Permeability of shale at elevated temperature and pressure: Test methodology and preliminary results

PDF Version Also Available for Download.

Description

A method of measuring the hydraulic conductivity of low permeability shale as a function of pressure and temperature has been developed and successfully demonstrated. Measurements have been performed on samples of Green River Formation up to a temperature of 140/sup 0/C. For flow parallel to bedding hydraulic conductivities increased nonlinearly from 1.75 x 10/sup -16/ m/s (1.6 x 10/sup -23/ m/sup 2/) at 25/sup 0/C, to 5.6 x 10/sup -15/ m/s (1.4 x 10/sup -22/ m/sup 2/) at 140/sup 0/C. This increase in permeability with temperature may reflect an increase in microcrack porosity resulting from the heating.

Creation Information

Myer, L.R. & Christian, T.L. May 1, 1987.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A method of measuring the hydraulic conductivity of low permeability shale as a function of pressure and temperature has been developed and successfully demonstrated. Measurements have been performed on samples of Green River Formation up to a temperature of 140/sup 0/C. For flow parallel to bedding hydraulic conductivities increased nonlinearly from 1.75 x 10/sup -16/ m/s (1.6 x 10/sup -23/ m/sup 2/) at 25/sup 0/C, to 5.6 x 10/sup -15/ m/s (1.4 x 10/sup -22/ m/sup 2/) at 140/sup 0/C. This increase in permeability with temperature may reflect an increase in microcrack porosity resulting from the heating.

Notes

NTIS, PC A03/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE87011976
  • Report No.: ORNL/Sub-85-21674/1
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/6378234 | External Link
  • Office of Scientific & Technical Information Report Number: 6378234
  • Archival Resource Key: ark:/67531/metadc1205868

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 1987

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Oct. 30, 2018, 2:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Myer, L.R. & Christian, T.L. Permeability of shale at elevated temperature and pressure: Test methodology and preliminary results, report, May 1, 1987; California. (digital.library.unt.edu/ark:/67531/metadc1205868/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.