</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Shaft</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Submerged</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Cooling</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Water</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Rod</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Sight FI</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Fitting</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Valve</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Pressure</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Impeller</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Packing</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Driver</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Pump</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Case</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>Gland</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>Shaft</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>Submerged</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>Cooling</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>Water</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>Rod</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>Sight FI</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>Fitting</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>Valve</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>Pressure</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>Impeller</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>Packing</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>Driver</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Pump</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>Case</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>Gland</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>Shaft</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>Submerged</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>Cooling</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>Water</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>Rod</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>Sight FI</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>Fitting</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>Valve</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>Pressure</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>Impeller</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>Packing</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>Driver</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>Pump</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>Case</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>Gland</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>Shaft</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>Submerged</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td>Cooling</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>Water</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>Rod</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>Sight FI</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>Fitting</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>Valve</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>Pressure</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td>Impeller</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>Packing</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td>Driver</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td>Pump</td>
</tr>
<tr>
<td>73</td>
<td>73</td>
<td>Case</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>Gland</td>
</tr>
<tr>
<td>76</td>
<td>76</td>
<td>Shaft</td>
</tr>
<tr>
<td>77</td>
<td>77</td>
<td>Submerged</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
<td>Cooling</td>
</tr>
<tr>
<td>79</td>
<td>79</td>
<td>Water</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>Rod</td>
</tr>
<tr>
<td>81</td>
<td>81</td>
<td>Sight FI</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>Fitting</td>
</tr>
<tr>
<td>83</td>
<td>83</td>
<td>Valve</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
<td>Pressure</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>Impeller</td>
</tr>
<tr>
<td>86</td>
<td>86</td>
<td>Packing</td>
</tr>
<tr>
<td>87</td>
<td>87</td>
<td>Driver</td>
</tr>
<tr>
<td>88</td>
<td>88</td>
<td>Pump</td>
</tr>
<tr>
<td>89</td>
<td>89</td>
<td>Case</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>Wear Parts</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Specification</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>CENTRIFUGAL PUMP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DATA SHEET</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CLIENT</td>
<td>INTERNATIONAL COAL REFINING COMPANY</td>
</tr>
<tr>
<td>4</td>
<td>PROJECT</td>
<td>6000 TPSO SAG</td>
</tr>
<tr>
<td>5</td>
<td>SERVICE</td>
<td>Cooling Water Supply Pumps</td>
</tr>
<tr>
<td>6</td>
<td>VENDOR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NOTE</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OPERATING CONDITIONS (PER WHERE FURN. MATERIALS)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LIQUID</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TYPICAL ELEVATION</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NO. OF MOTORS REO'D</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NO. OF TURBINES REO'D</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PROP. CURVE</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PROPOSAL CURVE</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>REMARKS</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NOZZLES</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SUCTION</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DISCHARGE</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CASE MT & CENTERLINE</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>CASE MT & CENTERLINE</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SPLIT</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PSG</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>IMPPELLER</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>MOUNT</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>BEARINGS</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>COUPLING</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DRIVER</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>MECH SEAL</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>MFR TYPE MODEL</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>MFR CODE</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>AUXILIARY PIPING</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>PUMP CASE & TRIM API CLASS</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>CASING</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>IMPELLER</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>BASEPLATE</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ELEVATION</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>AMBIENT TEMP.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>COOLING WATER SUPPLY</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>PREP &REW DATE</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>REVISION</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>REVISION</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>REVISION</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>PREPARED BY</td>
<td>R. Sciascia</td>
</tr>
<tr>
<td>46</td>
<td>DATE</td>
<td>01-15-81</td>
</tr>
<tr>
<td>47</td>
<td>APPROVED BY</td>
<td>MWH</td>
</tr>
<tr>
<td>48</td>
<td>DATE</td>
<td>03-04</td>
</tr>
<tr>
<td>49</td>
<td>DATE</td>
<td>03-04</td>
</tr>
<tr>
<td>50</td>
<td>DATE</td>
<td>03-04</td>
</tr>
</tbody>
</table>

NOTES:
- The document is a centrifugal pump data sheet for an international coal refining company.
- It includes specifications for various components such as impellers, casing, shaft, and baseplate.
- The pump is used for cooling water supply.
- The project is a demonstration plant for 6000 TPSO sag.
- The vendor is The Rust Engineering Company.
STORAGE TANK DATA SHEET

CLIENT: INTERNATIONAL COAL REFINING COMPANY

PROJECT: 6000 TPSD SRC I DEMONSTRATION PLANT

SERVICE: Inhibitor Storage

VENDEE: P.O. No.

DIMENSIONS:
- **Diameter:** 60 FT
- **Height:** 45 FT

CAPACITY:
- **Normal:** 1000 GAL
- **Net Working:** 1000 GAL
- **Roof:** 160 THICK

OPERATING CONDITIONS:
- **Material:**
 - **Bottom Material:** THICK
 - **Top Material:** THICK

DESIGN CONDITIONS:
- **Specify Gravity:** 110 AT TEMP
- **Pump Rate:** IN OUT
- **Vapor Press:** IN WATER
- **Max Oper Temp:** °E
- **Max Oper Temp:** °F
- **Max Oper Temp:** °C
- **Internal Fix:**
- **Design Conditions:**
 - **Removable:**

CODE API:
- **Appendix:**
- **Design Metal Temp:** °F
- **Design Press:** IN WATER
- **Est. Erection Wt (LB):**

Corrosion Allow Shell:
- **Roof:**
- **Bottom Internals:**
- **Inlet Flange:**
- **Outlet Flange:**

Roof Type: Flat Top

Roof Live Loads: PSF

WIND PRES: PSF

Earthquake Code:
- **Zone:**
- **Foundation Type:**
- **Radiography Extent:**
- **Stress Relief Yes/No:**
- **Insulation Yes/No:**
- **Insulation THICK:**

LEAK TESTING:
- **Bottom Shell:**
- **Roof:**

Mill Test Reports Yes/No:

Painting Yes/No: SPEC SHEET

Sketch:

Prepared By:

Date: 23 Oct 05

Approved By:

Date: APP'D
<table>
<thead>
<tr>
<th>Contract No.:</th>
<th>91-1997E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment No.:</td>
<td>TK-16602, TK-16611</td>
</tr>
<tr>
<td>No. Required:</td>
<td>3</td>
</tr>
<tr>
<td>Sheet:</td>
<td>1 of 1</td>
</tr>
</tbody>
</table>

Client: International Coal Refining Company

Project: 8000 TPSO SRC-1 Demonstration Plant

Plant Location: Newman, Kentucky

Service: Sulfuric Acid Storage

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>12'</td>
</tr>
<tr>
<td>Height</td>
<td>12'7-7</td>
</tr>
<tr>
<td>Capacity: Normal</td>
<td>10,000 gal</td>
</tr>
<tr>
<td>Net Working</td>
<td></td>
</tr>
<tr>
<td>Specific Gravity:</td>
<td>1.835-4 at temp 110°F</td>
</tr>
<tr>
<td>Pumping Rates: In</td>
<td>15 GPM</td>
</tr>
<tr>
<td>Vapor Press</td>
<td>In Water</td>
</tr>
<tr>
<td>Max. Oper Temp</td>
<td>160°F</td>
</tr>
<tr>
<td>Design Conditions</td>
<td>Removable</td>
</tr>
<tr>
<td>Code API</td>
<td>Appendix</td>
</tr>
<tr>
<td>Design Metal Temp</td>
<td>120°F</td>
</tr>
<tr>
<td>Design Press</td>
<td>In Water</td>
</tr>
<tr>
<td>Corrosion Allow Shell</td>
<td>In</td>
</tr>
<tr>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>bottom</td>
<td></td>
</tr>
<tr>
<td>Internals</td>
<td></td>
</tr>
<tr>
<td>Flange Rating</td>
<td></td>
</tr>
<tr>
<td>Coupling Rating</td>
<td></td>
</tr>
<tr>
<td>Roof Type</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Roof Live Loads</td>
<td>PSF</td>
</tr>
<tr>
<td>Wind Press</td>
<td>PSF</td>
</tr>
<tr>
<td>Earthquake Code</td>
<td>Zone N-2</td>
</tr>
<tr>
<td>Foundation Type</td>
<td>4</td>
</tr>
<tr>
<td>Radiography Extent</td>
<td>N-4</td>
</tr>
<tr>
<td>Stress Relief Yes/No</td>
<td>Extent N-5</td>
</tr>
<tr>
<td>Insulation Yes/No</td>
<td>2</td>
</tr>
<tr>
<td>Leak Testing: Bottom Shell</td>
<td>N-7</td>
</tr>
<tr>
<td>Mill Test Reports Yes/No</td>
<td>M-1</td>
</tr>
<tr>
<td>Painting Yes/No</td>
<td>Shop Coat</td>
</tr>
</tbody>
</table>

Prepared By: W.A.S.

Date: 2/10/87

Reviewed By:

Date:

Approved By:

Date: App'd

Date: App'd

Date: App'd

Date: App'd
STORAGE TANK DATA SHEET

CLIENT
INTERNATIONAL COAL REFINING COMPANY

PROJECT
6000 TPSO SRC-I DEMONSTRATION PLANT

PLANT LOCATION
NEWMAN, KENTUCKY

SERVICE
Inhibitor Storage

VENDOR

DIAMETER
6'

HEIGHT
4.5 FT.

CAPACITY NORMAL
1000 GAL SHELL FRP THICK IN.

NET WORKING
GAL ROOF THICK IN.

OPERATING CONDITIONS

SPECIFIC GRAVITY LIQ AT TEMP
AT 70°F STRUCTURALS

PUMPING RATES
IN OUT 15 GPM NOZZLE: NECK FLANGE

VAPOR PRESS IN WATER COUPLINGS

MAX OPER TEMP
90°F INTERNALS: FIXED

DESIGN CONDITIONS
REMOVABLE

CODE API APPENDIX

DESIGN METAL TEMP
AT 70°F BOLTING

DESIGN PRESS IN WATER
EST. ERECTION WT (LB)

CORROSION ALLOW SHELL ROOF IN

BOTTOM INTERNALS IN

ROOF TYPE
FLAT, HINGED

ROOF LIVE LOADS
PSF

WIND PRESS
PSF

EARTHQUAKE CODE ZONE

FOUNDATION TYPE

RADIOGRAPHY EXTENT

STRESS RELIEF YES/NO

INSULATION YES/THICK

LEAK TESTING BOTTOM SHELL ROOF

MILL TEST REPORTS YES/NO

PAINTING YES/SPEC SHOP COAT

SKETCH

PREPARED BY

DATE
22/09/81

APPROVED BY

DATE
APPRO'D

SHEET
1 OF 1
A chlorine feed system with a capacity of 6000 lb/day. The chlorination equipment shall consist of a vacuum type chlorinator, chlorine solution eductor (J-16601), vacuum regulator, pressure reducing valve, flow meter, instruments and controls as required for feeding chlorine from a battery of ton chlorine containers. Weighing scales are included. (W-16601A-C)
The four (4) Cooling Tower Chemical Feed Systems are as follows:

For CT - 16610
X - 16610 Inhibitor
X - 16611 Sulfuric Acid

For CT - 16601
X - 16601 Inhibitor
X - 16602 Sulfuric Acid

Each chemical feed system will consist of a 100 gallon, 316 SS vertical day tank, and two (2) positive displacement type metering pumps.
A chlorine feed system with a capacity of 1200 lb/day. The chlorination equipment shall consist of a vacuum type chlorinator, chlorine solution eductor (J-16610), vacuum regulator, pressure reducing valve, flow meter, instruments and controls as required for feeding chlorine from a battery of ton chlorine containers. Weighing scales are included. (W-16610)
2.2.5 Process Water Supply

2.2.5.1 System Description

A combination process water and fire water storage tank constructed of carbon steel will be provided. Only the upper portion of the tank, 1,600,000 gallons, will be available for process water storage. The entire tank, 3.6 million gallons, will be available for fire water storage. The process water pumps (P-17108 A-C) operating on pressure control, will provide a constant supply to the process water distribution header.

2.2.5.2 Utility Flow Diagram

Refer to the following drawing included with Process Water Treatment, Paragraph 3.1.2.

00-17-01003D Process water Treatment Process and Control Diagram (Sheet 2)
2.2.6 Potable Water Supply

2.2.6.1 System Description

A water storage tank constructed of carbon steel will provide storage for potable water. A potable water booster pump (P-17203) will be provided to maintain a constant pressure on the potable water distribution system. When the pressure in the distribution system drops, indicating an increase in demand, the potable water supply pumps (P-17204 A and B) will provide the increased flow requirement. Chlorine and sodium hexametaphosphate will be added to maintain a residual concentration of each in the distribution header. The chlorinator (X-17202) and the sodium hexametaphosphate feed system (X-17201) are further described in paragraph 3.1.1, Potable Water Treatment.

2.2.6.2 Utility Flow Diagram

Refer to the following drawing included with Potable Water Treatment, Paragraph 3.1.1.

00-17-01001D Potable Water System Process and Control Diagram
2.2.7 **Nitrogen System**

2.2.7.1 **System Description**

The nitrogen system consists of piping, valves, and flowmeters necessary to distribute nitrogen from the area 14 air separator unit to the various area contractors. All of the nitrogen producing equipment is furnished by the area 14 contractor.

2.2.7.2 **Utility Flow Diagram**

Refer to the following drawing included with Interconnecting Systems, Paragraph 2.3.

00-16-03009 Interconnecting Piping System, Nitrogen
2.2.8 Compressed Air System (Refer to Process Flow Diagram No. 00-16-01004D and Interconnecting Piping System, Instrument Air/Plant Air, Dwg. No. 00-16-03008)

2.2.8.1 System Description

2.2.8.1.1 General

The plant and instrument air requirements are provided by a common compressed air system, including a common distribution header. Pressure control valves are furnished for the plant air lines at the battery limits of each area contractor air user to prevent depressurization of the compressed air system. Since a common system is provided, both plant and instrument air are of the same quality at the area contractors battery limits. The system consists of three centrifugal air compressors, three prefilters, one air dryer, three afterfilters, one receiver vessel, distribution piping, and valves.

2.2.8.1.2 Air Compressors

Two of three motor-driven, packaged centrifugal air compressors (C-16701 A, B, and C) are provided to meet the normal instrument and plant air requirements. All three compressors are needed to satisfy the maximum air demand. Each air compressor has four stages of compression and includes air intake filter, three intercoolers, one aftercooler with moisture separator, inlet throttle valve, discharge check valve, bypass silencer, control panel, and lubrication system. The lubrication system provides sufficient lubrication to the compressor bearings for continuous operation, start-up, and emergency loss of power conditions.

2.2.8.1.3 Prefilters

Following the compressors, the compressed air enters the coalescing, cartridge type prefilters (FL-16702 A, B, and C) for removal of any entrained...
moisture or oil. Two of the prefilters are adequate to meet maximum plant and instrument air demands.

2.2.8.1.4 Air Dryer

After the prefilters, the compressed air passes through a desiccant type, heat regenerated, twin tower air dryer (D-16701) for dew point suppression to -40°F at 100 psig pressure. One air dryer is furnished and is sized for maximum plant and instrument air demand.

2.2.8.1.5 Afterfilters

Three cartridge-type afterfilters (FL-16703A, B and C) are furnished on the outlet of the dryer to remove dust or desiccant carryover from the dryer. Two of the afterfilters are adequate to meet the maximum plant and instrument air demand.

2.2.8.1.6 Air Receiver

One common air receiver (V-16701) vessel is furnished for the compressed air system and is sized for the maximum air demand conditions. The receiver is a vertical, cylindrical pressure vessel designed and fabricated in accordance with the ASME Boiler and Pressure Vessel Code.

2.2.8.2 Utility Flow Diagram

The following utility flow diagram is included after this page:

00-16-010040 Compressed Air System Process Flow Diagram
2.2.8.3 Utility Summary

The utility summary for the Compressed Air System follows this page.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-16701</td>
<td>Air Receiver</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-16701</td>
<td>Air Dryer</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C-16701A</td>
<td>Air Compressor</td>
<td>750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL: 5000 6700 6340 550 3300 5345

Prepared by: D. Smith 7/14/94
Reviewed by:
Approved by:

Notes:
2.2.8.4 Motor List

The motor list for the Compressed Air System follows this page.
COMPRESSED AIR SYSTEM

MOTOR LIST

<table>
<thead>
<tr>
<th>Equipment No.</th>
<th>Description</th>
<th>Installed Hp</th>
<th>Operating Hp</th>
<th>HR/Day</th>
<th>KWH/DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-16701A</td>
<td>Air Compressor</td>
<td>900</td>
<td>670</td>
<td>24</td>
<td>16,080</td>
</tr>
<tr>
<td>C-16701B</td>
<td>Air Compressor</td>
<td>900</td>
<td>670</td>
<td>24</td>
<td>16,080</td>
</tr>
<tr>
<td>C-16701C</td>
<td>Air Compressor</td>
<td>900</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,700</td>
<td>1,340</td>
<td></td>
<td>32,160</td>
</tr>
</tbody>
</table>
2.2.8.5 **Equipment List/Summary**

The equipment list/summary for the compressed air system follows this page.
EQUIPMENT LIST/SUMMARY

REV. 4
03-26-82

VENDOR ENG

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP NO</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P.O.</th>
<th>P.O. SIZE/WEIGHT</th>
<th>VENDOR ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-16701</td>
<td></td>
<td></td>
<td>3</td>
<td>Air compressor, cs, centrifugal, 4,000 scfm, 110 psig discharge pressure, 90°F inlet temp., with motor drive</td>
<td>900 hp</td>
<td>S 10-82 S 1-83 16.9 ea</td>
<td>138.4 ea RUST SF</td>
</tr>
<tr>
<td>A thru C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,800 rpm</td>
<td>P P</td>
<td>A</td>
</tr>
</tbody>
</table>

| D-16701 | | | 2 | Air dryer, desiccant type, 8 hr., NEMA cycle, 150 psig design, 10,000 scfm, 150 psig steam heater, -40°F outlet dew point | S 10-82 S 1-83 8.3 ea | S 9-83 82.7 ea RUST SF |
| A and B | | | | | P P | A A | A |

| FL-16701 | | | 3 | Filter, air intake, cs, 4000 scfm, 0 psig, 90°F, 118 sq ft effective filter area | S 10-82 S 1-83 1.0 ea | S 6-83 7.8 ea RUST SF |
| A thru C | | | | | P P | P | A |

| FL-16702 | | | 2 | Air prefilter, coalescing elements, 5,000 scfm, 150 psig design, 100 psig operating, 90°F, 214.2 sq ft effective filter area, 8" flange outlet | S 10-82 S 1-83 inc | S 6-83 inc RUST SF |
| A and B | | | | | P P | with P | A FL-16701 |

| FL-16703 | | | 2 | Air prefilter, particulate elements, 5,000 scfm, 150 psig design, 100 psig operating, 90°F, 214.2 sq ft effective filter area, 8" flange outlet | S 10-82 S 1-83 inc | S 6-83 inc RUST SF |
| A and B | | | | | P P | with P | A FL-16701 |

| V-16701 | | | 1 | Air receiver, vertical, cs, 150 psig design, ASME VIII-1, 5,565 gal capacity | 7' dia x 20' high | S 10-82 S 11-82 2.1 | S 2-83 17.7 RUST SF |

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.

* RUST: Rust Engineering
* S: Scheduled
* FL: Field Labor
* M/A: Not Applicable
* CMC: Stone & Webster
* P: Projected
* H: Material for field fab equipment
* A: Actual
* SF: Shop Fabricated
* FF: Field Fabricated
2.2.8.6 Equipment Data Sheets

The equipment data sheets for the compressed air system follow this page.
| PROCESS CONTROL | | | | |
| --- | --- | --- | --- |
| METHOD | | | |
| 1. BYPASS FROM | | | |
| 2. ANTI-SURGE BYPASS | | | |
| 3. SIESTION THRUSTLING FROM | | | |
| 4. SPEED VARIATION FROM | | | |
| 5. OTHER | | | |
| 6. SIGNAL | | | |
| 7. SOURCE | | | |
| 8. TYPE | | | |
| 9. RANGE FOR PNEUMATIC CONTROL—RPM | PSIG & RPM | PSIG | |
| 10. OTHER | | | |

<table>
<thead>
<tr>
<th>OPERATING CONDITIONS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(ALL DATA ON PER UNIT BASIS)</td>
<td>NORMAL</td>
<td>RATED</td>
<td>OTHER CONDITIONS</td>
</tr>
<tr>
<td>GAS HANDLED</td>
<td>Air</td>
<td>Air</td>
<td></td>
</tr>
<tr>
<td>MMSCFD (14.7 PSIA & 60°F) WET</td>
<td>5.014</td>
<td>5.328</td>
<td></td>
</tr>
<tr>
<td>SCFM (14.7 PSIA & 60°F) WET</td>
<td>3.482</td>
<td>3.700</td>
<td></td>
</tr>
<tr>
<td>MMSCFD (14.7 PSIA & 60°F) DRY</td>
<td>4.910</td>
<td>5.157</td>
<td></td>
</tr>
<tr>
<td>SCFM (14.7 PSIA & 60°F) DRY</td>
<td>3.410</td>
<td>3.531</td>
<td></td>
</tr>
<tr>
<td>LB/ MOLES/HR — WET</td>
<td>550.5</td>
<td>585.5</td>
<td></td>
</tr>
<tr>
<td>LB/ MOLES/HR — DRY</td>
<td>539.1</td>
<td>566.2</td>
<td></td>
</tr>
<tr>
<td>WEIGHT FLOW — LB/ MIN — WET</td>
<td>263.7</td>
<td>279.0</td>
<td></td>
</tr>
<tr>
<td>WEIGHT FLOW — LB/ MIN — DRY</td>
<td>260.3</td>
<td>273.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INLET CONDITIONS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE (PSIA) @ 388 FE Alt</td>
<td>14.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE (°F)</td>
<td>80</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>RELATIVE HUMIDITY (%)</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>MOLECULAR WEIGHT (M)</td>
<td>28.74</td>
<td>28.61</td>
<td></td>
</tr>
<tr>
<td>CP/CV (KJ)</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>COMPRESSIBILITY (Z) OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INLET VOLUME</td>
<td>1 CFT</td>
<td>3668</td>
<td>4000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISCHARGE CONDITIONS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE (PSIA)</td>
<td>124.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERATURE (°F)</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>CP/CV (KJ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESSIBILITY (Z) OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESSION RATIO (P1/P1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHP REQUIRED (ALL LOSSES INCL.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEED (RPM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST SURGE ICFT (AT SPEED ABOVE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYTROPIC HEAT (FT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLYTROPIC EFFICIENCY (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUARANTEE POINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE CURVE NO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE PREPARED BY</th>
<th>V. F. Duckett</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE APPROVED BY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REVISION	1					
DATE	APP'D	DATE	APP'D	DATE	APP'D	DATE
Gas Analysis

<table>
<thead>
<tr>
<th>Gas</th>
<th>Normal</th>
<th>Rated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Air</td>
<td>97.9</td>
<td>96.8</td>
</tr>
<tr>
<td>Moisture</td>
<td>2.1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Other Conditions

- **Location:**
 - Indoor
 - Heated
 - Under roof
 - Outdoor
 - Unheated
 - Partial sides
 - Grade
 - Mezzanine

- **Electrical Area Class:**
 - Industrial (GR)
 - Div. 1

- **Winterization Required:**
 - Tropicalization Required

Site Data

- **Elevation:** 388 ft
- **Barometer:** 14.49 PSIA
- **Range of Ambient Temp:**
 - Site Rated °F: DRY BULB 60, WET BULB 94
 - Maximum °F: 10

Unusual Conditions:

- **Other:** Dust

Noise Specifications:

- **Applicable to Machine:**
 - See specification
- **Applicable to Neighborhood:**
 - See specification
- **Acoustic Housing:**
 - Yes

Applicable Specifications:

- API 617 CENT COMPR. FOR GEN REFINERY SERVICES

Painting:

- Manufacturer's Std

Shipment:

- Domestic
 - Outdoor Storage Over 3 Months
- Export
 - Export Boxing Required
OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Flow</td>
<td></td>
</tr>
<tr>
<td>Rated Flow</td>
<td>10,000 SCFM</td>
</tr>
<tr>
<td>Operating Pressure</td>
<td>100 PSIG</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>90°F</td>
</tr>
<tr>
<td>Outlet Dew Point</td>
<td>-40°F @ 100 PSIG</td>
</tr>
</tbody>
</table>

DESIGN

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>ASME, B&PV, Section VIII-1</td>
</tr>
<tr>
<td>Stamped</td>
<td>Yes</td>
</tr>
<tr>
<td>National Board Registration</td>
<td>Yes</td>
</tr>
<tr>
<td>Design Pressure</td>
<td>150 PSIG</td>
</tr>
<tr>
<td>Design Temperature</td>
<td>200°F</td>
</tr>
<tr>
<td>Desiccant</td>
<td>Activated Alumina</td>
</tr>
<tr>
<td>Nema Cycle</td>
<td>8 Hour</td>
</tr>
<tr>
<td>Regeneration Method</td>
<td>Steam Heater</td>
</tr>
</tbody>
</table>

MATERIALS

<table>
<thead>
<tr>
<th>Shell</th>
<th>SA-285, GRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>SA-285, GRC</td>
</tr>
<tr>
<td>Supports</td>
<td>SA-36</td>
</tr>
<tr>
<td>Nozzles</td>
<td>SA-106, GRB</td>
</tr>
<tr>
<td>FILTER DATA SHEET</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>CLIENT</td>
<td>INTERNATIONAL COAL REFINING COMPANY</td>
</tr>
<tr>
<td>PROJECT</td>
<td>6000 TPSD SRC-I DEMONSTRATION PLANT</td>
</tr>
<tr>
<td>PLANT LOCATION</td>
<td>NEWMAN, KENTUCKY</td>
</tr>
<tr>
<td>SERVICE</td>
<td>Compressed Air Prefilter</td>
</tr>
<tr>
<td>VENDOR</td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
</tr>
<tr>
<td>SERIAL NO</td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>□ INDICATES INFORMATION TO BE COMPLETED BY PURCHASER □ BY MANUFACTURER</td>
</tr>
</tbody>
</table>

BASIC DATA

<table>
<thead>
<tr>
<th>RATED FLOW (фт/мин/6ФПМ)</th>
<th>SCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLECULAR WEIGHT</td>
<td>28.9</td>
</tr>
<tr>
<td>SPECIFIC GRAVITY</td>
<td></td>
</tr>
<tr>
<td>VISCOSITY (LB.MASS/FT-HR)</td>
<td></td>
</tr>
<tr>
<td>INLET PRESSURE (PSIG)</td>
<td>110</td>
</tr>
<tr>
<td>INLET TEMP (°F)</td>
<td>90</td>
</tr>
<tr>
<td>CORROSION CONTAMINANT</td>
<td>Oil & Moisture</td>
</tr>
<tr>
<td>SUSPENDED SOLIDS</td>
<td></td>
</tr>
<tr>
<td>PARTICLE SIZE (AVERAGE)</td>
<td></td>
</tr>
<tr>
<td>SOLIDS BY WT (%)</td>
<td></td>
</tr>
<tr>
<td>MAX ALLOW PRESSURE DROP CLEAN (PSI)</td>
<td>One</td>
</tr>
<tr>
<td>RETENTION (NOMINAL) %</td>
<td>98% Of 3 Microns Or Better</td>
</tr>
</tbody>
</table>

OPERATING CONDITIONS

- **FILTER TYPE**
- **NO OF ELEMENTS**
- **TYPE OF ELEMENTS**
- **MATERIAL OF ELEMENTS**
- **MESH SIZE**
- **CONSTRUCTION OF FILTER**

DESIGN CONDITIONS

- **DESIGN PRESSURE** (PSIG) | 150 |
- **DESIGN TEMPERATURE** (°F) | 200 |
- **CORROSION ALLOWANCE** (IN) | 0.10 |
- **MATERIALS—SHELL & HEADS** | SA-285, GRC |
- **INSULATION—PAINT** |
- **ASME CODE DESIGN** | □ |
- **STAMPED** | □ |

CONNECTIONS

<table>
<thead>
<tr>
<th>CONNECTION</th>
<th>QUAN.</th>
<th>SIZE</th>
<th>RATING</th>
<th>FACE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ INLET</td>
<td>1</td>
<td>8</td>
<td>Flg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ OUTLET</td>
<td>1</td>
<td>8</td>
<td>Flg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ VENT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ DRAIN</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ RELIEF VALVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ PRESS INDICATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ LEVEL GAUGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ QUICK OPENING COVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY V. L. DUCKETT

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>REVISION</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15-81</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROVED BY</th>
<th>DATE</th>
<th>BY</th>
<th>DATE</th>
<th>REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>△</td>
</tr>
</tbody>
</table>

FORM 9220 (5/81)
FILTER DATA SHEET

INTERNATIONAL COAL REFINING COMPANY

PROJECT: 6000 TPD SRC I DEMONSTRATION PLANT

PLANT LOCATION: NEWMAN, KENTUCKY

SERVICE: Compressed Air AfterFilter

VENDOR: P.O. NO.

MODEL: SERIAL NO.

NOTE: Indicates information to be completed by Purchaser

<table>
<thead>
<tr>
<th>BASIC DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATING CONDITIONS</td>
</tr>
<tr>
<td>RATED FLOW (SCFM)</td>
</tr>
<tr>
<td>MOLECULAR WEIGHT</td>
</tr>
<tr>
<td>SPECIFIC GRAVITY</td>
</tr>
<tr>
<td>VISCOSITY (LB-MASS/FT-HR)</td>
</tr>
<tr>
<td>INLET PRESSURE (PSIG)</td>
</tr>
<tr>
<td>INLET TEMP (°F)</td>
</tr>
<tr>
<td>CORROSIVE CONTAMINANT</td>
</tr>
<tr>
<td>SUSPENDED SOLIDS</td>
</tr>
<tr>
<td>CHARACTERISTICS OF SOLID</td>
</tr>
<tr>
<td>PARTICLE SIZE (AVERAGE)</td>
</tr>
<tr>
<td>SOLIDS BY WT (%)</td>
</tr>
<tr>
<td>MAX ALLOW PRESSURE DROP CLEAN (PSI)</td>
</tr>
<tr>
<td>RETENTION (inoxmal) %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILTER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION OF FILTER</td>
</tr>
<tr>
<td>FILTER Dia. BY LENGTH</td>
</tr>
<tr>
<td>POSITION OF FILTER VERT — HORIZ</td>
</tr>
<tr>
<td>EFFECTIVE FILTER SURFACE AREA</td>
</tr>
<tr>
<td>WEIGHT (LB)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN PRESSURE (PSIG)</td>
</tr>
<tr>
<td>DESIGN TEMPERATURE (°F)</td>
</tr>
<tr>
<td>CORROSION ALLOWANCE (IN)</td>
</tr>
<tr>
<td>MATERIALS—SHELL & HEADS</td>
</tr>
<tr>
<td>INSULATION—PAINT</td>
</tr>
</tbody>
</table>

| ASME CODE DESIGN | STAMPED |

CONNECTIONS:

<table>
<thead>
<tr>
<th>QUAN.</th>
<th>SIZE</th>
<th>RATING-FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>Flng</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>Flng</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| RELIEF VALVE | PRESS INDICATOR | LEVEL GAUGE | QUICK OPENING COVER |

PREPARED BY: V. F. Duckett

DATE: 10-15-81

APPROVED BY:

<table>
<thead>
<tr>
<th>DATE</th>
<th>APP'D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORM 9020 (5/80)
CLIENT

INTERNATIONAL COAL REFINING COMPANY

PROJECT

6000 TPD SRC I DEMONSTRATION PLANT

PLANT LOCATION

NEWMAN, KENTUCKY

SERVICE

Compressed Air Receiver

VENDOR

P.O. No.

DIAMETER INSIDE

IN OUTSIDE 84 IN

VERT H.T. I/D

20 FT 0 IN

BTM T I/F FROM GRADE

2 FT 6 IN

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>OPER TEMP</th>
<th>MAX TEMP</th>
<th>OPER PRESSURE</th>
<th>MAX OPER PRESSURE</th>
<th>AT TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 F</td>
<td>100 F</td>
<td>100 PSIG</td>
<td>110 PSIG</td>
<td></td>
</tr>
</tbody>
</table>

MATERIALS

<table>
<thead>
<tr>
<th>SHELL</th>
<th>HEADS</th>
<th>NOZZLE NECK</th>
<th>FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-515, GR70</td>
<td>SA-515, GR70</td>
<td>SA-106</td>
<td>SA-105</td>
</tr>
</tbody>
</table>

CODE ASME SEC VIII DIV 1

Stamped

NATIONAL BOARD REGISTRATION

Yes

DESIGN TEMP

200 F

DESIGN PRESS INTERNAL

125 PSIG

EXTERNAL VAC

PSI

MAX ALLOW WORKING PRESS/TEMP

PSIG/F

CORR ALLOW SHELL/HEADS

0.10 IN INTERNALS 0.10 IN

SHELL

THICK IN

HEAD

Dished

HYDROTREAT PRESS/TEMP

PSIG/F

RADIATION EXTENT CODE

Yes/No

POSITIVE HEAT TREAT

Yes/No

EARTHQUAKE CODE ZONE

Yes/No

WIND PRESS

PSI

INSULATION YES NO

THICK IN

FIREPROOFING YES NO

THICK IN

VESSSEL SUPPORT TYPE

Skirt

NOZZLES

COUPLING RATING

<table>
<thead>
<tr>
<th>MARK</th>
<th>NO REQ</th>
<th>SIZE</th>
<th>FACING</th>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td>1</td>
<td>16 IN</td>
<td>RF Flg</td>
<td>INLET</td>
</tr>
<tr>
<td>N-2</td>
<td>1</td>
<td>16 IN</td>
<td>RF Flg</td>
<td>INLET</td>
</tr>
<tr>
<td>N-3</td>
<td>1</td>
<td>12 IN</td>
<td>Screwed</td>
<td>REAR</td>
</tr>
</tbody>
</table>

LIQUID LEVEL FROM BOTTOM

<table>
<thead>
<tr>
<th>NORM</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT</td>
<td>FT</td>
<td>FT</td>
</tr>
</tbody>
</table>

PREPARED BY

V.R. Duckett

1-15-81

REVISION

1

CONTRACT NO

21-1997F

EQUIPMENT NO

V-16701

NO REQUIRED

1

SHEET

1 OF 1

CLIENT SHEET

PREPARED BY

APPROVED DATE

APPROVED DATE

APPROVED DATE

APPROVED DATE

FORM 9313 D 801

59
2.2.9 **Flare and Incinerators**

2.2.9.1 **System Description**

2.2.9.1.1 **Flare System**

2.2.9.1.1.1 **Design Criteria**

<table>
<thead>
<tr>
<th>Hydrocarbon Release</th>
<th>(Refer to Design Basis Memorandum, Paragraph 1-b of this document)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max allowable flare tip delta P, psi</td>
<td>0.5</td>
</tr>
<tr>
<td>Ambient temperature (average), °F</td>
<td>70.0</td>
</tr>
<tr>
<td>Wind velocity, mph</td>
<td>20.0</td>
</tr>
<tr>
<td>Max radiation at grade, Btu/hr-ft²</td>
<td>2,000.0</td>
</tr>
<tr>
<td>Max radiation at liquid or solid storage facilities, Btu/hr-ft²</td>
<td>1,500.0</td>
</tr>
<tr>
<td>Max mach number at flare tip</td>
<td>0.5</td>
</tr>
<tr>
<td>Max allowable backpressure at unit battery limits, psig</td>
<td>20.0</td>
</tr>
<tr>
<td>Max HC rate for smokeless operation, MM lbs/hr</td>
<td>0.2</td>
</tr>
<tr>
<td>Steam rate for smokeless operation, lb steam/lb HC</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2.2.9.1.1.2 **Description**

2.2.9.1.1.2.1 The 6,000 TPD demonstration plant will have a single derrick-type elevated flare, designed to handle 1.0 million pounds per hour of hydrocarbon emissions.

2.2.9.1.1.2.2 The flare system will include a relief valve collecting manifold within each of the process areas. To minimize piping requirements, the individual relief valves will tie into collecting branches, which will join into a single manifold discharging into a blow-down drum.
2.2.9.1.1.2.3 Each process area will have a captive blow-down drum. Each drum will operate at 20 psig maximum. The dissolver area blow-down drum will operate at 230 psig. The high pressure blow-down drum will discharge into the Catalytic process area blow-down drum. Each operating area blow-down drum will have facilities to pump out disengaged liquid, and/or vaporize it by steam heating, using dimple jackets or coils.

2.2.9.1.1.2.4 The dissolver area high pressure blow-down drum will also have a quenching system designed to spray cold quench liquid at 1,500 gpm maximum into the dissolver relief valve effluent. The quench liquid for this application will be stored in a captive 5,000 bbl cone-roof storage tank. The quench liquid supply pumps will be steam turbine and electric motor driven and instrumented so that operation will be automatic, anticipating a dissolver malfunction. If the system is activated by the anticipating signal and no release occurs, the blow-down drum pumps will return the quench liquid to storage. Should a release occur, the quenched material will be returned to the process area for reprocessing.

2.2.9.1.1.2.5 Each process area blow-down drum will discharge into a main flare line manifold, which will then discharge into a vertical 44 ft diameter by 69 ft separator. The separator will be designed to disengage liquid and provide the proper elevation at the battery limits so that the main flare line will have the proper downward slope (0.1 inch each 10 feet) to the knockout drum located at the flare derrick base.

2.2.9.1.1.2.6 The main flare line will be 46 inches od. It will start at the vertical separator and extend 3,000 feet to the horizontal separator at the base of the flare derrick.

2.2.9.1.1.2.7 The main flare line will have 8 full-moment anchors at 400 foot intervals. Each 400 foot section will have eight other pipe supports and a thermal expansion loop designed to keep the stresses within allowable limits for a 1.1 mm pounds per hour release. A total of 68 pipe supports will be required.
2.2.9.1.1.2.8 The horizontal 22 ft dia by 80 ft knockout drum at the base of the flare derrick will have pumping and vaporizing capabilities to return condensate to process and/or vaporize it for flaring. This drum and all associated peripheral piping will be insulated for an environmental factor of 0.1. Sections will be fireproofed as required.

2.2.9.1.1.2.9 Vapors from the horizontal 22 ft diameter by 80 ft drum will discharge into the flare stack seal pot, which will isolate the main flare header from the derrick stack by a water seal. The pressure required to break this water seal will not exceed 0.5 psi. Under normal, no-emission conditions, the only material being sent to the flare stack will be either purge nitrogen or purge fuel gas. Use of these materials will be minimized by the molecular seal upstream of the flare tip.

2.2.9.1.1.2.10 The flare stack and all required utility lines will be supported by the derrick. The flare stack will be held by loose joints, to permit vertical expansion. The utility lines attached to the stack will move vertically with the stack.

2.2.9.1.1.2.11 For improved service life, the upper 50 feet of flare stack will be 316 stainless steel, including the molecular seal, flare tip, pilots, and utility piping. The flare tip will have six continuously-burning LPG pilots.

2.2.9.1.1.2.12 The ignitor system will be an integral package with LPG backup, located out of the "dead zone". The system will be housed in an open shack facing away from the flare line-of-sight. The roof and walls facing the flare will be insulated and covered with reflective material.

2.2.9.1.1.3 Sizing Criteria

2.2.9.1.1.3.1 Flare sizing was done following a system analysis, which reviewed in detail all causes and the resulting flare loads from the individual process areas. The resulting flow rates were based on data
supplied by the individual area contractors, overall process material balances, and unit flow diagrams. The following cases were individually reviewed:

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plant wide cooling water</td>
</tr>
<tr>
<td>2</td>
<td>Plant wide electrical power</td>
</tr>
<tr>
<td>3</td>
<td>Instrument air</td>
</tr>
<tr>
<td>4</td>
<td>Local failure caused by misoperation</td>
</tr>
<tr>
<td>5</td>
<td>Fire condition</td>
</tr>
</tbody>
</table>

2.2.9.1.1.3.2 The governing condition for this plant is a combination of plant wide cooling water and power failure, resulting in the maximum emission rate given in the Design Basis Memorandum. This includes hydrocarbon emissions, vapors containing odorous or noxious gases, and flammable or otherwise hazardous vapors. Streams containing air were not included, as they would be disposed of in a vapor incinerator.

2.2.9.1.1.4 Mechanical Design Criteria

2.2.9.1.1.4.1 All vent and blow-down sub-headers will slope from the relief valves to the main branches, with a minimum slope of 0.2 inch each 10 feet. The same requirements will apply to the branches leading to the main flare header. All individual entries to and from sub-headers will be made at the top of the line. The main flare slope will be 0.1 inch each 10 feet, minimum.

2.2.9.1.1.4.2 The main flare line will be provided with 26 20-inch manways, equally spaced, for maintenance and clean-out. These manways will be horizontal with hinged davits to support the blind flange.
2.2.9.1.1.4.3 The flare stack will have a caged access ladder extending to the top of the tube, with rest platforms every 30 feet. A 360 degree work platform will be provided at the flare tip for maintenance. This service area will include a permanently-installed davit and hoisting device to facilitate removing and changing the flare tip assembly.

2.2.9.1.1.4.4 The flare stack will be mounted on top of the seal drum, which will be anchored to its own ground-level foundation. The flare stack will be guided by the derrick; however, it will not be anchored at any point, to allow for free expansion.

2.2.9.1.1.4.5 The upper 50 feet of flare stack, molecular seal, flare tip, igniters, and service piping will be 316 stainless steel.

2.2.9.1.2 Liquid and Gas Incinerators

2.2.9.1.2.1 General Description

2.2.9.1.2.1.1 To dispose of waste liquids, low-pressure hydrocarbon vents, purge gases, oxygen contaminated streams, and blanketing gases, the plant will be provided with two incinerators, one for liquids, the other for gases.

2.2.9.1.2.1.2 Each incinerator will incorporate a waste heat recovery system which will generate saturated steam at 150 psig. Each unit will also include an individual boiler feedwater recirculation system, chemical treatment facilities, and local combustion controls with flame supervision capability. Major alarms and current operating status will be linked to the central control room by a pan-alarm system. Each incinerator will use fuel gas as an auxiliary fuel.

2.2-38 Rev. 5-25-84
2.2.9.1.2.1.3 Each incinerator will have a sampling platform at the required height for flue gas composition and solid load analysis sampling. All critical temperatures, flows, and pressures required for performance calculations will be permanently recorded.

2.2.9.1.2.2 Liquid Thermal Oxidizer

2.2.9.1.2.2.1 The waste liquid incinerator will include a nitrogen-blanketed surge tank where the waste liquids from the various plant sources will be received. Venting from this tank will be disposed of in a special burner in the incinerator.

2.2.9.1.2.2.2 Waste liquids, at a maximum rate of 3,019 pounds per hour, will be pumped on level control from the surge tank to the main burner. To improve waste liquid combustion and assist in mechanical atomization, the waste liquid will be preheated by steam, to the required temperature where viscosity is no longer a controlling factor. The required pumping and preheating equipment will be part of the incinerator package.

2.2.9.1.2.2.3 To completely incinerate the anticipated wastes, the firebox must operate at above 2,000°F at a slightly negative pressure.

2.2.9.1.2.3 Vent Gas Incinerator

2.2.9.1.2.3.1 The vent gas incinerator will include an induced draft fan to collect low-pressure hydrocarbon vent gases from the various sources. The induced draft fan will maintain a constant volume to the incinerator, using an atmospheric air trim to maintain a constant sub-atmospheric pressure. The maximum anticipated combustible material flow rate will be about 2,500 pounds per hour.
2.2.9.1.2.3.2 To separate entrained liquids, the vent gas collecting manifold will discharge into a knock-out drum. The condensed liquid will then be pumped to the liquid thermal oxidizer surge tank for disposal. The vapors will be enriched, if required, with fuel gas to the minimum level that will support steady combustion.

2.2.9.1.2.3.3 The enriched vapors will be mixed with combustion air in a low-pressure-drop, high-efficiency burner. Expected firebox temperature for complete vapor oxidation is about 2,500°F at a slightly negative pressure.

2.2.9.2 Utility Flow Diagrams

The following utility flow diagrams are included after this page:

00-16-01021D Emergency Flare System
00-16-01022D Emergency Flare System Process Flow Diagram
00-16-01030D Liquid Thermal Oxidizer Process Flow Diagram
00-16-01031D Vent Gas Incinerator Process Flow Diagram
2.2.9.3 Material and Energy Balances

The material and energy balances for the liquid thermal oxidizer system are included after this page.
Material Balance Summary

FOR PROCESS FLOW DIAGRAM NO.

<table>
<thead>
<tr>
<th>CONTRACT NO.</th>
<th>21-2548</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT:</td>
<td>6000 TPD SRC-1 Demonstration Plant</td>
</tr>
</tbody>
</table>

FUEL GAS

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>MOLE WT.</th>
<th>lb-mol/hr</th>
<th>WT. %</th>
<th>lb-mol/hr</th>
<th>WT. %</th>
<th>lb-atom/hr</th>
<th>WT. %</th>
<th>lb-atom/hr</th>
<th>WT. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>2.016</td>
<td>3.57</td>
<td>1.47</td>
<td>16.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>39.948</td>
<td>0.16</td>
<td>1.31</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>28.010</td>
<td>1.49</td>
<td>3.51</td>
<td>6.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>15.921</td>
<td>0.92</td>
<td>22.16</td>
<td>44.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH2N2</td>
<td>20.076</td>
<td>0.36</td>
<td>25.03</td>
<td>13.02</td>
<td>0.01</td>
<td>0.43</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH8</td>
<td>44.097</td>
<td>1.53</td>
<td>13.83</td>
<td>7.07</td>
<td>0.77</td>
<td>57.29</td>
<td>61.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH10</td>
<td>58.124</td>
<td>0.97</td>
<td>11.58</td>
<td>4.49</td>
<td>0.41</td>
<td>40.92</td>
<td>34.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH12</td>
<td>71.151</td>
<td>0.24</td>
<td>3.53</td>
<td>1.10</td>
<td>0.01</td>
<td>1.36</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6H24</td>
<td>86.178</td>
<td>0.12</td>
<td>2.10</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6H25OF</td>
<td>100.205</td>
<td>0.01</td>
<td>0.13</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6H25OF</td>
<td>44.019</td>
<td>0.02</td>
<td>0.70</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>31.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>33.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (OXY)</td>
<td>21.71</td>
<td>100.00</td>
<td>100.00</td>
<td>1.20</td>
<td>100.00</td>
<td>100.00</td>
<td>(lb-H2O)/hr</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>WATER</td>
<td>18.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (NET)</td>
<td>21.71</td>
<td>100.00</td>
<td>100.00</td>
<td>1.20</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL 1bg/hr</td>
<td>880.51</td>
<td>58.91</td>
<td>800.0</td>
<td></td>
<td>2.219</td>
<td>91.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPM @ 1TP</td>
<td>0.198</td>
<td>0.198</td>
<td>1.52</td>
<td>4.48</td>
<td>21.857</td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACFM</td>
<td>26.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLECULAR WEIGHT</td>
<td>22.55</td>
<td>49.108</td>
<td>65.52</td>
<td>61.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY @ 1FT @ 0</td>
<td>0.314</td>
<td>0.694</td>
<td>65.52</td>
<td>61.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT CAPACITY @ 60</td>
<td>0.694</td>
<td>65.52</td>
<td>61.78</td>
<td>61.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERM. COND @STU/H-Ft-1</td>
<td>0.694</td>
<td>65.52</td>
<td>61.78</td>
<td>61.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTHALPY DATUM

C(O), H2(g), O2(g), N2(g), Ar(g), 0°C @ 0 psia
MATERIAL BALANCE SUMMARY

FOR PROCESS FLOW DIAGRAM NO. 00-16-01030 D

FOR Rust International Corporation

CONTRACT NO. 21-2548

PROJECT: 6000 T/D SRC-1

Demonstration Plant

PHASE

<table>
<thead>
<tr>
<th>TEMPERATURE °F</th>
<th>PRESSURE psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

STREAM NUMBER/NAME

<table>
<thead>
<tr>
<th>STREAM NO.</th>
<th>FLUE GAS</th>
<th>BOILER FEED WATER</th>
<th>STEAM</th>
<th>BLOW DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPONENTS

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MOLE WT.</th>
<th>lb mol/hr</th>
<th>Wt. %</th>
<th>MOL %</th>
<th>lb mol/hr</th>
<th>Wt. %</th>
<th>MOL %</th>
<th>lb mol/hr</th>
<th>Wt. %</th>
<th>MOL %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2</td>
<td>31.999</td>
<td>368.60</td>
<td>13.06</td>
<td>12.102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>28.013</td>
<td>319.70</td>
<td>10.54</td>
<td>10.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>39.948</td>
<td>0.16</td>
<td>0.01</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>44.010</td>
<td>221.35</td>
<td>10.79</td>
<td>10.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>66.065</td>
<td>0.09</td>
<td>0.00</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREPARED BY

BSY

DATE

1-19-84

APPROVED BY

SHEET 2 OF 2

ENTHALPY DATUM C(c), H2(g), O2(g), N2(g), Ar(g), S(c) @ 0°F, 0 psia
2.2.9.4 Utility Summary

The utility summary for the flare and incinerators follows this page.
Utility Process Data Summary Sheet

Plant Location: Newmap, Kentucky

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X-16806</td>
<td>Quench Liquid Storage Tank</td>
<td></td>
</tr>
<tr>
<td>X-16810</td>
<td>Emergency Flare</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>V-16809</td>
<td>Emergency Flare K.O.</td>
<td></td>
</tr>
<tr>
<td>V-16813</td>
<td>Liquid Thermal Oxidizer</td>
<td></td>
</tr>
<tr>
<td>V-16914</td>
<td>Boiler Feed Water Drum</td>
<td>40.2</td>
<td></td>
<td>(31.4)</td>
<td></td>
</tr>
<tr>
<td>V-16919</td>
<td>Gas Incinerator Drum</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>V-16920</td>
<td>Boiler Feed Water Drum</td>
<td>26.41</td>
<td></td>
<td>(22.15)</td>
<td></td>
</tr>
</tbody>
</table>

Total (Max Usage): 30.6, 7.006, 7.65, 66.65, 104.0, 1.625

Prepared by: J. QL
Date: 1-24-84

Approved by: J. QL
Date: 1-24-84

Notes:
2.2.9.5 Motor List

The motor list for the flare and incinerators follows this page.
FLARE AND INCINERATORS AREA
MOTOR LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Conn HP</th>
<th>Oper KW</th>
<th>Hrs/Day</th>
<th>KWH/Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-16801A</td>
<td>Quench Liquid Pump</td>
<td>500</td>
<td>360</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16801B</td>
<td>Quench Liquid Pump</td>
<td>500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16802A</td>
<td>Knockout Pump</td>
<td>20</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16802B</td>
<td>Knockout Pump</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16806A</td>
<td>Knockout Pump</td>
<td>60</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16806B</td>
<td>Knockout Pump</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16807A</td>
<td>Knockout Pump</td>
<td>20</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16807B</td>
<td>Knockout Pump</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16803A</td>
<td>Knockout Pump</td>
<td>200</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16803B</td>
<td>Knockout Pump</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16804A</td>
<td>Liquid Recovery Pump</td>
<td>20</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16804B</td>
<td>Liquid Recovery Pump</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16805A</td>
<td>Flare Drum Pump</td>
<td>20</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16805B</td>
<td>Flare Drum Pump</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C-16917</td>
<td>Induced Draft Fan</td>
<td>100</td>
<td>75</td>
<td>24</td>
<td>1,800</td>
</tr>
<tr>
<td>P-16918A</td>
<td>Condensate Transfer Pump</td>
<td>10</td>
<td>6.5</td>
<td>24</td>
<td>156</td>
</tr>
<tr>
<td>P-16918B</td>
<td>Condensate Transfer Pump</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16921A</td>
<td>Boiler Feedwater Pump</td>
<td>40</td>
<td>30</td>
<td>24</td>
<td>720</td>
</tr>
<tr>
<td>P-16921B</td>
<td>Boiler Feedwater Pump</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16912A</td>
<td>Liquid Incinerator Pump</td>
<td>3</td>
<td>1.5</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>P-16912B</td>
<td>Liquid Incinerator Pump</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P-16915A</td>
<td>Boiler Feedwater Pump</td>
<td>60</td>
<td>37</td>
<td>24</td>
<td>888</td>
</tr>
<tr>
<td>P-16915B</td>
<td>Boiler Feedwater Pump</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTAL | 2,006 | 765 | 3,600 |

77
2.2.9.6 Equipment List/Summary

The equipment list/summary for the flare and incinerators follows this page.
EQUIPMENT LIST/SUMMARY

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP. NO.</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>P. O. NUMBER</th>
<th>SIZE/</th>
<th>P. O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP</th>
<th>PURCH</th>
<th>TYPE</th>
<th>VENDOR ENG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>P-16801</td>
<td></td>
<td>2</td>
<td>Pump, quench liquid, sp gr 1.0, 1,500 gpm, 750 tpd, ea with ss trim, with motor</td>
<td>P-16801</td>
<td>500 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>7.0 ea</td>
<td>S 6-83</td>
<td>50.5 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-16803</td>
<td></td>
<td>2</td>
<td>Pump, knockout, sp gr 1.0, 1,500 gpm, 250 tpd, ea with ss trim, with motor</td>
<td>P-16803</td>
<td>200 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>2.3 ea</td>
<td>S 6-83</td>
<td>19.2 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-16804</td>
<td></td>
<td>2</td>
<td>Pump, liquid recovery, sp gr 1.0, 150 gpm, 250 tpd, ea with ss trim, with motor</td>
<td>P-16804</td>
<td>20 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>0.9 ea</td>
<td>S 6-83</td>
<td>7.8 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-16805</td>
<td></td>
<td>2</td>
<td>Pump, flare drum, sp gr 1.0, 150 gpm, 250 tpd, ea with ss trim, with motor</td>
<td>P-16805</td>
<td>20 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>0.9 ea</td>
<td>S 6-83</td>
<td>7.8 ea</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TK-16806</td>
<td></td>
<td>1</td>
<td>Tank, storage, quench liquid, 5,000 bbl nominal, ea, API 650</td>
<td>TK-16806</td>
<td>35' dia</td>
<td>S 10-82</td>
<td>S 1-83</td>
<td>6.4 ea</td>
<td>S 10-83</td>
<td>54.4 ea</td>
<td>CMC</td>
<td>FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x 30'</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bula.
Equipment List/Summary

WBS Element: 1.4.1.1.2
ICRC Area: 16
FLARE AND INCINERATORS—EMERGENCY FLARE
Page 2 of 2

<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP. NO.</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P. O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P. O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP. COST</th>
<th>PURCH BY</th>
<th>TYPE</th>
<th>EQUIP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>V-16808</td>
<td>5-V-16808</td>
<td>1</td>
<td>Knockout drum, vertical, 150 psig, 9000°F, c.s.</td>
<td>S 10-82</td>
<td>44' dia x 69' TT</td>
<td>P</td>
<td>P</td>
<td>70.0</td>
<td>S 10-83</td>
<td>660.0</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V-16809</td>
<td>5-V-16809</td>
<td>1</td>
<td>Knockout drum, 150 psig, 650°F, cs</td>
<td>S 10-82</td>
<td>22' dia x 80' TT</td>
<td>P</td>
<td>P</td>
<td>34.0</td>
<td>S 10-83</td>
<td>291.0</td>
<td>RUST</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X-16810</td>
<td>5-X-16810</td>
<td>1</td>
<td>Elevated flare, derrick supported, complete with molecular seal, pilots, and ignitor, 1.1 x 10^6 lb/hr non-smokeless, 200,000 lb/hr smokeless</td>
<td>S 10-82</td>
<td>46' dia x 250' high</td>
<td>P</td>
<td>P</td>
<td>77.0</td>
<td>S 2-83</td>
<td>663.8</td>
<td>CMC</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X-16810</td>
<td>4-X-16810</td>
<td>cont.</td>
<td>26.0 molecular weight, 0.5 lb/hr steam/lb hr smokeless</td>
<td>P</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td>CMC</td>
<td>SF</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks.

RUST: RUST Engineering
CNC: Stone & Webster
S: Scheduled
FL: Field Labor
P: Projected
M: Material for field fab equipment
A: Actual
SF: Shop Fabricated

Columns:
- **REV.**
- **ICRC/RUST**
- **EQUIP. NO.**
- **QTY**
- **EQUIPMENT DESCRIPTION**
- **P. O. NUMBER**
- **SIZE/WEIGHT**
- **P. O. DATE**
- **NEED DATE**
- **COST**
- **DELV DATE**
- **EQUIP. COST**
- **PURCH BY**
- **TYPE**
- **EQUIP.**
<table>
<thead>
<tr>
<th>REV.</th>
<th>ICRC/RUST</th>
<th>EQUIP. NO.</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P. O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P. O. DATE</th>
<th>NEED DATE</th>
<th>COST</th>
<th>DELV DATE</th>
<th>EQUIP DATE</th>
<th>PURCH BY</th>
<th>TYPE</th>
<th>EQUIP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>IN-16913</td>
<td>1</td>
<td>1</td>
<td>Oxidizer, liquid thermal, 3,600 lb/hr combined capacity complete with peripherals and instrumentation, 125 ft dispersive stack; 150 psig waste heat boiler</td>
<td>S 10-82</td>
<td>30.3</td>
<td>S 6-83</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-16912</td>
<td>A and B</td>
<td>2</td>
<td>Pump, liquid incinerator, 20 gpm x 211 tdp, c.s. with ss trim, with motor</td>
<td>S 10-82</td>
<td>60 hp</td>
<td>S 6-83</td>
<td>IN-16913</td>
<td>IN-16913</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-16915</td>
<td>A and B</td>
<td>2</td>
<td>Pump, boiler feedwater, 900 gpm x 131 tdp, sp.gr. = 0.882, c.s. with ss trim, with motor</td>
<td>S 10-82</td>
<td>2.1</td>
<td>S 10-83</td>
<td>17.8</td>
<td>IN-16913</td>
<td>RUST</td>
<td>SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V-16911</td>
<td>1</td>
<td>1</td>
<td>Knockout drum, 150 psig, 650°F, metal weight, 9,788 lb</td>
<td>S 10-82</td>
<td>60 hp</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V-16914</td>
<td>1</td>
<td>1</td>
<td>Drum, boiler feedwater</td>
<td>S 10-82</td>
<td>60 hp</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars. RUST: RUST Engineering
 CMC: Stone & Webster
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks

<table>
<thead>
<tr>
<th>ICRC/RUST</th>
<th>EQUIP. NO.</th>
<th>QTY</th>
<th>EQUIPMENT DESCRIPTION</th>
<th>P. O. NUMBER</th>
<th>SIZE/WEIGHT</th>
<th>P. O. DATE</th>
<th>NEED DATE</th>
<th>COST DATE</th>
<th>DELV DATE</th>
<th>EQUIP. COST</th>
<th>PURCH BY</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>C-16917</td>
<td>1</td>
<td>Fan, induced draft</td>
<td></td>
<td>100 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>Inc with</td>
<td>S 6-83</td>
<td>Inc. w/</td>
<td>RUST</td>
<td>SF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incinerator, vent gas, 2,500 lb/hr combined capacity complete with peripherals and instrumentation; 125 ft dispersive stack; 150 psig waste heat boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P-16918</td>
<td>2</td>
<td>Pump, transfer, condensate, 150 gpm x 116 tcd, cs w/ ss trim, with motor</td>
<td></td>
<td>10 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>Inc w/</td>
<td>S 6-83</td>
<td>Inc w/</td>
<td>RUST</td>
<td>SF</td>
</tr>
<tr>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-16921</td>
<td>2</td>
<td>Pump, boiler feedwater, sp.gr.=0.882, cs w/ ss trim, 700 gpm x 1:1 tcd, with motor</td>
<td></td>
<td>40 hp</td>
<td>S 10-82</td>
<td>S 12-82</td>
<td>Inc w/</td>
<td>S 6-83</td>
<td>Inc w/</td>
<td>RUST</td>
<td>SF</td>
</tr>
<tr>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TX-16911</td>
<td>2</td>
<td>Slop oil and liquid preparation unit, 2,500 bbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A and B</td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V-16916</td>
<td>1</td>
<td>Knockout drum, 75 psig, 650°F, weight 3,651 lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST</td>
<td>SF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V-16920</td>
<td>1</td>
<td>Drum, boiler feedwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RUST</td>
<td>SF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IN-16919</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All costs 1st Quarter Fiscal Year 1982 in thousand dollars.
2. Equipment costs are FOB jobsite with shipping & vendor field support less vendor engineering.
3. This equipment is Appendix C Bulks

RUST: RUST Engineering **S:** Scheduled **F/L:** Field Labor **N/A:** Not Applicable
CNC: Stone & Webster **P:** Projected **M:** Material for field **FF:** Field Fabricated
A: Actual **FP:** Field Fabricated **SF:** Shop Fabricated
2.2.9.7 Equipment Data Sheets

The equipment data sheets for the flare and incinerators follow this page.
Client: International Coal Refining Company
Project: 6000 TPSD SRC-1 Demonstration Plant
Location: Newnan, Kentucky

Centrifugal Fan Data Sheet

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Type</td>
<td></td>
</tr>
<tr>
<td>Impeller Type</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>DIA., RATED</td>
<td>IN. MAX.</td>
</tr>
<tr>
<td>RATED SPEED, RPM</td>
<td></td>
</tr>
<tr>
<td>RATED HP</td>
<td></td>
</tr>
<tr>
<td>MAX. HP</td>
<td>RATED IMP.</td>
</tr>
<tr>
<td>MAX. V.</td>
<td>CPM</td>
</tr>
<tr>
<td>Flange Orientation, Inlet</td>
<td></td>
</tr>
<tr>
<td>Disch.</td>
<td></td>
</tr>
<tr>
<td>Casing Thickness, In</td>
<td></td>
</tr>
<tr>
<td>Impeller Shaft</td>
<td></td>
</tr>
<tr>
<td>Shaft Bearings</td>
<td></td>
</tr>
<tr>
<td>Bearing Pedestals</td>
<td></td>
</tr>
<tr>
<td>Stack, Ducting Thickness, In</td>
<td></td>
</tr>
<tr>
<td>Int. Coating</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Prepared by: [Signature]
Approved by: [Signature]
Date: 10-21-81

Revisions:

- []
- []
- []
Centrifugal Pump Data Sheet

- **Client**: International Coal Refining Company
- **Project**: 6000 TPD SRC Demonstration Plant
- **Location**: Newnan, Kentucky
- **Service**: Quench Liquid Pump
- **Vendor**: The Rust Engineering Company

Equipment Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment No.</td>
<td>P-16801 A.B</td>
</tr>
<tr>
<td>No. Required</td>
<td>2</td>
</tr>
<tr>
<td>Sheet</td>
<td>1 of 1</td>
</tr>
</tbody>
</table>

Pump Characteristics

- **Type**: Centerline Foot Bracket
- **Model**: Very (Type)
- **Size**: 120 mm
- **Rate**: 150 m³/hr
- **Design Pressure**: 325 psi
- **Design Temperature**: 325 °F
- **Number of Stages**: 3
- **Number of Piping**: 4

Impeller Details

- **Impeller Diameter**: 0.5 m
- **Impeller Design**: Rated
- **Type**: Impeller
- **Max. RPM**: 1750

Materials

- **Casing**: Coralline
- **Impeller**: Wear Rings
- **Shaft**: Sleeves
- **Baseplate**: Drip Pan

Cooling Water Supply

- **Pressur**: 14 psi
- **Flow**: 150 m³/hr

Notes

- **Operational Conditions**: Complete by Purchaser
- **Performance**: Complete by Manufacturer

Remarks

- **Vendor Specify**
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operating Conditions (each pump)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Liquid</td>
<td>US GPM at pt nor 150' R.</td>
</tr>
<tr>
<td>3</td>
<td>PT : F nor 60' max suction psig max 108' rated</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SP gr at pt 1.0 diff press psig 108' rated</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VAP Press at pt psia nil diff head ft 250</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VIS at pt lbm/ft hr</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CORROS/eros caused by</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NOZZLES</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sizing (in)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>RATING</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>FACIGN</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>LOCATION</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>CASE MT CENTERLINE FOOT BRACKET XXX (TYPE)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PRESSURE</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CONNECT EVENT DRAIN GAUGE STEAM JACKET</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>IMPELLER (in)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MOUNT BETWEEN BRGS OVERHUNG</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>BEARINGS TYPE RADIAL</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LUBE : RING OIL FLOOD OIL MIST FLINGER PRESSURE</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>COUPLING F/EAST</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DRIVER HALF MTD BY PUMP MFR DRIV MR MR</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>MECH SEAL PACKING AUX SEAL PACKING</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MFR TYPE MODEL</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>MFR CODE</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>AUXILIARY PIPING</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>O C W PIPE PLAN</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TOTAL COOLING WATER RED GPM</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>PACKING COOL INJECTION RED GPM</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SEAL FLUSH PIPE PLAN</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>EXTERNAL SEAL FLUSH FUID</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>AUXILIARY SEAL PLAN</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>MATERIALS</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PUMP CASE/TRIM API CLASS</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CASING</td>
<td>CORR ALL IN.</td>
</tr>
<tr>
<td>36</td>
<td>IMPPELLER WEAR RINGS</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SHAFT SLEEVE(S)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CASE INT COATING/LINING</td>
<td>GLAND</td>
</tr>
<tr>
<td>39</td>
<td>BASEPLATE Drip Pan</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ELEVATION FT 385</td>
<td>DUST/FUMES</td>
</tr>
<tr>
<td>41</td>
<td>AMB TEMP F MAX MIN AREA ELECT CL GR DIV</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>COOLING WATER SUPPLY PSIG RETURN PSIG F</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>REMARKS VENDOR SPECIFY</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>PREPARED BY R.M.</td>
<td>DATE 10-6-81</td>
</tr>
<tr>
<td>45</td>
<td>APPROVED BY</td>
<td>BY DATE BY DATE BY DATE</td>
</tr>
</tbody>
</table>

Centrifugal Pump Data Sheet
CENTRIFUGAL PUMP DATA SHEET

CLIENT
INTERNATIONAL COAL REFINING COMPANY

PROJECT
6000 TPD SRC-I DEMONSTRATION PLANT

PLANT LOCATION
NEWARK, KENTUCKY

EQUIPMENT NO.
P-1450

NO. REQUIRED
2

PUMP
LIQUID RECOVERY PUMP

VENDOR

MODEL

SERIAL NO.

NOTE
0 INDICATES INFORMATION TO BE COMPLETED BY PURCHASER

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>FURN. BY</th>
<th>MFR BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO OF MOTORS REQ'D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO OF TURBINES REQ'D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING CONDITIONS (EACH PUMP)

<table>
<thead>
<tr>
<th>LIQUID</th>
<th>US GPM AT PT. NOR</th>
<th>RATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESS</td>
<td>MAX ALLOW</td>
<td>PSIG</td>
</tr>
<tr>
<td>PRESS</td>
<td>MAX</td>
<td>PSIG</td>
</tr>
<tr>
<td>CONNECT</td>
<td>VENT</td>
<td>DRAIN</td>
</tr>
<tr>
<td>IMPeller DIA</td>
<td>RATED</td>
<td>MAX</td>
</tr>
<tr>
<td>MOUNT</td>
<td>BETWEEN BRGS</td>
<td>OVERHUNG</td>
</tr>
<tr>
<td>BEARINGS TYPE</td>
<td>RADIAL</td>
<td>THRUST</td>
</tr>
<tr>
<td>LUBE</td>
<td>RING OIL</td>
<td>FLOOD</td>
</tr>
<tr>
<td>COUPLING</td>
<td>MFR</td>
<td>FAST</td>
</tr>
<tr>
<td>DRIVER HST</td>
<td>MFR</td>
<td>DRIVER MFR</td>
</tr>
<tr>
<td>MFR TYPE MODEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION

- **CASING SIZE** | 150# RF | 150# RF |
- **SPLIT** | CENTERLINE | FOOT | Bracket | VERT. (TYPE) |
- **IMPeller DIA** | RATED | MAX |
- **UNIT** | Volute | SGL | DBL |
- **SEAL FLUSH PIPE PLAN** | OCS | S.S | TUBING |
- **ACCU SEAL PLAN** | OCS | S.S | TUBING |
- **CASE INLET COATING** | Lining |
- **BASE PLATE** | Drip Pan |
- **ELEVATION FT** | 356 |
- **COOLING WATER SUPPLY** | PSIG | F RETURN | PSIG |
- **AMBIENT TEMP** | MAX | MIN |
- **COOLING WATER PIPE** | PSIG |
- **APPARATUS SPECIFICATIONS** |

MATERIALS

REMARKS

PREPARED BY

APPROVED BY

<table>
<thead>
<tr>
<th>DATE</th>
<th>REVISION</th>
<th>DATE</th>
<th>REVISION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-6-81</td>
<td></td>
<td>12-30-81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **INSPECTION AND TESTS**
 - **SHOP INSPECTION**
 - **REQUIRED**
 - **WITNESS**
 - **PERFORMANCE TEST**
 - **REQUIRED**
 - **WITNESS**
 - **NPSH TEST**
 - **REQUIRED**
 - **WITNESS**
 - **INT. INSPECTION**
 - **REQUIRED**
 - **WITNESS**

WEAR PARTS

- **WEAR RINGS CASE** | MP |
- **WEAR RINGS** | IN CLEARANCE | IN |
- **INTERSTAGE BUSHINGS** | IN CLEARANCE | IN |
- **VERTICAL PUMPS** |
- **PIT OR SUMP DEPTH** |
- **PUMP LENGTH** |
- **MIN SUBMERSION REQ'D** |
- **COLUMN PIPE** | FLANGED | THREADED |
- **LINE SHAFT** | OPEN | ENCLOSED |
- **BRGS** | BOWL | LINE SHAFT |
- **BRG LUB** | WATER | OIL | GREASE |
- **FLOOT & ROD** | CS | S.S | BRZ | NONE |
- **FLOOT SWITCH** |
- **PUMP THRUST LB** | UP | DOWN |
- **MOUNTING PLATE REQ'D** |

APPLICABLE SPECIFICATIONS

- **API 610**
- **ANSI B73.1, B73.2**
- **PROJECT SPECIFICATIONS**
CENTRIFUGAL PUMP DATA SHEET

CLIENT
INTERNATIONAL COAL REFINING COMPANY

PROJECT
6000 TPSO SRC-I DEMONSTRATION PLANT

SERVICE
FLARE DRUM PUMP

VENDOR
P.O. No.

TYPE

NO. OF MOTORS REQUIRED
ITEM NO. FURN. BY MFR BY

NO. OF TURBINES REQUIRED
ITEM NO. FURN. BY MFR BY

NOTE

- ○ INDICATES INFORMATION TO BE COMPLETED BY PURCHASER
- ○ BY MANUFACTURER
- ○ OPERATING CONDITIONS (EACH PUMP)

LIQUID
US GPM AT PT. NO. 150 □ RATED

DISCHARGE
PSIG 108

PT. F N.R.
60, MAX SUCTION PSIG MAX □ RATED

SP. GR. AT PT.
1.0 DIFF. PRESS. PSI 108

VAP PRESS AT PT.
PSIA □, DIFF HEAD. FT. 250

VIS AT PT.
LBM/FT-HR □ = NSHA. FT.

CORR/EOs CAUSED BY
NHE, WHP 9.5

CONSTRUCTION

- ○ INSPECTION AND TESTS
- ○ PERFORMANCE

PROPOSAL CURVE NO.
RPM 1750 □ NO. OF STAGES

NPSHR. FT.
□ IMPELLER □ T.O.F.

EFF. □ BHP RATED
MAX. BHP RATED IMP.

MAX HEAD RATED IMP.
MIN. CONTINUOUS GPM

ROTATION (VIEWED FROM CPLG ENDO.

SHOP INSPECTION
□ REQUIRE □ DEPOSIT □ WITNESS

HYDROSTATIC TEST
□ REQUIRE □ DEPOSIT □ WITNESS

PERFORMANCE TEST
□ REQUIRE □ DEPOSIT □ WITNESS

NPSH TEST
□ REQUIRE □ DEPOSIT □ WITNESS

INT. INSPECTION AFTER
TEST

INT. WEAR PARTS

- ○ WEAR RINGS □ CASE □ MP

DIA. □ IN. CLEARANCE □ IN

INTERSTAGE BUSHINGS
DIA. □ IN. CLEARANCE □ IN

VERTICAL PUMPS

- ○ PIT OR SUMP DEPTH □

PUMP LENGTH □

MIN. SUBMERGENCE REQU. □

COLUMN PIPE □ FLANGED □ THREADED

LINE SHAFT □ OPEN □ ENCLOSED

BRGS. □ BOWL □ LINE SHAFT

BRG. LUB W. □ WATER □ OIL □ GREASE

FLOAT & ROD □ CS □ S.S □ BRZ □ NONE

FLOAT SWITCH □

PUMP THRU^T □ UP □ DOWN

MOUNTING PLATE REQU. □

MATERIALS

- ○ WEIGHTS AND DIMENSIONS

APPLICABLE SPECIFICATIONS

- ○ API 610 □ ANSI 873.1, 873.2
- ○ PROJECT SPECIFICATIONS

PREPARED BY
R.M.

DATE
10-6-81

APPROVED BY

<table>
<thead>
<tr>
<th>BY</th>
<th>DATE</th>
<th>BY</th>
<th>DATE</th>
<th>BY</th>
<th>DATE</th>
</tr>
</thead>
</table>

88
CENTRIFUGAL PUMP DATA SHEET

CLIENT: INTERNATIONAL COAL REFINING COMPANY

PROJECT: BOILER FEEDWATER PUMP

PLANT LOCATION: NEWCUM, KENTUCKY

SERVICES: PERFORM TEST

VENDOR: DISTRIBUTED BY THE RUST ENGINEERING COMPANY

EQUIPMENT NO.: P-16915 A & B

NO. OF MACHINES: 0

FURN. BY: VENDOR

MFR. BY: VENDOR

NO. OF MOTORS: 2

NOTE: (a) INDICATES INFORMATION TO BE COMPLETED BY PURCHASER

PERFORMANCE

- **PROPOSAL CURVE NO.**
- **RPM**
- **NO. OF STAGES**
- **NPSHR FT & IMPELLER T.O.F.**
- **EFF. BHP RATED**
- **MAX BHP RATED IMP.**
- **MAX HEAD RATED IMP.**
- **MIN CONTINUOUS GPM**
- **ROTATION (VIEWED FROM CPLG END)**

CONSTRUCTION

<table>
<thead>
<tr>
<th>NOZZLES</th>
<th>SIZE/IN</th>
<th>RATING</th>
<th>facing</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCHARGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUXILIARY PIPES

- **O C/W PIPE PLAN**
- **O C S S: TUBING:**
- **O PIPE**
- **O TOTAL COOLING WATER REQ'D GPM**
- **O SIGHT F.I. REQ'D**
- **O PACKING COOL INJECTION REQ'D**
- **O TOTAL GPM**
- **O SEAL FLUSH PIPE PLAN**
- **O C S S:**
- **O TUBING & PIPE**
- **O EXTERNAL SEAL FLUSH FLUID**
- **O GPM & PSIG**
- **O AUX. SEAL FLUSH PLAN**
- **O C S S:**
- **O TUBING & PIPE**

MATERIALS

- **O PUMP CASE/ TRIM API CLASS**
- **O CASING: CAST IRON**
- **O IMPELLER: CAST IRON**
- **O SHAFT 316SS SLEEVE:**
- **O CASE INT. COATING/ LINING**
- **O BASEPLATE**
- **O Drip Pan**

ELEVATION FT

- **AMB TEMP F MAX**
- **MIN. AREA ELECT. CL**
- **SITING DIV.**

COOLING WATER SUPPLY PSIG F RETURN PSIG F T

REMARKS:

- **PREPARED BY**
- **APPROVED BY**
- **DATE**
- **REVISION**
- **APPROVED BY**
- **DATE**
- **APPROVED BY**
- **DATE**
Centrifugal Pump Data Sheet

Equipment Data
- **Contract No.**: 21-1997/2554
- **Equipment No.**: F-1691 B 2 26
- **No. Required**: 2
- **Sheet**: of

International Coal Refining Company

Project
- **Description**: Condensate Transfer Pump
- **Location**: Newman, Kentucky

Client
- **International Coal Refining Company

Vendor
- **P.O. No.**:

Notes
- **Operating Conditions**:
 - Liquid: ____________
 - Slope: ____________
 - US GPM: ____________
 - HP: ____________
 - RPM: ____________
 - No. of Stages: ____________
 - NPSHR: ____________
 - T.O.F: ____________
 - NPSH: ____________
 - BHP Rated: ____________
 - Max. BHP Rated: ____________
 - Min. Continuous GPM: ____________
 - Rotation (Viewed from CPLG END): ____________

Construction
- **Type**: ____________
- **Model**: ____________
- **Serial No.**: ____________

Nozzles
- **Size (in.):** ____________
- **Rating (psi):** ____________
- **Facing (psi):** ____________

Suction
- **Discharge**: ____________
- **Case MT**: ____________
- **Centerline**: ____________
- **Foot**: ____________
- **Bracket**: ____________
- **Vert. (Type)**: ____________
- **Split**: ____________
- **Axial**: ____________
- **Rad.**: ____________
- **Type**: ____________
- **Type**: ____________

Discharge
- **Type**: ____________

Auxiliary Piping
- **E.W. Pipe Plan**: ____________
- **G.P.**: ____________
- **S.S.**: ____________
- **Tubing**: ____________
- **Pipe**: ____________
- **Total Cooling Water Rec'd GPM**: ____________
- **Sight F.I. Rec'd**: ____________
- **Total GPM**: ____________
- **Type**: ____________
- **Type**: ____________
- **Type**: ____________

Materials
- **Pump Case - Trim API Class**: ____________
- **Casing**: ____________
- **Casing**: ____________
- **Casing Comp.**: ____________
- **Impeller**: ____________
- **Casing Wear Rings**: ____________
- **Cast Iron**: ____________
- **Shaft**: ____________
- **Sleeve(s)**: ____________
- **Glazed**: ____________
- **Baseplate**: ____________
- **Drain Pan**: ____________

Elevation
- **FT**: ____________
- **DIST/FT**: ____________
- **F**: ____________
- **MAX**: ____________
- **MIN**: ____________
- **Area Elect. Cl. G.**: ____________
- **Area Elect. Cl. G.**: ____________

Cooling Water Supply
- **PSIG**: ____________
- **F Return**: ____________
- **PSIG**: ____________

Preparation
- **Date**: ____________
- **Revision**: ____________

APPROVED BY
- **Appr'd**: ____________
- **Appr'd**: ____________
- **Appr'd**: ____________
- **Appr'd**: ____________
Centrifugal Pump Data Sheet

Client: International Coal Refining Company
Project: Good TPSO SRC-I Demonstration Plant
Service: Boiler Feed Water Pump
Vendor: P.B. No.
Model:
Serial No.:

Note: Indicates information to be completed by Purchaser. Indicates information to be completed by manufacturer.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Size/Uni</th>
<th>Rating</th>
<th>Facing</th>
<th>Location</th>
</tr>
</thead>
</table>

Conduit:
Nozzles:
Suction Discharge:

Case MT: Centerline, Foot, Bracket, Vert. (Type)
Split: Axial, Rad, Type: Volute, SGL, DBL, Diffuser
Press: Max. Allow.
Connect: Vent, Drain, Gauge, Steam Jacket
Impeller Dia.: Rated
Mount: Between Brgs.
Bearings: Type, Radial, Thrust
Lube: Ring Oil, Flood, Oil Mist, Flinger, Pressure
Coupling: Mfr.
Driver: Half Mtd.
Mech. Seal: Packing, Aux. Seal/Packing
Mfr. Type: Model
Mfr. Code: API Code

Auxiliary Piping:
E.W. Pipe Plan:
Total Cooling Water Reed Gpm:
Packaging Cool Injection Reed: Total Gpm
Seal Flush Pipe Plan:
External Seal Flush Fluid:
Auxiliary Seal Plan:

Materials:

Pump Case/Trim API Class:

Shaft: 316SS
Sleeve: 316SS
Case Int. Coating: Liner
Baseplate: Drap Pan

Elevation:
Amb Temp: Max, Min
Cooling Water Supply: Psig

Remarks:

Prepared By:
Approved By:
Date:
Revision:

Contract No.: 70-10717-2555
Equipment No.: 9-16921A & B
No. Required: 2
Sheet: 1 of 1

Proposal Curve No.:
Rpm: No. of Stages
Npsr. Ft: Impeller Type
Eff.: Bhp Rated
Max Bhp Rated Imp.:
Max Head Rated Imp.:
Min Continuous Gpm:

Vertical Pumps

Pump Length:
Min. Submergence Reed:
Column Pipe: Flanged, Threaded
Line Shaft: Open, Enclosed
Brgs. Bowl: Line Shaft
Brg. Lub. Water CoL: Grease
Float & Rod: C.S., O.S.
Float Switch:

Approx. Wt. Pump & Base:
Motor:
Base Plate Dimensions:

Applicable Specifications:
API 610
ANSI B73.1 B73.2

Project Specifications:

91
Centrifugal Pump Data Sheet

Project Information
- **Project:** Odd TPSO SRC Demonstration Plant
- **Plant Location:** Newman, Kentucky

Pump Specifications
- **Type:** Liquid Incinerator Pump
- **Model:**
- **Serial No.:**
- **No. of Motors Req'd:** 2
- **No. of Turbines Req'd:**

Operating Conditions
- **Liquid Slop Oil:** US GPM at PT Nor.
- **Max. Impeller:**
- **Vap. Press:** At Pt. PSI
- **Vis. At Pt. LBM/FT-HR:**
- **Curv./Ehst. Caused By:**

Construction
- **Nozzles:**
- **Suction:**
- **Discharge:**
- **Case Mt.:**
- **Split:**
- **Press:**
- **Connect:**
- **Impeller Dia.:**
- **Mount:**
- **Bearings Type:**
- **Lube:**
- **Coupling:**
- **Driver Half Mtd by:**
- **Mech. Seal:**
- **Mfr. Type:**

Auxiliary Pipes
- **C.W. PIPF PLAM:**
- **Total Cooling Water Reqd GPM:**
- **Packing Cool. Injection Reqd:**
- **Seal Flush Pipe Plan:**
- **External Seal Flush Fluid:**
- **Aux. Seal Flush/Quench Fluid:**

Materials
- **Casing/Cast Iron Corr:**
- **Impeller/Cast Iron Wear Rings/Cast Iron:**
- **Shaft:**
- **Case Int. Coating/Lining:**
- **Baseplate/Drip Pan:**

Site Conditions
- **Elevation FT:**
- **Amb. Temp. F:**
- **Cooling Water Supply:**

Preparation and Approval
- **Prepared By:** SZ
- **Approved By:** BS

Project Specifications
- **API 610**
- **ANSI B73.1, B73.2**

Additional Notes
- **Related**: Project Specifications
Atmospheric Tank Data Sheet

Project Information
- **Project:** Good TP500-JEJ Demonstration Plant
- **Plant Location:** German, Kentucky

Tank Information
- **Type Tank:** Quench Liquid Storage Tank
- **Vendor:** [Vendor Name]

Design Data
- **Diameter:** 35’ 0”
- **Height:** 30’ 0”
- **Capacity:**
 - Normal: 5,141 BBLs
 - New Working: 5,000 BBLs

Norway

Tank Fittings and Appurtenances

<table>
<thead>
<tr>
<th>Description</th>
<th>Req'd</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet-Nozzle</td>
<td>1</td>
<td>6”</td>
</tr>
<tr>
<td>Outlet-Nozzle</td>
<td>1</td>
<td>16”</td>
</tr>
<tr>
<td>Heating Steam - Inlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating Condensate-Outlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction Heater Manways</td>
<td>1</td>
<td>24”</td>
</tr>
<tr>
<td>Shell Manways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixer Manways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nozzle Mounted on Mixer M/W Cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flush Type Cleanout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolted Doorsheet</td>
<td>6</td>
<td>2”</td>
</tr>
<tr>
<td>Inlet Extension Piece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Relaxation Chamber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swing Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static Eliminating Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortex Eliminator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction Baffle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixer Baffle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Sump Suction Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Product Suction Sump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground to Roof Stairway: radial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Ground Reading Gage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg/Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg/Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. @ Bhp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mat/L/Thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Coating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mfg/Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop Pickling & Special Priming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop Painting of Plates: Inside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop Painting of Plates: Outside</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Information
- **Prepared By:** [Prepared By]
- **Date:** 10-21-81
- **Approved By:** [Approved By]
- **Date:** [Approved By Date]
- **Revisions:**
 - [Revision 1]
 - [Revision 2]
 - [Revision 3]
This is a preliminary description of a slop oil and waste liquid preparation system. The basic concept was primarily initiated for equipment cost determination. Specific details will be developed during the detail design phase.

The slop oil and waste liquid preparation system will consist of two 2,500 bbl. nitrogen-blanketed storage tanks where waste liquids can be brought in by truck or by transfer line. The dual tank system will allow material separation as well as individual mixture preparation or conditioning for effective oxidation.

The individual tanks will include high turn over mixers with cooling and heating coils using cooling water and superheated steam respectively. The inter-tank pumping/circulating transfer allows for material transfer between the tanks as well as to a static mixer section for chemical addition. All chemicals like emulsion breakers, neutralizers, inhibitors, polymers, etc. will have individual feeding and metering tanks.
1. ALL FLANGES 20" AND LARGER TO MEET API-605 STD. ALL FLANGES UNDER 20" TO MEET ASME B16.5.

2. SKIRT VENT (1 REQUIRED) TO BE A 4" SCH. 40 PIPE SLEEVE, LOCATE AS HIGH AS POSSIBLE ON SKIRT.

3. SKIRT ACCESS OPENING (1 REQUIRED) TO BE 20" NOM. DIA.

4. ALL NOZZLES TO BE REINFORCED AS REQUIRED PER THE ASME CODE, SECTION VIII DIVISION 1.

5. ALL NOZZLES TO HAVE A 6" MIN. CENTERLINE PROJECTION FROM OUTSIDE OF VESSEL WALL.

6. O.D. OF SKIRT SHALL MATCH O.D. OF VESSEL. SUPPLIER SHALL FURNISH THE SKIRT AND BASE PLATE THICKNESS AND ANCHOR BOLT DESIGN CALCULATIONS. THE SKIRT SHALL BE 3/8" MINIMUM THICKNESS.

7. SUPPLIER SHALL DESIGN & FURNISH TWO LIFTING LUGS.

8. SUPPLIER SHALL FURNISH TWO ELECTRICAL GROUNDING CLIPS.

9. SUPPLIER SHALL CALCULATE THE MAWP, NEW AND COLD, USING AS BUILT THICKNESSES. SHOP HYDROTEST PRESSURE SHALL BE A MINIMUM OF 1.5 TIMES THIS MAWP. THE LIMITING COMPONENT SHALL BE SPECIFIED ON THE DRAWING.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>VERTICAL FLARE, C.O., DRUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SUPPLIER SHALL UPRATE THE VESSEL TO THE MAWP IN THE FULLY CORRODED CONDITION. AND THEN UPRATE TO THE MAXIMUM TEMPERATURE. THIS MAWP, FUTURE HYDROTEST PRESSURE IN VERTICAL POSITION AND LIMITING COMPONENT SHALL BE SPECIFIED ON THE DRAWING.</td>
</tr>
<tr>
<td>11</td>
<td>THE VESSEL SKIRT SHALL BE FIREPROOFED BY OTHERS WITH 2" OF SHOTCRETE. (GUNITE OR EQUAL) ON OUTSIDE ONLY.</td>
</tr>
<tr>
<td>12</td>
<td>AFTER COMPLETION, THE SUPPLIER SHALL REMOVE ALL FOREIGN MATERIAL FROM INSIDE AND OUTSIDE THE VESSEL WALL. THE SUPPLIER SHALL SANDBLAST ALL EXTERIOR SURFACES TO NEAR WHITE METAL (SSPC-SP10) AND THEN APPLY 2-3 MILS D.F.T. ZINC PRIMER.</td>
</tr>
<tr>
<td>13</td>
<td>ALL FLANGE BOLT HOLES SHALL STRADDLE THE VESSEL CENTERLINES.</td>
</tr>
<tr>
<td>14</td>
<td>SUPPLIER SHALL FURNISH A NEW SET OF GASKETS FOR ALL BLIND FLANGED NOZZLES. THE GASKETS SHALL BE 1/16" THICK COMPRESSED ASBESTOS, JSMO-60 OR EQ.</td>
</tr>
<tr>
<td>15</td>
<td>SUPPLIER SHALL DESIGN THIS VESSEL IN ACCORDANCE WITH ASME SECTION VIII, DIVISION 1 CODE. SEISMIC AND WIND LOADING SHALL BE PER ANSI ASME-1972 STD. USE 80 MPH BASIC WIND SPEED, EXPOSURE "C" AND SEISMIC ZONE 2.</td>
</tr>
<tr>
<td>16</td>
<td>THE SUPPLIER HAS THE OPTION TO GIVE ALTERNATE QUOTE IF PROVEN ECONOMICAL FOR ANY CARBON STEEL SUBSTITUTE MATL.</td>
</tr>
<tr>
<td>17</td>
<td>SUPPLIER SHALL FURNISH VORTEX BREAKER FOR NOZZLE N3, SHT. B OF 3</td>
</tr>
</tbody>
</table>

Notes:

- **Plant Location:** NEWMAN, KENTUCKY
- **General Equipment Data Sheet:**
- **Contract No.:** 21-1997 F
- **Approved by:** B. MACADA
- **Date:** 10-28
- **EQUIP. IDENT. NO.:** V-1680
GENERAL EQUIPMENT
DATA SHEET

1. ALL FLANGES 2½" AND LARGER TO MEET API-605 STD.

2. ALL NOZZLES TO BE REINFORCED AS REQUIRED PER THE
A.S.M.E. CODE, SECTION VIII DIVISION 1.

3. ALL NOZZLES TO HAVE A 6" MIN. CENTERLINE
PROJECTION FROM OUTSIDE OF VESSEL WALL.

4. THIS VESSEL TO BE INSULATED BY OTHERS WITH 2" OF
ASBESTOS FREE CALCIUM SILICATE INSULATION. SHALL BE
COVERED WITH .016" THICK ALUMINUM JACKETING AND
BANDED WITH STAINLESS STEEL. THE SADDLES SHALL BE
FIREPROOFED BY OTHERS WITH 2" OF SHOTCRETE (GUNITE OR EQ)

5. SUPPLIER SHALL CALCULATE THE MAWP, NEW AND COLD,
USING AS BUILT THICKNESSES. "SHOP HYDROTEST PRESSURE
SHALL BE A MINIMUM OF 1.5 TIMES THIS MAWP. THE
LIMITING COMPONENT SHALL BE SPECIFIED ON THE DRAWING.

6. SUPPLIER SHALL UPRATE THE VESSEL TO THE MAWP IN
THE FULLY CORRODED CONDITION AND THEN UPRATE TO
THE MAXIMUM TEMPERATURE. THIS MAWP, FUTURE HYDRO-
TEST PRESSURE AND LIMITING COMPONENT SHALL BE
SPECIFIED ON DRAWING.

7. THE SUPPLIER SHALL DESIGN THIS VESSEL IN ACCORDANCE
WITH A.S.M.E. SECTION VIII DIVISION 1 CODE. SEISMIC AND WIND
LOADING SHALL BE PER ANSI ASB.1-1972 STANDARD. USE
80 MPH BASIC WIND SPEED, EXPOSURE "C" AND SEISMIC ZONE 2.

SHT. 2 OF 3
8. Supplier shall furnish a new set of gaskets for all blind flanged nozzles. The gaskets shall be ½" thick compressed asbestos, JMMGO or equal.

9. Supplier shall furnish vortex breaker for nozzle N3.

10. The bayonet heater installed thru nozzle N7 will be supplied by others.

11. All flange bolt holes shall straddle the vessel centerlines.

12. The supplier has the option to give alternate quote if proven economical for any carbon steel substitute material.

13. The supplier shall furnish an electrical grounding clip for each saddle.

14. The supplier shall design the saddle supports. When calculating the bending stress at the horn of the saddle support, the thickness of the wear plate shall not be considered. Stiffener rings or increased shell plate thickness may be used, if required, to reduce stresses at the saddles.
CLIENT
INTernational Coal Refining Company

PROJECT
5000 TPSD SRC-I Demonstration Plant

EQUIPMENT NO.
V-14916

PLANT LOCATION
Newman, Kentucky

SERVICE
Knockout Drum, Vent Gas Incinerator

DIAMETER INSIDE
IN
DIA.
IN

VERT. H.T.L. TO T.I.
FT

MT. L. FROM GRADE
FT

MAT. NO.

MATERIALS

<table>
<thead>
<tr>
<th>SHELL</th>
<th>HEADS</th>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-516-70</td>
<td>SA-516-70</td>
<td>SA-36</td>
</tr>
<tr>
<td>3/8"</td>
<td>3/8"</td>
<td>GASKETS 1/16" COMP. ASC.</td>
</tr>
</tbody>
</table>

OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>NOZZLE NECK</th>
<th>FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-53B/SA-105</td>
<td>SA-181</td>
</tr>
</tbody>
</table>

OPER TEMP
F

MAX TEMP
F

OPER PRESSURE
PSIG

PSIG

STAMPED

| NATIONAL BOARD REGISTRATION | 75 |

DESIGN

<table>
<thead>
<tr>
<th>CODE ASME SEC VIII DIV (\alpha)</th>
</tr>
</thead>
</table>

RESS TEMP
F

PRESSURE
PSIG

EXTERNAL PRESSURE
PSI

MAX ALLOW WORKING PRESS/TEMP
102/1650

<table>
<thead>
<tr>
<th>SHELL</th>
<th>HEADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THICK</td>
<td>THICK</td>
</tr>
<tr>
<td>3/8"</td>
<td>3/8"</td>
</tr>
</tbody>
</table>

HYDROTEST PRESS/TEMP
153

RADIATION EXTENT
<table>
<thead>
<tr>
<th>SPOT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EARTH</th>
<th>COOF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>WIND PRESS</th>
<th>INSURANCE</th>
<th>TIME PROOF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INSULATION</th>
<th>Y/N</th>
<th>INSUL THICK</th>
</tr>
</thead>
</table>

| VESSEL SUPPORT TYPE | SWIFT |

<table>
<thead>
<tr>
<th>NOZZLES</th>
<th>COUPLING RATING</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MARK</th>
<th>NO.</th>
<th>SIZE</th>
<th>FACING</th>
<th>SERVICE</th>
</tr>
</thead>
</table>

N-1	1	RF 150°	INLET	
N-2	1	RF 150°	OUTLET	LAROR
N-3	1	RF 150°	OUTLET	LIQUID
N-4	Z	RF 150°	LEVEL	
N-5	1	WATER	RELIEF	

<table>
<thead>
<tr>
<th>LIQUID LEVEL</th>
<th>FROM BOTTOM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
</table>

PREPARED BY
S. R.

DATE
10-21-81

APPROVED BY

<table>
<thead>
<tr>
<th>BY</th>
<th>DATE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>APP'D</th>
</tr>
</thead>
</table>

SHR No.
103
The Rust Engineering Company

PROJECT: GOOD TP50 SRC-1 DEMONSTRATION PLANT
PLANT LOCATION: NEWMANN, KENTUCKY

SERVICE: FLARE ASSEMBLY

VENDOR: P.O. NO.

THIS IS A PRELIMINARY DESCRIPTION OF AN ELEVATED FLARE SUPPORTED BY A DERRICK. THE BASIC CONCEPT WAS PRIMARILY INTENDED FOR EQUIPMENT COST DEVELOPMENT. SPECIFIC DETAILS WILL BE PROVIDED DURING THE DETAIL DESIGN PHASE.

PROCESS REQUIREMENTS

THE FLARE FROM THE FLARE SHALL BE SMOKELESS WITH THE SMOKELESS CAPACITY OF 200,000 M3/HR USING 0.5 LBS OF STEAM PER LB OF HYDRO CARBON. THE EMERGENCY RELEASE CAPACITY OF THE FLARE SHALL BE 1,100,000 M3/HR (NON-SMOKELESS).

THE FLARE HEAT WILL BE 250 FT. MOI. W.T. 26. FLOW TEMPERATURE 400°F. ALLOWABLE TIP 4P = 0.5 PSI.

FLARE SYSTEM SHALL BE COMPLETE WITH SUPPORTING DERRICK, MOLECOULAR SEAL, WATER SEAL AT THE BASE, ACCESS WORK PLATFORM AT TOP, CAGED LADDERS WITH REST PLATFORMS EVERY 30 FT., IGNITOR, AND PILOTS.
This is a preliminary description of a slop oil and waste liquid oxidizing system. The basic concept was primarily intended for equipment cost determination. Specific details as well as the final data sheets and specifications will be developed during the detail design phase.

The thermal oxidizer shall be capable of disposing of slop oil and waste liquid mixtures of varying calorific value using fuel gas as auxiliary fuel. The waste liquids will be pumped to the burner at the proper temperature, pressure, and adjusted composition from the preparation area. The oxidizer will incorporate a waste heat recovery system which will generate saturated steam at 150 psig. Each unit will include an individual feed water recirculation system, chemical treatment facilities, and local operation controls with plant supervision capability. Major alarms and current operating status will be linked to the central control room by a pan alarm system.

Basic Oxidizer Rating:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Waste liquid</td>
<td>3,619</td>
</tr>
<tr>
<td>2. Auxiliary fuel normal duty, MMBtu/hr</td>
<td>10.0</td>
</tr>
<tr>
<td>3. Auxiliary fuel maximum duty, MMBtu/hr</td>
<td>30.0</td>
</tr>
<tr>
<td>4. Maximum duty, MMBtu/hr</td>
<td>45.0</td>
</tr>
</tbody>
</table>

The oxidizer flue gas stack will have a minimum height of 125 ft. Minimum flue box temperature 2,000°F.
This is a preliminary description for a vent gas incinerator. The basic concept was primarily intended for equipment cost determination. Specific details as well as the final data sheets and specifications will be developed during the detail design phase.

The vent gas incinerator shall be capable of disposing of hydrocarbon-contaminated nitrogen-blanketing vapors from the storage, process, and loading areas. These vent gases will have a varying calorific value and will require fuel gas for auxiliary fuel.

The incinerator will include an induced draft flue gas stream of a check-out drum for 1915 and liquid separation. The check-out drum supply header is maintained at a selectedugas release pressure and it is connected to all the sources via sub headers.

The incinerator will incorporate a waste heat recovery system which will generate saturated steam at some of each unit. The incinerator includes an auxiliary feed water recirculation system, chemical treatment facilities, and local combustion controls with flange Supervision Capability. Major alarms and current operating status will be linked to the central control room by a pan-alarm system.

Basic oxidizer rating:

1. Vent Vapors: 4,140 kg/hr 2,500
2. Auxiliary fuel normality minimum: 10.0
3. Auxiliary fuel maximum pressure: 30.0
4. Maximum duty, kg/hr: 35.0

The oxidizer fuel gas stack will have a minimum height of 125 ft. Minimum fire box temperature 2,000° F.

Prepared by

Date

Approved by

Date
2.2.10 Fuels

2.2.10.1 System Description

Plant fuels, which include fuel oil, plant generated gaseous fuel, excess plant generated hydrogen, and LPG are distributed to the various area contractors as required. Separate piping system headers are provided for gaseous and liquid fuels.

2.2.10.2 Utility Flow Diagrams

Refer to the following drawings included with Interconnecting Systems, Paragraph 2.3.

00-16-03010 Interconnecting Piping System, Fuel Gas, Hydrogen & LPG
00-16-03011 Interconnecting Piping System, Fuel Oil
2.3 INTERCONNECTING SYSTEMS

2.3.1 Facilities Description

2.3.1.1 The interconnecting system will consist of a structurally designed pipe bridge that will be approximately 20 feet wide with a clearance of 30 feet from finish grade at all road and railroad crossings. The bridge will be designed with two and three tiers as required to accommodate the various pipe sizes. All process lines will be located on the 1st tier; steam and condensate lines will be located on the 2nd tier; all other utility lines will be located on the 3rd tier where possible. A 4th tier will be installed, as required, to accommodate all electrical cable trays and instrumentation lines. The minimum spacing between each tier will be 6 feet.

2.3.1.2 The north-south run of pipe bridge will be installed at coordinates N.2000 by E.15000, approximately. The bridge will run north to coordinates N.4850 by E.14300 to the liquid storage area. At this coordinate, the pipe bridge will terminate and all piping will be installed on pipe sleepers for the liquid storage and solids storage (area 11) and coal preparation (area 11).

2.3.1.3 All sleepers will be installed a maximum of 30 inches from finish grade. Any pipe in storage areas that must penetrate a diked area will be installed in a pipe sleeve 2 inches larger than the carrier pipes, and will be sealed at the end inside the diked area to prevent leakage from the diked area in case of spillage or rupture of the storage tank.

2.3.1.4 In areas where pipe runs will consist of small diameter pipe, or with only a few lines involved, pipe will be installed on T-pole supports. These T-pole supports will be spaced in a manner to support the smallest diameter pipe in the run.
2.3.1.5 All T-pole supports will be constructed of round pipe of proper size and will be installed in a concrete footer. The cross members of the T-pole supports will be structural steel welded to the pipe.

2.3.1.6 The T-pole supports will be 8 feet wide and the bottom of the cross members will have a clearance of 20 feet from finish grade. Where T-pole supports traverse a road or railroad, the bottom of the cross members will be 30 feet from finish grade.

2.3.1.7 In areas where two-tier pipe bridges will be used, all process and steam lines (if required) will be installed on the first tier, the second tier will be used for all other utilities. A third tier will be installed as required to accommodate electrical cable trays and instrumentation. A 6 foot minimum spacing will be maintained between each tier.

2.3.1.8 Provisions will be made for electrical cable trays and instrumentation on sleepers and T-pole supports in liquid and solid storage areas.

2.3.1.9 The strong wastewaters, which consist primarily of ammonia sulfide water, stripper (ASWS) bottoms, GKT blowdown, and hazardous waste landfill leachate will be conveyed in above ground pipes to the strong wastewater treatment system. A single sewer system will be provided to convey weak wastes (contaminated runoff and sanitary waste) to the weak waste treatment system. A ditch system will be provided to collect stormwater from uncurbed areas.
2.3.1A ICRC Interface Integration

Please refer to the ICRC "Revised Integration Documentation" dated June, 1983, Document No. DOE/OR/03054-24, UC-89. This document defines baseline interface information and compiles interconnecting stream information into two categories: the process interface streams and the utilities interface streams.
2.3.2 Interconnecting Diagrams

The following interconnecting diagrams, together with the line calculations summary sheets, are included in this section:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-16-03001</td>
<td>Interconnecting Piping System, H.P. Boiler Feed Water</td>
</tr>
<tr>
<td>00-16-03002</td>
<td>Interconnecting Piping System, L. P. Boiler Feed Water</td>
</tr>
<tr>
<td>00-16-03003</td>
<td>Interconnecting Piping System, 900# Steam</td>
</tr>
<tr>
<td>00-16-03004</td>
<td>Interconnecting Piping System, 450# Steam</td>
</tr>
<tr>
<td>00-16-03005</td>
<td>Interconnecting Piping System, 150# Steam</td>
</tr>
<tr>
<td>00-16-03006</td>
<td>Interconnecting Piping System, 75# Steam</td>
</tr>
<tr>
<td>00-16-03007</td>
<td>Interconnecting Piping System, 27# Steam</td>
</tr>
<tr>
<td>00-16-03008</td>
<td>Interconnecting Piping System, Instrument Air/Plant Air</td>
</tr>
<tr>
<td>00-16-03009</td>
<td>Interconnecting Piping System, Nitrogen</td>
</tr>
<tr>
<td>00-16-03010</td>
<td>Interconnecting Piping System, Fuel Gas, Hydrogen & LPG</td>
</tr>
<tr>
<td>00-16-03011</td>
<td>Interconnecting Piping System, Fuel Oil</td>
</tr>
<tr>
<td>00-16-03012</td>
<td>Interconnecting Piping System, Cooling Water Supply</td>
</tr>
<tr>
<td>00-16-03013</td>
<td>Interconnecting Piping System, Cooling Water Return</td>
</tr>
<tr>
<td>00-16-03014</td>
<td>Interconnecting Piping System, Process Water</td>
</tr>
<tr>
<td>00-16-03015</td>
<td>Interconnecting Piping System, Potable Water</td>
</tr>
<tr>
<td>00-16-03016</td>
<td>Interconnecting Piping System, Condensate</td>
</tr>
<tr>
<td>00-16-05001</td>
<td>Interconnecting Piping System, Process Lines-Process Solvents and Flushing Oil</td>
</tr>
<tr>
<td>00-16-05002</td>
<td>Interconnecting Piping System, Process Lines - Coal and KMAC</td>
</tr>
<tr>
<td>00-16-05003</td>
<td>Interconnecting Piping System, Process Lines - Crude Liquid Products</td>
</tr>
</tbody>
</table>
00-16-05004 Interconnecting Piping System, Process Lines - SRC & TSL-SRC
00-16-05005 Interconnecting Piping System, Process Lines - Fractionated Liquid Products to Tank Farm
00-16-05006 Interconnecting Piping System, Process Lines - Sour Waters
00-16-05007 Interconnecting Piping System, Process Lines - Sour Gases
00-16-05008 Interconnecting Piping System, Process Lines - Liquid Products from EBH to Product Fractionation
00-16-05009 Interconnecting Piping System, Process Lines - Vent Gases to Incinerator
00-16-05010 Interconnecting Piping System, Process Lines - Coker/Calciner Liquid Effluents
00-16-05011 Interconnecting Piping System, Process Lines - Oxygen
00-16-05012 Interconnecting Piping System, Process Lines - Gas System Waste Streams
00-16-05013 Interconnecting Piping System, Process Lines - GKT Ash Slurry
00-16-05014 Interconnecting Piping System, Process Lines - Hydrogen
00-16-05015 Interconnecting Piping System, Process Lines - Gas System Liquid Hydrocarbon Effluents
00-16-05016 Interconnecting Piping System, Process Lines - Gas System Vent Gases
00-16-05017 Interconnecting Piping System, Process Lines - Gas System Waste Water
00-16-05018 Interconnecting Piping System, Process Lines - Gas System Waste Streams
00-16-05019 Interconnecting Piping System, Process Lines - Naphtha Hydrotreating
00-16-05020 Interconnecting Piping System, Process Lines - Miscellaneous Waste Streams
NOTES:

1. ALL FLOW RATES SHOWN ARE MAXIMUM FLOWS AS DOCUMENTED IN:
 A) REVISED INTEGRATION DOCUMENTATION OF JUNE 83 REF: GROUP-ASSIGNED NO. 7489
 B) G/S B/M, SECTION A, REV. 0 DATED 7/7/83
1. All flow rates shown are maximum flows as documented (247) as revised integration documentation of the procedure documentation (6099).

2. All area maximum flows as shown are not existing since they do not occur at the same time. (see fuel oil heater)
NOTES:

1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
NOTES:
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
Notes:

1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted, all pipes are C.S.
3. Mat. of Constr.

1. AREA 12 SRC
 1A SRC Process
 1B Deashing
 1C Product Fractionation
 1D Solidification

2. AREA 13 PRODUCT UPGRADING
 2A Coker/Calcinier
 2B Expanded-bed Hydrocracker

3. AREA 14 CRYOCIC SEPARATION
 3A Air Separation
 3B Hydrogen Purification

4. AREA 15 GAS SYSTEMS
 4A Gasification
 4B Gas Treatment
 4C Sulfur Recovery

5. AREA 16 UTILITIES
 5A Main Substation
 5B BFW Treatment
 5C Cooling Tower No. 1
 5D Cooling Tower No. 2
 5E Power House and Air Compressor
 5F Flare
 5G Liquid Thermal Oxidizer
 5H Gas Incinerator

6. AREA 17 OXIDE TREATMENT
 6A Water Treatment
 6B Wastewater Treatment
 6C Surge Basin
 6D Hazardous Waste Landfill
 6E Non-Hazardous Waste Landfill
 6F Landfill Cover Stock Pile
 6G Evaporator
 6H Central Control Building
 6I Administration Building
 6J Service Change Building
 6K Contract Maintenance Change Bldg.
 6L Warehouse Building
 6M Maintenance Building
 6N Storm Retention Pond
 60 Ash Ponds

7. AREA 11 RAW MATERIAL & PRODUCT STORAGE
 7A Coal Storage
 7B Coal Pulverizer
 7C Liquid Storage
 7D SRC/CRS Storage

8. NAPTHA HYDROTREATING
NOTES:
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.

OXYGEN TO GKT

OXYGEN TO WWTP
NOTES:
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
LEGEND

1. AREA 12 SRC
 1A SRC Process
 1B Deashing
 1C Product Fractionation
 1D Solidification

2. AREA 13 PRODUCT UPGRADE
 2A Coker/Calciner
 2B Expanded-bed Hydrocracker

3. AREA 14 CRYOGENIC SEPARATION
 3A Air Separation
 3B Hydrogen Purification

4. AREA 15 GAS SYSTEMS
 4A Gasification
 4B Gas Treatment
 4C Sulfur Recovery

5. AREA 16 UTILITIES
 5A Main Substation
 5B Pumping Station
 5C Cooling Tower No. 1
 5D Cooling Tower No. 2
 5E Power House and Air Compressor
 5F Flare
 5G Liquid Thermal Oxidizer
 5H Gas Incinerator

6. AREA 17 OFFSITES
 6A Water Treatment
 6B Wastewater Treatment
 6C Surge Basin
 6D Hazardous Waste Landfill
 6E Non-Hazardous Waste Landfill
 6F Landfill Cover Stock Pile
 6G Evaporator
 6H Central Control Building
 6I Administration Building
 6J Service Change Building
 6K Contract Maintenance Change Bldg.
 6L Warehouse Building
 6M Maintenance Building
 6N Storm Retention Pond
 6O Ash Ponds

7. AREA 11 RAW MATERIAL & PRODUCT STORAGE
 7A Coal Storage
 7B Coal Pulverizer
 7C Liquid Storage
 7D SRC/TSL Storage

8. NAPHTHA HYDROTREAT
NOTES:
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
FLOW, LB/HR

FLOW, GPM

TO

LEGEND

1 FLOW, LB/HR

LEGEND

FLOW, GPM

1 AREA 12 SRC
1A SRC Process
1B Deastring
1C Product Fractionation
1D Solidification

2 AREA 13 PRODUCT UPGRADING
2A Coker/Caliner
2B Expanded-bed Hydrocracker

3 AREA 14 CRYOGENIC SEPARATION
3A Air Separation
3B Hydrogen Purification

4 AREA 15 GAS SYSTEMS
4A Gasification
4B Gas Treatment
4C Sulfur Recovery

5 AREA 16 UTILITIES
5A Main Substation
5B BFW Treatment
5C Cooling Tower No. 1
5D Cooling Tower No. 2
5E Power House and Air Compressor
5F Flare
5G Liquid Thermal Oxidizer
5H Gas Incinerator

6 AREA 17 OFF-SITES
6A Water Treatment
6B Wastewater Treatment
6C Surge Basin
6D Hazardous Waste Landfill
6E Non-Hazardous Waste Landfill
6F Landfill Cover Stock Pile
6G Evaporator
6H Central Control Building
6I Administration Building
6J Service Change Building
6K Contract Maintenance Change Bldg.
6L Warehouse Building
6M Maintenance Building
6N Storm Retention Pond
60 Ash Ponds

7 AREA 11 RAW MATERIAL & PRODUCT STORAGE
7A Coal Storage
7B Coal Pulverizer
7C Liquid Storage
7D SRC/TSL Storage

8 NAPHTHA HYDROTREATER

NOTES:

1. All flow rates shown are maximum flow rates.

2. Unless otherwise noted all pipes are C.S.

3. Mat. of constr. 316 S.S.

4. All flow rates shown are maximum flow rates.

5. Unless otherwise noted all pipes are C.S.

6. Mat. of constr. 316 S.S.
NOTES:
1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
3. By conveyor/truck
NOTES:

1. All flow rates shown are maximum flow rates.
2. Unless otherwise noted all pipes are C.S.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>PRESSURE DROP PSIG</th>
<th>SURFACE TENSION MPa/M</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REW</td>
<td>10"-HEADER</td>
<td>M.P. BOILER</td>
<td>803,694 1682</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TREATMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10"-HEADER</td>
<td>POWER HOUSE</td>
<td></td>
<td>370,820 776</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10"-HEADER</td>
<td>HPY GASIFIER</td>
<td></td>
<td>321,074 672</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TANK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ARM 14.0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>B-HEADER</td>
<td>SRC PROCESS</td>
<td>AREA-13</td>
<td>158,036 331</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>B-HEADER</td>
<td>DESUPERHEATER</td>
<td></td>
<td>19,614 42</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B-HEADER</td>
<td>COKER</td>
<td></td>
<td>124,440 260</td>
<td>1100 220 59.63</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CALCINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE NO</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>PRESSURE DROP PS/100 FT</td>
<td>FORM 44-152 (9/82)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BFW</td>
<td>10"- HEADER</td>
<td>L.P. BOILER</td>
<td>532.769 1115 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TREATMENT</td>
<td>10"- HEADER</td>
<td>INCINERATOR</td>
<td>26.412 55 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAPHTHA</td>
<td>HYDROTREATOR</td>
<td>AREA-16</td>
<td>2640 5.5 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP GASIFIER</td>
<td>L.P. BOILER</td>
<td>FEED WATER</td>
<td>291269 559 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"- HEADER</td>
<td>SRC PROCESS</td>
<td>AREA-12</td>
<td>126771 265 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"- HEADER</td>
<td>CB</td>
<td>2640 55 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"- HEADER</td>
<td>COCKER/</td>
<td>24400 51 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"- HEADER</td>
<td>LIQUID THERMAL</td>
<td>40240 84 220 220 59.63 0.27</td>
<td>3 2.3 0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>PRESSURE EQUIVALENT</td>
<td>VELOCITY</td>
<td>PRESSURE DROP</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>LB/HR</td>
<td>ACFS</td>
<td>PRESL PSIG</td>
<td>TEMP °F</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>10" HEADER</td>
<td>CALCINER/</td>
<td>STEAM</td>
<td>1,520</td>
<td>0.42</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>10" HEADER</td>
<td>WASTE</td>
<td>STEAM</td>
<td>129.4</td>
<td>35.7</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>10" HEADER</td>
<td>STEAM</td>
<td>STEAM</td>
<td>110.3</td>
<td>30.5</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>10" HEADER</td>
<td>STEAM</td>
<td>STEAM</td>
<td>33.0</td>
<td>1.66</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>10" HEADER</td>
<td>AREA-12</td>
<td>STEAM</td>
<td>122.2</td>
<td>33.8</td>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>8" HEADER</td>
<td>HPU.</td>
<td>STEAM</td>
<td>51.7</td>
<td>14.3</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>8" HEADER</td>
<td>POWER HOUSE</td>
<td>STEAM</td>
<td>34.4</td>
<td>9.51</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>LB/HR</td>
<td>ACFS</td>
<td>PRESS/P S</td>
<td>TEMP °F</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>LIQIUD</td>
<td>10"-HEADER</td>
<td>STEAM</td>
<td>39.942</td>
<td>30.5</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>2</td>
<td>THERMAL</td>
<td>OXIDIZER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10"-HEADER</td>
<td>COMEA/</td>
<td>STEAM</td>
<td>40.062</td>
<td>30.7</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>4</td>
<td>EDH</td>
<td>10"-HEADER</td>
<td>STEAM</td>
<td>19.459</td>
<td>14.9</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>5</td>
<td>AREA-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>450 PSI</td>
<td>10"-HEADER</td>
<td>STEAM</td>
<td>35.008</td>
<td>26.8</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>7</td>
<td>STEAM HEADER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10"-HEADER</td>
<td>25 PSI</td>
<td>STEAM</td>
<td>25.000</td>
<td>19.1</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>9</td>
<td>STEAM HEADER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10"-HEADER</td>
<td>SRC PROCESS</td>
<td>STEAM</td>
<td>7.538</td>
<td>5.77</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>11</td>
<td>AREA-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10"-HEADER</td>
<td>HP</td>
<td>STEAM</td>
<td>40.321</td>
<td>30.9</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>13</td>
<td>GASIFICATION AREA-14 & 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>INCINERATOR</td>
<td>AREA 16</td>
<td>STRAM</td>
<td>26.150</td>
<td>20.0</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>15</td>
<td>6"-HEADER</td>
<td>POWER HOUSE</td>
<td>STEAM</td>
<td>580</td>
<td>0.444</td>
<td>150</td>
<td>366</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>PRESSURE</td>
<td>TEMPERATURE</td>
<td>VISCOSITY</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>POWER HOUSE</td>
<td>6"-HEADER</td>
<td>STEAM</td>
<td>2,052</td>
<td>3.55</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>AREA-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPU: ELE.</td>
<td>6"-HEADER</td>
<td>STEAM</td>
<td>14,052</td>
<td>19.1</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>CORPORATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AREA-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6"-HEADER</td>
<td>COAL PULVERIZER</td>
<td>AREA II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SRC PROCESS</td>
<td>12"-HEADER</td>
<td>STEAM</td>
<td>60,835</td>
<td>82.8</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>AREA-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12"-HEADER</td>
<td>21 PSIG STEAM</td>
<td>STEAM HEADER</td>
<td>95,000</td>
<td>129.4</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>STEAM HEADER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 PSIG</td>
<td>12"-HEADER</td>
<td>STEAM</td>
<td>25,000</td>
<td>34.0</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>STEAM HEADER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10"-HEADER</td>
<td>MAINT. BLDG</td>
<td>STEAM</td>
<td>2,400</td>
<td>3.27</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10"-HEADER</td>
<td>WASTE TREATMENT</td>
<td>AREA 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"-HEADER</td>
<td>COOLING TOWER</td>
<td>STEAM</td>
<td>NNF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO. 2</td>
<td></td>
<td>AREA 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"-HEADER</td>
<td>ECO</td>
<td>STEAM</td>
<td>10,770</td>
<td>14.7</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>AREA 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8"-HEADER</td>
<td>COKER/</td>
<td>STEAM</td>
<td>19,813</td>
<td>23.6</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>CALCINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6"-HEADER</td>
<td>LIQUID STORAGE</td>
<td>STEAM</td>
<td>2,000</td>
<td>2.72</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>6"-HEADER</td>
<td>SRC/SSL</td>
<td>STEAM</td>
<td>2,500</td>
<td>3.40</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6"-HEADER</td>
<td>COAL STORAGE</td>
<td>STEAM</td>
<td>2,500</td>
<td>3.40</td>
<td>75</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12"-HEADER</td>
<td>ELECTRAPOWER</td>
<td>STEAM</td>
<td>75</td>
<td>320</td>
<td>0.204</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Temp:
- 100°F
- 20°F
- 4°F
- 85°F

Pressure:
- 150 PSI
- 100 PSI
- 50 PSI
- 10 PSI

Flow Conditions:
- Acfs
- Lin
- Temp
- Lb/Hr

Remarks:
- 43.40
- 0.25
- 45.80
- 0.63
- 43.80
- 0.20
- 38.50
- 0.20
- 38.30
- 0.33
- 1.97
- 0.18
- 1.25
- 0.97
- 73.30
- 0.38
- 128.0
- 1.07
- 36.9
- 0.13
- 38.50
- 0.20
- 38.50
- 0.20

Units:
- Lb/HR
- Acfs
- Temp
- Lb/ft
- Visc
- Z
- Surface Temp
- Velocity
- Pressure
- Equivalent Length

Notes:
- Form 44/122 (8/82)
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>LB/HR</th>
<th>CPS</th>
<th>PRESS. PSIG</th>
<th>TEMP °F</th>
<th>LB/FT</th>
<th>VISC.</th>
<th>SURFACE TENSION (M.W.)</th>
<th>Z</th>
<th>LINE SIZE</th>
<th>INCH</th>
<th>VELOCITY FT/SEC</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 PSIG</td>
<td>20' HEATER</td>
<td>STEAM</td>
<td>95,000</td>
<td>266.6</td>
<td>27</td>
<td>270</td>
<td>0.091</td>
<td></td>
<td></td>
<td>10</td>
<td>487</td>
<td>3.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPU -</td>
<td>20' HEADER</td>
<td>STEAM</td>
<td>108,665</td>
<td>304.9</td>
<td>27</td>
<td>270</td>
<td>0.091</td>
<td></td>
<td>20</td>
<td>15%</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power House</td>
<td>20' HEADER</td>
<td>STEAM</td>
<td>10,517</td>
<td>29.6</td>
<td>27</td>
<td>270</td>
<td>0.091</td>
<td></td>
<td></td>
<td>6</td>
<td>147</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power House</td>
<td>30' HEADER</td>
<td>STEAM</td>
<td>147,071</td>
<td>412.1</td>
<td>27</td>
<td>270</td>
<td>0.091</td>
<td></td>
<td></td>
<td>20</td>
<td>213</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power House</td>
<td>20' HEADER</td>
<td>EXCESS STEAM</td>
<td>STEAM 41,561</td>
<td>237</td>
<td>27</td>
<td>270</td>
<td>0.091</td>
<td></td>
<td></td>
<td>12</td>
<td>330</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS: TEMP. F, PRESS. PSIG, LB/FT, VISC.

Remarks: REVIEWED BY, DATE, APPROVED BY, DATE.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>PRESS. DROP PSI/100 FT</th>
<th>LINE LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>POWER HOUSE</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AIR COMP.</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10" HEADER</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10" HEADER</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10" HEADER</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10" HEADER</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>10" HEADER</td>
<td>10" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4" HEADER</td>
<td>4" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>3" HEADER</td>
<td>3" HEADER</td>
<td>INSTRUMENT AIR/PLANT AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORM 44-152 (9/82)

PREPARED BY: A. SAKA

DATE: 11/20/83

APPROVED BY:

DATE: 11/20/83

REVISION △ **REVISION △** **REVISION △** **REMARKS △**

CONTRACT NO.: 21-22-9498

AREA NO.: 16

REF. 7463: 04-16-05010

SHEET: 2 of 21

UNIT: LBS/HR

TEMP: °F

VISC.:

LINE: 5"-3"

LENGTH FT: 0-561

VELOCITY FT/SEC:

PRESSURE DROP PSI/100 FT:

EQUIVALENT LENGTH FT:

COMMENT:

REMARKS:

DROP PSI:

LENGTH FT:

FLOW CONDITIONS:

LB/HR

SCFM

PRESS.

LB/FT

VISC./

SURFACE TENSION (IN. W.)

TEMP.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PS/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12" HEADER</td>
<td>MAIN CONTROL</td>
<td>INSTRUMENT AIR</td>
<td>229 50 100 90 0.561</td>
<td>1</td>
<td>15.9 0.575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12" HEADER</td>
<td>MAIN CONTROL</td>
<td>PLANT AIR</td>
<td>69 16 100 90 0.561</td>
<td>1</td>
<td>8.6 0.607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3" HEADER</td>
<td>MAINT. BLDG</td>
<td>INSTRUMENT AIR</td>
<td>23 3 100 90 0.561</td>
<td>2</td>
<td>1.9 0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3" HEADER</td>
<td>MAINT. BLDG</td>
<td>PLANT AIR</td>
<td>912 220 100 90 0.561</td>
<td>2</td>
<td>19.4 0.264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3" HEADER</td>
<td>WAREHOUSE</td>
<td>INSTRUMENT AIR</td>
<td>23 5 100 90 0.561</td>
<td>2</td>
<td>1.9 0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3" HEADER</td>
<td>WAREHOUSE</td>
<td>PLANT AIR</td>
<td>23 5 100 90 0.561</td>
<td>1</td>
<td>1.9 0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6" HEADER</td>
<td>ASU. AREA 14</td>
<td>INSTRUMENT AIR</td>
<td>3283 720 100 90 0.561</td>
<td>4</td>
<td>15.4 0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8" HEADER</td>
<td>COOLING TOWER No. 2</td>
<td>INSTRUMENT AIR</td>
<td>228 50 100 90 0.561</td>
<td>1</td>
<td>15.3 0.575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8" HEADER</td>
<td>COOLING TOWER No. 2</td>
<td>PLANT AIR</td>
<td>114 25 100 90 0.561</td>
<td>1</td>
<td>9.4 0.156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4" HEADER</td>
<td>WASTE TREATMENT</td>
<td>INSTRUMENT AIR</td>
<td>91 20 100 90 0.561</td>
<td>2</td>
<td>7.5 0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4" HEADER</td>
<td>WASTE TREATMENT</td>
<td>PLANT AIR</td>
<td>424 930 100 90 0.561</td>
<td>4</td>
<td>23.5 0.171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4" HEADER</td>
<td>WASTE TREATMENT</td>
<td>INSTRUMENT AIR</td>
<td>205 45 100 90 0.561</td>
<td>1</td>
<td>16.9 0.474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4" HEADER</td>
<td>WASTE TREATMENT</td>
<td>PLANT AIR</td>
<td>46 10 100 90 0.561</td>
<td>1</td>
<td>3.3 0.027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8" HEADER</td>
<td>EBM. AREA 13</td>
<td>INSTRUMENT AIR</td>
<td>2280 500 100 90 0.561</td>
<td>3</td>
<td>22 0.206</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8" HEADER</td>
<td>EBM. AREA 13</td>
<td>PLANT AIR</td>
<td>1952 428 100 90 0.561</td>
<td>3</td>
<td>18.5 0.151</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Utilities Lines - Compressed Air

Line Calculations Summary Sheet

Line No.

<table>
<thead>
<tr>
<th>Line No.</th>
<th>From</th>
<th>To</th>
<th>Contents</th>
<th>Flow Conditions</th>
<th>Line Size</th>
<th>Velocity</th>
<th>Pressure Drop lbs/100 ft</th>
<th>Equivalent Length ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"- Header</td>
<td>CO/ER</td>
<td>CALCIWER</td>
<td>INSTRUMENT AIR</td>
<td>684</td>
<td>150</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
</tr>
<tr>
<td>8"- Header</td>
<td>CO/ER</td>
<td>CALCIWER</td>
<td>PLANT AIR</td>
<td>9.576</td>
<td>2100</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>4</td>
</tr>
<tr>
<td>2"- Header</td>
<td>LIQUID STORAGE</td>
<td>INSTRUMENT AIR</td>
<td>456</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>9.7</td>
</tr>
<tr>
<td>3"- Header</td>
<td>LIQUID STORAGE</td>
<td>PLANT AIR</td>
<td>456</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>9.7</td>
</tr>
<tr>
<td>3"- Header</td>
<td>FLARE AREA</td>
<td>INSTRUMENT AIR</td>
<td>342</td>
<td>75</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>3"- Header</td>
<td>FLARE AREA</td>
<td>PLANT AIR</td>
<td>342</td>
<td>75</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>3"- Header</td>
<td>SAC/TSL STORAGE</td>
<td>INSTRUMENT AIR</td>
<td>342</td>
<td>75</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>3"- Header</td>
<td>SAC/TSL STORAGE</td>
<td>PLANT AIR</td>
<td>342</td>
<td>75</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>3"- Header</td>
<td>LIQUID T.O.</td>
<td>INSTRUMENT AIR</td>
<td>342</td>
<td>75</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>3"- Header</td>
<td>LIQUID T.O.</td>
<td>PLANT AIR</td>
<td>912</td>
<td>200</td>
<td>100</td>
<td>90</td>
<td>0.561</td>
<td>2</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Additional Information

- **Prepared By:** B. Shawk
- **Date:** 1/20/94
- **Revised:**
 - **By:**
 - **Date:**
 - **By:**
 - **Date:**
 - **By:**
 - **Date:**
 - **By:**
 - **Date:**
 - **By:**
 - **Date:**

Notes:
- **LB/HR:**
- **SCFM:**
- **PSID:**
- **TEMP:**
- **LB/FT:**
- **VISC.:**
- **Z:**
- **SURFACE TENSION:**
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
<th>EQUIVALENT LENGTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12" - HEADER</td>
<td>NITROGEN</td>
<td>Lb/Min SCFM PRESS TEMP LB/FT VISC Surface Tension InCh FT/SEC PSID/100 FT DYN/CM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - 14</td>
<td>ASH</td>
<td></td>
<td>NITROGEN</td>
<td>116.927 26.400 80 77 0.451</td>
<td>12</td>
<td>29.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - 13</td>
<td>9" - HEADER</td>
<td>ENH</td>
<td>NITROGEN</td>
<td>2.975 672 80 77 0.451</td>
<td>4</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - 13</td>
<td>9" - HEADER</td>
<td>COAL</td>
<td>NITROGEN</td>
<td>9.61 217 80 77 0.451</td>
<td>2</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - 13</td>
<td>9" - HEADER</td>
<td>LIQUID STORAGE</td>
<td>NITROGEN</td>
<td>6.665 1250 80 77 0.451</td>
<td>4</td>
<td>44.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA 11</td>
<td>9" - HEADER</td>
<td>COAL STORAGE</td>
<td>NITROGEN</td>
<td>2.379 650 80 77 0.451</td>
<td>4</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA 12</td>
<td>12" - HEADER</td>
<td>SRC PROCESS</td>
<td>NITROGEN</td>
<td>40.384 9118 80 77 0.451</td>
<td>10</td>
<td>44.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA 12</td>
<td>12" - HEADER</td>
<td>HPU, GASIFICATION</td>
<td>NITROGEN</td>
<td>115.357 26032 80 77 0.451</td>
<td>12</td>
<td>59.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A - 14</td>
<td>12" - HEADER</td>
<td>NITROGEN</td>
<td>NITROGEN</td>
<td>44.3 105 80 77 0.451</td>
<td>2</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>PMR/HR</td>
<td>SEC/PD (ACFS)</td>
<td>PRESL. PD</td>
<td>TEMP. °F</td>
<td>VISC. cP</td>
<td>LBF/2'</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>HPU</td>
<td>4" HEADER</td>
<td>HYDROGEN</td>
<td>21,911</td>
<td>44,150</td>
<td>664</td>
<td>60</td>
<td>0.411</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>GASIFICATION</td>
<td>AREA 14</td>
<td>HYDROGEN</td>
<td>43,129</td>
<td>12,020</td>
<td>464</td>
<td>60</td>
<td>0.411</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AREA 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8" HEADER</td>
<td>HYDROGEN</td>
<td>16,122</td>
<td>30,245</td>
<td>464</td>
<td>60</td>
<td>0.411</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>HPU</td>
<td>GASIFICATION</td>
<td>3" HEADER</td>
<td>LPG</td>
<td>4,748</td>
<td>623</td>
<td>80</td>
<td>100</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" HEADER</td>
<td>LPG</td>
<td>843</td>
<td>180.7</td>
<td>50</td>
<td>100</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" HEADER</td>
<td>BOILER</td>
<td>LPG</td>
<td>127</td>
<td>16.7</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" HEADER</td>
<td>INCINERATOR</td>
<td>LPG</td>
<td>38</td>
<td>7.2</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2" HEADER</td>
<td>NGT</td>
<td>13</td>
<td>1.7</td>
<td>80</td>
<td>100</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" HEADER</td>
<td>COAL</td>
<td>25</td>
<td>3.3</td>
<td>80</td>
<td>100</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3" HEADER</td>
<td>GASIFICATION</td>
<td>LPG</td>
<td>264</td>
<td>34.7</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2" HEADER</td>
<td>GAS PROCESS</td>
<td>LPG</td>
<td>37</td>
<td>4.8</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2" HEADER</td>
<td>COKER</td>
<td>LPG</td>
<td>39</td>
<td>5.1</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2" HEADER</td>
<td>L.T.O.</td>
<td>LPG</td>
<td>54</td>
<td>7.6</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2" HEADER</td>
<td>FLARE AREA</td>
<td>LPG</td>
<td>56</td>
<td>7.6</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>HPU</td>
<td>16" HEADER</td>
<td>FUEL GAS</td>
<td>25,964</td>
<td>20,419</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>GASIFICATION</td>
<td>AREA 14</td>
<td>FUEL GAS</td>
<td>333</td>
<td>213</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AREA 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10" HEADER</td>
<td>BOILER</td>
<td>10" HEADER</td>
<td>FUEL GAS</td>
<td>25,087</td>
<td>50</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FUEL GAS</td>
<td>1,519</td>
<td>972</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>4</td>
</tr>
</tbody>
</table>

Remarks

- PMR/HR: Pounds mass per hour
- SEC/PD (ACFS): Seconds per day (acfm)
- PRESL. PD: Pressure drop
- TEMP. °F: Temperature in °F
- VISC. cP: Viscosity in centipoise (cP)
- LBF/2': Lb per foot
- LIN. G-G: Line gage
- VELOCITY FT/SEC: Velocity in feet per second
- PRESSURE DROP PS/100 FT: Pressure drop in pounds per 100 feet
- EQUIVALENT LENGTH FT: Equivalent length in feet

Graphical Elements

- A Rust International Corporation logo is present at the top left of the page.
- A line diagram is present at the bottom of the page, with various lines labeled with their respective contents and measurements.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>PRESS. PDG</th>
<th>TEMP °F</th>
<th>LB/FT²</th>
<th>SURFACE TENSION (kN/m)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14"-HEADER</td>
<td>COAL</td>
<td>FUEL GAS</td>
<td>3.449</td>
<td>2206</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>6</td>
<td>30.8</td>
</tr>
<tr>
<td>16"-HEADER</td>
<td>SRC, PROCESS</td>
<td>FUEL GAS</td>
<td>26.175</td>
<td>16.744</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>14</td>
<td>44.9</td>
</tr>
<tr>
<td>8"-HEADER</td>
<td>FIDN, AREA 13</td>
<td>FUEL GAS</td>
<td>3.652</td>
<td>2337</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>5</td>
<td>32.6</td>
</tr>
<tr>
<td>10"-HEADER</td>
<td>COCKER/ CALCINER</td>
<td>FUEL GAS</td>
<td>6.778</td>
<td>4338</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>8</td>
<td>35.0</td>
</tr>
<tr>
<td>10"-HEADER</td>
<td>FLARE, AREA 16</td>
<td>FUEL GAS</td>
<td>746</td>
<td>477</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>4</td>
<td>15.1</td>
</tr>
<tr>
<td>4"-HEADER</td>
<td>LIQUID TERM, OXIDIZER</td>
<td>FUEL GAS</td>
<td>746</td>
<td>477</td>
<td>80</td>
<td>105</td>
<td>0.155</td>
<td>4</td>
<td>15.1</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>LINE SIZE</td>
<td>VELOCITY</td>
<td>PRESSURE DROP</td>
<td>EQUIVALENT LENGTH</td>
<td>REMARKS</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>LIQUID STORAGE 4" HEADER</td>
<td>FUEL OIL</td>
<td>47.775</td>
<td>109</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>4</td>
<td>2.75</td>
</tr>
<tr>
<td>1</td>
<td>4" HEADER COKE</td>
<td>FUEL OIL</td>
<td>2.450</td>
<td>5.6</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>4" HEADER CEMENT</td>
<td>FUEL OIL</td>
<td>2.260</td>
<td>5.2</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>4" HEADER SRC PROCESS AREA-13</td>
<td>FUEL OIL</td>
<td>28.778</td>
<td>66</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>4" HEADER HPU GASIFICATION</td>
<td>FUEL OIL</td>
<td>3.889</td>
<td>8.9</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>4" HEADER COOLER</td>
<td>FUEL OIL</td>
<td>45.000</td>
<td>133</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>4</td>
<td>2.65</td>
</tr>
<tr>
<td>6</td>
<td>4" HEADER TURBINE POWER GENERATOR</td>
<td>FUEL OIL</td>
<td>37.500</td>
<td>85.5</td>
<td>80</td>
<td>180</td>
<td>0.876</td>
<td>4</td>
<td>2.15</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>FROM TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>LINE CALCULATIONS SUMMARY SHEET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING</td>
<td>TOWER NO. 1</td>
<td>48" HEADER</td>
<td>COOLING WATER</td>
<td>9025 PPM</td>
<td>05</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
<td>48</td>
</tr>
<tr>
<td>AREA 16</td>
<td>16</td>
<td>9" HEAD</td>
<td>COOLING WATER</td>
<td>73,900 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 14, 15</td>
<td>15</td>
<td>10" HEAD</td>
<td>COOLING WATER</td>
<td>2,500 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 16</td>
<td>16</td>
<td>10" HEAD</td>
<td>COOLING WATER</td>
<td>2,00 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 12</td>
<td>12</td>
<td>24" HEAD</td>
<td>COOLING WATER</td>
<td>10,200 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 16</td>
<td>16</td>
<td>24" HEAD</td>
<td>COOLING WATER</td>
<td>4,215 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 13</td>
<td>13</td>
<td>12" HEAD</td>
<td>COOLING WATER</td>
<td>2,424 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 13</td>
<td>13</td>
<td>15" HEAD</td>
<td>COOLING WATER</td>
<td>1,201 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 13</td>
<td>13</td>
<td>COOLING TOWER</td>
<td>COOLING WATER</td>
<td>18,071 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 16</td>
<td>16</td>
<td>24" HEADER</td>
<td>COOLING WATER</td>
<td>3,551 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
<tr>
<td>AREA 14</td>
<td>14</td>
<td>24" HEADER</td>
<td>TREATMENT WATER</td>
<td>520 PPM</td>
<td>95</td>
<td>88</td>
<td>62</td>
<td>17</td>
<td>0.77</td>
</tr>
</tbody>
</table>

REMARKS
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
<th>EQUIVALENT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LIQUID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>3, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>1.79, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COCKER/CALCINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>2.42, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AREA-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>10.107, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SRC PROCESS AREA-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>73.339, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GASIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48"</td>
<td>HE</td>
<td>COOLING TOWER NO. 1</td>
<td>90.79, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AREA-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>2.50, 35, 108</td>
<td>61.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POWER HOUSE AREA-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>1, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INCINERATOR AREA-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>200, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>13.051, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14"</td>
<td>HE</td>
<td>COOLING WATER</td>
<td>520, 35, 115</td>
<td>61.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WASTE TREATMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>LB/HR</th>
<th>G.P.M. (ACFS)</th>
<th>PRESS PDS</th>
<th>TEMP °F</th>
<th>SP. GR. (LB/FT³)</th>
<th>VISC.</th>
<th>2</th>
<th>SURFACE TENSION (M.N.)</th>
<th>LINE SIZE</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PS/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WATER</td>
<td>20" - HEADER</td>
<td>PROCESS WATER</td>
<td>6.592</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>20</td>
<td>2.61</td>
<td>0.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TREATMENT</td>
<td>AREA 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WASTE</td>
<td>20" - HEADER</td>
<td>PROCESS WATER</td>
<td>200</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>8.7</td>
<td>3.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TREATMENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASU</td>
<td>20" - HEADER</td>
<td>PROCESS WATER</td>
<td>96</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.17</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AREA 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COOLING</td>
<td>20" - HEADER</td>
<td>PROCESS WATER</td>
<td>500</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>5.56</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOWER NO 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINT. BLDG.</td>
<td>4" - HEADER</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.33</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERVICE CHG.</td>
<td>4" - HEADER</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.33</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAH- AREA 13</td>
<td>14" - HEADER</td>
<td>PROCESS WATER</td>
<td>780</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>5.01</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>COKEJI</td>
<td>14" - HEADER</td>
<td>PROCESS WATER</td>
<td>1.021</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>6.56</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALCINER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIQUID STORAGE</td>
<td>PROCESS WATER</td>
<td>120</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3.03</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EAH- AREA 16</td>
<td>PROCESS WATER</td>
<td>120</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.33</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLARE AREA 16</td>
<td>PROCESS WATER</td>
<td>45</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4.31</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRC/TSL STORAGE</td>
<td>PROCESS WATER</td>
<td>45</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4.31</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COAL STORAGE</td>
<td>PROCESS WATER</td>
<td>45</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4.31</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAIN CONTROL</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.63</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDG</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SRC PROCESS</td>
<td>PROCESS WATER</td>
<td>108</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4.20</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AREA 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVAPORATOR</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3.63</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared by: R. Smith
Approved by: J. Doe
Date: 7/24/99
Req/Downloads: 6/21/99
Revision: △
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>LB/HR</th>
<th>G.P.M.</th>
<th>PRESS.</th>
<th>TEMP.</th>
<th>SP. GR.</th>
<th>VISC.</th>
<th>Z</th>
<th>SURFACE TENSION (IN.W)</th>
<th>INCH</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PS/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16" HED</td>
<td>COAL</td>
<td>PRO</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>16" HED</td>
<td>HPU</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>230</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>12" HED</td>
<td>COOLING AREA</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>2.04</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>12" HED</td>
<td>POWER HOUSE</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>100</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>12" HED</td>
<td>BFW</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>1,080</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>9" HED</td>
<td>INTEGRATOR AREA</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>4" HED</td>
<td>NUT</td>
<td>PROC</td>
<td>PROCESS WATER</td>
<td>40</td>
<td>100</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>
UTILITIES LINES - POTABLE WATER

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PSI/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td></td>
<td></td>
<td>POTABLE WATER</td>
<td>698</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>5.76</td>
<td>0.552</td>
</tr>
<tr>
<td>8"- HEADER</td>
<td>TREATMENT</td>
<td></td>
<td>POTABLE WATER</td>
<td>20</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>1.91</td>
<td>0.375</td>
</tr>
<tr>
<td>8"- HEADER</td>
<td>WASTE</td>
<td></td>
<td>POTABLE WATER</td>
<td>25</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
</tr>
<tr>
<td>8"- HEADER</td>
<td>AGU- AREA 14</td>
<td></td>
<td>POTABLE WATER</td>
<td>42</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>4.30</td>
<td>1.67</td>
</tr>
<tr>
<td>8"- HEADER</td>
<td>WATER</td>
<td></td>
<td>TREATMENT</td>
<td>79</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>3.43</td>
<td>0.67</td>
</tr>
<tr>
<td>4"- HEADER</td>
<td>MAINT. BLDG</td>
<td></td>
<td>POTABLE WATER</td>
<td>40</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>3.83</td>
<td>1.35</td>
</tr>
<tr>
<td>4"- HEADER</td>
<td>WAREHOUSE</td>
<td></td>
<td>POTABLE WATER</td>
<td>1200</td>
<td>30</td>
<td>62</td>
<td>4</td>
<td>5.84</td>
<td>0.953</td>
</tr>
<tr>
<td>4"- HEADER</td>
<td>SERVICE CHANGE BLDG</td>
<td></td>
<td>POTABLE WATER</td>
<td>68</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>EIN- AREA 13</td>
<td></td>
<td>POTABLE WATER</td>
<td>68</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>COKER/ CALCIER</td>
<td></td>
<td>POTABLE WATER</td>
<td>68</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>ADMIN. BLDG</td>
<td></td>
<td>POTABLE WATER</td>
<td>62</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>2.7</td>
<td>0.43</td>
</tr>
<tr>
<td>2"- HEADER</td>
<td>LIQUID</td>
<td></td>
<td>POTABLE WATER</td>
<td>5</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>0.5</td>
<td>0.03</td>
</tr>
<tr>
<td>2"- HEADER</td>
<td>FLARE AREA 16</td>
<td></td>
<td>POTABLE WATER</td>
<td>5</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>0.5</td>
<td>0.03</td>
</tr>
<tr>
<td>2"- HEADER</td>
<td>SRC/TEL STORAGE</td>
<td></td>
<td>POTABLE WATER</td>
<td>5</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>0.3</td>
<td>0.03</td>
</tr>
<tr>
<td>2"- HEADER</td>
<td>COAL STORAGE</td>
<td></td>
<td>POTABLE WATER</td>
<td>10</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>MAIN CONTROL</td>
<td></td>
<td>POTABLE WATER</td>
<td>92</td>
<td>30</td>
<td>62</td>
<td>3</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>SRC PROCELS</td>
<td></td>
<td>POTABLE WATER</td>
<td>28</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>6"- HEADER</td>
<td>EVAPORATOR #1</td>
<td></td>
<td>POTABLE WATER</td>
<td>50</td>
<td>30</td>
<td>62</td>
<td>2</td>
<td>4.78</td>
<td>2.03</td>
</tr>
</tbody>
</table>

CONTENTS
- POTABLE WATER
- SRC-1
- SOURCES
- WATER TREATMENT
- WATER WASTE
- WATER AGU
- WATER MAINT.
- WATER WAREHOUSE
- SERVICE CHANGE
- EIN- AREA 13
- COKER/ CALCIER
- ADMIN. BLDG
- LIQUID
- FLARE AREA 16
- SRC/TEL STORAGE
- COAL STORAGE
- MAIN CONTROL
- SRC PROCELS
- EVAPORATOR

Remarks
- [Details of remarks by various contributors]
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
<th>EQUIVALENT LENGTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INCH</td>
<td>FT/SEC</td>
<td>PS/100 FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>25</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>25</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>25</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>25</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>30</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4th</td>
<td>HEADER</td>
<td>POTABLE WATER</td>
<td>30</td>
<td>2</td>
<td>2.39</td>
<td>0.561</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.80</td>
<td>0.496</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- LB/HR: Pounds per hour
- GP.M.: GPM
- PRESS: Pressure
- TEMP: Temperature
- SP. GR: Specific gravity
- VISC: Viscosity
- SURFACE TENSION: Surface tension in dynes per centimeter
- REMARKS: Additional notes or comments.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>LB/HR</th>
<th>G.P.M.</th>
<th>PRESL PISP</th>
<th>TEMP °F</th>
<th>LB/FT²</th>
<th>Z</th>
<th>SURFACE TENSION (R.W.)</th>
<th>INCH</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PSW/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STORAGE</td>
<td>3"- HEADER</td>
<td>CONDENSATE</td>
<td>2,000</td>
<td>4.4</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>2</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CORNER /</td>
<td>3"- HEADER</td>
<td>CONDENSATE</td>
<td>18,065</td>
<td>36.6</td>
<td>90.0</td>
<td>146</td>
<td>61.23</td>
<td>2</td>
<td>3.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FGM - AREA</td>
<td>3"- HEADER</td>
<td>CONDENSATE</td>
<td>6,571</td>
<td>14.5</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>2</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>WASTE</td>
<td>6"- HEADER</td>
<td>CONDENSATE</td>
<td>162,041</td>
<td>351</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>6</td>
<td>3.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TREATMENT</td>
<td>6"- HEADER</td>
<td>CONDENSATE</td>
<td>2,400</td>
<td>5.3</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>2</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MAINT. BLOG</td>
<td>6"- HEADER</td>
<td>CONDENSATE</td>
<td>23,270</td>
<td>52.4</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>3</td>
<td>2.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SRG PROCESS</td>
<td>8"- HEADER</td>
<td>CONDENSATE</td>
<td>952,370</td>
<td>901</td>
<td>90.0</td>
<td>173</td>
<td>57.17</td>
<td>8</td>
<td>3.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IPCC</td>
<td>10"- HEADER</td>
<td>CONDENSATE</td>
<td>24,489</td>
<td>53.4</td>
<td>90.0</td>
<td>320</td>
<td>56.64</td>
<td>3</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GASIFICATION</td>
<td>AREA 14.5</td>
<td>10"- HEADER</td>
<td>CONDENSATE</td>
<td>667,124</td>
<td>1340</td>
<td>90.0</td>
<td>210</td>
<td>57.67</td>
<td>10</td>
<td>6.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- **DATE:** 10/25/93
- **APPROVED:**
 - By DATE
 - By DATE
 - By DATE

FOR: 44-152 (2/82)
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>AREA</th>
<th>UNIT</th>
<th>AREA</th>
<th>UNIT</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY</th>
<th>PRESSURE</th>
<th>DROPOFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>LIQUID ST</td>
<td>13</td>
<td>EOH/R</td>
<td>12</td>
<td>STAB. NAPHTHA</td>
<td>STABILIZED NAPHTHA</td>
<td>11/8</td>
<td>2</td>
<td>3.24</td>
<td>0.190</td>
<td>3110</td>
</tr>
<tr>
<td>12</td>
<td>LIQUID ST</td>
<td>12</td>
<td>M.O. ST TA</td>
<td>11</td>
<td>CRITICAL</td>
<td>CRITICAL</td>
<td>1200.0</td>
<td>4.44</td>
<td>0.3463</td>
<td>28.26</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>COOL/</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>M.O. ST TA</td>
<td>11</td>
<td>V-13114</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>EHP/</td>
<td>10</td>
<td>CRITICAL</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>V-12006</td>
<td>9</td>
<td>SOLVENT</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>LIQUID ST</td>
<td>8</td>
<td>PROCESS SOW</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SRC</td>
<td>7</td>
<td>PROCESS SOW</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>TANK</td>
<td>6</td>
<td>PROCESS SOW</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>5</td>
<td>PROCESS SOW</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>4</td>
<td>PROCESS SOW</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>3</td>
<td>PROCESS SOW</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>2</td>
<td>PROCESS SOW</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: I.EH (1000/1000) UNLESS OTHERWISE NOTED ALL PIPES ARE C.S.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area</td>
<td>Unit</td>
<td>Area</td>
<td>Unit</td>
</tr>
<tr>
<td>12</td>
<td>SRC/X-12806</td>
<td>51</td>
<td>STORAGE</td>
<td>SOLID SRC</td>
<td>123,400</td>
</tr>
<tr>
<td>12</td>
<td>SRC/X-12806</td>
<td>51</td>
<td>STORAGE</td>
<td>SOLID TSL- SRC</td>
<td>123,400</td>
</tr>
<tr>
<td>12</td>
<td>CSD/ P-12708A/30-V-13203</td>
<td>13</td>
<td>CD11/</td>
<td>MOLten SRC</td>
<td>129,658</td>
</tr>
<tr>
<td>12</td>
<td>CSD/ P-12708A/30-V-13203</td>
<td>13</td>
<td>CONC/</td>
<td>MOLten SRC</td>
<td>48,775</td>
</tr>
<tr>
<td>12</td>
<td>EBD/ P-13264A/16</td>
<td>12</td>
<td>E-12805</td>
<td>MOLten TSL- SRC</td>
<td>82,050</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>LINE NAME</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>12</td>
<td>SRC/1</td>
<td></td>
<td></td>
<td>LIQUID STABILIZED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e-12517</td>
<td></td>
<td></td>
<td>STORAGE NAPHTHA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SRC/1</td>
<td></td>
<td></td>
<td>STORAGE MEDIUM OIL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e-12520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SRC/1</td>
<td></td>
<td></td>
<td>STORAGE HEAVY OIL</td>
<td></td>
</tr>
</tbody>
</table>

* UNLESS OTHERWISE NOTED ALL PIPES ARE C.S.
Line Calculations Summary Sheet

Process Lines - Sour Waters

Plant Location: Newman, KS

<table>
<thead>
<tr>
<th>Line No</th>
<th>Line Name</th>
<th>From</th>
<th>To</th>
<th>Contents</th>
<th>Flow Conditions</th>
<th>Plant Location</th>
<th>New</th>
<th>Length ft</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>11</td>
<td>COMEDR (P-1311 A)</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td>95.792</td>
<td>70</td>
<td>150</td>
<td>5.56</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ETH2/ P-13207 A</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td>105.446</td>
<td>125</td>
<td>59.6</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>COMBINED</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td>200.224</td>
<td>126</td>
<td>61.6</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SRC/ F-12505 A</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td>157.838</td>
<td>125</td>
<td>61.6</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ETH3/ V-13501</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td>308066.4</td>
<td>125</td>
<td>61.6</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NHT</td>
<td>G"-</td>
<td>SOUR</td>
<td>SOUR WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Conditions

- **Area Unit:** A
- **Unit:** Area
- **Flow Rate:** HR/t/hr
- **Pressure:** PSI
- **Temperature:** °F
- **Drop:** FT

Remarks:

- **Revision:**
- **Date:** 1/10/89
- **Approved by:**
- **Date:**

Notes:

- **Contract No.:** 21-2548
- **Area No.:** 16
- **Ref. No.:** 00-16-05006
- **Sheet No.:** 6 of 20
Process Lines - Sour Gases

Client: ICRC
Project: 6000 T/D SRC-I Demonstration Plant
Location: Newman, Kentucky

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Line Name</th>
<th>From</th>
<th>To</th>
<th>Contents</th>
<th>Flow Conditions</th>
<th>Line Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Edm / V-13201</td>
<td>8" HEADER</td>
<td>HP OFF GAS</td>
<td>19,250</td>
<td>19.25</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>SRC / V-12413</td>
<td>8" HEADER</td>
<td>HP SOUR GAS</td>
<td>135,104</td>
<td>15.45</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>Edh / V-12507</td>
<td>6" HEADER</td>
<td>LP COMBINED, LP OFF GAS</td>
<td>13380</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>SRC / V-12507</td>
<td>8" HEADER</td>
<td>SRC LP OFF</td>
<td>2024</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>SRC / V-12507</td>
<td>8" HEADER</td>
<td>NAPHTHA TRAC. LP OFF GAS</td>
<td>1292</td>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>15</td>
<td>Edh / V-15001</td>
<td>6" HEADER</td>
<td>NAPHTHA TRAC. LP OFF GAS</td>
<td>16606</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>SRC / V-15507</td>
<td>6" HEADER</td>
<td>NAT SOUR GAS</td>
<td>3179</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>SRC / V-15701</td>
<td>15 CLAUS</td>
<td>SRC WASTE</td>
<td>36</td>
<td>0.3</td>
<td>125</td>
</tr>
</tbody>
</table>

Notes:
- All pipes are capped, unless otherwise noted.
- Flow rates and temperatures are approximate.

Prepared by:
Approved by:
Revision History:
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>PRESSURE DROP</th>
<th>VISCOSITY</th>
<th>SURFACE TENSION</th>
<th>EQUIVALENT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>EPH/</td>
<td>Y-13251</td>
<td>SRC/</td>
<td>HP NAPHTHA</td>
<td>750</td>
<td>485</td>
<td>111</td>
<td>37.94</td>
<td>0.33</td>
</tr>
<tr>
<td>13</td>
<td>P-13221 A/B</td>
<td>SRC/</td>
<td>Y-13252</td>
<td>LP NAPHTHA</td>
<td>17,354</td>
<td>44</td>
<td>50</td>
<td>115</td>
<td>49.31</td>
</tr>
<tr>
<td>13</td>
<td>EPN/</td>
<td>Y-13253</td>
<td>SRC/</td>
<td>DISTILLATE</td>
<td>28,800</td>
<td>73</td>
<td>50</td>
<td>452</td>
<td>44.6</td>
</tr>
<tr>
<td>13</td>
<td>EPN/</td>
<td>Y-13259</td>
<td>SRC/</td>
<td>HEAVY OIL</td>
<td>17,491</td>
<td>39</td>
<td>50</td>
<td>446</td>
<td>57.31</td>
</tr>
</tbody>
</table>

Remarks:
- UNLESS OTHERWISE NOTED, ALL PIPES ARE C.S.
- AREA/UNIT = 0.100
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
<th>EQUIVALENT LENGTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AREA/UNIT</td>
<td>SCFM</td>
<td>PRESL</td>
<td>TEMP</td>
<td>LB/FT</td>
<td>VELOCITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIQUID</td>
<td>16 GPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STORAGE</td>
<td>VENT GASH</td>
<td>773</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unless otherwise noted, all pipes are C.S.
Line Calculations

Summary Sheet: Lines

Coker/Calciner Liquid Effluents

Plant Location: Newman, Kentucky

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>PLANT LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Newman, Kentucky</td>
</tr>
<tr>
<td>13</td>
<td>Coker/</td>
<td>12</td>
<td>SRC</td>
<td>Unstabilized</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-13124 A/B</td>
<td>V-12513</td>
<td>Naphtha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Coker/</td>
<td>12</td>
<td>SRC</td>
<td>Medium Oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-13123 A/B</td>
<td>V-12614</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Coker/</td>
<td>16</td>
<td>Incinerator</td>
<td>Wet Slag Oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-13115 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Calc/</td>
<td>17</td>
<td>WNT</td>
<td>Calciner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-13177 A/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow Conditions

- **Flow:** [Flow Rate]
- **GPM:** [Gallons Per Minute]
- **Temp:** [Temperature]
- **LB/FT:** [Pounds Per Foot]
- **NPSH:** [Net Positive Suction Head]
- **Surface Tension:** [Surface Tension]
- **PSI:** [Pounds Per Square Inch]
- **Ft:** [Foot]
- **Equivalent Length:** [Equivalent Length]
- **Remarks:** [Remarks]

Prepared By: [Name]
Date: [Date]
Approved By: [Name]
Date: [Date]

Details:

- **Velocity:** [Velocity]
- **Pressure Drop:** [Pressure Drop]
- **Equivalent Length:** [Equivalent Length]

Notes:

- All pipes are C.S. unless otherwise noted.
PROCESS LINES - OXYGEN

PLANT LOCATION: NEWMAN, KENTUCKY

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE SIZE</th>
<th>VELOCITY FT/SEC</th>
<th>PRESSURE DROP PS/ft</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>ASU/1</td>
<td>12</td>
<td>16</td>
<td>OXYGEN</td>
<td>255</td>
<td>1.26</td>
<td>0.28</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>C-14167</td>
<td>16</td>
<td>17</td>
<td>AIR</td>
<td>250</td>
<td>1.3</td>
<td>0.28</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>16" HEADER</td>
<td>17</td>
<td>17</td>
<td>WWI</td>
<td>251</td>
<td>1.3</td>
<td>0.28</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY SHEET

REFERENCE: REA-D-00-16-05011

CONTACT NO.: 212-254-848

AREA NO.: 10

SHEET: 11 of 20

PREPARED BY: [Signature]

DATE: 1/20/93

APPROVED BY: [Signature]

DATE: 1/20/93

REMARKS:

- UNLESS OTHERWISE NOTED, ALL PIPES ARE C.S.
- (1) lb (in.2)/ft, lb
- (2) dyn/cm
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
<th>EQUIVALENT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area</td>
<td>Unit</td>
<td>Area</td>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSRU</td>
<td>15</td>
<td>WWT</td>
<td>STREPTFORD</td>
<td>3.142</td>
<td>6</td>
<td>50</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td>0.63</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTC</td>
<td>15</td>
<td>DEA</td>
<td>WASTE</td>
<td>17.29</td>
<td>34</td>
<td>125</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.22</td>
<td>0.78</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>LINE NAME</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>LB/HR</td>
<td>G.P.M</td>
<td>PRESS P.S.I</td>
<td>TEMP °F</td>
<td>LB/FT</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>----</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>15</td>
<td>GKT/ASH POND</td>
<td>17</td>
<td>17</td>
<td>ASH SLURRY</td>
<td>760</td>
<td>135</td>
<td>149</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ASH POND</td>
<td>15</td>
<td>17</td>
<td>WASHER WATER</td>
<td>501</td>
<td>100</td>
<td>97</td>
<td>62.03</td>
<td>1.71</td>
</tr>
<tr>
<td>13</td>
<td>COKER/ASH POND</td>
<td>17</td>
<td>17</td>
<td>CORE SLURRY</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8' HEADER</td>
<td>17</td>
<td>17</td>
<td>ASH SLURRY</td>
<td>76.755</td>
<td>136</td>
<td>135</td>
<td>149.5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>EVAPORATOR</td>
<td>16</td>
<td>16</td>
<td>THICKENED WATER</td>
<td>57.567</td>
<td>115</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FLOW WATER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- All lb in mass/ft. nw.
- 3 PLASTIC LINED
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area Unit</td>
<td>Area Unit</td>
<td>LR/MM</td>
<td>ACFS</td>
</tr>
<tr>
<td>15</td>
<td>COMP/ C-15601</td>
<td>12. E-12403/ R-12402</td>
<td>RECYCLE HYDROGEN</td>
<td>97.581</td>
<td>78.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>METH/ V-15651</td>
<td>13. E-HEADER</td>
<td>METHANATED HYDROGEN</td>
<td>93.94</td>
<td>600</td>
</tr>
<tr>
<td>15</td>
<td>E-HEADER</td>
<td>13. E-HEADER</td>
<td>METHANATED V-15201 HYDROGEN</td>
<td>93.94</td>
<td>600</td>
</tr>
<tr>
<td>15</td>
<td>E-HEADER</td>
<td></td>
<td>METHANATED V-15651 HYDROGEN</td>
<td>1560</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>E-HEADER</td>
<td>15. METH/</td>
<td>RECYCLE C-15653 A HYDROGEN</td>
<td>NNF</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: Unless otherwise noted, all pipes are C.S.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE</th>
<th>VELOCITY</th>
<th>PRESSURE</th>
<th>EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
<td>M/C</td>
<td>15</td>
<td>19</td>
<td>LIQUID</td>
<td>PHENOL 2219</td>
<td>2</td>
<td>2</td>
<td>0.81</td>
<td>0.050</td>
</tr>
<tr>
<td>14</td>
<td>PC/144</td>
<td>12</td>
<td>12</td>
<td>SRC</td>
<td>LIGHT OIL 3370</td>
<td>53.3</td>
<td>102</td>
<td>0.69</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>P-144/144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NRSR</td>
<td>12</td>
<td>12</td>
<td>CSD</td>
<td>RECYCLE 1169</td>
<td>3</td>
<td>47.3</td>
<td>40</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td>V-15017-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LPG</td>
<td>6</td>
<td>16</td>
<td>LIQUID</td>
<td>Slop Oil 12.010</td>
<td>30</td>
<td>99.3</td>
<td>124</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>G-15018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASWS/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-15018/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-1502/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LIQUID</td>
<td>16</td>
<td>16</td>
<td>LIQUID</td>
<td>PHENOL 2219</td>
<td>2</td>
<td>2</td>
<td>0.81</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>LINE NAME</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>LINE CONDITIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LB/HR</td>
<td>S.F.M. (ACFT)</td>
<td>PRESS.</td>
<td>TEMP.</td>
<td>LB/FT</td>
</tr>
<tr>
<td>15</td>
<td>DPU</td>
<td>15 GTH</td>
<td>TO ATMOS</td>
<td>VENT NO.</td>
<td>2384</td>
<td>83.3</td>
<td>376</td>
<td>0.045</td>
<td>4.05</td>
</tr>
<tr>
<td>15</td>
<td>C-15151AIR</td>
<td>17 BOILER</td>
<td>VENT GAS</td>
<td>32.074</td>
<td>0.3</td>
<td>153</td>
<td>3.061</td>
<td>0.042</td>
<td>-</td>
</tr>
</tbody>
</table>

Remarks:
- Unless otherwise noted, all pipes are C.S.
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>LB/MM</th>
<th>P.S.G.</th>
<th>TEMP °F</th>
<th>1/8/FT</th>
<th>W.B.C.</th>
<th>Z</th>
<th>SURFACE TENSION (IN W)</th>
<th>VEL. FT/SEC</th>
<th>PRESSURE DROP PSI/100 FT</th>
<th>EQUIVALENT LENGTH FT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>WASH WATER</td>
<td>17</td>
<td>WWT</td>
<td>E-15152 A-D</td>
<td>193</td>
<td>78.3</td>
<td>97</td>
<td>62.03</td>
<td>1.71</td>
<td>-</td>
<td>4 (k)</td>
<td>4.54</td>
<td>0.790</td>
<td>29.14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ASWS STRIPPED WATER</td>
<td>17</td>
<td>WWT</td>
<td>E-15503</td>
<td>520</td>
<td>70.3</td>
<td>120</td>
<td>62.12</td>
<td>1.83</td>
<td>-</td>
<td>6</td>
<td>5.18</td>
<td>0.60</td>
<td>29.37</td>
<td></td>
</tr>
<tr>
<td>LINE NO.</td>
<td>LINE NAME</td>
<td>FROM</td>
<td>TO</td>
<td>CONTENTS</td>
<td>FLOW CONDITIONS</td>
<td>LINE SIZE</td>
<td>VELOCITY</td>
<td>PRESSURE DROP</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area Unit</td>
<td>Area Unit</td>
<td></td>
<td>Lb/hr</td>
<td>FPM</td>
<td>PSI</td>
<td>LD/FT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ASW-1/17</td>
<td>P-155507 AIR</td>
<td>WWT</td>
<td>GLAGE</td>
<td>19</td>
<td>263.2</td>
<td>220</td>
<td>29.61</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CAUSTIC-17</td>
<td>P-155155 AIR</td>
<td>WWT</td>
<td>20% CAUSTIC</td>
<td>6.5</td>
<td>50.3</td>
<td>100</td>
<td>35.3</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CV-120501</td>
<td>2.5</td>
<td>LANDFILL</td>
<td>GLASE</td>
<td>22,000</td>
<td>0.5</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2' HEADER-17</td>
<td></td>
<td>EVAPORATOR</td>
<td>20% CAUSTIC</td>
<td>11111</td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION: NEWMAN, KENTUCKY

LINE CALCULATIONS SUMMARY SHEET

REMARKS:
- "UNLESS OTHERWISE NOTED, ALL PIPE ARE C/S" (10 LB. MAX/FT-M)
- "BY CONVEYOR/TRUCK" (13)
- "PLASTIC LINED" (14)
<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>LINE NAME</th>
<th>FROM</th>
<th>TO</th>
<th>CONTENTS</th>
<th>FLOW CONDITIONS</th>
<th>LINE</th>
<th>VELOCITY</th>
<th>PRESSURE DROP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area</td>
<td>Unit</td>
<td>Unit</td>
<td>LB/MM</td>
<td>LPC</td>
<td>FT/SEC</td>
<td>PS/100 FT</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>NHT</td>
<td>11</td>
<td>LIQUID</td>
<td>NAPHTHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAPHTHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STABILIZED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAPHTHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TANK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAPHTHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STABILIZED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STORAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C2 - 150°F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLANT LOCATION: NEWMAN, KENTUCKY

LINE NO.: 21-2568

AREA NO.: 00-16-05019

SHEET: 19 of 20

PROJECT: 6000 T/D SRC-1 DEMONSTRATION PLANT

EVENT: ICSC

CONTACT: Rust International Corporation

CONTRACTOR: ICSC

ROW CONDITION: 4 FROM 4000 T/D SRC-1 DEMONSTRATION PLANT

FLOW CONDITIONS:
- LB/MM: LIQUID
- LPC: PRESS.
- FT/SEC: TEMP
- PS/100 FT: LB/MM
- INCH: PRESS.
- FT/SEC: VELOCITY
- PS/100 FT: PRESS.

NOTE: UNLESS OTHERWISE NOTED, ALL FIGURES ARE C.S.
Process Lines - Miscellaneous Waste Streams

Line Calculations Summary Sheet

Process Lines: Newman, Kentucky

<table>
<thead>
<tr>
<th>Line No.</th>
<th>Line Name</th>
<th>From</th>
<th>To</th>
<th>Contents</th>
<th>Flow Conditions</th>
<th>Plant Location: Newman, Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cooling</td>
<td>16</td>
<td>17</td>
<td>Wastewater</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tower No.</td>
<td></td>
<td></td>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cooling</td>
<td>16</td>
<td>17</td>
<td>Wastewater</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6" Header</td>
<td></td>
<td></td>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>BFW &</td>
<td>16</td>
<td>17</td>
<td>Wastewater</td>
<td>37.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condensate</td>
<td></td>
<td></td>
<td>Treatment</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Wastewater</td>
<td>17</td>
<td>18</td>
<td>Condensate</td>
<td>1538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Evaporator</td>
<td>17</td>
<td>18</td>
<td>Condensate</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12" Header</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Condensate</td>
<td>17</td>
<td>18</td>
<td>Mass Balance</td>
<td>2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Evaporator</td>
<td>17</td>
<td>18</td>
<td>Osmosis</td>
<td>256000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REJECT</td>
<td></td>
<td></td>
<td></td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Landfill</td>
<td>17</td>
<td>18</td>
<td>Cooling</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tower No.</td>
<td></td>
<td></td>
<td>Leachate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flowdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6" Header</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: All pipes are 5" unless otherwise noted.
2.3.3 Layout Drawings

The following layout drawings are included after this page.

00-16-400010 Plot Plan, Bridge Piping Layout (Sheet 1)
00-16-400020 Plot Plan, Bridge Piping Layout (Sheet 2)
00-16-400030 Plot Plan, Bridge Piping Sections (Sheet 3)
00-16-100040 Sewer System Layout
2.4 UTILITY SYSTEMS INTEGRATION

2.4.1 Instrumentation Requirements

2.4.1.1 The instrumentation and control system for the utilities and offsites of the SRC plant will be designed for extensive use of remote control systems which will be provided for all of the essential functions required for start-up, shutdown, selection of alternates, flow routes, operation of inter-related systems, removal of problem equipment from service, placing spares into operation, and other operator activity that would otherwise require frequent trips to equipment items for local control.

2.4.1.2 The control system will utilize up-to-date state of the art techniques with special emphasis on operator interface. Micro-processor based control will be utilized with the analog loops arranged to permit relative ease of interface with the controllers. For most applications, the use of digital control will be supervisory set-point control.

2.4.1.3 Pneumatic instrumentation will be considered for application where environment prevents the use of electronic instruments. Otherwise pneumatic instrumentation will not be used, or will be limited to applicable areas.

2.4.1.4 Electronic loops for all areas will have 4-20 milliamp dc signals, or as stated in the general engineering specification.