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Abstract

In this note the number of Cerenkov photons generated per unit

time by synchrotron radiation characterized by" its characteristic

energy _c is calculated as a function of the ratio of _c to the

cutoff energy of the Cerenkov monitor. These results are used to

determine approximate scaling relations for the beamstrahlung
flUX.

1 Introduction

At, the SLC a Cerenkov monitor [1] is used to detect, the light emitted by

•- ,, r=° _ e e _ _ particles in the (strong) beam-bealn interaction a_ the interaction poim (lP).

i e,._s , -e 8_ z _, e . o The monitor is also exposed to the synchrotron ligh_ emitted by _he same
._o-_-'- _ _ _.._- _ particles in a strong bend magnet needed to deflect the radiating particles

_ .- _ E _ _ _ away from the detector. The Cerenkov monitor is needed to discriminate

_-o_ =__ _ • "_== _, the abundantly generated photons in the be.ad magnet, having a critical0_ 0 '_ _ _ _

_ L. _ _ f T"_ _ --_ - .= _ o energ_ of abou 2 Me\, from the fewer photons generated in the beam-beam

_, _ - "_ interaction, ha_ing a critical energies of up to a factor l0 higher.
o= " _ : _ _" The Cerenkov monitor consists of a converter plate that converts the

7. _ _ _- o = = , incident photons into e+e- pairs which travel thr gh a gas volume(Ethylene= -'-2- _'i e _ at 1/3 atmosphere) with refractive index n = l+zl0-_. Herethe high energy

e _ __= S..._,.,.-_- _"_,2 e _o pairs can emit. Cerenkov radiation which is subsequently passed by mirrors

•_ ii_-a*gi_@_ thr°ughalightchannelanddet'ectedbvphct°multit)liertubes(PMT) '*"__=__, =.= .-__ _ "_.,,_, Clearly, only pairs with energies abme the Cerenkov threshold, here ex-
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pressed in units of n_c _

Ecutoy: r_
- ro= (1)rnc2 v/n2- 1

can emit Cerenkov photons. At the present detector this threshold is ap-
proximately Ec,,to// = 25 MeV. This discriminates the radiation from the
bending magnet.

In order to quantify the above argument assume that radiation with char-
acteristic energy ec is incident on the monitor. To calculate the number of

Cerenkov photons dNc/dt generated per unit time we have to take the fol-
lowing effects into account [2].

1. Pair production probability in the converter plate.

2. The probability of finding a pair produced particle at energy E.

3. The number of Cerenkov photons produced per particle.

These three points constitute the monitor response for one incident photon of
a certain energy. The effect of a spectrum characterized by _c is the given by
the convolution of the detector response and the spectrum. This calculation
will be the task of the following sections.

2 The Monitor Response

The pair production probability is determined by the crossection of the pro-
cess 7 "--*e+e-. Since we are only interested in energies above the Cerenkov
threshold we may use the Heitler-Sauter crossection for an unscreened point
nucleus for ultrarelativistic energies [4]

o',_e. e- - c_Z2r_ [28 ln(2")B) - 22_ ] (2)i

Here a = 1/137 is the fine structure constant, Z is the atomic number of the
nucleus (Z = 26 for iron), re = 2.8179 10-15 m is the classical electron radius
and 7s is the photon energiy in units of rn_c2. At the Cerenkov threshold we
have o',_...,e+e- -- 2 10 -28 m -2.
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The probability for the pair production process is the given by

Pw--,e+e- = 1-c Nd°'_--'e+e- ,_ Ndc%_e+e- . (3)

Here N is the number density of iron nuclei in the converter plate and d is the
thickness (0.8 mm). The approximation made in eq. 3 is valid for the present
monitor, because at the Cerenkov threshold we have Nd_.y__._- ._ 0.013
and the logarithm containing the photon energies varies only weakly. We
conclude that only 1% to 2 % of the incident photons actually pair-produce.

Following the argument presented in ref. 3 we approximate the probabiliIy

for finding a pair produced particle at. energy Ee by P(E_,EB) = 2/EB for
0 < E_ < EB. Here EB is the energy of the incident photon. Physically
this means that all particle energies are assumed equally probable in the
kinematically allowed range. The5, only depend on the energy of the incident
photon.

Given one particle of energy E_ = "y_mc2 the number of Cerenkov photons
it emits is given by

= J--- 1+-- 0('_'_-_0) (4)
N_,(-_) 77 c n2 "_}

with ®(x) = 1 for x > (/.:and 0 elsewhere, where l is the length of the gas
volume (21 cm), Au is the frequency range accepted bythe PMT and 71is
the conversion efficiency of Cerenkov photons to PMT counts.

In order to calculate the number of Cerenkov photons as a function of
the incident photon energy we have to integrate out the intermediate electron
energies and obtain

N_('rB) = rlNda.yB-_.e- dE_ P(E_,EB) Ar_(E_)
CutolJ

4rraIAU Nd
= ,7 cE_ o'_,__,+_-O(_'B -- "ro) (5)

1
___. (rn,2c4 1 1 )1,×I,L,1_ - E  ,ojj)+ Ee Ec,,oj r

47ro/Au (1 ° 1 )2®_Nd c%B-_._- c "_B (_B -- "to)
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where we have used eq, 1 to substitute % for n and have neglected lerms of
order 1/_,2oagainst those of order 1,

This expression can be viewed as a transfer map that converts photons
of energy E._ = "_'smc_ into the number of PMT counts.

,,.

,3 The Influence of the Spectral Distribution
of the Incident Photons

The spectral characteristics of synchrotron radiation emanating from a char-
ged particle that, traverses a section of curved path with bending radius p
can conveniently be described by the characteristic energy of the emitted
radiation. This is given by

3hc
= ___.a ((_)

_ 2 p

" where _ is the energy of the radiating particle in units of its rest mass.
" The emitted power as a function of photon energy e is usually parametriz-

ed in terms of the quantity

y = - (7)
Cc

and can be written as [6]

dW 2 e2c'r4 9V_ _-d--7-= 347re0p2 87r tl_ dx Ks/3(a') . (8)

Here Ks/z(x)is a Bessel function of fractional order [5]. For our purpose,
however, the number spectrum is important. It can be expressed similarly
by

dN 1 dW 1 1 dlV

dy dt E dy ec y dy (9)

Expressing the number spectrum with respect to the photon energy we can
conveniently write

dN 1 1 di:l,' 1 a s 1 r_

dEdt - e_y dy - v/._Trr,mc.t_ J_ dzKs/a(x) (10)
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with _ _,m---g°2 = 1.27 10 31 1/Js. In order to calculate the number of.Cerenkov
monitor counts we have to convolul.e the response of the detector, eq. 5 and
the spectrum, eq. 10. After some a.lgebra we arrive at

dNc 4 2 Ndlre

2s 218 28 28

X--yo]ro dY[v]n(27°) 27 9 ln(yo) + V ln(y)] (11)

x(1 - Yo)2_:*dx Ks/a(x)Y

where yo = Ec,,_oj.f/e_ denotes the ratio of the Cerenkov monitor threshold
and the critical energy of the synchrotron radiation. The double integral
appearing in the previous expression can be reduced to a single integral
using partial integration. This is illustrated in the appendix. Here we only
note that the entire expression can bc written as

dN_ 4
0.4 NdlreAulo(7o, yo) (12)

dt - v/3 Z2_ _to'7Y

.
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with

[_ 218 28 ln(yo) ] (13)Io(%,yo) = 1n(27o) 27 9
1 '1

x [21n(yo)Go(yo) + --V,(yo) - 2Fo(yo) - yo£-,(yo)/-_yo

•"F98{(2 Jr []n(yo)12)Go(yo)

+LH,(yo)-Ho(yo)-yoH_,(yo)}Yo

The functions En, Go and H, are defined in the appendix. The entire pro-
cess of synchrotron emission, pair production, Cerenkov effect and photo-
multiplier response is simply parametrized by the function Io(70, y0). Since
usually the Cerenkov threshold is fixed by the experimental conditions a plot
of 10(%,yo) versus l/y0 as shown in Fig. 1 is proportional to the Cerenkov
monitor count per unit time as a function of the characteristic energy of the
synchrotron radiation.
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Since the critical energy is inversely proportional to the bending radius
by virtue of eq. 6, which in turn is inversely proportional to the electric oi"
magnetic field experienced by the radiating particles Fig, 1 effectively shows
the response of the Cerenkov monitor to the fields. These fields can either

be the magnetic fields of bending magnets or electric fields that cause the
electrons to be deflected in the beam-beam interaction. In the first case the

magnetic field is constant while the radiating particles traverse the magnet
whereas in the latter case the electric field varies as the radiating particle
traverses the oppositely running bunch. The total Cerenkov counts have

then to be calculated by integrating over the interaction time of the two
bunches and averaging over their transverse extension.

Plotting I0 versus l/y2o as shown in Fig, 2 one obtains almost a straight
line, Since 1ro is proportional to ¢c this indicates that in a regime where
¢c >> Ec,,tof! the monitor response is proportional to the total emitted power,
which is proportional to l/p2 and ¢_ is proportional to 1/p. This means that
the Cerenkov monitor response of a beam-beam scan is essentially determined

by the total emitted energy.
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For small ratios 1/y0 = ec/Ec,,,,tofr Io falls to zero much quicker than 1/y_
as shown in Fig. 3. This means that for critical energies much smaller than
the Cerenkov threshold the response of the monitor is strongly suppressed, as
desired. However, it is not zero, since even spectra with small critical energies
have high energy tails, even though these tails are suppressed exponentially.

Now we want to compare the counts from the strong bending magnet
(ec = 2 MeV, Length = 7.6 m) with those stemming from the beam-beam
interaction with two bunches containing 2.5 101° particle=s and having spa-
tial extensions of 1 mm longitudinally and 2 #m transversely. In the latter
case the average critical energy is about 20 MeV. Taking the different inter-
action times into account we conclude that the counts from the beam-beam

interaction are about 300 times higher.
A second effect of the depression of I0 for small critical energies is a

depletion of counts from soft photons from the beam-beam interaction. Soft

photons are mainly generated in the (longitudinaly and transverse) tails of
the bunch that generates the deflecting field. In a transverse beam-beam

, scan "Beamstrahlung vs. Offset" this means that the tails of the scans are

depleted compared to simulated scans "Total emitted Energy vs. Offset".

4 Scaling relations for the Bearnstrahlung
Flux

We now want to exploit the previous results to obtain scaling relations of
the beamstrahlung flux with the bunch length and the number of particles
in the interacting beams.

To this end we note that the transverse electric field of a gaussian target
bunch running toward the negative z-axis is given by

E(x, y,z,t) = 2eN'"g_ Y(z,y)47rCo_x/27raze-1
2a_ (14)

where F(x,y) denotes the transverse dependence. For a round beam it is

given by the well known result F(:c, y) = (1 -e_2/2¢2)/r with r 2 = x 2 + y2



and for the general elliptic case given by [7]

Y(Xl,X2) (15)
.l_'tV..,a,1- o'22+ 2ie12) 2(0"11 -- a22+ 2ia,2)

-e-½_'2 (°-')"x'x' [ (_22-iaa2)X'+i(aa'+ia'2)X2]}",._ w ,-_/cr,aa22__r_2,/2(a,a_cr22+2icr,2)

where crij are the matrix elements of the covariance matrix of the target
2 etc.beam, i.e. 0"11 -- O'x_

The electric field a source particle travelling to the positive z-axis experi-
ences as it passes through the target bunch is given by substituting z = cl in
the expression for the electric field. Now the bending radius p experienced
by the source particle can be determined from F dt = Ap.L = p dO - pcdt/p
where the force on the source particle is given by F = 2cE (assuming equal
contributions ft'ore the electric and magnetic fields) and p= 7mc is the
momentum of the source particle. Solving for 1/p We obtain

1 2eE 2r_ (47r_oE(x,y,z=c.t,t),
p(z,y,t)- pc 7,o_ e . (16)

Inserting E in the right hand side and organizing terms, we get

1 1 -

p(x,v,t.) = (17)

with ®(x,y) = -2--_F(x y) This expression can be interpreted easily. As the
,.y ; , .

source particle traverses the target, bunch its total deflection angle ®(x, y) =
f2¢¢_ cdf is entirely determined by its initial offset,. However, the length ofo(z,v,_)
the target bunch determines at. what rate the deflection occurs. In the light of
eq. 6 this obviously determines the critical energy of the emitted synchrotron
radiation. Note that in eq. 17 a_/2 appears, since the two bunches approach
each other with the speed of light. Thus the lengths of the target bunch
appears effectively halved.

In order to estimate the scaling relations of the beamstrahlung flux v

note that in the regime e_/_0 _< 1 Io(70, e_/eo) can be approximated by
Io _ 0.699(e_/_o) 4 (with errors of about 3 %). Of course we can rewrite this



in terms of the bending radius and ge t Io _ 0.699(pop) 4 where po is the
bending radius at which the critical energy equals the cutoff energy of the
Cerenkov monitor. From eq. 12 we can now easily determine the total number
of Cerenkov photons emitted by one electron with an offset x,y relative to
the target bunch as

/_'° f_'_ ( 1 ) 4
Nc(x,y) c_ dt Io e< dt . (18)

Inserting l/p and evaluating the integral we are led to the following scaling
relation

Ar4 N
target source

Nc(x,y) e(O4(z,y) a a72o_rce . (19)

Here it becomes clear that the magnitude of the Cerenkov photon flux is
mainly determined by the number of particles per bunch, the bunch length,
and the particle energy. The transverse profile, however, is mainly deter-
mined by the transverse beamsizes entering in O.

In order to investigate the influence of the transverse beamsizes we have
to average over the incoming transverse (source/) electron distribution. This
leads in a straight forward manner to a simulation algorithm, which will be
the topic of a forthcoming note.
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6 Appendix: Evaluation of Io('yo,Yo)

In this appendix we will reduce the double integral appearing in eq. 10 to
simple integrals. Io(7o, yo) is defined as follows

fy_' 28 218 28 ' 281 dy{3-1_(_o) ln(yo)+ ln(_)}Io(7o, yo) = y'--_ o 27 9 V

x(l-_)2_dxKs/a(x) (20)

__ 28 218 28 }II(yo) + 12(yo)_ 1 {-_--ln(2-_o) ln(yo) 281- yo :7 9 VE '
with

ll(yo) = _o dy(l-_)2_':'dxK_/a(x) 21)

Now consider Ia(yo) and expand

These integrals can be evaluated using

o dyy° dxKs/a(x) - a + 1" dxKs/a(x)

f_ 1- ev-jT-f(- I_/_(v)) (.930

-- 1 {Fo+a-y_+'Go(Y0)} for aT_ 1-a+l

o _ dxKs/a(X) = In(y) dxKs/a(x) _o

Z, - dyln(y)(- Ks/a(y))
0

= -ln(yo)Go(Yo)+ Yo(yo) for a'= -1,.

.,

11



with

/?ao(yo)= dyI<_/_(y)
0

Fo(yo) = dyln(y)Ks/3(y) (24)
0

Zt_(yo) = dyy'_Ks/3(y) for _ 5¢ 0.
0

These expressions allow us to write ll(yo) as

I_(yo)=2yol_(yo)ao(yo)+F_(_o)-2yoFo(yo)-yo_r__(_o). (2_)

The integral I2(yo) can be tackeled in very much the same way. \Ve first
expand the square

1_(yo)= dyln(y) d_I,:_/_(x)
0

0 Y
_ In y _'

In order t.o use partial integration again we need the following integrals [5]

dx ln__..f_z_ 1 [lh x] 2z 2

z TM - (m - 1)zm_, lnz + m- ] (27)

Now we can tackle the three integrals. They can be written a.s

_ dy ln(Y) _ °° dx KS/3(z) =o _ dy y[ln(y) - l] K_/3(Y)o

" j[OO

-yo [ln(yo)- 1] d_I_/_(x)
0

_--lr °° I In(yo)]_/CZ'dx]f,5/3(x ) (28)dy lny dxKs/3(x) = -_[Y o

1 f_+-_ dy[ ln(y)] _ I_:_/a(V)0

12



o dy--_ dz I,:5/3(.r)= _o o

_ f_' dylh(y)+ 1t_5/3(y) .o Y

Combining t.hese expressions and inserting into the expression for 12(yo) we
obtain

Is(go) = (2 + [ln(yo)]2)yoG_(yo) + H,(yo)- yoHo(yo) - y_oH-,(yo) (29)

where we have introduced the abbreviatk_ns

ZH_(yo) = dyy[ln(y)- 11_.:_/_(_)
0

Ho(yo) = dy [ln(.v)? Ks/a(9) (30)
0

H-l(uo) = [_du lh(u)+ 1 I_:_/3(_).
avo Y

Collecting terms we finally arrive at the expression for Io(')'o,yo) quoted in
eq. 13.
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