A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE’s Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

1
Received by OSTI

Mar 0 6 1989

TITLE VAPORIZATION AND RECONDENSATION IN PROPAGATION AND IMAGING OF LASER BEAMS

LA-UR-89-622
DE89 008014

AUTHOR(S) A. ECKI
S.A. GERSTL

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, service, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

February 1989

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

MASTER
Vaporization and recondensation in propagation and imaging of laser beams

A. Zardecki and S. A. W. Gerstl

Theoretical Division, Los Alamos National Laboratory
Mail Stop K723, Los Alamos, NM 87545

ABSTRACT

To study the response of a medium to a localized disturbance, the coupled aerosol-beam equations—in which the dominant interactions are diffusive mass transport and conductive energy transport—are solved numerically, thus giving the spatio-temporal behavior of the propagating beam and the irradiated aerosols. The context of the cloud clearing problem, a deleterious effect of recondensation is assessed. We examine the effect of turbulence on the distribution of droplet sizes during the recondensation. Results relevant to propagation and imaging are given.

1. INTRODUCTION

The propagation of high-energy laser (HEL) beams through the atmosphere is often dominated by interactions with atmospheric aerosols, which can scatter and absorb energy from the beam. Energy absorbed by the aerosols leads generally to an increase in aerosol temperature, to enhanced vaporization of the aerosol, and to an increase in conductive energy transfer from the aerosol to the ambient medium. If energy is absorbed at a sufficiently high rate, a variety of HEL-related phenomena may occur. These include explosive vaporization, ablation of the aerosol material, shock wave formation in the ambient medium, and aerosol-induced plasma formation.

In this paper, we focus on propagation and imaging through water clouds and fog when an HEL beam first clears the aerosol cloud, to be subsequently degraded again by the process of recondensation. As we have indicated earlier, as the laser energy increases, the point spread function shows less and less broadening, the process termed HEL-assisted imaging. To study the response to a localized disturbance, the coupled aerosol-beam equations—in which the dominant interactions are diffusive mass transport and conductive energy transport—are solved numerically to obtain the spatio-temporal behavior of the propagating beam and the irradiated aerosols. In the frequency domain, a quantity analogous to the modulation transfer function of the linear regime is obtained.

In the case of pulsed radiation, the vaporized droplets will, by virtue of recondensation, grow appreciably on the time scale of seconds. From the standpoint of the cloud clearing, this is a deleterious effect, which needs to be assessed. We examine the effect of turbulence within a cloud on the distribution of sizes of droplets growing by condensation. This is achieved by a numerical simulation of the fluctuating updraft velocity. As the droplets which experience a high supersaturation and therefore grow rapidly are likely to be in a strong updraft, they will spend only a relatively short time growing in size. This suggests that, as time goes on, the droplet size distribution will be characterized by low dispersions, a result confirmed by our simulation. Numerical results relevant to propagation and imaging will also be given. Typically, an HEL beam will punch through a cloud, whereas a low energy probe beam will undergo multiple scattering from the recondensing droplets which increase in size.
2. IMAGING THROUGH THE NONLINEAR MEDIUM

The time-dependent radiative transfer equation, written in the small-angle approximation, has the form

$$\left(\frac{\partial}{\partial z} + \phi - \frac{\partial}{\partial \rho} + \sigma_t \right) I(\rho, z, \phi, t') = \sigma_s \int p(\phi - \phi') I(\rho, z, \phi', t') d^2 \phi'. \tag{1}$$

In Eq. (1), \(t' = t - z/c \) is the retarded time, the properties of the medium will, in general, be dependent on space and time.

The solution algorithm for Eq. (1) is given in Ref. 11. For the sake of completeness, we provide the final formulas for the laser flux (irradiance) in the case where the phase function is described by the Gaussian functional form

$$p(\phi) = \frac{n^2}{\pi} \exp(-n^2 \phi^2) \tag{2}$$

and where the pulse profile at \(z = 0 \) factorizes

$$I(\rho, z = 0, \phi, t) = I_c(\rho, \phi) T(t), \tag{3}$$

where the prime over \(t \) has been dropped. The small-angle approximation irradiance

$$F(\rho, z, \tau) = \int I(\rho, z, \phi, \tau) d^2 \phi \tag{4}$$

is obtained by successively applying the formula

$$F(\rho, z + \Delta, \tau) = \frac{1}{(2\pi)} \int \exp[-\sigma_s(z, \tau) \Delta] \int G(\rho, z', \tau) F(\rho', z', \tau) d^2 \rho' \tag{5}$$

Here \(\Delta \) is a propagation distance satisfying the condition \(\sigma_s \Delta < 1 \), and the propagation kernel \(G \) is defined as

$$G(\rho, z, \tau) = \frac{1}{\pi} [K^{-1} \exp(-\rho^2/k) + \sigma_s \Delta L^{-1} \exp(-\rho^2/L)]. \tag{6}$$

The parameters \(K \) and \(L \) are expressed in terms of \(n \), the inverse angular spread of the phase function and \(\alpha \), the inverse angular spread of the beam, as

$$K(z) = 2 \Delta z / \alpha^2, \tag{7}$$

$$L(z) = 2 \Delta / \beta^2 + \Delta^2 / \alpha^2 \tag{8}$$

In actual computations, the algorithm is further improved if we replace the values of \(\sigma_s \), \(\sigma_t \), and \(n \) by the actual values, induced by the spatial beam profile. We note that Eqs. (7) and (8) simplify in the limit of a collimated beam when \(\beta \rightarrow 0 \).

To illustrate the use of our algorithm, we choose the medium in the form of a 3 m wide slab, initially filled with a monodisperse collection of 10 \(\mu m \) radius water droplets. The concentration of the droplets \(n = 2 \times 10^7 \) \(\text{cm}^{-3} \) corresponds to the optical depth \(\tau = 4.6 \) at the laser wavelength \(\lambda = 3.8 \mu m \). The laser beam has the initial spot size of 0.2 cm propagates in the form of a pulse of 0.1 laser duration, with the peak value of the flux equal to \(2 \times 10^5 \) W/cm^2. In Figs. 1 and 2, we show the spatio-temporal shape of the pulse for \(z = 0 \) (input plane) and \(z = 2 \) m. Figure 3 demonstrates the punch-through effect, the attenuation of the on-axis beam irradiance is much smaller than predicted by the Beer-Lambert law. As seen in Fig. 4, the modulation transfer function (MTF) is flat for \(z < 1 \) and less for larger distances of propagation, the effect we term HPE-assisted imaging.
3. RECONDENSATION OF WATER VAPOR

The recondensation of water vapor is controlled by the supersaturation parameter \(\sigma = p_v/p_s - 1 \), where \(p_v \) is the partial pressure of water vapor at ambient conditions, whereas \(p_s \) is the saturation vapor pressure for water. By applying mass, momentum, and energy conservation to an adiabatically ascending parcel of air,12 the set of equations relating the changes in temperature \(T \), supersaturation \(\sigma \), and water content \(u \) can be derived. If \(u(t) \) denotes the instantaneous component of vertical velocity, the barometric equation is

\[
\frac{dp}{dt} = \frac{g m_a T}{R T^2} u(t),
\]

where \(g \) is the acceleration due to gravity, \(T \) is the absolute temperature, \(R \) is the gas constant, and \(m_a \) is the molecular weight of dry air. The remaining equations are

\[
\frac{dI}{dt} = \frac{1}{c_{pa}} [u(t) - g u(t)],
\]

\[
\frac{d\sigma}{dt} = \frac{m_a T}{c_{pa} T} [1 - \frac{1}{c_{pa} T}] u(t) \left[\frac{m_a (\frac{1}{c_{pa} T})^2 + p}{c_{pa} T} \right] u.
\]

Here \(I \) is the latent heat of condensation, \(c_{pa} \) is the specific heat of dry air at constant pressure, and \(c_{pa} \) are \(m_a \), with \(m_a \) denoting the molecular weight of water vapor.
The rate of growth of a droplet of pure water of radius r is given by

$$\frac{dr}{dt} = \left[\sigma - \frac{2\gamma m_r}{\rho R_r r^2} \right] \left[\frac{L^2 m_r \rho}{k R T} + \frac{p R}{18 m_r} \right]$$

In Eq. (12), σ is the surface tension of liquid water, ρ is the liquid water density, k is the thermal conductivity of air, and D is the diffusivity of water vapor in air. Writing $dr/dt = f(r, \sigma, \rho, T)$, we then have

$$u = \int_0^\infty 4\pi r^2 n(r, \sigma, \rho, T) dr,$$

where $n(r, \sigma, \rho, T)$ is the number of droplets with radii between r and $r + dr$. If the droplets are all of the same size r_0,

(13) simplifies to give

$$u = 4\pi r_0^2 f(r_0, \sigma, \rho, T),$$

where u is the total number of droplets per unit volume.

For homogeneous and stationary turbulence, one can simulate the turbulent updraft by writing u as

$$u_{\text{tot}} = u + u_n,$$

where u is a random number drawn from a set which is normally distributed with a mean r_0 and σ_u, the standard deviation, and where σ_u describes the strength of the velocity fluctuation.
4. NUMERICAL RESULTS

We show, to begin with, the results of a numerical simulation relevant to a recondensing water cloud whose size distribution is initially given by the modified gamma distribution with a mean radius of 5 μm. We take the fluctuating vertical wind velocity to be characterized by $u_0 = 0.1 \text{ m/s}$. This results in the fluctuating velocity (V) as seen in Fig. 5. The actual size distribution evolves by a shift towards larger droplets, as illustrated in Fig. 6. While the mean droplet radius increases with time, the standard deviation becomes smaller and smaller, as illustrated in Fig. 7. Figure 8 shows the actual vertical location of the air parcel.

To couple the dynamics of the recondensation to the equation of transfer, we go to the monodisperse limit, given by Eq. (14). The vaporized environment of small droplets is produced by a laser with the peak flux of $2 \times 10^7 \text{ W/cm}^2$. Subsequently, a low energy probe beam propagates through the medium undergoing recondensation. Because the total number of droplets per unit volume is kept fixed, the optical depth of the medium increases with time due to the growing size of the droplets. This results in a highly asymmetric temporal pulse profile, shown in Fig. 9, in which there is more pulse attenuation for larger times. During recondensation, the MLI-assisted imaging effect has become suppressed. This is seen in Fig. 10, in which the MLI does not experience an inversion with the distance of propagation.
5. CONCLUSIONS

We have analyzed in some detail the effect of HEL assisted imaging relevant in the context of the cloud clearing problem. For the peak fluxes of the order of 10^5 W/cm², the droplet vaporization is the dominant interaction mechanism between the laser beam and the medium, thus allowing us to focus on the effect of interest. The effect of turbulence within a cloud on the distribution of sizes of droplets growing by condensation has been examined with the aid of a scheme for simulating updraft velocity numerically. We find that the condensation effect, having time scales of the order of seconds, will tend to suppress the HEL assisted imaging. The hitherto neglected effect of turbulent mixing, which brings in new particles from the surrounding cloud into the clear channel, will be the subject of further study.

6. REFERENCES

Figure 5: The fluctuating velocity of the air parcel (continuous line) and the super saturation (dotted line) as functions of time.
Figure 6. The evolution of the size distribution of water droplets from the log-normal distribution function.

Figure 7. The mean radius (continuous line) and standard deviation (dotted line) as functions of time.
Figure 8. The height of the air parcel as a function of time.

Figure 9. Space-time dependence of beam irradiance on axis for the low energy beam propagating through a recondensing water cloud.
Figure 10 MTF for the low-energy beam propagating through a recondensing water cloud.