LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

PHYSICS DIVISION
 PROGRESS REPORT
 for Feriod Ending September 30, 1988

J. B. Ball Director

F. E. Bertrand	Section Head
S. Datz	Section Head
C. M. Jones	Secion Head
J. B. McGrory	Section Head
F. Plasti	Section Head
R. L. Robinson	Sertion Head

Edited by: A. B. Livingston

Date Published: March 1989

OAX RIDGE NATIONAL LABORATORY
Oak Ridge, Tennesee 37831
operated by
MARTIM MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF EMERGY
under Contract no. DE-ACOS 840R21400

Reports previously issued in this series are as follows:

ORML 2718	Period Ending March 10, 1959
ORNL-2910	Period Ending February 10, 1960
ORNL-3085	Period Ending February 10, 1961
ORNL-3268	Period Ending Ja.uary 31, 1962
ORNL-3425	Period Ending May 21, 1963
JRNL-3582	Period Ending lanuary 31, 1964
ORNL-3778	Veriad Ending December 13, 1964
ORNL-3924	Period Endiling December 31, 1965
ORNL-4082	Period Ending December 31, 1966
ORNL-4230	Period Ending December 31, 1967
ORNL-4395	Period Ending December 31, 1968
OPML-4513	Period Ending December 31, 1969
ORNL-4659	Period Ending December 31, 1970
ORNL-4743	Period Ending December 31, 1971
ORNL-4844	Period Ending December 31, 1972
ORML-4937	Period Ending December 31, 1973
ORKL-5025	Period Ending December 31, 1974
ORNL-5137	Period Ending December 31, 1975
ORNL-5306	Pericd Ending June 30, 1977
ORNL -5498	Period Ending Lecember 31, 1978
ORNL-5787	Period Ending June 30, 1981
ORIIL-6004	Period Ending September 30, 1983
ORNL-6120	Period Ending September 30, 1984
ORNL-6233	Period Ending September 30, 1985
ORNL-6326	Period Ending September 30, 1986
ORNL-6420	Period Ending September 30, 1987

SPECIAL DEDICATION

This issue of the Physics Division Progress Report is dedicated to the memory of our colieague George leander, who died during this past year.

Ihroughout his career, George worked at the forefron: of theoretical nuclear structure physics. Despite the shortness of that career, he published over 100 papers. Included in his work mere important contributions in the geometrical aspects of nuclei, the shape evolution preceding nuclear fission, exotic shapes in light nuclei, high-spin phenomena in nuclei, the process of fast rollective rotation, and the understanding of electromagnetic nuclear decay in regions of high level density.

That George was strongly influenced by the Copenhagen school of philosophy and interpretation of nuclear phenomena is most evident in his last major paper. A detailed treatise on the ideas of spontaneous symetry breaking in the nuclear intrinsic frame in the context of mirror-as ymetry and its profound consequences in numerous nucleon-nucleus interaction effects, the paper will remain a standard in the field for years to come.

George's enthusiasm in helping guide our programs, his obvious love of science, and his dedication to physics were an inspiratior to all of us who were privileged to know him.

COWTEMTS

IWTROOUCT:OM xyii

1. HOLIFIELD hEAYY IOM RESEARCH FACILITY
Overviex - J. A. Martin, C. M. Jones, R. L. Robinson 1
accelerator operations and bevelopment
Operations - G. D. Alton, ... A. Biggerstaff, M. R. Dinehart, D. T. Dowling, H. D. Hackler, C. L. Maley, D. L. Kaynes, C. A. Irizarry, C. M. Jones, R. C. Juras, S. H. Lane, C. i. LeCroy, C. A. Ludemann, L. A. Maples, J. A. Martin, R. L. FcPherson, M. J. Meigs, G. D. Mills, S. M. Mosko, S. N. Murray, D. K. Olsen, B. K. Sizemore, B. A. Tatum, S. D. Taylor, M. F. Ziegier 2
Tanden Accelerator - G. D. Alton. J. A. Biggerstaff. D. L. Haynes, C. M. Jones,
R. C. Juras, R. L. Mcherson, M. J. Meigs, G. D. Hills, M. F. Ziegler 3
ORIC Accelerator - D. T. Dowling, S. M. Lane. C. A. Ludemann, J. A. Martin, S. M. Mosko, D. K. Olsen. 8. A. Tatum 5
Improved Voltage Performance of the Oak Ridge 25URC Tandem Accelerator - D. L. Haynes, C. M. Jones, R. C. Juras, M. J. Meigs. J. E. Ratz, R. D. Rathmell. M. F. Ziegler 8
A High-Intensity Plasm-Sputter Heavy-Megative-Ion Source-6. Y. Alton, A. Takagi, Y. Mori, A. Ueno, S. Fukumoto 11
A Technique for Generating Atomic Megative Ion Beams of the Group IA Elements - G. D. Alton, G. D. Wills 14
Charge-State Otstribution of 220 meb 150 Gd Ions Emerging from Thin Carbon foils - D. K. Olsen, J. A. Martin 15
Dispenser-Type Solid Emitters for Producing Growp IA Positive Ion Beams - G. D. Alton, P. M. Read, J. Maskrey 17
facility operations amo development
malRf Experiments - R. L. Rodinson 17
Experimental Apparatus - R. L. Auble. J. R. Beene. H. K. Carter. J. W. Johnson. M. R. Johnson, H. J. Kim, I. Y. Lee. 20
Computer Systems - J. A. Biggerstaff, W. H. Atkins. C. E. Beais. D. M. Galbratth, E. E. Gross. J. M. McConnell. J. B. McGrory, W, T. Mi iner. C. M. Thoms. R. L. Varner 21
The Joint Instítute for Heavy Ion Research - R. L. Robinson, L. L. Riedinger, J. H. Hamiliton 23
Users Group Activities - R. L. Auble 26
The Program Advisory Comittee - R. L. Robinson 26

2. EXPERIMENTAL MCLEAR PHYSICS

muclear structure studies via elastic and imelastic scatterimg

Surface Contributions to the Complex Meutron-208po Mean Field betwen -20 and +20 MeV - J.-P. Levinerne, C. H. Johnson, C. Mahaux 28
Meutron- ${ }^{3}$ Ca Mean Field Detween -80 and +80 meV from a Dispersive Optical Hodel Analysis - C. H. Johnson, C. Mahaux 29
Radius of the lf, Orbit in hira - S. Piatchkov, A. Amroun, P. Bricault, J. M. Cavedon, P. K. A. de Witl Huberts, ${ }^{\circ}$. Dreux, B. Frois, C. D. Goodman. D. Goutie, J. Martino, V. Meot, G. A. Peterson. 1. H. Phan, S. Raman, I. Sick 29
Fission Decay of the $G O R$ in 238 U - R. L. Auble, J. R. Beene, F. E. Bertrand, A. D'Onofrio, D. J. Horen, J. L. Blankenship, R. L. Varner, J. Lisantti 30
Experimental Demonstration of Compound and Precompound Effects in Giant Dipole Resonance Photon Decay - J. R. Beene, F. E. Bertrand, D. J. Horen, R. L. Auble, B. L. Burks, J. Gomez del Campo, M. L. Halbert, D. C. Hensley, R. O. Sayer, W. Mittig, Y. Schutz, J. Barrette, M. Al deanos, F. Auger. B. Fernandez, A. Gillibert, B. Hads, J. P. Vivien, A. M. Mathan 31
Study of the Breathing mode of 208 pt through Meutron Decay - A. Bracco, J. R. Beene, M. Van Giai, P. F. Bortignon, F. Zardi, R. A. Broglia 33
Coulomb Excitation of Giant Resonances in 208 Pb by $E=84 \mathrm{meV} /$ mucleon ${ }^{17} 0$ Projectiles - J. Barrette, M. Alamanos, F. Auger, B. Fernandez, A. Gillibert, D. J. Horen, J. R. Beene, F. E. Bertrand, R. L. Auble, B. L. Burks, J. Gomez del Campo, M. L. Halbert, R. O. Sayer, H. Mittig, Y. Schutz, B. Has, J. P. livien 33
Electromagnetic Decay of Giant Resonance Region in 209 Bi - R. L. Varner, R. L. Auble, J. R. Beene, F. E. Bertrand. B. L. Burks. M. L. Halbert, D. C. Hensley, D. J. Horen, R. L. Robinson, R. O. Sayer 33
Isolation of the Isovector Quadrupole Resonance in 208 PD ;i:3 Photon Decay - F. E. Bertrand, J. R. Beene, P. L. Auble, M. L. Haluert, i. C. Kansley, D. J. Horen, Y. Schutz, W. Mittig, J. Barrette, B. Fernandez, F. Auger, M. Alamanos, A. Gillibert 35
Heavy-ion Coulomb Excitation and Photon Decay of the Giant Dipole Resonance in 208 Pb - J. R. Beene, F. E. Bertrand, D. J. Horen, R. L. Auble, B. L. Burks, J. Gomez del Campo, M. L. Halbert, R. O. Sayer, H. Mittig, Y. Schuti, J. Barrette, H. Alamanos. F. Auger, B. Fernandez. A. Gillibert, B. Has, I. P. Vivien 37
Search for Two Octupole Phonon States in $208 \mathrm{pb}-\mathrm{J}$. R. Beene, A. D'Onofrio, R. L. Puble, F. E. Bertrand, M. L. Halbert, R. L. Varner. D. J. Horen, J. Lisantti. R. T. VanHook 38
Inelastic Scattering of 160 on 58 Mi and $70,72,74 \mathrm{Ge}-\mathrm{D}$. C. Hensley, F. E. Gross, M. L. Halbert, F. E. Bertrand, J. R. Beene, G. Vourvopoulos 39
Determining the Experimental Geometry for Inelastic Scattering in the spin Spectrameter - D. C. Hensley 39
Elastic and Inelastic Scattering of 200 MeV 26 Mg from ${ }^{208 \mathrm{PD}}$ - E. E. Gross, D. C. Hensley, M. L. Haltert, J. R. Beene, F. E. Bertrand, G. Vourvopoulos, D. Humphrev. T , Vancleve 4!
Asymetric Rotor Madel Calculations for $24 \mathrm{Mg}-$ E. E. Gros:. D. C. Hensley, M. L. Halbert, J. R. Beene, F. E. Bertrand. G. Vourvopoulos, D. Humphrey, T. VanCleve 44
Analysis of ${ }^{4} \mathrm{Ca}\left(\rho, \rho^{\prime}\right)$ at 500 MeV using t_{0} Giptical Pu'entids in a Collective Framework - K. H. Hicks, J. Lisantti 45
Application of the Relativistic Collective Model to Intermediate-Energy Proton-Nucleas Scattering - J. Lisantit 46
Eldetic and Inelastic Scattering of 280- and 489-MeV Protons from 58 mi - J. Lisantit, D. K. MCDaniels, 2. Tang, Z. Xu, D. M. Drake, K. H. Hicks, M. C. Vetterli. L. W. Smenson, R. Y. Chen, F. Farzanpay 48
Comparison of Collective Transition Potentials to Transition Charge Densities - J. Lisantti. D. J. Horen 50
Giant Resonance Sirength Distribution in ${ }^{0}{ }^{\circ} \mathrm{Ca}$ from Inelastic Scattering of 500 MeV Protons - J. Lisantti, D. J. Horen, F. E. Bertrand, R. L. Auble, B. L. Burks, E. E. Gross, R. O. Sayer, D. K. McDaniels, K. W. Jones, j. B. McClelland, S. J. Seestrom-Morris, L. W. Smenson 53
Excitation of Gient Resonances in $285 i$ with 250 MeV Protons - J. Lisantig. F. E. Bertrand, J. J. Horen, B. L. Burks, C. W. Glover, D. K. McOaniels, L. W. Smenson, X. Y. Chen, O. Hausser, K. Hicks 53
Collective Model ama Analysis of $500-\mathrm{HeV}$ Proton Scattering from ${ }^{\circ} \mathrm{Ca}$ -J. Lisantti, D. J. Moren. F. E. Bertrand, R. L. Muble, 8. L. Burks.E. E. Gross, R. O. Sayer, D. K. McDaniels, K. W. Jones, J. B. Mcclelland,S. J. Seestrom-Horris, L. W. Swenson54
Microscopic to Optical Potentials Used to Describe Intermediate-Energy Proton Elastic Scattering - J. Lisantti 55
melear structure studies via charge-exchamge reactions
Transfer Reactions at High Energy and Ambiguities in Heavy-Ion Potentials - D. J. Horen, M. A. G. Fernandes, G. R. Satchler, B. L. Burks, R. L. Auble, F. E. Bertrand: E. E. Gross, D. C. Hensley, R. O. Sayer, D. Shapira 56
The $52,54 \mathrm{Cr}(\mathrm{p}, n)^{52,54 \mathrm{mn}}$ and $57,58 \mathrm{Fe}(p, n) 57,58 \mathrm{Co}$ Reactions at $E_{p}=120 \mathrm{MeV}-$
D. Wang, J. Rapaport, D. J. Horen, B. A. Brown, C. Gaarde. C. D. Goodman E. Sugarbaker. T. M. Taddeucci 56
$\Gamma=1$. Spin-Dipole Strength in ${ }^{\circ} \mathrm{C}$ Ca -D . J. Horen, J. Lisantit, R. L. Auble, F. E. Bertrand, B. L. Burks, E. E. Gross, R. O. Sayer, D. K, KCDaniels, K. W. Jones, J. B. McCle:Ians. S. J. Seestrom-Morris, L. W. Swenson 56
merlear structure studies via transfer ami capture reactions
Two-Neutron P:iriny Enmon.ement Factors - X. T. Liu, C. Y. Lim, S. P. Soreasen, R. W. kin_ald, E. Vogi, X. L. Han, M. W. Guidry, D. Cline, W. J. kernan, T. Czosnyka, A. E. Kavka 57
Cscillating Two-keutron Transfer Probabilities at Large Radia! Separation in Heavy-Ion Reactions - X. T. Liu, M. W. Guidry, S. P. Sorensen, R. W. Kiniald, T. Czosnyka, C. Y. M, W. J. Kernan, D. Cline, E. Vogt, B. Kotlinski. A. E. Kavka 58
Interplay of Direct and Compound-Mucleus Mechanisms in Meutron Capture by Light muclides - S. Raman, S. Kahane, J. E. Lynn ${ }_{5} 8$
Ground-State Photoneutron Reactions in 180-J. W. Jury, P. C.-K. Kuo, K. G. Mcheill, C. K. Ross, H. R. Weller, S. Raman 59
muclear structure studies via compouno mucleus reactions
Irregularities at High Spin in the Odd-Odd mucleus 158 Im - M. A. Riley, Y. A. Akovali, C. Baktasin, M. I. Haldert, D. C. Hensley, M. R. Johnson, I. Y. Lee, F. K. McGowan. A. Virtanen, L. H. Courtney, V. P. Janzen, L. L. Riedinger, L. Chaturvedi, J. Simpson 59
Alignments, Shade Changes. Transition Rates and Aand Terminations in 157 Tm -M. A. Riley, Y. A. Akovali, C. Baktash, M. L. Halbert, D. C. Hensley, N. R. Johnson.l. Y. Lee, F. K. McGowan, A. Virtanen, V. P. Janzen, L. L. Riedinger, L. Cnaturvedi61
High-Spin Studies of :'20s: Complex Alignment mechanism - J. C. Wells, M. R. Johnson, M. A. Riley, J. Dudek, A. Virtane?, F. K. McGowan, C. Baktash, I. Y. Lee 62
Investigation of the Evolution of Collectivity in il? $^{7} 0 \mathrm{~s}$ via Lifetime Measurements - A. Virtanen, M. R. Johnson, F. K. McGowan, M. A. Riley, I. Y. Lee, C. Baktash. J. Dudei. J. C. Wells 65
Transition Quadrupole Moments of High-Spin States in ${ }^{172 W}-F$. K. McGowan, N. R. Johnson. I. Y. Lee, C. Baktash 67
Lifetime Measurement of the Correlated Continuum y Rays in : 70Hf - I. Y. Lee, C. Baktash, J. R. Beene, W. B. Gao, Y. R. Jiang, M. R. Johnson, F. K. McGowan, M. A. Riley, A. Virtanen, L. Zhou, S. Zhu 68
High-Spin Data Base - J. D. Garrett, M. A. Riley, C. Baktash. I. Y. Lee, M. R. Johnson, F. McGowan, I.. Courtney, L. L. Riedinger 70
Description of One-Quasiparticle Proton States in Rare-Earth Huclei - W. Mazarewicz, M. A. Riley, J. D. Garrett. J. Budek 71
Moments of Inertia and Shape Evolution at High Spins in 170 H . - C. Baktash, m. L. Halbert, D. C. Hensley, M. R. Johnson, I. Y. Lee, J. H. McConnell. F. K. McGowan, C. M. Steele, M. Carpenter, V. P. janzen, L. L. Riedinger 72
Search for Superdeformed Bands in 02 Sr - C. Baktash, G. Garcia-Bermudez, M. L. Halbert, D. C. Hensley, M. R. Johnson, I. Y. Lee, F. K. McGowan, M. A. Riley, A. Virtanen, 1. Abenante, D. G. Sarantites, T. M. Senkow, i. C. Griffin, X. T. Liu 75
Transition Quadrudole Moments of High Spin States in 162.163 Yb - F. K. McGoman, N. R. Johnson, Y. Schutz, C. Baktash, A. J. Larabee, J. C. Wells, I. Y. Lee 77
High-Spin Studies in Light ir Muclei - H. Q. Jin, C. R. Bingham, M. P. Carpenter, V. P. Jrnzen, L. L. Riedinger, L. Zhou, C. Baktash, M. L. Halbert, M. R. iohnson. I. Y. Lee, F. K. McGowan, M. A. Riley 80
Lifetime Measurements of High-Spin States in 185pt and 186pt - L. Zhou, Y. Janzen, H. Jin, L. Riedinger, M. Johnson, I. Y. Lee, F. McGowan, M. Riley, A. Virtanen, U. Garg, G. Kajrys, S. Monara, M. Madon, S. Pilotte 82
melear structure studies via radioactive decar
Beta Decay Properties of ${ }^{148} \mathrm{Er}$ and $: 48 \mathrm{Ho}-\mathrm{K}$. S. Toth. D. C. Sousa, J. M. Mitschke, P. A. Wilmarth 83
Delayed Proton Emission of $N=81$ Odd-Odd Precursors: $148 \mathrm{Ho}, 150 \mathrm{Tm}$, and 152 Lu - J. M. Nitschke, P. A. Wilmarth, J. Gilat, K. S. Toth, F. T. Av'gnone III 84
Beta-Delayed Proton Decay of :he $N=93$ Precursor $153 \mathrm{Yt}-\mathrm{P}$. A. Wilmarth, J. M. Nitschke, K. Vierinen, K. S. Toth, M. Kortelahti 84
Fine Structure in lsifm a Decay - K. S. Toth, P. A. Wilmarth, J. M. Mitschke, R. B. Firestone, K. Vierinen, M. O. Kortelahti, F. T. Avignone IIl 85
Beta-Decay of 154 Lu and 154 Yb - K. S. Vierinen, A. A. Shihab-Eldin, J. M. Mitschke, P. A. Wilmarth, R. M. Chasteler, R. B. Firestone, K. S. Toth 85
Nuclear Structure Effects on a Rer,aced Widths - K. S. Toth, Y. A. Ellis-Akovali, H. J. Kin, J. W. McConnell, H. K. Carter, D. M. Moltz 86
Radioactivities with $145<A<155$ Investigated at the OASIS Facility $-k$. S. Toth, J. M. Nitschke, P. A. Wilmarth, Y. A. Akovali, J. Gilat, D. M. Moltz. M. N. Rao, D. C. Sousd, K. Vierinen 81
Decays of 119 In , 122 In , and 122 In Isomers to Levels in $119 \mathrm{sn}, 1205 \mathrm{n}$, and 122 Sn - K. Alldart 99
Single-Particle States in 151 Tm and $15: E r$; Systematics of Neutron States in $N=83$ muclei - Y. A. Akovali. K. S. Toth, A. L. Goodman, J. M. Nitschke, P. A. Wilearth, D. M. Moltz, M. N. Rao, D. C. Sousa 89
Search for Low-Spin Superdeformed : :ates in $186 \mathrm{Hg}-\mathrm{Y}$. A. Akovali, J. A. Becker, C. R. Bingham, H. K. Carter, I. \therefore Girit, E. A. Henry, J. Kormicki, R. Meyer, W. Schmidt -0tt 90
heayt-ion reaction mechanisn stuoies, fusion and fission
Pions in Spontaneous Fission? The Saga Continues - J. R. Beene, C. E. Bemis, Jr.. M. L. Halbert 92
Angular Momentum Effects in Subbarrier Fusion - M. L. Halbert, i. R. Beene, D. C. Hens ley, K. Honkanen, T. M. Semmam, V. Abenante, D. G. Sarantites, Z. Li 94
The Giant Dipole Resonance in Very hot A - 170 Systems - H. P. Morsch, W. Spang, J. R. Beene, F. E. Bertrand, R. L. Auble, M. L. Hialbert, D. C. Hensley,
I. Y. Lee, R. L. Varmer, D. G. Sarantites, D. W. Stracener 96
Excitation Energy Division in the Qua ielastic Region from Reactions of $12 \mathrm{MeV} / \mathrm{Mucleon}$ te Ti with 15 GNd - T. M. Semkow, D. . Sarantites, K. Honkanen, Z. Li, M. Ross, J. R. Beene, M. L. Halbert, D. C. Hensley 97
Excitation Energy Division in ${ }^{35} \mathrm{Cl}+209 \mathrm{Bi}$ at $15 \mathrm{MeV} / \mathrm{Nucleon}-\mathrm{A}$. A. Marchetti. A. C. Mignerey, W. L. Kehoe, B. Libby, H. Madani, K. B. Morley, F. E. Obenshain 98
Angular Momentum Dependence of Complex Fragment Enission - L. G. Sobotka, D. G. Sarantites, Ze Li. E. L. Dines. M. L. Halbert, D. C. Hensley, J. C. Lisle, R. P. Schaitt, Z. Majka, G. Mebbia, H. C. Griffin, A. J. Sierk 99
Studies of Emissions of Complex Fragments and Effective Temperatures for Collistions of $58 \mathrm{Mi}+58 \mathrm{Mi}$ at $11 \mathrm{MeV} / \mathrm{Mucleon}$ - J. Gomez dei Campo, J. L. Charvet, A. D'Onofrio. R. L. Auble, J. R. Beene, M. L. Halbert, H. J. Kim 99
Progress on the H!i,i cistector - K. Teh. D. Shapira, H. J. Kim, R. Movotny, M. Korolija 100
Alignment Measurement in $28 \mathrm{Si}+12 \mathrm{C}$ Reaction - A. Ray, D. Shapira, J. Gomez del Campo, H. J. Kim, J. Sullivan. B. Shivakumar, M. Jeff, M. L. Halbert 101
Transfer Reactions for the $50 \mathrm{TH}+90 \mathrm{Zr}$ System below the Coulomb Barrier - h. J. Kim et al. 102
Meutron Flow Betwenn Mrlat as the Principal Enhancement Mechanism in Heavj-Ion Subbarifer Fusion - r. H. Stelson 103
emission of light ions, meutrons, pions, and photoms in heayy-low reactions
Preequilibrium Emission and Target-Projectile-ifke Correlations for $20 \mathrm{Me}+60 \mathrm{Nt}$ at $E(20 \mathrm{Me})=740 \mathrm{MeV}-\mathrm{A} . \mathrm{D}^{\prime}$ Onofrio, J. Gomez del Campo, B. Delaunay, J. Deleunay, H. Dumont, F. Andreozit, A. Brondi, R. Moro, M. Romano, F. Terrasi 103
Extended Emission Sources Ooserved via Two-Proton Correlations - T. C. Awes et al. 104
Neutron Enission from Products of Strongly Damped feactions of S8Mi +165 Ho at 930 MeV - G. A. Petitt et al. 104
Fragmentation of lio Projectiles at 100 MeV per Muileon - J. O. Silk, H. D. Holingren, 6. L. Hendrie, T. J. M. Symons, G. D. Westfall. P. H. Stelson, S. Raman, R. L. Auble. J. R. W, K. Van Blober 105

mICLEAR PHYSICS MITH ULTRARELATIVISTIC PROJECTILES

Overview of ORNL Ultrarelativistic Heavy-Ion Program - F. Plasil et al. 105
Forward and Transverse Energy Distributions in Oxygen-Induced Reactions at 60 A Gev and 200 A GeV - R. Albrecht et al. 137
Photon and Neutral Pion Distributions in 60 and 200 A GeV :60 + Mucleus and Proton * Rucleus Reactions - R. Albrecht et al. 108
Charged-Particle Distributions in 160 -Induced Huclear Reactions at 60 and 200 A GeV - R. Albrecht et al. 108
Target Fragmentation in Proton-Rucleus and 160 -Mucleus Reactions at 60 and $200 \mathrm{GeV} /$ Mucleon - H. R. Schoidt et al. 109
A Reural-Hetwork Approach to the Problea of Moton-Pair Combinatorics - r. C. Mes 109
Energy Measurements from Sulfur-Induced Reactions at $200 \mathrm{GeV} / \mathrm{Muc}$ leon - R. Albrecht et al. 111
Study of Fluctuations in Charged Multiparticle Production in 200-GeV/ Mucleon Hucleus-itucleus Collisions - I. Lund, G. R. Young et al. 116
Intrinsic Photon Spectra from 160 -Induced Reactions at $200 \mathrm{GeV} / \mathrm{Muc}$ leon - T. C. Ares et al. 119

- Momentua Distributions from Central and Peripheral 160 + Au Collisions at 200 A GeV - R. Albrecht, F. Plasil et al. 122
Muclear Stopping in Oxygen-Induced Reactions at 200 GeV/Mucleon - F. E. Obenshain et al. 124
Calorimeter and Absorber Optimization Proposal for the RHIC Dimon Experiment - G. R. Young et al. 128
Workshop on Monte Carlo Codes for High-Energy Muclear Collisions - T. C. Ares. S. Safni, S. P. Sorensen, M. L. Tincknell. C. Y. Mong 132
MISCELLANEOUS TOPICS
Electron-Impact Ionization of U-88*-U-91*: A Novel Application of High Energy Heavy-lon Channeling - C. E. Bemts, Jr., J. Gomez del Campo, C. A. Ludemann, C. R. Vane, N. Claytor, B. Feinderg, H. Gould 133
IMSTRUNEMTATIOM
The BaF2 Array Project - J. R. Beene, F. E. Bertrarid, J. L. Blankenship 134
GMMASPHERE Research and Development - J. Y. Lee. A. D'Onofrio, J. R. Beene, J. M. Johnson, R. T. VanHook 135
An Array of BaF Detectors for the Study of Soft Photons Emitted in Ultrarelativistic Proton-Wucleus and Wuclels-Wucleus Collisions - D. Shapira, A. Ray, K. Teh, C. Moody, D. Lissauer, J. Schuckraft. W. Willis 131
Sampling Calorimeters fur the Relativistic Heavy-Ion Experiment WA80 at CERN - t, C. mes et al. 138

3. THE UNISOS PROGRNM

Laser Ion Suurce Development - G. A. Barrera, W. M. Fairbank, Jr., H. K. Carier 140
The On-Line Orientation of ${ }^{191} \mathrm{Hg}$ and ${ }^{193} \mathrm{Hg}$ - I. C. Girit. C. R. 8ingham, J. D. Cole,
J. H. Hanilton, E. F. Jones, H. Xie, J. Kormicki, K. S. Krane, W. G. Mettles,
M. L. Simpson, E. F. Zganjar, H. K. Carter, W. L. Croft, P. M. Gore, B. D. Kern, M. O. Kortelahti, P. M. Mantica, W. B. Mewoolt, Y. S. Xi, B. E. Limerman 141
Highly Converted Transitions in 189 Au - M. O. Kortelahti, J. L. Wood. E. F. Zganjar $1: 2$
Study of Highly Converted Transitions in 185 pt - J. Schwarzenberg, R. W. Fink. J. L. Hood, E. F. Zganjar 143
Search for Strongly Coupled Bands in ${ }^{187 A u}-E . F$. Zganjar, J. L. Hood 143
Low-Energy Level Structure in $193 \mathrm{~Pb}, 193 \mathrm{Tl}$, and $193 \mathrm{Hg}-\mathrm{C}$. R. Bingham, H. V. Caraichael, G. Zhang, L. L. Riedinger, E. F. Zganjar, M. O. Kortelahti, H. K. Carter 144
The Interpretation of Selected States in 195 Tl in Terms of Particles Coupled to a Triaxial Rotor - H. V. Carmichael, C. R. Bingham. P. B. Semmes 145
Systeatics of Light Even-Even Rare-Earth Muclei with N < 82 - B. D. Kern, M. D. Kortelahti, R. A. Braga, R. W. Fink 146
Mon-Yrast Level Structire of 135 Md via Beta Decay of 135 Pm - M. O. Kortelahti, H. K. Carter, R. A. Braga, R. W. Fink, B. D. Kern 147
Decay of Mass Separated ${ }^{137}$ Sa - R. A. Braga, M. O. Kortelahti, R. W. Fink, B. D. Kern, R. L. Mekodaj 148
Energy Levels of $136 \mathrm{P}_{\text {m }}$ and 136 md via Beta Decay of 135 jn and $136 \mathrm{Pm}_{\mathrm{m}}$ - B. D. Kern, R. L. Mlekodaj, M. O. Kortelahti, R. A. Braga, R. W. Fink 150
Search for Low-Spin Superdeformed States in $194 \mathrm{Hg}-\mathrm{E}$. A. Henry, Y. A. Aknvali, J. A. Becker, H. K. Carter, J. Kormicki, C. R. Bingham, W. D. Schmidt-Ott, R. A. Meyer, Y. S. Xu, H. V. Carmichael 150
Level Structure of $119 \mathrm{Te}-\mathrm{P}$. F. Mantica, B. E. Limmerman, W. 8. Malters, E. F. Zganjar, M. O. Kortelahti. W. D. Schmidt-Ott. F. K. Cartar, W. L. Croft, M. B. Newbolt 151
4. EXPERIMERTAL ATONIC PHYSICS
ACCELERATOR-BASEL ATOMIC PHYSICS
Charge and Angular Correlated Inelasticities in MeV/anu Ion-Aton Collisions - H. Schöne, R. Schuch, S. Datz, P. F. Dittner, J. P. Giese, H. F. Krause, M. Schulz, O. C. Kessel 154
Electron Energy Distributions Accompanying Multiply Ior zing Collisions - S. Datz, H. Schöne, C. R. Vane, P. F. Dittner. J. P. Giese, R. Hippler, H. F. Krause, M. Schulz, J. K. Swenson 155
Electron-Electron Interactions in Transfer and Excitation in FB^{+}. H_{2} Collisions - M. Schulz, J. P. Giese, J. K. Swenson, S. Datz, P. F. Dittner, H. F. Krause, H. Schöne, C. R. Vane, M. Benhenni, S. M. Shafroth 157
Double Excitation of He by Fast Bare Ions - J. P. Giese. M. Sihulz, J. K. Smenson, M. Benhenni, S. M. Shafroth, H. Schone, P. F. Dittner, C. R. Vane, S. Datz 158
Resonant Dielectronic Excitation in Crystal Channels - S. Datz, C. R. Vane, P. F. Dittner, J. P. Glest, J. Gomez del Campo, N. L. Jones, H. F. Krause, P. D. Miller, M. Schulz, H. Schone, T. M. Rosseel 159
Radiative Electron Capture by Bare- and One-Electron Jons - C. R. Vane, S. Datz, P. F. Dittner, J. P. Giese, H. F. Krause, P. D. Miller, H. Schठne, M. Schulz, T. M. Rosseel, R. S. Peterson 162
Atomic Physics Facility at M $\begin{gathered}\text { IRF - P. F. Dittner }\end{gathered}$ 165
EN Tandem Operations - M. L. Jones. P. F. Dittner 166
Ooservation of Landau Resonances at com magnetic Field Strength in a High- Resolution Laser Photodetachment Study of $\mathbf{0}^{-}$- H. F. Krause 166
Energy- and Angle-Resolved motoelectron Spectroscopy of Fast-Hoving Megative lons - D. J. Pegg. J. S. Thompson, J. Deliwo, G. D. Alton, R. K. Compton 168
Argon Recoil-Ion Charge-State Distributions Produced by Bedms of $23 \mathrm{MeV} \mathrm{ClS+}, \mathrm{Cl}^{+}, 10^{+}$- J. C. Levín, C.-S. O, H. Cederquist, C. Biedermann, I. A. Sellin 170
Recoil Ion. Scattered Ion. Free Electron Triple Coincidenie Measurements - M. Breinig, J. E. Freyou 171
Production and Transport of Convoy Electrons in Amorphous Carbon Fotls - J. P. Gibbons, S. Elston, R. DeSerio, C. Biedermann, M. Breinig, C. E. Conzalez-Lepera, O. Heil. H. -P. Hilskotter, H. Rothard, I. A. Sellin, C. R. Vane 172
ATOMIC PHYSICS FO. FUSION MOERM
Electron-Impact Ionization of Multiply Charged Chromiun Ions - M. Sataka, S. Ohtani, D. Smenson, D. C. Gregory 174
Recomisiation Resonances in Electron-Impact lonization of multiply Charged Uranium I. is - D. C. Gregory. M. S. Huq, F. W. Meyer. M. Sataka, D. Smenson, S. Chant renne 176
Electron Spectroscopy of Double Election Capture into Autotonizing States Formed in Low-Energy Multicharged Ion-Atom Collisions - F. W. Meyer, J. K. Smenson, D. C. Griffin, C. C. Havener, M. S. Huq, R. A. Phaneuf, K. Somer, N. Stolterfoht 171
Angular Asymmetry ir the Ejected Electron Spectrum Produced in Het + He C n !?isions - J. K. Smenson, F. W. Heyer. C. C. Havener. N. Stolterfoht 177
Electron Capture in $\mathrm{Ma}^{+}+\mathrm{H}(\mathrm{O})$ Collisions at eV-keV Energies Using Merged deams - M. S. Huq. C. C. Havener, R. A. Phaneuf 179
Electron Spectroscopy of Multicharged Ion-Surface Interactions - F. W. Meyer. C. C. Havener, D. M. Zehner. S. H. Overbury, K. J. Reed, K. J. Snowdon 181
5. THEORETICAL PHYSICS
LEPTON PAIR PROOUCTION IM KEAVY-ION COLLISIONS
W-Boson Pair Production in Ultrarelativistic Heavy-Ion Collisions - J. Wu. C. Bottcher. M. R. Strayer 183
Effects of Electronagnetic Form factors on Heavy Lepton Patr Production - C. Bottcher, D. J. Ernst. M. R. Strayer, J. Wu 184
Electron Pair Production from Pulsed Electromagnetic Fields in Relativistic Heavy-Ion Collisions - C. Bottcher, M. R. Strayer 185
Anomalous Electron Pair Procuction in High Energy $\boldsymbol{n}^{-}+$p Reactions - D. J. Ernst, C. Bottcher, M. R. Strayer 185
Probing the Vacuum with Highly Charged Ions - C. Bottcher, M. R. Strayer 186
Oscillatirns of the Polarized Vacioum Around a Large 2 "Nucleus" - A. Iwaiaki.
S. Kuridno 180́
Flectron Patr Production and Capture in Heavy-Ion Collisions - A. S. Imar. V. F. heracker, M. R. Strayer, C. Rottcher 186

ULTRARELATIVISTIC HEAYY-IJH PHYSICS COLLISIONS

R multiple Collision Model for High-Energy Mucleus-Micleus Collisions - C. Y. Hong, Z. Lu 187
INTERMEDIATE ENERGY PHYSICS
St.dies of the whear Single-Particle Response Function in a Eimple model - 6. D. thite, K.1.R. Davies, F. J. Siemens 187
Generalizations of the Poincare-Bertrand Thenrem and Applications co Huclear Dispersion Relations - K.T.R. Dav.es 188
Theory a.id Calsulations of the Dyson Fquations Involving Mucleon-Delta-Mesonic Interactions - K.T.R. Davies, G. D. White, P. J. Siemens, M. Soyeur 189
Inclasive γ and $\mathbb{1 0}^{0}$ Cross Sections in Heavy-Ion Reactions - D. J. Ernst, M. R. Strayer 190
Phenomenoloyical Local Potential Model for. Pion-Mucleus Scattering - G. R. Satchler 191
 -91
Pionic Contribution to the Scalar and Longitudinal N-s Transition Quadrupole Form Faciors - S. Kumano 191
heavy-ion reactions
Relation Between M_{h}, M_{p}, and Hadronic Excitation Strengths When There is Strong Absorption: The AZr $\left(a_{0} 0^{\prime}\right)$ Reaction - G. R. Satchler 192
The Threshold Anomal: for Heavy-Ion Scattering - G. R. Satchier 192
Folding Model Aralysis of $12,13 \mathrm{C}+12 \mathrm{C}$ and $100+12 \mathrm{C}$ Scattering at Intermediate Energies Using a Density-Dependent Interaction - M. E. Brandan, G. R. Satchler 192
Spin-Orbit Force in TOHF Calculations of Heavy-Ion Collisions - A. S. Umar, M. R. Strayeri, P.-G. Reinhard, K.T.R. Davies, S.-J. Lee 192
Dissipation and Forces in Time-Dependent Hartree-Fock Ca'culations - P.-G. Reinhard, A. S. Umar, K.T.R. Davies, M. R. Straver, S.-J..Lee 193
Further Optical Model Studies of 160 Scattering at $E / A=94$ Mel - A. M. Kobos, M. E. Brandan. G. R. Satchler 193
Further Studies of Density-Cependent Interaritions for the Excitation of Collective States - M. E. Farid, G. R. Satchler 193
mUCLEAR STRUCTURE
Reflection-Asymmetric Rotor model of Odd-A ~ 219-229 Muclei-G. A. Leander. Y. S. Chen 194
Muclear Structure of Light Thallium Isotopes as Deduced from Laser Spectroscopy on a Fast Atom Beam - J. A. Bounds. C. R. Bingham. H. K. Carter, G. A. Leander, R. L. Mlekodaj, E. H. Spejewski, H. M. Fairbank, Jr. 194
Shell-Model Structure of Yrast States in $N=50-5$ Z Isotopes with $Z=88-98$ - J. B. McGrory 194
Systematics or $B\left(\varepsilon 2 ; C^{+}+2_{l}^{+}\right)$Values for Even-Even Ruclei - S. Raman. C. W. Mestor. Ir.. K. H. Bhatt 135
Finite Particle Mumber Effects and the Relationship of the Fermion Dynamical Symmetry Model with the Milsson Model - H. Wu, C. L. Wh. D. H. Feng, M. W. Guidry 196
The Muclear Oblate Window - C. L. Wu. W. M. Zhang, D. H. Feng, M. W. Guidry, L. L. Riedinger 197
Dynamical Pauli Effects and the Saturation of Nuclear Collectivity - D. H. Feng. C. L. Hu, M. H. Guidry, Z. P. Li 198
PHYSICS 'F (e^{+}, e^{-}) SYSTEAS
Micro-polyelections - The Condensation of ($e^{+} e^{-}$) Due to Moncentral. Short-Range Electromagnetic Interactions - C. Y. Wong 198
Inceraction of a Composite Particle in a Stiong Coulomb Fiel.t - C. Y. Mong 199
Progress of a Monperturbative, Covariant Trealment of Meriral Lepton-Antilepton Systems - R. L. Becker, C. Y. Wong, H. W. Crater, P. Van Alstíne 390
" Movel ($e^{+} e^{-}$) Resonance Behavior for a Highly Energy-Lependent, Eifective Interaction - C. Y. Hong, R. L. Becker, H. W. Crater, P. van Alstine 202
COMPUTATIOMAL PHYSICS
Periodic Time-Dependent Hartree-Fock Solutions from the Basis spline Method - R. Y. Cusson, J. W, C. Bottcher, M. R. Strayer 204
The Basis Splira Collocation Method Applied to the Dirac Equation - J. Mu. C. Bottcher. M. R. Strayer 205
Iterative Method for the Iime-Dependent Relativistic Mean-Field Theory - J. Wh, J. J. Bai, R. Y. Cusson 206
Mumerical Method for the Calculation of Continuum Excitation Anclitudes in Time- Dependent Extarna; 'ield Problems - C. Bottcher, M. R. Strayer, A. S. Unar, V. E. Oberacker 207
Application of Vector and Parallel Computer Architertures - C. Bottcher, M. R. Strayer, G. J. Bottrel!, J. A. Maruhn 207
MATHEMATICAL PHYSICS
Periodic Trajectories for the rwo-Dimensional Monintegrable Henon-Heiles Hamiltonian - T. Huston, K.T.R. Davies, M. Baranger 208
The Calculation of Periodic Trajectories - M. Baranger, K. T.R. Davies, J. H. Mahoney 209
Complex-Plane methods for Evaluating Highly Oscillatory Integrals in Huclear Physics I - K.T.R. Davies. M. R. Strayer, G. D. White 209
Complex-Plane Methods for Evaluating Integrals with Highly Oscillatory Integrands - K.T.R. Davies 210
Potential Groug Approach to a Class of Solvable Potentials -- J. Wu, R. Y. Cusson, r. Alnassid 210
Potential Group Approach and Differential Equations - J. Wu, R. Y. Cusson, r. Alnassid 212
QUNIKS IN MUCLEI
y-Scaling in a Simple Quark Model - S. Kumano, E. J. Moniz 213
The Spin and Flavor Dependence of Parton Distribution Functions - F. E. Close, A. W. Thomas 213
Parton Distributions in Muclei: Quagna ur Quagmire? - F. E. Close 214
ATONIC AMD MORECULAR PHYSICS
iime-Depenfent Hartree-fock studies \sim Ion-Atom Collisions - C. Bottcher, G. J. Bottrell 4
Continuum Electron Spectra for Proton Impact on Hydrogen - C. Bottcher, G. J. Bottrell, M. R. Strayer 214
On the Cross Sections for Electron Transfer, Ejection, and Excitation in Coincidence with a Hole in a Specific Shell - R. L. Becker 215
Formulatior. of the OHCE Method in Coupled Channels Theory for the Capture of Projectile Electrons - R. L. Becker 215
Ionization in Collisions Between Electrons and Complex Ions - C. Bottcher, D. C. Griffin, M. S. Pindzola 217
Electron-Ion Collisions in the Average-Configuration Distorted-Wave Approximation - M. S. Pindzola, D. C. Griffin, C. Bott:her 2! 7
Electron-Impact Ionization Data for the Fe Isonuclear Sequence - M. S. Pindzola, D. C. Griffin, C. Bottcher, S. M. Younger, H. T. Hunter 217
Production of High-Angular Momentum Rydberg States by Stochastic Cullisions - J. iurgofrfer, C. Bottcher 218
The $\mathrm{v}_{\mathrm{i}} \mathbf{2}$ Electron Emission in Ion-Aton Collisions with Short Range Potentials - J. Burgdorfer, J. Wang, A. Baråny 218
Translation Imbedded Perturbed Stationary States - G. J. Bottrell, T. G. Hell 219
Mumerical Hartree-Fock Wave Functions for Triatomic Molecules - G. J. Bottrell. J. C. Morrison 219
6. LASER AND ELECTRO-OPTICS LAB
Diagnostic for Fusior-Produced A'pha Particles Besed on Small-Angle Thomson Scattering of Pulsed CO_{2} Laser Radiation - R. K. Richards, ©. A. Bennett, L. K. Fletcher. Y. M. Fockedey, H. T. Hunter, D. P. Hutchinson, K. L. Vander sluis 221
Development of a Submillimeter-Wave Multich.innel Laser Interferometer for the Advanced Toroidal facility - C. H. Ma, C. A. Bennett, W. H. Casson, Y. M. Fockedey, J. Lee, K. L. Vinder Sluts, D. P. Hutchinson 222
Proposal for a Two-Color Interferometer/Polarimeter for the Compact Ignition Tokamak - C. H. Ma, D. P. Hutchinson, K. L. Vander Sluis 222
Optic Damage and Irradiation Studies - H. T. Hunter, R. K. Richards, D. P. Hutchinson 224
7. HIGA EMERGY PHYSICS
H. O. Cohn 226
8. COMPIlatioms and evaluations
Controlled Fusion Atonic Data Center - I. Alvarez, C. F. Barnett, C. Cisneros, H. 8. Gilbody, D. C. Gregory, C. C. Havener, H. T. Hunter, M. S. Huq, R. K. Janev, M. I. Kirkpatrick, E. W. McDaniel, F. W. Meyer, I. J. Morgan, R. A. Mhaneuf, M. S. Pindzola, J. K. Swenson, E. H. Thomas 229
Nuclear Dat: Project - Y. A. Akovali, M. R. Lay, M. J. Martin, M. R. Schararak 230
9. ACCELERATIR DESIGN AND DEVELOPNENT
HISTRAP Accelerator Physics Design Studies - I. Y. Lee. J. B. McGrory, D. K. Disen, G. R. Young 232
HISTRAP Prototype Hardware Studies - W. H. Atkins, D. T. Dowling, J. W. johnson, R. S. Lord, J. W. McConnell, W. T. Milner, S. W. Mosko, D. K. Olsen, B. A. Tatum 234
10. mBLICATIOMS 244
11. PAPERS PRESENTED AT SCIENTIFIC AMD TECHAICAL REETIMGS 268
12. GENERAL IMFORMATION 279

INTRODUCTION

This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning $\mathfrak{j c t o b e r} 1$, 1987, and endinc, September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics.

Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the $25-\mathrm{MV}$ tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at $\mathbf{2 5 . 5} \mathbf{~ M N}$. These and other highlights, including comissioning of the new experimental devices, are summarized in Chapter 1.

The experimental nuclear physics program continues to be dominated by researcl. utilizing heavy ions. These activities, wile continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies (GAMIL) and especially ultrarelati,istic beams (CERN). Results of this work are presented in Chapter 2.

The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuc'ear structure research of this consortive is included in Chapter 3, along with first reports from the initial operation of the Muclear-Orientation Facility.

In adcition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as "User Resources." Chapter 4 reports on the operation of these two facilities and the experimental programs in accelerator-based atanic physics, based at the EN Tandem and the Holifield Facility, and the fusion-related atomic physics program based at the ECR Facility.

The efforts in theoretical physics, covering both nuclear and atomic physics, are presented in Chapter 5. Continued efforts on computationa! aspects of theoretical physics are highlighted and serve as the impetus for a new Division initiative to establish a Center for Computational Physics.

In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. This work is discus:ed in Chapter 6.

A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported in Chapter 7.

The Division operates two efforts in data capilation and evaluation. The work of the Atomic Physics Data Center and our effort as part of the Mational Nuclear Data Center are sumarized in Chapter 8.

Our proposal for a heavy-ion storage ring for atomic physics (HISTRAP) remains a major new initiative of the accelerator-based atomic physics program and the Division. Continuing efforts on optimizing the ring design and on component prototyping are presented in Chapter 9.

The report concludes with general information on publications, Division activities, and personnel changes.

1. HOLIFIELD HEAVY ION RESEARCH FACILITY

OVERYIEW

J. A. Martin C. M. Jones
R. L. Robinson

Operation and development of the Holifield facility in this period was characterized by a continuation of the high quality operation achieved in FY 1987, and by exciting developments in both accelerator technology and instrumentation for the experimental program.

Fifty experimental runs were completed in Fy 1988 involving 167 participants. Of this group, 44 were graduate students. The institutions represented are summarized in Table 1.1.

The third and final phase of the compressed geometry acceleration tube program was successfully completed; the tandem accelerator has now been completely equipped with acceleration tubes of the improved design. In addition to allowing us to set new voltage records, this improvement

Table 1.1. Distribution of users who participated in research programs at the HOLIFIELD during the twelve-month period between October 1, 1987, and September 30, 1988

Institutions	Number of Researchers	Institutions $\quad \begin{aligned} & \text { Numb } \\ & \text { Resea }\end{aligned}$	Number of Researchers
U.S. UNIVERSITIES		mational laboratories	
East Caralina University	1	Idaho National Engineering Laboratory	1
Eastern Kentucky University	1	Lawrence Berkeley Laboratory	1
Edinboro University	1	Lawrence Livermore National Laboratory	3
Furman University		Oak Ridge National Laboratory	35
Georgia State University	2		40
Georgia Institute of Technology	4		
Hendrix College	1	MON-U.S. INSTITUTES	
JIHIR	1		
Louisiana State University	1	CEN/Saclay (France)	1
Mississippi College	2	Hindi Uriversity (India)	1
Mississippi State University	1	Inst. Kernphysik, Frankfurt (Germany)	$?$
Notre Dame	1	lnst. Kernphysik, Julich (Germany)	1
ORAU	4	McMaster University (Canada)	1
Oregon State University	2	Nacional de Energia Atomics (Argentina)	I
Southern Methodist University	1	Nazionale de Fisica Nucleare (Italy)	1
Tennessee Technological University	1	Research Institute of Physics (Sweden)	1
Texas ASM University	1	Niels Bohr Inst. (Denmark)	2
University of Florida	3	Nuclear Research Center-Negev (Israel)	1
University of Iowa	1	Ruder Boskovic Inst. (Yugoslavia)	2
University of Kentucky	1	Bielefeld University (Germany)	1
University of Maryland	9	Univ. of Giessen (Germany)	3
University of Michigan	1	Univ. of Gottingen (Germany)	1
University of North Carolina	1	Univ. of Heidelberg (Germany)	3
University of Pennsylvania	4	Univ. of Jyvaskyla (Finland)	2
University of Pittsburgh	4	Univ. of Montreal (Canada)	4
Universtity of Rochester	${ }^{3}$	Sao Paulo University (Brazil)	1
Untuersity of Tennessee	11		
University of Tennessee/Chattanooga	1		29
Vanderbilt University	17		
Washington University	6	OTHER	
Washington \& Lee University	2		
Western Knntucky University	4	Wadsworth Laboratory	1
Yale ! $/$ niversity	$\frac{2}{36}$	Webh High School, Knoxville	$\frac{1}{3}$
		Total	161

has had an immediate impact on operation for the experimental program, allowing us to provide beams which have previously not been available.

Two developments in negative ion source technology are especially notable. The first is development of a high-intensity, plasma-sputter. heavy-negative-ion source suitable for synchrotron injection. The second is development of a new technique wich allows the Cs sputter source, used for normal operation of the accelerator, to be used for production of Group IA (Li, Na, K, Rb, Cs) element beams.

Utilization of the facility has been improved in this reporting period by addition of a number of diagnostic elements in ORIC beam lines. These include slits, viewers, and beam profile monitors. With the addition of these elements, it is now possible to adjust and montior the beam transport systen in a systematic may.

The close-packed Ge ball and the Nuclear Orientation Facility mere commissioned and used successfully in the experimental program. The HILI, a third new experimental device wich became operational late last year, was used for three major experiments during this fiscal year. These three devices considerably increase the capability of the Holifield Facility for the investigation of low-lying-level properties, high-spin states, and reaction mechanisms. The use of these devices for 301 of the research hours during Fy 1988 exemplifies their importance.

Two new beam lines, to be used primarily for atonic physics programs, were completed. The merged electron beam system. mich was previously used at the ORNL EN tandem accelerator, has been installed on one of these lines.

Ouring the year, difficult and long-lead-time hardware components were developec for HISTRAP. a proposed synchrotron/cooler/storage ring. HISTRAP has a maximum bending power of ?.67 im, $\mathrm{ME} / \mathrm{Q}^{2}=355$, and would serve as an energy booster for the HHIRF tandem in addition to operation in stand-alone mote. A vacuum of $4 x$ 10-12 Torr has been achieved in a high-vacuum test stand wich mortels $1 / 16$ of the proposed ring-circumference. A prototype tipole maqne? has been fabricatad and will de evaluaten during the coming year. A prototype rf cavity has been
fabricated anci is being tested. Funding for the HISTRAP is being requested for fy 1991.

ACCELERATOR OPERATIONS AND DEVELOPMENT

OPERATICNS

G. D. Alton	C. A. Ludemann
J. A. Biggerstaff	C. A. Maples
M. R. Dinehart	J. A. Martin
D. T. Dowling	R. L. McPherson
H. D. Hackler	M. J. Meigs!
C. L. Haley	G. D. Mills
D. L. Haynes	S. W. Mosko
C. A. Irizarry	S. N. Mu.:ray
C. M. Jones	O. K. Olsen
R. C. Juras	B. K. Sizemore
S. N. Lane	B. A. Tatum
C. T. LeCroy	S. D. Taylor

Facility operating statistics for the current reporting period. FY 1988, are shown in Tables 1.2 and 1.3. As was expected, hours of beam available for research was reduced, in comparison to FY 1987, due to the installation of compressed geometry acceleration tubes in the tandew accelerator. Unscheduled maintenance continued at the low levels achteved in FY 1987.

A list of beams provided for research in FY 1988 is given in Table 1.4. During this

Table 1.2. Tandem accelerator utilization for the period October 1, 1987, through September 30, 1988

	Hours	Percent
Beam available for research (tandem-alone and coupled operation)	3362	38
Beam available during ORIC tuning (coupled operation)	303	3
Accelerator tuning (includes scheduled startup-shutdown)	494	6
Marhtne studies (includes conditionting not required for specific experiments)	1307	15
Total operating time	5466	62
Inschertuled mainteriance	263	3
ircheruled maintenance	7695	31
crheduled shuthown	351)	4

Thble 1.3. Cyclotion utilization for the period October 1, 1987, through September 30, 1988

	Hours	Percent
Beam available for research (coupled operation)	1037	12
Accelerator tuning (includes scheduled startup-shutdown and operation during tandem tuning)	272	3
Machine studies	13	0
Unscheduled maintenance	89	1
Scheduled shut down and mántenance	7373	85

Table 1.4. Beams provided for research for the period October 1, 1987, through Septenber 30, 1988

| Ion
 Soecies | Maximum
 Energy
 $(M e V)$ |
| :--- | :--- | :--- |

${ }^{1} \mathrm{H}$	25	T
${ }^{12} \mathrm{C}$	110	1
${ }^{16} 0$	225	1
${ }^{170}$	377	T, C
${ }^{18} 9$	90	T
${ }^{19} 9$	180	I
${ }^{285} \mathrm{Si}$	701	T, C
32 S	?3C	\dagger
345	170	T
365	165	T
${ }^{35} \mathrm{Cl}$	529	T.C
${ }^{37} \mathrm{Cl}$	180	T
${ }^{40} \mathrm{Ca}$	328	「
${ }^{4} 4 \mathrm{Ca}$	185	「
${ }^{58} \mathrm{Ni}$	918	T. C
64 Mi	170	Γ

* $T=$ Tandem alone; $C=$ Coupled mode.
period, 16 ion species, ranging in mass from ${ }^{1} \mathrm{H}$ to ${ }^{64} \mathrm{Ni}$, were provided for research.

Two beams provided for use in the atomic physics research program are especially 900 : examples of the enhanced capabilities wich result from the tandem accelerator's improved terminal potential performance. The first, provided at a terminal potential of 23.4 MN , was $327.5 \mathrm{MeV}{ }^{40} \mathrm{Ca}^{19+}$. The second, provided at
25.0 MW, was $225.3 \mathrm{M} \cdot \mathrm{V}^{160^{8+} \text {. These beans could }}$ not have been provided prior to the compressed geometry tube installation.

1. Instrumentation and Controls Jivision, ORNL.

tandem acceleratcr

The third and final phase of the Fy 1986 Accelerator Improvemert and Modification (AIM) project wich provided for installation of compressed geometry acceleration tubes was completed in Muember 1987. Following conditioning and tests, the tandem accelerator was returned to service for the experimental program in early January 1988. After two further conditioning periods in May 1988 and September 1988, record terminal potentials were achieved for operation with beam (25.5 W) and operation for the experimenta! program (25.0 MN . Further details on this effort are provided in another contribution to this report.

A distribution function of terminal potential versus number of runs is shown in Fig. 1.1. Our

Fig. 1.1. The number of runs in l-My-wide intervals is shown as'a function of tandem accelerator terminal potential for the period October 1, 1987, through September 30. 1988.
policy of conservative operation continued with only 23 full-column sparks during the period.

Operation

Reliability of the tandem accelerator continued to be excellent. During one period from December 1987 to April 1988, the accelerator was operated for over four months without a tank opening, providing 1741 hours of beam for research with only 30 hours of unscheduled maintenance. In FY 1988, operation for the experimental progras: was interrupted only once by an unscheduied tank opening.

In addition to operation for the experimental prooram. the accelerator was used for severa' "machine research" tasks. These included charge state distribution measurements and foil Iffetime measurements in preparation for coupled operation with rare-earth beams and confirmation of the identity of newly developed Group IA element beams. Details of this mo-k are described in other contributions to this report.

Operation of the SF_{6} storage arid recirculation system continued to be without incident. $S F_{6}$ inventory losses for the year were about 1.5%.

Improvements and Modifications

During the extended matntenance period required for installation of the compressed geonetry acceleration tubes, a number of other tasks were accomplished. These included careful inspection and testing of the column structure, fnspection and cleaning of the charging chains, installation of new corona points (with improved brackets), installation of new shorting rod cont etts, installation of new large-diameter efnzel lenses in the injector, careful realignment of fon optic components in the injector and injecifon beam line, and extensive modification of injector deck wiring and controls to improve access and maintainatility). Also during this malntenance period, a new corona point alignment technique was implemented. In this technique, a current-regulated high-voltage power supply is used to adjust the gars. For a fixed current (typically 20 LA), the gaps can be aligned to a voltage tolerance of $\pm 10 \%$; , lower value than
was achievable with the previously used mechanical adjustment technique.

Control system improvements in this period included integration of beam line 41 controls and a revision of the operating system software.

Ion Source Development

In collaboration with staff members fron the National Laboratory for High Energy Physics of Japan (KEK). a new high-intensity, pulsed-mode, plasma-sputter heavy-negative-ion source has been developed. Providing multi-mA peak intensity heavy negative ion beams, this source appears to be especially mell suited for synchrotron injection applications.

A new technique for the generation of useful atomic negat ive ion beam intensities of the Group IA elements (Li, Ma, K, Rb, Cs) using a standard Cr sputter source has been developed.

Descriptions of the high-intensity pulsed negative ion source and the technique for generating atonic negative i-... beams from the Group IA elements are given in other contributions to this report.

Fallures of Interest

After nine years of fafthful service (40,600 hours of operation), chain indeat :hres of chatn set number 2 fatled. After review, it was decided to continue operation; Aly 30 minutes of ream time were lost. During the next s:heduled tank opening, it was determined that the faflure occurred due to a rivet that had worked loose; there was no significant damage to the column. The broken chain was replaced with a used chain from chain set number 1 which had been removed in 1984.

As a result of a broken hose, water collected in one of the coils of the enargy analyzing magnet. Due to current leakage through the wet insulation, the field of the magnet became too erratic to be usable. Our solution to this problem was to heat the coil to a temperature of about $205^{\circ} \mathrm{F}$ with circulating hot water (provided by a pump and modifled home water heater) for two periods totaling dpproximately 24 days.? At the end of the second period, the magnet was
vastly improved. The erratic behavior was gone. but the magnet exhibited a small drift in field for a short period whenever the magnet current was changed. After a month of operation, the drift in field following a current change was almost non-existent.

1. Instrumentation and Controls Division, ORNL.
2. With appropriate scheduling, virtually no tine was lost from the experimental program.

ORIC ACCELERATOR

D. T. Dowling	J. A. Martin
S. N. Lane	S. W. Mosko
C. A. Ludemann	D. K. Olsen

During the period of this report, there were 12 separate beam tunings for 11 experiments with coupled operation of the cyclotron and tandem accelerators. There was no stand-alone operation of the cyclotron using the internal ion source. The internal ion source was decommissioned in mid-year. The ion source console controls will be removed to provide space for the new beam line vacuum monitoring and control system.

Coupled operation beam time available for research was 1037 hours. Operating efficiency expressed as the ratio of beam time for research
to total scheduled hours was 73.5% (71.68 in Fy 1987). Expressed as percent of total s-heduled hours, beam tuning was 19.2% (21.0% in fy 1987). and unscheduled maintenance tctaled 6.38 (5.98 in FY 1987). In FY 1988, tuning time included 48 hours of operator training.

An ORIC performance summary is given in Table 1.5. Beam extraction efficiency averaged 681 with the beam buncher in use. Beam energies were typically provided within an accuracy of $\pm 0.5 \%$.

Cyclotron Setup and Tuning

Most ORIC tuning parameters were either fixed, or tuned close to the predicted values from the setup calculations. This success allowed the many beams listed in Table 1.5 to be quickly tuned through the ORIC. This year, ORIC setup was further simplitied by full implementation of the software for strenrt.l and balance controls to tune the inside and outside coil currents of the lower extraction channel. The balance control tunes these currents so that the first harmonic balance of ORIC is varied wite the lower channel strength is fixed. The strength contral tunes the lower channel curreats so that the lower channel strength is varied wile the first harmonfc balance is fixed. These controls provide more predictable

Table 1.5. Coupled operation for research for the period October 1, 1987 - September 30, 1988

Date	Ion	Desired Energy (MeV)	Measured Energy (Me'V)	Error (8)	Extraction Efficiency (${ }^{\text {d }}$	Injected Ion	Injection Energy (MeV)	Tandem Voltage (MV)
1/05/88	${ }^{58} \mathrm{Ni}^{+2} \mathbf{2}$	638	635.6	- 0.38	76	58Mi ${ }^{+8}$	168.9	18.7
1/14/88	${ }^{35} \mathrm{Cl}+14$	525	528.8	+0.72	47(1)	$35 \mathrm{Cl}{ }^{+6}$	125.2	17.8
1/21/88	$58 \mathrm{Ni}+23$	900	895.2	-0.53	77	${ }^{58} \mathrm{Ni}^{+9}$	180.0	17.9
2/03/88	$170{ }^{+8}$	375	376.2	+0.32	80	$170+3$	71.2	19.2
3/16/88	$2851+14$	700	701.2	+0.17	69	2 CSt 5	116.4	19.3
3/26/88	$170+8$	375	374.6	-0.11	40(1)	$170+3$	74.9	18.6
6/08/88	${ }^{5} 8 \mathrm{NH}^{+23}$	852	850.3	- 0.20	69	$58 \mathrm{Ni}+9$	200.3	20.0
6/15/88	${ }^{5} 8 \mathrm{Ni}+2 \mathrm{O}$	540	540.7	$+0.13$	52	$5 \mathrm{SNi}^{+6}$	138.4	19.7
1/06/88	170^{+8}	375	376.9	+0.51	68	$17 \mathrm{O}^{+3}$	80.5	20.1
7/14/88	${ }^{5} 8 \mathrm{NH}+23$	912	918.5	+0.71	51	$5^{80} \mathrm{Ni}^{+9}$	200.3	20.0
7/22/88	170^{+8}	375	376.2	+0.32	76	170^{+3}	80.6	20.1
9/30/88	${ }^{58} \mathrm{Ni}^{+22}$	638	637.8	+ 0.03	55	$5 \mathrm{CHO}^{+0}$	189.9	21.1

NOTE: (1) Buncher off.
and staightforward ORIC setup and beam extraction.

In addition, the ORIC tuning procedure was updated and expanded. The new procedure is a straightforward guide for tuning the injection beam line from the :andem accelerator, injection fnto ORIC, acceleration within the cyclotron, beam extraction, and transport of the beam to and through the analyzing magnet for beam energy measurements. This procedure nas formed the basis for operator training classes on ORIC operation.

Control Systems

Control Computer. Software was completed for the strength and balance controls of the extrar tion system, and the new deflector pown surgily. These controls were brought into routine operation. The 153° BAM entrance and exic slits were calforated and a new high resolution reference for this magnet's power supply was installed. These controls were placed on the computer as well. The capability for down loading ORIC setup parameters from the tandem control and supervisory computer was developed and automatic pertodic logging of operating parameters was accomplished.

Bean Line Vacuum Control System. Design of a new beam line vacuum control system was completed and installation was beçun. The primary components of the system are an industrial programable logic controller (PLC) and numerous digital vacuum gauge controllers (DGCs)

Beam lines are divided into "sectors" which typically consist of one jumping station (pump and pump valve), two Convectron' gauges (one on either side of the pump valve), d nude ionization gauge, and a beam line valve at each end of the sector. Each DGC interfaces with the three gauges in a sector. Pressure and gauge status information is eransmitted to the PLC via d RS-232 link. Valves are interfaced to the PLC Which uses DGC information to provide setpoint protection for ORIC and pumping stations in the event of \sim leak. Additiondly, the plC interlocks the valves to prevent npening a sector to dir pressure.

Operator interaction with the system is provided by a color CRT and membrane control panel attached to a personal computer, all located in the ORIC control room. Graphics pages may be selected from the keyboard to display pressures and valve status for each sector, and to display alarms. Dperators may open and close beam line and pump valves, and turn on, of f, or degas ionization gauges from the same keyboard. Operator interface is provided at remote stations by DGCs, and toggle switches anc LEDs interfaced to the PLC.

Several DGCs, gauges, and some additional cables were installed, graphics pages completed, and control software begun. Plans vere made to upgrade the ORIC control console to provide room for the new syster.

Cyclotron Development

Cyclotion Ion Source. The internal ion source for the cyclotron was decomisstoned. All future cyclotron operation will require beam injection from the tandem accelerator. The most recent operation of the internal ion source was in 1984. Elimination of the source is a key factor in permitting the integration of the cyclotron radiation safety system with the HHIRF system. Removal of ion source controls from the cyclotron control console will provide space for the new beam line vacuum controls and instrimentation which will be fnstalled during Fy 1989.

Bean Extraction System. The coaxtal magnetic channel wich developed a water leak during the summer of 1987 was repaired. The leak was found to be in a solder joint on one of the power leads. The cuaxial channel was leak checked after the repair and no other leaks were found. The ORIC once again has a spare coaxial channel ready for use.

Fabrication of the new lower channel continued periodically during the year. Hork progressed to the point of being able to pressure check the channel's coils and water headers. Some of the expected prowlems with nylon insulator 0-ring sedis were encountered. These problems were solved by fabricaling new insulatiors with tighter tolerances of the 0-ring
grooves and extrcising great care during assembly so as not to cut the 0 -rings.

Power Supplies. The power supply upgrade progran for replacement or improvement of obsolete or unreliable power supplies continues. The electrostatic deflector power supply was replaced with a new compact unit which was installed near the deflector terminal. Con:equently, 35 -meter run of coaxial sable, which connected the former power supply to the def ector, has been elfainated. The new supply foitures current limiting, low energy storage, and remote voltage programing. Since the storej energy available for dissipation in defleclor sparking has been substantially reduced, the power suppiy high-voltage output has been directly connected to the deflector without curient-limiting resistors. Deflector performance is much improved through improved voltage regulation, reliable voltage information, redi,ced sparking, and reduced current drain.

A replicement power supply for the comper.sated maguetic channel of the beam extraction system was : oecified and ordered during FY 1987. Contrary to the vendor's delivery schedule, we are still waitin. for the power supply. The latest information from the vendor, combined with observations made on inspection visirs, suggests that delivery is likely during the early part Jf FY 1989.

Filter (apacitors containing PCB were replaced in several power supplies. Sone difficulties in watching circuit configuration occurred in the rf system anode power supply. The troublesome units were replaced by the vendor, and the anjde power supply is on line and operating. it is believed that all significant PCB-containiny components have been removed from the cyclotron and its peripheral equipment.

Trimang Coll Status. During the past year. the cyclotron encountered another triming coil loss. A small, but inaccessible, water leak occurred in one sector of trim coll 48. After completion of coll assembly drytng operation, a conlant and electrical bypass connection was arranged on the faulty coll sector on the "West

Trim Coil Assembly." A similar bypass was implemented on the "East Trim Coil Assembly" to retain symnetry. The remaining $2 / 3$ of tria coil 48 is sufficient to maintain bean isochronisin in the cyclotron. Recalling that trim coil 10 was totally lost in a previous incident, we are making contingency plans for possible future problems with the trin coil assembly.

Trianing coil sets were retrieved from the MRL cyclotron when it was deconmissioned a few years ago. It is believed that all but one coil in these sets are operable. These coil sets are identical to those in the ORIC cyclotron, and they may be used as a direct substitution. Further evaluation and preparation is under way.

Cyclotron Vacuum System. A surplus forepump system containing a $150-\mathrm{cfm}$ rotary-piston pump and a Roots blower was obtained from one of the experimental groups. This pump has been reconditioned and installed in place of the last of the World War II vintage $300-c$ fm rotary punts which had been in service on the cyclotron for over 25 years. The blower will improve puming performance in the pressure region just atove that where diffusion pumps can go on line.

Environmental Compliance. Environmental compliance problems continue to imnact cyclotron operation resources. Solutions have been implemented which will assure compliance with minimal future cost. Most recently, the oil reclamation system for mechanical vacuum pumps was decommisstoned. Now that the oldest of our mechanical pumps is retired, our oil consuription is greatly reduced. The newer pumps are able to eliminate volatile contaminants from their oil without separate reclaiming equipment. It will be necessary to replace oil occastonally, but storage af large quantities of oll on site is no longer necessary.

Beam Line Improvements

Diagnostics Systens. The addition of new diagnostics for ORIC beam lines continued during the past year. A new beam viewer was installed at the exit of beam switching magnet BSM-4 for focusing of beams going to the l.h-meter scattering chamber. The viewer is located just

25 cm downstream of the exit pole fare of the magnet. Due to space linitations on ihe exit side of the magnet, the viewer is mounted ;.side the magnet vacuum chanber. The viewer actuator is mounted between the magnet pole faces and extends from the back to the front of the chamber and couples to a feedthrough on the magnet chamber face plate. Viewer performance and spot visibility was checked during a recent spin spectrometer experiment.

A set of motorized, remote controlled slits were installed downstream of the 153° beam andlyzing magnet. These slits can be controlled either from the ORIC control roor or from a control station located close to the slits. The actual slit opening is displayed on the ORIC control console. This allows more precise and varied slit settings according to the experimenter's needs without having to go into the ORIC vault.

Other beam didgnostics installed in the past year consist of a number of beam profile monitors (BPMs). The new BPMs were installed on the ORIC injection line, in front of the spin spectrometer, between the 1.6 -meter scattering chamber and UMISOR, on beam line 31 just before viewer 31-4, and on beam line 3 jurt before the exit slits of the 153° beam analyzing magnet. These BPMs have helped the ORIC operators in tuning beams and monitoring stability.

Vacuum Systems. The upgrade of ORIC Deam lines continued in the past year. Limited funds necessitated careful selection of activities to pursue. It was decided to replace one of the original diffusion pump stations which required increased maintenance and provided only marginal performance. The new pump station is a $330 \mathrm{t} / \mathrm{s}$ turbomolecular pump unit. This unit is lecated between beam switching magnet BSM-1 and the 153° beam analyzing magnet. This beam iine now has an operating pressure of approximately 3×10^{-7} Torr.

[^0]IMPROVED VOLTAGE PERFORMANCE OF THE OAK RIOGE 25URC TAMDEM ACCELERATOR ${ }^{1}$
0. L. Haynes
M. L. Meigs ${ }^{2}$
C. M. Jones \therefore. E. Raat z^{3} R. C. Juras ${ }^{2}$ R. D. Rathmeli ${ }^{3}$ N. F. Liegler

Installation of compressed geometry acceleration tubes and associated changes in the corona voltage grading systen have resulted in significant improvement in voltage performance of the tandem accelerator. Jetaiis of the final phase of this mork and initial tests on the modified accelerator are summarized in this section.

Compressed Geametry Acceleration Tubes

One of the principal changes in the present vol:age improvement program was replacement of tne original acceleration tubes with tubes of a compressed geometry design. In this design, whicr utilizes a modified NEC high-gradient 17-cm-:ong tuhe section, the 3-crin-thick heatal le aperture assembly, provided as part of the ori. ginal installation, is replaced with an aperture assently of essentially zero length. With this change, seven tube sections can be installed in the space previously occupied iy six, thus increasing the effective insulator length per unit column length by a factor of $7 / 6=1.17$. Tests on a compressed geonetry configuration, similar to that described in this report, were pirst reported by Assman et al.* A subsequent test, using a column structure more closely resembling the 25URC column, was reported by Ratz et al. ${ }^{s}$

The installation and :ests described in this report represent the last of three phases of the tube replacement program for the 25URC accelerator. In the first phase, two tube units, 6 and 27, were replaced with compressed geometry iubes in June 1986 and tested in the interval July 1986 to October 1986.' In the second phase, units $19-25$ were replaced with compressed geometry tubes in Novembe: 1986 and tested in the interval November 1986 to March 1987. in the present, ase, the remaining if units were
replaced. Detailed discussions of the results of the first and second phases, as well as details of the compressed geometry acceleration tube design and installation, have been provided in Refs. 7 and 8. in the rinal installation, the 30° vee-shaped aperture discussed in Ref. 8 was used in all but units 19-22. In these units, conventional, straight, l-min-thick apertures mere used.

Voltage Grading

In order to compensate for the increased number of insulating gaps in the acceleration tube, it iaj necessary to decrease the point-toplane spacing of the tube corona points from 4.4 mato 3.3 m. This was accompilished by fabrication and instullation of new corona point assemblies with points of increaseci length. Ccrona point esemblies for both the acceleration tubes and column were mounted using holders of a new design. 9 As expected, these holders have proved more reliable than the original holders.

As noted by Weisser, ${ }^{10}$ mechanical adjustment of corina points is not adequate th achieve good voltage homogenity. To alleviate this problem, the corona points used for the present tests were adjusted electrically in air using a current-regulated power supply t', mecsure the voltage required to produce a constant test current, typlcally 20 uA, for each gap. Using this technique, it was possible to adjust the corond point spacings so that the gap voltages varied by less than $\pm 1 r$.

Colum Preparation and Acceleration :ube Installation

Previous measurements,8,11 on the longitudinal voltage gradient and radial voltaye capas: lities of the column strongly suggest that the column is not a limiting factor in :n'tage performance. However, to help insure that this would cont inue to be the case, we carefully inspected and cleaned the column prior to installation of the compressed geometry acre:eration tubes. The first step in this procers was removal of the acceleration tubes. the Pelletron chains, and column corond points.

Fach column post insulating gap was then cleaned by blowing with compressed, dry H_{2} and visually inspected. As a result of this visual inspection, approximately 15 of 8,262 gaps were subsequently cleaned with ethanol and 0 -tips. The resistance and spark gap breakdown voltage of each column plane (16 column post gaps + 1 corona point support post gap) were then measured. No significant problems were noted as a result of these inspections and tests. We specifically found no indications of the column post structural problems noted by Brinkley et al. 12 As the final step in this work, the column was carefully cleaned and the tightness of column rings and transverse interconnecting elemer:s was checked.

As noted in Ref. 8, the upper one-third of the accelerator, units 19-27, had previously been equipped with compressed geometry acceleration tubes. The tubes in units 19-25 had been in service since November 1986 and in the present phase were only removed, stored on site, and reglaced. The tubes in units $26+27$ were installed in June 1987 as part of an auxiliary (unsuccessful) test of surface finish technique. These tubes were replaced along with those from units 1-18.

As indicated in Ref. 8, the compressed qeometry tubes were, with noted exceptions, to be assembled from previously ised tube sections. Thus the tube sections removed from units $1-18$ and $26+27$ were returned to the NEC plant where they were visually inspected, modified, and fitted with rew insert electrodes. In cont ist to the tube sections previously used to assemble compressed geonetry tubes, these tube sections were not sandblasted. After installation, the tubes were baked at an average temperature of about $100^{\circ} \mathrm{C}$ for approximately 24 hours while pumping with the major dead section and terminal sfiutter ion pumps. In the previous installathons of compressed geometry tubes, θ, θ the tubes wer: not baked.

Conditioning and Testing

ronditioning of the accelerator following completion of the installation of the compressed
geametry tube; in November 1987 was performed in three major phases. The first phase, which had as its primary goal return of the a elerator to service for the experimental program, ended in early January iy88. Several observations during this first period are of interest. First, the tubes in units 19-25 conditioned more easily and more rapidly than those in units 1-18 and $26+27$. rhus, the removal, disassently, storage, and installation of the used tubes did not cause them to completely revert to the behavior of tubes with new insert electrodes and apertures. The tubes in units $19-25$ also exhibited "classic" pulsed K-ray conditioning wile the newly assembled tubes in units 1-18 and 27+27 exhiblied virtually no pulsed x-ray conditioning. When compared on the basis of achieved stable voltage as a function of time or monter of sparks, the conditioniing behavior of the tubes in units $1-18$ and $26+27$ was comparable to the in!tial conditioning of the tubes previously installed in units 19-27. It thus appears that there are no significant differences in conditioning behavior wich may be assoctated with baking at $\sim 100^{\circ} \mathrm{C}$ for 24 hours or with sandblasting of the ceramic.

Following a period of operation for the experimental program at terminal potentials up to 20 MN , the accelerator was conditioned fur a second period of 18 days in April/May 1988. At the end of this period, ine tubes in units 19-25 had been (easily) conditioned to a stable gradient of $1.0 \mathrm{MN} /$ unit, wile the tubes in units 1-18 and 26+27 had been conditioned to an average stable gradient of $0.95 \mathrm{MN} / \mathrm{unit}$. At the end of the period, stable operation of the accelerator, with beam. was semonstrated at 24.0 My (for one hour, without sparks or tics).

Following a second period of operation for the experimental program at terminal potentials up to 23.4 MN , the accelerator was conditiones for athird perfod of 18 days in August/Sroptember 1988. At the enc of this period, pairs of units and individual units had been conditioned to an average stable gradient of approximately 1.04 W/unit, and stable operation of the accelerator with beam was demonstrated at 25.5 MV (for one hour without sparks or tics). A few days after
completion of these tests, the accelerator was operated for use in the experimental program at a terminal potential of 25.0 MV .

Discussion

From an operational viewpoint, installation of compressed geometry acceleration tubes and the associated changes in the column and the tube voltage grading systems has been a success. The maximum demonstrated stable voltage with beam has increased from 23.5 MN to 25.5 MN and the maximum terminal pctential used in an experiment has increased from 22.0 MV to $\mathbf{2 5 . 0}$ MV. In a more general sense, the improved terminal potential performance of the accelerator has had an immediate positive effect on our experimental program, allowing us to provide beams of higher energy and intensity.

We wish to emphasize that we believe that the results reported here are prelininary in the sense that the ul:imate terminal potential capability of the accelerator has not been reached. Specifically, our experience with convent ional tubes has been that voltage performance continues to improve over a period of several years with use and conditioning. It also appears that adequate tube grading currents may not be provided with the present corona points. We hope to rectify this problem in the near future. Finally, we do not believe that we have a complete understanding of how tank gas pressure should be adjusted for operation above 22 MV . We expect our understanding of this quest fon to improve as we routinely operate the accelerator at higher potentials.

In summary, installation of compressed geometry acceleration tubes and associated changes in the curona voltage grading system have resulted in significant imprcuemen: in voltage performance of the 25URC accelirator. Further improvements, resulting from diafled changes in the corona voltage grading ystem and increased operating experience, are expected in the future.

[^1]3. National Electrostatics Corporation, Middleton, Wisconsin.
4. W. Assmann, G. Korschinek, and H. Münzer, Nucl. Instr. and Meth. 220 (1984) 86.
5. J. E. Ratiz, R. D. Rathrell, P. H. Stelson, and N. F. Liegler, Nucl. Instr. and Meth. 1224 (1986) 104.
6. The configuration of the 25URC accelerator is based on 27 61-cm-long live modules or "units" separated by two major and three minor dead sections. Proceeding from bottom to top, the units are grouped in the following way: 1-4, 5-9, 10-13, 14-18, 19-22, 23-27.
7. C. M. Jones, K. A. Erb, D. L. Haynes, J. T. Mitchell, N. F. Ziegler, J. E. Raatz, and R. D. Rathmell, Proc. 1986 Symp. Mortheastern Accelerator Personnel, Notre Dame, Indiana (November 1986) p. 65.
B. C. M. Jones, K. A. Eri, D. L. Haynes, J. T. Mitchell, N. F. Liegler, J. E. Raat z, and R. D. Rathmell, Nucl. Instr. and Meth, A268 (1988) 361.
9. N. F. Ziegler, G. D. Mills, M. J. Meigs, R. L. McPherson, R. C. Juras, C. M. Jones, D. L. Haynes, and G. D. Alton. Proc. 1987 Symp. Northeastern Accelerator Personnel, Tallahassee, Florida (September 1987) p. 5.
10. D. C. Weisser, Nucl. Instr. and Meth. 4268 (1988) 419.
11. C. M. Jones. Proc. Third Int. Conf. on Electrostatic Accelerator Technology, Oak Ridge, Tennessee (April 1981) p. 23.
12. T. A. Brinkely, G. P. Clarkson, M. D. Malev, T. R. Ophel, R. B. Turkentine, and D. C. Heisser, Nucl. Instr. and Meth. 1244 (1986) 89.

A High-INTEWSITY PLASiA-SPUTTER heavy-NEGATIVEION SOURCE!

$$
\begin{aligned}
& \text { G. D. Alton Y. Mori }{ }^{2} \\
& \text { A. Takagi } \quad \text { A. Ueno } \\
& \text { S. Fukumoto }
\end{aligned}
$$

In recent years, the synchrotron has been used or considered for use for acceleration and storage of heavy ion beams for use in highenergy atomic and nuclear physics research. Facilities predicated on this principle have been constructed, or are being constructed, around the world. Other facilities, such as the Heavy Ion Storage Ring for Atomic Physics (HISTRAP) at the Dak Ridge National Lahoratory (ORNL) have been proposed. If funder, the Holifield Heavy lon Research facility (HHIRF) tandem accelerator would serve as one of the injectors. For this type of heavy ion accelerator, high-intensity puised heams of widths 50-30n us, at repetition rates of $1-50 \mathrm{~Hz}$, $\mathrm{ni} \rightarrow$ wide spectrum of elements are renuired. The low-duty-factor injection requirements of the 5. ichrotron (typically n^{-3}) place a premium on
ion sources with hign-intensity capabilities. rie specific needs of the proposed tandem accelerator injection of HISTRAP for a high-
t.rightness negative ion source with a wide range of species sapabilities was the primary motivating factor which led to the present developments.

Ne gative ion beam intensities of $=200 \quad u \mathrm{~A}$ (peak intensity) represent a practical requirement of the ion source when the tandem accelerator is usc: as an injector for the synchrotron. Intensity levels of this magnitude are achievable for a limited number of relatively high electron affinity atomic and molecular speiies in negative ior sources based on tre cesium ion sputter generation principle (see e.g., Refs. 3-5). Such intensity levels are marginally adequate at the point of injection into the synchrotron due to charge-state fractionation during the stripping process, and beam transmission losses in the tandem accelerator and beam transpori system. Increased beam intensities of a wide spectrum of negative ion species, at least to the level that the tandem accelerator become; the limiting factor, are therefore desirable.

The multi-cusp magnetic field plasma surface source, rouitinely employed for the production of high-intensity pulsed H^{-}beams at the Los Alamos National Laboratory (LANL) ${ }^{6}$ and at the National Laboratory for High Energy Physics, ${ }^{7}$ has recently been modified far use as a highintensity pulsed pulsed-mode heavy-negative-ion source. ${ }^{1}$ The design details, operational parameters, and performance characteristics for H^{-} generation have been reported previously (see e.g., Refs. 5 and 7), while those for heavy ion generation have been described in Ref. 1. The source, modified for heavy negative ion generation, and the experfmental set-up users during evaluation of the source, are shown schematically in Fig. l.?.

For heavy-negative-ion generation, a highdensity plasma discharge, seeded with cesiun vapor, is produced by pulsing the discharge voliage of two series-connected $\mathrm{l}_{\mathrm{a}} \mathrm{aB}_{\mathrm{f}}$ cathodes maintained at $\quad 1450^{\circ} \mathrm{C}$. For this application, the neqatively bidsen spherical geometry probe

Fig. 1.2. Schematic drawing of the olasma sputter negative ion source, experimental apparatus and emittance measurement device used to evaluate the source for heavy negative ion beam generation. The dotted lines show the positions of the slit apertures and alterations to the permanent magnet used to determine the mass distribution within a particular ion beam.
(converter) is made of the material of interest and, as such, is the consumable item. That is, negative ions are formed by plasma discharge sputtering of the prote itself. In order to produce higher heavy-negative-ion beam intensities by sputter ejection at a given probe voltage, a chemically inert, heavy discharge support gas such as Ar, Kr. or Xe , is utilized. Xe was used throughout the present measurements. Cesium is introduced into the discharge from an external cestum oven operated typically at a temperature of $\sim 214^{\circ} \mathrm{C}$. The sheath surrounding the negatively biased sputter probe (spherical
 is maintained at a negative voltage relative to housing (typically $6100 n$ V) serves as the first acceleration gap and lens for focusing the ion beam through the exit aperture (diameter $=18$ $m m$). Inder pulsed-mode operation at the low duty factors utilized, (typically 2×10^{-3}), the $L^{L a B_{6}}$ cathodes exhibit very litile erosion after many hours of operation. With the combined long lifetimes of the sputter probe, La_{g}, cathodes, and low cesium consumption rate $(-\alpha \mathrm{mg} / \mathrm{h})$, the source can operate stably for ofew thousanid hours at constant peak bedm intensity levels without malntendnce or fleaning.

An example of an intensity versus lime aistribution of an ion team extiractea from a $"_{1}$.
probe is shown in Fig. 1.3; the measurements were made at optimum or near optimum cesfum flow rate, Xe discharge pressure, and at fixed sputter probe voltage. Table 1.6 provides a partial list of total negative ion beam intensities, species, and probe materials utilized during operation of the source. Also given are the approximate mass distributions of the principal negative ion species present in the total negative ion beam.

ORNL PHOTO-7429-88

$50 \mu \mathrm{sec} / \mathrm{DIV}$

Fif. 1.3. Intensit, versus time distribution of the total ion current exteracted from a P t sputier probe at a voltage of -1000 V anct optimum resitum flow rate. Vartiral axis: ? mA/division. Horigontal axis: 50 ifidivision.

Table 1.6. A partial list of total heavy negative ion beam intensities (peak) from the high-brightness plasma sputter negative ion source.

Sputter Probe Material	Sputter Probe Voltage (V)			

Emittance measurements were made of negative ion beams extracted from Au and Ni sputter probes for intensity levels of 1 and 4 mA (Au), and $\bar{c} .5$ and $6 \mathrm{~mA}(\mathrm{Ni})$, by use of the stepping motor-driven emittance detector unit shown schematically in Fig. 1.2. The emittances from each of the probes were found to increase with beam intensity as expected, based on the presence of space charge. The normalized emittances were found to have typical values at the 80% contour level of $\varepsilon_{n} \leq=\sim 25 \pi \mathrm{~mm} . \operatorname{mrad}(\mathrm{MeV})^{1 / 2}$. This value is only ~ 1.5 times those of cesium sputter negative ion sources when opera: in pulsed mode. 8 Yet, the beam intenjities from this source are of ten 30 to 100 times, or more, greater than the cesium sputter negative ion sources described in Refs. 3-5.

The measured emittance values compare favorably with the calculated acceptance of the DPNL 25 JJRC tandem accelerator ${ }^{9}$ and, in principle, ion heams from this source should be transportable through such devices. However, consideration must be given in designing the ion extraction, postacreleration, and low-energy tranczort systems of the source and tanctem injector in orter to redure space rharge distortion of the mplipiances of the ion beame. Ine
source is well suited for use in conjunction with the tandem electrostatic accelerator as a synchrotron injector. The source holds the interesting prospect for sse in producing dc, mA intensities of a wide range of species, including the commonly used semiconducting material dopants (e.g., $\mathrm{B}^{-}, \mathrm{P}^{-}, \mathrm{As}^{-}$, and Sb^{-}), as well as 0^{-}, for high-energy isolation barrier formation.

1. G. D. Alton, Y. Mori, A. Takagi, A. Ueno, and S. Fukumoto, Nucl. Instr. and Meth. 270 (1988) 194.
2. National Laboratory for High Energy Physics, 1-1 Oho-machi, Tsukuba-gun, Ibarakiten, 305 Japan.
3. R. Middieton, Nucl. Instr. and Meth. 214 (1983) 139.
4. r_{2}. D. Alton. Nucl. Instr. and Meth. A244 (1986) 133.
5. C. D. Alton and G. D. Mills, IEFE Trans. Nucl. Sci. NS-32 (5) (1985) 1822.
6. R. L. York and R. R. Stevens, Proc. of 3rd Int. Conf. on Production rí Vegative Ions and Reams, edited by Krysten irele. (Am. Inst. of Phys. Conf. Proc. Ne. 11l, New York, 1984) 417.
7. Y. Morí, A. Takaqi, K. Ikeģami, and i. Furamoto, Proc. of ath Int. Conf. on Production and Neut.ralization of Negat ive Ions and Reams, prited by lames i. Alessi (Am. Inst. of Phys. ronf. Proc. No. 158. New York, 1941) 318.
\&. r. \%. Alton, phys. Div. Prog. Rep.,

8. .]. n. larson and r. M. innori, Nuel. Instir. anid Mpth. 140 (171/) 189.

A TECHNIQUE FOR GENERATIMG ATOMIC MEGATIVE IOM

 BEANS OF THE GROUP IA ELEMEMTS
G. D. Alton G. D. Mills

The Group IA elements constitute -8% of the elements wicn ire considered viable candidates for use in tandem electrostatic accelerator research programs, and the ability to form them by the sputter technique would allow a common source to be used for the generation of useful beam intensities of almost every chemically active element in the periodic chart. The development of a method based on the use of standard sputter-type negative ion sources is therefore highly desirable. Such sources are versatile, have long lifetimes, and are easy to operate.

In the past, efforts to produce useful negative ion beams by sputtering Group IA elements, e.9., Li metal, have been unsurcessful. In the course of such experiments, it was discovered that Li^{-}ion beams can be produced by bleeding $\mathbf{0}_{2}$ over Li metal samples during the sputtering process. Even though some successes have been achieved by use of this method, this technique has generally proved to be erratic and undependable. In addition, the physio-chemical properties of Li metal make sample preparation and handing difficult. The properties of the other members of the group, with the possible exception of Na , preclude their use as sputter probes in elemental form.

The present developments were prompted by spu.ter source experiments with Li/Cu alloys in 508/50\% atomic proportions. The results of these experiments proved to be disappointing, yielding Li^{-}bedm intensities of only few nA. However, after exposing the Li/Cu samples to dry air for extended periods of time !several months) and thus conversion from $\mathrm{Li} / \mathrm{Cu}$ to Li ${ }_{2} \mathrm{O} / \mathrm{Cu}, \mathrm{li}^{-}$nejative ion beams om t same sputter probes grew to more than ? wA at a sputter probe voli: Te $\leq 3 \mathrm{kV}$. The results obtained from the Li, n/Cu samples suggested the formation of sputier probes from mixtures of Lian ant Cu or Aq powter. In fact, Rrand, in indepentent tevelopments, her, dred this tochaique to form $11 \mathrm{z}^{n}$. At powder ipuster prober.
for use in a standard sputter negative ion source wich are reported to yield a few uA of Li-.)l However. the oxides of the more chemically active members of the group $(\mathrm{Xb}, \mathrm{Rb}$, and Cs) are highly deliquescent, a property which presents problems during probe formation and storage. In the belief that the Group IA carbonates would be somewhat less hygroscopic $\left(\mathrm{Li}_{2} \mathrm{CO}_{3}\right.$ and $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and deliquescent $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$) and thus easier to form into sputter samples and store, mixtures of the Group IA element carbonates and ~ 102 (atomic) Cu powder were pressed at 3.4×10^{3} bars into pellets of diameter $=6 \mathrm{~mm}$ and thickness $t=4$ mul for use in the ORNL cylindrical ionizer geometry source. ${ }^{2.3}$

The sputter probes were evaluated using the Ion Source Preparation Facility, which is equipped with provisions for mass analysis. ${ }^{4}$ Figure 1.4 provides examples of the dependence of nass analyzed negative ion yield on sputter probe voltage. A list of mass analyzed beam intensities realized from each of the Group IA elements is displayed in Table 1.7. These results were subsequently further confirmed by accelerating each of the beams to the terminal of the 25URC tandem accelerator and performing charge-state andlysis. The lifetimes of the

[^2]Table 1.7. Typical Group la element atomic negative ion beam intensities produced by sputtering Groud id element carbonates

Sputter Proie	Sputter Probe Vo!tage (kV)	Species	Intensity $(u \mathrm{~A})$
$\mathrm{Li}_{2} \mathrm{CO}_{3}$	≤ 3	Li^{-}	≥ 0.5
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	≤ 3	Na^{-}	≥ 0.5
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	≤ 3	$\mathrm{~K}^{-}$	≥ 0.5
$\mathrm{RD}_{2} \mathrm{CO}_{3}$	≤ 3	RD^{-}	≥ 0.5
$\mathrm{CS}_{2} \mathrm{CO}_{3}$	≤ 3	CS^{-}	≥ 0.2

carbonate probes were limited by sputter erosion. Experienre to date indicates that the lifetimes of the probes decrease as the mass of the Group iA element increases and range from >40 hours for $\mathrm{Li}_{2} \mathrm{O}_{3}$ probes to $-4-6$ hours for $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ probes.

The application of the technique described above enables the formation of atomic negative ion beams from all of the Group IA elements at intensity levels useful in tandem electrostatic accelerator research programs. This development thus adds to the inventory of species that can be produced in conventional sputter-type negative ion sources. The requirement that these materials F : in compound form for production as atomic negative ion species suggnsts the possibility of a molecular dissociation formation rechanism rather than a surface ionization mechanism which occurs suring sputtering of metal surfaces covered with minute dmounts of a roroup IA element. However, it should be noted that the surface work functions of the carbonates before and after ion bombardment are unknown and, in fact, may be low enough for reconsiferation of the surface ionization mernanism.

[^3]CHARGE-STATE DISTRIBUTION OF 220 MeV ${ }^{158}$ gd IONS EmERGING FROM THIN CARBON FOILS

> ?.k. Olsen J.A. Martin
inese measurements were made in preparation for acceleration of $: 56 \mathrm{Gd}+36$ ions to 875 MeV with coupled operation of the cyclotron and tandem accelerators. Previous measurements ${ }^{1.2}$ with Nd and $A J$ ions had shown significant deviations from the predictions oi commonly used semiempirical charge distribution, such as the Sayer ${ }^{3}$ formula which we routinely use at the Holifield facility.

The 90° double-focusing energy-analyzing magnet of the tandem accelerator was used for charge-state separation. Measurements were made only at 220 MeV incident energy on the foils. To assure that equilibrium distributions were determined, measurements were made with foil thicknesses of 20,40 , and $60 \mu \mathrm{~g} / \mathrm{cm}^{2}$.

The measured fractions F for charge states q were fitted by the least-squares method with skewed Gaussian distributions of the form used by Sayer; $F_{q}=F_{m} e^{-0.5 t^{2} /(1+c t)}$. where $t=$ $\left(q-q_{0}\right) / \sigma, q_{0}$ is the maximum intensity chargestate value, F_{m} is the corresponding fraction, σ is the width parameter, and ε is the skewness parameter. Measured and adjusted charge-state fractions are listed in Table 1.8. The adjusted values are derived by fitting the measured data with the skewed distribution and ijjusting the maximum value of the fitted curve so that the sum of the fractions is unity. The medsured data was adjusted by the same ratio. This procedure is necessary because the measurements were not made over a wide enough range to ac:ount for 100% of the ions. The mis error of the fits was typically 4\%.

The skewed radussian parameters for the ch.rge Aistributions are qiven in Tanle l.f. These तAt.a sugrjest that the equilibrium thithess is near $40 \mathrm{ug} / \mathrm{cm}^{2}$. A comparison nf adjusted data and least-squares fit for the 40 ugicm foil is shown in fig. 1.5 . ihe previous NA tata give
 for qive, 9.4 and, S.155, a much larger widten anti mere staw. The differanep between the maximum intansity charge sitatom for therie tatia and the infer furedititon $1: 1.1$ untti.

Table i. 8. Charge state fractions for $220 \mathrm{MeV}: 58 \mathrm{Gd}+9$ ions passed through thin carbon foils

Charge State Q	Charge State fractions, F_{Q}						
	$20 \mathrm{mg} / \mathrm{cm}^{2}$		$40 \mathrm{ug} / \mathrm{cm}^{2}$		$60 \mathrm{mg} / \mathrm{cm}^{2}$		Sayer
	Measured	Adjusted	Measured	Adjusted	Measured	Adjusted	
29	0.091	0.080	-	-	0.071	0.065	0.007
30	0.125	0.109	0.108	0.094	0.106	0.097	0.021
31	0.151	0.132	0.144	0.125	0.144	0.132	0.049
32	0.166	0.145	0.169	0.146	0.159	0.145	0.095
23	0.166	0.145	0.186	0.161	0.173	0.158	0.145
34	0.147	0.125	0.176	0.152	0.159	0.146	0.179
35	0.089	0.078	0.123	0.107	0.109	0.100	0.179
36	0.147	0.041	0.068	0.059	0.053	0.048	0.144
37	0.014	0.013	0.020	0.017	0.016	0.015	6.195
38	0.003	0.003	0.006	0.005	0.004	0.004	0.022

Table 1.9. Skewed Gaussian parameters for charge distributions of $220-\mathrm{MeV}{ }^{158} \mathrm{Gd}$ ions passed through thin carbon foils

	Skewed-Gausstan Parameters			
	$20 \mu \mathrm{~g} / \mathrm{cm}$	$40 \mathrm{\mu g} / \mathrm{cm}$	$60 \mathrm{mg} / \mathrm{cm}$	Sayer
q_{0}	32.30	32.83	32.67	34.5
\bar{q}	31.78	32.27	32.01	34.5
$\mathrm{Fq}_{\text {MAX }}$	0.163	0.165	0.163	0.18
σ	2.43	2.39	2.41	2.17
c	-0.140	-0.154	-0.1§4	+0.01

1. J. A. Martin, R. L. Auble, K. A. Erb, C. M. Jones, and D. K. Olsen, Nucl. Instr. and Meth. 1244 (1986) 187.
2. Phys. Div. Prog. Rep. Sept. 30,1987, ORNL-64スत, D. Tि.
3. R. ก. Sayer, Rev. Physique Appl. 12 (1977) 1543.

Fig. 1.5. Measured and fitted charge state fractions for 220-meV isach ions through a tin $\mathrm{wq} / \mathrm{cm}^{2}$ carbon foil.

DISPENSER-TYPE SOLID EMITIERS FOR PRODUCIMG group ia positive lok beahs

> G. D. Alton P. M. Read:
> J. Maskrey:

Concentrated efforts were made in collaboration with members of the Ion Beam Analysis Group, Harmell Laboratory, Oxfordshire, England, to test and evaluate solid thermal emitters for the production of Li^{+}and Na^{+}ion beams. The emitters consisted of mixtures of Group IA element oxides, alumina, silica, and 10% platinum metal fused together; uru-: neating to $1000-1100^{\circ} \mathrm{C}$, a particular mixture will emit either Li or Na positive ions with a high ionization efficiency. The emitters were fabricated so that they could be easily installed and used in a porous tungsten surface ionization source such as described in Ref. 2. The porous tungsten surface ionization source, in its present form, can only be used to generate beams of K^{+}. Ro^{+}, and Cs^{+}. ine ultimate objective of this development is to extend the species capability of this type of surface ionization source, and Linus develop a universal source for the production f ion beams from all of the Group IA elements. in ardition, the simplicity and low cost of the emitters ($\mathbf{~} \$ 100$) make them viable substitutes for the porous tungsten surface ionization source for the piusuicitin of $\mathrm{K}^{+}, \mathrm{Rb}^{+}$, and Cs^{+} ion beams of moderate intensity (6150 uA). The Li^{+}ion beams are of particular interest to the Harwell Ion Ream Analysis Groud in that they can be used in x-ray and Rutherford back-scattering (RBS) surface-analysis applications.

The sources were evaludted and intensity-versus-enitter temperature estab!ished for the production of Li^{+}and Na * ion beam intensities up to -150 山A. Fiqure 1.6 tisplays typical 'Li6 intensity versus ionizer heater current extracted from two of the salit thermal emitter sources. Experiments were also performed which were desiznes to estimate the source lifetime
 (-6) 10 A). The sources performed very re!ighl, throughoist the tasting and evalistion period. Futiore efforts rall far repeatimg thecise tefets with x, aty, and ris amtiterio.

1. Harwell laboratory, nefordinire, ingland.
 19/5, ripN -5111, 0. Tht.

Fig. l.6. Ian bean intensity versus ionizer heater current from Li^{+}soiid thermal emitter ion source.

facility operations and development

HHIRF EXPERIMENTS

R. L. Robinson

During fy 1988 there were 38 experiments performed at the Holifield: 28 of these were recommended by PAC for a total of 3084 research hours and 10 were approved as discretionary time, for en additional 277 research hours. These experiments are listed in Table 1.10. Experiment numbers with a prefix H denote experiments recommended by $P A C$ and those with a prefix D, discretionary.

Some experiments were divided into several different runs throughout the year. The distributions of these runs, and of the research hours, are given by target sta*ion and by the ared of physics in Tahles 1.11 and 1.17, respec. - ively. Thirty percent of the approved research nours utilized three expermental tevices whith were commissioned since last reptember: the Wuclear oriantation farllity (experiment 4107),
 eher cinse-packed foe bill iexperimentes Hias.

 tidl., the piall wes weme in ranjunction with the tirnded range magnet ir igestrome ar ia totare

Table 1.10. Experiments completed at the LH! 1 FF during October : 1.1987 -September 30, 1995

Tite	Sookesman Ex	Experliment nember	Targop Staplon	Been		Rosearch Hours
				Troe	$E(40 v)$	
tadea						
High Order Electrir Mutitipoies in Convor Electron Ansuler OHstritutions	Elsion (U Tennessce)	+164	Apomic Physics	160	115	87
Llfetien Massurcemits of Diserete ond continulu game Reys in 164 ro	Len (00nl)	H18S	y-Ray Spectraseter	${ }^{44} \mathrm{Ca}$	195	123
On-line muclear Orlentation of 191,153	Girlit (Vanderblit U (ORAU)	H187	UNISOR	${ }^{12} \mathrm{C}$	95,110.115	114
A Systematic Study of the Excitation Energy Oivision In Ginery Amections	Serentites (mashingtion U)	H190	Spla Spectraseter	I_{n}	25	5
Search tor Superdetormed Siapes in the hass A-60 Amgion	Bakfash (OME)	H192	Spln Spectroseter	$\begin{gathered} 34 \mathrm{~S} \\ \mathrm{I}_{\mathrm{N}} \end{gathered}$	$\begin{gathered} 120-170 \\ 9.20 \end{gathered}$	183
Ansoment Trensfer and Excitation Investigated by Two moton Dolincldences and thith napolution x-foy Soectroscopy	Schuch (AFI, Sreden)	W197	Aromic Amslcs	32 s	106,140,165	108
Seerch for Colate Structures and Competition Botween dolate and Prolete Structures at high Spln	Pemerye (venderblit us	14203	Y-Rey Spectranter	${ }^{35} \mathrm{Cl}$	99	120
Sub-berriar Inalastic end Trenster Reaction Oross sections for ${ }^{32 \mathrm{~s}}$. MI	Mind! (Tennessee TU)	1004	Split Pole Angnet	$\begin{aligned} & 58_{W 1} \\ & 64 W 1 \end{aligned}$	$\begin{aligned} & 156 \\ & 170 \end{aligned}$	18
Mulipolerity of electromegnotic Trmsitions in ${ }^{130} \mathrm{Ce}$	Soledin (U PIttiturgi)	1010	Spln spectronetor	345	140,164	102
Lifotless of States through a Couble ems Orosing in limpe	Aledinger (u Tonnersen)	1211	y-hay Spectroneter	369	165	148
High Soln Stetet in ${ }^{24 m m}$	Zuraunie (i) Pannzyivenl	101015	Spla spectrometer	160	51-62	120
Deperninapion of a wlaths tor Uranlin maclel meer e 130 ; seerch for ${ }^{224} u,{ }^{225} U_{\text {, and }}{ }^{226} U_{u}$	Totn (00m)	W218	veloclity fliper	${ }^{19}$ F	106	*
Electron lasect Excitation of mulitDiy Oierged ions in Orystal Oimnels	$\begin{aligned} & \text { De } 12 \\ & \text { (ORML) } \end{aligned}$	1019	Afonic Pmysics	32s	120-210	90
Search for "mperdetormed" smapes in meciel	Serantifes (Washingtion U)	1022	Spin spectrometer	$\begin{gathered} 37 \\ { }_{3}{ }_{\mathrm{Cl}} \end{gathered}$	$\begin{gathered} 160-180 \\ 12 \end{gathered}$	147
Transter Plus Excliafion from Two Electron interections	Dent (ORM)	1024	Apalc Amysies	325	120	68
search for shape cosxistence in 187 AS	2genjar (toulsiene Su)	1027	Unis Sor	$\begin{aligned} & 19_{F} \\ & 166_{5} \end{aligned}$	$\begin{gathered} 170 \\ 125.135 \end{gathered}$	103
stuor of itce and ${ }^{72}$ ce in ine soln soectrometer vile inelestic xentiering 046_{0}	renestor (SAmL)	4229	1.6-9 Onember soln sowtrometer	150	13	$\begin{aligned} & 28 \\ & 62 \end{aligned}$

Table 1.10. (Cont inued)

T!	Soohesean E	Experiment muaber	Tergep station	Brem		Pasearch nours
				Troe	E(Hay)	
Study of intruder Struciures in and-mintron ${ }^{119}{ }^{T}$ om am ${ }^{121} \mathrm{~T}_{0}$	maliers (u Meryisnd)	1-232	UNISOR	32s	173	105
Seerch for Low-Spin Superdetorned States in in euciel	manry/Akovali (LIML/CRNO)	1236	UNISCP	$\begin{aligned} & 19_{F} \\ & 12 \mathrm{C} \end{aligned}$	$\begin{aligned} & 180 \\ & 90,100 \end{aligned}$	146
Electron moect Excitation of mulpiply Oierges ions in Oryspal Granmels	Dolz (ORMC)	1237	Atcilic Pmysics	$\begin{aligned} & 28 \mathrm{sl} \\ & 32 \mathrm{~s} \\ & 40_{\mathrm{cm}} \end{aligned}$	$\begin{array}{r} 54-170 \\ 80-205 \\ 170-128 \end{array}$	101
Rasistive Electron Opture Dy Fully Spripoed angen in Geses	Vane (CRIN)	1046	Araic Pmysies	160	100-225	40
Test of PSD for STudy of SmortLlved a Enipters	Topn (000m)	D060	Velocity filier	180	90	20
Test of Ces-Jot tergot	Shapira (00m)	0063	Split-mole Mogne	$58_{\text {WI }}$	170	9
UNISOR Ion Sour ce Development	Certer (0RAU)	D064	UWISOR	$\begin{aligned} & 16 \mathrm{o} \\ & 12 \mathrm{c} \\ & 32 \mathrm{~s} \\ & 58_{\mathrm{ml}} \end{aligned}$	$\begin{aligned} & 55,157 \\ & 110 \\ & 175 \\ & 280 \end{aligned}$	38
Particie Oiarge Trenster Oross sections for of in the	Dent (ORM)	0063	arale mysics	16_{0}	30	5
Decery of : 3, Au ro letpe	$\begin{aligned} & \text { Certer } \\ & \text { (gRau) } \end{aligned}$	0066	UNISOR	${ }^{16} \mathrm{C}$	160	30
Stuc, of $\mathrm{Nlgh} T_{c}$ Superconductors phr sugn heovy-ion induced X-Ray SA-ellite Elission	(00ma)	0067	X-Ray Spectrometer	32s	9	46
Study of Pulsed genm Charecterlstics	$\begin{aligned} & \text { Qrais } \\ & \text { (ORM) } \end{aligned}$	0069	Bombline 31	345	164	2
Hign spin stapes in ${ }^{18404}$	yaliton (Vanderblit U)	${ }^{0012}$	Y-Ray Spectraseter	35 Cl	175,190	38
COMLED						
Stuay of incomplete Momentive iranserer in Mulit-fragemietion mescitions	Movoriny (u Glessen)	H182	MIL	$58{ }_{\text {W1 }}$	919	130
Energy end Angular momentum Division in omep inelastic Collisions stuated wie bight Purilicie Enission trom the Reaction $900 \mathrm{mar} 8_{\mathrm{NI}} \cdot{ }^{12} \mathrm{C}$	Ten (JIMIR/ORNL)	H183	M161	$58_{\text {W1 }}$	895	107
A Systenstic stuay ot the Eacitation Energy Olulsion in Binary Ruacilons	5arantlios (Masningron (J)	4190	Soin Specirameter	2851	101	131
lavestigation of Parget Excitations in Abrmentric geactions	migneray (i) ot Moryiand	1) 41%	IToe of *lign	${ }^{35} \mathrm{Cl}$	327	146
Senren ior imorxe:upole-Pmonon sontos in 298pb	Bertrand (DRNI)	4218	Ar mat-Qanjo Heqnot	10	218	12'

Table 1.10. (Continued)

Titio	Spotersen	Exper lement muber	Target Station	Been		Ansearen Mours
				TYD*	$E\left(M_{0}\right)$	
Study of the eqa in 2388^{4}	auble (ORM)	1025	Braed-hange magnet	170	375	114
Testing the Energy Olssimetion Models by mens of Protons in Colncidence with Heove Freqments tram Collisions of Spmetric Mucleer Systems	CIndro (Rud) Jor Boshovie)	1230	HILI	58*1	540,850,919	176
Tost of Mlil Defector Syspem	$\begin{aligned} & \text { sheolre } \\ & \text { (opmy } \end{aligned}$	0047	HILI 1.6-O Onemer	58.41 $58_{\text {WII }}$	$\begin{aligned} & 635 \\ & 638 \end{aligned}$	$\begin{aligned} & 33 \\ & 17 \end{aligned}$
Test fum for Search for Rwo-Octupole Promon states in 200.ob	D'Onotrlo (m) Flsles, ltaly)	0070	Erast-Range Magnet	170	377	31
						3562

Table 1.11. Usp of experiment target stations for che period October 1, 1987 through September 30, 1988

Target Station	Research Hours (No. of Runs)		
	Tandem	Coupled	Total
Y-ray Spectrometer	429(4)	na	429(4)
x-ray Spectrometer	46(1)	no	46(1)
Velocity filter	126(2)	na	126(2)
Atomic Physics	507(7)	no	501(7)
Split-Pole Magnet	27(3)	na	27(3)
Broad-Range Magnet	0	252(4)	252(4)
Time-of-Flight Factlity	0	146(1)	146(1)
$1.6-\mathrm{m}$ Scattering Chamber	28(1)	u	28(1)
UNI SOR	540(13)	0	540(13)
Spin Spectrometer	619(6)	157(1)	116(1)
HILI	na	483(6)	483(5)
Seam Line 31	211	no	(1)
Total	?,994: 74.	. 038.171	.362150

Table 1.12. Division of research hours
by research activities for the periad October 1, 1987 through September 30, 1988

| | | Research Hours (No. of Runs) |
| :--- | :--- | :--- | :--- |

Compton-Suppression System

A new support stand was completed which now allows the Compton-Suppression System to be used independently of the Spin Spectrometer. This devise will support up to 21 detectors in a close-packed configuration with a sourcedetector distance of about i2 cm, as compared to about 20 on when the detectors are mounted in the Spin Spectroneter. This enhances the double- and triple-coincidence rates by ractors of about 6 and 20 , respectively. The new stand also provides portability wich allows the system to be moved to different experiment stations and used in conjunction with other apparatus.

The heavy usage of the Compton-Suppression System, coupled with the lack oi spare Ge detectors, requires that all detectors be kept in good condition. To this end, the Ge-detector recovery system has been expanded to allow simultaneous recovery of two detectors. This has proved to be very beneficial, as detector recoveries carried out over the past year would have cost approximately 550 X if tono comercially.

Velocity Filter

The installation of the new scattering chamber and center support post for the velocity filter has been completed. This equipment provides a more rigid pivot point and will allow the velocity filter :o be easily rotated through the full angular range of -8 to +20 degrees.

HILI Detector

The heavy-ion light-ion detector presently includes all of the original design elements with the exception of a second 96-element scintillator hodosccpe. This last element is under construction. Also, work is underway to develop additional scintillator telescopes, to be located inside the scattering chamber, which will extend the angular coverage to about 39 degrepe. plans ars being made for moving the bit! to the present. Pof station, where i.. will
have access to both tandem-only and coupledaccelerator beams (only coupled-accele tor beams can be accessed at present).

Nuclear Orientation Facility

The first on-line experiment using the Nuclear Orientation Facility was compieted in June 1938. This is discussed elsewhere in this report. Unfortunately, the cold finger still exhibited unacceptable temperature increases when the beam line baffle was opened, despite the vendors efforts to make in situ improvements. For this reason, in July the entire dilution unit and heat shields were returned to the vendor for further modification. These are exp: :ted to be reinstalled by late Movember and available for further experiments by December.

Barium Fluoride Detectors

Acceptance tests of the photomultiplier tubes have been completed, and 19 of the 57 crystals on order have been received and tested. The assembly of the first 19-element array is in progress. It is planned to have 57 elements (three 19-element arrays) available by the end of 1988.

COMPUTER SYSTEMS

J. A. Biggerstaff	J. W. McConnell
H. H. Atkins!	J. B. McGrory
C. E. Bemis	W. T. Milner
D. M. Galbraith	C. N. Thomas ${ }^{2}$
E. E. Gross	R. L. Varner

Data Acquisition/Reduction Computer System
A major software item (driver for a new JORWAY-434 CAMAC interface procured earlier) was completed and implemented. This new software and hardware enable us to utilize the full 16 MB of memory avallable on all three CONCURRENT systems. We had been effectively limited to 4 MB by the older JORWAY-43? CAMAC interface and associated software. This implementation significantly enhances these machines which are being subjected to ever-increaiing demands.

A system has been implemented that provides for the astomatic transfer of histogram data
(via CAMAC) from the UNISOR Tennecomp system (PDP-11 memoryl to a standard disk file on one of the CONCURRENT COmputers. This prosess is controlled by special software written for the Tennecomp system which transfers data to a FIFO connected to the CONCURRENT CAMAC ystem. CONCURRENT software simply tests the FIFO statis and copies any data sent to it.

A new very-high-density mass-storage device has been acquired and is current?y being evaluated as candidate for the next generation of data storage systems. This device (based on an Exabyte tape drive) uses video technology to record about 2 GB of data onto one standard 8-mm T-120 video cassette (cost about \$8.00). Two GB of storage is equivalent to that provided by thirteen 10 -inch 6250-bpi tapes recorded with 8192 -byte records (cost about $\$ 180$). The maximum readiwrite speed ($248 \mathrm{~KB} / \mathrm{sec}$) is about $1 / 3$ of that for a standard 125-ips 6250-bpi tape but is adequatt for our current cata acquisition and processing applications. Full implementation of such devices should significantly increase the actual processing throughput of the associated computer systers by eliminating most of the time lost will: waiting for tapes to be mounted during non-prime time.

Four additional (refurbished) TELEX tape drives were acquired, bringing the total to 4 each on two of CONCURRENT CPUs and 3 on a third CPU with one spare. A color Vaxstation 2000, t, be used in the tevelopment of the next gene.ation of interactive graphic software, has been pracured.

Disk space mariagement has been d perpetual problem aggravated by the fact that quotas are impractical in our environment, where resources are limited yet most users require large amounts of disk space at certain times. A fractional archiving, FARC (rhymes with lark) procedure has been implemented which works as follows: When any disk becomes more than 3nz allocated, enough files are arehivet copied to tane and teleted from tisk) to reduce the alincation in 75:. Slles io ne arenidet are iolortor by ionsitoring "grofen" fartars 'ermasion fror "ho

on all CPus) associatec with candidate FARrees as well as the size, age and type of file. The system has been in use for about four months :including a summer season! and has worked well. At least, most farcees have felt too guilty of excessive greed to complain to the FARCor.

Local Area Retworks

The first phase of our Etherne: Local Area Network (LAN) has Epen completed. At he present time about 40 terminals located in Building 6G. : can connect to any of the three CONCURRENT computers, the Physics Livision $\$ 4 x / 785$ or any of five microvax nodes. Full DECNET connectivity to the CTD' network is al so supported. Future glans call for extending the LAN to Buildings 6003 and 6008 .

VAX 11/785, FPS-164 Array Processor System

The VAX and FPS processors were utilized approximately 55% of the past year, with daytime utilization frequently above the 90% level. The reliability of both systems has been good, with the only major cowntime resulting from UNIBUS problems on the vax. In spite of the good performance of the FPS this year, we are making $p!a n s$ to shut it down in order to save the high maintenance cost. We are searching now for more cost-effective solutions to the Division's large-scale computing needs.

Little extra hardware has been added to these systems. He are in the process of adding an Exabyte tape drive and SCSI controller to the $V A x$, and we anticipate delivery soon of a DEC SA482 storage array (2.5 GB of dist storage). The Exabyte drive will provide us with the necessary extra capacity for backing up the new storage array, as well as proviaing the central VAx with the ability to read and translate data from the CONCIJRRFNT COMDuters and the WABO r.ollaboration at CERN.

In the past yrir, we ronnerted the Physics Fthernet to the Derinet part of finet, a widearta ne:wory operated by the dof iffice of Enerigy Recrearer. All the vax computere in the

network. Our connection is currently made through a dedicated 14.4K-baud synchronous telephone line to Fermilab. ORNL is in the process of upgrading this connection to 56 X baud and replacing the Microvax II router with a faster dedicated DECRouter 2000. This connection to ESnet has becone quite important to many research activities in the Physics Division, includin, the Ma80 collaboration, the development of the GAmPASPHERE proposal and the development of new parallel computing facilities for data reduction in the division, as based on the Fermilab ACP farm concept.

Computer System Upgrade

A comittee consisting of E. E. Gross (Chaiman), J. R. Beene, C. E. Bewis, J. A. Biggerstaff, C. C. Havener, H. F. Krause, C. A. Ludemann, W. T. Milner, M. R. Strayer, and G. R. Young was formed to examine the computer usage and needs of the Physics Division for the next five-year period. Rased on the perceived needs, the committee made the following recomendations:
(1) At least a factor of 4 increase in general computer power. Distributed computing power via workstations was considered as a means for meet,ig this need but the committee recommended increasing the centrul computing power in the Division. It was felt that a four- to sixfold increase in general computing power would better meet the needs of the Division as a whole as well as allow for an orderly buildup of distributed computing.
(2) A factor of 10 improvement in date reduction capability. The growing complexity of experiments, the large data analysis needs of the WA-80 experiment, and the phenomeial success of the Spin Spectrometer, have creased a crisis in data andysis. At present, it can take up to three months to make the initial scan through a typical set of Spin spectrometer data iapes and about one year before the fats are fully reduced. The committee recommended development of parallel processinn ramputers based on the Fermi Laboratary's "Anvancont computer Projert" (ACP) concfopt as the means ?owarts intung the data andysis rrisis.
(3) Replacement of the Arra; Processor with an enhanced supercomputer. IJ remain competitive in large-scale calculations, the committee recommended replacement of the FPS Array Processor with a next generation parallel supercomputer.
(4) A large increase in mass storage caodbility. An essential ingredient in alleviating the data processing needs is mass storage capability. The comittee recomended that 6 GB of disk capacity be added and that the pro sing new mass storage devices be evaluated.
(5) Gradual replacenent of Chronatics terminals by advanced grishics workstations.
(6) A more intelligent front-end data acquisition system in the future. The committee believed that the ACP famm technology for data processing could also be adapted for a more advanced data acquisition system than the present Event Ham'ler.
(7) A carefully thought-out communication system based on ethernet.

The committee also proposed a general implementation plan whicn addressed these needs within the time and budgetary constraints (\$IM over a five-year period). Implementation of this plan began this year.

1. Computing and Telecommunications Division, ORNL.
2. Oak Ridge Associated Universities.

THE JOIMT IMSTITUTE FOR HEAVY ION RESEARCH
R. L. Robinson, L. L. Riedinger J. H. Hamilion

The Joint Institute, now in its fourth year of operation, is collaborative endeavor of the University of Iennessee, Vanderbilt Iniversity, and nak Ridqe National Laboratory. It is administrated by the inniversity of lennessee throw, the icience Alliance, which is one of the ritate of fennessee's Centers of Fxcellence. Two-thirds of the support of the loint insticute comer. from the irience Alliance: remdining funds are provited by $0 n F$, Vanderbilt Iniveritity, and กथNI.

The primary mission of the Joint Institute is to enhance and stimulate the scientific environment of the Holifield Facility to the mutual benefit of its three sponsuring institutes. Major elements of this are its quest program and support of workshops. Table 1.13 lists scientists supported by the Joint Institute during Fy 1988. The average length of appointment for these 56 gues is was over 4 months.

Table 1.14 lists meetings that were held during the past fiscal year at the Joint Institute and were supported by it. The Gama-Ray Detector Facility (GAMASPHERE) meeting was to review, augment, and refine a preliminary draft of a proposal for a large, 4i Dall of Compton suppressed Ge detectors. The strong interest in this device was demonstrated by the large attendance at this meeting and by the enthusiasm exhibited by the attendees. The preliminary draft had resulted from a similar meeting held a month before at the Lawrence Berkeley Laboratory.

The meeting on Monte Carlo Codes was in the true sense a "working" workshop and included a mix of the attendees working together, within small groups, and individually. The purpose of the meeting was to explore the application of various Monte Cario codes to a broad range of relativistic heavy-ion experimental data. Both experimentalists and theorists were involved to insure that the experimental conditions were included properly and that the programs were used correctly. Two small meetings were held for UNISOR researchers to discuss what physics results had been obtained to date, and what are desirable future objectives.

The Joint Institute also provides short-term living accommodations, with maximum capacity of 12 per night, for Holifield users. During FY 1988 there were 286 users who stayed a total of 1848 person-days (an average of 6.5 days per guest).

Table 1.13. Guest scientists at the Joint Institute for Heavy Ion Research during the period of October 1987 - September 1988

Name	Institute	Length of Appointment
S. Ayik	Tennessee Tech. Univ.	10 weeks
K. Bhatt	Western Kentucky Univ.	1 month
N. Cindro	Ruder Boskovic Inst. (Yugoslavia)	5 months
J. Coffin	Centre Nat. Recherche Scientifique (:rance)	5 week s
. D'Onofrio	National Institute of Nuclear Physics (Italy)	1 year
F. Donau	Inst. for Nuclear Research (East Germany)	2 months
H. Doubre	GANIL (France)	5 days
L. Dragon	Univ. of luenster (West Germany)	6 weeks
J. Dudek	Centre De Recherches Nucleaires (France)	8 months
A. Faessler	Inst. fur Theoretische Physik (West Germany)	1 month
G. Farcia-Bermudez	Nacional de Energia Atomica (Argentina)	3 months
3. Parrett	Ntels Bohr inst. (0enmark)	1 week
r. firit	Vanderbilt iniv/ORau	4 menths
W. Treiner	! Jniv. of Frankfurt (West reermany)	$?$ weeks

Table 1.13. (Continued)

Name	Institute	Length of Appointment
J. Griffin	Univ. of Maryland	3 months
K. Groeneveld	Johann Holfgang Goethe-Univ. (Hest Germany)	3 months
B. Herskind	Niels Bohr Inst. (Denmark)	3 days
S. Kahane	Nuclear Research Center (Israel)	1 year
P. Kienle	GSI (dest Germany)	1 day
M. Korolija	Ruder Boskovic Inst. (Yugoslavia)	8 months
S. Landowne	Argonne National Lab.	2 meeks
L. Lantto	Univ. of Oulu (Finland)	5 months
R. Lenmer	Univ. of Witwatersrand (South Africa)	1 month
J. Lisantti	ORNL/JIHIR	1 year
I. Lund	GSI (West Germany)	1 monih
C. Maguire	Vanderbilt Univ.	1 month
J. Maruhn	Univ. of Frankfurt (West Germany)	10 days
V. Metag	Univ. of Giessen (West Germany)	2 week s
U. Mosel	Univ. of Giessen (West Germany)	18 days
B. Mueller	Univ. of Frankfurt (West Germany)	$\begin{aligned} & 2 \text { week s } \\ & 10 \text { days } \end{aligned}$
N. Meskovic	Boris Kidric Inst. (Yugoslavia)	7 weeks
V. Oberacker	Vanderbilt Univ.	7 week s
D. Pelte	Univ. of Heidelberg (West Germany)	3 week s
M. Pennington	Rutherford Lab. (England)	5 days
J. Rafelski	Jniv. of Arizona	1 meek
A. Ray	ORNL/JIHIR	1 year
P. Reinhard	Inst. fur Theoretische Physik (West Genmany)	1 month
D. Rentsch	Univ. of Giessen (West Germany)	2 months
M. Riley	ORNL/JIHIR	1 year
S. Saini	ORNL/JIHIR	1 year
J. Saladin	Univ. of Pittsburgh	6 weeks
K. Schiffer	Niels Bohr Inst. (Denmark)	1 meek
W. Schmidt-Ott	Univ. Gottingen (West Germany)	2 months
M. Schultz	Univ. of Heldelberg (West Germany)	1 year
M. Soyeur	CEN, Saclay (France)	1 month
K. Teh	ORNL/JIHIR	1 year
U. Thumm	Univ. of Freiburg (West Germany)	7 months
M. Tinknell	Lawrence Berkeley Laboratory	1 year
A. Virtanen	Univ. of Jyvaskyla (Finland)	1 year
T. Walkiewicz	Edinboro Univ.	1 year
R. Wang	Univ. of Science Technology (China)	1 year
J. Wells	Tennessee Technological Univ.	3 days
1. Wieleczo	CEN, Saclay (France)	1 year
C. Hu	Jilin Univ. (China)	1 year
J. Wu	ORNL/JIHIR	5 months
J. Zhang	Lanzhou list. (Shina)	1 year

Table ..14. Meetings Sponsored by JIHIR during Fy 1988

Meet ing	Date	Approximate Attendance	Organizer
Workshop on High Energy Nurlear Collision Monte Carlo Codes	Sept. 12-23, 1988	20	T. Awes S. Sorensen
UNISOR Information Meeting	Nov. i8, 1987	25	H. K. Carter
Horkshop on the Proposal for a Mational Gamma-Ray Detector Facility	Nov. 19-21, 1587	94	N. Johnson, Chairman
UNISOR Workshop	June 21-22, 1988	41	H. K. Carter

USERS GROUP ACTIVITIES

R. L. Auble

Members of the Executive Comittee of the HHIRF Users Group during 1987 and 1988 are listed in Table 1.15.

Table 1.15. Users Group Executive Committee

1987
Jim Beene, Oak Ridge National Laboratory Doug Cline, University of Rochester Mike Guidry, University of Tennessee Joe Hamilton, Vanderbilt University I-Yang Lee, Gak Ridge National Laboratory Alice Mignerey ${ }^{\text {a }}$. University of Maryland

1988

Jim Beene, Oak Ridge National Laboratory Doug Cline ${ }^{\text {b }}$, University of Rochester Joe Hamiltona , Vanderbilt University I-Yang Lee, Oak Ridge National Laboratory Richard Schmitt, Texas ABM University John Welis, Tennessee Technological Univ.

${ }^{\text {a Chairperson }}$

DChairperson elect for 1989

The Executive Comittee met with HHIRF staff on April 11 and September 8 to provide user input in the operation of the facility. These meetings g re the users an opportunity to voice their opinions regarding allocation of financial resources, make recommendations on PAC membership, and generally to take an active role in the decision making process. One change which
was a direct result of comittee recommendations was the appointment of a nalf-time liaison scientist to assist userc of the Spin Spectrometer and Compton-suppression system.

In order to keep the users' nembership list up to date, we require that all members indicate their wish to remain members every third year. This was done in FY 1988. The current number of reconfirming members is 360.

Each year, a niminating committee is formed to select four candidates for election to the Executive Committee of the HHIRF Users Group. The nembers of the nominating committee for 1988 were: K. S. Toth (ORNL)-chairman, P. E. Haustein (BNL), C. F. Maguire (Vanderbilt University). D. M. Moltz (LBL), and S. W. Yates (University of Kentucky).

The annual meeting of the HHIRF Users Group was held in Nashville on November 23, 1987 in conjunction with the meeting of the Southeastern Section of the APS. The meeting was hosted by Vanderbilt University and the JIHIR and was chaired by Alice Mignerey. Presentations included discussion of facility operations, recent accelerator and apparatus upgrades, new experimental apparatus, and long-range computer requirements.

THE PROGRAM ADVISORY COMHITTEE

R. L. Robinson

The PAC continues, as it has since 1984, to mept pupry six months to review proposals submitted for experiments. Recommendations of PAC
are resed principally on the scientific merit of the proposals. Statistics on the two PACs that met in FY 1988, and the one that will meet in Novemuer 1988, are given in Table 1.16. As a result of reliable machine operation and large backlog of data, the ratio of hours that could be recommended by PAC to those requestea in the proposals has reached a new high of over 80\%. This is to be compared with a typical value of 65\% two years ago.

Members of one or both PACs in FY 1988 were:
J. M. Alexander Suny, Stonybrook
H. C. Britt LLNL
A. L. Goodman Tulane University
T. L. Khoo ANL
J. B. Matowitz Texas AsM University
R. A. Phaneuf ORNL
P. H. Stelson ORNL
P. J. Siemens Oregon State University

Gther attendees of the meetings were L. 5.
Schroeder (representing DOE), J. H. Hamilton (representing the Executive Comittee of the hHIRF Users Group). J. B. Ball (representing the ORRL Physics Oivision), and R. L. Auble
(representing the users as Liaison Officer).

Table 1.16. Information on PAC-10, PAC-11, and PAC-12

	Meeting Oate	Hours Requested	Hours Recommended	Rec/Req.
PAC-10	Oct. 27, 1987	2320	1888	818
PAC-11	May 6, 1988	2088	1912	927
PAC-12	Nov. 1, 1988	2448	Est. 2000	est. 82%

2. EXPERIMENTAL NUCLEAR PHYSICS

Abstract

Although the main research program in heavy-ion physics continues to be based on the beams and experimental equipment at the Holifield Heavy lon Research Facility (HHIRF), the use of facilities elsewhere, especially at CERM and GANIL, is becoming increasingly important. The program at CERN, using ultrarelativistic heavy-ion beams, has provided a mealth of information on particle production, y-ray production, and energy densities achievatle with up to $200 \mathrm{GeV} / \mathrm{nucl}_{\text {leon }}$ light heavy-ion beams on a fixed heavy target. These are essential cata required for the establishment and study of a possible quark-gluon plasma state. The results of y decay of the giant resonances from experiments at GMIL are revealing interesting information on the microscopic composition of the resonances. In particular, these experiments have successfully located and measured the properties of an isovector giant quadrupsiz resonance. The program at HIRF continues to be dominated by the Spin spectromiter which generates a great deal of detailed information on high-spin alignment mechanisms and on the evolution of nuclear shapes with increasing spin and increasing excitation energy. The device continues to be developed as a promising tool for heavy-ion felastic scattering. Together with measurements using the velocity filter, the Spin Spectrometer is also providing a more complete understanding of the subbarrier fusion process. Progress continues to be made in understanding the division and dissipation of excitation energy and angular momentum generated in heavy-ion collisions. The heavy-ion light-ion (HILI) detector has been successfully tested and should shortly be making contributions to this important ared of research.

MCCEAR STRUCTURE STUDIES VIA ELASTIC ALD IMEASTIC SCATTERIMG

surface comtributions to the complex MEUTRON-201po WEAN FIELD BETMEEM -20 AMD +20 Mevi
J.-P. Jeukenne ${ }^{2}$ C. H. Johnson
C. Mahaux ${ }^{2}$

Phenomenological analyses of the experimental n- ${ }^{008 p b}$ differential, total, and polarization cross sections, with local optical-model potentials, indicate that the radial shape of the surface absorption depends upon energy below IO MeV, i.e., the corresponding diffuseness decreases and the radius parameter increases with decreasing neutron energy. Because of the dispersion relation that connects the real and imaginary parts of the mean field, these features imply that the real potential contains a surface component whose radial shape also depends upon energy. This radial shape is calculated numerically for typical parametrizatlons of the energy dependence of the surface absorption; it turns out to te quite complicaten for nestron energies between 0 and ls Mev. In
this domain, the predicted differential cross sections are sensitive to the radial shapes of Doth the real and imaginary surface components of the mean field even though their volume integrals are exactly the same in all the investigated models. The best agreement with the experimental data is obtained for parame:rizations in which the radial shape of the surface absorption depends only weakly upon energy. It is shown that good fits to the experimental data can also be obtained in the framework of models in which the radial shape of the surface absorption is independent of energy, but in which the strength of the surface absorption depends upon the orbital angular momentum of the incoming neutron. Tentative physical interpretations of these features are proposed.

1. Summary of paper submitted to Physical Review 1.
2. Consultant from Institut de Physique B5. Inlersity of liege. B-h000 liege l, Belgium.

MEUTRON-40Ca MEAM FIELD BETMEEN -80 AND +80 MeV FROM A DISPERSIVE

 OPTICAL-MODEL AMALYSISI
C. H. Johnson

C. Mahaux ${ }^{2}$

The $n-{ }^{\circ}{ }^{\circ} \mathrm{Ca}$ complex mean field is derived from a dispersive optical-model analysis of the available experimental cross sections. In this analysis the real part of the mean field contains dispersive contributions which are derived from the imaginary part by means of a dispersion relation. These dispersive contributions must be added to the Hartree-Fock potential which is assumed to have a Hoods-Saxon shape, with a depth $\mathrm{L}_{\mathrm{HF}}(\mathrm{E})$ that depends exponentially upon energy. The input experimental data are fourteen differential cross sections in the energy domain [5.3, 40.0 MeV$]$. five polarization cross sections in the domain [9.9, 16.9 MeV] and the total cross section in the domain [2.5, 80 MeV]. The resulting optical-model potential is an analytic function of energy. It can thus be extrapolated towards negative energies, where it should be identified with the shell-model potential. This extrapolation yieldj good agreement with the experimental single-particle energies in the two valence shells of ${ }^{\circ} \mathrm{Ca}$. The model also predicts the radial shape and the occupation probabilities of the single-particle orbits and the spectroscopic factors of the singleparticle excitations. In order to reproduce the experimental energies of the deeply bound $l p$ and ls orbits, one must use a linear rather than an exponential energy dependence of $U_{H F}(E)$ at large negative E. It is shown tr it this is precisely the behavior expected from the fact that the energy dependence of $U_{H F}(E)$ actually represents the nonlocality of the original microscopic Hartree-Fock field. The model also correctly predicts the distribution of the single-particle strength of the $1 d 5 / 2$ excitation in ${ }^{39} \mathrm{Ca}$. The calculated distributions of the 1 p strength in ${ }^{3} \mathrm{Ca}$ and of the $1 \mathrm{f} 5 / 2$ strength in \cdot Ca show that the available experimental information extends over less than half the expected peak. Therefore, the positions of the peaks can not be determined from the experiment. In the energy
comain [2.5, 9 MeV] the predicted total cres section deviates from the experimental data: this reflects the fact 'at at low energy the calculated cross section is very sensitive to small modifications of the mean field.

[^4]
RADIUS OF THE $1 f_{7} / 2$ ORBIT IN ${ }^{\text {H }} \mathrm{Ca}$:

S. Platchkov ${ }^{2}$
A. Amroun
P. Bricault
J. M. Cavedon
P. K. A. de Witt Huberts ${ }^{3}$
P. Dreux
B. Frois
C. 3. Goodman ${ }^{4}$
D. Goutte ${ }^{2}$
J. Martino ${ }^{2}$
v. Meot ${ }^{2}$
G. A. Petersons
X. H. Phan ${ }^{2}$
S. Raman

1. Sick ${ }^{6}$

The magnetic form factor of ${ }^{4} \mathrm{Ca}$ was measured by elastic electron scattering in the momentum transfer range between 1.8 and $3.3 \mathrm{fm}^{-1}$. The two essential results deduced from this experiment are: (1) the rms radius of the $1 \mathrm{lf}_{7} / 2$ neutron orbit is $3.99: 0.06 \mathrm{fm}$ and (2) the single-particle spectroscopic amplitude of this orbit is $0.83: 0.05$, representing a depletion of the $1 \mathrm{f}_{7} / 2$ orbit by $(17 \div 5 \%)$ in ${ }^{4 i} \mathrm{Ca}$. The measured mas radius agrees with the mean-field value of 4.02 fm calculated by Dechargé and Gogny ${ }^{7}$ and with the relativistic mean-field rosult of 4.05 fm by Kim^{8} it is slightly smaller than the 4.14 fm value of Negele. ${ }^{9}$ The measurement of the $1 f_{1 / 2}$ neutron radius has direct implications for the interpretation of the Coulomb energy differences for the ${ }^{1} \mathrm{Ca}-{ }^{4}{ }^{1} \mathrm{Se}$ mirror pair. Knowledge of this radius rules out the explanation of the Coulomb energy anomaly ${ }^{10}$ based on a reduction of the valence orbit radius.

1. Summary of published paper: Phys. Rev. Lett. 61, 1465 (1988).
2. DPhN/HE CEN Saclay, F-91191 Gif-surYuette, France.
3. NiKHEF-K, 1009 AJ Amsterdam, The detnerlands.

4．Indiand Iniversity Cyclotron racility． Bloomington， A 4i4j：．

5．University of Massachusetts．Amherst，MA 01003.

6．University of Sase：，CH 4056 Sasel． Switzerland．

7．Phys．Rev．© 21， 1568 （1980）．
9．E．J．Kim．Pn．D tnesis，Stanford
University（1987），and private communication． 9．Nucl．Phys．A165， 305 （1971）．
10．L．A．Nolen，Jr．，and J．D．Schiffer． Annu．Rev．Nuci．Sci．19， 471 （1968）．

FISSION DECAY OF THE EOR IM 238 J

R．L．Auble	J．J．Horen
J．R．Beene	J．L．Blankensnipa
F．E．Bertrand	R．L．Varner
A．D＇Onofrio：	J．Lisanti

Studres of the fission decay of the gidnt quadrupole resonance in ${ }^{238} U$ were undertaken to examine the possibility that the quantum number k is conserved curing the fission process．Such a possibility was raised in studies of the ${ }^{238} U\left(a, a^{\prime} f\right)$ reaction where the fission fragments were limited to angles close to the recoil direction．In the present study， four position－sensitive avalanche detectors provided partial coverage at all fission angles． The GDR was excited by the $238 \mathrm{U}\left({ }^{17} 0,17^{17} 0^{\prime}\right)$ reaction using a $375-\mathrm{MeV}$ bean from the HHIRF coupled accelerators．Inelastically scattered particles were analyzed in the broad－range spectrograph（BRS），and fission events were identified by coincisences between the focal Dlane detector and the avalanche detector 3 rray located in the BRS scattering chamber．

Inelastic spectra mere gated on fragment． angles（in 10° bins）between 0° and 90° wth respect to the recoil direction．Relative fission probabilities were determined by dividing ty the singles spectrum and normalizing in the 25－30 Mev excitation region（assumed to De isotropicl．Angislar discridutions obtained for various excitation energies are shown in Fig．Z．l．For energips near trap fission tarciar． we onserve the expeciat mnancement dion＇j enp reconll directior．ADiva tine sierrier，at －nergles pretietmy for the arims veromponent：

Fig．2．1．Angular correlations，for various excitation energies，of inelastically scattered particles in coinridence with fission fragments emitted at an angle of relative to the recoil direction．
of the GOR，the angular distribution is isotrop－ ic within the experimental uncertainties．This implies that K at the saddle point is essen－ tially unrelated to the k component excited in the reaction．

1．Joint Institute for Heauy Ion Research and instituto Nazionale तI Fisica Nucleare， Napoli，ltaly．

2．Instrumentition and Countrals Oivision．万） N_{1} 。
：．Wartiol supure from the Joint Institut． Por meaty ion juroteiren．（hNL．

4．i．．．：urtrand ot al．，phyr．Imti．998， そ：\vdots ．

EXPERIMENTAL DEMONSTRATIOM OF COMPOUND AMO PRECOMPOUND EFFECTS IN GIAMT DIPOLE RESORAMCE PHOTOM DECAY

J. R. Beene	W. Mittig
F. E. Bertrand	Y. Schut2
D. J. Horen	J. Barrette
R. L. Auble	N. Alamanos
B. L. Burks	F. Auger
J. Gomez del Campo	B. Fernander
M. L. Haldert	A. Gillibert
D. C. Hensley	B. Hads
R. O. Sayer ${ }^{2}$	J. P. Viviens

A. M. Mathan ${ }^{6}$

The importance of the contribution of fully damped compound states to the photon decay of giant resonances excited by inelastic scattering was pointed out first in Ref. 7 and has been discussed in a number of subsequent works.e-12 Approximate quantitative calculations based on the ideas of the theory of multistep compound emission (MSCE), 12.13 have been carried out, for the ground-state photon decay of the isoscalar giant quadrupole and isovector giant dipole resonances (IVGDK) in ${ }^{200} \mathrm{~Pb}$ excited by $22-$ Mev/nucleon ${ }^{170}$ scattering, ${ }^{1 i}$ and for the IVGDR excited by the same reaction at 84 MeV per nucleon. ${ }^{14}$ These calculations show remarkably good agreement with the experimental photon decay data. Ground state photon decay following inelastic excitation by $84-\mathrm{meV} /$ nucieon ${ }^{17} 0$ is a particularly good case for further exploration of the application of the MSCE theory, since the IVGOR is very strongly excited $(\sim 2.5 \mathrm{D} / \mathrm{sr}$ at 2.5°), with a peak-to-continuum ratio of about 6 to 1 , and has an average ground-state gamma branch at least two orders of magnitude larger than that of the underlying background or any nearby resonances.

According to the MSCE theory, the cross section for a particular exit channel in a nuclear reaction can be described by an incoherent sum of contributions from different stages (or levels of complexity) in the evolution of the states of the excited system.

$$
\begin{equation*}
\because, \quad i_{i=1}^{r}, 1, \tag{1}
\end{equation*}
$$

The first term in this sum represents the primary doorway state excited by the reaction
process fin our case the conerent giant resonance state, wich can be described as a superposition of lolh states). The sum then runs over successively more complex states $(2 p 2 h$. $3 \mathrm{p} 3 \mathrm{~h} . .$.), terminating at the fully damped compound system. In the formal expressionll-l3 a depletion factor multiplies each stage, taking into account that only that fraction of systems which have not decayed in previous stages can contribute to the cross section for the ith stage. In our applications of MSCE to photon decays of giant resonances, we have simplified Eq. I by neglecting all stages except the first (primary doorway) and last (fully damped compound) stage. The cross section for groundstate photon exission, integrated over photon emission angle, can then be written

$$
\begin{equation*}
\sigma\left(Y_{0}, E\right)=\sigma(\Sigma)\left\{\frac{r_{Y O}}{\Gamma}+\left[\frac{\Gamma^{\phi}}{\Gamma}\right] R_{c n}(E)\right) \tag{2}
\end{equation*}
$$

where $\sigma(E)$ is the excitation cross section as a function of excitation energy E. The two terms in parenthrses represent the primary doorway and compound contridutions, respectively. $\tau_{r o}$ is the gamma decay width of the giant resonance, treated as a single sharp state, : is the total width of the resonance $r=\Gamma^{+}+\Gamma^{+}$where Γ^{+}and r^{*} are the escape and damping widths, respectively. The width ratio in square brackets in the second term therefore represents the fraction of systems which reach the fully damped stage. $R_{c n}(E)$ is the compound ground-state gamma branching ratio obtained from a detailed statistical model calculation, incluaing corrections for width fluctuations which have been discussed extensively by Moldauer. ${ }^{1 s}$ Calculations employing the formalism have been described in more detail elsewhere. 8,11 the important iualitative feature of Eq. 2 is that the first term depenas only on the gross collective properties of the giant resonance (strength and total width) wile the second term is sensitive to detdiled properties of the compound stater. This means that a goon test of the nasic feature: of tig. $?$ should be provided by a comparison of tata on nusclel wien have similar
strength distributions, but compound states with very different properties.

One of the best examples of such a comparison is 208 Pb and 239 Bi . The collective properties of these nuclei are remarkably similar. The average ground-state gama branch from fully damped states is, however. expected to be much smaller in 209 Bi than in 208 Pb , due primarily to the substantially larger neutron decay widths of the ${ }^{209} \mathrm{Bi}$ compound states. These larger widths result from the larger density of final states available in ${ }^{207} \mathbf{B i}$, compared to 207 Pb . The similerity of the strength distributions is emphasized by the data in fig. 2.2, showing the almost indistinguishable spectra for inelastic excitation of these two nuclei by $84-\mathrm{MeV} / \mathrm{nucleon}$ 170 at a center-of-mass angle of 2.7°. Figure 2.3a shows the ground-state photon decay coincidence (${ }^{170,170 ' r)}$ yields for 208 Pb divided by those for 2098i. The coincidence data was acquired under identical conditions for the two targets; a range of scattering angles spanning 2° to 4° and a combination of photon data from nine multiple detector arrays of BaF_{2} (see Ref. 10 for details of experimental geometry). The gaman decay yields are clearly quite different near 11 MeV , in spite of the almost identical excitation cross sections (Fig. 2.2). Equation 2 predicts a ratio of yields in good agreement

Fig 2.2. Excitation energy spectra obtained with inelastic scattering of $84-$ MeV/nucleon 110 on 200 Pb (solit histogram) and 22381 (dashed line).

Fig 2.3. Ground-state gama-ray coincidence data. Figure $2.3 a$ shows the ratio of experimental yields for 208 Pb divided by 209 Bi (data points) and the result of a calculation of this ratio obtained using Eq. 2 (solid line). Figure 2. 30 illustrates the contribution of the two terms of Eq. 2 to the predicted ground-state photon yield from 208 Pb . The quantity plotted is the ratio of the first term of Eq. 2 to the sum of the two terms.
with the data, as shown by the solid line in Fig. 2.3a. The difference between the predicted yields for the two nuclei lies almost entirely in the second term of Eq. 2, wich makes about a five times larger contribution in 208 Pb than in ${ }^{209} \mathrm{Bi}$ in the vicinity of the GOR. The energy dependence of the two terms in Eq. 2 is Illustrated in Fig. 2.36 which shows the ratio of the first term to the sum of both terms in Eq. 2 for ground-state photon decay of the IVGDR in 208 Pb . We draw two conclusions from these reiults: (1) The decay of fully damped states makes a significant contribution to ground-state photon decay in 208 Pb , as conjectured in Ref. 7
(2) The calculation using Eq. 2 gives a quantitative account of the datd. This is somewhat surprising in view of our rather schematic and approximate implementation of the MSCE theory. We mould have regarded even qualitative dgreement between the datd ans the calculation as confirmation of the usefulness of the MSCE theory in this situdtion.

1. Engineering Physics and Mathematics Division. (RNL.
2. Computing and Telecommunications Division, ORNL.
3. Grand Accelerateur National d'Ions Lourds, 14021 Caen Cedex, France.
4. Centre d'Etudes Mucleaires de Saclay,

91191 Gif-sur-Yvette Cedex, France.
5. Centre de Recherches Nucleaires, 67037 Strasbourg Cedex, France.
6. University of lllinois. Champaign, IL 61820.
7. J. R. Beene et d.. Phys. Lett. B164, 19 (1985).
8. J. R. Beene, F. E. Bertrand, and R. L. Varner, Mucl. Phys. A482, 407c (1988).
9. H. Dias et al.. Phys. Lett. 1738, 355 (1985).
10. H. Dias, M. S. Hussein, and S. K.

Adhikari, Phys. Rev. Lett. 57, 1998 (1986).
Il. J. R. Beene et al., submitted to Physical Review C.
12. H. Feshbach, A. Kerman, and S. Koonin, Ann. Phys. 125, 429 (i980).
13. M. Hussein and K. Mc Voy, Phys. Rev. Lett. 43, 1645 (1979).
14. J. R. Beene et al.. Phys. Div. Prog. Rep. for Period Ending Sept. 30, 1987, ORNL 6420, p. 41.
15. P. A. Moldauer. Phys. Rev. C 11, 426 (1975).
16. F. E. Bertrand et al., "A Photon Decay Study of the Isovector Giant Quadrupole Resonance in $\mathbf{2 0 8 P b}^{0}$ " this report.

STUDY OF THE BREATHING MODE OF 208 Pb
THROUGH REUTRON DECAY1

$$
\begin{array}{ll}
\text { A. Bracco } & \text { P. F. Bortignon4 } \\
\text { J. R. Beene } & \text { F. Zardi }{ }^{5} \\
\text { M. Van Giai }{ }^{3} & \text { R. A. Broglia }
\end{array}
$$

The neutron decay of the giant monopole resonance region between 13 and 15 MeV in 200 Pb is analyzed in terms of collective and statistical doorway states. The direct escape widths of the giant monopole resonance populating the lowest five valence nole states of ${ }^{207} \mathrm{~Pb}$ i e oeter mined, and compared with the results obtained from complex collective states. This comparison discriminates sharply between different model Hamiltonians wich predict similar energies and callectivities for the resonance.

[^5]5. Istituto Mazionale di fisica Mucleare. 1-35131 Padova, Italy.
6. Universita di Milano, 1-20133 Milano, Italy, and the Niels Bohr Institute. Copenhagen. Denmark.

COULONB EXCITATION OF GIANT RESOMANCES IN 208 Pb 8YE $=84$ MeY/MUCLEON 170 PROJECTILES

J. Barrette ${ }^{2}$	R. L. Auble
N. Alamanos ${ }^{2}$	B. L. Burks
F. Auger ${ }^{2}$	J. Gomez del Campo
B. Fernande z^{2}	M. L. Halbert
A. Gillibert ${ }^{2}$	R. O. Sayer
D. J. Horen	W. Mittig ${ }^{3}$
J. R. Beene	Y. Schutz ${ }^{3}$
F. E. Bertrand	8. Haas ${ }^{4}$
J. P.	Vivien ${ }^{4}$

Inelastic scattering of 84 MeV/nucleon 170 on 208 PD has been measured between $1.5^{\circ} \leqslant \theta C \mathrm{CM} 5.0^{\circ}$. The giant resonance structure near 12 MeV is excited with a differential cross section of more than $20 / 5 r$ and exhibits a peak-to-continuum ratio as large as 6 to 1 . The major part of the cross section can be ascribed to Coulomb excitation of the isovector giant dipole and the giant quadrupole resonance. From the Coulonb excitation of the $G Q R$ we deduce $a \mathrm{~B}(E 2)+=0.53 \pm 0.11$ $e^{2} b^{2}$ which is that expected for a nearly pure isoscalar resonance wich exhausts $\mathbf{- 6 0 4}$ of the EWSR.

[^6]
ELECTROMAGNETIC DECAY OF THE GIANT RESONANCE REGION IM 209Bi

R. L. Varner	M. L. Halbert
R. L. Auble	D. C. Hensley
J. R. Beene	D. J. Horen
F. E. Bertrand	R. L. Robinson
B. L. Burkst	R. O. Sayer?

We have made a series of medsuremerts of the absolute cross section ror the jround-state electromagnetic decay of nuclei excited into their giant resonance region by the inelastic scatiering of approximately $23-\mathrm{MeV} / \mathrm{nuc}$ leon 1 'n
ions. The nuclei studied so far are zaspo !Ref. 3), : EJ2r (Ref. 4), and ?29Bi; this is a report on the work with 23081.

Our interest in the 239 Bi system arose because of the unusual properties of the gamend decay in 230 PD, in wich the cross section is much larger than can be accounted for by direct giant resonance decays dione. This discrepancy can be understood in tenms of the multistep theary of nuclear reactions. We should consider photon decay not only from the initial (doorway) stage, i.e., the coherent jiant resonance state, but also from subsequent stages, including the fully damped compound nuclear states into lich the resonance strength is eventually mixed. In the case of 2 Japb , the small neutron decay widths of the compound states, resulting from the 1 m density of final states in 207 Pb , lead to inusually large compound contributions to the phriton decay.s The 2098i system provides a ontrast with ${ }^{208} \mathrm{~Pb}$ in that it has a much higher density of final states for neutron decay than 208 PD . yet should have nearly identical direct decay properties for the giant resonances.

The 209 Bi measurement was performed using basically the sume setup as in the earlier ${ }^{208} \mathrm{po}$ experiment, using a $2.3 \mathrm{mg} / \mathrm{cm}^{2}$ target ans a 376 MeV 170 beam. We attempted to enrich the data on-line, chiefly by eliminating events in wich the total gamma energy was below the excitation energy by more than the neutron separation energy and by scaling down counts in the elastic scattering peak. Better hardware in the Spin Spectrometer interface permitted much more accurate and stable application of this technique than in the earlier $902 r$ measurement. As a check on this experiment we measured the same decays using a $3.7 \mathrm{mg} / \mathrm{cm}^{2}$ target of 208 Po in an otherwise ifentical setup.

We medsured the excitation cross section of the giant quadrupole resonance (GQR) at 10.1 MeV to be $40 \mathrm{mb} / \mathrm{sr}$ at a lab angle of 13°, consistent with 80% of the sum rule in 2038 i . This is quite similar to GOR yielas measured ${ }^{6}$ in 2rapt, as me mula expect. There is additional excitation cross section at li.s MeV of about.
$10 \mathrm{mb} / \mathrm{sr}$, consistent with 100% sum rule depletion of both the giant dipole and giant monopule resonances (GOR and GMR). ${ }^{\circ}$

In Fig. 2.4 we snow the ground-state alectromagnetic decay cross section from the

Fig. 2.4. Cross section for gamma decay of the giant resonance region in ${ }^{20}{ }^{8}$ ii. The curves are from calculations with ONESTEP.
giant resonance region, including calculations of that decay using the program ONESTEP. 5 The calculations shown are made in d parameter-free model of the multistep decay, assuming that all gama decays result from either the doorway giart resonance or the fully equilibrated conpound mucleus. As can be seen, the data show little evidence of any decays except dipole decays from the doorway GDR, wose gamma branching to the ground state is ordmatically larger than that of the GQR. At this time we think that the normalization of the cross sections may be uncertain by 20\%. Work is now in progress to improve the normalization uncertainty and refine the calculations.

1. Engineering Ptiysics and Mathematiis Oivision, ORNL.
2. Computing and Telecommunication: Division, ORNL.
3. J. R. Beene et al.. submitter to Physical Review C.
4. R. L. Varner et al., Phys. Dtv. Prcs. Rep. for period Ending segt. 3, 1 , ORNT-63?5, p. 36 .
5. J. R. Beene, Phys. Div. Prog. Rep. for Period Ending Sept. 30,1987 , ORNL-6420, p. 44. 6. T. P. Sjoreen et d... Phys. Rev. C 29, 1370 (1984).

ISOLATION OF THE ISOVECTOR OUADRUPOLE RESOMAMCE

 IH 208 Pb VIA PHOTON DECAY| F. E. Bertrand | Y. Schut 2^{1} |
| :--- | :--- |
| J. R. Seene | W. Mittig |
| R. L. Auble | J. Barretiez |
| M. L. Halbert | B. Fernandez |
| D. C. Hensley | F. Auger |
| D. S. Horen | N. Alamanes |

A. Gillibert ${ }^{2}$

For the electric giant resonances there is presently a great deal of systematic data on the isoscalar modes, quadrupole (ISGQR), monopole (ISGMR), and octopole (ISGOR), and some information on the isoscalar hexadecapole (ISGAR) and isoscalar dipole resonances. ihere is, however, very little firm information on the electric isovector modes, other than for the longestablished isovector giant dipole (IVGOR) and the isovector giant monopole resonances. This dearth of information on the isovector electric resonances arises from several factors. First, the excitation of isovector states in direct nuclear reactions is much weaker than for isoscalar resonances. Second, direct reactions. in general. are not multipole-selective and thus excite many giant resonances, leading to a very complicated resonance structure that is difficult to unfold and interpret. Third, the isovector electric resonances are expected to be located at higher excitation energies and to be brodder than their isoscalar counterparts, thus making their observation above the underlying continuum more difficult. Finally, in general the continuum underlying the giant resonances is at best comparable to the size of the isoscalar quadrupole and would be much larger than the cross section for an isovector resonance at -wice the isoscalar excitation energy. This wruld greatly increaie the difficulty of observing a broad, weakly excited resoname at - ign excitation energy.

In a recent paper' by Speth et al., it was pointed out that the photon decay of the isovector giant quadrupole (IVGOR) in 319ph
should proceed very strongly vid a branch to the 2.613-Mev, 3- state. This is in marked contrast to the measured ${ }^{4}$ and calculated ${ }^{3}{ }^{5}$ photon decay of the isoscalar giant quadrupole resonance (ISGQR) which shows no decay to the first 3state in 208 pb . The calculation ${ }^{3}$ suggests a branch to the $2.618-\mathrm{MeV}$ state that is ~ 1.8 times larger than the branch to the ground state with an overall ratio of gamana to neutron emission of -10^{-3} for the IVGQR. For this reason. detection of the photon decay from the expected excitation energy region of the IVGQR may provide a medns to isolate this state from the excitation of other resonances and the underlying continuum in the same excitation energy region.

We have carried out experiments using the 84-MeV/nucleon ${ }^{17} 0$ beam from the GANIL accelerators in Caen, France. At these beam energies, Coulonb excitation dominates the cross section for the IVGQR. Oxygen-17 was used because its low neutron separation energy (about 4 MeV) minimizes the contribution to the inelastic scattering spectra from such procosses as projectile excitation and nucleon pickup and subsequent decay. Inelastically scattered particles were detected in the magnetic spectrograph facility SPEG with an energy resolution of about 800 kev and unit mass separation. The spectrograph was set to accept events in the angular range from 1.5 to 5.0 degrees. The vertical acceptance was 45 mrad .

Photons in coincidence with irelastically scattered ${ }^{170}$ were detected in 99 BaF $_{2}$ detectors arranged in clusters of 19 (x clusters) or 7 : y clusters) detectors. The detectors in the y clusters were right hexagons with face-to-face dimensior. of 8.7 cm and length 14 cm , while those in the x clusters were 5.7 - by $20-\mathrm{cm}-$ long. The clusters were olaced at angles ($\theta, 0$) of $(70,172),(138,30),(138,50),(109,68)$. (109.187), (109,232), (109,352), and (109,111) deg.ees, where $(0,0)$ was the beam direction and the inelasticaily scattered particles were detected in the $=180^{\circ}$ half-plane. f 'se helghts and times etative to the cyclotron rf were stored for each of the detertors along with
the data from SPEG. Weutrons were identified and separated from photons by time of flight using pulse height (energy) dependent time gates. The photon time resolution at fixed pulse height was less than 800 ps for pulse neights corresponding to 2 MeV or more. Pulse shape identification was used for charged particle rejection. Each detector cluster was treated as a single detector by summing the individual pulse heights to produce a total pulse height, subject to the condition that the central detector (y clusters) or the sum of the pulses from the central seven detectors (x clusters) accounted for $>50 \%$ of the total. Energy and efficiency calioration, were made using radioactive sources (up to photon energy of 4.42 MeV) and on-line data for the 2.613-, 4.085-, and 5.512-MeV states in 208 Pb which decay by emission of a single photon :o the ground state. The results were extrapolated to higher energy using simulations based on the computer code GEANT.

Photons were medsured in coincidence with inelastic scattering for the entire excitation energy region studied, -1-40 Mev. For the detection of the IVGQR, triple coincidences were utilized between the inelastically scattered ${ }^{170} 0$ ion, photon of energy 2.61 MeV , and a photon having energy greater than 10 Mev. Use of the triple coincidence insured observation of photon decays directly from the region of the IVGQR to the 2.61 -MeV state rather than via a cascade through intermediate states.

Typical gamma widths for El decays are orders of magnitude greater than those for other multipolarity for photons of these energies. Thus, contributions to the triple coincidence datd from states other than 2^{+}or 4^{+}in the $20-\mathrm{MeV}$ region is negligible. We do not expect to find $T=0.2^{+}$strength in that region since such strength is fully accounted for at lower energies. In the case of 4^{+}strength, we first point out that isovector 4^{*} strength snoula be iocated at much higher excitation energies and will undountedly be very spreat out. it is much more likely that isoscalar 4^{*} strengith may be located in the reyton of 20 mpV . since $1=4$
strengtn can be located at Ohw, 2hw, and the, it is unlikely that more that 50 of the 1 sosicilar 4^{*} strength would be found nedr 20 MeV (4h.t. If it is assumed that 50% of the $i=0,4^{+}$ strength is found at 23 MeV of excitation erieryy, we calculate a maximum differential Eross section for the $L=4$ strength $(3$ deg.) to be about five times less than the expected cross section for 100 t of the IVGOR cross section. Further more, as is shown in Ref. 3, we expect a very large suppression of the photon decay between an isoscalar giant resonance state and the lowlying isoscalar, 2.61 MeV . state in 200 Pb . Another possible important source of background which is very effectively suppressed by the coincidence with $2.61-\mathrm{MeV}$ photons is that due to complex reaction processes producing multiparticle final states. The simultaneous detection of the 170 ejectile and the 208 Pb 2.61 - MeV photons uniquely identifies the two-body final state. For these reasons we feel that the chotons detected in the triple coincidence measurements are dominated by transitions from the isovector giant quadrupole resonance to the 2.61 Mev, 3^{-}. level in 208 Pb .

The histogram in fig. 2.5 shows the yield of photons from the triple coincidence data, where

Fig. 2.5. The histogram shows the measured relativa distrinution of ry coincidence yipld iF., $10 \mathrm{MeV}, \mathrm{E},=2.6 \mathrm{MeV}$) as d function of eacitation energy, subject to the conditions tiscussed in the toxp. The disted curve is the I Writh spectrum preducted by the calculation in Ref. 3.
$E_{Y_{1}}+E_{Y_{2}}-E^{*}$ and $E_{Y_{1}}=2.6 \mathrm{MeV}$. There are d total of 109 events in this spectrum wich were accumslater ouring about 128 hours of beam time. For reisors detailed in the preceding parayraph, we attribu:e this spectrum to the IVGQR.

Although the counts are few, the results are very clean and yield the values foi the centroid, width (signa), and strength of the IVGQR as shown in Table 2.1. Also shown in Tabio :. 1 are results from two inelastic electron scattering measurements, 6,7 a recent observation ${ }^{8}$ from the (γ, n) reaction, and RPA calculations. ${ }^{9}$ We also measure the ground-state photons from the same region of excitation energy in 208 pt and find a ratio of ground-state photon decay to photon decay through the
2.61-MeV, 3^{-}state to be approximaicely one. The Calculations of Ref. 3 indicate a branching ratio between ground state photons and photons through the 2.61 MeV level of about 0.5 . Considering the uncertainty due to the low number of counts in our data, we do not consider the difference between the calculation and the measurement to be significant. The ground state decay from this region is likely to contain a large contribution from the tail of the IVGDR. He hope to estimate the relative contributions using gamna-ray angular correlations.

The curves in Fig. 2.5 show the strength distribution for the IVGQR calculated by Bortignon et al. 9

[^7]hEAYY-1ON COULOMB EXCITATION AND PHOTON DECAY OF THE GIANT DIPOLE RESOMAMCE IN $208 \mathrm{~Pb}{ }^{1}$

J. R. Beene	W. Mittig*
F. E. Bertrand	Y. Schutz ${ }^{4}$
D. J. Horen	J. Barrette ${ }^{5}$
R. L. Auble	N. Alamanos ${ }^{5}$
B. L. Burks ${ }^{2}$	F. Auger ${ }^{5}$
J. Gomez del Campo	B. Fernandez ${ }^{5}$
M. L. Halbert	A. Gilliberts
R. 0. Sayer ${ }^{3}$	B. Hads ${ }^{6}$

Measurements are presented of the photon decay of the isovector giant dipole resonance in 208 Pb following Coulomb excitation by 84. Mev/nucleon $\mathrm{i}^{70} 0$. By studying the angular correlation between ${ }^{170}$ ions and single photons tu the ground state we are able to isolate the

Table 2.1. Isovecto: giant quadrupole resonance 208 PD

	Present Experiment (170.170'ry)	Bortignon ${ }^{9}$ Calculation	$\begin{aligned} & (y, n)^{8} \\ & \text { Forward/ } \\ & \text { 8ackward Asy. } \end{aligned}$	$\left(e, e^{\prime}\right)^{\text {f }}$	$\left(e, e^{\prime}\right)^{\prime}$
Centrois (MeV)	$22.6: 0.4$	22.4	$23.5 \cdot 1.5$	~ 22	22.5
Width (MeV)	$6: 2$	3.6			5-1
$\begin{aligned} & E \operatorname{Ls} \alpha \\ & (1) \end{aligned}$. 50%	61		60) 25	45. 24

iYODR without elaborate peak fitting cr backyround subtraction. The angular correlations and yields are accounted for quantitatively by a pure Coulono excitation model of the reaction process. The distribution in energy of the ground-state photon decay cross section is well described by an approximate application of the multistep theory of nuclear reactions. Use of the shape of the dipole resonance sbtained in the photon decay measurements leads to the extraction of differential cross sections for the isoscalar giant quadrupoie and monopole resonances with low uncertainty.

1. Abstract of paper submitted to Physical Review C.
2. Engineering Physics and Mathematics Division, CRML.
3. Computing and Telecommunications Division, ORML.
4. Grand Accelerateur Mational d'lons Lourds, 14021 Caen Cedex. France.
5. Centre d'Etude; itucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France.
6. Centre de Recherches Aucledires, 67031 Strasbourg Cedex. France.

SEARCH FOR THE TNO OCTUPOLE PHONON
 STATES IN 200 PD

J. R. Beene	M. L. Haibert
A. O'Onofriol	R. L. Varner
R. L. Auble	D. J. Horen
F. E. Bertrand	J. Lisantti2
R. T. VanHook ${ }^{3}$	

The description of niclear ststes in terms of elementary degrees of freedu: nas been of great importance in the development of our understanding of nucledr structure. Quadrupole and octur-1 eirface vibrations are examples of elementary modes wich have been most successfully applied in many nuclei. It is surprising and troubling that one of the most collective vibrational states known, the $2.6-\mathrm{MeV}, 3^{-}$state in 208 Pb , has not yet provided, in spite of exten. sive searches, a clear indication that it produces a two-inonon excitation.*. 5

As a by-product of our studies of giant reso-
 reaction at 22 Mev/nucieon and the Spin - octrometer, we uncovered less than definitive indications that the two octupole phonon
muitiflet might be excited with reasonable cross section by this reaction. Based on this tempting but equivocal result, we recently carried out d high resolution experiment to search for these states. The experiment again employed the $2^{\circ 98 p b}\left({ }^{17} 0,1^{7} 0^{\circ} y\right)$ reaction at 22 MeV/nucleon, but scattered ${ }^{17} 0$ ions were detected in the HhlRF Broad Range Spectrograph (BRS) in coincidence witr gampi rays detected in 18 Compton-suppressed Ge detectors in the newly available stand-alone configuration. The $8 R S$ was specially modified to make it more easily used in this and other gama ray coincidence experiments. These modifications included removal of the quadrupole lens at the entrance to the spectrometer and the construction of a new, small scattering chamber about 50 cm upstream of the normal BRS target position. These changes allowed the Compton suppression array to be positioned around the target in its normal configuration and made room for a beam dump/Faraday cup to be constructed, and surrounded by borated paraffin and lead, at a distance from the Ge detectors such that radiation from the beam dump was not a significant problem. In spite of this unusual configuration, the $B R S$, with its focal plane counter based on the vertical drift chamber,' produced more than adequate resolution (< 300 keV at 375 MeV).

Data analysis is still in the preliminary stajes, and no firm conclusions can be drawn as yet. It is already clear that (as anticiprted) the experiment suffers from a low coincidence efficiency and consequently poor statistics. Nevertheless, if the excitation cross sections (l to $5 \mathrm{mb} / \mathrm{sr}$) inferred from the earlier Sin Spectrometer data prove to be correct, definitive assignment of at least some states of the multiplet should be possible.

[^8]4. P. Curutchet et al., Phys. Lett. 2088, 331 (1988).
5. P. Schuck, 2. Physik A279, 31 (1976).
6. J. R. Beene et al., p. 503 in Proceedings of Niels Bohr Centennial Conference on Muclear Structure, eds. R. Broglia, G. Hagemann, and B. Herskind (Morth Holland, Masterdam, 1985).
7. T. P. Sjoreen et al.., Nucl. Instrum. Nothods Phys. Res. 224, 421 (1984) and M. V. Hynes et al., Mucl. Instrum. Methods Phys. Res. 224. 89 (1984).

IMELASTIC SCATTERIMG OF ${ }^{160} 0 \mathrm{OW}$ S8MI AND ${ }^{70,72,74 G e}$

D. C. Hensley	F. E. Bertrand
E. E. Gross	J. R. Beene
M. L. Halbert	G. Vourvopoulos

A st-יdy of the imalastic scattering of $75-\mathrm{MeV}$ 160 on various isotopes of Ge has been conducted in order to study the properties of the first 2^{+} and first 4^{+}states in these nuclei. It was felt that these nuclei represented an interesting challenge for the technique of measuring inelastic scattering in the Spin Spectrometer. Mickel-58 was added to the list since it was a case that had been studied previously with it as the projectile. Lead-208 was studied briefly to provide a direct means of calibrating the detectors.

Thorough measurements of the charged particle scattering of 160 on the various targets were conducted in the large scattering chamber with a single position-sensitive detector (PSD). The silicon PSD was 8 mm high and 47 mm long with a fuily depleted depth of 500 microns. It was fronted by a rectangular collimator with wire defining slits which separated the detector into 14 roughly equal area slices. The detector was positioned so that it spanned about 9 degrees. Measurements were taken on all targets from d central setting of 15° (most forward slit at qu) out to a setting of 50°. The 208 pb data were extended out to a 65° setting. Extensive left, right measurements were taken in order to determine precisely the zero point of the angle scale. This entire dota set has been processed to provide gain-corrected energy projertions from all of the slices, for all of the settinns. Special corrections were made to the data because, near the end of the experiment, the
position signal was found to be wandering. The energy projections are being analyzed to extract the full angular disiributions.

The scattering measurements mere then moved to the Spin Spectrometer where three PSDs were used for charged particle detection. Two 27-mmlong detectors were positioned with their centers at 20° and 45°, respectively, and a 47 -nmlong PSO was positioned with its center at 35°. This setup provided charged particle detection from 14° to 53°; the grazing angle was near 30°. These detectors were run in coincidence with the 70 Mal detectors of the Spin Spectrometer, and the coincidence events were stored on tape. Approximately 12 hours of beam on target was run for each of the light targets. The beam current was held to under 10 nA so that the trigger rate in the most forward detector was of the order of 6000 counts per second. The two other detectors then had typical rates of 1000 and 100 , respectively. The MaI gamed-ray rates ranged from 10 kHz to 20 kHz .

A preliminary scan of the data indicates that the yield for the first 4^{+}state and additional excited states will be adequate for detailed analysis. There is a moderate excitation of the 160 projectile to its first few excited states near 6 MeV. Analysis of all of the data is continuing both at HhlRF and at western Kentucky University.

1. Western Kentucky University, Bowling Green, ky 42101.

determinimg the experimental geometry FOR IMELASTIC SCATTERIMG IN THE SPIM SPECTROMETER

D. C. Hensl?y
in the study of inelastic scattering of heavj ions on ${ }^{20 日 P b}$ in the Spin Spfctrometer, a continuing source of uncertai,ity in the method pertains to ile determination of the absolute normalization and angles for the various measured angular distributions. An uncertainty of gz or less in the absolute normalization and 0.1 degrees or less in the dngles is nepded for
this study to be uniquely useful. But the detector mounts and target nolder hardware in
 spectrometer make it difficult to fix precisely the lncation of the deam spet and the positions of the detectors. Further, since we use position sensitive detectors (PSD) mithout special geometry determining collimators, the relation between angle and position channel for a given detector is difficult to determine. A technique has been developed wich appears to establish a very low uncertainty in both the absolute normalization and the angles.

First, the "raw elastic" spectrum is measured in the $1.6-\mathrm{m}$ scattering chamber with a PSD fronted by a geometry defining collimator. The "raw elastic" refers to the yield measured within an energy gate on the scattering which includes all of the elastic and essentially all of the scattering to the first 2^{+}state of the projectile. Normally the first 2^{+}state is poorly, if at all, resolved in the dare silicon detectors, and smaller uncertainties in determining the yield are incurred by studying the composite peak. vertical wires divide the detector into 14 fixed angie dins. The relative angles of these wires were determined using the precision goniometer of the $1.6-\mathrm{m}$ chamber to rotdte the detector mile viewing the wires with a transit. Data were then measured to as small an angle as possible, about $: 0^{\circ}$ in the lab, and several measurements were made, both deam left and jeam right, to establish the zero angle with raspect to the beam. finally, measurements are made at angles as far deyond the grazing angle as is practical.

After the relative efficiencies of the 14 slits and the absolute angles were determined for the data se*s, tie overall normalization was tixed by requiring that the average ratio to Ru*:nerford of the scattering from 10° through $2 \xi^{\prime}$ in the lad be equal to one. This normalization procedure essentially circumvents knowing the geometry, the target thicuness, and the intergator calioration. The firial angular distribution thus determiney has an unctridint, of less than a in the abrolite normalization
and an uncertainty of less than 0.5 deyrees in the angle scale.

The same "raw elastic" yield was extracted for two PSD detectors mounted in the scattering chamoer of the Spin Spectrometer. These twe spectra of "raw elastic" yielc were then compared with the distribution determined in the larye scattering chamber. What is not known is the detailed dependence of lab angles and efficiencies on position channels for the two PSD detectors in the Spin Spectrometer.

The technique for accurately determining the geometry assumes that there is a linear relationship between position channel and distance along the detector. The precise raw-elastic angular distribution determined in the $1.6-m$ scattering chamber was first transformed to take into account all of the known geometry of the spectrometer PSDs and was then renormalized to best fit the differential raw elastic yield. The fitting procedure automatically determines the two coefficients required to provide the best linear relation between channel number and distance along the detector. The procedure works so well that it was immediately obvious in the Spin Spectrometer data that the two PSDs have a slightly nonlinear dependence of distance on position channel. The following formula was then tried and appeared to give very good results:

$$
x=x_{0}+s^{*} \text { Cnan }+E^{*}(\text { Cnan-Chan })^{2}
$$

where the third term, involving ϵ, is zero unless Cnan>Cnanz.

A least squares search was made for the values of x_{0}, x, ε, Chan $_{z}$, and the normalization which gave the best fit to one of the spectra. Figure 2.6 shows the best fit to the spectrum for the second detect whose angle range included the grazing angle. The bump in the center of the spectrum indicates the position of the grazing angle. The tots belong to the spin Spectrometer spectrum dna the nedrly solid line corresponds to the transformed raw elastir. angular tistribution.
 berduse of the grating angle bumb. the fit to

Fig. 2.6. Spectrum of "raw elastic" yield (dots) measured in the Spin Spectrometer compared to the transformed raw elastic angular distribution (solid line) determined from the $1.6-m$ chamber data. The bump in the center of the spectrum corresponds to the position of the grazing angle.
the spectrum for the forward detector is not uniquely determined as its spectrum has no unusual identifying features, hence some additional information was applied to the fitting procedure. There is about a 0.4 degree overlap in angle of the two detectors, and in this overlap region it is possible, by using the gamma ray detecting capability of the Spir. Spectrometer, to find the ratio of the yield of the raw elastic to that of the first 2^{+}state as a function of channel for both detectors. This ratio should De independent of any differences between the two detectors and should be a unique function of angle because of the fast decrease of the elastic scattering with angle. By comparing the two resulting sets of ratios, it was possible to reference a channel of the forward detector to that of a channel in the back detector for wich the corresponding angle could be determined. The best values for the various pardmeters were then obtained for the spectrum for the forward detector while holding the valise of the angle for the reference channel fixed.

It. was tound that moth of the deteciors were essentially linear over more than 15 of their
range and the nonlinearity for both detectors was fairly small. (Mote that any nonlinearity in the PSO used in the $1.6-m$ chamber could be totally ignored since the wire mask in front of the detector determined the geometry, irrespective of the response of the detector.) The absolute normalization for the two spectra turned out to agree within 1\%, ind were within a few percent agreement with tha: for the angular distribution determined \ddots. the $1.6-m$ scattering chamber. The latter few percent difference is easily attributable to the fact that two similar 208 PD targets were used in the two different phases of the experiment. and while they had the same nomi,ial thickness, a few percent variation between the two targets should be expected.

As a check on the consistency of this fitting procedure, the results for the forward detector were also obtained by doing a least squares fit for just the linear region of the detector, but no angles and channels were fixed. The x^{2} values were somewhat flit but did yield two solutions. One fit essentially agreed with the fixed reference channel fit, and the other fit required a mere 0.17 -degree shift for the reference channel.

Consequently, it is probable that the angle determination for the forward detector is uncertain to no more than 0.1 degrees, and the overall absolute normalization is uncertain to less than 2\%. Because this normalization was obtained from about half of the data set, and since there was some small detector drift noted during the run, but corrected for, the final uncertainty for both detectors in the Spin Spectrometer in the absolute normalization is 4\% and in the angles is 0.1 degrees.

elastic and inelastic scatterimg of

 200 MeV 26 Mg FROM ${ }^{208} \mathrm{~Pb}$| E. E. Gross | F. E. Bertrand |
| :--- | :--- |
| D. C. Hensley | G. Vourvopoulos: |
| M. L. Halbert | D. Humphrey! |
| J. R. Reene | F. VanCleve: |

Although the $M(E 2)$ systematics for 2^{*} states of pyen-even nuclei are well pstablished, and have recently been updated by Raman ef al..'
the same is not the case for $M(E 4)$ matrix elements. These depend on direct excitation of lowlying 4^{+}states, but such information is relatively scarce becasse cross sections are low and because the states are hard to resolve with conventional charged particle detectors. In the previous Progress Report, ${ }^{3}$ we presented a method to overcome these difficulties by using the Spin Spectrometer in coincidence with positionsensitive solid-state particle detectors. The advantage of this technique is that the y-ray detectors of the Spin Spectrometer provide the resolution wile the particle detectors provide the information for the differential cross sections. With this technique, we have gathered differential cross section data on states excited by -200 MeV beams of $24 \mathrm{Mg},{ }^{26} \mathrm{Mg},{ }^{28} \mathrm{Si}$, and ${ }^{30} \mathrm{~S}$ scattered from a $\mathbf{2 0 8} \mathrm{pb}$ target. In the same Progress Report, we presented results ${ }^{4}$ on the coupled channels analysis of the ${ }^{24} \mathrm{Mg}$ data as well as a cursory look at the ${ }^{26} \mathrm{Mg}$ data. ${ }^{5}$

The 26 Mg levels that we observe from $200-\mathrm{MeV}$ 26 Mg scattering from a 208 Pb target are the ground state (elastic scattering), and the 2_{1}^{+} (1.87 MeV) $\mathrm{C}_{2}{ }^{+}(2.94 \mathrm{MeV}), 4_{1}{ }^{+}(4.32 \mathrm{MeV})$, and $4_{2}{ }^{+}$(4.90 MeV) excited states. This level scheme has been difficult to understand from the nuclear structure point of view particularly as to the nature of the second 2^{+}state, i.e.. whether or not this state can be attributed to a triaxial shape configuration for 26 mg . Furthermore, it is not clear which of the two 4^{*} states belong to the ground state rotational band. The present data and analysis make a contribution to the resolution of both questions. The differential cross section data were andlyzed in rotational model-coupled channels using the program ECIS. ${ }^{6}$

The optical potential is most sensitive to elastic scatering data which is shown in fig. 2.7 as a ratio to Rutherford scattering. The sum of elastic and inelastic scattering was normalized to Rutherford scattering for \& \& 30" C.m. A "snallow" real potential, about 25 Mev. and a "deep" real potential, about. 200 MeV, were tried, together with their corresponaing imagi.

Fig. 2.7. Ratio of elastic scattering to Rutherford scattering for $200-\mathrm{MeV} 26 \mathrm{Mg}$ incident on a 208 Pb target. The solid curve results from d coupled channels fit.
nary potentials. They give the same results for both the fit to all the differential cross sections and for the values of the matrix elements. The fit to elastic scattering is shown as the solid curve in Fig. 2.7.

The $B(E 2)$ to the first 2^{+}state is most sensitive to the forward angle, Coulomb dominated, differential cross section. These data are shown in Fig. 2.8. We find that $B(E 2)=$ (253: 6) $e^{2 f(n+}$ provides the best fit, a value which is 20\% smaller than the value quoted in the recent muclear Data Tables article.2 The E2 reorientation matrix element. wich is related to the static quadrupole moment, Q_{2}, is most dependent on the large angle $2_{1}{ }^{+}$cross section data which, in turn, depends on nuclear excitation ds well as Coulomb excitation. In our analysts. the nuclear deformations are tied to the charge deformation by the Hendrie scaling procedure ${ }^{\text {a }}$ and are, therefore, not treated as independent varidbles. From a fit to our data, the solid line in Fig. 2. 8 , we obtain d value $n_{2}=(-11.4 \cdot 2)$ efmenticn agrees with Coulomb reorientation medsurements. ${ }^{3}$."

The second $?^{+}$state at 2.94 MeV nas of ten been attrinuted to eriaxial character for
$26 \mathrm{Mg} 2+$ State (1.87 MeV)

Fig. 2.8. Differential cross section for exciting the first 2^{+}state (1.87 MeV) of 26 Mg from $200-\mathrm{MeV}{ }^{26} \mathrm{Mg}$ scattering from a 208 PD target. The solid curve is a coupled-channels rotational-model fit.
${ }^{26} \mathrm{Mg}$. However, a symmetric rotor model calculation, the solid curve in Fig. 2.9, gives a reasonable account of the measured differential cross section data. These data and analysis are sensitive to the sign of $p_{3}=m\left(E 2 ; O_{i}+2_{1}\right)$

Fig. 2.9. Differential cross section for exciting the second 2^{+}state (2.94 MeV) of 2 KMg from $200-\mathrm{MeV}$ 2t.Mg scatering from a 20 HPD target. The solid curve is coupled-channels fit using rotationd model form factors. The tasher curve is an asymetric-rotor model fit.
$M_{1} E 2 ; O_{2} \cdots 2_{2} ; M\left(E 2 ; 2_{1} \cdots 2_{2}\right)$; we fina $p_{3}>0$ thus resulving a long standing ambiguity in Coulomb reorientation measurements ${ }^{6},{ }^{2}$ of D_{2}. An asymmetric rotor calculation, shown as a dashec curve in fig. 2.9, gives a fair representation of the shape of the differential cross section but with x^{2} value a factor of four larger than the solid curve. Furthermore, the sign of the E2 matrix element between the two $\mathbf{2}^{+}$states. $M\left(E 2 ; 2_{1} \rightarrow 2_{i}\right)$, predicted by the asymmetric rotor model is opposite to the sign deduced from the symmetric rotor model fit and the predicted 4^{*} cross section is a factor of three larger than either of the two 4^{+}states observed. We conclude that the asymmetric rotor model is not a good representation of 26 Mg . The addition to the aralysis of the third 2^{+}state at 4.84 MeV had no noticeable affect on Q_{2}; however, the addition of a 2^{*} state at 21 MkV (which would be the location of the $G Q R$ from simple systematics) witn 60% of the sum rule strength, as indicated by the high resolution work of Bertrand et al.,10 would increase Q_{2} by $2-4 \%$ depending on the sign of the $2_{1}{ }^{+}+$GQR matrix element. This may be compared with the influence of the GDR which has been estimatedli to decrease O_{2} by 0.5%.

The first 4^{+}state (4.32 MeV) eludes descrip. tion by the rotational model (shown as the solid curve in fig. 2.10) especially as regards the data in the grazing angle region near 43°. The second 4^{+}state at 4.90 MeV , however, is well described by the model as can be seen by the solid curve in Fig. 2.11. The dashed and dotted Curves in fig. 2.11 illustrate the sensitivity to the hexadecapole matrix element. These posilts are convincing evidence that the 4.90MeV state is the member of the ground state rotational band and that the $4.32-\mathrm{MeV}$ level is not a collective state.

1. Western Kentucky University. Bowling Green, Ky 42101.
2. S. Kaman, C. H. Malarkev, W. T. Milner, C. W. Nestor, and P.H. Stelson. Atom, ard Nucl. Data Tables 36, 1 (1987).
3. Phys. Div. Prog. Rep. for Period Ending sept. $3 \pi_{2}$ Г万8T, तRN-6420, p. 6\%.

Fig. 2.10. Differential cross section for exciting the first 4^{+}state (4.32 MeV) of 26 Mg from $200-\mathrm{MeV} 26 \mathrm{Mg}$ scattering from a 208 Pb target. The solid curve is the best fit obtainable assuming that this state belongs to the ground state rotational band.

Fig. 2.11. Differential cross section for exciting the second $4^{\text {t }}$ state ($4.90 \mathrm{Me} \cdot \mathrm{I}$) of 26 Mg from $200-\mathrm{MeV} 26 \mathrm{Mg}$ scattering from a 208 Pb target. The solid curve is a cou', led-charnels fit using rotational model form fac ors. The dashed and dotted curves illustrate the sensitivity of the calculation to the $M\left(E 4 ; 0_{1}^{+} \ldots 4_{2}^{+}\right)$ matrix element.

[^9]3. D. Schwalm, A. Bamberyer, P. G. Bizzeti, B. Povh, G.A.P. Engeldertink, J. W. Ulness, and E. K. Warburton, Wucl. Phys. Al92. 449 (1972).
9. R. H. Speer. T. H. Lebel, M. T. Eset, A. M. Baxter, and S. Hinds, Hucl. Phys. A378, 559 (1982).
10. F. E. Bertrand, K. van der Bory, A. G. Drentje. M. N. Harakeh, J. van der Plicht, and A. van der woude. Phys. Rev. Lett. 40, 635 (1978).
11. M. P. Fewell, Ph.D. Thesis, The Australian Mational University, October 1978 (unpublished).

ASTMETRIC ROTOR MOOEL CALCULATIONS FOR ${ }^{\mathbf{2 4}} \mathbf{M g}$

E. E. Gross	F. E. Bertrand
O. C. Hensley	G. Vourvopoulos
M. L. Halbert	D. Humphreyl
J. R. Beene	I. VanClevel

Symmetric rotor model calculations for 200MeV $\mathbf{2 4}^{4} \mathrm{Mg}+208 \mathrm{PD}$ scattering reported in the previous Progress Report ${ }^{2}$ provided satisfactory fits to elastic scattering and to inelastic excitation of the $2_{1}{ }^{+}(1.37 \mathrm{MeV}), 4_{1}{ }^{+}(4.12$ MeV), and $2_{2}{ }^{+}(4.24 \mathrm{MeV})$ states of ${ }^{24} \mathrm{Mg}$. A few asymuetric rotor model analyses,3,4 have been applied to previous ${ }^{24} \mathbf{~ M g}$ data and several theoretical calculations,5,6,7 have predicted triaxial shapes for this nucleus in order to account for the second 2^{+}state. We therefore subjected our data to an asymmetric rotor model dnalysis using the generalization of the Davydov-Filippor model ${ }^{8}$ due to Saker' who included hexddecapole deformation and a meth ss for calculating the proper scaling fur the nuclear a and y parameters of the mod.l. The best asymmetric rotor iit to the $2_{2}{ }^{+}$state is shown as the dashed curvi in Fig. 2.12 wich has $a x^{2}$ value five times larger than that for the symmetric rotor fit (the colid curve n Fig. 2.12). The asymetric rotor fit to the first 2^{+} state, shown as the dashed curve in Fig. 2.13, also has a x^{2} value five times larger than that for the symmetric rotor fit, shown as the solio curve in fig. 2.13, primarily because it fails to provide the neressary amount of reorientation to account for the behavior of the large angle data. A further fallure of the asymetric rotor model for 24 Mg is the prediction that the prodwet of the thren matrix elements $M\left(E 2 ; O_{1}+2_{i}\right)$

2Fin 2* State (424ma)

Fig. 2.12. Differential cross section for exciting the 2^{+}state at 4.24 MeV in ${ }^{24} \mathrm{Mg}$ by $200-$ Mev ${ }^{24} \mathrm{Mg}$ scattering from a 208 po target. The solid curve is a coupled channels fit using rotational model form factors. The dashed curve is a coupled channels fit in the asymmetricrotor model where the parameter y of the mosel was adjusted to minimize x^{2}.

M(E2; $\left.0_{1} \leftrightarrow 2_{2}\right) M\left(E 2 ; 2_{1}+2_{2}\right)$ is less than zero, whereas the symmetric rotor model fit (the solid curve in Fig. 2.12) requires this product to be positive. We conclude that the asymetric rotor model is not capable of representing the necessary matrix elements to fit this set of data.

1. Western Kentucky University, Bowling Green, ky 42101.
2. Phys. Div. Prog. Rep. or Period Ending Sept. 3 3 2 , 1987, ORNL-6420, 0. 65 .
3. K. van der Borg, M. N. Harakeh, and B. S. Nilsson, mucl. Phys. A125, 31 (1979).
4. J. Murzynski, C. H. Atwood, T. R. Ophel, D.F. Hebbard, B. A. Robson, and R. Smith, Nucl. Phys. A399, 259 (1983).
5. D. Kurath, Phys. Rev. C 5, 168 (1972).
6. G. Leander and S. E. Larsson, Mcl. Phys. A239, 93 (1975).
7. B. Grammaticos, Nucl. Phys. A252, 90 (1915).
8. A. S. Davydor and G. F. filippor, nucl. Phys. 8, 231 (1958).
9. F. F. Baker, Nucl. Phys. A331, 39 (19/9).

Fig. 2.13. Differential cross section for exciting the 2^{+}state at 1.37 MeV in 24 Mg by $200-$ Mev 24 Mg scattering from a 29 Ppo target. The solid curve is a coupled channels fit using rotational medel form factors. The dotted curve is the asymetric rotor model prediction corresponding to the fit to the second 2^{+}state shown in Fig. 2.12.

AMALYSIS OF "OCa(p,p') AT 500 MeV USIMG t_{0} OPTICAL POTEMTIALS IN A COLLECTIVE FRAMEWORK1

$$
\text { K. H. Hicks }{ }^{2} \text { J. Lisantti³ }
$$

Inelastic scattering to the low-lying collective states in ${ }^{\circ} \mathrm{Ca}$ excited by 500 MeV protons is examined using both relativistic and nonrelativistic microscopic optical model potentials in the Passie model. Phe nonstandara shapes produced by these microscopic models do not produce different deformation lengths than those obtained using standard Woods-Saxon shapes. For comparison, calculations using the distorted-wave impulse approximation are presented.

[^10]
application of the relativistic collective MODF' TO INTERMEDIATE-ENERGY proton-mucleus scattering

J. Lisantti:

witn the recent success of the use of the Dirac equation to descride the elastic scattering of intermediate energy protons from nuclei, it was only natural to extend tinis formalism to the study of inelastic scattering. As with the nonrelativistic formalism based on the use of the schrodinger equation there are two different methods which have evolved in the use of the Dirac equation. One method is based on using the microscopic impulse approximation. ${ }^{2}$ the other is to use the macroscopic deformed potential model. ${ }^{3}$

We have andyzed our $500-\mathrm{MeV},{ }^{a} \mathrm{Ca}\left(\overrightarrow{\mathrm{P}}, \mathrm{D}^{\prime}\right)$ data using this latter method. The optical potentials used for the analysis come from Raynal' in mich he observed that there is considerable ambiguity in the imaginary vector potential (Wy) in an andysis of datas which covered a limited angular range. Values ranging from 0 to -180 MeV gave good fits with the best results obtained for the range of -80 to -120 MeV . We have analyzed a set of data which went to larger scattering angles than Ref. 5. Our results as calculated using the code ECIS87 ${ }^{7}$ are shown on Fig. 2.14 for two potentials Iabeled $W_{V}=-80 \mathrm{MeV}$ and $W_{V}=-120 \mathrm{MeV}$ in comparison to the elastic data of Ref. 6. Both potentials fit the data equally well. In order to investigate these potentials further, we then calculated the inelas*ic scattering cross sections ano analyzing powers for the $3_{1}^{-1} 13.736$ MeV), 2 . ${ }^{*}(3.904 \mathrm{MeV})$, and the $5_{1}+(4.49 \mathrm{MeV})$ states, using both of these potentials. The results of these calculations are shown in fig. 2.15. The inelastic data shows no preference for either potential and in fact both potentials give the same deformation lengtins as shown in Fig. 2.15. These deformation lengets are compared in ranle 2.2. The relativistic model is nigher for the 3^{-}- and 5 : stater than the nonrelativistic model, wile ooth methots agrue for the 2: state. ine last column of lable j.t

Fig. 2.14. Proton elastic scattering di 500 MeV. The data are from Ref. 6. The solid curve is the relativistic optical model fit for the imaginary vector potential having a depth of -80 MeV. Wile the dashed line is for -120 MeV .
shows the average value of $\delta_{\text {MR }}$ obtained from various proton scattering experiments in the range of 25 to 800 MeV. We observe that the relativistic model gives nigher values for the 3_{1}^{-}and 2_{1} * states but agrees for the 5 - state. Therefore, there appears to be no clear trend Detween the relativistic and nonrelativistic models as far as the deformation parameters are concerned for ${ }^{\circ} \mathrm{Ca}$, and data for inelastic scattering show no preference for either of the relativistic pntentiali.

A further dpulication of the firac relativistic collective model nas iben to tit the optical potential parancturs to $2 \mu / 1$ - and 4 rita-mev protan elastie scattering data from andi. The

Fig. 2. 15. Relativistic collective deformed potential calculations compared with 500 MeV $40 \mathrm{Ca}\left(p, p^{\prime}\right)$ data. The solid curve is from the calculations using an iadinary potential of -80 MeV, Wile the dashed curve results from -120 MeV. The deformation lengths, 6 H , are also given.

Table 2.2. Hadronic deformation lengths obtained for states in ${ }^{\circ}{ }^{\circ} \mathrm{Ca}$ using 500 -mey proton scattering. O_{R} is the deformation lengths for the relativistic model, while $\delta_{m p}$ are the deformation lengths for the nonrelativistic madel. " $\mathcal{M R R}^{2}$ " is the dverage value of δ_{MR} obtained from proton studies from 25 to 800 MeV .

State	$\delta^{\text {R }}$	${ }^{6}$ MR	$\left.{ }^{\langle 8}{ }_{\text {WR }}\right\rangle$
31-3.736 MeV	1.45 ± 0.07	1.33:0.03	1.35.0.01
2. ${ }_{1} 3.904 \mathrm{MeV}$	$0.52=0.03$	$0.50: 0.03$	i. $44: 0.01$
5! - 4.49 Mev	0.85:0.04	0.69:0.03	$0.83: 0.01$

fits obtained to the data are shown in another contribution to this report. The optical potentials obtained are given in Table 2.3. The fits again show no sensitivity to the imaginary vector part of the potential so the final values used are the same for botn enerigies. These aptical potentidis were ihen used ta ralculate the inelastic seatetering reross sections for a

Table 2.3. Relativistic optical model parameters obtained for 280- and $489-\mathrm{MeV} 58 \mathrm{Ni}(\mathrm{p}, \mathrm{p})$ scattering. R refers to real. I to imaginary, V to vector and S to scalar; potential depths in MeV, geometries in fm .

		280 MeV	489 MeV
$V_{\text {RS }}$	$=$	-538.7263	-292.7794
${ }^{\text {R }}$ RS	$=$	0.9467	1.0528
${ }^{\text {d }}$ RS	$=$	0.6604	0.6604
$V_{\text {RV }}$	$=$	392.0168	201.0615
$r_{R V}$	$=$	0.9515	1.0486
${ }^{\text {d }}$ RV	$=$	0.6279	0.6279
$V_{\text {IS }}$	$=$	58.4439	58.7449
${ }^{1}$ [S	$=$	1.0477	1.0796
${ }^{1}$ IS	$=$	0.5722	0.5722
$V_{\text {IV }}$	$=$	-82.195	-82.195
riv	=	1.057	1.057
${ }^{\text {d }}$ IV	$=$	0.575	0.575

variety of states. The fit to the data for these calculations are given in another contribution to this report. The deformation lengths obtained are given in Table 2.4 for the two energies, along with the average values of the

Table 2.4. Deformation lengths $8_{\text {R }}$ obtained by using the relativistic collective model for the $58 \mathrm{Ni}\left(\rho, \rho^{\prime}\right)$ reaction, and also the average values for the deformation lengths "s NR" obtained using the nonrelativistic model for proton energies of 178 \& E \& 800 MeV.

	State	$\begin{aligned} & 280 \mathrm{MeV} \\ & \mathrm{~s}_{\mathrm{R}} \end{aligned}$	$\begin{aligned} & 489 \mathrm{MeV} \\ & 5 R \end{aligned}$	<8 NR"
2*	1.45 MeV	0.76:0.04	--	$0.82: 0.04$
2*	3.04 MeV	$0.26 \div 0.03$	$0.32: 0.03$	0.26:0.03
2*	3.26 MeV	$0.32 \cdot 0.03$	$0.39 \cdot 0.03$	$0.35 \cdot 0.02$
3-	4.41 mev	$0.64 \cdot 0.04$	$0.17 \cdot 0.06$	$0.58 \cdot 0.05$
4 *	2.46 meV	$0.36 \cdot 0.03$	$0.39 \cdot 0.02$	$0.36 \cdot 0.03$
4*	3.63 MeV	$0.30 \cdot 0.04$	0.37-0.07	$0.31+0.03$
4 *	1.15 Mev	0.45*0. 04	$0.44 \cdot 0.03$	0.47:0.07

deformation lengths obtained using the nonrelativistic model. There is good agreement between the values given for each state. The only trend is that the 489 MeV results are consistently higher than the 280 MeV values. This may possioly be due to the differences in the distortions and or the form factors since the optical parameters are different.

1. Partial support from Joint Institute for Heavy Ion Research, ORML.
2. J. R. Shephard, E. Rost, and 1. Piekarewica, Phys. Rev. C 30, 1604 (1984): E. Rost and J. R. Shepard, Phys, Rev. C 35, 681 (1987).
3. J. I. Johansson, E. D. Cooper, and H. S. Sherif, Mucl. Phys. M46, 663 (1988).
4. Jacques Raynal. Phys. Lett. 1968, 7 (1987).
5. K. K. Seth et al., Phys. Lett. 1588, 23 (1985).
6. D. A. Hutcheon, private communication.

ELASTIC AND IMELASTIC SCATTERING OF 280- AND 489-MEV PROTONS FROM ${ }^{58} \mathrm{MI}$

J. Lisanttil	K. H. Hicxs
D. K. MoDaniels	
2	M. C. Vetterlis
2. Tang	L. H. Smenson
2. $X u^{2}$	X. Y. Chen
D. H. Drake	

Our group over the last four years has been studying the application of the collective, deformed potential. model to the analysis of intermediate-energy-proton scattering for the elastic and inelastic channels. These studies have covered the nuclei of 200 Pb (Ref. 7). ${ }^{40} \mathrm{Ca}$ (Ref. 8), and 28 Si (Ref. 9). As a further extension of this work me have measured elastic and inelastic scattering of 280-and 489-MeV protons in 58 Nt . The experiment was performed at the TRIIMF accelerator using the MRS (Medium Resolution Spectrometer) to detect the scattered protons. Elast'c anct inelastic scattering to seven bound states over an angular range of 6.9 to 27.0 degrees was measured at 280 Mev, wile the 489 -Mev data covered 5.7 to 27.7 degrees. We have andlyzed our data using two different theoretical models based on the collective, deformed potential, model. The differences between the two are that one methon utilizes the schrodinger equation (nonrelatidistic model.

MROMP), Wile the other model uses the Jirac equation (relativistic madel. Rump; The fits to the elastic scattering for the $280-\mathrm{MeV}$ data is shown in fig. 2.16 (the $A_{y}(\theta)$ data are 290-Mev ${ }^{54} \mathrm{Fe}(\stackrel{\rightharpoonup}{\mathrm{p}}, \mathrm{p})$, results of Hausser:2 et di., which have the scattering angles' momentum shifted to match a $280-\mathrm{MeV}$ experiment). The solid line is from the nonrelativistic optical model parameter fit, Wile the dashed curve is for the relativistic optical model parameters. The relativistic model fits both the cross section and analyzing power data better than the nonrelativistic model. The parameters for the

Fig. 2.16. Optical model fits to 280-Mev 5月Ni(p, D) elastic srattering. The solid line is for the nonrelativistic monel (NROMP). as calculated in ECIS79, while the doshed curve is for the relativistir. wodel (romp).
relativistic model are given in another contribution to this report. The NROMP for Doth energies are given in Table 2.5. After the MROMP and ROMP were obtained, the next step was to analyze our inelastic data. Results for the

Table 2.5. Monrelativistic optical model parameters (NROMP) for 280- and 489-MeV $58 \mathrm{Mi}(\rho, p)$ elastic scattering. Potential depths are in mev, wile the geometry units are in fermis.

	280 MeV	489 MeV
$v_{R}=$	12.228	11.443
$r_{R}=$	1.255	1.255
$d_{R}=$	0.7632	0.763
$v_{1}=$	29.714	55.004
	1.007	1.007
${ }^{1}{ }_{1}=$	0.5276	0.528
$\mathrm{V}_{\text {RSO }}$	1.866	0.71.1
$\mathrm{r}_{\text {RSO }}$	1.136	1.154
${ }^{\text {a }}$ RSO	0.6415	0.642
$v_{\text {iso }}$	-0.645	-2.228
riso	0.816	1.038
${ }^{\text {a }}$ ISO	0.7281	0.728

$r_{c}=1.2$
analysis of three 2^{+}states excited by $280-\mathrm{MeV}$ protons are given in Fig. 2.17, wile results for the excitation by $489-\mathrm{MeV}$ protons of three 4^{+}states are shown in Fig. 2.18. Both of the models fit the ada fairly well and give similar shapes for the angular distributions with the exception that, at smaller scatteriny angles the relativistic model gives consistently larger cross sections, and this effect is more pronounced at the lower incigent proton energies. Whether this effect is due to differences in distortions at the different inciaent energies is unclear at this time, and nepds further study. However, it does point to on interesting
ofne jug en 14:39

Fig. 2.17. Collective, deformed-potentialmodel calculations for inelastic scattering of 280-MeV protons from ${ }^{50 \mathrm{Ni}}$ for three 2^{+}states. The calculated angular distribution come from nonrelativistic (solid) or relativistic (dashed) morels.
experiment, in that doing small-anyle sani elaritic scattering at lower eneryies (ED, 300 MeV), may be a possinle way to study reldituistic offects.

Fig. 2.18. Collective, deformed-pocentialmodel calculations for inelastic scattering of 489-mev protons from 58 Ni for three 4^{+}states. The calculated angular dis!ributions come from noncelativistic (solid) or relativistic (dashed) models.

Tate 2.6 lists the nonrelativistic deformation lenqtins, s_{H}, ontalned in the present study along with results from other stuotes. ho dependence of in on incigent proton enerigy is
observed, and this is reflected in fig. 2.19 for three 2^{+}states and one 3^{-}stite. This reinforces our contention that, for those states which have surface-peaked Gaussian-like shape transition densities, the collective model should describe these states quite well, and that there is no efergy dependence of the hadronic deformation leng*is.

1. Partial support from the Joint lnstitute for Heavy Ion Research, ORNL.
2. University of Oregon, Eugene, OR 97403.
3. Los Alamos Ntional Laboratory, Los Alamos, NM 87545.
4. Onio University, Athens, OH 45701.
5. TRIUMF, Vancouver, B.C., Canada.
6. Oregon State University, Corvallis, OR 97330.
7. D. K. McDaniels, J. Lisantit, I. Bergquist, L. W. Swenson, X. Y. Chen, D. J. $H^{\text {reren, F. E. Bertrand, E. E. Gross, C. Glover. }}$ R. Sayer, B. L. Burks, O. Hausser, and K. Hicks. Nucl. Phys. M67, 557 (1987).
8. J. Lisantti, D. J. Horen, F. E. Bertrand, R. L. Auble, B. L. Burks, E. E. Gross, R. 0. Sayer. D. K. McDaniels, K. M. Jones, J. B. McClelland, S. j. Seestrom-Morris, L. W. Swenson, submitted to Physical Review C; D. J. Horen. F. E. Bertrand, E. E. Gross. T. P. Sjareen, 0 . K. McDaniels, J. R. Tinsley, J. Lisanti. L. W. Swenson, J. B. McClelland, T. A. Carey, S. J. Seestrom-Morris, and K. Jones. Phys. Rev. C 30, 709 (1984).
9. J. Lisantti. F. E. Bertrand. D. J. Horen, B. L. Burks, C. W. Glover, D. K. McDaniels, L. W. Swenson, X. Y. Chen, 0 . Hausser. and K. Hicks, Phys. Rev. (37, 2408 (1988).
10. 0. Hausser, private communtcation (unfublished).
1. 178 and $1047 \mathrm{MeV}:$ A. Ingemarsson, T . Johansson, and G. Tibell, Mucl. Phys. A322, 285 (1979): 280 and $489 \mathrm{MeV}:$ present work; 333 , 497, and 800 Mev: Morton M. Hintz, D. Cook, M. Gazzaly, M. A. Franey, M. L. Barlett, G. M. Hoffmann, R, Fergerson, J. McGill, G. Pauletta, R. L. Boudries, J. B. MCClelland, and K. W. Jones. Phys. Rev. C 37, 692 (1988).

COMPARISON OF COLLECTIVE TRANSITION POTENTIALS

 TO TRANSITION CHARGE DENSITIES
J. Lisantil D. J. Horen

The collective model has been used quite successfully for many years to descride direct nuclear reactions for a variety of probes at a variety of energies.? The Dasic model for Arect reactions assumes that the nurlear poten. tial is modelea hy an optical potential wich

Table 2.6. Deformation lengths odained for varinus states in ${ }^{50} \mathrm{Ni}$ using inelastic proton scattering at different incident energies. Units are in fermis.

State (MeV)	$178{ }^{1}$	280	333:	489	498	800^{1}	10471
2+1.45	0.205 ± 0.08	0.79:0.04	0.82:0.08	--	0.81:0.08	0.89:0.09	0.805 ± 0.08
$2^{+} 3.04$	--	0.27 ± 0.03	0.21 ± 0.02	0.29 ± 0.03	$0.20 \div 0.03$	$0.27: 0.03$	--
2+3.26	--	$0.33: 0.03$	0.35 ± 0.03	$0.35 \div 0.03$	0.35 ± 0.03	0.37 ± 0.04	--
3-4.47	0.674:0.07	$0.66: 0.04$	0.59 ± 0.06	0.68:0.06	$0.72 \div 0.07$	$0.75 \div 0.07$	0.674 ± 0.07
4+2.46	--	0.36 ± 0.03	0.37 ± 0.04	$0.33 \div 0.02$	0.36 ± 0.04	0.40 ± 0.04	--
$4^{+} 3.63$	--	$0.31: 0.04$	0.31 ± 0.03	$0.27: 0.02$	0.29:0.03	$0.36 \div 0.04$	--
$4^{+} 4.75$	--	0.45 ± 0.04	$0.40 \div 0.04$	0.41 ± 0.03	$0.40 \div 0.04$	$0.43=0.04$	--

[^11]

Fig. 2.19. Deformation lergths extracted for four states in 58 Mi using the nonrelativistic model plotted dgainst incident proton energy. The references for the various energies is Ref. 11 of this paper.
has a radia! form of woods-Saxon shape. This potential nas the form

$$
\begin{aligned}
& j(r)=V_{C}-V_{R} f\left(r, r_{R}, d_{R}\right)-i v_{i} f\left(r, r_{1}, d_{1}\right)+
\end{aligned}
$$

where V_{C} is the Coulomb, V_{R} the real, V_{I} the imaginary, $V_{\text {RSO }}$ the real spin-orbit, and $V_{\text {ISo }}$ the imaginary spin-orbit potentials, and the f's are Hoods-Saxon forms. Hence, there are 12 adjustable parameters (depth, radii, and diffusenesses) in this model wich are obtained from fitting elastic scattering data. In the collective, deformed potential model one assumes that the excitation of collective states (shape oscillations) can be described by a transition potential that has the same form as the transition density. To first order this is given by the radial derivative of the optical potential. 2 Therefore, the shape of the transition potential ΔU (form factor) is that obtained from the derivative of a Woods-Saxon shape, namely, a Gaussian-like shape centered on the nuclear surface.

In a microscc,ic description of nucleonnucleus scattering, the impulse approximation can be issed to describe the scattering event. Here one assumes that the incident nucleon interacts with one nucleon in the nucleus to cause the scattering. The potential to describe this event can be either the free or medium modified nucienn-nucleon interaction. This interaction is then folded with a transition aponsity oter in to ntain the form fartor to destrithe the inelastur seatitering. The tranbition tensity can be othtined either from shell
model calculations or charge transition densities measured by inelastic-elastic scattering.

Since the effective nucleon-nucleon interaction is short rançe, one would expect the form factor for the microscopic description : 2 have the same shape as the transition density. Therefore, one would expect the two model calculations to be similar when the transition densities have shapes wich approximate a derivative of the OMP. This condition is satisfied for collective shape oscillations.

Since the availability of measured transition densities is rather sparse, one usually analyzes inelastic data using deformed potential model calculations. Hence, we have examined some cases for which both (p, p^{\prime}) and (e, e^{\prime}) data are available. As we discuss below. calculations using derivative Hooas-Saxon form factors provide good fits to the data for those states which have charge transition densities which are well described by Woods-Saxon form factors.

These conclusions are based on an andysis of our 500-MeV ${ }^{40} \mathrm{Ca}\left(\mathrm{D}, \mathrm{p}^{\prime}\right)$ (Ref. 3) and 280- and 489-MeV ${ }^{58 N i}\left(p, p^{\prime}\right)$ data. Examples are given in Fig. 2.20 for three 3^{-}states in ${ }^{\circ} \mathrm{Ca}$. The measured angular distributions are shown on the left. The data for the well-known collective 3:- state at 3.736 MeV is shown in the upper left hand side and compared with collective. deformed potential model calculations using two different sets of optical parameters. As can be seen both sets fit the data very well. The figure immediately to the right shows the shape of the imaginary transition potential (solia line), fich accounts for most of the inelastic cross section at 500 MeV and the shape of the charge eransition density (dashed line) obtained from (e,e') studies.* As is seen, both snapes are very similar, hence the agreement of the collective model to the dats. The midale and Dottom angular aistributions of Fig. 2.20 snow the datd and collective model calculations for the $3_{2}{ }^{-}\left(6.29\right.$ inv), and $3_{3}^{-}(6.58 \mathrm{MeV})$ states. The data are not nearly as wil' "it as enat for the 3:- state. particulariy the datd ndve d murn nigher cross section at the second maximum than the ralculations. This nisagreement

Fig. 2.20. The left hand column shows angular distributions for three 3 - states in ${ }^{\circ} \mathrm{Ca}$ excited in the $500-\mathrm{MeV} *{ }^{\circ} \mathrm{Ca}\left(p, p^{\circ}\right)$ reaction. The solid and dashed lines are collective, deformedpotential model calculations using two different sets of optical model parameters. The right hand side shows imaginary transition potentials (solid line) in comparison to transition charge densities from $\left(e, e^{\prime}\right)^{3}$ (dashed line).
between the data and the collective model calculations is reflected in the shape of the charge transition densities (dashed lines) in comparison to the imaginary iransition potentials (solid lines). Large differences are seen between these two shapes. In fact, if one replaces the transition potential snape with the charge iransition density shapes the $3_{2}{ }^{-}$and $3_{3}=$ data can be fit fairly well as shown in fig. 2.21 for the 3_{2} - state, indicating that intermediate energy protons can be used to extract proton and possibly neutron iransition densities.

Similar esuits are obtained for our analysis of states in SANI.

1. Partial support providen by the Joint Institute for Hedvy Ion Rewarch, ORNL.
2. Direct Nucledr Reartions. r_{2}. F sadichler

3. J. Lisantti, D. J. Horen, F. E. Bertrand, F. L. Auble, B. L. Burks, E. E. Gross, R. 0. Sayer, D. K. McDaniels, K. W. Jones, J. B. McClelland, S. J. Seestron-Morris, L. W. Smenson, submitted to Physical Review C.
4. K. Itoh, M. Oyamada, and Y. Torizuka, Phys. Rev. C 2, 2181 (1970).

Fig. 2.21. Cross section data for the $3_{2}-$ -6.29 Mev) state in comparison to a collective model calculation (solid line), and a distorted wave calculation using the charge transition density from inelastic electron scattering and a zero range fore (dashed line). The dashed curve was normalized to match the magntiude of the dats at the first maximum.

GIANT RESOMUNCE STRENGTH OISTRIBUTION IN
 ${ }^{\circ} \mathrm{Ca}$ FROH IMELASTIC SCATTERIMG OF 500 MeV PROTOWS

J. Lisantit	R. O. Sayerh
D. J. Horen	D. K. McDaniels
F. E. Bertrand	K. W. Jones
R. L. Auble	J. B. MCClelland ${ }^{6}$
B. L. Burks	S. J. Seestrom-Morris
E. E. Gross	L. W. Smenson?

Uifferential cross section measurements have been made for the giant resonance region 113.2 to 40 MeV) in ${ }^{40} \mathrm{Ca}$ using 500 MeV protons with an experimental energy resolution of 70 kev. Fine structure was observed in this energy region. After fising the energy weighted sum rule (EWSR) depletion for the isovector giant dipole resonance at 70\%, EWSR's of 70 : 14\% for the isoscalar giant quadrupole resonance and 15 . 34 for the isocralar giant hexadecapole resonance were deduced. The $3 h_{1}$ giant octupole resonance observed ot 31 mev with a width of 10 MeV
exhausted $30=6 \%$ of the EWSR. All of these EWSR depletions agree well with theoretical predictions.

1. Abstract of paper subaitted to Physical Review C.
2. Partial support from Joint Institute for Heavy Ion Research, ORNi..
3. Engineering Physics and Mathematics Division, ORNL.
4. Computing and Telecommunications Division, ORNL.
5. University of Oregon, Eugene, $O R 97403$.
6. Los Alamos Mational Laboratory, Los Alamos, Min 87545.
7. Oregon State University, Corvallis, OR 97331.

EXCITATION OF GIART RESOMANCES IM
28 SI WITH 250 MEY PROTONS

J. Lisantti2	D. K. McDaniels ${ }^{4}$
F. E. Bertrand	L. W. Swensons
D. J. Horen	R. Y. Chen
B. L. Burks	0. Hausser6
C. H. Glover	
	K. Hicks

Differential cross section measurements have been made for 250-MeV proton inelastic scattering from $285 i$. Hadronic deformation lengths for the states at $1.78 \mathrm{MeV}\left(2^{+}\right), 4.62 \mathrm{MeV}\left(4^{+}\right)$. $6.8 \mathrm{MeV}\left(3^{-}\right.$and $\left.4^{+}\right), 9.7 \mathrm{MeV}\left(5^{-}\right)$and 10.2 MeV (3-) have been extracted using a first order vibration model DUBA description. Deformation lengths for the 2^{+}and 4^{+}states are found to be independent of proton energy irom 40 to 500 MeV . Cross sections for the excitation of the giant resonance region are found to be highly fragmented between 16 and 25 MeV. This region of excitation is found to contain an energy weighted sum rule depletion of 70% for the isovector giant dipole resonance. 26% for the isoscalar giant quadrupole resonance and 5% for the isoscalar hexadecapole resonance. Ho structure was observed in the inelastic continuum region of 25 to 45 MeV of excitation energy.

[^12]6. Simon Fraser University, Burnaby, British Columbia, Canada V5A 156.
7. TRIUMF, Vancouver, British Columbia, Canada vgt 2aj.

COLLECTIVE MODEL DNBA AMALYSIS of

 500 -MeV PROTON SCATTERIMG FROM ${ }^{\circ}{ }^{\circ} \mathrm{Ca}^{1}$J. Lisantitiz
R. O. Sayer
D. J. Horen
D. K. McDaniels's
F. E. Bertrand
K. W. Jones ${ }^{6}$
R. L. Auble
J. B. McClelland ${ }^{6}$
B. L. Burks ${ }^{3}$ S. J. Seestrom-Morris ${ }^{6}$
E. E. Gross
L. H. Swenson ${ }^{7}$

A vibrational collective model has been used to analyze 15 bound states in ${ }^{40} \mathrm{Ca}$ excited by inelastic scattering of $500-\mathrm{MeV}$ polarized protons. It is shown that for those states which have surface-peaked charge transition densities the collective model describes the shape and magnitude of the angular distributions quite well. The hadronic deformation lengths extracted are shown to be constant over the incident proton energy range of 25 to 800 MeV with the exception of data at 185 MeV . The average values for the hadronic deformation lengths are used to calculate the ratio of the neutron-to-proton multipole matrix elements for 5 states. Elastic scattering and the $3_{1}^{-}, 2_{1}^{+}$, and 5_{1}^{-}transitions have also been studied, using the relativistic collective model.

1. Abstract of paper submitted to Physical Review C.
2. Partidl support from Joint Institute for Heavy Ion Research, ORNL.
3. Engineering Physics and Mathematics Division, DRNL.
4. Computing and Telecommunications Division, DRML.
5. University of Oregon, Eugene, OR 97403.
6. Los Alamos National Laboratory, Los Aldmos, MM 87545.
7. Oregon State University, Corvallis, $O R$ 97331.
microscopic to optical potentials
used to descaibe intermediate-emergy proton ELASTIC SCATTERING

J. Lisanttil

Iraditionally. elastic scattering of nucleons from nuclel has bean treated phenomenologically using the potical potential model. This model
describes the cross sectior and analyzing powers fairly well for the large body of data that exists. However, one problem with this model is that it does not describe the scattering using d more fundamental microscopic nucleon-nucleon interaction, along with not using ground-state properties of the nucleus. Also the optical model suffers from the ambiguity of fitting 12 parameters to the data.

One way to study the elastic scattering of nucleons from nuclei in a parameter-free microscopic model is to use the impulse approximation. The optical potential in this method is found from folding a nucleon-nucleon interaction, $t_{\text {MK, with the ground-state charge }}$ distribution, ${ }_{c}{ }_{c h}(r)$, obtained from elastic electron scattering. This method generates what is known as " $t_{\mathcal{P}}$ " optical potentials. The nucleon-nucleon interaction used depends on how the scattering is treated. If one assumes that the single-step nucleon-nucleon interaction occurs in the nucleus in the same manner as in free space, one can use the Love-Franey force ${ }^{2}$ as determined by fitting the SP84 phase shift results of the program SAID ${ }^{3}$ (this will be referred to as the L-F Interaction). However, if one assumes density-dependent (Pauli blocking, fermi motion) effects for the interaction in the nucleus, there are effective interactions to use. One is the G-matrix approach of von Geramb, " using the Paris potential wich includes one π. two π, and ω exchange. A more recent effective interaction, similar to von Geramb's, is tema6 of Makayama and Love ${ }^{5}$ using the Bonn potential.

Therefore, with the experimentally determined model independent $\rho_{\mathrm{ch}}{ }^{\prime}$ r) folded with each of the interactions, one obtains optical potentials which can then be used to calculate elastic scattering observables.

We have analyzed our 280- and $489-\mathrm{MeV}{ }^{58 \mathrm{Nt}}$ elastic and inelastic proton datd in such d manner. figure 2.22 shows the results of the use of three different interactions folded with the same ground-state charge distribution of a three-parameter Fermi distritution from de Jager, de Vries, and de Vries.'s Before

Fig. 2.22. Elastic scattering data at 280 MeV for the ${ }^{58 \mathrm{mi}(p, p)}$ reaction. The three calculations are from microscopic optical potentials generated in the program ALLWRLD, and then used to calculate the observables in the program ECIS79. The solid curve is for the Love-franey interaction, the dashed curve is the 6 -matrix approach of von Geramb based on the Paris potential. and the dot-dashed curve is the HM86 interaction of Makayama-Love, based on the Bonn potential. The analyzing power data are q shifted results of hausser et al.7 at 290 MeV for ${ }^{54} \mathrm{Fe}(\mathrm{D}, \mathrm{p})$ elastic scattering.
discussing the iesults, remember that the calculations shown are not fits, there are no free parameters in these calculations! the solld curve uses the love-froney interaction, and gives the poorest match to the data, especially at the largest angles, but still it matches the ata fairly well. The dasher curve is the $\mathrm{G}-$ matrix result using the paris potential at afo

Mev; as is observed, it gives a similar description of the data as the Love-franey interaction. The last interaction used is the dot-dashed calculation using the 1 M86 interaction. It fits the data the best of the three, but, as with the other two interactions, it does not fit the data as well as the phenomenological optical potentials as shown in another contribution to this report.

At the higher ($\varepsilon_{p} \geq 400 \mathrm{Mey}$) incident proton energies it is known that density dependence is not important, therefore we calculated optical potantials using only the Love-franey interaction. The data for elastic ${ }^{5 B} \boldsymbol{N i}(p, p)$ scattering is shown in fig. 2.23 along with two calculations. The solid line is a nonrelativistic

Fig. 2.23. Elastic scattering data at 489 Mev for the ${ }^{59 \mathrm{Mi}(p, p) \text { reaction. The solid curve }}$ is from a nonrelativistic phenomenological optical model fit to the data using ECIS/9. The dashed curve is from the Love-franey interac. tion.
optical model fit, using parameters yiven in another contridution to this report. It foes a much better job of describing the data than the dashed curve of the Love-franey interaction. An inceresting characteristic observed in both Figs. 2.22 and 2.23 is that, for both the crass sections and andiging powers. the microscopic calculations begin to get r.ut of phase with the
data at the larger scattering angles. It is unclear if this is attributable to the effective interaction or to the ground-state charge distribution having large uncertainties in the interior of the nucleus which would be observed in the larger angle (p, p) scattering.

[^13]
nuClear structure studies VIA CHARGE-EXCHANGE REACTIONS

TRANSFER REACTIONS AT HIGH ENERGY AND AMBIGUITIES IN HEAVY-ION POTENTIALSI

D. J. Horen	F. E. Bertrand
M. A. G. Fernandes ${ }^{2}$	E. E. Gross
G. R. Satchler	D. C. Hensley
B. L. Burks	R. O. Sayer
R. L. Auble	D. Shapira

The smaller impact parameters that contribute to transfer reactions between heavy ions at high energies make them more sensitive to different types of optical potentials than is the case at lower energies. This may allow one to distinguish between potentials that otherwise generate similar elastic scattering cross sections within the limited angular region over wich typical elastic data are avallable. We cite as evidence results for nucleon transfers induced by $: 90+28 \mathrm{Si}$ at 352 MeV wich rule out surface transparent potentials.

[^14]3. Engineering Physics and Mathematics Division, ORNL.
4. Computing and Telecommanications Division, ORNL.

THE $52,{ }^{54} \mathrm{Cr}(p, n)^{52,54 M n}$ AND $57,58 \mathrm{Fe}(p, n)^{57,58} \mathrm{Co}$ REACTIONS AT $E_{D}=120 \mathrm{MEV}^{2}$

1. Abstract of published paper: Hucl. Phys. A480, 285 (1988).
2. Ohio University, Athens, OH 45701.
3. Michigan State University, East Lansing, MI 48824.
4. Niels Bohr Institute, Copenhagen, Denmark.
5. Indiand University, Bloomington, IN 47405.
6. Onio State University, Columbus, OH 43215.
7. Los Alamos National Laboratory, Los Alamos, M 87545.
$i=1$. SPIK-DIPOLE STREMGTH IM ${ }^{\circ}{ }^{\circ} \mathrm{Ca}$

D. J. Horen	R. 0. Sayer ${ }^{3}$
J. Lisanti	D. K. McDaniels ${ }^{4}$
R. L. Auble	K. W. Jones ${ }^{5}$
F. E. Bertrand	J. B. McClellands
B. L. Burks ${ }^{2}$	S. J. Seestrom-Morris
E. E. Gross	L. W. Swenson ${ }^{6}$

Soin-dipole strength in ${ }^{40} \mathrm{Ca}$ has been studied by inelastic scattering of $500-\mathrm{MeV}$ protons and the dipole response in ${ }^{\circ} \mathrm{Ca}$ is compared with the spin-aipole data from the * ${ }^{1} \mathrm{Ca}(\mathrm{p}, \mathrm{n})$ redcition and nonspin-dipole data from photonuclear studies.

1. Abstrart of paper submitted in leitesenrift fur Physik A. Atomir Murilei.
2. Engineering Physics and Mathematics Division, ORNL.
3. Computing and Telecommunications Division. ORNL.
4. University of Oregon, Eugene, OR 97403.
5. Los Alamos Mational Laboratory, Los Alamos, MM 87545.
6. Oregon State University, Corvallis, OR 97331.

MICLEAR STRUCTURE STUDIES VIA TRAUSFER AND CAPTURE REACTIOUS

 TMO-NEUTROM PAIRIMG EMHANCEMEMT FACTORSIX. T. Liu ${ }^{2}$
X. L. Hans
C. Y. Hu^{2}
M. W. Guidry ${ }^{3}$
S. P. Sorensen ${ }^{3}$
D. Cline ${ }^{4}$
R. W. Kincaid ${ }^{2}$
W. J. Kerrian ${ }^{4}$
E. Vogt ${ }^{4}$

A. E. Kavka ${ }^{4}$

The enhancement of two-nucleon transfer cross sections by factors of approximately 50 over that expected from uncorrelated transfer of two particles is well documented in (t, p) or (p, t) reactions on superfluid nuclei. 6 in the collision of two superfluid heavy ions it is expected that the enhancement could be considerably larger, due to the strong pairing correlation in both interacting nuclei. ${ }^{7}$ various experiments have attempted to study two-particle transfer in the collision of two neavy nuclei, ${ }^{8}$ and typically have concluded that the enhancement factors for these collisions are compa able to those for (t, p) or (p, t) reactions. These experiments had low energy resolution and thus there was little information as to which states were being populated in the reaction.

In this paper we report on the first measurement of enhancement factors with sufficient resolution to distinguish transfer to the ground-state band from transfer to other bands. We find two components in this population, with very different ennancement factors. The bulk of the reaction, > 80\%, populates 2 -quasiparticle (2-QP) bands with enhancements of $=7-20$, but the transfer to the ground band is found to have enhancement factors: 30-500. Examples, are snown in Fig. 2.24. Thus the average enhancement for all bands popilaten is small (501. but the enhancement for the pairing rotatienal

Fig. 2.24 Two-neutron enhancement factors $F \equiv P_{2 n} / P_{1 n}^{2}$, constructed from transfer probabilities.
transition to the ground-state band is large, indicating that collisions between two heavy ions may approximate the scattering of two macroscopic superfluid objects.

1. Summary of paper submitted to Physics Letters 8 .
2. University of Tennessee, Knoxville, Tennessee.
3. Adjunct staff member, University of Tennessee, Knoxville, Tennessee.
4. University of Rochester, Rochester, New York.
5. Joint Institute for Heavy Ion Research, DRNL, Permanent address: Jllin University, Changchun, People's Republic of China.
6. R. Broglia, O. Hansen, and C. Riede!. Adv. Nucl. Phys. 6, 287 (1973).
7. R. A. Broglia, C. H. Dasso. S. Landowne, B. S. Nilsson, and A. Winther, Phys. Latt. 73B, 401 (1978).
8. For example, w. von. Dertzen. H. F_{3}. Bonlian. B. Gepbauer, R. Kükel. F. Pünininoter, D. Schuli, 1. Phys. A326, 463 (1987).

OSCILLATIMG TWO-MEUTRON TRANSFER
probabilities at large radial separation in heayy-ION reactions!
X. T. Lius
C. r. $H u^{2}$
M. W. Guidry ${ }^{3}$
W. J. Kernan*
S. P. Sorensen ${ }^{3}$
D. Cline ${ }^{6}$
R. W. Kincaid ${ }^{2}$
E. Vogi"
T. Czosnyka ${ }^{*}$
A. E. Kavka ${ }^{\text { }}$

In this paper we show that the large-distance probabilities for two-neutron transfer in the reactions ${ }^{162} \mathrm{Dy}\left({ }^{58} \mathrm{Ni},{ }^{60} \mathrm{Ni}\right){ }^{60} \mathrm{Dy}$ and ${ }^{1620}$ y (${ }^{116 S n, 118 S n) 1600 y ~ e x h i b i t ~ t h e ~ e x p e c t e d ~}$ exponential dependence for transfer to the 2-quasiparticle bands, but oscillations. interpreted as an interference between scattering from different spatial orientations of deformed nuclei, are observed for transfer to the ground band. Fig. 2.25 illustrates this behavior. We suggest that the superposition of these two disparate behaviors is a plausible explanation for all previously reported anomalies in 2 -neutron transfer reactions with heavy ions n deformed nuclei: the slope anomaly results from a superposition of two independent components of the transfer population. The first component dominates the transfer cross section near the grazing angle and is associated
with populatior of 2-quasiparticle bands; it decays exponentidly. The second component is associated with transfer to the ground-state rotational band. It is a small fraction of the transfer cross section at the grazing angle, but accounts for azout half the total 2 -neution transfer at large dis.ances. This component exhibits a slowly decaying oscillation.

1. Sumary of paper subraitted to Physical Review C, Rapid Communication.
2. University of Tennessee, Knoxvilie. Tennessee.
3. Adjunct staff member. University of Tennessee, Knoxville, Tennessee.
4. University of Rochester, Rochester, New York.
5. S. Landowne, C. Price, and H. Esbensen, Nucl. Phys. A484, 98 (1988).

INTERPLAY OF DIRECT AND COMPOUND-MUCLEUS mechanisms in meutron capture by light miclioes

```
S. Raman S. Kahane \({ }^{2}\)
``` J. E. Lynn \({ }^{3}\)

He discuss the direct-capture theory pertaining to primary electric-dipole (El) transitions following slow-neutron capture. For approximately 20 light nuclides that we have

F1g. 2.25. Radial behavior for iwo-neutron transfer reactions. Shown for each case are the probability for two-neutron transfer to the ground-itate band (open circles), the ?-ap bants (closed circies), and tne sum of tnese two !open squaresi. The dashed dad solid lines dre the best fits of stre'ght lines throwgh the data for total and dap respectively. The: undulating
 Ref. 5. All probabllities are plotted on an absalupe sedie, but displaced by the facpors somen for ciariey.
studied, estimates of direct-capture cross sections using optical-mcdel potentials with physically realistic parameters are in reasonable agreement with the data. Minor disagreenents that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. In dealing with nuclei "soft" to vibrations, we have considered the possible effects of coupling of the collective motion with the optical potentiai in the framework of R-matrix theory. In such cases, we find that the inclusion of "inelastic" channels results in systematic changes in the calculated cross sections.
1. Abstract of an invited paper presented at the International Conference on Nuclear Data for Science and Technology, Mito, Japan (May 30June 3, 1988).
2. Nuclear Research Centre-Negev, Beer Sherd, Israel.
3. Atomic Energy Research Establishment, Harwell Oxll ORA, England.

\section*{GROUND-STATE PHOTONEUTRON REACTIONS IN \(180^{1}\)}
\begin{tabular}{ll}
J. W. Jury & C. K. Ross \\
P. C. -K. Kuo \({ }^{2},{ }^{3}\) & H. R. Wel ?ers \\
K. G. McNeill
\end{tabular}

Differential cross sections have been measured for the reaction \({ }^{18} 0\left(y, n_{0}\right)^{17} 0\) over the region of excitation energy from 14 to 26 Mey . The angle-integrated cross section for the ground-state transition reveals that this channel accounts for less than \(20 \%\) of the total photoneutron cross section in the structured pygmy resonance region (near 14 MeV ; and is a small fraction (10-15\%) of the cross eection in the region of the giant resonance (near 25 MeV). The values of angular distribution coefficients fitted to the data are consistent with a description of this reaction in which electric dipole excitations dominate the cross section in the pygmy resonance. Narrow regions ex st near 15.0, 16.0, and 20.0 MeV where nonzero \(\mathrm{a}_{1}\) coefficients are observed, indicating the absorption of non-El radiation. The mediured cross section and \(x_{y}\) coefficients are compared with d firect.-sendirect raiculetion, which
gives reasonable agresment and suggests that f-wave neutron mission dominates the groundstate channel and that there is little justification for the introduction of E2 amplitudes other than a pure direct E 2 term.
1. Abstract cf published paper: Phys. Rev. C 36, 1243 (1987).
2. Irent University, Peterborough, Ontario, Canada KgJ 788.
3. University of Toronto, Toronto. Ontario. Canada M5S 147.
4. National Research Council of Canada, Ottawa, Ontario, Canada KlA OR6.
5. Triangle Universities Nuclear Laboratory, Duke University, Durhan, North Carolina 27706.

\section*{nuClear structure studies VIA COMPOUND NUCLEUS REACTIONS}

\section*{irregularities at high spim in THE 000-000 MUCLEUS \({ }^{158}{ }^{\text {TE }}{ }^{1}\)}
M. A. Riley \({ }^{2}\)
F. K. McGowan
Y. A. Akovali
A. Virtanen \({ }^{3}\)
C. Baktash
L. H. Courtney \({ }^{4}\)
M. L. Halbert
V. P. Jazzen'
D. C. Hensley
L. L. Riedinger \({ }^{4}\)
N. R. Johnson
L. Chaturvedis
I. Y. Lee
J. Simpson \({ }^{6}\)

Many high-spin (\([\geqslant 30 \mathrm{~K}\)) studies have been performed in the \(N=88-90\) transitiond rareearth region. However, these studies using the large anti-Compzon arrays have focused on the even-even and odd-even nuclei. Some work has been performed on the add-odd nuclei, but only at lower spins. In the present work we observe states in \({ }^{158}\) Tm up to spin \(t^{\pi}=36^{(+)}\) (tentatively \(38^{+}\)), the highest spin currently observed in an odd-odd nucleus. More importantly, however, we find the high-spin structure to be very different from that previously proposed for this nucleus. \({ }^{7}\)

High-spin states in 158 Im were populated by using the reaction llopd (siv,3n) at a beam energy of 220 MeV . De-excitation \(r\) rays were detected with the Odk Ridge Compton Suppression System, an array of 13 Compton-suppressed spec. troneters, each of which is comprised of, high rusolistion germanium detertor surrounded by a bisinutin germanate (\(B C_{2} \mathrm{C}_{\mathrm{I}}\)) or sodium iodide (Nal)
anti-Compton shield. In the present experiment, 12860 and 7 NaI anti-Compton shields mere used. A total of \(165 \times 10^{6}\) events were recorded when two or more germanium detectors were in coincidence. While the \(4 n\), \({ }^{57}\) Tm channel was the dow.nant channel populated (see following article) at this beam energy (\(-35 \%\)), events corresponding to the 3 n , \({ }^{158} \mathrm{Tm}\) channel accounted for \(\sim 20 \%\) of the reaction cross section.

On the basis of the \(r-r\) coincidence data, together with angular correlation measurements, we have established the high-spin-level scheme of \({ }^{158} \mathrm{Im}\) to spin \(23^{-}\)(tentatively \(25^{-}\)) in the negative parity sequence. These data agree with the level scheme of Holzmann et al.. a and also with that of Foin et al.,' up to spin 22-. In addition, we observe another strongly coupled sequence, most likely of positive parity, up to spin \(36^{(+)}\)(\(\left.38^{+}\right)\). It is with this band, which we place in paraliel rather than on top of the yrast sequence, that we find disagreement with Ref. 7. On the other hand, many of the main \(\gamma\)-ray transitions and their coincident relationships are, inceed, retained in the present work. However, the differences are significant enough to totally change the high-spin interpretation of this nucleus.

In Fig. 2.26, exparimental alignments (i) and routhians (\(e^{\prime}\)) are plotted for the \(N=89\) isotones \({ }^{157} \mathrm{Er}\) (Refs. 9 and 10), \({ }^{58} \mathrm{Tm}_{\mathrm{m}}\) and \({ }^{59} \mathrm{yo}\) (Refs. 11 and 12). The subtracted reference had as parameters \(g_{0}=20 \mathrm{Mev}^{-1} \mathrm{~K}^{2}\) and \(g_{1}=60\)

Fig. 2.25. Experimental alignments (i) and routhians (e') ploted versus rotational irequency \(h_{t z}\) for banos 'n the \(N=89\) 1sotones. The bands are labeled both ny parity and signature \((n, a)\) and atso by eheir puasiparticile romposition.

Mey-3 \({ }^{-3}\) - This reference cholce gives neariy constant alignments for bands in :s'er and : sayb below and above the \(n h_{1: / 2}\) band crossing. Experimental Dand scyuences are labeled by their parity and signature (\(x, a\)) and also by their quasiparticle composition. In the region of the neutron \(i_{13 / 2}\) and proton \(h_{11 / 2}\) intruder shells, the following conventions are used: \(A=(r, a)_{n}=(+, 1 / 2)_{1}, B=(+,-1 / 2)_{1}\), \(C=(+, 1 / 2)_{2}, 0=(+,-1 / 2)_{2}, E=(-.1 / 2)_{1}\) and \(F=(-,-1 / 2)_{1}\), where \(n\) denotes the \(n^{\text {th }}\) such aligned quasineutron. For quasiprotons, \(A_{p}=(-,-1 / 2)_{1}, B_{p}=(-,+1 / 2)_{1}\) and \(C_{p}=(-,-1 / 2)_{2}\). The similarity between the three isotones in Fig. 2.26 is very striking indeed. In the odd-odd \({ }^{158} \mathrm{Tm}\) case, however, one may expect a doubling of bands, as the two signatures (\(A_{p}\) and \(B_{p}\)) of the high-K, \(h_{1 l / 2}\) level observed as yrast in the odd- \(Z\) even- \(N\) nuclei, couple to the odd quasineutron bands. Bands involving the \(F\) quisineutron are not observed, however, in the present study of \({ }^{158} \mathrm{Tm}\).

Figure 2.26 shows tha: in all three isotones the sequences containing the configuration \(E A B\) become yrast above \(\kappa_{\omega}=0.40 \mathrm{MeV}\), explaining the high intensity observed in these sideband sequences. At \(\mathrm{K}_{\mathrm{w}}=0.30 \mathrm{MeV}\) the energy difference between the danas containing the configurations \(A\) and EAB is 0.50 MeV in \({ }^{15}{ }^{7} \mathrm{Er}\), 0.41 MeV in \({ }^{158} \mathrm{Tm}\), and 0.44 MeV in 159 yd . Also, the observed alignments for the various bands in \({ }^{158} \mathrm{Tm}\) of \(8.9 \mathrm{~K}, 8.6 \mathrm{~K}, 14.1 \mathrm{~h}\) and 13.9 K at \(\mathrm{K}_{\omega}=0.30\) MeV for the \(A A_{p}, A B_{p}, E A B A_{p}\), and \(E A B B_{p}\) assigned configurations are in good agreement with the estimated values of \(8.6 \mathrm{~h}, 8.2 \mathrm{~h}, 13.9 \mathrm{~h}\) and 13.5 h , respectively, obtained from the neighboring 157Er, !59yo and bs],is9im nuclei. Such good agreement in these isotones is strong evidence in support of the presently proposed high-spin interpretation and quasiparticle assignments for 1SATt

In : SBTm the sideband shows a sharp gain in alignment at fis \(=0.45 \mathrm{MeV}\) in the (+1) sequence (see fig. 2.26), which behavior may be interpreted dis the \(B_{p} C_{p}\) crossing. Alterndtuefly, in these soft transitional (\(N=8\). 89)
nuclei it is expected and observed dt hrgh spin (! = 30-40; that the yrast line will be crossed by ?ess collective structures which teminate in aligned single-particle states. In 158 Tm , calculdtions predict such crossings just above spin 30 for positive parity, with favored terminations at spins \(33^{+}, 38^{+}\)and \(39^{*}\). Such crossings could also explain the observed anomaly at \(F_{\omega}=0.45 \mathrm{MeV}\). More detailed studies are required to decide this issue or to determine if, in fact, both suggestions play a part in the very high spin spectrum of \({ }^{158} \mathrm{Tm}\).
1. Summary of paper submitted to Physical Review C, Rapid Communications.
2. ORNL and JIHIR. Present address: University of Liverpool, Liverpool, U.K.
3. ORNL and JIHIR. Present address: University of Jyväskyla, Jyväskyla, Finland.
4. University of Tennessee, knoxville, TN 37996.
5. Vanderbilt University, Nashville, IN jinこo. Present address: Janaras Hindu Liive sity, Varanadi 221005, India.
6. Daresbury Laboratory, Warrington WA44AD, U.K.
7. C. Foin et al., Phys. Lett. 1598, 5 (1985).
8. R. Holzmann et al., Phys. Rev. C 31, 421 (1985).
9. M. A. Riley et al., Phys. Lett. 1358, 275 (1984).
10. J. Simpson et al., submitted to J. Physics G.
11. T. Bryski et al., Nucl. Phys. A474, 193 (1987).
12. L. Courtney, University of Tennessee Ph.D. Thesis (1987) and Progress Report, University of Tennessee, June 1985-May 1986, p. 46.

\section*{al ignents, shape changes, transition rates AND BAND TERMIMATIONS IN \({ }^{157}\) Tm}
M. A. Riley:
I. Y. Lee
Y. A. Akovali
F. K. McGowan
C. Baktasn
M. L. Halbert
A. Virtanen \({ }^{2}\)
D. C. Hensley
V. P. Janzen \({ }^{3}\)
N. R. Johnson
L. L. Riedinger \({ }^{3}\)
L. Chaturvedi*

The even-even \(N=88\) nuclei 15 Ayb (Ref. 5), 156Er (Ref. 6) and \(1540 y\) (Refs. 7 and 8) have been well studied at high spin and there is evidence for shape transition from prolate to oblate (band termination) between spins 1-30-42. It is important to study this shape transition in an oda-l isotone since a particular systematic trend is expected and also
because odd-2 nuclei possess special characteristics not found in the even-even cases. Some of these special features were discussed in decail in last year's progress report. \({ }^{9}\)

High spin states in \({ }^{57}\) Tm were populated via the ilopd(\(\left.{ }^{5!}, V, 4 n\right)\) reaction at a beam energy of 220 Mev. Gamma rays were detected in coincidence by using our 19-detector Compton Suppression Systom. Approximately 165 million events were recorded, with events corresponding
 the reaction cross section. For further experimental details, see the \({ }^{158} \mathrm{Tm}\) contribution to this report. The level scheme analysis of these data is now complete. We have identified nine rotational cascade sequences in the level scheme of \(15^{7}\) Tm. Over 80 r -ray transitions are observed, whereas previously only 6 r rays had been assigned \({ }^{10}\) to this nucleus. High-spin states are observed up to \(I=83 i 2\) for ne ative parity ard \(I=55 / 2\) for positive parity. Spin and parity assignments are based on angular correlation information and strong systematics that exist in this region.

At low spins the yrast band, based on the [523]7/2 \(h_{1 / 2}\) Nilsson level, shows large signature splitting which disappears (and even inverts slightly) after the \(i_{13 / 2}\) neutron alignment at spin \(!=31 / 2\). Similar behavior is observed in the \(N=90\), odd- 2 nuclei and has been interpreted as a change in shape from negative to zero or slightly positive values of the asymetry shape parameter y (see Ref. ll). The interaction strength at the \(i_{11 / 2}\) crossing is very weak with the main intensity flow actually bypassing the \(31 / 2^{-}\)yrast level via a \(934-\mathrm{keV}\) transition. Such a weak interaction, and also a slightly higher than normal crossing frequency, is expected for nuclei where the Fermi surface \(\lambda\) lies below the \(\Omega=1 / 2\) intrucier level. \({ }^{12}\)

A special feature of the odd-proton nuclei is that it is possible to obtain electromagnetic \(B(M 1) / B(E 2)\) transition rates by measuring the \(A!=1\) to \(A!=2\) branchiig ratios in the two strongly coupled \(\boldsymbol{h}_{11 / 2}\) yrast sequences. These result; show simildr chirdcteristics to other odd-proton nuclei in this region, displaying d
sharp rise at the \(i: 3 / 2\) neutron alignment. ADCve spin \(1=25\), the ratio rises sharply again which is also true for the \(N=90\), odd -2 nuclei. It is not clea- whether the underlying expianation for this increase is the same for all these nuclei. In the case of 15 JIm we would suggest that the effect is caused by the influence on the yrast sequence by band teraination structures which cross the yrast line just below spin \(I=30\), leading to a reduction in the \(8(E 2)\) values.

Plotted in Fig. 2.27a is the excitation energy minus a rigid rotor reference for the

Fig. 2.27. Excitation energy minus a rigid rotor reference for (a) negative parity levels and (b) positive parity levels in 157 Tm. The calculatedi2 levels have been shifted up by 2 MeV .
yrast (negative parity) band of 157 Tm . Also slotted (shifted 2 MeV up in energy) are some very recent band-termination predictions by Ragnarsson and Bengtsson. \({ }^{13}\) These calculations omit pairing and, therefore, some care should be taken when interpreting the theory values for low spins, \(I<30\). The similarity beqween experiment and theory is striking! The strong down sloping, ending in a particular favored oblate state (encircled), is a characteristic feature of teminating banas. The predicted low states at spins \(!=61 / 2\) and \(73 / 2\) indeed coincide with low experimental states. The observation of an intense, very iligh energy i ray (1080 kev) above \(!=30\) and ine observation of a dipole transition (55) kev) at spin \(1=75 / 2\) are also phenomena which may be explained in these band termination ealculatione. Ine nigh spin experimental spectrum, \(1: 51 / 2\), however, is not.
readily understood within a standard cranked shell model framework.

We show in fig. 2.270 the two strangly coupled signatures of the high-spin positiveparity sequence. The latter is not observed to high enough spin to expect any strong direct correspondence with theory (again shifted up 2 meV in energy). It is interesting to note, however, that a drop in the r-ray energy spacing does occur at spin \(I=55 / 2\), and this coincides with the favored theoretical state in this figure.

These observations are consistent with similar effects seen in the lighter \(N=88\) nuclei and support the interpretations,13 for band terminating behavior in the heavier 158 Yb nucleus, wich rad been questioned in Ref. 14.
1. ORNL and JIHIR. Present address: University of Liverpool, Liverpool, U.K.
2. CAML and JIHIR. Present address: University of Jyvaskyla, Jyvaskyla, Finland.
3. University of Tennessee, Knoxville, IN 37996.
1. Vanderbilt University, Nashville, TN 37235. Present address: Banaras Hindu University, Varanadi 221005, India.
5. C. Baktash et al.. Phys. Rev. Lett. 54, 978 (1985).
6. F. Stephens et dl.. Phys. Rev. Lett. 54, 2584 (1985).
7. H. W. Cranmer-Gordon et al.. Hucl. Phys. A465, 506 (1987).
8. W. C. Ma et al.. Phys. Rev. Lett.
9. M. A. Piley et ál. Phys. Div. Prog. Rep. for Period Ending Sept. \(30,1987,08 N L-6420\), p. 89.
10. R. Kossakowski et al., Phys. Rev. C 32, 1612 (1985).
11. S. Fravendorf and F. May, Phys. Lett. 1258, 245 (1983).
12. R. Bengtsson, I. Hamamoto and B. Mottelson, Phys. Lett. 738, 259 (1978).
13. I. Ragnarsson and T. Bengtsson, private communication.
14. I. Ragnarsson et al.. Phys. Rev. Lett. 54, 982 (1985).
15. S. B. Patel et al.. Phys. Rev. Lett. 57, 62 (1986).

HIGH-SPIN STUDIES OF 1720 S :
COMPLEX ALIGNHENT MECHAMISM
\begin{tabular}{ll}
J. C. Wells & A. Virtailen \\
M. R. Jonnson & F. K. McGowan \\
M. A. Riley? & C. Baktash \\
J. Dudex & I. Y. Lepe
\end{tabular}

The nuriet in the light-mass tungsten-osmium region exhibit both shape coexistence effects
and shape evolution tendencies and, thus, present good cases for comprehensive experimental investigations and theoretical calculations to understand their behavior at microscopic level.

One interesting case in this region is 1720 s. Previous studies 5,6 of this nucleus have defined the yrast sequence up to \(I=24^{+}\), but have provided only limited information on side bands. Both Durell et al. 5 and Hells et al. \({ }^{6}\) reported two anomalies (discontinues from a rotationallike trend) in the yrast sequence moment of inertia below a rotational frequency \(h_{\omega}=0.27\) MeV. Since this earlier work had left many interesting and unanswered questions about 1720s, we have made a reinvestigation of its high-spin properties and, in the course of the work, have obtained some information on the previously unstudied nucleus, \({ }^{173} 0 s\).

For the current \(\gamma-Y\) coincidence measurements, a \(1-\mathrm{mg} / \mathrm{cm}^{2}\) target of enriched \({ }^{144} \mathrm{Md}\) and a 162 -MeV beam of 32 S ions from the HHIRF tandem accelerator was used, with the \(4 n\)-reaction channel producing 1720 s. The measurements were made with the Oak Ridge Compton Suppression System, using 19 Compton-suppressed large-volume Ge detectors. This system was incorporated into the Spin Spectrometer, \(4 \pi\) array of Nal detectors, by replacing 19 of the Na l units with Compton-suppressed Ge units. In this way, r-y coincidence data was collected while recording the associated total energy and r-ray multiplicity. The \(y\)-ray spectra from the 19 Ge detectors were gain-matched and a \(4 k\) - by \(4 k\)-channel coincidence matrix was generated using coincidences between all possible pairs of detectors.

The level scheme for 1720 s deduced from the coincidence data is shown in Fig. 2.28, where the 1720 s rays have been grouped into five Dands. Ordering of the r rays in the level scheme is based on the observed coincidence relationships and on intensity arguments and energy systematics. Spin assignments dre based On our r-y-angular-correlation tata.

We have also identified r rays belonging to other reaction channels besider the An channel

Fig. 2.28. Level scheme of \({ }^{172}\) Os.
which leads to \({ }^{172} 0 \mathrm{~s}\). In addition to 169 H and 170y, we observe five other distinct bands belonging to unidentified nuclides, which, based on \(x\)-ray spectra, are probably odd-mass \(0 s\) and Re isotopes. We have made a tentative identification of one of these bands as being that of \({ }^{173} 0 \mathrm{~s}\). The energies and intensities are given in Table 2.7.

The experimental aligned angular momenta for the five bands in \({ }^{172} \mathrm{Cs}\) are shown in Fig. 2.29

Tatie 2.7 Gamma-ray energies and intensities of a band assigned to \({ }^{173} 0 \mathrm{~s}\)
\(E_{Y}(k e V)^{d} \quad\) Intensity \({ }^{b} \quad E_{Y}(k e V)^{d} \quad\) Intensity \({ }^{b}\)
232.4
\begin{tabular}{lrrr}
389.5 & \(100 \div 8\) & 645.7 & \(45: 5\) \\
484.1 & \(88: 8\) & 687.7 & \(32: 5\) \\
535.5 & \(79: 8\) & 735.5 & \(22: 5\) \\
572.2 & \(59: 6\) & 781.0 & \(19: 4\) \\
608.6 & \(50: 6\) & 819.4 & \(1: .4\)
\end{tabular}
duncertainty in transition energies is 0.1 keV .
helative r-ray intensities dre normalized to the intensity of the \(389.5-\mathrm{keV}\) transition \((=100)\). The transitions are disumed to be ordered in the bond according to incredsing enerijy.

Fig. 2.29. Aligned angular momentum (i) for bands in i720s deduced from experiment.

These are labeled by their parity and signature quantum numbers (\(\mathrm{r}, \mathrm{a}\)). The rotational references, subtracted in determining these curves, used Harris parameters \(J_{0}=15 \mathrm{~K}^{2} \mathrm{Mev}^{-i}\) and \(J_{1}=90 \mathrm{~h}^{4} \mathrm{MeV}^{-3}\).

To understand the high-spin behavior of 1720 s illustrated in Fig. 2.29, we have carried out theoretical analyses where the first step involved calculations of the total-energy surfaces for the four assigned parity-signature combinations as a function of spin. These were performed with the generalized Strutinsky approach and the deformed Woods-Saxon potential (without pairing). These surfaces reveal a large number of varied-deformation configurations for \({ }^{1720}\). For the even-parity states, only moderate deformations are involved in the spin range of our medsurements, with (\(B_{2}, r\)) remaining essentialiy constant \(\left(0.21,-16^{\circ}\right)\) up to about spin \(18^{+}\)and there evolving to \(\left(0.18,-6^{\circ}\right)\).

A microscopic analysis was next carried out with Hartree-Fock-Bogoliubov cranking (HFBC) calculations which included pairing correlation effects ard particle-number projection. Some of the interesting eonc, lusions we have reached

Dased on these calculations and our experimental datd follow: ill The proton orbital most dctive in the alignment process has the ouantum labels \(h_{g / 2}, k=1 / 2\) (i.e., \(1 / 2^{-}[541]\)) and crosses the Fermi level for \(Z=76\) at \(K_{\omega}=0.4 \mathrm{MeV}\). Thus, it plays no significant role in the lowerfrequency phenomena of our presen: investigation, contrary to the previous suggestions of this possibility. (2) The low- \(\Omega\) orbitals of the \(i_{13 / 2}\) quasineutrons interact strongly over the frequency range of \(K_{\omega}=0.22-0.27 \mathrm{MeV}\), corresponding to at least \(A B, B C\), and \(A D\) crossings in the common nomenclature and, therefore, can account for the low-frequency anomalies in the moment of inertia. (3) The continuation of the \(s\)-band beyond the "forking" in the yrast sequence probably takes on the \(A B\) quasineutron character while the continuation of the groundstate band has primarily a BC description (or perhaps BCAD in analogy to the description applitd in 158 Er by simpson et al. 7 (4) The first anomaly in the 1720 s moment of inertia at \(I=6^{+}\)probably results from the strong interaction with the ground band by the extension of the \(B C\) (\(B C A D\)) configuration, whereas the anomaly at \(I=14^{+}\)is cue to the \(A B\) crossing. (5) Finally, the negative parity bands denoted by \((x, a)=(-, 1)\) and \((-, 0)\) in Fig. 2.28 can be attributed to the \(A E\) and \(A F\) configurations, respectively, at low frequencies and to \(A E B C\) and \(A F B C\) configurations after the band crossings.

\footnotetext{
1. Adjunct staff member from Tennessee Technological University, Cookeville, TN.
2. ORNL and JIHIR. Present address: University of Liverpool, Liverpool, U.x.
3. JIHIR, Oak Ridge. Present dddress: Universite Louis Pasteur. F-67037, Strasbourg C.EDEX, France.
4. DRNL and JIHIR. Present address: Iniversity of Jyvaskyla, Jyvaskyla, Finland.
5. J. L. Derell et al.. Phys. Lett. 1558, 36) (1982).
5. J. C. Wel et al., Phys. Rev. C 36, 431 (1987).
1. J. Simpsion et al.. J. Phys. f, 13, 84/ (1981).
}

\section*{investigation of the evolution of COLLECTIVITY IM 172 OS VIA LIFETIME MEASUREMENTS}
A. Virtnent
I. Y. Lee
N. R. Johnson
C. Baxtash
F. K. McGowan
J. Dudek \({ }^{3}\)
M. A. Riley \({ }^{2}\)
J. C. Hells4

In earliers, 6 r-y coincidence measurements cn 1720 s , it was established that there are two "anomalies" (discontinuities from a rotationallike trend) in its yrast-sequence moment of inertia below a rotational frequency of \(h_{\omega}=\) 0.27 MeV . These studies \({ }^{5} .6\) led to several suggestions for this behavior, but were unable to single out the cause.

In an effort to better understand the behavior of 1720 s - and to address some of the questions about other nuclei in this region - we recently launched new experimental investigations involving lifetime measurements with the recoil-distance apparatus and detailed p-ray spectroscopy measurements with our Compton Suppression System. The spectroscopy studies are discussed in the previous article.

Excited states in the nucleus 1720 s were produced by the reaction \(144 \mathrm{Md}(32 \mathrm{~S}, 4 \mathrm{n})^{172} \mathrm{Os}\) at a beam energy of 162 MeV . The thickness of the enriched, self-supporting 144 Nd target was 1.35 \(\mathrm{mg} / \mathrm{cm}^{2}\). The stopping medium for the recoiling nuclei consisted of \(34 \mathrm{mg} / \mathrm{cm}^{2}\) lead evaporated onto a \(0.2-\mathrm{mm}\) nickel foil. Target-stopper separations mere determined by a digital micrometer and by capacitance measurements.

The 1720 y y rays were detected in seven highresolution \(G e\) detectors. The shifted and unshifted \(;\)-ray lines were measured in a \(B G 0\) Compton-suppressed \(G e\) detector placed at \(0^{\circ}\) and 9.7 cm from the target. The other six Ge detectors were in a ring perpendicular to the beam ax: : and at 5.9 cm from the target. Coincidence counts between any of the \(90^{\circ}\) detectors and the \(n^{\circ}\) detector were recorder on magnetic tape for 21 different target-stopper distances ranging from 0 th \(20,128 \mu \mathrm{~m}\). A lead-backed target was used for the zero-distance measurement.

Three sets of coincidence spectrd from these pxperiments mere andyzed. Ine of these we
refer to as "Total Projected Data" (TPD) since they result from a coincidence count in the \(0^{\circ}\) detector gated by any event in the \(90^{\circ}\) detectors. From these spectra, the velocity of the recoiling \({ }^{1720}\) s ions was found to be 4.767 . \(0.060 \mu \mathrm{~m} / \mathrm{ps}\), wich corresponds to \(1.59 \%\) of the velocity of light. We also andyzed the spectra generated by gating on \(y\) rays below the transitions of interest - the "Gated Below Data" (GBD).

We can eliminate difficulties caused by longlived sidz-feeding by gating on the band members higher than the transition \(0^{f}\) interest; we refer to coincidence spectra generated in this manner as "Gated Above Data" (GAD). All three types of data mere analyzed with the computer program LIFETIME. 7 Decay curves from the data yielding the best fits for the \(4^{+}\)through \(20^{+}\) states of the yrast sequence are shown in Fig. 2. 30.

Fig. 2.30. Decay curves for the \(4^{*}\) through \(20^{+}\)states in 1720 s . The solid lines are the fits to the experimental points as extracted with the program IIFETIME. Phe notations GAD. \(r_{2} R\) a and \(T P D\) designate the type of coincififence data used ar expldinest in the text.

A sumary of the lifetimes (\(r\)) and transition quadrupole moments \(\left(Q_{t}\right)\) determined in preliminary analyses of the three types of data is presented in Table 2.8. These \(Q_{t}\) values. plotted as a function of spin in Fig. 2.31, show an enhancement in the collectivity in the vicinity of the \(6^{+}\)state where the first anomaly in \(g\) occurs, wile beyond the backbend there is a decrease in collectivity. Theoretical estimates of th. transition quadrupale moments involie, in

Table 2.8 Sumary of lifetimes and transition quadrupole moments of 1720 s yrast states obtained from the preliminary analyses of the total projected data (TPD), gated below data (G8D) and gated above data (GAD).
\begin{tabular}{|c|c|c|c|}
\hline \(J_{i}^{\text {T }}\) & EY,keV & Meighted Average \(t(p s)^{a, b}\) & \(Q_{t}(e b)^{\text {b }}\) \\
\hline \(2^{+}\) & 227.8 & 165*11 & \(5.7 \pm 0.2\) \\
\hline \(4^{+}\) & 378.4 & \(10.1{ }_{-1.1}^{+0.7}\) & \(5.7{ }_{-0.3}^{+0.3}\) \\
\hline \(6^{+}\) & 448.4 & \(2.3 \pm 0.2\) & \(7.6+0.4\) \\
\hline \(8^{+}\) & 470.5 & 1.7
+0.7
-0.2 & 7.7-1.7 \({ }_{-0.5}\) \\
\hline \(10^{+}\) & 498.9 & \(1.0^{+0.3}\) & 6.8-0.7 \\
\hline \(12^{+}\) & 540.6 & \(1.1+0.4\) & 6.7 \({ }^{+1.1}\) \\
\hline \(14^{+}\) & 536.7 & \(1.2+0.7\) & 6.3-2.0 \\
\hline \(16^{+}\) & 488.5 & \(3.2+0.8\) & \(4.9{ }_{-0.4}^{+0.6}\) \\
\hline \(18^{+}\) & i86.8 & \(1.5+0.6\) & 4.6 \({ }_{\text {+ }}\)-0.0 8 \\
\hline \(20^{+}\) & 655.1 & \(0.3 \pm 0.2\) & \(6.9 \pm 2.4\) \\
\hline
\end{tabular}
\({ }^{3}\) Standard modeling was used in the fitting procedure. It involved two-state cascade side feeding to each level and d four-state rotational bans built on the highest member of the cascade.

Binese values are weighted averages of TPD, GBD and GAD. Error analyses were carried out statistically including the fact that the three sets of data are not fully independent.

Fig. 2.31. Transition quadrupole moments, \(Q_{t}\), as a function of spin for the yrast sequence of \({ }^{\text { }}\) 1720 s. The solid lines show the trends predicted by theory.
principle, the microscopic initial- and finalstate wave functions and are rather complicated. They can often be replaced by an approximate expression \({ }^{8}\) of the form
\(Q_{t}=\left(\frac{12}{5 \pi}\right)^{1 / 2}(2 e) r_{0}^{2} A^{2 / 3} B_{2} \cos \left(30^{\circ}+Y\right)\).
where \(r_{0}=1.2\) fm. As pointed out [see preced:ng articie] our potentidi energy surface calculations for \({ }^{1720}\) s yield values of the deformation parameters \(\left(B_{2}, Y\right)\) of \(\left(0.212,-16^{\circ}\right)\) up to \(I=18 \mathrm{n}\), were a transition to \(\left(\mathrm{B}_{2}, \mathrm{y}\right)=\) (\(0.185,-5^{\circ}\)) takes place. In Fig. 2.31 the solid lines, corresponding to \(Q_{t}\) values computed from these deformations, mart the respective trends of the shape evolution.

A significant deviation between experimental and theoretical \(Q_{t}\) values is observed at \(1=6^{+}=8^{+}\). The fact that we find an enhanced collectivity for these states goes counter to earlier suggestions \({ }^{6,9}\) that the \(h_{9 / 2}\) protons in the \(1 / 2^{-}\)[541] orbital may be responsible for the behavior of the moment of inertia at these spits. The influence of enis orvital is to drive the shape toward positive \(r\) deformaticn (noncollective tridxiality) which should produce a drod in \(O_{t}\) values. This conclusion is reinforced by our microscopic analysis carried out with martree-fock-Bogoliubov cranking
calculations which treated pairing selfconsistently and included particle-number projection. These calculations indicated the \(n_{g / 2}\) protons play no role below a frequency of \(\mathrm{f} w=0.4 \mathrm{MeV}\).

Although these calculations seem tn rule out an appreciable \(h_{g / 2}\) proton contribution to the observed behavior of \({ }^{720} 0 \mathrm{~s}\), they do indicate that there are at least three two-quasineutron Dald crossings (\(A B, B C\), and \(A D\) in the standard ten inology) in the narrow frequency range of 0.22 to 0.21 Mey . Our spectroscopy results have shown that there is a strong interaction between these bands and the ground band in this region, and thus may give rise to the deviations of the \(Q_{t}\) values from a smooth trend, as seen in Fig. 2.31. We also note that the quantum effects in the \(Q_{t}\) moment, not present in Eq. (1), can contribute changes of the order of those indicated in the experimental \(Q_{t}\) evolution. The analysis of these contributions from quantum effects is in progress.
1. ORNL and JIHIR. Present address: University of Jyväskyla, Jyväskyla, Finland.
2. ORNL and JIHIR. Present address: University of Liverpool, Liverpool, U.K,
3. JIHIR, Oak Ridge. Present address: Universite Louis Pasteur, F-61037, Strasboury CEDEX, France.
4. Adjunct staff member from Tennessee Technological Untversity, Cookeville, IN.
5. J. L. Durell et al.. Phys. Lett. 1158, 367 (1982).
6. J. C. Wells et al., Phys. Rev. C 36, 431 (1987).
1. J. C. Wells, M. P. Fewell and N. R. Johnson, LIFETIME: A COMputer Program for Analyzing DoppTer Snift \(h_{i}\)-ofl Distance Nuclear [ifet ime Data, ORMLTM-9105 (198S).
8. P. Ring et al., Phys. Lett. I108, 423 (1982).
g. H. T. Hsieh, M. M. King Yen and I. T. S. Kuo, J. Phys. G. 14, 131 (1988).

\section*{TRANS:TION QUADRUPOLE MOHENTS OF HIGH-SPIM STATES IM \({ }^{172} \mathbf{W}\)}
\[
\begin{array}{ll}
\text { F. K. McGowan } & \text { I. Y. Lee } \\
\text { N. R. Johnson } & \text { C. Baxtash }
\end{array}
\]

Recently, Raman et al.' questioned the large B(E2, O - 2) value of \(5.78 \cdot 0.37 \mathrm{e}^{2} \mathrm{~b}^{2}\) for \(1 / 2 \mathrm{~W}\) extracted from lifetime measurements carried out
by us and our collaborators \({ }^{2}\) by the recoildistance technique. This disagreement was based on empirical and theoretical systematics \({ }^{3}\) of \(B(E 2,0\) - 2) values for even-even nuclei. To investigate factors which could have caused a decrease in the extracted lifetimes, we have reanalyzed the total-projected data with a focus on the normalization of the \(\gamma\)-ray spectra at different target-stopper distances. In our previous analysis \({ }^{2}\) the \(\gamma\)-ray spectra were normalized to have the same number of events for the sum of the \(4^{+}\)to \(l v\) transitions.

In the new analysis, we have normalized the spectra to only the sum of the (corrected) intensities of the shifted and unshifted components of the well-resolved \(2^{+}+0^{+}\)and \(4^{+} \cdot 2^{+}\)transitions in \({ }^{172} \mathbf{W}\). These normalization factors reflect the integrated beam current on the target. The shifted component corrections are the positional solid angle and recoil velocity-dependent solid angle. For the unshifted component the only significant correction is the pusitional solid angle. The lineshape correction can be neglected because the stopping time in the stoppe; is calculated to be 1.16 DS, whereas the \(:\) ifetimes of the \(4^{+}\)and \(2^{+}\)states are 51 and 1040 ps , respectively. Deorientation effects in the directional correlations of \(y\) rays in the yrast band of \({ }^{172} \mathrm{~W}\) are insigi..icant (s 27) for our arrangement of the ditectors in the \(\gamma-\gamma\) coincidence mode due to the imall directional correlation (see Ref. 4).

With the new normalization factors, there are signifirant changes in the normalized intensities 'or the decay of the \(2^{+}\)and \(4^{+}\)states at the the larger recoil distances. The revised value of the transition quadrupole moment, \(Q_{t}\), is \(7.05: 0.30\) eb for the \(2^{+} \rightarrow 0^{+}\)transition which is 88 smaller than our previously published value. \({ }^{2}\) Inis corresponds to \(B(E 2,0,2)=\) \(4.94: 0.42 \mathrm{e}^{2} \mathrm{~b}^{2}\) which is still \(20 \%\) larger than the proposed systematics. \({ }^{3}\)

So far, only the tutal-projected data have been reanalyzed for the yrast band in 172 W . In Fig. 2.32 the transition quadrupole moments deduced from the lifetime results are presented

Fig. 2.32. Transition quadrupole moments, \(Q_{t}\). for the yrast sequence of \({ }^{172} \mathrm{~W}\) as a function of rotational frequency (\(h_{0}=E / 2\)). The solid curve shows the results of a cranked Hoods-Saxon-8ogolyubor calculation.
as a function of the rotational frequency. The solid curve shows the results of a cranked Woods-Saxon-Bogolyubor calculation by Bengtsson and Xing. \({ }^{2}\) The defomations (\(\beta_{2}, y\)) from these calculations mere converted to \(Q_{t}\) using
\[
q_{t}=\frac{6 e 2 A^{2 / 3}}{(15 \pi)^{1 / 2}} r^{2} B_{2}\left(1+.360 B_{2}\right) \cos \left(30^{\circ}+r\right)
\]

The solid curve corresponds to \(r_{0}=1.228\) fin (adjusted to reproduce the \(Q_{t}\) of the \(2^{+}\)state). The data for I \& 8 do not show the increase in collectivity from centrifugal stretching at low spins. For states with \(I \geqslant 10\) the \(O_{t}\) values are \(21 l\) near a constant value of 6.5 eb . This is, of course, the trend prenticted by the cranked-shell-model calculations for a nucleus with the Ferni surface near the middle of the \(\mathbf{i}_{13 / 2}\) neutron shell.

We are continuing the reanalysis of the other types of data (gated-above and sum-gated-below) for 172 w . When this is finished, we will take an average of all the reanalyzed dat: to see if the trend of the \(\eta_{t}\) values in Fig. 2.32 is sustained. At that point we will address the role played by the \(h_{g} / 2 p\) otons in the interpretation of the results and present the information in a forthcoming paper.
1. S. Raman. C. W. Mestor, Jr , S. Karane, and \(K\). \(H\). Bnatt, At. Data Muci, Data Tables, to be published: S. Raman ef al., Comment submitted to Phys. Rev. Lett.
2. M. K. Rao, K. R. Johnson, F. X. McGowan. l. Y. Lee, C. Baktash, M. Oshim, J. W. HeConnell, J. C. Wells, A. Larabee, L. L. Riedinger, R. Bengtsson, Z. Xing, Y. S. Chen, P. B. Semmes, and G. A. Leander, Phys. Rev. Lett. 57. 667 (1986).
3. S. Raman, C. W. Mestor. Jr. . and K. H. Bhatt, Phys. Rev. C 37, 805 (1988).
4. James E. Draper, Mucl. Instr. and Meth. 1247, 481 (1986).

\section*{LIFETIRE MEASUREEEMT OF THE CORRELATED COMTIMEH GNMA RAYS In 170 Hf}
\begin{tabular}{ll}
I. Y. Lee & M. R. Johnson \\
C. Baktash & F. K. McGowan \\
J. R. Beene & M. A. Riley \({ }^{2}\) \\
H. B. Gaol & A. Virtanen \\
Y. R. Jiangl & L. Zhou
\end{tabular}

Continuum gama rays are generally emitted at the early stages of the gama decay of a compound nucleus. These gamma rays are from states with higher angular momentum and excitation energy than the discrete gamma rays. Therefore, from the study of continuum gamma rays it is possible to obtain information on nuclear properties in regions unreachable through studies of discrete gama rays.

It is known experimentally that in most nuclei the cont inuum gasad rays are stretched E2 in nature and that they follow rotational-like sequences (i.e.. energy increases with spin). The "singles" continuum spectra show a high energy edge which moves to higher energy as more angular momentum is brought into the nucleus. In a two-dimensional gaman-gama coincidence matrix, the rotational-like behavior shows up as a valley along the \(E_{1}=E_{2}\) diagonal and as ridges parallel to the valley. The separation of the ridges is directly progortional to the nuclear moment of inertia.

Recent studies have shown that only a small fraction of the expected continuum intensity is obstrved in the ridge structure which has a width of about 20 keV . Level-mixing ialculations for the region above the yrast line indicate that the effect of the damping of the collective strength is to spread the correlation through a region as wide as 200 kev . Such a large width will lead to a reduction of the
intensity of the ridge structure that rises above the valley. In addition, this rotational damping will also change the iifetime of the E2 decay. Hence, a measurement of the lifetime of the gamma-ray continuum can provide information on the degree of rotational damping.

Lifetime measurements of the continuum gama rays were first \({ }^{5}\) carried out on singles spectra using the Doppler-Shift Attenuation Method (DSAM). Spectra from experiments with a thin target and a gold-backed target were compared. and, from th.e difference in the Doppler-shift of the tiop of the E2 continuum, the lifetime of the gama rays near the edge was derived. The results indizated that the collectivity of the continuum gama rays is as high as, and possibly higher than, the low-spin rotational states. However, these experiments have limited value because they were done with Mal detectors which have low energy resolution and because the singles method can measure only the lifetimes of ganma rays near the edge. In the current measurements we have applied the DSAM to the full gama-gama correlation matrix, enabling us to determine the lifetime of the ridge in \({ }^{170} \mathrm{Hf}\) over a large range of energy. With our Compton Suppression Spectrometer System, it was possible to carry out these measurements with good energy resolution and a high peak-to-Compton ratio.

The experiments were carried out with a 195 MeV \({ }^{4} \mathrm{Ca}\) deam from the hhirf tandem accelerator. Two \({ }^{130}\) Te targets were used in separate runs. A \(1 \mathrm{mg} / \mathrm{cm}^{2}\) target on a \(16 \mathrm{mg} / \mathrm{cm}^{2}\) gold Dacking was used for the DSAM measurement and a thin target of thickness \(1 \mathrm{mg} / \mathrm{cm}^{2}\) was used for comparison. The ganma rays were detected in 20 anti-Compton shielded Ge detectors placed in a compact support structure with a target to Ge detector distance of about 12 cm . Trifle-coincidence data were taken at a rate of 1000 events per second. We collected \(150 \times 10^{6}\) events with the backed target and \(50 \times 10^{6}\) events with the thin \(t\) drget.

Two-dimensional \(E_{\gamma}\) vs \(E_{\gamma}\) matrices were generated from these data. For the thin target, data were corrected for octh the gain and the
angular dependence of the Doppler shift. From the data with the backed target, a matrix was generated with coincidence events between the four \(45^{\circ}\) detectors and the four \(135^{\circ}\) detectors. Only the gain was corrected for this matrix. Thus, depending on the lifetime, the gamma ray will show a different amount of Doppler-shift. To measure the shifts, the 2-D matrices were cut perpendicular to the diagonal, and \(1-D\) spectra were obtained by projection, iuts were aade in \(50-\mathrm{keV}\) steps from 700 to 1100 keV on both matrices. Figure 2.33 shows the comparison of several of these projected spectra.

It can be seen from these data that from 700 kel to 1000 keV the shift increases from \(15 \%\) to

Fig. 2.33. Gamma-roy spectra from bsckedand thin-target expertments. Spectra are obtained by cutting alit projecting the 2-D matrice perpendiular to the \(E_{1}=E_{2}\) diagonal in 50 -keV stars centered at (a) \(E_{Y}=725\) and (b) 925 xev . respectively.
\(90 \%\) of the fully shifted value, indicating a movement toward shorier lifetimes. Since the apparent lifetise reflects the total time fron the formation of the compound nucleus to the eaission of the gama ray, to obtain the collectivity of a given transition, we have to understand the lifetimes of all the preceding gama rays. The total decay time is dependent on the spin \(I_{i}\) of the starting point of the cascade, the energy of the gama rays in the cascade, and the B!E2) values of the transitions. In a simple model, if a constant value for the moment of inertia is assumed. the ganmaray energy can be calculated by \(E_{Y}=(4 I-2) / 2\) \(S / K^{2}\); and if a constant value for \(Q_{t}\) is assumed, the \(B(E 2)\) can be obtained by the expression
\[
B(E 2)=(16 \pi / 5) Q_{t}^{2}<1020 \mid I-20: 2
\]

The value of \(I_{i}\) can be determined from the average multiplicity of the gama ray. Using this information, together with the recoil velocity calculated as a function of time from the stopping power, we can calculate the expected Doppler shift as a function of the gama-ray energy. Figure 2.34 compares the calculated results with the experimental values. In these

Fig. 2.34. Measured and calculated Doppler shift as function of gamma-ray energy. Ihe calculations were carried out using \(I,=50\), \(2.5 / \hbar^{2}=114 \mathrm{MeV}^{-1}\) and \(\mathrm{O}_{\mathrm{l}}=6,7\), and 8 eb .
calculations, we used \(i_{i}=50\) which is determined from our measured average gama-ray multiplicity, \(25 / \mathrm{h}^{2}=114 \mathrm{Mev-l}\) wich reproduces the separation of the ridges. The three curves correspond to \(Q_{t}\) values of 6,7, and 8 eb , where 7 eb is the value for \(2++0+\) transition of \({ }^{170} \mathrm{Hf}\).

The experimental results in Fig. 2.34 indicate that the collectivity of gama rays with energy less than 900 keV is smaller than that of the \(2+\) + \(0+\) transition, and above 900 keV the collectivity is higher. The reduction of the collectivity at \(E_{Y}<900\) kev has been observed \({ }^{6}\) in many nuclei. It is interpreted as the change of the nuclear shape to smaller \(s\) deformation or to more triaxial or oblate deformation (\(\gamma>0\)), due to the rotational alignment of high-j particles. The increasing of the collectivity at higher energies can also be due to a shape change. However, it is possible that this increase could be due to rotational damping. According to the calculation, the spreading width of the E2 strength for \(A=160\) nuclei is about \(100-200 \mathrm{keV}\) at an excitation energy of 2-4 MeV. Oue to the Ef factor in the E2 transition rate, such a spread will increase the transition rate and reduce the lifetime by a factor of 10-30\% wich is comparable to our experigental values.
1. Vanderbilt University, Nashwiile, TK.
2. CRNL and JIHIR. Present address:

University of Liverpool, Liverpool, U.K.
3. ORNL and JIHIR. Present address:

University of Jyväskyla, Jyväskyla, Finland.
4. University of Tennessee. Knoxville, TM.
5. H. Hübel, V. Smilansky, R. M. Diamond. F. S. Stephens, and 8. Herskind, Phys. Rev. Lett. 41, 791 (1978).
6. M. P. Fewell et al.. Phys. Rev. C 37. 101 (i988).

HIGH-SPIN DATA BASE
\begin{tabular}{ll}
J. D. Garrett & M. R. Johnson \\
M. A. Riley & F. MCGowan \\
C. Baktash & L. Courtney! \\
I. Y. Lee & L. L. Riedinger?
\end{tabular}

In recent years nearly all laboratoi ies invoived in the study of nuclei at high spins
have established some kind of computerized data base for the nuclei that they are studying and the neighboring isotopes and isotones. The most comprehensive such data base probably is that established jointly by the Niels Bohr Institute, Oak Ridge National Laboratory, and their various collaborators. Although this data base is rather complete for the deformed even-even and odd- A rare earth and \(A=120-140\) isotopes, with time, the data base at the various institutes diverge as different data is added.

Therefore, we are preparing the guidelines for central high-spin daza base to be established at ORNiL. The resuits of this data base will be accessible via a computer network to all high-spin groups participating. Some control will be exerctsed for data to be included. Likewise, a computer bulletin board will contain what data is included in the data base. The quick access to this data shuuld also be helpful to nuclear structure theorists.
1. University of Tennessee, Knoxville, TN.
2. Adjunct staff member fram the University of Tennessee, Knoxville, TM.

\section*{DESCRIPTION OF ONE-QUASIPARTICLE PROTON STATES IN RARE-EARTH MUCLEI}
\[
\begin{array}{ll}
\text { W. Mazarewicz } 1,2 & \text { J. D. Garrett }{ }^{3} \\
\text { M. A. Riley }{ }^{3,4} & \text { J. Dudek }
\end{array}
\]

The vaisnce single-protion configurations of rare earth nuclei represent a variety of orbital shapes. Thus the occupation of such configurations can have a significant influence on the nuclear shape. To study these effects, systemafic calculations of noncollective single-proton states in odd-I rare-earth nuclei have teen per. formed, using the shell correction method with an average Woods-Saxon potential \({ }^{6}\) and a monopole pairing interaction. Approximate particle number projection was carried out by using the method proposed by Lipkin and Nogami.' Deformation space was defined by means of quadrupole and hexadecapole deformation parameters (\(B_{2}, \beta_{4}\)).

The present calculations for neutron deficient isotopes with \(2=63-75\) is considerdble
extension of the number of nuclei considered in a previous paper \({ }^{8}\) where the Nilsson-Strutinski approach was utilized. Equilibrium deformations of the even-even rare earth nuclei al so are computed and compared with experimental values. Strong polarization effects due to the odd proton explain systematic trends of known band heads. A sample of results from these calculations for the Lu isotopes is shown in fig. 2.35.

Fig. 3.35. Configuration dependence of the band-head quadrupole \(B_{2}\) and hexadecapole \(B_{4}\) deformations for the lutetium isotopes. 161-177 Lugo-106. For comparison, the groundstate deformations of ytterbium and hafnium isotopes also are shown.

Equilibrium deformations of lowest single-proton states in 161-171Lu isotopes dre compared to that of the corresponding even-even Yb and Hf cores. A pronounced configuration-dependent spread in the equilibrium shapes is seen.
1. The Niels Bohr Institute, Copenhagen, Denmark.
2. Institute of Physics, Warsam Institute of rechnology, Poland.
3. ORNL and The Niels Bohr Institute, Copenhagen, Denmark.
4. JIHIR. Present address: University of Liverposl, Liverpool, U.K.
5. \({ }^{\text {IHIR }}\), Oak Ridge. Present address: Ce.tre de Recherches Nucleaires et Universite Lou.: rasteur, Strasbourg, France.
6. S. Cwiok, J. Dudek, W. Mazarewicz, J. Skalski and T. Werner, Computer Physics Communications, in press.
7. H. C. Pradhan, Y. Nogami and J. Law. Nucl. Phys. A201, 357 (1973).
8. B. S. Nilssion and M. E. Bunker, Nucl. Phys. 2245, 376 (1975).

\section*{mowemts of emertia and shape evolution AT HIGH SPINS IIM 170HF}
\begin{tabular}{|c|c|}
\hline C. Baktash & J. H. McConnell \\
\hline M. L. Halrcit & F. K. McGowan \\
\hline D. C. Hensley & C. M. Steelel \\
\hline M. R. Johnsun & M. Carpenter \({ }^{2}\) \\
\hline 1. Y. Lee & V. P. Janz \\
\hline
\end{tabular}

This study was motivated by several reports in the literature on the observation of rigidrotor behavior in 160 Hf (Ref. 3) and 150 yb (Ref. 4), as well as a few ot.her nuclei in this and the mass \(A=80\) regions. \({ }^{-1}\) The duthors of these papers have attributed such a behavior to the collapse of neutron pairing in these nuclef. Experimentally, assessment of the strength of pairing forces has proven to be a difficult task. Therefore, it is important that the above interpretation be tested. If verified, it mould provide a rather simple test of the pairing collapse. One may of testing the above interpretation is to examine the moments of inertid of similar bands in neighboring nuclei. Since the pairing strength is expected to be similar for the same configurations at the same rotational frequencles in the neighooring nuclei, the moments of inertid of these bands should behave very similariy. Therefore, if the above hyoothesis is valid, one would expect to observe c rigid-rotor behavior in 170 Hf , wich is two protons and two neutrons away from 168 iD and 160 hf , respectively.

The experimental setup consisted of the ORNL Comptun suppression spectrometer system (18 Ge). and the spin spectrometer. The fusionevaporation reaction \(139 \mathrm{Te}\left({ }^{44} \mathrm{Ca}, 4 \mathrm{n}\right)\) at a heam energy of 195.5 MeV was used to populate the
high-spin states in \({ }^{170} \mathrm{Hf}\). To jelect the high spin states, and to reduce the contamination due to other exit channels, only events with a foid of \(k>17\) mere accepted in the off-line analysis of the data. These events amounted to slightly more than half of the total data (nearly 400 million events), and resulted in spectra wich were dominated by the \(Y\) rays from \({ }^{170} \mathrm{Hf}\).

The above \(\gamma-\gamma\) coincidence data were used to establish a partial decay scheme for 170 Hf , shown in Fig. 2.36. In addition to extending the three previously knownd bands in this nucleus by more than 10n, we have established five new bands. We have also observed transitions that originate from three other bands, including one built on a high-x isomeric state. However, we have not yet firmly established the interband transitions that connect these cascades to the known level scheme.

The spin values shown in Fig. 2.36 were assigned on the basis of DCO measurements using detector, at 24 and 87 degrees. The parity assignments for bands 2 and 3 were adopted from Ref. 8. Two pieces of information suggest that bands 3 and 4 are signature partners: (1) the Routhians of the two bands are very similar; and (2) several interband transitions connect the two bands. Therefore, we have suggested a negative parity for band 4. We have also assumed positive parities for bands 7 and 8 . (A negative parity assignment makes these bands yrast, which is unlikely in view of their weak population.)

The general features of the yrast sequence, and the negative-parity bands 2 - are in qualitative agreement with, the results of cranked-shell-model calculations. They show the first \(\mathrm{i}_{13 / 2}\) neutron band crossing at a frequency of \(h_{\omega}=0.25-0.30 \mathrm{MeV}\), and the onset of the first proton band cross!ng around \(h_{\omega}=0.5 \mathrm{MeV}\). The two side bands, however, show some unusual features wich will be discussed in the following.

Figure 2.37 shows the kinematic and dynamical moments of inertid \((\boldsymbol{J}(1)\) and \(\boldsymbol{I}(2)\), respec. tively) for the positive-parity yrast sequence,

Fig. 2.36. Partial level scheme of 170 Hf .
isotope 168 Hf and isotone 168 Yb , the 170 Hf nucleus does not show a rigid-rotor behavior (1.e.. \(\boldsymbol{J}^{(1)}=\boldsymbol{j}^{(2)}\)) for the positive-parity yrast sequence (see Fig. 2.37a). This result clearly indicates that moments of inertia are influenced bs more factors than just the pairing streng:h; a not-too-surprising concluston. Being aicroscopic quantities, in addition to the neutron and proton pairing force, the moments of inertia reflect the shape porameters that describe the mean rield \(\left(\beta_{2}, \beta_{6}, r\right)\), as well as the integral and local aligned angular momentum. It is, therefore, far too simplistic to ascribe its constancy (or variations) to singie influencing factor, namely the pairing strength. The fact that moments of inertia offer little quantitative information regardinn the pairing force is further demonstrated by self-consistent

CHFB calculations. These calculations show that the neutron pairing force is dramatically reduced following the first neutron band crossing around hum \(=0.25\) Mev in this nucleus and its immediate neighbors. However, despite this stimi?arity of the neutron pairing strength. the moments of inertia for the three nuclei under consideration are differn.it.

In contrast to the positive-parity yrast sequence, band 6 shows a rigid-rotor behavior (Fig. 2.37b), and becomes energetically yrast at high spins. Mevertheless, this band receives little side-feeding intensity. This unusual stde-fkeding pottern for an yrast sequence suggests that it may be structurally different from the other bands in the level scheme. Calculations of the potential-energy surfaces, using microscopic-macroscopic methods and a

Fij. 2.37. Dynanical (squares) and kinematic (triangles) moments of inertia for (a) the positive-parity yrast sequence, (b) band 6, and \((c)\) band 8 in 170 Hf .
deformed Hoods-Saxon potential. indicate an excursion toward negative values of \(r\) (\(r=-30^{\circ}\)). and more collective structures at spins of \(1 \geqslant 40 \mathrm{~h}\). This band may be associded with such collective oblate structures. Recent lifetime measurements of the continuum \(y\) rays also indicate enhanced collectivity at high rotational frequencies in this nucleus (see contribution by \(I\). Y. Lee et al., in this publication).

Figure 2.37c shows the moments of inertia for band 8. There are several unusual features associated with this band: (1) it has the least amount of aligned angular momentum and, thus, is highly nonyrast: (2) its kinematic moment of inertia is smoothly rising and barely reaches the average values of the other bands at the highest spin; and (3) its dynamical moment of inertia is bell-shaped and exceeds the rigidrotor value by nearly 25\%. Naturally, the behavior of \(g(2)\) may be trivially explained by a band crossing at fow \(=0.4 \mathrm{MeV}\). However, no other band in this nucleus shows band crossing at this frequency, which falls between the critical frequencies of the first neutron and proton band crossings. To reprodice such a crossing, one needs to invoke a very different quadrupole deformation for this band. A value of \(B=0.40\) will indeed give rise to an \(i_{13 / 2}\) proton crossing at this frequency.

To substantiate the presence of a largedeformation minimum in this frequency range and in this reyion, we have examined the potentialenergy surfaces that have been calculated by the computer code of Dudek and Mazarewicz. Ir:terestingl \(y\), when the pairing strength is reduced to zero, one obtains a secondary minimum at \(\beta=0.35\). This minimum, however, disappears if a strength of \(\Delta_{n}=\Delta_{p}=0.5 \mathrm{MeV}\) is assumed. Naively, this may be taken as indirect evidence for a significantly reduced pairing strength at \(K_{\omega}>0.5 \mathrm{MeY}\) ir. this nucleus. However, before reaching such a conclusion, one needs to carefully examine and rule out other explanations for the observed bel avior of the moments of inertia of this bind.
1. Dak Ridge Science Semester Student. Present address: Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
2. University of Tennessee, Knoxville, In 37996-1200.
3. R. Chapman et al.. Phys. Rev. Lett. 51, 2265 (1983).
4. J. C. Bacelar et dl.. Nucl. Phys. A442. 509 (1985).
5. C. Schuck et al.. Hhys. Lett. 1428, 253 (1984).
6. H. G. Price et al., Phys. Rev. Lett. 51, 1842 (1983).
7. L. K. Peker and J. H. Hamilton, BAPS 31, 1765 (1986).
8. J. C. Lisle et al., Kucl. Phys. A366, 281 (1981).

\section*{SEARCH FOR SUPERDEFORMED BANDS IM \({ }^{\mathbf{8 2} \mathbf{S r}}\)}
\begin{tabular}{ll}
C. Baktash & M. A. Riley \({ }^{2}\) \\
G. Garcia-Bermudez & A. Virtanen \({ }^{3}\) \\
M. L. Halbert & V. Abenante \\
D. C. Hensley & D. G. Sarantites \\
M. R. Johnson & F. M. Seakow \\
I. Y. Lee & H. C. Griffins \\
F. K. McGowan & X. T. Liu
\end{tabular}

Since the discovery of the fission isomers. it has been realized that, as a result of the interplay between the macroscopic and microscopic forces in nuclei, superdeformed nucleí (i.e., long-to-short axis ratio of 2:1) can appear in certain nuclear mass regions. Specifically, cranked-shell-model calculations point to the mass \(A=150\) and \(A=80\) regions as the most favorable candidates for the study of superdeformed (SD) shapes. In the past few years, a sequence of discrete transitions emanating from the high-spin 50 states in \({ }^{1520} \mathrm{Dy}\), (Ref. 7) and several of its neighboring Gd, Tb, and Dy nuclei have been found. However, no SD band has been reported outside the actinide and \(A=150\) regions. Therefore, it remains an exciting challenge to search for SD shapes in other mass regions. The importance of the observation of superdeformation in the lighter nuclei \((A=80)\) lies in the fact that it not only provides a further test of the current theories, but also valuable insight into the competition between the microscopic and macroscopic forces that act to stabilize large deformations in nuclei.

In an extensive set of calculations, Mazarewicz et al. \({ }^{8}\) have concluded that the single-particle energy spectra show large gaps at 1 arge deformations for \(N, Z=38,42\) and 44. In porticular, the \(N=44 \mathrm{gap}\) is expected to survive at large angular frequencies, and gives rise to SO structures at high spins in \({ }^{82} \mathrm{Sr}\) and \({ }^{8} \mathrm{Zr}\) nuclel.

In our current studies, we have concentrated on the investigation of \({ }^{92} \mathrm{Sr}\) and its odd neighboring isotopes. The fusion-evaporation reac\(t\) ion \({ }^{52} \mathrm{Cr}\left({ }^{34} 5,2 \mathrm{p} 2 \mathrm{n}\right)\) at a beam energy of 130 MeV was used to populate the high-spin states in \({ }^{82} \mathrm{Sr}\). The experimental setup consisted of the ORNL Compton Suppression Spectrometer System (18 Ge), Spin Spectrometer, and the 4 CsI Dmarf Ball of washington University. This system provided for both high-resolution y-ray spectroscopy and complete exit-channel selection. In addition to light charged-particle identification, the 72 elements of the Dwarf Ball also provide angular-distribution and particle-energy information for the enitted particles. This information will be usec to obtain the anisotropy of the charged particles in the centerof -mass frame and, thereby, to deduce the deformation of the parent compound nucleus. 9

In the off-line analysis of these data, we generated a \(3000 \times 3000\)-channel \(y-y\) coincidence matrix subject to the requirements that:
(1) the Dwarf Ball detects at least one proton; and (2) the total coincidence fold from the Spin Spectrometer should exceed a minimum value of \(k=7\). These conditions resulted in spectra that mere dominated by \(y\)-rays from \({ }^{82} \mathrm{Sr}\). Figure 2.38 shows a partial level scheme for 825 s , which was constructed using the above data. In addition to establishing two new bands, we have extended four of the previously known 10 bands to spins that range from 20 to 27 . Together, they represent the most extensive high-spin band structure obtained in a medium-hedvy nucleus.

The spin-parity assignments for states below = 5 MeV of excitation energy mere adopted from Ref. 10. The spin assignments for the higherlying members of the bands mere made using DCO measurements. The positive-parity, even-spin yrast sequence in this nucleus feeds both the ground-state band, and the \(\gamma\)-vibrational band. The kinematic and dynamic moments of inertid (. \(g(1)\) and \(g(2)\), respectively) for this band is shown in Fig. 2.39a. In contrast to the yrast sequence in \({ }^{\text {B4 }} \mathrm{Zr}\) (Ref. II), this band does not show a rigid-rotor behavior (i.e., g(1).

Fig. 2.38. Partial level scheme for \({ }^{2} \mathbf{S r}\).
(2) Irigid.) A rigid-rotor behavior in \(8^{80}\) Ir was interpretedll as evidence for the collapse of pairing correlations at high spins. Again, as discussed in our contributir: on 170 Hf in this publication, our results for \(6 \mathbf{S r}\) indicate that a rigid-rotor behavior conveys little information regarding the strength of pairing correlations.

The odd-spin band, extending to spin 27. becones energetically yrast at high-rotational frequencies. The moments of ineitid of this band, and of the negative-parity band are shown in Figs. 2.390 and \(2.39 c\), iespectively. Above an angular frequency of \(\mathrm{K}_{\omega}=0.8 \mathrm{MeV}\), they both show an alignment of \(i\) : 15h. In collaboration
with W. Mazarewicz, we are currently performing cranked-shell-model calculations (with a deformed Woods-Saxon potential) to interpret the structure of the high-spin bands in this nucleus.

Searching for superdeformed states, we have closely examined the above two-dimensional \(\mathrm{r}-\mathrm{y}\) coincidence matrix. Figure 2.40 shows this matrix following subtraction of the uncorrelated background of coincidence rays. A meak ridgevalley structure is evident in this figure. The first ridges are separated by approximately 300 keV, which implies a dynamic moment of inertia of \(2 . g(2) / \mathrm{h}^{2}=50 \mathrm{MeV}^{-1}\). This corresponds to a deformation of \(B=0.5-0.6\). Lack of sutfirient

Fig. 2.39. Dynamical (squares! anu kinematic (triangles) moments of inertia in 82 Sr as a \(f \cdot n\), tion of \(\mathrm{F}_{\mathrm{g}}\) for (a) the positive-parity yrast sai-'once, (b) the odd-spin band, and (c) the restive-parity band.
statisitics has so far prevented us from establishing a SO disc:ete band that is associated wi:n th:. rioge-valley structure. We will perform a high-statistics experiment on one of the neighooring \(8:,{ }^{3}\) sr isotopes in the near future.
1. JIHIR. Permanent address: Comision Nacional de Energía Atomica, 1429 Buenos Aires. Argentina.

Fig. 2.40. Ey-Ey two-dimensional map for 82 Sr from the proton-gated data. The energy dispersion is \(8 \mathrm{keV} / \mathrm{ch} a n n e l\).
2. ORNL and JIHIR. Present address: University of Liverpool, Liverpool, U.X.
3. ORNL and JIHIR. Present address: University of Jyväskyla, Jyväskyla, Finland.
4. Mashington University, St. Louis, MO 63130.
5. University of Michigan, Ann Arbor, Ml 48108.
6. University of Tennessee, Knoxville, TN 37996-1200.
7. P. J. Twin et al., Phys. Rev. Lett. 57. 811 (1986).
8. Nazarewicz et al., Nucl. Phys. M35, 397 (1985); and private communication.
9. 2. Majka et al., Phys. Rev. Lett. 58, 322 (1987).
10. P. S. Haskins et al., Phys. Rev. C32, 1897 (1985).
11. H. G. Price et al., Phys. Rev. Lett. 51, 1942 (1983).

\section*{TRAMSITION QUADRUPOLE HMENTS OF HIGH SPIN STATES IN I62,163YD}
F. K. MCGowan
C. Baktasn
N. R. Johnson
Y. Schutz!
A. J. Larabee \({ }^{2}\)
J. C. Meils'
l. Y. Lee

Transition quadrupole moments of states with spins up to 20 in collective bands near the yrast line have proved to be a valuable tool for tracing changes in nuclear shape. A reduction of collectivity at high spins has been observed in severdi \(N=90\) nuclei. 4 -h Ihis effect in
\(1560 y\). \({ }^{158} \mathrm{Er}\), and \({ }^{160 y b}\) is understood qualitatively in tems of the cranked-shell-model theory \({ }^{7}\) as a result of rotational alignment of two \(i_{13 / 2}\) neutrons. The driving forces nf the aligned neutrons with low-2 orbitals changes the deformation of the nucleus from a prolate shape at low spin to a triaxial shape at high spin with positive p-values which reduces the collectivity of the rotation. The calculated systematics \({ }^{8}\) of triaxial shape-driving orbitals suggest that, unlike the \(N=90\) nuclei, the collectivity should not decrease at higher neutron number around \(N=96\) and 98. This arises from the fact that the aligned \(i_{13 / 2}\) orbitals are different for the Fermi level near the middlr of the \(i_{13 / 2}\) shell. Our measurements for \(170 \mathrm{~W}(\mathrm{~N}=96)\)
showed no reduction of the transition quadrupole moments after the backbend and up to spin \(I=22^{*}\). This confirms the cranked-shell-model theory prediction. The present study of 162 yb is of particular interest because the \(N=92\) nuclei are closer to the region of \(N=90\) nuclei where nuclear shape changes have been observed to occur.

A comparison of the structure of the isotone 1580y with 162 yb is of interest because it should contain information pertaining to modifications of the neutron degree of freedom resulting fron proton-dependent changes to the nuclear field. For \({ }^{158}\) Dy there is an upbend at the crossir.g frequency \(h_{\omega}=0.29 \mathrm{MeV}\) and the transition quadrupole moments \({ }^{4}\) in the upbend connect smoothly, features indicative of a strong interaction between the ground and s-bands. Somewhat above the crossing frequency, the transition quadrupole moments \(Q_{t}\) show an appreciable reduction of \(17 \%\). In contrast, \(162 \mathrm{Yb}(N=92\)) has a sharp backbend at hu \(=0.27\) MeV. This small isotonic dependence of the crossing frequency can be explained by the expected \({ }^{3}\) decrease in quadrupole deformation with increasing proton number. The interband transition \(14^{*}\) * \(12^{*}\) of 492.4 keV in the yrast sequence was not observedio (see Fig. ?.41) in previous work. Rased on an intensity limit for this transition, the \(B(E 2,14 \cdot 12)\) is less than

Fig. 2.41. A portion of the level scheme for 162 Yo taken from Ref. 9. Decay curves were obtained for those transitions with an asterisk. Transition energies and intensities also are given for each transition.
\(0.23 \mathrm{~B}(E 2)_{\text {sp }}\). The interaction matrix element between the ground and s-bands is exceedingly small in 162 Yb . Therefore, the yrast line above the sharp backbend describes the s-band very well. This interesting situation presents a good case to trace nuclear shape cnanges in an unperturbed two-quasineutron band over an appreciable range of spin 1 . The level schemel 0 for 162 Yb from the \(122 \mathrm{Sn}\left({ }^{44} \mathrm{Ca}, 4 n\right)\) reaction contains several other interesting features. The s-band feeds mainly into a vibrational-like band. There is relatively strong population of the side bands, e.g., the nejative parity tonds. The relative transition intensities are also given in Fig. 2.41.

Lifetimes of states in 162 yb have been medsured by the Doppler-shtft recoil-distance method operated in the "singles" mode, using the reaction \(116 \mathrm{Ca}(50 \mathrm{Ti} .4 n)\) at 215 MeV . Decay

Curves mere extracted for those transitions with an asterisk in Fig. 2.41. A serious problem in the analysis was the number of multiplets (r -rays of equal energy): \(320.6 \mathrm{keV} 4^{+}+2^{+}\)and \(14^{+}+12^{+}\); \(451.5 \mathrm{keV} 16^{+}+14^{+}\)and \(11^{-} \rightarrow 9^{-}\); 521 keV \(8^{+} * 6^{+}\)and \(15^{-}+13^{-}\). With the use of the very extensive results \({ }^{10}\) from \(\gamma\)-ray spectroscopy, we have analyzed the decay curves from these multiplets. In Fig. 2.42 the transition

Fig. 2.42. Transition quadrupole moments \(Q_{t}\) for the yrast sequence of 162 Yb as a function of the rotational frequency (\(h_{0}=\varepsilon_{\gamma} / 2\)).
quadrupole moments \(Q_{t}\) deduced from the lifetime results are presented as a function of the rotational frequency. At low spins the data do not show the increase in cullectivity from centrifugal stretching as predicted by cranied-shellmodel calculations. This is the trend wich we have also observed in \(160 \mathrm{Yb}, 170 \mathrm{~W}\), and 172 W . For both 160 yb and 162 Yb , the \(Q_{t}\) values for the states in the ground-state band and the (,+ 0) band tend to decrease with increasing rotational frequency. The \(0_{t}\) values for the \(113 / 2\) band in 163 yb also stiow a decrease with increasing fiw.

A number of \(Q_{t}\) values extracted for states in the negative parity dands, \((-, 1)\) and \((-, 0)\), and the vibrational-like band are given in Table 2.9. The \(n_{t}\) values of the \((-, 1)\) band are larger than those of the (-0) band. The relatively large \(C_{t}\) values or states in the vibrationallike oand would account for the feature that the

Table 2.9 Transition quadrupole moments for states in the \((-, 1),(-, 0)\), and vibrational-like bands in 162 yb
\begin{tabular}{|c|c|c|}
\hline Transition & EY(keV) & \(Q_{t}(\mathrm{eb})\) \\
\hline \(9^{-} \cdot 7^{-}\) & 384.9 & \(7.8 \pm 1.2\) \\
\hline \(11^{-}\)* \(9^{-}\) & 451.5 & \(7.5 \pm 1.0\) \\
\hline \(19^{-} \cdot 17^{-}\) & 635.7 & \(6.3+2.6\) \\
\hline \(10^{-}+8^{-}\) & 291.8 & \(5.7 \pm 0.4\) \\
\hline \(12^{-}+10^{-}\) & 365.8 & \(5.4 \pm 0.6\) \\
\hline \(14^{-} \cdot 12^{-}\) & 478.4 & \(5^{5.9}{ }_{-0.6}^{+1.9}\) \\
\hline \(16^{-}+14^{-}\) & 555.1 & \(6.1 \pm 1.0\) \\
\hline 8' - \(6^{\prime \prime}\) & 338.1 & \(8.0 \pm 1.2\) \\
\hline \(8^{\prime}\) - \(6^{\prime}\) & 411.9 & \(6.3 \pm 0.4\) \\
\hline 10' - 8' & 439.1 & \(8.0{ }_{-0.8}^{+0.4}\) \\
\hline \(12^{\prime} \cdot 10^{\prime}\) & 381.7 & \(5.8 \pm 0.4\) \\
\hline
\end{tabular}
\((+, 0)\) band feeds mainly into this vibrationallike band.

Finally, a number of interband \(E_{x}\) transition probabilities, extracted from the data, are given in Table 2.10. Since the interband reduced E 2 transition probabilities are very small, we are able to extract reduced Ml transition probabilities. For the transitions \(10^{++}\)+ \(10^{+}\)and \(8^{++} 8^{+}\), the \(8(\mathrm{Ml})\) values are \((9.6: 1.6) \times 10^{-2} \mu_{N}{ }^{2}\) and (2.8:0.4) \(\times 10^{-2} \mu_{N}{ }^{2}\), respectively. These \(8(M 1)\) values are relatively large for crarsitions between low spin states. The \(B(E 1)\) values between the natural parity states are also large.
1. ORNL. Present address: Grand Accelerateur National d'lons Lourd, Caen, France.
2. University of Tenntssee. Present address: TRIUMF, 'ancouver, Canada.
3. Acjunct staft me:iber from iennessee Pechnological IJiversity, Conkeville, IN.
4. H. Emiling et, al., Nucl. Phys. A419, 18) (1984).
5. M. Oshima et al.. Phys. Rev. © 33. 1989 (1986).
5. M. P. Fewell it A1., Phys, Rev. C 31, 101 (1988).
7. R. Bengtsson et al., Mucl. Phys. M4OS, 221 (1983).
8. S. Frauendorf and F. R. May, Phys. Lett. 1258, 245 (1983).
9. R. Bengtsson et al., At. Data Mucl. Data Tables 35, 15 (1986).
10. J. K. Mu et al., Mucl. Phys. M72, 295 (1987).

Table 2.10 Interband reduced transition probabilities in single-particle units
\begin{tabular}{lll}
\hline Transition & \(E \lambda\) & \(8(E \lambda) / B(E \lambda) S P\) \\
\hline \(14^{+}+12^{+}\) & \(E 2\) & \(<0.23\) \\
\(12^{1+}+10^{+}\) & \(E 2\) & \(2.0 \pm 0.8\) \\
\(10^{1+}+8^{+}\) & \(E 2\) & \(<0.5\) \\
\(8^{1+}+6^{+}\) & \(E 2\) & \(0.78 \pm 0.12\) \\
\(11^{-}+10^{+}\) & \(E 1\) & \((1.1 \pm 0.1) \times 10^{-3}\) \\
\(9^{-}+8^{+}\) & \(E 1\) & \((1.0 \pm 0.1) \times 10^{-3}\) \\
\(10^{-}+10^{+}\) & \(E 1\) & \((2.7 \pm 0.4) \times 10^{-5}\) \\
\(8^{-}+8^{+}\) & \(E 1\) & \((1.0 \pm 0.2) \times 10^{-4}\) \\
\hline
\end{tabular}

\section*{HIGH-SPIM STWDIES IN LIGMT IT MCLEI}
H. Q. Jin \({ }^{1}\)
C. Baktash
C. R. 8 ingham \({ }^{2}\)
M. L. Halbert
M. P. Carpenter \({ }^{1,3}\)
M. R. Johnson
V. P. Janzen \({ }^{1}\)
1. Y. Lee
L. L. Riedinger \({ }^{2}\)
F. K. McGowan
L. 2houl
M. A. Piley \({ }^{4}\)

The first backbend throughout the de inmed rare-earth nuclei results from the alignment of the \(v i_{13 / 2}\) orbital. However, the proton orbitals \(\quad h_{9 / 2}\) and \(\boldsymbol{i f}_{13 / 2}\) play an increasingly important role for the nuclei at the upper end of this region of deformation. Prolate rotational bands have been identified previously, \({ }^{5}\) built on these high-j band heads in 181-187Au; and they show the \(\mathrm{if}_{13 / 2}\) excitation energy relative to that of the \(\mathrm{th} / \mathrm{g} / 2\) decreasing steadily, a sign that the nuclear deformation in the \(\$ 1 / 3 / 2\) band is increasing for lighter isotopes. 6

Experiments have recently been performed on the high-spin states in \(179,181 \mathrm{Ir}\) at the Oak Ruige Holifield Tandem accelerator. The
purpose of this program has been to investigate the deformation driving tendency of the high-j quasiproton orbitals, and to understand alignment processes in the bands built on these states. A key question is whether or not there occurs in : 23,181 Ir (\(M=102,104\)) a band crossing due to the alignment of the \(\mathrm{rh}_{\mathrm{g}} / 2\) pair, as found at \(W=106\) (\({ }^{183} \mathrm{Ir}\)) and 107 (\({ }^{185 \mathrm{Pt}) .7}\) The \(\mathrm{wh}_{11 / 2}\) band in \({ }^{181}{ }^{1} \mathrm{Ir}\) seems to show two crossings, which could again be evidence of a very low-frequency ing/2 crossing and therefore the double-crossing scemario \({ }^{7}\). (i.e., vili/2 and whg/2 alignments).

The Holifield experiments were performed using \({ }^{156,158} \mathrm{Cd}\left({ }^{27} \mathrm{AI}, 4 \mathrm{n}\right)^{179,181} \operatorname{Ir}\) reactions at a bean energy of 134 MeV . The Compton Suppression System (with 19 suppressed Ge counters) was loaded into the Spin Spectrometer and used for these measurements. Lead-backed targets were used to avoid Doppler shifting in the r-ray energies at different detector angles. Due to the absence of any previously assigned states in \({ }^{179}\) Ir, excitation function measurements were performed at three energies (134,139 , and 144 \(\mathrm{MeV})\). The \((27 \mathrm{Al}, 4 \mathrm{n})\) reaction at 134 MeV was chosen to populate the strong in chanmel and reduce the secondary ptn channel, wich gives the known nucleus \({ }^{178} 0 \mathrm{~s}\). Three bands have been established, based on the systematic analysis of Ir isotopes in this region: \(1 / 2^{-}[541], \mathrm{h} / \mathrm{h} / 2\) : \(1 / 2^{+}[660]\), \(i_{13 / 2}\); and 5/2 \({ }^{+}[402]\), \(d_{3 / 2}\). The vh \(9 / 2\) band has been identified as the ground configuration of light au and Ir isotopes, and it has a large signature splitting (\(K=1 / 2\)). So far, we have not identified the unfavored signcture of this band in \({ }^{179} \mathrm{Ir}\).

The resulting \({ }^{179}\) Ir aligncent plots in Fig. 2.43 show that the \(\mathrm{m} / \mathrm{h}_{\mathrm{g}} / 2\) band has a crossing around \(h_{\omega}=0.35 \mathrm{MeV}\), due to the alignment of a pair of \(1_{13 / 2}\) neutrnns. The \(1=17 / 2\) and \(21 / 2\) members of the \(\$ i_{13 / 2}\) band lie close in energy to those in the \(\mathrm{d}_{\mathrm{s} / 2}\) structure, and it is at this point where the former band feeds into the latter. This interaction between the two structures produces the slight perturbation in two points around \(\mathrm{h}_{\mathrm{w}}=0.2 \mathrm{MeV}\) for the \(\pi \mathrm{d}_{3} / 2\) band

Fig. 2.43. Plot of aligned angular mumeritu (1) versus rotational frequency for the \(1 / 2[541]\), the \(1 / 2[66 u]\) and the \(5 / 2[402]\) bands in 179 Ir. The rotational reference was subtraited according to \(j_{0}=30 \mathrm{~h} / \mathrm{MeV}\) and \(\mathrm{J}_{1}=40 \mathrm{~m} / \mathrm{MeV}\).
(see Fig. 2.44). A, large gain in alignment for the \(=\mathrm{i}_{13 / 2}\) band is apparent over an unusually long range in frequancy. The moment of inertia is significantly larger for that band as well. indicating a possible change in deformation. The \(\boldsymbol{I}_{13 / 2}\) band arpears at a surprisingly low excitation eneryy with a rotational pattern that is very intriguing. In faci, while the \(\pi h_{9} / 2\) band is the yrast band at iow rotational prequency, the \(\mathrm{Ei}_{13 / 2}\) band becomes yrast at higher frequency. Figure 2.44 illustrites the observed energy of the \(\pi i_{13 / 2}\) band - idtive to the \(\pi h_{9} / 2\) band for nuclef where the \(1 / 2^{+}[650]\) band has been identified. There is a clear drop in relative energy for the lighter Ir isctopes as well as the Au isotopes. It is mell known that the \(s h_{g} / 2\) band-head energy for mu isotopes decreases as the neutron number decreases and the deformation of this band increases. The rapid fall in energy of the \(\pi i_{13 / 2}\) band for \(A u\) in Fig. 2.44 is an indication that the \(\pi i, 3 / 2\) band inight possess a deformation larger than that of the \(\pi h_{g} / 2\) excitation. The energies of \(\pi 1_{13 / 2}\) Dands for the ir isctopes also shum the

ORAT-DNG 88-14474

Fig. 2.44. Plot of the excited energies of \(\$ f_{13 / 2}\) band relative to that of the \(\pi h_{g / 2}\) band for some rare earth muclei.
same pattern, wich could suggest larger deformations for the \(\mathrm{I}_{13 / 2}\) bands in the Ir isotopes as well. The alignment of the \(\pi i_{13 / 2}\) band increases smoothly, perhaps because of a \(v i_{13 / 2}\) croseing of very large interaction strength. in contrast to the more normal interaction expected in the less-deformed orbitals. A Total Rourhian Surface (TRS) contour diagram for the lowesi positive-parity configuration in \({ }^{179} \mathrm{Ir}\) shows that there is a significant difference in the preaicated deformation due to occupaito: of the *ds/2 vs. \(\mathrm{mi}_{13 / 2}\) orbitals (\(\beta_{2}=0.2\) vs. C.3).9 The large gain in experimental allgnment could be due to very substantial change in reference parameters, pointing to a corresponding change in deformation even larger than that suggested by the TRS calculations.

The level scheme of 179 ir has not been completed. The analysis of the data is still in progress and we have seen another unidentified, strongly-coupled band. \(B(M 1) / B(E 2)\) values are to be extracted and should be very sensitive to the quasiparticle nature of band crossings. We hope that such a branching-ratio analysis will
be able to velp determine whether there is indeed one or two low-frequency alignment processes in this region of nuclei.

\footnotetext{
1. University of Tennessee, Knoxville, TM.
2. Adjunct staff member from the University of Tennessee, Knorville. Th.
3. Present address: The Miels Bohr Institute, University of Copenhagen, Denmark.
4. Present address: University of Liverpool. Oliver Lodge Lab. , Liverpoo! 169 Bx, England.
5. L. Zhou, et al. . Nuclear Phys. Prog. Rept., Univ. of Tenn.. \(21(1988)\) and H.-G. Jin. et al.. ibid. p. 26.
6. V. P. Janzen, et al., Phys. Div. Prog. Rept. September 1987, 0aM-6420. p. 90.
7. V. F. Janzen, et al.. Phys. Rev. Lett. 59, 2073 (1988).
8. A. J. Larabee, et al.. Physics Lett. 1698, 21 (1986).
9. Y. P. Janzen, et al., in Proc. of the Conf. on High-Spin Mucl. Structure and Novel Shapes, Argonne Mational Laboratory, April. 198, AML-PNY-88-2, D. 211.
}

\section*{LIFETIME MEASUREDEMTS OF HICH-SPIM STATES IM 185pt AD 185pt}
\begin{tabular}{ll}
L. Znowl & M. Riley \({ }^{2}\) \\
V. Janzenl & A. Virtanen \\
H. Jin & \\
L. Riedingerl & U. Garg \\
M. Johnson & G. Kajrys \\
I. Yonara4 \\
I. Lee & M. Madon \\
F. McGowan & S. Pilote
\end{tabular}

A measurement of the lifetimes of high-spin states in \({ }^{185 p t}\) and \({ }^{186 p t}\) has been performed at the Holifield facility. The purpose of the measurement was primarily to deduce which quasiparticle alignment is responstble for the yrast band crossing in 185pt, by measuring the \(B(E 2)\) values before and after the band crossing, camparing it to our previously measured \(B(M 1) / B(E 2)\) values. \({ }^{5}\) and concluding how the Mi matrix elements behave in the 9/2[624] baxd after the crossing. This should be clear signature whether it is the \(h_{g / 2}\) protons or the \(1_{13 / 2}\) neutrans respons'ble for this band crossing.

The 1 ifetime experiment was performed with the recoll-distance tevice located in the center of an array of seven Ge detectors. One Comptonsuppressed detector was located at \(0^{\circ}\), and six unsuppressed jetectors were positioned at \(90^{\circ}\). The reaction used was \({ }^{36} \mathrm{~S}+1545 \mathrm{~m}\) at a beam
energy of 165 MeV, which produces 185 Pt by the 5n channel and 186Pt by \(4 n\). Guan-gama coi.mcidence data were acquired at 23 plunger distances. Analysis has, so far, been performed on the projected spectra, i.e., the cotalcoincidence data. Shifted and unshifted peaks are seen in these projected spectra for transitions up to \(I=18\) in the yrast band of \(185 p t\) and up to 43/2 in the yrast 9/2[624] band of 185pt. Only preliminary results are available at this time. It is clear that the \(B(E 2)\) value for the first \(2^{*}\) of \({ }^{186 P t}\) is smaller than that for the previously measured l8opt. 6 This is logical in view of the prediction that the Pt nuclei become more deformed for smaller .

The importance of performing this measurer int is exerplified in Fig. 2.45. This figure shows the measured \(B(M 1) / B(E 2)\) values from our earlier spectroscopy wort on \({ }^{185 p t}\) and \({ }^{183} \mathrm{Ir} .5\) There is

Fig. 2.45. Experimental and calculated 8(M1; I \(+1-1) / 8(E 2 ; 1+I-2)\) ratios in lespt and 183Ir. The semi-classical geometrical predic. tions assuming a \(\quad\) hg/2 crossing are shown as a solid line; the dotted line assumes a vil3/2 alignment. The dashed lina shows the results of the cranked sheil model particle-rotor calcu. lation. The ipin ranges for proposed \(\quad h_{g / 2}\) crossings are marked.

3 crassing in the \(9 / 2[624]\left(v i_{13 / 2}\right)\) band of 105 pt in the \(1=14\) to 18 range, resulting in an increase in the M1/E2 ratio. Self-consistent calculations of the shape of this mucleus in various one- and three-quasiparticle configurations are used to estimate the effect of either a \(\quad h_{3 / 2}\) or \(v i_{13 / 2}\) alignment on the \(B(E 2)\) values. From this, it mas concludec that the E2 eatrix elements should not vary much between the one- and three-quasiparticle components of this 9/2[624] band of 185 Pt . It seems then that the rise in the M1/E2 ratio can be attributed to the increase in the ML mitifx element, wich requires this to be the whyiz crossing. 5 This scenario is supported by the corresponding data on the 5/2[402] (\(\mathrm{rd}_{s / 2}\)) band of \({ }^{183} \mathrm{Ir}\), also shom in Fig. 2.45. There is no Mise in the M1/E2 ratio through the crossing in this band, which supports the proposed \(w h_{y} / 2\) crossing here also. The existence of such a low-frequency (he \(=0.24 \mathrm{MeV}\)) band crossing due to the alignment of a pair of \(h_{g} / 2\) protons is very surpris. ing and unexpected from theory. The lifetime experiment on \({ }^{185} \mathrm{Pt}\) is intended, then, to settle this issue by measuring directly the \(B(E 2)\) values in the \(\mathrm{vi}_{13 / 2}\) band and allowing the extraction of the Ml matrix elements from the earlier branching ratios. 5
1. University of Tennessee, Knoxville, TM.
2. Partial support provided by JIHIR and the University of Tennessee.
3. University of Notre Dame, Notre Dame, Indiana.
4. University of Montreal, Canada.
5. V. P. Janzen, et al.. Phys. Rev. Lett. 59, 2073 (1988\}.
6. U. Garg, it al. Phys. Lett. B180, 319 (1986).

\section*{nUCLEAR STRUCTURE STUDIES VIA RADIOACTIVE DECAY}
beta decay properties of luetr and \({ }^{148} \mathrm{Hol}^{1}\)
\[
\begin{array}{ll}
\text { K. S. Toth } & \text { J. M. Nitschke } \\
\text { D. C. Sousa2 } & \text { P. A. Wilmarth }
\end{array}
\]

The decay properties of 148 Er and 148 Ho , produced in \(5^{8 \mathrm{NI}}\) bombardments of \({ }^{94 \mathrm{MO}}\), were inves-
tigated following on-line mass separation. New Y rays were observed for both muclides. Transitions assigned to \({ }^{168} \mathrm{fto}\) decas are predominantly from the decay of the high-spin isomer: based on its dec- - Maracteristics (see Fig. 2.46), we propose that this state in 1 + \(\%\) Ho has a

Fig. 2.46. Proposed decay scheme for the 148 Ho high-spin isomer. Observed coincidenca relationships are indicated by dors placed at the top and bottom of transition lines. The 6assignment for this isomer is suggested because:
(1) \(\gamma\) rays deexciting the lowest \(10^{+}\)level at 2920 keV (seen in an in-beam study of 1680 y states) are not observed, (2) deevcitations from the \(8^{+}\)and 7 - levels at 2833.7 and 2739.3 keV on the other hand are observed, and, (3) the log ft value for the a transition feeding the 5 - 2349.4. kev level is ~5.3.
spin assignment of 6-. The decay pattern of \(14^{46} \mathrm{Er}\) shows that the \(\mathrm{J}^{\mathrm{IN}}\) of the \({ }^{148} \mathrm{Ho}\) low-spin isomer is \(1^{\text {t. . Coincidences between protons and }}\) \(x\) and \(y\) rays establish 148 Er and 148 Ho to be B -delayed-proton precursors. In the \(B\) decay of \(1480 y\), three weak \(y\) rays were observed in addition to the one intense 620.2 -keV transition
that has been known to follow the nur.lide's decay.
1. Sumary of published paper: Phys. Rev. C 37, 1196 (1588)
2. Sumer visitor from Eastern Kentucky University, Richmond, KY 4G4iz.
3. Lawrence Berkeley Laboratory, Berkeley, CA 94720.

J. M. Mitschke \({ }^{2}\) J. Gilat \({ }^{2}\)
P. A. Wilearth \({ }^{2}\)
R. S. Toth
F. T. Avignone III \({ }^{3}\)

Beta-delayed proton decay was observed in 14810,150 Tm, and \({ }^{152} \mathrm{Lu}\) for the first timp. Contrary to meighboring even \(-2, W=81\) isotones. the proton spectra appear structureless and statistical in nature. Proton branching ratios for the high-spin isamers in these isotopes, based on the intensity of \(\gamma\)-ray transitions in the intermediate nuclei, are \(\left(8_{-2}^{+1}\right) \times 10^{-\omega}\). \((1.2+0.2) \times 10^{-2}\). and \((1.5 \pm 0.7) \times 10^{-1}\). respectively. The onset of protion eaission in all three cases occurs at a proton-to-gama width ratio of about \(10^{-4}\). Protons were found to be in coincidence with \(X\) rays, \(Y\) rays, and positrons. Coincident \(K X\) rays served to identify the 2 of the precursor, wile the \(r\) rays gave quantitative information about proton decay to excited states in the daughter nuclei. By comparing the final state branching ratios with statistical model calculations, it was conciuded that both \(16 \mathrm{H}_{\mathrm{HO}}\) and 150 Tm have isomers with probable spin values of \(1^{+}\)and \(6^{-}\). Statistical model calculations with "standard" prescriptions for level densities and \(\gamma\) widths, and with a reduced level density parameter, were compared to experiment. To reproduce the shape of the protion spectrum, it was necessary to assume Gaussian-shaped Gamow-Teller B strength functions centered near 8-MeV excitation energy. Figure 2.47 shows the calculated fit and the experimental spectrum measured for 150 Tm .
1. Summary of a published paper: Phys. Rev. C 37. 2694 (1988).
2. Laurence Berkeley Laboratcry, Berkeley, CA 94720.
3. University of South Carolina, Columbia. SC 29208.

OrAL-DAS 88-15161

Fig. 2.47. (a) Proton spectrum observed at mass 150. The smoth curve is the result of a statistical model calculation normalized to the total numer of coserved protons. Based on experimentally measured final state feedings in the proton-decay daughter. 149 Ho , the contributions of the \(6^{-}\)and \(1^{+}\)states of 150 im mere assumed to be \(80 \%\) and 201, respectively. (b) Protons observed in coincidence with positrons. The curve overlaying the data was obtained by smoothing the proton spectrum in part (1) and multiplying it by the ratio of the Fermi functions \(\}+/\left(\int^{+}+\int E C\right)\).
\[
\begin{aligned}
& \text { BETA-DELAVED PROTON DECAY of THE } \\
& \text { M=83 PRECUSOR } 153 \mathrm{Yb}^{1} \\
& \text { P. A. Wilmarth2 K. Vierinen } \\
& \text { J. M. Nitschke } \quad \text { K. S. Toth } \\
& \text { M. Kortelahti3 }
\end{aligned}
\]

Beta-delayed proton emission was observed for the \(N=83\) precursor 153 Yb . This extends the region of delayed proton ewission in the lanthanides across the \(N=82\) shell for the first time. The \(4.0 \pm 0.5 \mathrm{~s}\) delayed proton activity was assigned to 153 Yb on the basis of mass separation, coincident \(\mathrm{T}_{\mathrm{m}} \mathrm{K} \times\) rays, and coincident r-ray transitions in the daughter
nucleus \({ }^{152} E r\). Proton final state branching ratios are consistent with a 7/2- precursor spin. The proton branching ratio is \((8 \geq 2) \times 10^{-5}\). Fig. 2.48 sumarizes schematically the 153 rb -delayed-proton decay scheme.
1. Sumpary of a published paper: 2. Phys. A323. 503 (1988).
2. Lawrence Berkeley Laboratory, Berkeley, CA 94720.
3. Loutsian State University, Baton Rouge, LA 70803; Fermanent address: University of Jyvǐskylä, SF-40100 Jyväsky:ä 10, Finland.

OREL-DHE 88-15163

Fig. 2.48. Energetics and branching ratios for \({ }^{133} \mathrm{Yb}\) delayed proton decay.

\section*{FIME STRUCTURE IM 153Ta - DECAYI}
K. S. Toth
R. B. Firestone \({ }^{2}\)
P. A. Wilmarth \({ }^{2}\)
K. Vierinen \({ }^{2}\)
J. M. Mitschke \({ }^{2}\)
M. O. Kortelahti \({ }^{3}\)
F. T. Avignone. III4

In an investigation of \(A=153\) isotopes, fine structure was observed in \({ }^{53} \mathrm{~T}\) 的 a decay. Besides the previously known a transitions that feed the \({ }^{149} \mathrm{Ho} h_{11 / 2}(0.0 \mathrm{keV})\) and \(d_{5 / 2}(49.9\) keV) isomers, two very much weaker a groups were found to populate the \(d_{3 / 2}(220.4 \mathrm{keV})\) and \(d_{5 / 2}\) (564.4 keV) states in \({ }^{169} \mathrm{HO}\). Based on the 149 Ho level scheme and on the \(Q_{a}\) values for the two main \({ }^{153} \mathrm{Tm}\) a transitions, we determine that
the \(h_{1 / / 2}\) level in \({ }^{153} \mathrm{Ta}\) is the ground state and that the \(s_{1 / 2}\) state lies \(43 \pm 7\) kel above it (see Fig. 2.49). Energy systematics for the \(s_{1 / 2}\) and \(h_{1 / / 2}\) proton states in even- K odd-Z nuclei near \(\boldsymbol{M}=82\) are discussed.
1. Sumary of a published Paper: Phys. Rev. C38, 1932 (1988).
2. Laurence Berkeley Labora'. \(\mathbf{D}^{\prime} \mathrm{y}\), Berkeley, CA 94720.
3. Louisiama State University, Baton Rouge. LA 70303; permanent address: University of Jyvāskylà, SF-40100, Jyväskylà 72, Finland.
4. University of South Caroline, Columbia, SC:2208.

Fig. 2.49 Alpha-decay scheme of \({ }^{153}\) Tm. Because of the \(60-\mathrm{keV}\) (FWHM) resol on of our particle telescope we could not determine from which of the two isomers the fine structure \({ }^{153}\) Tim a groups originate. Thus, transitions from both isomers to the 220.4- and \(564.4-\mathrm{keV}\) 149 Ho levels are indicated.

\section*{BETA-dECAY OF 154LU ANO 154ybl}
K. S. Vierinen \({ }^{2}\)
P. A. Wilmarth \({ }^{2}\)
A. A. Shihab-Eldin2
R. M. Chasteler \({ }^{2}\)
J. M. Nitschke \({ }^{2}\)
R. B. Firestone \({ }^{2}\)
K. S. Toth

By using mass-separated sources the \(\beta\)-decay properties of \({ }^{154} \mathrm{Lu}\) and \({ }^{154 y b}\) were investigated. Linits of \({ }^{154}\) Lu decay to the first \(8^{+}\)and \(6^{+}\)
levels in \({ }^{154} \mathrm{Yb}\) suggest a \(7^{+\boldsymbol{t}}\) spin for the oddodd parent; also, delayed proton emission and an indication of delayed a-particle emission were observed to follow 1 solu s decay. The s-decay branch of the a-emitting nucleus \({ }^{150 \%}\) was identified for the first time by the observation of one intense 133.2-keV y ray. This transition deexcites a \(1^{+}\), \(133.2-k e V\) level in \({ }^{156}\) Tm, which is fed by an allowed \(0^{+} * 1^{+}\)atransition with a logft value of \(3.6 \geq 0.3\). The decay schenes of 154 Lu and 154 yb are shown in Fig. 2.50.
1. Simary of a published paper: Phys. Rev. C 38. 1509 (1988).
2. Lawrence Berkeley Laboratory, Berkeley. CA 94720.

Fig. 2.50. Decay schemes of 154 LU and 154 Yo.
maCLEAR STRUCTURE EFFECTS ON a REDUCED WIDTMSI
K. S. Toth
J. M. NcConnell
Y. A. Ellis-Akoyali
H. K. Carter \({ }^{2}\)
H. J. Kim
D. M. Moltz \({ }^{3}\)

Figure 2.51 shows reduced widths for s-wave (ground-state-to-ground-state) a transitions of even-even nuclei with 2 from 78 to 100. The widths exhibit aenerally smooth behavior. Deviations from this smoothness can be interpreted as being due to nuclear structure effects; for example. the discontinuity at \(M=126\) results from the smell closure.

Above the \(M=126\) shell, around \(n=130\), the reduced widths are rather large; in particular. the 218 al value (labeled as "Previous

Measurement*) exhausts 758 of the Migner-sumrule lifit. Suggestinns have been made that these large widths are an indication of a clustering on the nuclear surface. We remeasured the \({ }^{\text {2 }}{ }^{18}\) Ra . half-1ife with the use of the MIRF velocity filter and a novel experimental technique, 5 and found it to be 25.6 us instead of the adopted value of 14 us. This larger half-life yields an a width which, in the figure, is indistinguishable from those of \(21 \mathrm{~K}_{\mathrm{Rn}}\) and 220 Th . The result is a smooth trend of a widths from the \(N=130\) region to the welldeformed, prolste, Ca, Cf, and Fin nuclef, wich thus weakens the argument for the existence of a clusters in the heavy elements.

However, contrary to an expected shell effect at \(Z=82\), the \(a\)-decay rates of \(186 \mathrm{~Pb}, 188 \mathrm{pb}\), 190 pb , and 192 pb (open points with \(N\) from 104 to 110) are less hindered than those of neighboring Hg isotopes; this may imply that miduay between \(N=82\) and \(N=126\) the 82 -proton shell is not magic. \({ }^{6}\) We recently' used the UMLSOR facility to identify the a decay of 194 pb for the first time and to deternine the tsotope's e branch. The resultant width (\(N=112\)) together with the estimate for \(1^{184} \mathrm{~Pb}(M: 102)\) indicate that the influence of the \(2=82\) shell may reassert itself for both \(N>112\) and N < 102.
1. Sumary of published invited talk: Proc. Sth Int. Conf on Muclei Far From Stability,

Fig. 2.51. Reduced widths for s-wave a transitions plotted as a function of M for even-even isotopes with 2 from 78 to 100 . Widths for Pb nuclei are indicated by open points.

Rosseau Lake, Ontario, Canada. Sept, 14-19. 1987, I. S. Tomer ed., Mmerican Institute of Physics Publication Mo. 164, p. 665.
2. UMISOR, Oak Ridge, TM 37831.
3. Lawrence Berkeley Laboratory, Berkeley, CA 94720.
4. K. S. Toth, H. J. Kin, M. N. Rao, and R. L. Miekodaj, Phys. Rev. Lett. 56, 2360 (1986).
5. H. J. Kim, K. S. Toth, M. N. Rao, and J. M. McConnell, Mucl. Instrum. Methods N249, 386 (1986).
6. K. S. Toth, Y. A. Ellis-Akovali, C. R. Binghan, O. M. Moitz, D. C. Sousa, H. R. Carter, R. L. Mlekodaj, and E. K. Spejewski, Phys. Rev. Lett. 53, 1623 (1984).
7. Y. A. Ellis-Akovali, K. S. Toth, H. K. Carter, C. R. Binghan, I. C. Girit, and M. O. Kortelahti, Phys. Rev. 36, 1529 (1987).

\section*{RADIOACTIVITIES WITH 145*Aく155 IWVESTIGATED} AT THE OASIS FACILITY
\begin{tabular}{ll}
K. S. Toth & J. Gilatl \\
J. M. Mitschkel & O. M. Moltzal \\
P. A. Wilamethl & M. N. Rao \\
Y. A. Akovali & D. C. Sousa
\end{tabular}

Over the past four years a collaborative program between LBL and ORML has been in progress it the OASIS separator to investigate properties of short-lived nuclides near \(N=82\)
(see Fig. 2.52). Fable 2.11 lists the isotopes investigated and sumarizes some of the data obtained. Our purpose has been primarily twofold: (1) to study levels in nuclei whose structures should be describable in singleparticle terms, and (2) to understand the nature of the sharp peaks observed in delayed-proton spectra of \(M=81\), even -2 precursors. In the course of this collaboration: (1) systematics of neutron states in \(N=81\) and \(N=83\) nuclet, and of proton states in \(\mathrm{N}=32\) nuclei have now been extended to \({ }_{68}^{149} \mathrm{Er}_{81},{ }^{15}{ }_{70}^{1} \mathrm{Yb}_{81},{ }^{149}{ }_{66} \mathrm{Oy}_{83}\), \({ }_{6}^{151} \mathrm{Er}_{83}\), \({ }_{67}{ }_{69} \mathrm{HO}_{82}\), and \({ }_{69}{ }_{61} \mathrm{~T}_{\mathrm{m}_{82}}\); (2) five isotopes, three isomers, and ten delayed-proton emitters have been discovered; and (3) the pronounced structure in the delayed-proton spectra of \({ }^{14}{ }^{7} \mathrm{Dy},{ }^{149 \mathrm{Er}}\), and \(15: \mathrm{yb}\) has been showns to be associated with the \(s_{1 / 2}\) ground states of these even-L, \(N=81\) precursors.

1. Lawrence Berkeley Laboratory, Berkeley. CA 94120.
2. Present address: University of Săo Paulo, Săo Paulo, Brazil 01498.

Fig. 2.52. Portion of nuclidic chart; isotopes investigated in this study are indicated by shaded squares.

Table 2.11 Isotopes investigated in this study.
\begin{tabular}{|c|c|c|c|}
\hline 1sotope & \({ }^{1}\) & \(\mathrm{T}_{1 / 2}(\mathrm{~s})\) & Delayed protons \\
\hline \({ }^{165} \mathrm{Er}{ }^{1}\) & & \(0.5(2)\) & Yes \({ }^{\text {b }}\) \\
\hline \({ }^{165} 510^{4}\) & 11/2- & \(2.4(1)\) & \\
\hline \({ }^{165} 50 \mathrm{y}\) & 11/2 \({ }^{-}\) & 15 (2) & Yes \({ }_{\text {b }}\) \\
\hline \({ }_{165} 1650\) & 1/2 & 8(2) & Yes \({ }^{\text {b }}\) \\
\hline 1450 & \(0{ }^{+}\) & \(3.6(3)\)
\(29(3)\) & \\
\hline 146 \%b & \({ }^{+}\) & -8 & \\
\hline \({ }^{147} \mathrm{Tm}^{\text {c }}\) & (11/2-) & 0.65(1) & \\
\hline 147 Er & (11:2) & 2.5(2) & Yes \\
\hline 107 Er & (1/2+) & & Yes \\
\hline 147 Ho & (\(11 / 2^{-}\)) & \(5.8(2)\) & \\
\hline 148 Er & \({ }^{0}\) & 4.4 (2) & Yes \({ }_{\text {b }}\) \\
\hline \({ }^{148 \mathrm{HO}}\) & \(\left({ }^{\left(1^{\circ}\right)}\right.\) & 9.7 (3) & Yes \({ }^{\text {b }}\) \\
\hline \({ }^{169} \mathrm{Tm}^{\text {a }}\) & (11/2) & 0.9(2) & Yes \({ }^{\text {b }}\) \\
\hline 169 Er & 11/2- & 9(1) & Yes \\
\hline 1498 c & \(1 / 2{ }^{+}\) & & Yes \\
\hline 149 Ho & 11/2 & \(21(1){ }^{\text {a }}\) & \\
\hline 14940
150 T & 1/2 \({ }^{1 / 2}\) & \(54.5)^{d}\)
\(2.2(2)\) & Yes \({ }^{\text {b }}\) \\
\hline \({ }^{150} 9\) & (1) & & Yes \({ }^{\text {b }}\) \\
\hline \({ }^{150} \mathrm{Erg}^{\text {che }}\) & \({ }^{+}{ }^{+}\) & \(20(1)\) & \\
\hline & 11/2+ & 1.6(1) & Yes \({ }_{\text {res }}{ }^{\text {b }}\) \\
\hline \({ }^{15151}\) & 11/2 & \(4.3(2)\) & \\
\hline \({ }^{151518}\) & \(1 / 2^{+}\) & -11 & \\
\hline \({ }^{152} 150 \mathrm{yb}\) & (\({ }_{0}{ }^{\circ}\) & \(0.7(1)\)
\(3.1(2)\) & Yes \({ }^{\circ}\) \\
\hline 152 Tm & (2) & & \\
\hline 153 yb & \(1 / 2^{\circ}\) & 3.9(1) & res \({ }^{\text {b }}\) \\
\hline \({ }^{153}{ }^{515}\) & 11/2 \({ }^{-}\) & \(1.7(2)\) & \\
\hline \({ }^{153} 1{ }^{\text {inm }}\) & \(1 / 9\) & (2.5) & \\
\hline \({ }_{154}^{154}\) & (\({ }^{+}\) & -0.2(1) & Yes \({ }^{\text {b }}\) \\
\hline \(1559{ }^{\text {c }}\) & (1/2) & 1.7(2) & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{6}\) Mew isotope or new isomer.
Delayed-protnn enission observed for the first time.
Betd-decay branch of nuclide identified.
Hew half-life.
}
3. Sumer visitor from Eastern Kentucky University, Richmond, KY 40475.
4. J. M. Nitschke, Mucl. Instrum. Methods 206, 341 i 1983).
5. K. S. Toth, Y. A. Ellis-Akovali, J. M. Mitschke, P. A. Wilmarth, D. H. Moltz, and F. T. Avignone lII, Phys. Lett. B178, 150 (1986).

BECAYS OF \(118 \ln { }^{120} \ln\), and \({ }^{122} \ln 150 N E R S T O\) LEVELS IM liesn, \(120 \mathrm{~S}_{n}\), ND \(122 \mathrm{Snl}^{1}\)
S. Raman
K. G. Tirsell \({ }^{3}\)
T. A. Malkiemicz \({ }^{2}\)
G. Bonsignorit
L. G. Multhauf \({ }^{3}\)
K. Al laart5

The nuclear excited states of \({ }^{118} \mathrm{Sn},{ }^{120} \mathrm{Sn}\), and 122 Sn mere studied by means of the decays of 4.45-min \({ }^{118} \mathrm{In}\) isomer, 46.2-s and 47.3-s 120 In isomers, and 10.3-s and 10.8-s 122 In isomers, respectively. The In activities were produced by the (\(n, p\)) reaction with \(14-\mathrm{MeV}\) neutrons on enriched samples of \({ }^{118} \mathrm{Sn},{ }^{120} \mathrm{Sn}\), and \(i 22 \mathrm{Sn}\). The \(\gamma\) rays, measured with a ge(Li) detector. were incorporated into separate level schemes, each resulting from the decay of an individual In isomer. The experimental level schemes of \(118 \mathrm{Sn},{ }^{120} \mathrm{Sn}\), and 122 Sn were compared with level schemes calculated on the basis of a broken-pair model that includes up to two broken pairs in the \(50<N<82\) shell. This model is reasonably
successfui in explaining the experimental data for these nuclides.

\footnotetext{
1. Abstract of published paper: Phys. Rev. C 37, 1203 (1988).
2. Edinboro University, Edinbcro, Pennsylvania 16444.
3. Lawrence Livermore Mational Laboratory, Livermore, California 94550.
4. Università Bologna, Bologna, Italy.
5. Vrije Universiteft, Amsterdan, The Netherlands.
}

SIMPLE-PRRTICLE STATES IM \({ }^{151}\) Ta ND \(151 E r\); SYSTEMTICS OF NEUTRON STATES IM \(M=83\) MCLEI
\begin{tabular}{ll}
Y. A. Akovali & P. A. Milmarth \\
K. S. Toth & D. M. Moltz \\
R. L. Goodan \\
2 & M. N. Raot \\
J. M. Mitschke3 & D. C. Sousa
\end{tabular}

With the use of mass-separated sources, the B-decay properties of 151 Yb and 151 Tm were investigated. Based on these radioactivity measurements, the \(h_{1 / 2}, s_{1 / 2}, d_{3 / 2}, d_{5 / 2}\), and 97/2 single-proton states in 151 Ta and the \(\mathrm{f}_{1 / 2}, \mathrm{~h}_{9 / 2}, \mathrm{P}_{3 / 2}, \mathrm{i}_{13 / 2}\), and probably the \(\mathrm{p}_{1 / 2}\) single-neutron states in \({ }^{151}{ }^{1} \mathrm{Er}\), were identified. Systematics of neutron states in even-Z, \(N=83\) isotones (see Fig. 2.53) are compared with predictions of spherical Hartree-Fock-Bogolfubov

ORNL-DWG 88M-16133

Fig. 2.53. Experimental energy systematics of single-neutron states in even-2, \(N=83\) isotones.
cal ulations (see Fig. 2.54). It is found that if a proper effective interaction is used, the calculated energy levels agree with experimental excitation energies.
1. Subaitted for publication in Physical Review C.
2. Tulane University.
3. Lawrence Berke? ey Laboratory.
4. Universidade de Sáo Paulo.
5. Eastern Kentucky University.

SEARCH FOR LOU-SPIM SUPERDEFORTED STATES IN 186itg
Y. A. Akovali
E. A. Henry \({ }^{1}\)
J. A. Becker \({ }^{1}\)
C. R. Bingham \({ }^{2}\)
H. K. Carter \({ }^{3}\)
J. Kormick \({ }^{\text {b }}\)
R. Meyer \({ }^{1}\)
I. C. Girit \({ }^{2,4}\)
W. Schaidt-Otts

Y-s. Xu \({ }^{6}\)
H. Cami=hael?

Spontaneously fissioning isomers discovered \({ }^{8}\) in the heavy actinide nuclei were explained \({ }^{9}\) by a second minimum in the nuclear potential.

These highly deformed fissioning isomers have since been studied extensively and are very well established (for a review, see for example. Ref. 10).

Investigations of high-spin nuclear states in a wide range of nuc!ides have played an important role in providing crucial information on nuclear structure. About two years ago, coexistence of prolate and oblate deformations at high spins in \({ }^{152}\) Dy was found \({ }^{11}\) which led to the discovery of the superdeformed rotational band in that nucleus. 12 This breakthrough has been followed by other investigations of superdeformation at high spins in \({ }^{132} \mathrm{Ce}\) (Ref. 13), \(134-136 \mathrm{Nd}\) (Ref. 14). and \({ }^{149} \mathrm{Gd}\) (Ref. 15). These high-spin superdeformed states wich originate from a second prolate minimum in the muclear potential had been predicted by many calculations \({ }^{16}\) long before they were found experimentally.

ORML-DWG 86-15110

Fig. 2.54. Energy systematics of \(W\) single-neutron states in \(N=83\) even- 2 nuclel.

Superdeformation in the neutron-deficient Pt, Hg , and Pb nuclei is predicted \({ }^{7}\) at low spins. Prolate and ob? ate shapes in \({ }^{186-188} \mathrm{Hg}\) isotopes have been found to coexist. Mo investigation has been reported for leve's above 3 MeV in these nuclei where superdeformed states should appear. He estimate that alpha erission from these states muld compete with deexcitation by gama transitions.

The \(Q\) values for (positron + electron capture) decays of \({ }^{164-188} \mathrm{II}\) isotopes to Hg nuclei are favorably high: \(9: 90 \mathrm{keV}\) for \({ }^{184} \mathrm{TI}, 8530\) keV for \({ }^{186} \mathrm{TI}\), and 7730 keV for \({ }^{188} \mathrm{Tl}\). He expect their 2-isomeric states to populate the expected superdeformed bands in Hg daughters.

An experiment on the \({ }^{186} \mathrm{TI}\) * \({ }^{186} / \mathrm{fg}\) decay was performed in September 1988. The isotope was produced by bombarding a \({ }^{172 \mathrm{Hf} \text { target with }}\) 180-HeV \({ }^{19} \mathrm{~F}\) ions from the Holifield Heavy Ion Research facility tandem accelerator. Following production, the \(A=186\) nuclei were massseparated with the UWISOR on-line facility. collected onto an automated tape system, and transported to two counting stations. Two large-volume Ge(Li) r-ray detectors and a Si a-particle detector were placed at the first station in calibrated geometries in order to measure absolute counting rates. Singles \(\gamma\). singles \(a\), and \(a\), ry coincidence data were accumulated. At the second station three Ge(Li) detectors were utilized for \(\gamma \boldsymbol{y}\)-angular correlation measurements.

The experiment was done with three different coliection and counting cycles :o that the decays of known \(186 \mathrm{Tl} 7^{+}\), \(10^{-}\)isomers with 27.5-5, 2.9-5 half-lives, and the expected \(2^{-}\) ground state could be identified from relative transition intensities. At the conclusion of each collection and counting cycle, the computer-controlled tape was moved such that collected isotopes were brought to the first station and the ones at the first station were taken to the second station. Production and counting cycles were chosen as \(60 \mathrm{~s}, 25\); and 9 s in duration. The assay times for the \(a\) and y singles were divided into three \(20-5\), five

5-s and six 1.5-s intervals, respectively, for half-life information.

Examples of the \(y\) and a spectra taxen are shown in Fig. 2.55 and Fig. 2.56, respectively. Besides \(y\) rays in 166 Hg following \(186 \mathrm{TI} \mathrm{s}^{+}\) \(d \in c a y\), transitions from \({ }^{186} \mathrm{Hg},{ }^{186} \mathrm{Au},{ }^{186} \mathrm{Pt}\), - 36 Ir decays are also present in the spectra. We also identified gama rays in \({ }^{182} 2 \mathrm{Au}\) following 186 Tl a decay in the ay coincidence spectrum which had not been observed before.

Fig. 2.55. Low-energy portions of the y -ray spectra: (a) Singles \(r\) spectrum: (b) y projection in coincidence with \(y\) rays: (c) y rays in coincidence with a particles.

Fig. 2.56. Alpha-particle spectra: (a) singles a spectrm, (b) a's in coincidence with \(\gamma\) rass.

Multiscale spectra indicate that the a peaks observed are complex. Although a groups from 186 Mg ground state and 186 rl isomers are identi:ided, defintte assignments of all peaks require additimal analyses wich are in progress.
1. Laurance Livermore Mational Laborator,.
2. Un'versily of Tennessee, Knoxville, TM.
3. UWISOR, Oak Ridge Associated Univer sities, 0at Ridge, TM.
4. Vanderoilt University, Mashville, TM.
5. University of Gottingen, 68ttingen, West Germany.
6. Oregon State University, Corvallis. Oregon.
7. University of Tennessee, Knoxville, Th.
8. S. M. Polikanov et al., Sov. Phys. JETP 15, 1016 (1962).
9. V. M. Strutinsky, Mucl. Phys. A95, 420 (1967).
10. S. Bjoznhole and J. E. Lymi, Rev. Mod. Phys. 52. 125 (1980).
11. B. M. Myako et al., Phys. Rev. Lett. 56, 2680 (1986).
12. P. J. Tyin et al., Phys. Rer. Lett. 57, 811 (1986).
13. A. J. Kinwan et al., Phys. Rev. Lett. 58, 467 (1987).
14. E. M. Beck et al., Phys. Rev. Lett. 58, 2182 (1987); E. M. Beck et al., Phys. Lett. 1955, 531 (i987).
15. B. Haas et al., Phys. Rev. Lett. 60, 503 (1988).
16. I. Ragnarsson et al., Mucl. Phys. A347, 287 (1980); T. Lengtsson et a!. . Phys. Scr. 24, 200 (1981); J. Dudek and M. Mazarewicz, Phys. Rev. C 31, 298 (1985).
17. J. Dudek et al., Phys. Rev. Lett. 59, 1405 (1987); J. Dudek, private comminication (1988).

\section*{hf.avy-IOM REACTIOM mechanish studies, FUSIOK AND FISSIOM}

PIONS IM Spoutanious fission? Tre sion contines
J. R. Beene C. E. Benis, Jr.
M. L Helbert

The results of our experimenial search for the spontaneous fission of \({ }^{252} \mathrm{Cf}\) accompanied by the enission of neutral pions have been reported previouslyl and have been the topic of a recent publication. \({ }^{2}\) briefly, we have used the hHirf Spin spectrometer as a neutral pion detector in conjunction with a fast fission ionization detector mich served as a fission event trigger. Colncident high energy photon puirs, wich could arise from the decay of meutral pions, and, in prompt (<2 ns) coincidence with a fission event from the decay of 252 Cf , were completely absent in our experiment. We have quoted an upper itait of or.: such decay of the above type in 105 fisstons at the sos confidence level.

The originel suggestions of exotic decay modes that might accompany spontaneous fission were proffered by Ion, Ion-Mihai, and Ivascu \({ }^{3}\) and were based on the favorable energetics for such procasses and on phase-space arguments. Because the dynamics of the postulated decay modes are unknown, an exact branching ratio, relative to "normal" fission, cannot be estimated with any iligh degree of confidence. The unknowi dynanics have not deterred these authors however, and muerous papers have subsequently appeared wich relate to these exotic decay modes.4-7 In adition to the light mesons, f.e., pions, the speculations have been extended to include the heavy leptons, i.e., muons, and the strangeness -1 barions, e.g., the lambda-0. Tocether with additior.al co-workers, Ion, Ion-:Ahai, and lvascu have presented some experimentel upper i:inits for pion-accompanied fission prciesses \({ }^{8-10}\) but none are as sensitive as the experimental limit that we have presented for neutral pions, mamely, less than one event in 108 fissions at the \(90 \%\) confidence level. \({ }^{1-2}\) An experimental upper limit of less than one event in \(2 \times 10^{8}\) fissions has also recently been published by Cerruti and coworkersil and we are aware of other experiments that have bean: completed, or are in progress, that will set comparable limits.

Ion \(e^{*}\) al., Refs. 5 and 7, have attempted to pravide some rate estimates for the pion processes above, but the estimates they provide are naive. They define a modified fissility parameter for pion-accompanied fission by the subtraition of the pion rest mass from the usual Coulamb or electrostatic energy of a spherical liquid drop, a procedure with little validity. This medified fissility parameter is s;bsequently used by them as a substitute in semiempirical expressions that relate the usual fissility parameter to fission barriers and to spontaneous fission lifetimes. This is, then, the basis for ine "dynamical" prediction of the rates of pion-accompanted fission: for 252 Cf . the prediction for the branching decay ratio,
pion-accompanied fission/normal spontaneous fission, is approximately \(1 \times 10^{-16}\). For \({ }^{258} \mathrm{Fm}\), the prediction is for more than half of the spontaneous fissions to be pion-accompanied events!!

Despite the shurt-comings of the rate estimates above, and our lack of understanding of the dynamics of the pion-accompanied fission process, the topic contimes to be of interest. We are contemplating an improved experiment designed to address branching ratios for the neutral pion-accompanied fission process in the range of \(1 \times 10^{-12}\). An improved experiment would take advantage of tris i,pproved timing and energy resolution characteristiis of \(\mathrm{BaF}_{2}\) detectors using the detector arrays described in Ref. 12. The experimental methodology would be similar to that described in Refs. 1 and 2 and we would expect interference from cosmic rays to be negligible.
1. J. R. Beene, C. E. Bemis, Jr., and M. L. Halbert, Prys. Div. Ain. Prog. Rep. for Period Ending Sept. 30,1987 , ORNiL-6420, P. 96.
2. J. R. Beene, C. E. Bemis; Jr., and \(^{\text {. }}\)
M. L. Halbert, Phys. Rev. C 38, 569 (1988).
3. D. B. Ion, R. Ion-Mihat, and M. Ivascu, Ann. Phys. (NY) 171, 237 (1986).
4. D. B. Ion, R. Ion-Mihai, and M. Ivascu, Rev. Roum. Phys. 31, 205 (1986); 31, 209 (1986); 31. 551 (1986); 32, 299 (1985); 32, 1037 (1987); 33, 109 (1988).
5. D.B. Ion, R. Ion-Mihal, and M. Ivascu, "Spontaneous Pion Emission as a New Matural Radioactivity-Dynamical Prediction," Central Institute of Physics, Bucharest, preprint Mo. FT-324-1988, Jan. 1988, (unpublished).
6. D. B. lon. M. Ivascu, and R. Ion Mihal.
"Hyperfission-A New Mode of Muclear fission." GSI, Darmstadt, preprint No. GSI-88-05. Feb. 1988, (unpublished).
7. D. B, Ion, R. Ion-Mihal, and M. Ivascu, "Predictiois for Pionic Radioactivity from Fission Data of Even-Even Huclei," Central
Institute of Phystcs, Bucharest, preprint No. FT-332-1988, May 1988, (unpublished).
8. D. Bucurescu et al., Rev. Roum. Phys. 32, 849 (1987).
9. M. Ivascu et al., Rev. Roum. Phys. 32, 937 (1987).
10. M. Ivascu et al., Rev. Roum. Phys. 33, 105 (1988).
11. C. Cerruti et al., Z. Phys. A239, 383 (1988).
12. J. R. Beene, F. E. Bertrand, and J. Blankenshtp, "BaF, Array Project," this report.

\section*{ANEMA: MUENTUN EFFECTS IN SUAMNRIER FUSIOW}
M. L. Halbert
J. R. Beene
D. C. Hensley
K. Honkanenl
T. M. Sencoul
V. Abenantel
D. G. Sarantites
2. Lil

Experimental data, \(\mathbf{2}^{3}\) on fusion of \(6 \boldsymbol{M}\) and \(100 \%\) taken with the Spin Spectrometer at and below the Coulamb barrier have been analyzed in several mays." \({ }^{\text {s }}\) Coupled-channels calculations 6 can reproduce the low-energy portion of the excitation function on?y if additional couplings are incorporated beyond those known for inelastic scattering. Either the inelastic \(B_{\lambda}\) need to be increased by \(50 \%\) over the values in the literature or unusually large couplings to fictitious transfer states need to be included. 5 But even if such measures are taken to match the experimental excitation function. the precicted L distributions at low energies are not well reproduced, as shown in Fig. 2.57. This suggests trat the couplings required to reproduce the data lie outside the degrees of freedom explicitly included in the calculations.

Several op'.lcal-model approaches have been tried wich exhibit varying degrees of success. In our investigations we used a nucleus-nucleus potential given by folding potential based on the M3Y interaction; 7 actually, a Hoods-Saxon representations was used. He found that varying the real-well depth \(Y_{0}\) to match the fusion eross section ofus at each bombarding energy gives \(L\) distributions that do not extend to high enough \(L\) values (open circles in fig. 2.57). Allowing the shape of the real well to vary in ddition leads iu somewhat better success.5 As an example. Fig. 2,58 shows, as a function of the diffuseness ay, the moments of \(L\) predicted for a family of Hoods-Saxon mells. with \(V_{0}\) adjusted to fit ofus at \(132.8 \mathrm{MeV}_{C_{0} . m_{0} \text {. }}\) All of these fizs for reasonable values of ay (0.4 to 0.7 fm), give \(\langle L\rangle\) and \(\left\langle L^{2}\right\rangle\) that are samller than the experimental values (cashed lines), although the moment of \(L\) ror the liniting case (av \(=0\), infinite square mell) comes fairly close to the data.

Fig. 2.57. Bombarding energy dependence of the moments of \(L\). full points are from experiment. The open circles shom the resilts for potentials with \(V_{0}\) adjusied to fit the measured excitation function. The full curves are for coupled channels calculations (Ref. 6). The dashed curves show one-dimensional barrier penetration results similar to those of Ref. 8.

Calculations have been made recentlys for cther systems in wich the radius parameter \(r_{F}\) of the absorptive well for fusion was empirically adjusted to fit ofus. Typically a yalue of \(\mathrm{rf}_{\mathrm{F}}\) \(\sim 1.4\) fin is deduced; 9 for our data. \(\mathrm{r}_{\mathrm{F}}\) comes out between 1.40 and 1.455 fm . The moments of \(L\) for this parameterization, shown by the dash-dot curve in Fig. 2.57, represent the experimental data well at the lowest and highest energies. In traditional barrier-penetration models, the colliding muclei must approach to distances stimilar to the muclear half-density radius (\(r_{0} \sim 1.0 \mathrm{fm}\)) for fusion to occur; such distances are well inside the Coulomb-barrier

Fig. 2.58. Moments of L for \(64 \mathrm{Mi}+100 \mathrm{mp}\) fusion it \(E_{c_{m}}=132.8 \mathrm{MeV}\). The experimental values are shown by the dashed lines. The points are results of barrier-penetration calculations in which the diffuseness ay was varied. The well depth \(V_{0}\) was adjusted in each case to match ofus.
radius. The emplrical approach taken in Ref. 9 does not discuss the physical phenomena that might be responsible for fusion at large distances, similar to (or even outside of) the Coulomb-baritier radius.

Stelson has made ampirical fits to ofus for \(64 \mathrm{Mi}+100 \mathrm{mo}\) with a slightly rounded rectangular distribution of barriers at each energy. \({ }^{10}\) At
the lawest energies the predicted \(L\) distributions do not match the experimental ones unless the barrier radii are assumed to be very much larger than at the highest energies.

In summary, neither the coupled-channels calculations nor the single-barrier-penetration models appear able to reproduce the eicitation function and the ol distribution simeltaneously. Models in wick the fusion radius is permitted to be substantially larger than the nuclearmatter radius are more successful. Some recent macroscopic calculations indicate that neck formation leading to fusion can occur well outside the unperturbed barrier. 11 We should also mention that Stelison has shown \({ }^{12}\) that the parameters for his empirical barrier distributions can be related, via arguments employing the summed single-neutron potentials, to sudden opening of a window for neutron flow between the reactants. The nuclear separation at which such flow would commence is similar to that found from the smpirical adjustments used here and in Ref. 9.

Despite these suggestive results, we feel it is premature to claim that our data demonstrate that fusion occurs at large distances. As Vandenbosich has pointed out, 13 it may be inaccurate to assume that during the course of a fusion event the reduced mass and the barrier are (a) invariant and (b) independent of \(L\). TI ise questions have not been specifically addressed in any models of fusion as far as we know.
1. Mashington University, St. Louis, MO 63130 .
2. M. L. Halbert et al., Phys. Div. Prog. Rep. for Period Ending Sept. 30,1985 , ORNL-6233, P. 130.
3. M. L. Halbert er al., Symposium on the Many facets of Heavy-Ion Fusion Reactions, AML-PHY-86-1, 311 (1986).
4. M. L. Halbert et al.. p. 323 in Frontiers of Heavy-Ion Physics, eds. W. Cindro, W. Greíner, and R. Caplar (Worid scientific. 1987).
5. M. L. Halbert et al.. Symposium on Heavy-ion Reaction Dynamics in Tandem Energy Region, Hitachi, Japan, August 1-3, 1988 (Universal Academic Press. Tokyo, in pross).
6. C. H. Dasso and S. Landowne, Phys. Lett. 8183, 141 (1987); Computer Phys. Comm. 46, 187 (1987).
7. 6. R. Satchler and W. G. Love, Phys. Reports 55, 183 (1979).
8. 6. R. Satchler (private communication).
9. T. Udagawa et al.. Phys. Rev. © 32, 1922 (1985): B. T. Kin et al.. Phys. C 33, 370 (1986).
10. P. H. Stelson, private communication.
11. A. Inamoto and K. Harada, 2. Phys. A326, 201 (1987).
12. P. H. Stelson, Phys. Lett. 2058, 190 (1988).
13. R. Vandenbosch et al., Phys. Rev. Lett. 57, 1499 (1986).

\section*{THE GIANT DIPQLE RESOMAMCE IN VERY HOT \(A\) - 170 SYSTEAS}
\begin{tabular}{ll}
H. P. Morschl & M. L. Halbert \\
W. Spangl & D. C. Hensley \\
J. R. Beene & I.. Y. Lee \\
F. E. Bertrand & R. . . Varner \\
R. L. Auble & D. G. Sorantites \({ }^{2}\)
\end{tabular}
D. W. Stracener \({ }^{2}\)

We have measured coincidences between gama rays and heavy recoils in the \(170+159 \mathrm{~Tb}\) reac. tion at 300 and 400 MeV. Details of the experimental setup have been given elsewhere. \({ }^{3}\) Events were characterized by linear momentum transfer to the heavy fragment determined from its time of flight to a recoil detector 37 cm downstream of the target. Excitation energies produced in the composite systems mere estinated from the linear momentum transfer using relations given in Ref. 4. Gama ray spectra mere generated for four momentum transfer bins at each bombarding energy centered at values ranging from about \(60 \%\) to \(90 \%\) of fuil mumentum transfer and corresponding to nu: lear temperatu: es ranging from 2.5 to 3.9 MeV.

A preliminary analysis, in wich we extract some properties of the giant dipole resonance (GOR) built on the excited states through whtch the de-excitation of the het nuclei proceeds from the gamma ray continuum spectra has been completed and the results submitted for publication in Physical Review Letters. Two main conclustons mere drawn from this analysis. The widths of the components of the deformation splft GDR, which we observe at \(T\) - 2.5 MeV, are much smaller than those observed for similar nuclei at lower temperature 5 , 6 (lower panel of Fig 2.59). It has been observed that the resonance widths approximately double as the tem-

Fig. 2.59. Strength ratios \(\$ 1 / \$ 2\) (upper part) and GDR widths (lower part) as a function of \(T\). The open and closed symbols correspond to the low and high energy component of the GDR. The circles for large \(T\) indicate our results. The circles at \(T=0\) are the average g.s. values (Ref. 8), the triangles are from Ref. 5, the squares from Ref. 6 and the trapezoids from Ref. 9.
perature is raised from \(T=0\) to abowt \(T=2\) MeV.5,6 Me observe widhs at \(T=2.5 \mathrm{MeV}\) close to the \(T=0\) values. The \(G D R\) widths remain almost constant with increasing excitation energy up to just above 3 MeV, then increase rapidly to about '5s of the \(T=2\) MeV value by T = 3.9 MeV. A narrowing of the GOR at high temperature has been predicted, 7 but the effect observed here is much more dramatic than antici. pated. The other main result concerns the ratio. S1/S2, of intensities of the two components of the deformation split GDR (see the upper panel of Fig. 2.59), At \(T=2.5 \mathrm{MeV}\) we find \(S 1 / S 2=0.5\), whtch is the value expected for prolate nucleus (the 1 refers here to the lower energy component), and is consistent with
results obtained below \(\mathrm{T}=2 \mathrm{meV}\). With increas ing \(T\), sl/S2 increases swoothly, reaching about 1.2 at \(T=3.9\), indicating an evclution via triaxial shapes toward an otlate deformation.

This initial analysis has a number of shortcomings, among mich is the fact that it provides no information on the absolute collective strength of the GOR. A much more detailed and complete analysis is now underway. Very prelininary results obtained from early phases of this analysis indicate wat appears to be a rapid reduction in collective El strength near the position of the \(T=0\) GDR for the highest temperatures observed in our study. The apparent 6DR strength in this region falls from about \(80 \%\) of the .iassical energy weighted sum rule (EMSR) at \(\mathrm{T}=2.5 \mathrm{MeV}\) to only about 108 at \(\mathrm{T}=3.9 \mathrm{MeV}\). This abrupt decline could reflect either a real loss of collectivity in the GOR for these hot systems, or a failure of the statistical model. which is used to extract the strength, to correctly describe the decay cascade at high \(T\). Preliminary indications favoring the former of these hypotheses has been obtained in the form of evidence that a substantial fraction of missing El strength is redistributed from the vicinity of GOR peak \(\sim \sim 15 \mathrm{MeV}\)) to lower energies, concentrating near the location of the unperturbed linw states at about 8 MeV.
1. Institut fur kernphysik, Kernforschungsanlage Julich, West Germany.
2. Mashington University, St. Lowis, MO 63130.
3. J. R. Beene et al.. Phys. Div. Prog. Rep. for Period Ending Sept. 30,1981 , ORiL 6420, p. 97.
4. J. 8. Matowitz et al.. Z. Physik A325, 467 (1986).
5. D. R, Charkrabarty et. al., Phys. Rev. C 37, 1437 (1988).
6. C. A. Gosset et al.. Phys. Rev. Lett. 54, 1486 (1986).
7. R. A. Broglia, Mucl Phys M82, (Legnaro proceedings).
8. B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713 (1975).
9. H. P. Morsch, Nucl Phys M82, 45, (1988).
EXCITATIOM EMERGY DIVISIOM IN THE
QUASIELASTIC REGIOM FROH REACTIONS OF
12 MeV/INICLEOW \({ }^{6}\) Ti HITH \({ }^{150} \mathrm{md}^{1}\)
T. M. Semkow
H. Ross \({ }^{2}\)
D. G. Sarantites \({ }^{2}\)
R. Beene
k. Honkanen \({ }^{2,3}\)
M. L. Halbert
2. \(\mathrm{Li}^{2}\)
D. C. Hensley

Internal excitation of projectilelike fragments and targeclite fragments was investigated for the system \(12 \mathrm{MeV} /\) nucleon \(48 \mathrm{Ti}+150 \mathrm{Md}\), by measuring the discrete y rays emitted by both fragments in coincidence with the chargeseparated projectilelike fragments. Two quasielastic exit channels of the projectilelike fragments were studied: \(\mathbf{Z}=\mathbf{2 0}\) and \(\mathbf{Z}=22\). Characteristic \(y\) rays were used to determine the average masses of products, after separation and neutron evaporation, as a lunction oi kiretic energy loss. Our results show that the mass-to-charge equilibration occurs quickly for the \(Z=20\) exit channel, but is slower for the \(Z=22\) chinmel. Comparison between the average masses of products and the masses calculated using the statistical model sinow that the excitation energy is divided approximately equally between the projectilelike and the targetilie fragments for the \(L=20\) exit channel. The excitation energy appears to be divided equally up to ~105 MeV of the kinetic energy loss corresponding to 268 of kinetic energy damping. This result is consistent with predictions made by the stochastic nucleon-exchange models for a small kinetic energy loss.
1. Abstract of published paper: Phys. Rev. C 37, 169 (1988).
2. Washington University, St. Louis, mo 63130.
3. Deceased.

\section*{EXCITATIO EMERGY DIVISIOM In \({ }^{35} \mathrm{Cl} *{ }^{289} 8 \mathrm{~B}\) aT 15 Mey/imeleom}
A. A. Marchettil
B. Libby \({ }^{1}\)
A. .. Whierey \({ }^{1}\)
H. Madanil
W. L. Kehoel
K. 3. Morleyl
F. E. Obenshain

It is presently accepted that tise excitation energy division (EED) in deep-inelastic reactions is a degree of freedom that is slow relative to the time scale of a nuclear reaction. The EED seems to evolve gradually from equal partition between projectilelike and targetlike fragments towards division proportional to mass (equal temperature) as energy loss increases. However. its behavior in the quasi-elastic region has not yet been clarified. A systematic study of this degree of freedom in this particular energy region will help the understanding of the early stages of the dinuclear reaction mechanism. It will also serve as a test for models addressing the transition from direct to deep-inelastic reactions. Unfortunately, the EED is not susceptible to direct measurement and has to be inferred from other observables. Coincident detection of the projectifelike and targetlike fragments has been used for this purpose. \({ }^{2}\) The basic assumption of this method is that the average primary angles are preserved during the evaporation process. This assumption becomes less reliable when small energy (masses) losses are involved. A complementary method that our group has employed is based on fitting the centroids of the evaporation component of the secondary kinetic energy spectra. \({ }^{3}\) These centroids are a function of the mean EED, the EED variance, and the assumed primary energy distribution; but they are most sensitive to the mean EED.

According to calculations based on the PaCE evaporation code," excited projectilelike fragments (PLFs) should decay mainly by enitting light-charged particles, wille targetilike fragments (TLFs) should deexcite primarily vid neut fon evaporation. A If ght-charger-particle gate should, therefore, enhance channels in

Which the projectile receives a large fraction of the excitation energy.

An experiment was performed by our group in Jamuary 1988 at HIRF with the time-of-flight system. The reaction studied was \({ }^{35} \mathrm{Cl}+{ }^{209} \mathrm{Bi}\) at \(15 \mathrm{MeV} / \mathrm{ruc}\) !eon. The time-of-filight system allows the determination of mass and atomic number of Plifs. The detection angle chosen was 18., wich is close to the grazing angle. two \(\Delta E-E\) plastic phoswich detectors mere used to detemine the light-charged particles in coincidence with PLFs. These mere located downstream on each sice of the beam. The plastic detectors mere designed and built by the group at Maryland. Each one consisted of four \(A E-E\) plastic phoswich paddles. The \(\Delta E\) element of each paddle vas BC 400 plastic with dimensions \(0.05 \times 10 \times 12 \mathrm{~cm}^{3}\). The E element was eca44 plastic with dimensions \(3 \times 10 \times 12 \mathrm{~cm}^{3}\). Each \(\Delta E-E\) pair was coupled to a Hamamatsu Rll66 photomultiplier tude (PWT). All eight PaT signals were processed separately. The chargeintegrating ADCs mere triggered by an \(\sim 20\) nsec time gate for the \(\Delta E\) signal and \(\sim 400\) nsec for the E signal.

Some preliminary results are presented in Fig. 2.60, where the effect of requiring lightcharged particles in coincidence with the projectilelike fragment on the inclusive 1 : 18 spectrum is show. There is an important enhancement in the separation of the primary peak and the evaporation component. We are now trying to obtain the mass information. Experimental problems decreased the energy and time resolution, thereby causing the mass determination to be more difficult. The EED determination will follow as soon as reliable mass results are obtalned.

\footnotetext{
1. University of Maryland, College Park, Maryland 20742.
2. D. R. Beriton et al., Phys. Rev. C 38, 1207 (1988).
3. A. P. Weston-Dawkes, Ph.D. thesis ORO-5172-0027, University of Maryland (1986).
4. A. Cavron, Phys Rev. C 21, 230 (1980).
}

Fig. 2.60. Laboratory kinetic energy spectra for \(Z=18\) products produced in \({ }^{35} \mathrm{Cl}+20981\) collisions at \(15.0 \mathrm{meV} / \mathrm{nucleon:} \mathrm{(a)} \mathrm{inclusive}\) spectrum and (b) spectrum with a light-charged particle coincidence requirement.

\section*{AMGULAR MOMENTUN DEPEMOE WCE OF COMPLEX FRAOMENT EMISSIONI}
L. G. Sobotka2
J. C. Lisle
D. G. Sarantites \({ }^{2}\)
R. P. Schaitt \({ }^{3}\)

Ze Li2
Z. Majka \({ }^{3}\)
E. L. Dines \({ }^{2}\)
M. L. Halbert
G. Nebbla3
D. C. Hensley
H. C. Griffint
A. J. Sterks

The angular momentum dependence of large fragment production in long lived reactions is studied by measurements of fragment cross sections from reactions with substantially different angular momentum distributtons and the colncident r-ray multiplicity distributions. The results indicate that the primary \(\ell\)-wave distrfouttons move to larger mean values and decrease in width and skewness with increasing
mass symaretry in the decay channel. The results also confirm that the partition of angular momentum in kinetic energy relaxed heavy-ion reactions is that expected for a rigidly rotating intermediate.
1. Abstract of published paper: Phys. Rev. C 36, 2713 (1987).
2. Hashington University, St. Louis, MO 63130.
3. Texas \(A\) and \(M\) University, College Station, TX 17843.
4. University of Michigan, Ann Arbor, MI 48109.
5. Los Alamos Mational Laboratory, Los Alamos, M 87545.

STUDIES OF EMISSIONS OF COMPLEX FRACYEMTS AD EFFECTIVE TEMPERATURES FOR COLLISIOMS OF

J. Gomez del Campo
R. L. Bible
J. L. Charyet \({ }^{2,3}\) J. R. Beene A. D'Onofrio \({ }^{3}\). M. L. Halbert H. J. Kim

Complex fragments of nuclear charge (\(Z\)) from 4 to 13 were measured at five laboratory angles ustrg surface barrier detector telescopes. Coincident \(r\)-rays were measured in a \(4 \pi\) geometry using 64 hal detectors. Kinematical analysis of the fragments revealed that those of \(Z\) between 4 and 9 are consistent with the decay of a compound nucleus formed in a complete fusion reaction. Gamma rays of excited states of \({ }^{12} \mathrm{C},{ }^{15} \mathrm{~N}\), and 160 were measured, and effective temperatures of about 2 Mev were extracted. HauserFeshbach calculations reproduce the measured cross sections and the effective temperatures very well.

\footnotetext{
1. Abstract of paper: Phys. Rev. Letts. 61, 290 (1988).
2. Centre d'Etudes de Bruyeres-le-chatel, France and Joint Institute for Heavy Jon Research, Oak Ridge, TN 37831.
3. Joint Institute for Heavy Ion Research, Odk Ridge, TN 37831.
4. Istituto Nazionale di fistca Nucleare, Napoli, Italy.
}

PROGRESS OM THE HILI OETECTOR

> \begin{tabular}{l} K. Tehi \(\quad\) H. J. Kim \\ D. Shapira R. Novotny \({ }^{2}\) \\ \multicolumn{1}{c}{ M. Korolija } \end{tabular}

Efforts are now underway for the completion of the final phase of the HILI detector system." Among them is the assembly and irstallation of the second phoswich array. This hodoscope is identical in all respects to the present one except that the light guides that couple the phoswich elements to the photomultiplier tube have been redesigned to improve the light collection efficiency by \(50 \%\).

In addition, a scheme for measuring flight times for ions detected in the hoduscope arrays \(h\) is been implemented. These measurements may be used to separate protons from deuterons and beam velocity neutrons from prompt gama rays. The light ion TOF is obtained by timing the scintillator pulse with respect to the rf sigial from ORIC. A plot of the energy versus TOF for hodoscope element showing the p-d separation is given in Figure 2.61. The iaplementation of a time-of-flight capability on the HILI light-ion hodoscopes was made possible by the availability of the Phillips loc6 FASTBUS TDC. Its high

Fig. 2.61. A plot of the cotal energy deposited versus the time-of-flight shows the separations of the \(Z\). 1 group into protons and deuterans.
channel density, fast conversion time, picosecond time resolution, and sparse data-handling ability were necessary in implementing tof for the 192 detector elements. In order to integrate the Phillips TOCs into the present FASTBUS component of the HILI systen, specialized microcode for the LeCroy Segment Manager mas developed to handle the different word formats used by the Lecroy and Phillips modules. The addition of thi. capability to the detector required a few revisions to the front-end signal-processing scheme. The revised block diagram is acluded in Figure 2.62.

Anothor feature that was added to the HILI system is the auto-ranging \(A / D\) coiversion of the hodoscope energy-loss signals. The LeCroy 1885 ADCs are capable of switching conversion ranges automatically when the integrated charge exceeds a nominal value of 160 PC . The high range wich extends to 1400 DC gives the \(A D C\) an additional

Fig. 2.62. The block didgram showing the electronics setup for the HILI detector.
order of egnitude in dynamic range. With this feature we were able to detect light heavy ions up to \(2=8\) mithout sacrificing \(\Delta E\) resolution for the protons and alphas. An exaple of this is given in Figure 2.63.
1. Joint Institute for Heavy Ion Research, Vanderbilt University, Mashville. Tenressee, and Physics Division, ORM.
2. Physinalisches Institut, University of Giessen, Heinrich-Buff-Ring 16, 0-6300 Giessen, West Germany.
3. Laboratory for Ruclear Spectroscopy, Ruder Boskovic Institute, 41001 Zagreb, Yugoslavia.
4. D. Shapira et al., Phys. Div. Prog. Rep. Sept. 30, 1984, 0RM-6120. P. 114.
5. K. Teh et al.. IEEE Trans. Nucl. Sci.. HS-35, 272 (1988).

Fig. 2.63. The upper figure is a plot of the high-range \(\Delta E\) versus \(E\) mile the lower figure is d plot of the low-range \(\Delta E\) versus \(E\). lons up to 2 . 8 can be detected without sacrificing \(\Delta E\) resolution.

\section*{MICNEMT MEASUREMEMT IM 24 Si + \({ }^{12} \mathrm{C}\) PCACTIOM}
A. Ray
J. Sullivan \({ }^{\text {l }}\)
D. Shapira
B. Shivakumar \({ }^{2}\)
J. Gomez del Campo
M. Jeff \({ }^{2}\)
H. J. Kin
M. L. Halbert

We are continuing our investigation of the reaction dynamics of damped orbiting reactions. Recent measurements of yields \({ }^{3-5}\) and alignment \({ }^{6.7}\) of orbiting muclei have shown the noncompound signature of these reactions. On the other hand, the observation of (\(1 / \sin \theta\)) angular distributions at back-ang?es has indicated that the timescale of these reactions is long compared with that of the direct reaction process. Previous alignment measuresents \({ }^{6}\) performed on \(28 \mathrm{Si}+{ }^{12} \mathrm{C}\) system at \(E=34.5 \mathrm{MeV}\) and 43.5 MeV have shown that both \({ }^{12} \mathrm{C}\) and \({ }^{20}\) Si nuclei emitted at \(0_{\mathrm{cm}}=180^{\circ}\) are predominantly (955) in \(m=0\) magnetic substate with respect to the beam axis. This result agrees with a simple dinuclear orbiting gicture. If we consider a simpleminded dinuclear orbiting picture where the orbiting complex suddenly breaks apart tangentially, then both orbiting nuclei should have their spins perpendicular to the reaction plane when they are detected andy from the bean axis. Should the reaction go via the compound nucleus process, then one also expects, from phase-space consideration, about 65-70\% alignnent of the spins of the enitted nuclei perpendicular to the reaction plane.

We recently performed an experiment to measure the alignment of the damped reaction products emitted at back-angles. We studied the \(20 \mathrm{Sf}+{ }^{12} \mathrm{C}\) system at \(\mathrm{E}_{\mathrm{cm}}=43.5 \mathrm{MeV}\) and 48 MeV . Natural carbon foils (\(150 \mathrm{Lg} / \mathrm{cm}^{2}\) thick) were bombarded by \({ }^{28} 51\) Deam from the HHIRF tandem accelerator at Elab \(=145 \mathrm{MeV}\) and 160 MeV . Six \(\Delta E-E\) solid-state particle telescopes were placed at \(01 \mathrm{ab}=10^{\circ}, 15^{\circ}, 19.5^{\circ}, 23^{\circ}, 25.3^{\circ}, 25.6^{\circ}\). and \(30^{\circ}\). The experiment was performed in the Spin Spectrometer. Cofncidence between the Edetectors and the Spin Spectrometer was required. Gamma spectra, in coincidence with carbon particles emitted at back angles, were obtained in each Nal detector. A 0.25-in.thick lead plate was placed in front of each Na! detector to stop charged particles and attenuate
low-energy gamad rays. The relative efficiencies of the Mal detectors for 4.44-MeV gama rays were obtained by measuring the 4.44-MeV gamm-ray yield in the detectors with a plutonium-berillyum source placed at the target position. The reaction \({ }^{12} \mathrm{C}(1 \mathrm{H}, 1 \mathrm{H})^{12} \mathrm{C}\) at \(\mathrm{E}(\mathrm{I} H)=\) 17 HeV was used to determine the absolute efficiencies of Mal detectors for 4.44-MeV garma rays. The efficiency for \(1.78-\mathrm{MeV}\) gama rays was obtained by measuring 1.84-MeV gama yield in each Nal detector with a \({ }^{88}\) r source placed at the position of the target.

Figure 2.64 shows the gama spectra obtained in coincidence with carbon particles emitted at \(\theta_{a b}=10^{\circ}\). He see the 1.37 -MeV line from \({ }^{24} \mathrm{Mg}^{(}\) the \(1.78-\mathrm{MeV}\) line from \({ }^{20} \mathrm{Si}\) and the Dopplershifted \(4.44-\mathrm{MeV}\) line from \({ }^{12} \mathrm{C}\). The polar a igles \((\theta, \phi)\) subtendec by the Nal detectors are measured in a coordinate system where the \(z\)-axis is along the normal to the scattering plane, and the x-axis is along the direction of motion of emitted carbon nuclei. We find the corresponding Doppler shift of the gama-ray lines. He average the gama yield over all the Nal detectors subtending a fixed angle with the normal to the scattering plane. We get rid of the interference of different magnetic substates in this way. We finally obtain the angular

3n.4-0.6 7.1466

Fig. 2.64. Coincidence game-ray spectrum obtatned at \(\left(\theta=88^{\circ},=39^{\circ}\right),\left(\theta=128^{\circ}\right.\). - \(=156^{\circ}\)) and \(\left(\mathrm{A}=114^{\circ}, 54^{\circ}\right)\) for the reac. tion \(28 \mathrm{Si}+12 \mathrm{C}\) at \(\mathrm{E}(\mathrm{Si})=145 \mathrm{MeV}\). The polar angles are measured in coordinate frame with the \(z\)-axis dlong the normal to the scattering plane and the x-dxis along the direction of motion of the detected particle.
correlation at different angles by taking into account the relative efficiencies. We find very poor alignment (20\%) for both \({ }^{20} 5 i\) and \({ }^{12} \mathrm{C}\). This result is in disagreement with both the compound nucleus and with the simple-minded orbiting pictures. This result may indicate that the twisting mode of the orbiting nuclei is important when they break apart. He are still investigating other possible sources of this apparent misalignment.
1. Cyclotron Institute, Texas A and M University, College Station, TX 77843.
2. Physics Department, Yale University, New Haven, CY 06511.
3. D. Shapira et al., Phys. Lett. 8114, 111 (1982).
4. D. Shapira, J. L. C. Ford, Jr. and
J. Gomez del Campo, Phys. Rev. C 26, 2470 (1982).
5. A. Ray et al.. Phys. Rev. C 31, 1573
(1985).
6. A. Ray et al., Phys. Rev. Lett. 57, 815 (1986).
7. H. Dunnweber, presented at the \(x x y\) International Winter Meeting, Bormio, Italy, 1987.

\section*{TRANSFER REACTIONS FOR THE \(50 \mathrm{TI}+90 \mathrm{Zr}\) SYSTEM BELON THE COULOHB BARRIER \({ }^{1}\)}
H. J. Kim
M. M. Hindi2
J. Gomez del Campo
D. Shapira
P. H. Stelson

The analysis of quast-elastic cross section data for the \({ }^{90} \mathbf{Z r}\) projectile plus \({ }^{50} \mathrm{Ti}\) target system shows that the probability for \(5074(90 \mathrm{Zr}, 49 \mathrm{Ti})^{91} \mathrm{Zr}\). In-transfer reaction near the barrier is much larger than estimates based on semiclassical theory. The probability for \(50 \mathrm{Ti}\left({ }^{90} \mathrm{Zr}, 51 \mathrm{~V}\right)^{89} \mathrm{y}\), lo-transfer reaction, on the other hand, agrees with the same theory. The internuclear distance where the \(\ln\)-transfer probability first deviates from tunneling predictions coincides with the threshold of the fusion barrier distribution deduced from the experimental fusion cross sections of the \(50 \mathrm{Ti}+90 \mathrm{Zr}\) system, suggesting a common mechantsm for the large enhancement of ln-transfer and fustion cross sections.

\footnotetext{
1. Abstract of paper to be published in Physical Review \(C\).
2. Tennessee Technological Iniversity, Cookeville. Tennessee.
}

\title{
mEUTROM FLOM BETMEEN MCLEI \\ AS TME PRIMCIPAL EWNUCEMENT WECHAMISH IN MEAYY-IOM SUEARRRIER FUSIOW
}

\section*{P. H. Stelson}

Most theories developed to account for the observed enhanced crass sections for heavy-ion fusion in the barrier region have barrier transmission and coupling to low-lying collective states as cormerstone concepts. We present a different picture based on neutron transfer which relegates enhancement caused by collective states to the region far below the barrier (\(<10 \mathrm{mb}\)). The overlap of the projectile and target shell-model potentials indicate that the valence neutrons of the colliding nuclei can begin to flow between the nuclei at distances which are typically 1.5 fa outside of the mean barrier distance. This neutron flow may precipitate a neck between the nuclei which provides the driving force for fusion. The cross sections in the near-barrier region (10 to 200 mb) are mell represented by a parabolic energy dependence wich follows from the integration of the simple expression (1-B/E) from a threshold energy to the bombarding energy. The threshold energies for fusion correlate well with the binding energies of the valence neutrons of the colliding nuclei. The heaviest isotopes of each element, which have the smallest neutron binding energies, have the largest cross sections in the near-barrier region. The collective properties of the colliding nuclei (mainly the low-lying quadrupole states) are then considered to modulate the thresholds for neck formation. This modulation produces cross sections in the region far below the barrier (. 01 to 10 mb), which are in agreement with experiment and which correlate well with the collective properties of the colliding nuclei. We will use these concepts to interpret the fusion cross sections of the following systems: (\(\left.{ }^{58} \mathrm{Mi}+58,64 \mathrm{Ni}\right)\); \(\left({ }^{64} \mathrm{Mi}+64 \mathrm{Mi}\right)\); \(\left({ }^{60} \mathrm{Ca}+40,{ }^{44},{ }^{48} \mathrm{Ca}\right):\left({ }^{4} \mathrm{Ca}+{ }^{4} 4 \mathrm{Ca}\right):\left({ }^{4} \mathrm{Mg}+\right.\) \(90.92 .94 .96 \mathrm{Zr})\); (\({ }^{40 \mathrm{Ar}+144.140 .154 \mathrm{Sm}) \text {; and } \mathrm{A}}\) \(\left({ }^{74} \mathrm{Ge}+{ }^{74} \mathrm{Ge}\right)\). The broad spin distributions
for the system (\(\left.{ }^{64} \mathrm{Ni}+100 \mathrm{Mo}\right)\) observed by Halbert et al. 2 have been difficult to understand using theories based only on coupling to collective states. The model presented here provides broad bell-shaped spin distributions, in good agreement with the experimental measurements.

\footnotetext{
1. Abstract of paper to be published in Proceedings of the International Symposium on Heavy-Ion Reaction Dynamics in Tanden Energy Region, Hitachi, Japan, Aug. l-3, 1988
2. M. L. Halbert et al., Phys. Div. Prog. Rep., Sept. 30, 1986, 0RML-6326 (March 1987), P. 100 and Phys. Div. Prog. Rep., Sept. \(30_{2}\) 1987. 0RNL-6120 (Harch 1988). D. 105.
}

\section*{EISSIOM OF LIETT IOMS, MEUTROWS, PIOMS, AD PHOTOUS IN HENY-IOW RECCTIOWS}

PREEQUILIBRIUN EMISSION AND TARGET-PROJECTILE-
LIKE CORRELATIOMS FOR 20ME +60Mi AT \(E\left({ }^{20} \mathrm{Me}\right)=740 \mathrm{MeV}^{1}\)
\begin{tabular}{ll}
A. D'Onofrio \(\mathbf{2}^{\mathbf{3}}\) & F. Andreozzis \\
J. Gomez del Sampo & A. Brondis \\
B. Delaunay \\
J. Delaunay & R. Moro \\
H. Dumont \({ }^{4}\) & M. Romano \\
& F. Terrasis
\end{tabular}

Inclusive \(r\) rays at \(90^{\circ}\) and \(125^{\circ}\) and particle spectra (for \(Z=1-6)\) at \(14^{\circ}\) and \((Z=1-4)\) at \(120^{\circ}\) and \(150^{\circ}\) were measured. Particle \(\gamma-r a y\) coincidences were obtained. Cross sections for heavy residuals were extracted from in-beam \(\gamma\) ray and radioact ivity measurements. Target-projectile-like correlations were well reproduced using a geomet:ical abrasion model plus preequiliorium and equilibrium decay.

\footnotetext{
1. Abstract of paper to be published in Physical Review \(C\).
2. Guest Assignee from Istituto Mazionale di Fisica Nucleare, 80125 Napoli, Italy.
3. Joint Institute for Heavy Ion Research Oak Ridge, in 37831.
4. Service de Physique Nucleaire-8asse Energie, Centre d'Etudes Nucleafres de Saclay, 91191 Gif-sur-Yvette Cedex, France.
5. Istituto Nazionale di fisica Nucleare, 80125 Napoli, Italy.
}

\section*{EXTEMDED EMISSION SOLRCES OBSERVED YIA TMO-PROTON CORRELATIOWS \({ }^{1}\)}
\begin{tabular}{|c|c|}
\hline T. C. Ames & S. Pratt \({ }^{2}\) \\
\hline R. L. Ferguson & 2. Chen \({ }^{3}\) \\
\hline F. E. Obenshain & C. K. Geloke \({ }^{3}\) \\
\hline F. Plasil & W. G. Lynct? \\
\hline G. R. Youing & J. Pochodzalla \({ }^{3}\) \\
\hline
\end{tabular}

Two-proton correlations were measured as a function of the total energy and relative momentum of the protons. The correlation is analyzed for different orientations of the relative momentum, mich allows information on the size and lifetime of the emission source to be extracted. The most energetic particles are emitted from a short-lived source of compound nucleus dimensions wile the 'ywer energy protons appear to be enitted from a source considerably larger than the compound nucleus.

\footnotetext{
1. Abstract of paper to be published in Physical Review Letters
2. Dapartment of Physics, University of Tennessee, Knoxvilie, Tennessee 37996.
3. Mational Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824.
}

NEUTRON EMISSIOW FRON PRODUCTS OF STRONGLY DAMPED REACTIOMS \(05{ }^{58} \mathrm{Mi}+{ }^{165} \mathrm{Ho}\) AT 930 MeV
\begin{tabular}{ll}
G. A. Petitt \({ }^{1}\) & R. L. Ferguson \\
C. Butler & F. E. Obenshain \\
V. Penumetchal & F. Plas \(i\) I \\
T. C. Awes & S. P. Sorensen \({ }^{2}\) \\
J. R. Beene & G. R.Young
\end{tabular}

At energies above \(10 \mathrm{MeV} / \mathrm{nuc}\) leon, nonequilibrium nucleon emission is observed to become a significant aspect of heavy-ion-induced reactions. At present, the mechanism of nonequilibrium emission is not firmly established. In particular, models with drastically different assumptions are found to reproduce many of the features observed in inclusive measurements of nonequilibrium light-partic.e emission. One characteristic of the emission process which may be used to distinguish between the various models is the apparent velocity of the rest frame in which the nonequilitarium emission appears isotrnpic. For nucleon-nuclenn collision models' and hot spot models, \({ }^{4}\) the emission
is expected to appear to occur from a frame moving at about half of the beam velocity, essentially independent of impact parameter. On the other hand, for other models such as those which interpret the nonequilibrium emission as a result of field-induced emissions ir, for exanple, Ferai jets, 6 the emission is expected to appear to occur from a frame wich has a velocity greater than the outgoing projectilelike fragment (or less than the targetlike fragment for nonequiliorium target eafssion).

Meutrons emitted in and out of the reaction plane have been measured in colncidence with projectilelike fragments (PLFs) resulting from danped reactions of \({ }^{56} \mathrm{Ni}+165 \mathrm{Ho}\) at \(930-\mathrm{MeV}\) incident energy. The charge, energy, and angle of the PLFs mere measured in a gas \(\Delta E\) positionsensitive silicun \(E\) detector which permitted the total kinetic energy loss (TKEL) to be determined for each event. Meutrons mere measured in coincidence with projectilelike fragments using an array of 12 liquid scintillator detectors which provided pulse-height, pulse-shape, and time-of-flight information. The neutron coincidence spectra were aralyzed in \(25-\mathrm{MeV}\)-wide TKEL Dins over the TKEL loss range from 0 to 450 MeV. The neutron spectra were fitted with a moving source parameterization to determine the temperatures, multiplicities, velocities, and angles of the projectilelike, targetlike, and nonequilibrium emission sources.

The source velo:ities obtained from the moving source fits are shown by the open points in fig. 2.65 for the PLF (triangles), the MLF (squares), and the nonequilibrium (circles) sources. The extracted PLF and TLF velocities are in good agreement with the velocities determined directly from the measured PLF and calculated for the corresponding TLF assuming two-body kinematics, as shown by the solid points. The nonequilibrium source velocities are extracted reliably over the total kinetic energy lass range from 275 \& TKEL \& 450 MeV . The velocities are found to be approximately half of the beam velocity and to be independent of TKEL. This result is in qualitative agreement with expectations for nonequilitorium

Fig. 2.65. Velocities of neutron eaission sources as a function of TKE loss. Triangles are for the PLF source, with open points for the velocities extracted from the moving source fits and solid points corresponding to the mean velocittes of the measured PLF. Squares are for the TLF source. With solid points for velocities extracted from the fits and open points extracted from measured PLF assuming two-body kinematics. The open circles are the fitted source velocities of the nonequtlibrium neutron component.
emission due to mucleon-nucleon collisions or due to enission from a hot spot consisting of nearly equal target and projectile participants. It is not in accordance with expectations for field-induced enission.

\footnotetext{
1. Georgia State University, Atlanta, Georgia.
2. Adjunct research participant from the

University of Tennessee, Knoxville, Tennessee.
3. William A. Friedman, Phys. Rev, C 29, 13 (1986).
4. T. C. Aues et al., Phys. Pev. C 25, 2361 (1982).
5. A. S. Umar et al., Phys, Rev. C 30, 1934 (1984).
6. J. P. Bondorf et al., Phys. Lett. 848, 162 (1919).
}

\section*{FRAGEEMTATION OF \({ }^{160} 0\) PROJECTILES AT 100 MeV PER MUCLEON \({ }^{1}\)}
\begin{tabular}{ll}
J. D. Silk & P. H. Stelson \\
H. D. Holmgren \\
D. L. Hendrie & S. Raman \\
T. J. M. Symons & R. L. Auble \\
G. D. Mestfall & J. R. Mu \\
& R. Van Bibuer
\end{tabular}

Energy and angular distributions of heavy (\(Z \geq 4\)) projectilelike residues of \({ }^{160}\) have been measured at \(100 \mathrm{MeV} / \mathrm{nucleon}\) with better than unit \(A\) and \(Z\) resolution. Global fits to the isotopic distributions show close correspondence to the relativistic results. Closer examination reveais angle-dependent damping of the fragmentation peak. The dependence of this daming upon the target mass gives evidence that the scattering outside the grazing angle is to positive angles.
1. Abstract of \(r \cdot v!\) ished paper: Phys. Rev. C 37. 158 (1988).
2. University of Maryland, College Park. Maryland 20742.
3. Lawrence Berkeley Laboratory, Berkeley, California 94720.
4. Stanford University, Stanford, California 94305.

NUCLLEAR PHYSICS
with Ultrarelativistic projectiles

OVERVIEM
of orml ultrarelativistic heavy-lom proeran
\begin{tabular}{ll}
T. C. Awes & A. Ray \\
C. Baktash & S. Saini \\
R. L. Ferguson & D. Shapira \\
A. Franz & S. P. Sorensen \\
I. Y. Lee & M. . Tincknell \\
F. E. Oenshain & K. M. Teh \\
F. Plasil & G. R. Young
\end{tabular}

The DRNL involvement in studies of nucleus-nucleus collisions at ultrarelativistic (\(>10 \mathrm{GeV} / \mathrm{nucleon}\)) energies has grown significantly over the last few years. At the present time, we are engaged in three activities: the CERN WA80 experiment. RHIC-re?ated research and development, and the AGS experiment dedicated to the study of low-energy photon production.

The first two activities are centered in the High-Energy Reactions Group, hile the AGS experiment is a project of the Nuclear Collision Dynanics Group. He summarize here the status of these activities, together with future plans.

During this reporting period our most intensive effort has continued to be associated with the wabo collaboration. The second waso run took place at CERN during the first half of October 1987 with 3.2-TEV \({ }^{32 S}\) projectiles. The sulfur beam never atiained the high degree of stability that was achieved with oxygen during the first run in the fall of 1986. Howeve:, satisfactory event statistics mere obtained with four targets: Au, Ag, Cu, and Al. Preliminary results have been presented at a number of conferences, and calorimetric results are describer in a separate contribution to this report. \({ }^{3}\) The most significant preliminary findinge from the sulfur run are that the observed transverse energy continues to scale with the number of participating nucleons, as was deduced from the oxygen data, and that the volume-avcraged energy density does not increase significantly with project,ie size at a given bomarding energy. In other ma80 activities, data reduction and analysis have continued. Hew results from the 1986 oxygen run have become available, including preliminary results on the prime HA80 quarkgluon plasma probe - the observation of direct photons.4

Future plans at CERN call for the availability of sulfur beams in 1990, for which extension requests have been solicited by CE.RN management. WA80 has submitted such a request in the spring of 1988 for the purpose of obtaining greatly increased \(\gamma / \pi^{0}\) statistics in order to (1) study the variation of \(\gamma / x^{0}\) with elent centrality; (11) study \(\gamma / x^{0}\) for \(D_{T}>3\) GeV/c (region of perturbative \(O C D\)); and (iii) study \(\gamma / \pi^{0}\) for very \(1 i\) ght systems where quark-gluon plasma formation is not expected. In the original extension request, wh80 had planned to upgrade the multiplicity detectors to handle higtier deam intensities, dounle the solid angle for phatan detection by butlaing a second
lead-glass electromagnetic illorimeter (SAPHIR), and increase the maximum data-taking rate by converting from CAMAC to FASTBUS ADCs. The a oropriate CERN program advisory committee
roved HABO for sulfur beam in 1990 on the condition that the second SAPHIP not be built and that, instead, a more highly-segmented highresolution (probably sampling) calorimeter be designed and implemented. This new device currently constitutes the highest-priority project of HA80.

Longer-term plans at CERN anticipate approval of the construction of a new injector leading to the availability of lead beams in the early 1990s. Should these plans become reality, ORNL intends to remain associated with 480 or with its successcr. The primary interest of our group is the measurement of intrinsic photons with very !arge coverage. This would require a lisge-scale deployment of the highly-segmented high-resolution calorimeters currently under development. In addition, there is significant interest within the collaboration in the design and construction of a time-projection chamber (TPC). Since similar interests exist in the NA35 (streamer chanber) collaboration and since consol"dation of "uture heavy-ion experiments is deemed desirable by various laboratory managements, discussions are underway between MA80 and Na35, exploring the possibility of a merger.

Turning from CERN to BNL facilities, our efforts to obtain approval for an experiment to study electron-pair emission at the AGS have been terminated, and the fledgling collaboration has been dissolved. This development followed action by the \(.46 S\) Progran Advisory Comittee, which considered the proposal in October 1987 and, having found it too costly, decided not to approve it. Subsequently, the collaboration considered a number of alternatives. including the submission of a revised, scaled-down proposal. The ORNL group dectded to leave the collaborition in April 1988, partly because we did not feel that d less expensive version of the dielectron experimerit could address :he physics issues adequately and partly to enable
us to concentrate on research and development associated with the proposed Relativistic Heavy-Ion Collider (RHIC) to be built at BMe. Specifically, it is the intent of the Oak Ridge group to play a major role in developing a proposal for an experiment designed to measure mon pairs a- RHIC. In September 1988, ORML responded to 2 DOE call by submitting an R8D proposal witn colleagues from BML, LLML, MIT, University of California at Riverside, and the University of Tennessee. The proposal is described in a separate contribution to this report. 5

In another new initiative on a somewhat smaller scale, ORML is invo! ved in studies of the production of relatively low-energy photions at the AGS and at CERN. Earlier experiments at CERN have indicated that an ansmalous excess yield of soft photons is produced. A letter of intent of a BML-CERN-ORML collaboration was submitted to the AGS Program Advisory Comittee late in 1987. The \(\mathrm{BaF}_{2}\) detector system to be used in this experiment is described in a separate contribution to this progress report. \({ }^{6}\) A test of the new detector was carried out with a negative pion beam at the AGS in late spring of 1988. It was followed by a test measurement using a \(450-\mathrm{GeV}\) protur beam at CERN ir. August 1988. An AGS proposal, based on the letter of intent, for p-nucieus and nucleus-nucleus studies at \(15 \mathrm{GeV} / \mathrm{nuc}\) leon is in preparation.

\footnotetext{
1. University of Tennessee, Knoxville, Tennessee 37996.
2. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
3. R. Albrecht et al., "Energy Measurements from Sulfur-Induced Reactions at 200 GeV/Mucleon," this report.
4. R. Alorecht et al.. 'Intrinsic Photon Spectra from \({ }^{16} 0\)-induced Reactioris at 200 GeV/Mucleon," this report.
5. S. Aronson et al., "Calorimeter and Absoriver Optimization Proposal for the RHIC Dimuon Experiment," this report.
6. D. Shapira et al., "An Array of BaF Detectors for the Study of Soft Phatons Emitted in Ultrarelativistic Proton-Nucleus and NucleusMucleus Collisions," this repor..
}

FORHARD AND TRANSVERSE EMERGY DISTRIBUTIONS
IN OXYGEN-INDUCED REACTIONS
AT 60 A GeV AND 200 A GeY
\begin{tabular}{|c|c|}
\hline R. Albrecht \({ }^{2}\) & 1. Y. Lee \\
\hline T. C. Ames & H. Loehner \({ }^{3}\) \\
\hline C. Baktash & I. Lund \({ }^{2}\) \\
\hline P. Beckmann \({ }^{3}\) & F. E. Obenshain \\
\hline F. Berger \({ }^{3}\) & A. Oske-ssons \\
\hline R. Bock \({ }^{2}\) & I. Otterlund \\
\hline G. Claessc.14 & T. Peitzmann \({ }^{3}\) \\
\hline L. Dragon \({ }^{3}\) & S. Perssons \\
\hline R. L. Ferguson & F. Plasil \\
\hline A. Franz \({ }^{4}\) & A. M. Poskanzer \({ }^{4}\) \\
\hline S. Garpman \({ }^{5}\) & M. Purschke \({ }^{3}\) \\
\hline R. Glasow \({ }^{3}\) & H. G. Ritter \({ }^{4}\) \\
\hline H. A. Gustafssons & R. Santo \({ }^{3}\) \\
\hline H. H. Gutbrod \({ }^{2}\) & H. R. Sct \\
\hline J. W. Johnson & T. Siemiarczuk \({ }^{2}, 6\) \\
\hline K. H. Kampert \({ }^{3}\) & S. D. Surensen' \\
\hline B. W. Kolb \({ }^{2}\) & E. Stenlunds \\
\hline P. Kristiansson \({ }^{4}\) & G. R. Young \\
\hline
\end{tabular}

Results are presented from reactions of 60 A Gel and 200 A GeV \({ }^{160}\) projectiles with C , \(\mathrm{Cu}, \mathrm{Ag}\), and Au nuclei. inergy spectra measured at zero degrees and transverse energy distributions in the pseudorapidity range from 2.4 to 5.5 are shown. The average transverse energy per participant is found to be nearly independent of target mass. Estimates of nuclear stopping and of attained energy densities are made.

\footnotetext{
1. Abstract of published paper: Phys. Lett. B 199. 297 (Dec. 1987)
2. Gesellschaft fuer Schwerionenforschung (GSI), 0-6100 Darmstadt, West Germany. 3. University of Muenster, D-4400 Muenster, West Germany.
4. Lawrence Berkeley Laboratory, Berkeley, California 94720.
5. University of Lund, S-22362 Lund, Sweden.
6. On leave of ausence from the institute of Nuclear Studies, Warsaw, Poland.
7. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
}

PHDTON ND REUTRAL PION DISTRIBUTIONS IM 60 NO 200 A GeV 160 + MICLEUS NDD PROTON + MCLEUS REACTIONSI
R. Albrecht \({ }^{2}\)
T. C. Ames
C. Baktash
P. Beckmann \({ }^{3}\)
F. Berger \({ }^{3}\)
R. Bock \({ }^{2}\)
G. Claesson \({ }^{2}\)
L. Dragon \({ }^{3}\)
R. L. Ferguson
A. Franz \({ }^{4}\)
S. Garpman \({ }^{5}\)
R. Glason \({ }^{3}\)
H. A. Gustafssons
H. H. Gutbrod \({ }^{2}\)
K. H. Kampert \({ }^{3}\)
B. H. Kolb \({ }^{2}\)
P. Kristiansson \({ }^{4}\)
I. Y. Lee
H. Loehner \({ }^{3}\)
I. Lund \({ }^{2}\)
F. E. Obenshain
A. Oskarsson \({ }^{5}\)
I. Dtterlunds
T. Peitzmann \({ }^{3}\)
S. Perssons
F. Plasil
A. M. Poskanzerh
M. Purschke \({ }^{3}\)
H. G. Ritterh
R. Santo \({ }^{3}\)
H. R. Schmidt \({ }^{2}\)
T. Sientarczuk 2,6
S. P. Sorensen \({ }^{7}\)
E. Stenlund \({ }^{5}\)

Transverse momentum (DT) distributions of inclusive ohotons and neutral pions at midrapidity are measured with a lead glass calorimeter in 60 and 200 A GeV 160 + nucleus and proton + nucleus reactions. The variation of the average transverse momentum is investigated as a function of centrality, determined by measurements of the remaining energy of the projectile and the charged-particle multiplicity. For small values of the entropy, deduced from the multiplicity density, an increase in average \(P_{T}\) is observed levelling off for larger values of entropy. The target-mass and energy dependence of \(\pi^{0}\) PT distributions are presented.

\footnotetext{
1. Abstract of published paper: Phys. Lett. B 201. 390 (Feb. 1988).
2. Fesellschaft fuer Schwerionenforschung (GSI), 0-6100 Darmstadt, Lest Germany.
3. Intiversity of Muenster, D-4400 Muenster. West Germany.
4. Lawrence Berkeley Laboratory, Berkeley, Callfornia 94720 .
5. Iniversity of Lund, S-22362 Lund, Sweden.
6. On leave of absence from the Institute of Nuclear Studies, Harsaw. Poland.
7. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
}

\section*{CHARGED-PARTIELE DISTRIBUTIOMS \\ In \({ }^{16} 0\)-I MDUCED MCLEAR REACTIOWS AT 60 MD 200 A Gev1}
R. Albrecht \({ }^{2}\)
T. C. Aues
C. Baktash
P. Beckmann \({ }^{3}\)
F. Berger \({ }^{3}\)
R. Bock \({ }^{2}\)
G. Claesson \({ }^{2}\)
L. Dragon \({ }^{3}\)
R. L. Ferguson
A. Franz \({ }^{4}\)
S. Garpmans
R. Glason \({ }^{3}\)
H. A. Gustafssons
H. H. Gutbrod \({ }^{2}\)
J. K. Johnson
K. H. Kampert \({ }^{3}\)
B. H. Kold \({ }^{2}\)
P. Kristiansson
I. Y. Lee
H. Loehner \({ }^{3}\)
I. Lund \({ }^{2}\)
F. E. Obenshain
A. Dskarsson \({ }^{5}\)
I. Otterlunds
T. Peitzmann \({ }^{3}\)
S. Perssons
F. Plasil
A. M. Poskanzert
M. Purschke \({ }^{3}\)
H. G. Ritter \({ }^{\text {R }}\)
R. Santo \({ }^{3}\)
H. R. Schmidt \({ }^{2}\)
T. Stemiarczuk \({ }^{2,6}\)
S. P. Sorensen?
E. Stenlund \({ }^{5}\)
G. R. Young

Results from \({ }^{160} 0\)-induced nuclear interactions with \(\mathrm{C}, \mathrm{Cu}, \mathrm{Ag}\), and Au targets at 60 and 200 A GeV are presented. Multiplicity and pseudorapidity-density distributions of charged pa:ticles and their dependence on the target mass number are reported. The increase in the particle density with increasing centrality. charactertzed by the energy flux at zero degrees, is investigated. Comparisons with the FRITIOF model reveal systematic differences.

\footnotetext{
1. Abstract of published paper: Phys. Lett. 8 202, 596 (Mar. 1988).
2. Sesellschaft fuer Schwertonenforschung
(GSi), D-6100 Darmstadt. West Germany.
?. Iniversity of Muenster, \(0-4400\) Muenster, west Germany.
4. Lawrence Berkeley Laboratory, Berkeley, California 94720.
5. Iniverstty of Lund, S-22362 Lund, Sweden.
6. On leave of absence from the institute of Nuclear Stunies, Warsaw, Poland.
7. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
}

\section*{TARGET FRAGMEMTATIOM \\ IM PROTOM-MJCLEUS NDO 1GO-MUCLEUS REACTIONS AT 60 ND 200 GeV/MUCLEON}
\begin{tabular}{|c|c|}
\hline H. R. Schmidt \({ }^{2}\) & P. Kristiansson \({ }^{\text {a }}\) \\
\hline R. Albrecht. \({ }^{2}\) & I. Y. Lee \\
\hline T. C. Ames & H. Loehner \({ }^{3}\) \\
\hline C. Baktash & 1. Lund \({ }^{2}\) \\
\hline P. Beckmann \({ }^{3}\) & F. E. Obenshain \\
\hline F. Berger \({ }^{3}\) & A. Oskarssons \\
\hline R. Bock \({ }^{2}\) & 1. Otterlund \({ }^{5}\) \\
\hline 6. Claesson \({ }^{2}\) & T. Peitzmann \({ }^{3}\) \\
\hline L. Dragon \({ }^{3}\) & S. Persson \({ }^{\text {5 }}\) \\
\hline R. L. Ferguson & F. Plasil \\
\hline in. Franz \({ }^{\text {b }}\) & A. M. Poskanzer \({ }^{4}\) \\
\hline S. Garpman \({ }^{\text {5 }}\) & M. Purschke \({ }^{\text {3 }}\) \\
\hline R. Glasow \({ }^{3}\) & H. G. Ritter \({ }^{4}\) \\
\hline H. A. Gustafisson \({ }^{5}\) & R. Santo \({ }^{3}\) \\
\hline H. H. Gutbrod \({ }^{2}\) & T. Siemiarczuk \({ }^{2,6}\) \\
\hline K. H. Kampert \({ }^{3}\) & S. P. Sorensen \({ }^{7}\) \\
\hline B. W. Kolb \({ }^{2}\) & E. Stenlund \({ }^{\text {d }}\) \\
\hline
\end{tabular}

\section*{G. R. Young}

Target remants with \(Z<3\) from proton-nucleus and 160 -nucleus reactions at 60 and \(200 \mathrm{GeV} /\) nucleon were measured in the angular range from \(30^{\circ}\) to \(160^{\circ}(-1.7<\eta<1.3)\) employing the Plastic Ball detertor. The excitation energy of the target spectator matter in central oxygenirduced collisions is found to be high enough to allow for complete disintegration of the target nucleus into fragments with \(Z\) < 3 . The average longitudinal momentum transfer per proton to the target in central collisions is considerably higher in the case of 160 -induced reactions (\(\mathbf{3 0 0} \mathrm{MeV} / \mathrm{c}\)) than in proton-infuced reactions (-130 MeV/C). The baryon rapistty distributions are roughly in agreement with one-fluid hydrodynamical calculations at \(60-6 e V / n u c i e o n ~ 160+A u\) but are in disagreement at \(200 \mathrm{GeV} / n u c i e o n\), indicating the higher degree of transparency at the higher bombarding energy. Both the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or to even exceed the values for the participant matter at beam energies of abnyt \(1-2 \mathrm{GeV} / n u c l e o n\).

\footnotetext{
1. Abstract of published paper: 2. Phys. C 38. 109 (Apri) 1988).
2. Gesellschaft fuer Schwerionenforschung (CSSI), 0-6100 Darmstadt, West fermany.
}
3. University of Muenster, D-4400 Muenster, West Germany.
4. Lawrence Berkeley Laboratory, Berkeley, California 94720.
5. University of Lund, S-22362 Lund, Sweden.
6. On leave of absence from the Institute of Nuclear Studies, Marsaw. Poland.
7. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.

\title{
A REURAL RETMORK APPROACH TO THE PROBLEM OF PHOTOM PAIR COMBIMATORICS
}

\author{
Terry C. Awes
}

Photon measurements provide a means to investigate a broad range of phenomena in relativistic hadron-hadren, hadron-nuc leus, and nucleus-nucleus collisions. Directly radiated high transverse momentum (\(P_{T}\)) photons are expected to be produced in hadronic collisions predominantly through the process of gluon Compton scattering, and men valence antiquarks are available, through quark-antiquark annihilations, and, th a lesser extent, by bremsstrahlung from the decelerated quarks. Recently, there has been a great deal of experimental activity to measure high \(P_{\mathrm{T}}\) direct photons in pp, mp, and \(p \vec{p}\) collisions since such measurements should provide a sensitive probe of the gluon structure functions. In nucleus-nucleus collisions enhanced thermal photon radiation at low \(\mathrm{P}_{\mathrm{T}}\) might provide a possible signature for quarkgluon plasma formation should sufficiently high energy densities be attained.

Although directly radiated photons are highly interesting, by far the dominant source of photons is from the decay of neutral pions, \(n\) 's, and higher resonances. Therefore, in order to extract the direct photon component, the contribution from decays must be determined. With increasing photon multipilicities in the final state, it becomes increasingly problematic io make the correct association of photon pairs resulting from \(\pi^{0}\) and \(n\) decay. This is due to the fact that it becomes more probable, simply due to combinatorics, that random photon pairs may have an apparent invariant mass wich falls into the \(\pi^{0}\) or \(\eta\) region. A techntque has been
developed which uses the full information carried in the multiphoton final state to seleci the most probable set of photon pairs. suppressing the selection of unwanted combinatorial background pairs. The selection is accomplished using a neural network type algorithm.

The hasis of the technique is to assign a number to each photon pair combination representing a relative probability that the pair might be correct. The relative probability indicates the likelihood that the pair is a true pair, based primarily on the invartant mass of the phaton pair. The optimum set of photon pairs is to be chosen such that each photon is used in only one photon pair combination and such that the set of selected pairs has the largest probability for being correct. This result is obtained within a neural network scheme by using the initial relative probabilities as input to a set of neurons with one neuron for each possible photon pair combination. For a given photon patr, the output of the corresponding neuron is used to stimulate itself wile simultaneously inhibiting the neurons of all other photon pair combinations involving either of the two photons which provide the primary input to the neuron. The final set of neurons wich remain turned on corresponds to the set of photon pairs which maximizes the overall probability and minimizes the selection of incompatible photon pairs in which a given photon is used more than once.

It is a straightforward matter to encode the neural network described above as an iterative algorithm to be used on a digital computer. The probability that the photun patr consisting of photon \(i\) and photon \(j\) is correct is given by \(p_{1 j}^{n}\), which corresperi is to the output of the neurons after the \(n\) 'th iteration. The inftial probabilities \(P_{i j}^{0}\), corresponding to the input. are determined from any initial information which may be used to estimate the likelihood that a given pair is correct. The probability that pair ij is correct at feration \(n+l\) is given by the expression
\(P_{i j}^{n+1}=P_{i j}^{n}+\beta \cdot\left[f \cdot P_{i j}^{n}=\frac{1}{N_{C o n}} \sum_{k \neq i, j}\left(P_{i k}^{n}+P_{k j}^{n}\right)\right](1)\)
where the parameter \(f\) is the relative feedback gain. It gives the strength of the positive self-feedback relative to the negative input from the other neurons. The factor \(1 / M_{\text {con }}\) normalizes the negative feedback terms by the number of neurons connected to meuron ij so that the relative feedback is essentially independent of photon mitiplicity. The parameter 9 corresponds to the overall gain of the neurons and determines how quickly the probabilities saturate. The property of saturation is introduced by setting
\[
p^{n+1}=\begin{align*}
& 0 \text { if } p_{i j}^{n+1}<0 \tag{2}\\
& 1 \text { if } p_{i j}^{n+1}>1
\end{align*}
\]

The procedure is then to iterate Eq. I until all probabilities have saturated either on or off.

He consider an example of photon measurements using a detector with an energy resolution typical of lead glass and with an energy threshold of 250 MeV . He consider the detector to have complete geometrical acceptance for the photons produced in the \(12-G e V p+A u\) reaction as predicted by the FRITIOFl Honte Carlo code. Some photons will fall below the detection threshold and hence will not be avallable for determination of the other photon to which they are patred. A similar loss of pair information will result from an incomplete geometrical acceptance or from an imperfect photon identification. The invariant mass distribution of the photon pairs is shown in Fig. 2.66. In Fig. 2.66a it is seen that the \(n^{0}\) and \(\eta\) peaks are observed to lie on a large combinatorial background when using all possible photon pairs within an event. The invariant mass distribution of the photon pairs selected by using the neural network algorithm is shown in Fig. 2.66b. The algorithm is observed to suppress strongly the combinatorial background, with the result that the peak-to-total ratio for the \(x^{0}\) and \(\eta\) are improved. The inva snt mass distribution of the actual photon pairs. that is the desired result, is shown in Fig. 2.66c.
1. H. Nilsson-Almarist and E. Stenlund, Comput. Phys. Commun. 43, 387 (1987).

Fig. 2.66. The gamma-gama invariant mass distribution for reactions of protions on Au at 12 GeV with a gamma energy threshold of 250 MeV . The invariant mass is calculated (a) for all possible gama-gamma combinations and (b) for those selected after filtering with the neuralnet algorithm with parameters \(g=0.3\) and \(f=\) 0.1. The mass distribution of the true pairs of (a) and (b) are shown in (c).

ENERGY MEASUREMENTS
FROM SULFUR-IMDUCED REACTIOWS AI \(200 \mathrm{GeV} /\) MUCLEOK

HA8O Collaboration
R. Albrecht \({ }^{1}\)
H. Loehner \({ }^{2}\)
i. C. anes
1. Lund \({ }^{1}\)
C. Baktash
P. Beckmann \({ }^{2}\)
F. Berger \({ }^{2}\)
R. Bock \({ }^{1}\)
G. Claesson!
L. Dragon \({ }^{2}\)
R. L. Ferguson
A. Frani \(^{3}\)
S. Garpman \({ }^{4}\)
R. G1asow \({ }^{2}\)
H. A. Gustafsson
F. E. Obenshain
A. Oskarssont
K. H. Gutbrod
K. H. Kampert \({ }^{2}\)
B. W. Kolb \({ }^{1}\)
P. Kristiansson \({ }^{3}\)
I. Y. Lee
1. Otterlund \({ }^{\text {b }}\)
T. Peitzmann \({ }^{2}\)
5. Persson \({ }^{4}\)
F. Plasil
A. M. Poskanzer \({ }^{3}\)
M. Purschke \({ }^{2}\)
H. G. Ritter \({ }^{3}\)
S. Saini
R. Sant \(0^{2}\)
H. R. Schmidt
T. Stemiarczukl
S. P. Sorensen \({ }^{5}\)
E. Stenlunnt
M. L. Tincknell
G. R. Young

The goal of relativistic heavy-ion experiments is to study hadronic matter at high energy
density, in an interacting volume that is large compared to the size of an individual hadron.
These conditions are obtained experimentally by colliding projectile ions at relativistic energies with target nuclei of similar or greater mass. It is predicted that a sufficiently hot and dense system of hadrons will dissolve briefly into a state of deconfined quarks and gluons, the quark-gluon plasma (GGP). Since the interesting properties of the QGP, and of any othe rollective effects that are not mere superpusitions of nucleon-nucleon collisions, are believed to manifest themselves more clearly with larger volumes and higher energy densities, it is important to compare the results obtained with projectiles of increasing mass. In the fall of 1987, experiment MA80 completed its second run with heavy-ion beams from the SPS accelerator at CERN. The major difference from the first run was that the beam, \({ }^{325}\) at \(200 \mathrm{GeV} / \mathrm{nuc}\) leon, had double the mass and total energy of the ion beam in 1986, \({ }^{160}\). Many of the \({ }^{160}\) results ohtained from the 1986 run have been presented earlier. \({ }^{6}\)

The WA80 experiment contains several components designed to measure different features of high-energy nuclear collisions. This report discusses results from two of these detectors, the MIRAC (MId-RApidity Calorimeter) and the ZDC (Zero-Degree Calorimeter). These measure the total energy of enitted particles in the (approximately) forward hemisphere of the nuclear collision and the residual energy of the projectile spectator nucleons, respectively. Both of these detectors, as well as the other detector systems in Ha80, have been described in detail elsewhere. \({ }^{7}\) Either device can be used as an on-line or off-line trigger to classify collision violence: both increasing scattered energy in the MIRAC and decreasing residual projectile energy in the \(20 C\) correspond to shrinking impact parameters in the reactions. Thus, calorimeters can identify what fraction of the projectile energy is contributing to the reactions, and can trace where that energy is deposited by the participating particles.

The energy spectrd from the \(20 C\) for the 1987 \({ }^{32}\) S run with four targets of increasing mass are
shown in Fig. 2.67. The trend of increasing cross section at low 20C energy with increasing target mass can be understood simply by the geometry of colliding nuclear spheres. Since the lightest target, \({ }^{27} A l\), is actually smaller than \({ }^{325}\), there is virtually no cross section for losing more than 758 of the beim energy (i.e., 1.6 TeV remaining out of 6.4 TeV). For the heaviest target, \({ }^{197} \mathrm{Au}\), there is actually a small peak at 1 TeV (158 of beam energy) corresponding to the complete "dive-in" of the smalle. \({ }^{32} 5\) projectile into the target. For comparison, 1986 data with a 160 beam on four similar targets are shown. The spectral shapes obtained witn the two different projectiles are qualitatively very similar for each target. The main difference to be noted is that the \({ }^{32} \mathrm{~S}\) projectile always has a smaller cross section for

Fig. 2.67. Lero-Degree Calorimeter energy spectra from the interactions of 32 S (right side) and 160 (left side) witr various targets at \(E / A=2 n g \mathrm{GeV}\).
losing a large fraction of the beam energy than does the \({ }^{160}\) projectile. This is because at any impact parameter the larger \({ }^{32} 5\) nucleus has more nucleons that will either miss the target completely or may pass through the periphery of the target and lose little energy.

The energy of the interacting particles, as detected by the MIRAC, is conventionally reported as transverse energy:
\[
E_{T}=\sum_{i=1}^{N} E_{i} \sin \theta_{i}
\]

For particles in the forward hemisphere with energies large compared to their rest masses, e.g., pions, this quantity is approximately the same as transverse momentum and, thus, is nearly Lorentz invariant. The transverse energy spectra from \({ }^{32} \mathbf{S}\) incident on the four targets are shown in Fig. 2.68. The angular range of the

Fig. 2.68. Transverse energy spectra from \({ }^{32} \mathrm{~s}\) (right side) and 160 (left side) interactions with various targets at E/A \(=200 \mathrm{GeV}\). obtainen with the Mid-Rapidity Calorimeter, in the pseudorapidity interval \(2.4 \leqslant n \leqslant 5.5\).

MIRAC used in these figures is from 10.5 to 0.5 degrees, or from 2.4 to 5.5 in pseudorapidity. The shapes of these spectra are again determined primarily by nuclear geametry. The peak at low \(E_{T}\) is caused by the large differential cross sections for large impact parameters and by the threshold of the experimental trigger. The broad plateau is a region where the increasing number of participating particles with decreasing impact parameter produces \(E_{T}\) at a rate that compensates for the decreasing cross section. At very high ET there is a nearly-Gaussian tail that derives from fluctuations in the violence of collisions at nearly-zero impact parameter. Shown for comparison, the 160 data exhibit quite sinilar features. In these data, for the heavy targets, a second peak at high Ep is visible: however, there is no prominent bump at high \(E_{T}\) for the \(32 \mathbf{5}\) data. This is because a larger fraction of the total cross section results from the saller 160 mucleus. completely "diving into" the large targe: nucleus and generating roughly the same large \(\mathrm{E}_{\mathrm{T}}\) signal.

Because \(E_{T}\) is a direct measure of the reacting energy in the coiissicn, it is interesting to study how Et scales \(\boldsymbol{w n}^{\text {h }}\). increasing projectile mass. Until new acceleratnr; become available, e.g., RHIC, increasing projectile mass is the only available means to try to increase the reacting energy. Shown in fig. 2.69 are \(E_{T}\) spectra for \(160+A u\) and \({ }^{32} S+A u\) at \(200 \mathrm{GeV} / \mathrm{nucleon}\). The \({ }^{160}\) ET scale has been multiplied by a factor of 1.60 to approximately align the high-Ep tails of the two spectra. This demonstrates that doubling the projectile's mass and energy produces significantly less than a factor of 2.0 greater \(E_{T}\), contrary to naive expectations. The reason for this is that (at least at SPS energies and for emitted particles in the forward hemisphere), Ef per participait nucleon is almost constant. Inis is demonstrated in Fig. 2.70, were \(E_{T}\) per participant is shown to be roughly constant as a function of residual 20C energy for eight separate beamtarget combinations at \(200 \mathrm{GeV} / \mathrm{nuc} \mathrm{l}_{\mathrm{e}} \mathrm{on}\). The constant value, about \(2 \mathrm{GeV} / \mathrm{participant}\), nearly the same in each case. The number of

Fig. 2.69. A comparison of transverse energy distributions from 160 and \(32 S\) reactions with Au. The transverse energy scale of the 160 data has been multiplied by 1.60 to approximately align the right-hand tails of the distributions.
participants was calculated from the event ZDC energy, using the correlation of the average number as a function of ZDC energy in the FRITIOF Monte Carlo event simulation code. Returning to the \(E_{T}\) scaling law, the number of projectile participants obviously scales as \(A_{p}\) in a central collision. However, the number of target participants is determined by the cylindrical volume the projectile cuts out of the center of the target sphere, which scales only as \(A_{p}^{2 / 3} \cdot A_{T}^{1 / 3}\); and, thus, the total sum scales as less than \(A_{p}^{l}\). Since \(E_{T}\) participant is constant, \(E_{T}\) also scales as \(A_{p}^{x}\), where \(x \sim 2 / 3\) when comparing 160 and 325 results.

Although the energy density threshold for the transition to a Map is not accurately predicted by current theories, many sources concur that the critical dalue is in the range \(1-3 \mathrm{CeV} / \mathrm{fm}^{3}\).

Fig. 2.70. Average transverse energy per participating nucleon as a function of the energy observed in the Zero-Degree Calorimeter. Sulfur-32 data at \(E / A=200 \mathrm{GeV}\) are shown on the right side; \({ }^{160}\) data at the same energy are depicted on the left side. Vertical bars indicate the degree of uncertainty in the average transverse energy values.

At present, a reliable and well-established way to measure the energy density experimentally is not avallable. The oft-quoted Bjorken formula is:
\[
c_{Q J}=\left(d E_{T} / d y\right) /\left(F_{T}\right) \text {. }
\]
where \(d E f / d y\) is the transverse energy per unft rapidity, \(F\) is the face area of the participating sections of the nuclet, and \(\tau\) is the proper formation lengtn, canonically taken to be 1 fm. This expression was deifived under the assumption that there is a flat plateau in \(d E F_{\text {/ }}\) dy ds d function of rapidity \(y\), which is a poor approximation for energies as low as those of the sus experiments.

The questionable applicability of Bjorken's formula has launched a search for alternative formulations. One such alternative is a fireball model, in which the energy density is merely the fireball energy divided by the firedall volume:
\[
\epsilon F B=E_{F B} / V_{F B}
\]

For an isotropic fireball, the total energy is simply proportional to the total transverse energ/:
\[
E_{F B}=\frac{4}{\pi} \cdot E_{T}(t \text { tot } a l)
\]

The volume may be estimated from the cylinder taken at a time in the c.m. frame just after the rear edges of the nuclei have finished passing through each other. The volume of the cylinder is the product of the face area of the participants, and a length equal to the sum of the Lorentz-contracted diameters of the participating sections plus a 1-fin formation length for the produced particles to satisfy the energytime uncertainty relation after the collisions of the rear-most nucleons. This formula:
\[
V_{F 8}=F\left(\frac{\left\langle D_{p}\right\rangle}{r_{p}}+\frac{\left\langle D_{t}\right\rangle}{r_{t}}+\tau\right)
\]
lessens the dependence of efB on the unknown parameter t.

As defined above, both c8j and cFs can be calculated for each event from the observed \(d E_{T} / d(n)=d E_{T} / d y\) distribution, and from the impact parameter of the collistion which is deduced from the 2DC energy with the help of the FRITIOF model. Shown in Fig. 2.71 are scatter plots of \(c_{B J}\) vs \(E_{2 d C}\) and \(e_{B J}\) vs \(E_{T}\) for three colliding systems: \(160+A_{u}\) at \(60 \mathrm{GeV} / \mathrm{nucleon}\). 160 + Au at \(200 \mathrm{GeV} / \mathrm{nuc}\) leon, and 32 S . Au at 200 GeV/nucleon. T se plots show that the Bjorken energy density is indeed in the range of \(1-3\) GeV/fin. Mote that the most probable energy densities incredse significantly going from 60 GeV to 200 GeV , and that the increase in going from \({ }^{160}\) to \({ }^{325}\) at 200 GeV is small. There is also a strong anticorrelation of \(\in 8 J\) with \(E_{z A C}\). and a strong positive correlation of ebJ with

Fig. 2.71. Energy densities associated with individual events determined from the Bjorken model (see text). In the left column are energy densities plotted against Ezdc; on the right are energy densities plotted against transverse energy. The top two figures are \({ }^{160} 0+A u\) at 60 Gev/nucleon; the widdle two are 160 + \(A u\) at 200 GeV/nucleon; and the botion two are 32 S + Au at \(200 \mathrm{GeV} / \mathrm{nucleon}\).
\(E_{\mathrm{T}}\); thus, the Bjorken energy density is a function of impact parameter.

In Fig. 2.72 are displayed scatter plots for efs vs \(E_{\text {zdc }}\) and efB ws \(E_{T}\) for the same three cases. The fireball model estimates of energy density are in the range 1 to \(4 \mathrm{GeV} / \mathrm{fm}^{3}\), even higher than Bjorken's estimates. The increase in going from 60 GeV to 200 GeV is still a factor of 2 , corresponding directly to the difference in c.m. energy. It is interesting to note that efB is much less anticorrelated with \(E_{2 d c}\) and less correlated with \(E_{T}\) than eBJ is. This behavior may, in fact, be reasonable since these (anti)correlations imply that energy density does not depend strongly on the number

Fig. 2.72. Same as Fig. 2.71 but for energy densities determined from the fireball model (see text).
of participants, but merely on the colliding energy. Increasing the participants does, however. increase the volume and time over wich the fireball may equiliorate, and it may, thus, enhance the possibility for observing the QGP.

In conclusion, the 198732 S data taken with the WABO MIRAC and ZDC have been presented. Both the ZDC energy spectra and the MIRAC \(E_{T}\) spectra are qualitatively similar in shape to their counterparts from the \(1986{ }^{160}\) data. The features of the spectra can be simply understood by a clean-cut model of nuclear spheres colliding at various impact parameters. The transverse energy increases by less than a factor of two when the projectile mass and total energy double. This is d consequence of the fact that Et per particioant nucleon is constant at a given bombsrding energy regardless of the projectile, target, or impact parameter. The
energy density can be estimated on an event-byevent basis by either Bjorken's model or by a fireball model. Both estimates result in energy densities in the range of 1 to \(3 \mathrm{GeV} / \mathrm{f}^{\mathbf{3}}{ }^{3}\). Wich is encouraging for the possible formation of the quart-gluon plasma at SPS energies.

\footnotetext{
1. Gesellschaft fuer Scmmerionenforschung (GSI), D-6100 Darmstadt, Fed. Rep. Germany.
2. University of Huenster, 0-4400 Muenster, Fed. Rep. Germany.
3. Lawrence Berkeley Laboratory, Berkeley, California 94720.
4. University of Lund, S-22362 Lund, Smeden.
5. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
6. Phys. Div. Prog. Rep. Sept. 30, 1987. 0RNL-6720 (Mar. 1987), DP. \(110-13\).
7. Ibid., pp. 115-20.
}

\section*{STUDY OF FLUCTUATIOMS II CHAREED-HALTIPRRTICLE PROOLCTIOM IM 200-GeV/MICLEON MUCLEUS-MUCLEUS COLIISIONS}

> WA8O Collaboration
\begin{tabular}{|c|c|}
\hline R. Albrecht \({ }^{1}\) & 1. Y. Lee \\
\hline T. C. Ames & H. Loehner \({ }^{2}\) \\
\hline C. Baktash & 1. Lund \({ }^{\text {l }}\) \\
\hline P. Beckmann \({ }^{2}\) & F. E. Bbenshain \\
\hline F. Berger \({ }^{2}\) & A. Oskarsson \({ }^{4}\) \\
\hline R. Bock \({ }^{1}\) & 1. Deterlund \\
\hline G. Claesson \({ }^{\text {l }}\) & T. Peitzmann \({ }^{2}\) \\
\hline L. Dragon \({ }^{2}\) & S. Persson \({ }^{4}\) \\
\hline R. L. Ferguson & F. Plasil \\
\hline A. Franz \({ }^{3}\) & A. M. Poskanzer \({ }^{3}\) \\
\hline S. Garpmant & M. Purschke \({ }^{2}\) \\
\hline R. Gilascon & H. G. Ritter \({ }^{3}\) \\
\hline H. A. Gustafsson \({ }^{4}\) & R. Santo \({ }^{2}\) \\
\hline H. H. Gutbrod \({ }^{1}\) & H. R. Schmidt \({ }^{\text {l }}\) \\
\hline K. H. Kampert \({ }^{2}\) & T. Siemiarczuk \\
\hline B. W. Kold \({ }^{1}\) & S. P. Sorensen \({ }^{5}\) \\
\hline P. Kristiansson \({ }^{3}\) & \(E\). Stenlund \\
\hline
\end{tabular}

One of the goals of the wa80 experiment is a search for fluctuations in the number of particles produced per unit rapidity. Such fluctuations had been suggested by van Hove \({ }^{6}\) and others as possible signals of the rather violent reversion of a quark-glison plasma back into a hadronic state. Recent theoreticai work by Hwa' and by Bialas and Pescnanskis has suggested that moments of the multiolicity ilstribution taken as a function of the raptatty interval would yield information on whether dynamical eorrelations and one (or a few) characteristic
scales exist or wether, instead, a "continuum" of scales charac arizes the observed distributions.

The HA80 setup includes large arrays of streamer tubes which are read out by pads of a few square centimeters in size. A reasonably accurate measurement of the mitiplicity of charged particles enitted as a function of pseudorapidity (\(n\)) and azimuth is obtained. (Information on neutral particles and on particle momenta is not available, so the above analyses can only be made for charged particles as a function of pseudorapidity.) The pseudorapidity resolution of the counters has been studied zad has been shown to have an mos deviation of 0.067 units (averaged over the range \(2.4 \leqslant \eta \leqslant 4.0)\). meaning that structures larger than that could be identified, should they exist.

Hwa considered the case mere a phase transition (e.g., from a quark-gluon plasma state back to a hadron gas) exhibits a large correlation length, similar to the dynamical effects seen in critical phenomena, such as critical opalescence. In this case, the ratio of the dispersion to the mean of the multiplicity distribution is expected :o become large. However, in order to examine this effect, the geonetrical part of the observed fluctuations. which arise from impact parameter variation. must first be removed. One can restrict the impact parameter range by restricting the mean multiplicity studied. In order to avoid problems wich would arise as a result of this restriction. Hra suggested varying the mean multiplictty by changing the \(\eta\)-window studied, while keeoing its center fixed. The dispersion/mean ian then be studied as a function of this \(n\)-window size. The fluctuations arising from geometry should be nearly independent of the window size, wile those arising from dynamical effects should be enhanced for a small window size. This latter result arises from an enhanced twn-partirle correlation in phase space (if there are dynamical correlations), wich itself arises from a large correlation length at a phase transition.

The following definitions refer to the method proposed by hua:
\(P(n)=\) probability for measuring \(n\) charged particles,
<n> \(=\) mean of \(P(n)\) distribution,
D \(\left.=\|\left(\left\langle n^{2}\right\rangle-a\right\rangle^{2}\right)\) is the dispersion,
C2 \(=\left\langle n^{2}\right\rangle /\langle n\rangle^{2}\) is the second central moment.
Hwa has shown that the quantity \(\mathrm{S} 2=\mathrm{C2}\) -
\(1 /\) n \(>\) can be expressed as the sum of two terms,
where the first reflects geometrical effects and must be larger than 1.0 , and the secono contains any effects due to dynamical correlations. Any enhancements due to the latter are expected to appear for small values of the \(n\) window studied.

The results of the wa80 1,96 runs with 200Gev/nucleon \({ }^{16} 0\) have been analyzed according to the above suggestions. A similar analysis has also been carried out for events generated by the VEMUS (version 1.06) event generator.9 Results are presented in Table 2.12 for both minimum bias events and for "central" events selected by requiring that the energy in the Zero-Degree Calorimeter (20C) De less than \(20 \%\) of the projectile energy.

Given the similarity of the results from the data and the VENUS model events, and also given the nearness of the values of 52 to 1.0 , particularly for the central events, there does not appear to be strong evidence present for the existence of dyramical correlations in the present data. He have also checked that the use of
pseudorapidity instead of rapidity (the phasespace variable) in the analysis does not alter the results: calculations using VENUS events and an analysis in terms of rapidity yield the same result.

The analysis method proposed by Bialas and Peschanski is, in some sense, a more general version of the above analysis. They propose that the "scaled factorial moments," \(F_{i}\), of the multiplicity distribution be extracted and examined for the presence of large, nonstatistical fluctuations. They pointed out that the variation of these moments with the "window" selected in rapidity would give an indication of the existence of a particular scale in rapidity for the creation of the final particles; such a scale might reflect the conditions at hadronization of a quark-gluon plasma. These authors also suggested that one might, instead, observe a pattern in these moments that is characteristic of what is known as "intermittency" in hydrodynamics. This is a pattern known from studies of turbulent fluid flow in which fluctuations appear on a range of different scales but are limited to small parts of phase space.

These moments can be defined as:
\[
\begin{aligned}
F_{i} & =\frac{1}{M} \sum_{i=1}^{M}\left(\mu^{i}\right) \\
& \times \frac{x_{m} *\left(k_{m-1}\right) * \ldots *\left(k_{m-i+1}\right)}{\langle N\rangle^{i}}
\end{aligned}
\]

Table 2.12. Results of analysis of WA80 \({ }^{16} 0+197 \mathrm{Au}\) data at \(E / A=\) 200 GeV and of corresponding VENUS simulation events using the method of Ref. 1 (see text). The bin center was taken at \(\eta=3.0\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{n-window} & \multicolumn{4}{|c|}{Minimum Bias} & \multicolumn{4}{|c|}{Central} \\
\hline & \multicolumn{2}{|c|}{WA80} & \multicolumn{2}{|c|}{venus} & \multicolumn{2}{|c|}{WA80} & \multicolumn{2}{|c|}{venus} \\
\hline & Mean & \$2 & Mean & 52 & Mean & 52 & Mean & 52 \\
\hline 0.30 & 15.1 & 1.36 & 14.8 & 1.40 & 25.5 & 1.03 & 27.6 & 1.04 \\
\hline 0.60 & 29.6 & 1.39 & 28.3 & 1.45 & 53.6 & 1.02 & 54.8 & 1.03 \\
\hline 0.90 & 44.1 & 1.39 & 42.0 & 1.46 & 80.0 & 1.02 & 81.4 & 1.03 \\
\hline 1.20 & 57.6 & 1.39 & 55.3 & 1.45 & 104.6 & 1.02 & 107.2 & 1.02 \\
\hline 1.50 & 70.2 & 1.38 & 68.2 & 1.45 & 127.3 & 1.02 & 132.1 & 1.03 \\
\hline 1.80 & 82.2 & 1,38 & 80.4 & 1.45 & 148.8 & 1.02 & 155.4 & 1.02 \\
\hline 2.10 & 94.1 & 1.38 & 91.9 & 1.44 & 170.2 & 1.02 & 117.1 & 1.02 \\
\hline 2.40 & 106.1 & 1.38 & 102.6 & 1.44 & 191.7 & 1.02 & 197.3 & 1.02 \\
\hline
\end{tabular}
where \(M\) is the total mumber of equally sized "bins" into which a given rapidity interval is Subdivided, \(N\) is the total multiplicity in the rapidity interval, and \(K_{m}\) is the number of particles in the m'th bin. These moments are straightforward to compute from the data. Bialas and Peschanski showed that if the \(F_{i}\) are averaged over many events, the resulting moments are equal to the moments of the true probability distribution of particles in phase space. This then avoids the problen of having only integral numbers of particles in a given rapisity interval in a real event and the problem of having counting staifstics fluctuations present in the rapidity distribution for a specific event.

The presence of nonstatistical fluctuations will influence the absolute values of \(F_{f}\) and will also influence the variation of \(F_{i}\) with the size of the rapidity bins, \(\Delta Y\), into wich the overall rapidity interval is subdivided. For example, if there exists a set of fluctuations on a rapidity scale \(S\), then \(F_{f}\) will increase with decreasing \(\Delta Y\) until the scale \(S\) is reached, after which point \(F_{j}\) will become constant. If, on the other hand, an intermittent pattern exists, where \(F_{i}\) depend on \(\Delta Y\) vid a power law relation, then \(F_{f}\) will be observed to increase with decreasing \(\Delta Y\) down th the resolution limits of the datd.

A plot of the logs of the \(2 \mathrm{nd}, 3 \mathrm{rd}, 4 \mathrm{th}\), and Sth moments. \(\ln \left(F_{i}\right)\), ws the negative \(\log\) of the width of the pseudorapidity bin, \(-\ln (\Delta \eta)\), is shown in Fig. 2.73. Results are presented for "peripheral" and "central" collisions of E/A = 200-GeV \({ }^{160}\) with \({ }^{197}\) Au. The "peripheral" events are given as filled triangles and correspond to observed energies in the \(2 D C\) of \(1.0-1.8 \mathrm{TeV}\) (31-56\% of the projectile energy). The "central" events correspond to observed energies of less than 0.4 TeV in the \(2 D C\) (\(12 \%\) of the projectile energy). For both classes of events the log of the observed moments rises linearly with the negative log of the pseudorapidity bin. The observed rise is not unlike that expected for an intermittent pattern. Also included on this figure are the resulis of the same analysis done ny using events created by the string-midel pro-

Fig. 2.73. Plot of the log of the 2nd thru \(5 t h\) factorial moments for the \(E / A=200-G e V\) \(160+197\) Au naltiplicity data of WA80 vs the 109 of the pseudorapidity interval for wich the moments mere calculated. The moments used are the scaled factorial moments proposed by Bialas and Peschanski, as defined in Ref. 8. The oseudorapidity interval covered is 2.4 to 4.0 units.
gram FRITIOF. These are shown as open squares and are observed to show little, if any, dependence of the log of the factorial moments on the pseudorapidity window. Note that the smallest pseudorapifity bin used throughout this analysis was \(\Delta \eta=0.1\).

These results thus do not shom any evidence for dynamical correlations (using the analysis method of itwa). nor for a "fixed" scale of the observed fluctuations (using the analysts method of Bialas and Peschanski). The observed pattern is not unlike that expected for an intermittent source, at least down to the scale in pseuriorapidity (0.1) observable with the wago apparatus.

\footnotetext{
1. Cesellschaft fuer Schwerionenforschung (CSSI). D-6100 Darmstadt, Fed. Rep. Cammany.
}
2. University of Muenster, D-4400 menster, Fed. Rep. Germany.
3. Lawrence Berkeley Laboratory, Berkeley, California 94720.
4. University of Lund, 5-22362 Lund, Sweden.
5. Adjunct research participant from the University of Tennessee. Knoxville, Tennessee 37996.
6. L. van Hove, Mucl. Phys. M47, 443c (1985).
7. R. Hwa, 2. Phys. C 38, 277 (1988): R. Hma. University of Oregon preprints 0its-385 and 0ITS-393.
8. A. Bialas and R. Peschanski, Mucl. Phys. 8273. 703 (1986); A. Bialas and R. Peschanski, Jagellonian University preprint TPJU/4/88.
9. K. Werner and M. Kute \(m\).. a, Phys. Lett. 1838, 385 (1987); K. Herner. Brookhaven Mational Laboratory preprint 39726.

INTRIMSIC MOTOM SPECTRA FROM 150-IMDUCED REMCTIOMS AT 200 CeV/mucleon

\section*{ma80 Collaboration}
\begin{tabular}{|c|c|}
\hline R. Albrecht \({ }^{\text {l }}\) & I. Y. Lee \\
\hline T. C. Ates & H. Loetner \({ }^{2}\) \\
\hline C. Baktash & 1. Lund \({ }^{1}\) \\
\hline P. Beckmann \({ }^{2}\) & F. E. Obenshain \\
\hline F. Berger \({ }^{2}\) & A. Oskarssont \\
\hline R. Bock \({ }^{1}\) & 1. Otterlund \\
\hline 6. Claesson \({ }^{\text {l }}\) & T. Peitzmann \({ }^{2}\) \\
\hline L. Jragor \({ }^{2}\) & S. Perssont \\
\hline R. L. Fel guson & F. Plasil \\
\hline A. Franz \({ }^{3}\) & A. M. Poskanzer \({ }^{3}\) \\
\hline S. Garpman & M. Purschke \({ }^{2}\) \\
\hline R. Glasow \({ }^{2}\) & H. G. Ritter \({ }^{3}\) \\
\hline H. A. Gustafssor \({ }^{4}\) & R. Santo \({ }^{2}\) \\
\hline H. H. Gutbrod \({ }^{\text {l }}\) & H. R. Schmidt \({ }^{1}\) \\
\hline K, H. Kampert \({ }^{2}\) & T. Siemiarczuk \({ }^{\text {l }}\) \\
\hline B. W. Kolbl & S. P. Sorensen \({ }^{5}\) \\
\hline P. Kristiansson \({ }^{\mathbf{3}}\) & E. Stenlund \({ }^{\text {a }}\) \\
\hline
\end{tabular}

The Maso experiment at the CERM SPS is designed to measure the distribution of charged particles over a large fraction of phase space. to analyze the fonvari and transverse energy distributions, and to investigate the target fragmentation region. In acdition, photons and neutral pions are identified near midrapidity in a high-resolution lead-glass electromannetic calorimeter (SAPHIR). This allows a cetailed analysi= of the photon and \(x^{0}\) transverse momentum (DT) dist:ibutions based on centrality selections mide using the energy measurements or the charged-particle multipifity measurements. The experimental setup has been described in detail elsewhere. \({ }^{6}\) The SAPHIR detector consists of 1278 individually readout lead-glass -...ules with a total pseudorapidity , verage of 1.5 s
\(n \geqslant 2.1\) and a solid angle of 0.13 steradian. Charged particles are identified in SAPHIR by a double layer of streamer tubes with pad readrut located in front of SAPHIR. The streamer tube material contributes \(4 \%\) to the photon conversion probability. The target vacuum chamber contributes an additional 0.4\%. Details of the construction and performance of SAPHIR are given elsewhere. \({ }^{7}\)

Besides the investigation of pion momentum distributions \({ }^{8}\) and correlation studies, the ultimate objective of photon detection in relativistir heavy-ion collisions has been the detection of direct photons hich promise to provide, clean sigral of thermal radiation from the expected quark-gluon plasms.' However. this analysis is severely hampered by the presence of decay photons from the various meson decays. anong those, the \(\pi^{0}\) ani the \(\eta\) are clearly the dominant source of single-photon backgriand which must be subtracted from the inclusive photon yield to determine the yield of direct photons. Other possible sources of photon background from beam halo and wisidentified hadrons have been shown to be negligible for the wa80 detector setup. A Monte Carlo code, wich uses the measured \(\boldsymbol{n}^{0}\) and \(\eta\) cross sections and known branching ratios and kinematics for photon decay of these mesons, is used to calculate the photon yield from \(m^{0}\) and \(\eta\) decays within the SAPHIR detector acceptance. It is, therefore, essential to determine the \(\pi^{0}\) and \(n\) cross sections in order that the contribution of decay photons can be calculated accurately. The extraction of the \(x^{0}\) cross section has been described elsewhere." Unfortunately, the determination of the \(\eta\) cross section is more difficult because the \(\eta\) acceptance of SAPHIR is much lower than for the \(\pi^{0}\), wue to the larger opening angle for the \(n\)-decay photons. Nevertheless, we obtain the mass spectrum shown in Fig. 2.74, where a clear \(\eta\) signal is observed in a limited PT region with a peak width compat tble with the neasured detector resolution. From the observed peak, the ra:io \(n / x^{0}=0.74 \pm 0.23\) is derived, which is in accordance with results from \(p+p\) reactions. The \(n\) spectrum in other \(D_{T}\) regions

Fig. 2.74. Invariant mass spectrum of ry pairs from minimm blas data, showing the \(x\) and \(\eta\) peaks for \(160+\) Au at 200 A GeV. Only photons with \(E_{\gamma}>500 \mathrm{MeV}\) and \(2 \mathrm{GeV} / \mathrm{C} \leqslant \mathrm{PT}(\mathrm{rr}) \leqslant 2.4\) GeV/c are considered. The small inset shows the mass region around the \(\eta\) peak.
is obtained with the assumption that, as observed in \(p+p\) reactions, the \(\eta\) yield is simply proportional to the \(x^{0}\) yield, when scaled by the respective transverse masses. Finally, heavier mesons, which also photon decay, are expected to produce only an additional small fraction of the \(\eta\) contribution and have been neglected thus far in the prelininary anal-ses. By comparing the photon measurements in fferent event classes, uncertainties dur co detector response, such as nonlineari'ies. acceptance, and opometry, automatically cancel. Also. uncertainties due to the photon contributions from \(n\) - and heaviermeson decays will cancel if their production scales with the \(\pi^{0}\) production, independent of the event type. Trus. comparisons af the direct photon production in central versus peripheral redctions a!low: a comparison of results for high density nuclear motter to inose for low density matter
(cf. as in hadron-hadron collisions), with approximately the same systematic errors for each. However, an important difference in the analysis of the phot on results for the different event types is that the photon reconstruction efficiency is found to be altiplicity-dependent. This situation will be improved in the future by more sophisticated analysis techniques currently under development.

The measured inclusive \(\gamma / \pi^{0}\) ratio for peripheral reactions of \(160+\) Au at 200 A GeV is shom by the solid crosses in Fig. 2.75. Also shom are the calculated contributions of decay photons from \(\pi^{0}\) decay (solid histogram) and from both \(5^{0}\) and \(\eta\) decays together (dashed histogran). The errors indicate the statistical errors plus the error due to the uncertainty in the \(\pi / \pi^{0}\) ratio. The preliminary estimate of the direct \(\gamma / x^{0}\) ratio is then obtained by subtracting the dashed histogran from the inclusive photon measurement. Thus, the peripheral direct \(r / x^{0}\) ratio is seen to be consistent with a value of zero. This is in agreement with results observed in hadron-hadron collisions \({ }^{10}\) in wich \(\boldsymbol{y} / \mathbf{I}^{0}\) is observed to differ stgnificantly fram zero only in the pT region above about \(3 \mathrm{GeV} / \mathrm{c}\). On the other hand, the preliminary result for central collisions shown in Fig. 2.76 indicates that there is an excess of direct photons which is not observed in peripheral collisions. This trend is in qualitative agreement with predictions for the formation of a quark-gluon plasma.g it remains to be determined wether this preliminary result will be verified in further, more complete analyses, and, if so, whether it might also have other more conventional explanations in terms of dense hadronic matter.

\footnotetext{
1. Gesellschaft fuer Schwerionenforschung
(GSI), D-6100 Darmstadt, Fed. Red. Germany.
2. Infiversity of Muenster, D-4400 Muenster. Fer. Rep. Sermany.
3. Lawrence Berkeley Laboratory, Berkeley, Calffornid 94720.
4. University of Lund, S-22362 Lund, Sweden.
5. Adjunct resea ch participant from the Intrarsipy of lennessee, Knoxullie, Tennessep 31395.
}

Fig. 2.75. \(\mathrm{r} / \mathrm{x}^{0}\) ratio for peripheral reactions of \(160+\mathrm{Au}\). The solid crosses indicate the inclusive ratio and it's statistical error. The full-1ine histogran shows the contribution to this ratio due to photons from \(\pi^{0}\) decays. The dashed-line histogram shows the sum of decay photons from the \(x^{0}\) and \(\eta\) mesons, together with the statistical uncertainty from the Monte Carlo simulations and from the measured \(\eta / \pi^{0}\) ratio. The preliminary oirect \(y / x^{0}\) ratio is extracted from the difference between the crosses and dashed-line histogram.

Fig. 2.76. Same as Fig. 2.75 for central reactions.
6. "Etudy of Nucleus-Nucleus Ccllisions at Relativistic Energies: CERM-SPS WA8O Experiment," Phys. Div. Prog. Rep., Sept. 30, 1985. ORNL-6233 (April 1986), p. 149.
7. H. Lohner et al., WA8O Collaboration, Z. Phys. C 38, 97 (1988).
8. "no Momentum Distributions frow Central and Peripheral \({ }^{160}\) + Au Collisions at 200 GeV/Nucleon." Phys. Div. Prog. Rep., Sept. 30, 1988, CRNL-6508.
9. R. C. Hiva and K. Kajantie, Phys. Rev. 0 32, 1109 (1985).
10. T. Fe.bel and W. R. Molzen, Rev. Mod. Phys. 56, 18! i1984).

\author{
no nowentur DISTRIBUTIONS \\ FROM CENTRAL AND PERIPHERAL 160 + AU COLLISIONS AT 200 A CeV \\ W480 Collaboration
}
\begin{tabular}{|c|c|}
\hline R. Albrecht \({ }^{\text {l }}\) & I. Y. Lee \\
\hline T. C. Ares & H. Loehner \({ }^{2}\) \\
\hline C. Baktash & I. Lund \({ }^{\text {l }}\) \\
\hline P. deckmann \({ }^{2}\) & F. E. Obenshain \\
\hline F. Berger \({ }^{2}\) & A. Oskarssorn \\
\hline R. Bock \({ }^{1}\) & 1. Otterlund \({ }^{\text {d }}\) \\
\hline G. Claessonl & T. Peitzmann \({ }^{2}\) \\
\hline L. Dragon \({ }^{2}\) & S. Persson \({ }^{6}\) \\
\hline R. L. Ferguson & F. Plasil \\
\hline A. Franz \({ }^{3}\) & A. M. Poskanzer \({ }^{3}\) \\
\hline S. Farpman \({ }^{4}\) & M. Purschke \({ }^{2}\) \\
\hline R. Glasow \({ }^{2}\) & H. F. Ritter \({ }^{3}\) \\
\hline H. Enotafsson \({ }^{4}\) & R. Santo \({ }^{2}\) \\
\hline H.. H. Gutbrod \({ }^{1}\) & H. R. Schmidt \({ }^{\text {i }}\) \\
\hline in. H. Kampert \({ }^{2}\) & T. Stemiarczuk \({ }^{\text {l }}\) \\
\hline B. W. Kold \({ }^{1}\) & S. P. Sorensens \\
\hline P. Kristiansson \({ }^{3}\) & E. Stenlund \({ }^{\text {d }}\) \\
\hline G. R. & \\
\hline
\end{tabular}

First results from ultrarelativisifc heavyion experiments at the CERN SPS have shown that with \(200-\mathrm{A}-\mathrm{GeV}{ }^{160}\) projectiles high energy densities are created, wicn approach the critical values for a quark-gluon phase transition predicted by OCD lattice calculations. One means of studying the properties of the compressed and highly excited reaction zone is the investigation of the transverse momentum (DT) spectra of produced pions and their dependence on the centrality of the reaction. To distinguish different contributing processes and to provide a reliable basis for comparisons with \(p+p\) scattering, a large 町 coverage is required. In particular, data at \(h i g^{h}\) DT values are desirable, where hard processes become 'mortant and may be calculated by perturbative \(X C D\). The present investigation of \(\pi^{0}\) spectra has, therefore,
concentrated on a detailed measurement of PT spectra up to \(2.8 \mathrm{GeV} / \mathrm{c}\) and on the selection of data aciording to the centrality of the reaction.

The experiment has been performed at the CERN SPS. The WA80 experimental arrangement has been described earlier. 6 schematic drawing of it is shown in another contribution to this progress report. 7 The pion data were obtained with the lead-glass electromagnetic calorimeter (SAPHIR), and the degree of collision centrality was deduced from data obtained with the ZeroDegree Calorimeter (ZDC). In the data presented here, the minimum bias trigger is defined by the requirement that less than \(88 \%\) of the total oxygen projectile energy is measured in the \(\mathbf{Z D C}\) and that at least one charged particle is recorded by the multiplicity detectors in the pseudorapidity range \(4.4 \geqslant \eta \geqslant 1.2\). Weutral pions are identified by their decay photons \(\left(\pi^{0} \rightarrow 2 \gamma\right)\), and \(\pi^{0 * d M / d \rho_{T}}\) distributions are obtained from invariant mass spectra by a procedure described elsewhere. \({ }^{8}\)

Figure 2.77 shows the minimum bias \(\pi^{0}\) data for \(p+A u\) and \(160+A u\) together with an exponential fit \([1 / P T d N / d p T \sim \exp (-P T / T)]\) to the data in the range \(0.8<\) PT \(\leqslant 2 \mathrm{GeV} / \mathrm{C}\). The difference between the \({ }^{16} 0\) + Au and \(p+A_{1}\) spectra of Fig. 2.77 is clearly displayed by plotting the ratios of the spectra (Fig. 2.78). A similar representation has been used previously by Cronin et al.9 to discuss the nuclear enhancement of \(p+A\) compared to \(p+p\) data. In their work, a scaling of the minimum-bias crosssection ratios with ararget and a rise of a with PT has been observed for charged pions in the range \(0.8<\) PT \(<5 \mathrm{GeV} / \mathrm{C}\). A similar enhancement due to the different projectile masses involved is obviously seen here in going from \(\rho+\) Au to 160 + Au reactions.

More insight into the mechanism of heavy-ion reactions at high energies can be gained by selecting central and peripheral collisions. Collective efforts or the formation of new states of nuclear matter are expected predominontly in very central collisions. Data from peripheral collistons may, on the other hand,

Fig. 2.77. Invariant \(x^{0}\) cross sections from collisions of \(p\) and 160 projectiles with an Au target at 200 A GeV measured in the pseudorapidity range \(1.5<\eta<2.1\). An exponential is fitted to the data in the PT region from 0.8 to \(2 \mathrm{GeV} / \mathrm{c}\) (solid line) and is continued over the full PT range (dashed line). The slope parameters are \(T=210 \pm 3 \mathrm{MeV} / \mathrm{c}\) for \({ }^{160}+\mathrm{Aus}^{2}\) and \(T=\) \(196 \pm 4 \mathrm{MeV} / \mathrm{c}\) for \(\mathrm{p}+\mathrm{A}_{\mathrm{H}}\), respectively.

Fig. 2.78. Ratio \((160+A u) /\left(p+A_{u}\right)\) Dr minimum-bias \(x^{0}{ }^{*} p_{i}\) spectra normalized to unity.
provide a link between \(p+A\) and \(p+p\) reactions. The centrality selection has been achieved by cuts in the ZDC energy. Central events are defined by \(0<E_{\text {ZOC }} / E_{\text {beam }} \leqslant 307\), corresponding to 378 of the minimum-bias cross section, while peripheral events are defined by 40 s \(\varepsilon_{Z D C} / \varepsilon_{\text {beam }} \leqslant 88 \%\), corresponding to \(54 \%\) of the minimu-bias cross section. In Fig. 2.79 spectra of central and peripheral events are displayed. Exponential fits are again shown for 0.8 < PT < 2 GeV. The following differences between central and peripheral collisions are apparent in the data of Fig. 2.79: (i) the steeper slope observed in the minimm-bias data at lowest-pt values (\(\mathrm{pt} \leqslant 0.8 \mathrm{GeV} / \mathrm{C}\); see also Fig. 2.17) is

Fig. 2.79. Invariant \(\pi^{0}\) cross sections from collisions of 160 projectiles with an \(A_{u}\) target at 200 A GeV measured in the pseudorapidity range \(1.5 \leqslant \eta\) < 2.1 for different Ezpe windows. The squares correspond to central collisions, the dots to peripheral collisions. An exponential is fitted to the spectra for \(0.8 \leqslant \mathrm{DT}^{\circ}\) \& \(2 \mathrm{GeV} / \mathrm{c}\) (solid line) and is continued over the full pt range as a dashed line. The slope parameters are \(\mathrm{T}=189 \pm 5 \mathrm{MeV} / \mathrm{c}\) for the peripheralcollision data and \(\mathrm{T}=220\) + \(5 \mathrm{MeV} / \mathrm{c}\) for the central-collision data, respectively.
also seen in the central-collision data, but not in the peripheral-collision data; (ii) in the intermediate region, \(0.8 \leqslant \mathrm{PT}^{\circ} \leqslant 1.8 \mathrm{GeV} / \mathrm{C}\), the spectra show a mell-developed exponential shape with a significantly flatter slope for central collistions compared to peripheral collisions: (iii) for PT \(>1.8 \mathrm{GeV} / \mathrm{C}\), central-collision spectra maintain the slope of the lower-pt range while the peripheral-collision spectra show a clear deviation from the low-PT behavior with a much flatter slope in the higher-pt region.

Figure 2.80 shows the comparison of peripheral \(\mathrm{E}^{0}\) spectra from 150 + Au at 200 A GeV (19.4-GeV nucleon-nucleon c.m. energy) witt charged-pion spectra from \(p+p\) collisions at a similar c.m. energy. 10 There is a remarkable agreement in the sper.tral slope of the data up to the highest OT of the present experiment. The flattening of the slope in the \(p+p\) data beyond \(-2 \mathrm{GeV} / \mathrm{c}\) has been interpreted as the onset of hard \(0 C D\) scattering, wich is expected to become important

Fig. 2.80. Comparison of peripheral \(\mathrm{m}^{0}\) soectra from the presen: \({ }^{160}\) + Au expertment at nucleon-nucleon c.m. energy of 19.4 GeV with charget pion spectra from minimum-bias \(p\). data dt 23 Cev. 10 (\(\pi\) - and \(\pi\). datit are averijen and plotet ds one common sete of (idtis point:.)
for \(p_{T}\) values of several GeV/c. It, therefore. appears that the hard scattering component of the elementary \(p+0\) interaction survives in peripheral heavy-ion collisions, but - in the present of range - is strongly obscured in central collisions by nuclear effects. Forthcoming experiments in an extended PT range may reveal whether the hard component emerges in central collisions at higher-pt values.

\footnotetext{
1. Gesellschaft fuer Schwerionenforschung (GSI), D-6100 Darmstadt, Fed. Rep. Germany.
2. Iniversity of Muenster. D-4400 Muenster. Fed. Rep. Germany.
3. Lawrence Berkeley Laboratory, Berkeley, California 94720.
4. University of Lund, S-22362 Lund, Sweden.
5. Adjunct research participant from the University of Te:nessee, Knoxville, Tennessee 37996.
6. H. H. Gutbrod et al. Proc. Int. Morkshop on Gross Properties of Huclei and Ruclear Excitations XY, Hirschegg, Austria, Jan. 12-17, 1987, GSI and Institut fuer Kernphysik, Darmstadt, 1987, p. 42.
7. R. Albrecht et al.."Nuclear Stopping in Oxygen-Induced Reactions at 200 A GeY," this report.
8. P. Beckmann et al., to be submitted to Nuclear Instruments and Methods in Physics Research.
9. J. Cronin et al., Phys. Rev. D 11. 3105 (1975): D. Antreasyan et al.. Phys. Rev. D 19, 764 (1979).
10. 8. Alper et al., Nuc1. Phys. B100. 237 (1975).
}

\section*{MUCLEAR STOPPIMG IN OXYEEN-INDUCED REACTIONS at 200 a cevl}

\section*{WA80 Collaboration}

the possible plasm signatures are indistinguishable from background created by nonplasma events, trorough understanding of reaction mechanisms is an important prerequisite in any QGP search. To isolate collective features of nucleus-nucleus collisions from those that may be expected on the basis of a linear superposition of nucleon-nucieus collistons, we compare measured quantities with results of calculations that reproduce data from mucleoninduced reactions and that make predictions for nucleus-nucleus reactions. Here we discuss the data obtalned from our Zero-Degree Calorimeter (ZDC) and the transverse energy obtained from the Hid-Rapidity Calorimeter (MIRAC). \({ }^{7}\) The experimental arrangement for HA80 is shown in Fig. 2.81.

The geometry of nucleus-nucleus collisions is important in order to describe the general features of the reaction mechanism. To a large extent qualitative features of the reaction may be described by such simple parameters as the relative stze of the nuclei, the overlap volume, and the impact parameter. Simple geometrical considerations can be used for a qualitative understanding of the IDC ener gy spectra, Fig. 2.82. At 200 A GeV , the \(1^{160}+{ }^{12} \mathrm{C}\) reaction has essentially no cross section for events

Fig. 2.82. The data points shown as function of energy are cross sections which were obtained from the WA80 Zero-Degree Calorimeter, and the histograws are calculated (see text) with no trigger conditions. The parameter \(\alpha=1\) indicates maximal stopping.

0am-0.6 80-14841

\footnotetext{
Fig. \%.Bl. Experinental arrangement for WAAn, sitie view. The energy resolition of the lero-Degrep Colorimeter is 2.5\% at 3.2 Tov.
}
depositing a small amount of energy in the 2OC because, even in the most central collisions. several projectile spectator mucleons, each with an energy of \(-i v j\) uev, continue in the beam direction. The particles aeasured with the 20C are within 0.3 deg of the beam. In contrast, a peak is seen at small \(\mathbf{Z D C}\) energies for the \({ }^{160} 0\) + 197 Au reaction. In this case, events with low ZOC energies arise from central collisions (impact parameter near zero) and result in the emission of only a few leading particles at angles less than 0.3 deg. And. in fact, collistions with a wide range of impict parameters around zero lead to interaction of the entire projectile with a nearly constant number of nucleons and contribute to the low-energy peak.

Figure 2.83a shows the relative sizes of Lorentz-contracted oxygen and gold nuclei with an impact parameter near zero. The dashed lines shown in the figure represent a tube drawn through the two nuclei, in this case at central density. The number of nucleons within the tube will depend on the relative sizes of the nuclei involved. If a uniform distribution of nucleons in the nucleus is assumed, then the number within the tube will be given by the volime of
the tube divided by the total volume times the number of nucleons in the nucleus.

The Glauber-type multiple collision adel \({ }^{8}\) which we have used is based on this geometry. The sequential nature of the collisions and subsequent energy loss is illustrated in Fig. 2.830. The model assumes a specific law for nuclear stopping, wich will be discussed below. The formation of the QGP will depend on the degree of nuclear stopping. It has been shown for proton-proton scattering at energies above a few tens of GeV that the cross section is mearly independent of energy and of the light cone variable, \(x\); i.e., do/dx = constant:
\[
x=\left(E_{0}^{b}+p_{z}^{b}\right) /\left(E_{0}^{a}+p_{z}^{a}\right)
\]

The denominator and numerator are four momenta of the parent particle, \(a\). and daughter particle, b. For nucleur-nucleus collisions we assume, in series of many collisions, that the individual baryons interact continuously with all the colliding baryons. By a baryon-baryon collision we mean a nondiffractive inelastic collision with a cross section \(\sigma_{i n}=29.4 \mathrm{mb}\). The particle production is parametrized by simple functions in the Glauber theory. In

Fig. 2,83. The collistion geometry is shown. The dashed lines represent d tube through the nuclei. The area of the tube is 29.4 mb . (b) Shows a space-time dtagram with nuclear stopping indicated by the lighter lines.
order to simplify the calculations further, we choose the placement of baryons within the target and projectile by random selection, and divide each mucleus into tubes of cross section \(2.94 \mathrm{fm}^{2}\) extending through the nuclei as described above. The impact-parameter dependence is taken into i,ccount by randow sampling of the distribution. It is assumed that the energy is so high that the baryons and produced particles remain within a given tube.

The stopping law should depend on the number of collisions and has been investigated in some cases with the functional form \(a=1+\beta(n-1)\). where \(\beta\) is constant of order 0.5 and \(n\) is the collistion mumber. However, theoretical results indicate that a can be taken as a constant. It is assumed that the baryon-baryon collisions lead to particle clusters and that the momentum state of the leading clusters is given by \(P(x)=\) axall , here a is a constant for a given calculation. Nuclear stopping is large for \(a=1\) and decreases for larger values of \(a\). The histograms shown on the left and on the right in Fig. 2.82 are calculated with \(a=1\) and \(a=3\). respectively. He see that \(a=1\), large stopping, yields the best fit to our ZDC data. By "nuclear stopping." we refer to the fraction of the incident kinetic energy that is converted to "heat" (particle production, etc.). The energy loss for proton-nucleus collisions will be the order of \(45 \%\) for the first interaction, and after, say, three subsequent interactions within the nucleus. \(87 \%\) of the incident energy will have been lost.

Since the model is quite general, we may compare transverse energy calculations of this model with those measured with the Mid-Rapidity Calorimeter. Figure 2.81 shows the location of this calorimeter. The calculations, corrected for acceptance, and the experimental data for the transverse energy, EY, are shown in Fig. 2.84, and again we see that \(a=1\) yields the best fit. There may be additional contributions to Ep from secondary collistions or other sources. These results show that for this model, the maximal degree of nuclear stopping is required to fit

Fig. 2.84. The transverse energy measured in MIRAC at 200 A GeV (points) is shown. The calculated spectra, shown as histograms, have been corrected for geometrical acceptance.
our data. In a multiple scattering theory, it would be reasonable to expect that the cross section would change after each collision because of baryon excitations. However. it appears that this assumption is not neressary in order to fit our data with this model.

It is of interest to extract, under the same conditions and with the same parameters as for the cross section calculation, the energy density produced within the tubes (at the moment when the produced particles have not streamed out from the tube).9 The energy densities are shown in Fig. 2.85. It should be stressed that the tube volumes are based on the nucleonnuclean cross section and that the longitudal region over wich the collisions take place is detenmined from the Monte Carlo calculations.

Fig. 2.85. Energy densities calculated for colliding tubes of mucleons. The abscissa is the sum of the nucleons in each of the tubes. The symbols are \(0.1+M ; E, 2+M ; \Delta, 3+M\); + . \(4+M\); e. 5+M; D, 6+M; A. 7+H.

The densities shown in the figure are based on the calculated longitudal values and a transverse dimension comensurate with the classical nucleon radius (\(\sim 1.2\) fin). These parameters have been the subject of much discussion. \({ }^{7}\) with no definite conclusions as to the values one should use. \({ }^{10}\) Therefore, the absolute values shown in Fig. 2.85 should be viewed with caution. However, the relative values should be independent of these assumptions.

As in the calculations of the cross section, the number of nucleons in a tube drawn through the projectile and target nuclei will vary according to \(4^{1 / 3}\), and the calculations are for comoinations of \(N\) incident nucleons on \(M\) target nucleons where \(N\) and \(M\) vary from \(i\) to 1 . For example, \(5+5\) would represent a central collision for \(P_{D}+P_{D}\) at 200 A uev. The abscissa in fig. 2. 85 displays the sum (\(N+M\)) of nucleons in the tubes, and the ordinate displays the energy density produced within the interaction volume.

CONCLIISION

Comparision of our tata with inis theoretical model indicates that large nuclear stopping is required. The stopping parameter \(a=1\) gives
the best fit to our data. Calculations of the energy density with this model show that for a fixed incident energy per nucleon, one may expect that the energy density will increase with increasing mass of the projectile and target combination.

\footnotetext{
1. Sumary of paper presented at XIXth International Symposivin on Multiparticle Dynamics - New Data and Theoretical Trends. Arles, France, June 13-17, 1988
2. fesellschaft fuer Schwerionenforschung (GSI), D-6100 Darmstadt. Fed. Rep. Germany. 3. University of Muenster, 0-4400 Muenster, Fed. Rep. Germany.
4. Lawrence Berkeley Laboratory, Berke'ey, California 94720.
5. University of Lund, S-22362 Lund, Sweden.
6. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
7. R. Albrecht et al.. Phys. Lett. B 199, 297 (1987)
8. C. Y. Wong and Z. Lu, to be published
9. C. Y. Hong, Phys. Rev. C 33, 1340 (1986)
10. T. C. Mes et al., Proc. Int. Horkshop XVI on Gross Properties of Muclei and Nuclear Excitations, Hirschegg, Austria, Jan. 18-22, 1988, to be published: S. P. Sorensen, Proc. Sixth Int. Conf. on Uitrarelativistic Nucleus-Muisleus Collisions, Mordkirchen, Fed. Rep. Germany, Aug. 24-28, 1987, 2. Phys. C 38, 3 (1988).
}

\section*{CALORIMETER HND MESORBER OPTIMIZATIOM PROPOSAL FOR THE RHIC DIMOM EXPERIMENT}
\begin{tabular}{ll}
S. Aronsonl & F. E. Obenshain \\
T. C. Ames & F. Plasil \\
C. Baktash & S. Saini \\
M. Fatygal & S. P. Sorensen \\
R. L. Ferguson & S. G. Steadman \\
A. Franz \\
S. Y. Fung & G.S.F. Stephans \({ }^{5}\) \\
S. A. Gabriel & J. H. Thomas \\
T. & M. L. Tincknell \\
R. J. Ledoux \({ }^{5}\) & M. Vient \\
T. Ludlam & G. R. Young
\end{tabular}

A proposal has been made to the Department of Energy to address directly the question of feasibility of dimuon measurements at RHIC. The principal uncertainty at present for muon pair measurements at RHIC is the design of the hadron absorber, wich must do double duty as a calorimeter. The two major questions addressed ara the level of background behind the nadron calorimeter/absorber in the muon experiment and the calorimeter design for the muon experiment. ine results obtained will be of use for designing
muon absorbers for the various experiments in which they have been proposed for RHIC, for the general problem of designing calorimeters for Iow-energy hadrons at RHIC, and for the general problem of designing fine-grained Eff calorimeters for photon detection at RHIC.

Dimuons have the nice property that they can penetrate a quark-gluon plasma, while hadrons do not. Dimuons can also penetrate thick detectors, mile hadrons cannot. This makes it possible to design detectors of large acceptance concentrating on this promising diagnostic of the quark-gluon plasma with little interfererce from the mumerous hadrons produced during the transition back to a hadron gas. This large acceptance makes a dimuon experiment particularly attractive for studying the postulated suppression of the \(J / \phi\) and higher mass vector mesons.

Considerable interest is centered in the \(h i g h-m a s s\) region (\(M=1-4 \mathrm{GeV} / \mathrm{c}^{2}\)), and a good dynamic range in PT acceptance (up to PT \(=5\) GeV/c) is essential. Events at the high-end of the mass range can be studied easily at low rapidities, since the relatively energetic mons can penetrate an absorber thick enough to suppress the "punch-through" background. For small values of mass or PT (soft muons or small opening angles). dimuons can be measured only at large rapidities where muons with boosted laboratory momenta are capable of traversing the absorber. In this case, however, angular resolution is very important. Thus, in this region, an absorber with a small ratio of interaction length to radiation length must be used in order to minimize the effects of multiple scattering on resolution.

Problews associated with resolution are most severe in the forward region, due to the above considerations and due to the large background of relatively energetic particles. In the central region. problems associated with dynamic range are most severe, since the muons receive only a small boost (low rapidity). In this region, one wishes to use a relatively thin absorber shell to help the dynamic range. The
general softness of the spectrun of secondaries produced at midrapidity at RHIC makes it feasible to consider such a thin absorber, although detailed information on the spectrun of punch-through products is lacking, particularly for the low-incident hadron energies that will be encountered in the central region at RHIC.

Muons are detected after traversing material that is sufficiently thick so as to absorb electrons, photons, and hadrons. Hadrons can "fake" direct muons by two main processes: (a) hadrons may decay into mons before interacting; (b) hadroas or the products of a shower caused by them may "punch-through" the absorber. Together. these requirements cause serious difficulties in the case of relativistic heavy-ion collisions. for the following reasons. A thick absorber is needed to obtain a very low probability per incident hadron that any charged particle exits its back face. This probability must be multiplied by the very large multiplicity of charged hadrons produced in a relativistic heavy-ion collision to obtain the resulting number of "fake muons" per interaction. However, using an extremely thick and high-2 absorber will also stop low-energy muons before they reach the detector.

The measurement of muons behind a massive hadron calorimeter/absorber requires answers to several background-related questions:
(I) What are the punch-through probabilities for pions, kaons, and protons in the range of 0.3-10 GeV/c incident on a specific absorber?
(2) How do these vary as a function of the absorber compceition, e.g., solid carbon, aluminum, steel, copper. tungsten, lead, or the same meterials interleaved with a second material which would be a suitable active material for a sampling calorimeter?
(3) How do the results vary with absorber thickness?
(4) What is the momentum and particle 10 spectrum of the punch-through particles?
(5) What fraction of them can penetrate a second shield and cause a "muon" trigger?
(6) How many of the punch-through particles will be rejected by position, angle, and mamentum cuts appropriate to a mon-finding analysis program?
A layout for the proposed experiments to investigate these mattars is shown in its various stages in Fig. 2.86.

It has been suggested that direct photons may provide a possible probe for quark-qluon plassa formation. Also, measurement of high-pT photons provides a means to determine the gluon structure functions necessary to obtain a thorough understanding of the vector mesan, e.g., J/4, production rates for muclear collisions. Since dimuon measurements and photon measurements have similar rate requirements due to the relatively meak electromagnetic coupling of the probes, it is desirable to attempt to make both measurements simultaneously in the same experiment. Furthermore, any electromagnetic calorimetry for photon measurements will provide an instrumented absorber layer for subsequent dimuon measurements. The electromagnetic calorimetry may aliso be used to provide necessary event characterization.

It is clear that in the high particle multiplicity environment of RHIC, single photon identification and measurement are feasible only
in the central rapidity region. Even in this region, it will be necessary to have good segmentation and large distances from the interaction region in order to avoid overlapping showers. To extract the single photon information it is necessary to determine the contribution of photons wich arise from meson decays. In order to extract this contribution accurately, it is necessary to have good invariant mass resolution for the photon pairs. This also serves to minimize the contribution from combinatorial pairs. This requires good energy and position measurements for the photons. For reasons of cost, sampling calorimetry is an interesting detector technology for such measurements. However, the use of samiling calorimeters to provide the mecessary position and energy resolution and photon identification has not been demonstrated, particularly for the relatively low energies \((\leq 0.5 \mathrm{GeV})\) expected in the central rapidity region. Therefore, one purpose of the proposed research is to investigate thoroughly the feasibility of using sampling electromagnetic calorimetry for photon measurements at RHIC.

The response of calorimeters to low-energy hadrons is not well studied and is an important issue for the central rapidity region at RHIC.

Fig. 2.86. Schematic layout of an experiment to measiare punch-through and decay backgrounds for mon experiment. Three increasing levels of complexity are shown. The various components
 detectors (\(\mathrm{Cl}, \mathrm{C} 2\)): (\(C\)) multiwire proportiond counters iMWP); dnd (d) highly-segmented positionsensitive detector.

One to two thousand such particles will fill the region for \(|y|<1\). It is important to know how calorimeters respond to this flux. For example, is it possible to detect an energetic jet (\(>10-20 \mathrm{GeV}\)) in the midst of the soft background, where the soft background may sum to over 1 GeV per tower? Our ability to sum energies in jets at RHIC depends on the answer to this question.

The background level for the mon measurement is closely tied to the details of the calorimeter construction. The calorimeter design is thus driven by these background considerations, the desire to measure direct photons also, and the need to obtain an accurate measurement of the energies of the soft hadrons. This leads us to propose an investigation of the properties of three different types of calorimeters. These will be studied both in parallel with the mon background measurements and in conjunction with it. The three devices are:
(1) A modular sampling calorimeter of the plate + scintillator type that may de easily reassembled with absorber plates of various types and thicknesses. This calorimeter is composed of a number of identical modules which may be stacked in a variety of configurations. Each module is separated transversely into 11 "trays" wich are \(4 \mathrm{~cm} \times 4 \mathrm{~cm}\) in cross section anc 70 cm deep, where each tray forms a "tower" (see 54. 2.87).
(2) A compact EM calorimeter made of alternating thin sheets of \(\mathrm{PD}(800 \mu)\) and scintillating optical fiber that has been formed into 200-H-thick ribbons (lasagna calorimeter). We anticipate constructing a medium-scale, say \(30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 15 \mathrm{~cm}, E M\) "lasagna" calorimeter with full readout and investigating its properties for detecting energetic electrons and photons. This device has a very short radiation length (7 mm), making it useful for localizing \(E M\) snowers in the transuorse plane. However, this requires a highly segmented transverse

Fig. 2.87. Upper part of the figure: schematic view of seven \(4 \mathrm{~cm} \times 4\) ca towers of the "tray" calorimeter. The scintillator and absorber material in each tower can be exchanged to test different configurations. The trays will be stacked to form an array of towers shown in the lower part of the figure. The arrow and the " \(x\) " indicate the incident test particles.
readout to take full advantage of the short radiation length (see fig. 2.88).
(3) A variant of the Em lasagna calorimeter scaled up in size for hadron shower containment. This device will need to be roughly \(1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}\) to contain hadronic showers. Its readout and granularity can be coarser than the EM device. Present ideas suggest that \(5-\) to \(10-\mathrm{mm} \mathrm{Cu}\) interleaved with \(1-\mathrm{mm}\) fiber and readout in \(5 \mathrm{~cm} \times 5 \mathrm{~cm}\) or \(10 \mathrm{~cm} \times\) 10 cm cells mould be an interesting geometry.
The first calorimeter is designed for easy variability in order to study the above questions of muon-detection background and to study the closely related question of hadronic shower development. The second and third devices are test versions of calorimeters that might actually be used in a dimuon experiment. They offer the advautige of a very compact overall stristure. It is anticipated that these lasagna EM and hadronic calorimeters will be installed in the

Fig. 2.88. A "lasagna" type A calorimeter with interleaved sheets of 800 -aicron-thick lead and 200 -micron-thick scintillating optical fiber. The fiber is square in cross section and has been glued into sheets for ease in construction. The shaded section represents the detector array, photomultipiiers, or photodiodes.
dimuon test setup. The absorber leakage studies made with this arrangement will provide a good base of information for a RHIC dimuon experiment design.

> 1. Brookhaven Mational Laboratory, Upton, Mew York 11973.
> 2. University of Tennessee, Knoxville, Tennessee 37996.
> 3. University of California, Riverside. California 92521.
> 4. Engineering Physics and Mathematics Division, ORML.
> 5. Massachusetts Institute of Technology. Cambridge, Massachusetts 02139.
> 6. Adjunct research participant from the University ai Tennessee, Knoxville, Tennessee 37996.
> 7. Callfornia Institute of Technology, Pasadena, Callfornia 91125, and Lawrence Livermore Mational Laboratory, Livermore. California 98550.

\section*{MDRKSHOP ON MOWTE CARLO CODES FOR HIEH-EMERGY RUCLEAR COLLISIONS}
\[
\begin{aligned}
& \text { T. C. Awes S. P. Sorensent } \\
& \text { S. Saini } \\
& \\
& \text { C. M. L. Tincknell }
\end{aligned}
\]

The primary goal in the field of high-energy heavy-ion collisions is to identify and study the Duark-Gluon Plasma (OGP). It is, however. also recognized that this goal cannot be achieved without a thorough understanding of the underlying nonplasma physics. One way of summing up our knowledge about the reaction mechanisms is to create large computer codes, of ten in the form of Monte Carlo programs, which are
able to fit most of the important experimental data.

Within the High-Energy Reactions Group at ORML, it was felt that the time was ripe for a structured confrontation between, on one hand, the available experimental data and, on the other hario, a set of the most mell-known models for high-energy muciear collisions. in order to provide a productive environment for this interface between experiment and theory, a workshop was arranged on High-Energy Muclear Collistion Monte Carlo Codes at the Joint Institute for Heavy-Ion Research, Septeaber 12-23. The idea behind the workshop was to invite representa\(t\) 'ves from most major experimental groups and representatives for several nuclear collision models and let them interact through the two-week period. The theorists brought and incorporated their codes within a new softwaie package, MC, wich was created before the workshop. By writing a few small interface subroutines, wich convert the output from each code into a standardized event format, all of the codes could be compared on equal footing, either to each other or to all of the experimea. tal data. The experimentalists brought selected important parts of their data in a form to be fitted directly by the MC codes, and they created an "experiment filter" to be added to the MC codes to incorporate the effects of the arceptance of their experiment.

At the workshop the following mocels mere represented: FRITIOF and ATTILA (based on the LUaD string picture); Vemus, 19IS, and MEFM (all different versions of the Dual Parton Model); MARCD (Cheuk-Yin Mong's code emphasizing the nuclear stopping problem): HIJET (an extension of ISANET with secondary interactions implemented): ROMD (a relativistic extension of the Quantum Molecular Dynamics Model): and HICOL (based on the Coherent Tube Model). Experimental data from the following yroups were included: WA80, MS, MA34/2, MA35, E597, E802, EmNO1, and KLM. The many hours of CPU time comsumed during the workshop were di:tributed among a whole array of VaXes (in ORP险's Physics Division, at the University of Tennesse, and at CERW) and the livermore CRAYs, where we had obtained 40 hours of CPU time from DOE.

It is still too early to make a final comparison between the models, since it was realized during the morkshop that several of the models still need more development. Both FRITIOF and VENUS were, in general, close to the major part of the experimental data. At the lowest beam energy of 15 A GeV, however, the string picture with infinite formation time becomes questionable and other models, like ROWD, which are extensions of nuclear physics codes, might be more relevant.

First attempts to move hay from the simplified spectator-participant picture were seen. Both HIJET, MCFM, and R(MD include secondary interactions between the produced particles and the spectators. These secondary interactions were shown to be important at 15 A GeV and in the target-rapidity region at higher beam energies. The careful implementation of secondary interactions might eventually lead to a determination of the formation time parameter, which is crucial for an understanding of the attained energy densities in the heavy-ion collisions.

A full description of the Monte Carlo models involved and of the results obtained during the workshop wtll be pubilished in Physics Reports.

\footnotetext{
1. Adjunct research parilcipant from the University of Tennessee, Knoxville, Tennesspe 37996.
}

\section*{MISCELLANEOUS TOPICS}

\author{
ELECTROM-IMPACT LOMIZATIOM OF U-88t-U-91t: A MOVEL APPLICATION OF HIGH EMERGY HEAVY-IOM CHAMELIMG
}

\author{
C. E. Bemis, Jr. C. R. Vane \\ J. Gomez del Campo \\ M. Claytorl \\ C. A. Ludemann \\ 8. Feinberg \({ }^{1}\) H. Gould \({ }^{1}\)
}

The high energy heavy-ion channeling experiments using 405 -HeV uranium ions descrited in a previous report, \({ }^{2}\) have been analyzed to yield electron-impact ionization rross sections for uranium ions with charge states +88 to +91. Mell-channeled oons in single crystals make only large-impact parameter collisions with the distant muclei that compose the c.-ystal and collide only with the electrons in the axial crystal channel, which may be viewed as a dense "electron gas." In the rest frame of the uranium ions traversing the axial channel, the electrons in the channel have an energy of 222 keV wich is more than sufficient to ionize \(\mathrm{U}-91+(8 E=133 \mathrm{keV})\). The electron density integrated along the path of the channeled ions is determined in our experiments by measuring the radiative electron capture process for U-92+, a cross section that has been measur?d in previous experiments and which has been shown to scale with electron density and is in agreement with theory. Our measured cross sections for election impact ionization by 222-keV electrons are given in Table 2.13 for the ions U -88+ to \(\mathrm{U}-91+\). We estimate the uncertainty in the cross sections to be a factor of two (50s smaller to \(100 \%\) larger), due primarily to the

Table 2.13. Electron imnact ionization cross sections (barns) for uranium ions by 222 keV electrons.
\begin{tabular}{llc}
\hline Ion & State & Cross Section \\
\hline\(U-91+\) & \(1 s\) & 3.9 \\
\(U-90+\) & \(1 s^{2}\) & 11.0 \\
\(U-89+\) & \(1 s^{2} .2 \mathrm{~s}\) & 27.0 \\
\(U-88+\) & \(1 s^{2} .2 s^{2}\) & 42.0
\end{tabular}
large statistical uncertainties in our experiments. A orief letter describing this experiment has been submitted for publication.
1. Lawrence Berkeley Laboratory, Berkeley CA 94720.
2. C. E. Bemis, ur. et al., Phys. Div. Prog. Re.. for Period Ending Sept. 30, 1987, ORNL-6420. P. 120.

\section*{IUSTRUMEWTATIOM}

\section*{THE BAF 2 hrrat project}
J. R. Beene F. E. Bertrand
J. L. Blankenshipl

Large solid angle ganan-ray deteciors with a high degree of segmentation and moderate energy resolution have played a central role in experimental heavy-ion physics in the 1980's. The Spin Spectrometer has long been the mosc heavily used single piece of experimental equipment at the HHIRF. The relatively large central cavity (-18 cm radius) in the Spin Spectrometer, wich allows complex charged particle detiector systems to be mounted inside the Mal shell, has proved to be one of the most important characteristics of the device. Recently the need for even more space for complex detector systens, particularly in the forward direction, has become mere and more obvious. In parallel to this need for more complex charged particle detector systems in the Spin Spectrometer, an interest in experimints devoted to the study of high-energy gaman rays has developed at wirf. The gama energies of interest range from the 10 - to \(30-\mathrm{MeV}\) gamas encounterer the study of high-lying collective strength in nuclei to the 20 - to over 100 -KeV gammas found in the study of nuclear bremstrahlung. High-energy ganma axperiments of all sorts are bedeviled by the coptous background of high energy protons and, especially. neutrons wich are produced in heavy-ion reactions.

These needs of experimental programs at hHIRF became acute just as large baf crystais mere beconting available af reasonable cost.
\(\mathrm{BaF}_{2}\) has a number of properties which make it especially attractive as a gamm detector for heavy-ion physics. It offers roughly five times better time resolution than mal, wile delivering essentially the same energy resolution for gama energies above -2 MeV (and only slighily worse below). In addition, BaF 2 is non-hygroscopic, has density -30 larger than Mal. is substantially less sensitive to neutrons than Mal. and offers the possibility of identification and separation of charged particles through pulse shape analysis.

We are constructing an array of Baf 2 detectors to help serve these needs at HiRF and to provide a portable high-energy gama detector syste for use by onm staff in outside experiments. Our goal is a flexible, easily reconfigurable array, with reasonable perforance up to ~200-MeV photons, and a self-contained electronics package including setup, control, and monitoring capabilities. To achieve the required stacking flexibility, the array is Dased upon identical \(\mathrm{BaF}_{2}\) crystals in the form of right hexagonal prisms \(20-\mathrm{cm}\) long and \(6.5-\mathrm{cm}\) edge to edge on the hexagonal faces (volume = \(731 \mathrm{~cm}^{3}\)). These dimensions are illustrated in Fig. 2.89, Wich also shows what is expected to

Fig. 2.89. A close-packed 19-detec \({ }^{\text {or }}\) bundle of \(8 \mathrm{aF} \mathrm{F}_{2}\) detectors, showing the dimen , ns of the individudl crystals. The shaded cy.inders represent phototube and base assemblies.
be the most common stacking geometry, consisting of 19 close-parked crystals. Housings and mounting rigs will be provided for this 19-pack stacking.

The R2059 quartz window phototube and an integral tube base and magnetic shield, manufactured by Hamantsu, have been selected for the project. 2 This tube provides excellent tieing and polse-height stability characteristics, \({ }^{2}\) along with the UV sensitivity required with \(\mathrm{BaF}_{2}\) (wich scintillates prianrily at 210 and 310 nin).

The Baf 2 array will be used primarily to investigate extremely sall cross section processes. Because of this, and because of the simple modular geometry of the array destan, the size of the completed array is open-ended. essentially deternined by financial considerations. The initial detector and phototube purchase includes \(57 \mathrm{BaF}_{2}\) crystals and 63 phototubes and bases (three 19 packs). As of October 1988. 21 crystals and all 63 phototubes have been delivered, with the remainder of the crystals due by February 1988. We expect to purchase 20 additional phototubes and crystals in 1989, giving a total of 77 detector systems plus spare phototubes; enough for four 19 detector packs. This is the number of detectors required to provide the eshancement to the spin Spectrameter alluded to earlier. For this purpose four 19 packs will be configured as a segmented wall in the formard (\(0<35^{\circ}\)
direction. The forward-wost ring of 5 MaI detectors surrounding the normal bean exit pioe will be removed and replaced by an existing funnel-shaped addition to the standard target chamber, making much more space available for charged particle detection in the forward direction. BaF 2 detectors will fill ~85\% of the solid angle lost by removal of the forward Mal elements if the wall is placed at distance of 45 cm . For some applications, the wall will be moved to greater distances, with consequent loss of solid-angle coverage. The wall configuration wll also provide a much finer segmentation for gama and neutron detertion. At 45 cm we will have \(\Delta 0 \sim 8^{\circ}\), compared to \(40 \sim 24^{\circ}\) now.

The performance of the 21 accepted crystals and 63 phototubes has been carefilily studied and characterized. Results most directly relevant to use as high-energy gama detectors are energy and time resolution. The energy resolution (FMHM/E) ranges from \(9.5 \%\) to ~11.7\% at 660 keV and \(3.9 \%\) to \(4.9 \%\) at 4.4 MeV , scaling very accurately as \(\left(E_{Y}\right)-1 / 2\) over this range for all detectors. Time resolution of 350 ps FWtM has been obtained for the BaF 2 crystals in coincidence with a sall plastic scintillator, using a \({ }^{60}\) Co source. Since the principal advantage of \(\mathrm{BaF}_{2}\) lies in the ability to separate neutrons and protons from high energy gama rays by time of flight, this excellent timing is especially important. We expect to be able to easily achieve our goal of ~600 ps timing for ~1-MeV gama rays and \(\mathbf{5 0 0} \mathbf{~ p s}\) for \(\mathrm{Ey} \geq 10\)-MeY gamas.

These characteristics, along with the selfcontained electronics. setup and control systems which we expect to be available in 1989, will make this array an extremely powerful tool for high energy gama ray studies.
1. Instrumentation and Controls Division. ORML.
2. J. L. Blankenship, Phys. Div. Prog. Rep. for Period Ending Sept. 30 , 1987, (iNiL-6420, p. 123.

\section*{GMMASPHERE RESEARCH AND DEVELOPMEMT}
\[
\begin{aligned}
& \text { I. Y. Lee } \\
& \text { R. D'Onofriol J. R. Beene } \\
& \text { R. T. VanHook }{ }^{2}
\end{aligned}
\]

GAMASPHERE is a proposal for the construction of a national gama ray facility. As shown in Fig. 2.90, the current design consists of 110 large-volume high-purity \(n\)-type Ge detectors surrounded by 360 anti-Compton B60 shields which also serve as total energy and mitiplicity detectors. Behind each Ge detector an additional BCO plug is placed to detect the forward scattered gamad rays. These detectors are arranged to cover 4x solid angle with the symmetry of an icosahedron.

In order to have the highest possible photo efficiency, the largest available ge detector with stze 7 -cm-diam \(\times 7-\mathrm{cm}=1\) ong will be used.

Fig. 2.90. A sketch of the GNMMSPHERE detector system.

There is sufficient flexibility in the size and shape of the B6O shield to permit its suppression properties to be optimized. Me have carried out design studies of the shield based on the efficiency calculations done with the Monte Carlo simulation program GEAMT. The design of the shield, as shown in Fig. 2.91, was obtained by maximizing the performance-to-cost ratio. The important dimensions are the following: (1) total length of shield \(=16 \mathrm{~cm}\); (2) length of the \(1 \mathrm{ip}=4 \mathrm{~cm}\); (3) the thickness of the shield at the thinnest point \(=1.4 \mathrm{~cm}\); (4) the collimation covers the front face of the Ge detector; and (5) the length of the plug behind the \(G e=4 \mathrm{~cm}\). With this shield, the peak-to-total ratio of the Ge detector is improved from an unsuppressed value of 0.25 to 0.85 .

For high-energy gamad-ray detection, \(55 \mathrm{BaF}_{2}\) detectors will be used to replace the Ge detectors in the forward hemisphere and operated with the BGO shteld in the "energy add-back mode."

Fig. 2.91. The design of the ge0 element of the GNMASPHERE.

This arrangement provides higher efficiency and much better neutron rejection than is provided by the Ge detector. The design of the BaF 2 insert is show in Fig. 2.92. It has a total length of 20 cm with a total volume of 740 ml . The performance, as determined by the similations is shown in Table 2.14 for two representative gama-ray energies, 15 and 100 MeV . The quantities tabulated are the mean and standard deviation \(n^{f}\) the add-back energy spectrum, both
- mater mime

Fig. 2,92, The design of the \(\mathrm{BaF}_{2}\) insert of the GOMASPHERE.

Table 2.14. Calculated performance of Baf 2 detectors for eNMASPHERE.
\begin{tabular}{llll}
\hline Er (MeV) & <E>/Er & \(\sigma / E_{Y}\) & Efficiency \\
\hline 15 & 0.93 & 0.12 & \(0.370 \%\) \\
100 & 0.89 & 0.11 & \(0.358 \%\) \\
\hline
\end{tabular}
expressed as a fraction of the incident energy. and the total trigger efficiency per detector. The simulated spectra from which these parameters were extracted were generated subject to the condition that \(250 \%\) of the total energy (energy deposited in the \(\mathrm{BaF}_{2}\) plus its surrounding 860) was deposited in the BaF \(2^{\text {. }}\)

The concept of the mechanical structure for the support of the detectors has been developed. The design is to construct a spherical shell split into hemispheres that is a heavy-wall (\(\sim 3 \mathrm{~cm}\)) shell of nominally \(1.4-\mathrm{e}\) diameter. Each hemisphere will be supported by a low carriage which allows each hemisphere to be moved to give access to the target chamber. Each Ge detector and BCO shield will be inserted through a hole machined at the proper location in the support shells and mounted at attachment points machined around each hole. The dewars for the Ge detectors will be outside the structure. The B60 shieid will be cantilever-supported by a hollow (deep cup-shaped) strut attached to the structure. This arrangement provides for: (1) easy access to target chamber, (2) convenient removal and replacement of Ge detectors and 860 shields,
(3) good alignment of all components, and
(4) economic construction.

\footnotetext{
1. JIHIR and Instituto Mazionale di fisica Nucleare, Napoli, Italy.
2. Oak Ridge Science and Engineering Research Semester Participant from Hendrix College, Conway, Arkansas 72032.
}

\section*{AM arrar of bafz detectors for the stuoy of soft PWOTOMS EMITTED IM ULTRARELATIVISTIC FROTOMmacleus an macleus-mincleus collisions}
\[
\begin{array}{ll}
\text { D. Shapira } & \text { C. Hoody }{ }^{2} \\
\text { A. Ray } & \text { D. Lissauer } \\
\text { K. Teh } & \text { J. Schuckraft }{ }^{3}
\end{array}
\]
W. Willis \({ }^{3}\)

Single-photon measurements to study the excess in soft-photon production (5 to 100 MeV \(\mathrm{Pr}_{\mathrm{p}}\)) in hadron-hadron collistons depend critically on one's understanding of the underlying "normal" photon spectrum. This requires implementing an extremely high dynamic range for the proposed detector. The response of this detec-
tor :o photons must be well known over an energy rang: extending from 10 MeV to above 1 GeV . In addition, high efficiency in collection and localization of high-energy electromagetic showers and good neutron- and charged-particle rejection are desirable.

An array of \(38 \mathrm{BaF}_{2}\) hexagons \(15-\mathrm{cm}\)-deep and 5-cm-wide (surface to surface) were stacked in a close-packed array as shown in Fig. 2.93. High viscosity Si oil (GE Viscasil 600 M) was used to couple every two \(15-\mathrm{cm}\) crystals to form a \(30-\mathrm{cm}\) deep detector. Hamanatsu R2059 a (2") PM tubes with quartz windows were used because of their good tianing characteristics (less then 2-ns risetime) and good response to uluraviolet light. Beam tests have shown that the detector is capable of better then 500 ps time resolution for all 19 double elements. This timing resolution is sufficient to separate l-GeV neutrons from prompt photons when the detector is placed about one meter away from the target. Chargedparticle rejection is provided by a \(0.5-\mathrm{cm}\)-thick plastic scintillation counter placed in front of the array (Paddle). Figure 2.94 is a block diagram showing the signal- and data-handiling used during a test run at the AGS (F - test beam) and a proton run at the SPS at CERM.

Fig. 2.93. The stack of closely-packed 19 pairs of \(8 \mathrm{BF}_{2}\) scintillation detectors.

Fig. 2.94. Signal processing scheme used with the photon detector during ". + Be test runs at the AGS.

Preliminary gain matching was done with a Co gamas-ray source and run-time gain adjustments as well as gain-drift monitoring were done with the \(200-\mathrm{MeV}\) energy loss suffered by minimum ionizing charged particles. Extensive calibrations with high-energy tagged photons and with electron beams are now in progress.

\footnotetext{
1. Joint Institute for Heavy Ion Research. Vanderbilt University, Nashvilie, Tennessee, and Physics Division, ORNL.
2. Brookhaven Mational Laboratory, Upton, NY 11973.
3. CERN, Geneva, Switzerland.
}
sAMPLIUC CALCRIMETERS for the relativistic neavy-ion experiment maso at cerw!
\begin{tabular}{|c|c|}
\hline T. C. Ames & I. Y . Lee \\
\hline C. Baktash & F. E. Obenshain \\
\hline R. P. Cumby & A. Oskarssons \\
\hline R. L. Ferguson & 1. Otterlund \\
\hline A. Franz \({ }^{\text {a }}\) & S. Persson6 \\
\hline T. A. Gabriel \({ }^{3}\) & F. Plasil \\
\hline H. A, Gustafsson \({ }^{\text {b }}\) & A. M. Poskanzer \({ }^{3}\) \\
\hline H. H. Gutbrods & H. G. Pitter \({ }^{3}\) \\
\hline J. W. Johnson & H. R. Schmidts \\
\hline B. W. Kalb \({ }^{5}\) & S. P. Sorensen \({ }^{7}\) \\
\hline
\end{tabular}

\section*{G. R. Young}

Sampling calorimeters designed for use in the relativistic heavy-ion experiment 4480 at CERN are described. Calibration and performance results are presented for a calorimeter used at
midrapidity and for a calorimeter used at zero degrees. Over the energy range of 2 to 50 GeV . the response of the Midrapidity Calorimeter (HIRAC) mas linear, and its energy resolution o/E mas found to be given by \(0.014+0.11 / \sqrt{E}\) and \(0.034+0.34 / \sqrt{2}\) for electromagnetic and hadronic showers, respectively. Signal ratios of 1.20 and 1.4 were obtained for the e/h ratio of the lead-scintillator electronagnetic section and the iron-scintillator hadronic section, respectively. The MIRAC provided an accurate transverse energy trigger with a response and resolution for high-energy heavy ions which was somewhat better than anticipated on the basis of the low-energy calibrations. The uraniumscintillator Zero-Degree Calorimeter (ZDC) was found to have a linear response to beavy ions and ar in-beam hadronic resolution ranging from \(c / E=0.013+0.33 / \sqrt{E}\) at 1 om intensfites to \(\sigma / E=0.02+0.67 / \sqrt{E}\) at higher intensities. The
e/h ratio of the electromagnetic section was measured to be 1.12 at 135 GeV. The ZDC operated reliably with incident beams of 3.2-TeV oxygen and 6.4-TeV sulfur at intensities of over \(10^{6}\) nuclei per spill. It provided a trigger both for minimm bias events and for violent central collisions.

\footnotetext{
1. Abstract of paper subaitted to Muclear Instruments and Methods in Physics Desearch. 2. Engineering Physics and Hathematics Division, ORNL.
3. Lawrence Berkeley Laboratory. Berkeley, California 94720.
4. University of Lund, S-223 62 Lund, Sweden and European Laboratory for Particle Physics. CH-1211 Geneva 23, Switzerland.
5. Gesellschaft fuer Schmerionenforschung. D-6100 Darmstadt, Hest Germany.
6. Lhiversity of Lund, S-223 62 Lund, smeden.
7. Adjunct research participant from the University of Tennessee, Knoxville, Tennessee 37996.
}

\section*{3. THE UNISOR PROGRAM}

The University Isotope Separator - Oak Ridge is a cooperative venture of universities, Oak Ridge Associated Universities, Oak Ridge Mational Laboratory, the U.S. Department of Energy, and the State of Tennessee. The primary purpose of the UWISOR consortium is to investigate the strictures and decay mechanisas of rare, short-lived atomic nuclei which are prepared by means of a magnetic isotope separator coupled to the accelerators in the Holifield Heavy Ion Research Facility. The accounts wich follow describe work at the UNISOR facility or mork associated with UnISOR research performed principally by investigators outside the Physics Division. Research and development activities at UnISOR by Physics Division staff members are included in the muclear Physics section.

\section*{LASER IOM SOUACE DEVELOPMETIT}

\section*{6. A. Barreral \({ }^{1}\) W. H. Fairbank, Jr. \({ }^{\text {l }}\) H. K. Carter \({ }^{2}\)}

A prototype laser ion source has been constructed at Colorado State University and tests are now beginning to determine the efficiency obtainable with this concept for refractory elements. The new experimental setup (Fig. 3.1) consists of a vacuum chaber with ports for: (1) He-jet which will be used to deposit radioactive isotopes on the sample substrate; (2) windows for two laser beams, one which vaporizes a small area of the deposited sample and a second which resonantly ionizes isotopes \(:\); the desired element in the vapor cloud; (\(j\) ! extraction and focusing ion optics, which is a scaled replica of the UNISOR separator optics; and (4) a time-of-flight mass spectrometer for analysis of the generated species.

The major part of our effort in laser ion source development in the last year has gone into constructing this apparatus and into testing existing lasers at Colorado State University for suitability for this project. We are currently exploring two promising new ideas with this system. The first is the use of copper vapor lasers. While providing distinct advant.ages in terms of high pulse repetition rate (6000 Hz vs 30 Hz for a Nd:YAG laser) and inerefore sample throughput, the reduced pulse

energy of a copper laser can be a concern in applications such as this which require high efficiency. The second new ided is the use of fiber optics to transport the laser beams. This, we telieve, will solve the pulse energy
problem by making tight focusing and accurate laser alignment possible. and will also eliminate the need for two lasers. The latter factor represents an important cost-saving feature wifh should reduce the initial cost of setting up a laser ion source at UnISOR.

In tests to date, we have demonstrated separately laser ablation of fons from several different samples (LiCl, CsCl. Fe, etc.) with a copper laser and resonant ionization of \(L f\) and Fe atoms with a nid:Yab-pumped dye laser. In the latter case the Li and Fe atoms mere vaporized by a pulsed argon ion beam. The ions mere detected and analyzed with good mass resolution in the time-of-flight mass spectrometer.

We have now seen with several elements (In. Fe, and Li) an interesting resonance enhancement by factor of ten in the ablated ion signal when the tumable dye laser is us.d for ablation. We do not know yet if this effect will offer an alternative for operating a laser ion source with a single laser.

We have not yet been able to measure an efficiency for laser ablation and resonance foatzation (i.e., the original laser ion source concept) with this apparatus because we have had difficulty getting a second borrowed copper laser morking reliably. With more repair work on this laser or the implementation of the fiber optic systew, the long-awaited laser fon source efficiency tests should begin. We plan to conduct our tests with hafnium, a refractory element of interest for future muclear physics experiments at unisOR.

\footnotetext{
1. Colorado State University, Fort Collins. Colorado.
2. Unisor, Oak Ridge Associated Universities, Oak Ridge, Tennossee.
}

THE OM-LIEE DRIENTATIOM OF 151 Ng ADD \({ }^{193} \mathrm{Hg}\)
\begin{tabular}{|c|c|}
\hline I. C. Girit \({ }^{1}\) & E. F. Zganjars \\
\hline C. R. Bingham \({ }^{2}\) & H. K. Carter \({ }^{7}\) \\
\hline J. O. Cole \({ }^{\text {a }}\) & H. L. Croft \({ }^{\text {9 }}\) \\
\hline J. H. Hamilton \({ }^{4}\) & P. M. Gore \({ }^{\text {b }}\) \\
\hline E. F. Jones* & B. D. Kernlo \\
\hline H. Xie \({ }^{\text {b }}\) & M. O. Kortelahtill \\
\hline J. Karmicki4 & P. M. Mantical2 \\
\hline K. S. Krane \({ }^{\text {a }}\) & W. 8. Mewbolt \({ }^{13}\) \\
\hline บ. G. Mettles \({ }^{6}\) & Y. S. \(\mathrm{Xu}^{5}\) \\
\hline M. L. Simpson' & B. E. 2immerman \({ }^{12}\) \\
\hline
\end{tabular}

The nuclei 19:,193Am were chosen for the first unISOR/MOF on-line experiment to detenmine whether their low-lying spectrum can be described by the dynatical supersymetry classification scheme criteria proposed by lachello. \({ }^{14}\) Among others, one test of supersymmetry in these nuclei is to determine whether the E2 transitions satisfy the selection rules appropriate to the scheme. This test requires precise measurements of \(\mathrm{X}(E 2 / \mathrm{MI})\) since for the heavier Au isotopes, the measured \(8(E 2)\) of the \(r\) forbidden transitions are often only about 10 percent of the \(B(E 2) s\) of the allowed transitions. Also, the allowed transition itself may have only a 5-10 percent E 2 component, and the selection rules apply to E 2 transitions only.

The excited states of 191Au and 193Au, studied by radioactive decay of the \({ }^{191} \mathrm{Hg}\) highspin iscmer (\(T_{1 / 2}=51\) min.) and \({ }^{193} \mathrm{Hg}\) high-spin isomer (\(T / \not / 2=11 \mathrm{~h}\)), respectively, were produced by using a \(110-\mathrm{MeV}{ }^{12} \mathrm{C}\) bean from the HAIRF tandew accelerator on natural \(\mathbf{4}\) target. Throughout the experiment, the beam intensity on target was \(2 \times 10^{5}\) ions/sec for \({ }^{191} \mathrm{hg}\) and \(4 \times 10^{4}\) for \({ }^{193} \mathrm{Hg}\). The data were collected in eight cycles, each of which consisted of 12 to 14 ten-minute runs. Data mere acquired from six detectors placed at \(0^{\circ}, 45^{\circ}, 90^{\circ}, 180^{\circ}\). \(225^{\circ}\), and \(270^{\circ}\). At the end of each cycle, the
sample foil was reglaced by a new iron foil in order to avoid the buildup of daughter activity. The activity was collected on the target while warm data were being taken. At she end of this period, the target was isolated by a-K baffle and the target allowed to cool for about 30-40 minutes.

Values of \(A_{k}=B_{k} U_{k} A_{k}\) for \(k=0,2\), and 4 have been obtained for 102 transition in 191 A. Analysis of these data and that from the 193419 decay are in progress. A particular interest is the 33I-keV transition in 191Au. If the level at 331 keV telongs to the \(j=3 / 2\) orbit, then this trar.sition is a r-farbidden transition in the \(U(5,4)\) supersymetry scheme, because it IInks the \(\left(\tau_{1}=5 / 2, \tau_{2}=1 / 2\right.\)) state with the \(\left(r_{1}=1 / 2\right)\) state, were 1 changes more than one unit. The measured \(A_{2}\) and \(A_{4}\) directional distribution coefficients produce, without abiguity, a very small E2 content (s(E2/Kl \(=0.007\) \(\pm 0.026\)) for this transition, as the model predicts.

The UNISOR/NOF system has now successfully dewnatrated a new design for on-line nuclear orientation refrigerators, mereby the beam enters the system from the bottom. The option of placing detectors at \(45^{\circ}\) angles around the target, a unique feature of this system, has a number of dvantages. The \(45^{\circ}\) angle enables a unique determination of the multipole mixing ratio, while the cylindrical geometry about the target enables a reduction of systematic errors. such as count rate fluctuations due to beam movement and changes in distance between the sample holder and the botton \(90^{\circ}\) detecter due to thermal contractions. This results in unambiguous determination of mitipole mixing ratios. which will enhance our understanding of nuclear structure.

\footnotetext{
I. Vanderbilt University, Mashville, Tennessee and UMISOR, Dak Ridge Assuciated Universities, Oak Ridge, Tennessee.
2. Universtiy of Tennessee, Knoxville. Tennessee.
3. Idaho National Engineering Laboratory, Idaho Falls, Idaho.
4. Vanderbilit University, Nashuille. Tennessec.
5. Oregon State Universtty, Corvallis, oregon.
}
6. Mississippi College, Clinton, Mississippi.
7. UNISOR, Oak Ridge Associated Universfties, Oak Ridge. Temessee.
B. Louisiana State University. Baton Rouge. Louisiana.
9. Mississippi State University. Mississippi State, Mississigpi.
10. Unfversity of Kentucky, Lexington, Kentucky.

IL. Louisiana State University, Baton Rouge. Louisiana. Present address: Lnive: sity of Jyvastyla, Finland.
12. University of Maryland, College Park, Maryland.
13. Washington Lee University, Lexington. Virginia.
14. F. Lachello, Phys. Rev. Lett. 44, 772 (1980).

\section*{hICRLY COMERTED TRASITIOMS In IE9M}

\author{
M. O. Kortelahtil J. L. Mood²
}

\section*{E. F. Zganjar \({ }^{3}\)}

The extensive data obtained earlier for the \(18=9.9 \mathrm{Hg}\) * 189Au decay schemes are essentially completely analyzed. Some major details have been reported.t,s We observe at least one highly converted transition of 913 keV feeding the \(J^{\boldsymbol{\pi}}=13 / 2^{-}\)member of the \(h^{\prime} / 2\) intruder band. This is shown in Fig. 3.2. The level at 1559 keV can be interpreted as due to the coupling Whg/2 \({ }^{+1} \times 1\) sept (deformed). The parallel couplings in 187 Au and 105Au (Ref. 6) are shown in Fig. 3.3. The implication is that blociing effect is present wich makes the whg/ \(2^{+1} \mathrm{XPL}\) (deformed) coupling higher in energy than in the core: this supports the idea \({ }^{7}\) that the Pt (deformed) structure involves a proton pair in the hg/2 orbital. Other highly converted transitions are being sought.
1. Louisiana State University, Baton Rouge, Loutsiana. Present address: Universtty of Jyvaskyla, Finland.
2. School of Physics, Georgia Institute of Technology, Atlanta, Georgia.
3. Louisiand State University, Baton Rouge. Louisiand.
4. M. O. Kortelahti et al.. Phys. Div. Prog. Rep. Sept. 30, 1987, 0RNL-6420, D. 144.
5. M. O. Kortelahti et al.. J. Phys. G (in press).
6. C. D. Papanicolopulos et al., L. Phys. A330, 371 (1988).
7. K. Heyde et al.. Nucl. Phys. M66, 189 (1987).

Fig. 3.2. The band heads for \(s_{1 / 2}, h_{11 / 2}\), and \(\mathrm{hg} / 2\) coupling in \({ }^{189} \mathrm{Au}\). Shown aliso are the \(15 / 2^{-}\)and \(13 / 2^{-}\)members of the bands involving \(h_{11 / 2}\) holes and \(h_{g / 2}\) particles, respectively. The terms sph and def stand for more spherical and more deformed respectively. The 913-kel transition is highly converted (see text).

Fig. 3.3. A comparison of the \(\mathrm{h}_{9}^{+1} \mathrm{f}_{2} x\) 188pt(def) couplings in \(185,187,189 \mathrm{Au}\) and the corresponding \(13 / 2^{-}+13 / 2^{-}\)nighly converted transitions. The numbers in parentheses are the rat fo ox (expt)/ak(M1, theory).

\section*{STUOY OF HIGHY CONVERTED TRAMSITIOWS IN IESpt}
\(\begin{array}{ll}\text { J. Schwarzenberg }{ }^{1} & \text { J. L. Mood } \\ \text { R. W. Fink }{ }^{2}\end{array} \quad\) E. F. Zganjar \({ }^{3}\)
The extensive data obtained last year for the 105 Au . 10 Spt decay scheme are in the process of being analyzed. Besides the previously observed, "highly converted transitions at 340 and 542 keV , we have identified at least nine
 transitions. Prompt coincidences rule out highmultipolarity (retarded) transitions. There is considerable controversys regarding the nature of these transitions. Our previous studies of
such transitions in 185,107Au (Ref. 6) support an electric monopole origin. In 105 pb the clain is made". 5 that the origin, at least of the 542kev transition, is magnetic dipole with highly anamolous penetration effects. This is unprecedented. We are unable to agree with the earlier mork 4.5 regarding the location of the 542-kel transition. We find it is to be at least a doublet, possibly a triplet. Our data differ from that of the previous study \({ }^{4}, 5\) in that we have e-r coincidence data and about 30 times higher statistics for the r - r coincidence data. The goal of this work is to unabiguously resolve the nature of these highly converted transitions and to better understand their relationship to shape coexistence.

\footnotetext{
1. School of Chemistry, Georgia Institute of Technology, At lanta, Georgia.
2. School of Physics, Georgia Institute of Technology, At lanta, Georgia.
3. Louisiana State University, Baton Rouge, Louisiana.
4. B. Roussière et al., Mucl. Phys. M38, 93 (1985).
5. 8. Roussière et al., Mucl. Phys. M85, 111 (1988).
6. C. D. Papanicolopulos et al., Z. Phys. A330, 371 (1988).
}

SEARCH FOR STROMGLY COUPLED BANDS IN 107AU
\[
\text { E. F. Zganjar }{ }^{1} \text { J. L. Mood² }
\]

In our study of \({ }^{185} \mathrm{Al}_{\mathrm{l}}\), evidence for strongly coupled bands was obtained. \({ }^{3}\) These bands are interpreted as resulting from the couplings wh \(1 / 2^{-1} \times 186 \mathrm{Hg}\) (deformed) and \(3 / 3 / 2^{-1} \times 106 \mathrm{Hg}\) (deformed). Such structures are unprecedented in ood-L nuclef. similar structures can be expected in \({ }^{187}{ }^{7} \mathrm{Au}\). A study of the \({ }^{187 \mathrm{~m}, 9} \mathrm{Hg}\) 107Au decay schemes has been undertaken to observe these structures.

The tandem accelerator at the Holifield Heavy Ion Research Facility provided beams that were used to produce radioactive nuclei through the \({ }^{176} \mathrm{Hf}\left({ }^{19} \mathrm{~F}, 8 \mathrm{n}\right)^{187 \mathrm{Tl}}\) and \(\left.{ }^{176 \mathrm{Hf}(160,5 n}\right)^{187} \mathrm{Hg}\) reac. tions for projectile energies of 160 and 125 MeV, respectively. The \({ }^{10} \mathrm{~m} \mathrm{Hg}\left(T_{1 / 2}=8.7 \mathrm{~min}.\right)\) was produced directly and the \({ }^{1079} \mathrm{Hg}\left(T_{1 / 2}=7.7\right.\) min.) was produced indirectly following the
radioactive decay of 18 Tl . The radioactive nuclei were ionized by a FE8IAO-82 ion source and passed through the UnISOR mass separator. Gama rays and conversion-electron spectrum miltiscaling and \(r-y-y, r-x-t, r-c e-t\), and ce-x-t coincidence measurements mere conducted or.-line. The data are in the process of being analyzed.

\footnotetext{
1. Louistan State University, Baton Rouge, Lovisiana.
2. School of Physics, Georgia Institute of Technology, Atlanta, Georgia.
3. C. D. Papanicolopulos et al., Phys. Div. Prog. Rep. Sept. 30, 1987, 0R14-6420. D. 146.

\section*{LOW-EIERGY LEVEL STRUCTURE IM 193Pb, 193 Tl , and 19919}
C. R. Binghan \({ }^{1}\)
L. L. Riedingerl
H. Y. Carnichael \({ }^{1}\)
E. F. Zganjar²
6. Thang \({ }^{1}\)
M. O. Kortelahti \({ }^{3}\)
H. K. Carter \({ }^{4}\)
}

The coesistence of deformed and nearly spherical \(0^{+}\)states in the light Hg isotopes 5 and Pb isotopes \({ }^{6}\) lead to an expected rich structure in the adjacent odd-A muclef. The deformed band has not been observed in 192 Hg , but judging from systematics, it would probably be at an energy of about 2 MeV, and thus would not have a strong influence on the low-energy level structure of adjacent mass 193 nuclef. However, the deformed \(0^{+}\)state in Pb has dropped to about \(\mathbf{8 0 0}\) kel in this mass region and possibly has a significant effect on the structure of 193 pb and 193 Tl . Some evidence of coexisting deformed states was evident in our latest study \({ }^{7}\) of the decay of 195B1; the deformed states should have a greater effect on the levels of 193 pb and \(193 \mathrm{~F} /\) since the deformed states are at lower energies in the cores of these nuclei. Thus. the present study was initiated ti eecablish the low-level structure of these nuclides.

Data were taken via the movable tape collector at the exit of the UNISOR separator. Three datasets were accumulated from sources produced by bombardment of: (1) an \(18-\mathrm{mg} / \mathrm{cm}^{2}\) solid Re target with \(155-\mathrm{MeV}{ }^{16} 0\); (2) a stacked-foil target of Re/Mo alloy with \(165-\mathrm{MeV}\) 150; and
(3) a W-carbide target with 155 -meV \({ }^{160}\). The experiment was designed to populate both lowspin and high-spin isomers in 193 pt . Each dataset contains \(r\)-ray and conversion electron multiscaled-singles spectra and r-y-t and e-r-t coincidence data. During this particular run, the direct production of \({ }^{193} \mathbf{1 1}\) was much larger than observed in sfailar earlier runs, a result which was probably a consequence of the FEBIAD-B2 ion source used in this run.

Because of the dominance of the II activity, the presence of lines orginating from Bi decay was difficult to establish. Mevertheless. careful analysis of the mitiscale data revealed six gman-ray transitions wich decay with the 1938i half-life. Preliminary analysis of the \(y-y\) coincidence data shows a number of other transitions in coincidence with these six transitions. Analysis of spectra, gated by the other transitions, is in progress and should result in the establishment of a decay scheme with ten to twenty levels in \({ }^{193} \mathrm{~Pb}\).

The data taken, using a Re target (Bi compound nuclef). appear to contain \({ }^{193}{ }^{3 p b}\) decay with the amount of low-spin isomer enhanced relative to data taken earlier. Also, the dataset taken with the \(\boldsymbol{L}\) target contains essentially only the high-spin isomer of 193 Pb . Thus, we hope to combine these datasets to obtain separate decay schemes for the high-spin and low-spin isomers of \({ }^{19} 3 \mathrm{pb}\).

Conversion-electron data were not accumulated in earlier UNISOR experiments \({ }^{8}\) on the decay of 193 mit. Since \({ }^{1930 \mathrm{~m}} 1\) seemed to dominate the sources produced in the present experiment, it is clear that this piece of information, wich is very important in the search for coexisting deformed states in \(19: \mathrm{rl}\), is now available. Also, the \(y-y\) data from the present experiment appear to have about 20 times as many counts as the previous results for the decay of 19 佣T. The present data will be used to check the previous decay scheme of \(1+3{ }^{3 \mathrm{~m}} \mathrm{Tl}\), to adn a number of new levels to the scheme, and to obtain conversion coefficients, thus enabling assignment of spins to several levels where this was not possible with the earlier data.

\author{
1. University of Tenmessee, Knoxville, Temessee. \\ 2. Louisiand State University, Baton Rouge. Lovisians. \\ 3. Lovisiana State University, Baton Rouge, Louisiana. Present address: University of Jyvaskyla, Finland. \\ 4. UMiSOR, Onk Ridge Associated Universities, oak Ridge, Tennessee. \\ 5. J. H. Hziliton et al.. Phys. Rev. Lett. 35, 562 (1975) ; Phys. Div. Prog. Rep., Sept. 30. 1987. ORAK-6420, D. 143. \\ 6. P. Yan Duppen et al., Phys. Rev. C35. 1861 (1984). \\ 7. Phys. Div. Prog. Rep., Sept. 30, 1987.
 \\ 8. J. L. Mood, private commanication.
}

\section*{THE IMTERPRETATIOM OF SELECTED STATES In 195H IM TEROS OF PARTICLES COUPLED TO A TRIAXIAL ROTOR}
H. V. Carmichael \({ }^{\mathbf{3}} \quad\) C. R. Binghanl P. B. Semmes \({ }^{2}\)

Preliminary results fram calculations of energy levels in l95tl resulting from coupling \(\mathrm{hg} / 2\) protons to a triaxial rotor core were given in the previous progress reports. 3,4 The results were compared with the corresponding levels and relative intensities observed in the decay scheme of 195 Pb . While the calculations could predict the energy levels rather well. there were considerable discrepancies in the calculated and measured relative intensities. For the mixed transitions, a natural question arises as to whether either the electric or magnetic transition rates are predicted more accurately. This year we have determined the errors on the measured conversion coefficients and thus, it is now possible to separate the measured intensity into Ml and E 2 parts. Consequently, new comparisons with the results of the particle-core coupling model provide additional insight into the success or fallure of the model to predict the properties of the intruder states in 195 Tl .

In the particle core coupling model, one must provide several parameters. A triaxial rotor core has been utilized in the current calculations that require two parameters, the deformation, \(A\), and the asymietry, \(\gamma\). The single particle is assumed to be in an \(\mathrm{hg}_{\mathrm{g} / 2}\) orbital described by aermi level parameter, 1 , and
pairing gap, A. a was taken as 0.7 MeV in accordance with proton calculations in this mass region. 5 is related to the intrinsic quadrupole moment, which has been measured for some of the odd \(I I\) isotopes \({ }^{6}\) and is taken to be 0.15 in agreement with these measurements. The energy of the first \(5 / 2^{-}\)state was found to be sensitive to \(r\). Fitting this energy resulted in a Y of 37 degrees. The energy of the first 7/2state is sensitive to the Fermi level and was fit to give a value of \(\lambda=-1.39 \mathrm{MeV}\).

The predicted level scheme is compared with the corresponding experimental levels in Fig. 3.4 and the overall agreement is rather good. We note that the \((9 / 2)_{3}\) and \((11 / 2)_{2}\) states deviate considerably from the calculations. The relative intensities and mixing ratios for many transitions are given in rable 3.1 along with comparisons with the theory. Using the mixing ratios, we have deduced relative intensities of the E2 and ml parts of the mixed transitions. Thus, we are able to compare calculations for electric and magnetic transitions with the data. These comparisons are

Fig. 3.4. Comparison of observed energy levels of 195 Fl with predictions of a rigid triaxial rotor model.

Table 3.1. Comparison of relative intensities and mixing ratios fron triaxial rotor calculations with experimental data.

 triacial rolor wilh: \(\theta=.15,7=37^{\circ}, \lambda=-1.37, E\left(1^{\circ 0} 2^{+}\right)=0.327 \mathrm{MeV}\).

"Donblet.
4unrevolved line.
'Dowblet, emergy dowent to the \((13 / 2) \mathrm{x} \rightarrow 11 / 2\).
also displayed in Table 3.1. ror the \(K=9 / 2\) band, the E2 intensities agree well, whereas the calculated ml intensities are less than the measured ones by about a factor of eight.

This discrepancy in the intraband transition intensities persists in other bands, but the interband transitions are described much better by the calculations, we are pursuing the calculations in order to better understand these difficulties.
1. University of Pennessee, Knoxville, Tennessee.
2. Tennessee Technological University, Cookeville, Tennessee.
3. C. R. Bingham et al. Phys. Div. Prog. Rep. Sept. 30 , 1987, ORNL-6420. D. T35.
4. P. B. Semines, Ibid., P. 148.
5. J. Meyer-ter-Vehn, Mucl. Phys. A249, 111 (1975).
6. J. A. Bounds et al., Phys. Rev. C36, 2560 (1987).

\section*{SVSTEMATICS OF LIEHT EVEN-EVEN RARE-EARTH MOCLE! WITH M < 82}
B. D. Kernl
R. A. Braga \({ }^{3}\)
M. O. Kortelahti \({ }^{2}\)
R. H. Fink \({ }^{3}\)

An investigation of the deformation of light rare-earth nuclei with \(A=129-140\) and \(Z=38-63\) is being continued. Through the use of beta decay, low-lying levels not populated in the yrast cascades have been observed, especially those which form the gamma bands. Techniques in use have been described elsewhere."

Figure 3.5 illustrates the progression toward increased deformation of the Sa , Md, and Ce even-M nuclei as the neutron number decreases. The obvious indication of deformation is the decrease in energy of the \(2^{+}\)and other levels of the ground-state yrast bands. This behavior has been known for many years, with contributions from many morkers. Our contribution to this region has been the measurement, through the use of teta decay, of the energies of the levels and of some of the parameters of the gama bands of 130,132Ce, 132,134,136nd. and 136,1405m.4,5 It will be noted that the gama bands behave differently from the ground-state bands. The \(\mathbf{2 r}{ }^{+}\) level energy decreases more slowly than the \(\mathbf{2 g}^{+}\) and at \(\mathrm{M}=72\) (74 in Sm) crosses above the \(\mathbf{4 g}^{+}\).

Fig. 3.5. Systematic behavior of the low lying ground-state band and gamma-band levels of Ce, Md, and Sm for \(\mathrm{N}<82\).

This effect has been predicted by Puddu et al. 6 in an I3A-2 calculation for \(C e\), with the crossing expected to occur at \(M=68\). However, they did not attemt to fit any particular nuclei and say that a siight variation of their parameters should give a more accurate description of a particular nucleus. Ou: experiments energy levels and relative \(\mathbf{B}(E 2)\) 's for these nuclei closely follow the predictions. Effects of the varying of the IBA-2 D:ameters are being investigated.

The systematic behavior of the energy levels may be interpreted as a progression from an SO(6)-like structure going towards an SU(3)-like structure as M decreases.

\footnotetext{
i. University of Kentucky, Lexington, Kentucky.
2. Lovisiana State University, Baton Rouge, Louisiana. Present address: University of Jyvaskyla, Finland.
3. School of Chamisiry, Georgia Institute of Tecnnology, Atlanta, Georgia.
4. B. E. Kern et al., Z. Phys. A-Atomic Nuclei 330, 37 (1988).
5. B. D. Kern et al., Phys. Rev. C 36,1514 (1987).
6. G. Puddu et al., Mucl. Phys. 1348, 109 (1980).
}

NON-YRAST LEVEL STRUCTURE OF 195 nd VIA EETA DECAY OF \({ }^{135} \mathrm{pm}\)
M. O. Kortelahtil
R. A. Braga \({ }^{3}\)
H. K. Carter \({ }^{2}\)
R. W. Fink \({ }^{3}\)
B. D. Kern"

The isotope \({ }^{135}\) wd has been studied througt the B-decay of mass-separated \(135^{5}\) m. From earlier work on the b-decay of \({ }^{135 p}\) py by Gizon and Alkhanov, 5 the half-life of \(49 \pm 1\) s for the \(11 / 2^{-}\)level of \({ }^{135} p_{m}\) which decays to the \(9 / 2^{(-)}\) ground state of \({ }^{135} \mathrm{Md}\) was known, and four excited states in \({ }^{135} \mathrm{Nd}\) at \(198.8 \mathrm{kp} .\left(11 / 2^{-}\right)\), \(463.5 \mathrm{keV}, 561.2 \mathrm{keV}\left(13 / 2^{-}\right)\), and 1177.0 keV had been identified. The reported level schemes is inconsistert with present data, wich enables a corrected decay scheme.

In thts work, the \({ }^{135} \mathrm{pm}\) fsotopes were produced at the Holffeld Heavy Ion Research facility. The reaction of \(240-\mathrm{MeV}{ }^{4} 6 \mathrm{Ti}\) projectiles on an enriched \(\mathbf{9} \mathbf{2 m o}\) target was used. The mass identification was done using the on-line
magnetic mass separator, UNISOR. This same reaction at 250 MeV and that with 190-Mey \(285 ;\) project iles on an enriched 112 Sn target were used, with the aid of a He-jet transport system.

The 198.8-kev y ray, shown in Fig. 3.6, was the most intense one seen when using the \(112 \mathrm{Sn}+\) 28si reaction. It is due to the \(11 / 2^{-}\)parent in 135 pm , wrose half-1ife was measured as \(40 \pm 3 \mathrm{~s}\) in reasonable agreement with the earlier measurements. With the \(92_{40}+46 \mathrm{Ti}\) reaction, the most intense \(\gamma\) ray was the one with energy of 128.7 keV , indicating that low-spin isomer in 135 pm mas decaying. On the left side of the diagram. the more intense 98.1-. 128.7-, 208.0-, and \(270.1-k e y\) r rays decay with \(49 \pm 3 \mathrm{~s}\) halflife. The possible 65.1 keV (1/2+) \(+9 / 2^{-}\) internal-conversion transition was not seen with the electron spectrometer and mass-separated saples. This level may be the 5.5 - malf-life iscmer wich has been proposed. 6

The level at 713.2 key is the only one which decays to ithe 198.8-keV 11/2" level and the \(9 / 2^{-}\) ground state of the yrast g.s. band and also to the low-spin \(\left(1 / 2^{+}\right)\)to \(\left(7 / 2^{+}\right)\)levels of the left
side of the diagran. This has made it possible to identify the levels on the left side of Fig. 3.6 as levels which decay to the \(65.1-k e y\) isomeric level which is not reached by yrast cascades.
1. Louisiana State University, Baton Rouge, Louisiana. Present address: University of Jyvastyla. Finland.
2. UnisOR. Oak Ridge Associated

Universities, Oak Ridge, Tennessee.
3. School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia.
4. University of Kentucky, Lexington. Kentucky.
5. Yu. V. Sergeenkov, Mucl. Data Sheets 52, 205 (1987).
6. A. A. Mdurazakov et al.. Bull. Acad. Sci., USSR (Phys. Ser.) 34, 706 (1971).

DECAT OF MASS SEPRATED 1375
R. A. Braga \({ }^{1}\)
R. W. Fink \({ }^{1}\)
M. O. Kortelahtiz
B. D. Kern \({ }^{3}\)
R. L. Mekodaj"

Large nuclear deformations are expected in neutron-deficient nuclei with \(N<82\) and \(Z>50\). Leander and Mollers have predicted that this

Fig. 3.6. Level diagram of 135 Nd , includinglevels due to \(\beta\)-decay of low-spin and high-spin isomers of 135 Pm . Note that the middle of the diagram is drawn to emphasize that the \(713.2-k e v\) level and several r-ray transitions connect the non-yrast levels to the yrast g.s. band.
region of deformation is close enough to the line of stability in the neutron-deficient sm and Pa isotopes that the possibility of producing and studying their structures exists. Macroscopic calculations by Ragnarsson et al. 6 around the neutron-deficient Sm , Gd nuclei have predicted stable prolate shapes exceot for the \(N=76\) isotones where the \(r\)-degree of freedion is expected to come into play. Recently, the nucleus l3ase was found to have not only a small prolate-oblate energy difference, but also a triaxial equilibrium shape. 7

Our current activity in this region of deformation is the study of the decay of \(45{ }^{137} \mathrm{sa}\) to levels in \({ }^{137}\) Pm (an \(M=76\) isotone). The activit ies of \({ }^{137}\) sa were produced by bombarding stacked foils of natural molybdenum targets with 4 UTi beams from the 25 -MV folded tandem accelerator at HillRF with on-line separa:ion at UWISOR. The experiments consisted of \(\gamma-\gamma-t\) and ce- \(r\)-t coincidence, as well as \(r\)-ray singles and ce-singles, spectromelry. The decay scheme for \({ }^{137}\) sm is shomin in Fig. 3.7.

Fig. 3.7. Level scheme of \({ }^{137} \mathrm{Pmm}_{\text {m }}\) from the dec. \(y\) of 45 sec .1375 sm .

This level scheme is in essential agreement with that of Redon et al., with the exception of the spin-parity assignments, wich in their case were based solely on systematics. Whereas in the heavier odd-mass Pm isotopes, the
\(11 / 2^{-}\)state is observed to be an excited state; in 137pm this odd-proton state drops in energy to become the ground state. In-beam spectroscopy \({ }^{9}\) confirms this assignment of \(11 / 2^{-}\) as the ground state. The \(7 / 2^{+}\)assignment of Redon et al. for the 163.5-keV level is not consistent with our measurement of the conversion coefficient for the \(\mathbf{1 6 3 . 5 - k e V}\) transition. The ox value of 0.264 , along with \(L / K\) and \(L / M\) conversion electron ratios of 2.0 and 2.9. respectively, resilt in the establishment of E2 miltipolarity for the \(163.5-k e y\) transition and, therefore, a spin assignment of \(7 / 2^{-}\)for the 163.5-key level. Our measured conversion coefficients also findicate that the 216.7- and 380.5-key transitions de-exciting the \(380.5-\mathrm{keV}\) level are both M in in nature. This leads to a tentative assignment of \(9 / 2^{-}\)to the \(380.5-\mathrm{keV}\) level. The \(\mathbf{4 0 8 . 5 - k e V}\) transition in \({ }^{137}\) Pm populating the 380.5 -kev level is also M1 in character. However, due to the tentative assignment of \(9 / 2^{-}\)to the \(380.5-\mathrm{keV}\) level, no spin assignment is made for the 789.0-key level. The \(11 / 2^{-}\)assignment for the ground state of \({ }^{137} \mathrm{P}_{\mathrm{m}}\) is of particular interest in relation to the heavier odd-mass fin isotopes. In the heavier odd-A pm isotopes, E3 transitions are cbserved \(b\) - imeen the \(11 / 2^{-}\)excited state and the \(5 / 2^{+}\)ground state. In \({ }^{137} \mathrm{Pm}\), however, no transition with E3 multipolarity is established. The lack of this observation reinforces our conclusion that, as with other \(N=76\) isotones, a decoupled band structure exists with both the \(11 / 2^{\circ}\) and \(7 / 2^{\circ}\) members coming low enough in energy to be below the \(5 / 2^{+}\)state.
1. School of Chemistry, Georgia Institute of Technology, At lanta, Georgia.
2. Louistana State University, Baton Rouge, Louisiana. Present address: University of Jyvaskyla, Finland.
3. University of Kentucky, Lexington, Kentucky.
4. Environmental Compliance and Health Protection Oivision, Oak Ridge Mational Laboratory, Oak Ridge, Tennessee.
5. 6. Leander and P. Moller, Phys. Lett. 1108, 17 (1982).
6. I. Ragnarsson et al., Mucl. Phys. R233. 329 (1974).
7. B. D. Kern et al., Phys. Rev. C36, 1514 (1987).
8. N. Redon et al., Z. Physik, A325, 127 (1986).
9. C. K. Beausarig et al.. Phys. Rev. C36. 602 (1987).

\section*{ DECAT OF 1365 AND 136 m}
\[
\begin{aligned}
& \text { B. D. Kernl } \\
& \text { R. L. Mlekodaj }{ }^{2} \text { M. O. Kortelahti }{ }^{3} \text { R. A. Sraga } \\
& \text { R. W. Fink }{ }^{4}
\end{aligned}
\]

136 Pm and \({ }^{136} \mathrm{Nd}\) were studied using the B decay of 136 s a and \({ }^{136} \mathrm{pm}\). The radioactive nuclei were produced by the \({ }^{92 m o}\) (\({ }^{48} \mathrm{Ti}\), xpyn) reactions. The UMISOR isotope separator enabled mass identification. Typically, many more lowlying, low-spin levels mere populated via b-decay than in the in-bead experiments. The previously unknown level scheme of 136 pm was constructed and the half-1ife of \({ }^{136} 5 \mathrm{~m}\) was determined to be \(47 \pm 2 \mathrm{~s}\). Six new levels and thirteen new r-ray transitions have been added to the level scheme of 136 md . The gama band, from \(\mathbf{2 r}^{+}\)to \(\mathbf{5 r}_{\boldsymbol{\gamma}}{ }^{+}\), was identified in \({ }^{136} \mathrm{Md}\). Where \(\gamma\)-ray branching from gama-band levels occurred in \({ }^{136} \mathrm{Md}\), the relative \(B(E 2)\) 's were deduced from the data and compared to predictions of the IBA \(\mathrm{SO}(6)\) gammesoft model and of the gama \(=30^{\circ}\) rigid rotator model. The results indicate preference for the \(50(6)\) model.

Additional detafls are given in the published paper (Ref. 5).

\footnotetext{
1. University of Kentucky, Lexington, Kentucky.
2. Environmental Compliance and Health Protection Division, Oak Ridge Mational Laboratory, Oak Ridge, Tennessee.
3. Louistana State University, Baton Rouge. Louisiana. Present address: University of Jyvaskyla, finiand.
4. School of Chemistry, Georgia lnstitute of Technology, At isnta, Georgia.
5. B. D. Kern et al., 4 Phys. A 330, '1 (1988).
}

\section*{SEARCH FOR LON-SPIM SUPERDEFOPTED STATES IN 19 HHg}
E. A. Henryl
C. R. Binghan"
Y. A. Akovali
W. D. Schmidt-ott \({ }^{5}\)
J. A. Becker \({ }^{1}\)
R. A. Meyer \({ }^{1}\)
H. R. Carter \({ }^{2}\)
Y. S. Xu \({ }^{6}\)
J. Kormick \({ }^{3}\)
H. V. Carmichael"

Recent theoretical calculations have suggested that low-spin isomeric states with large deformation will occur in the mercury nuclei. 7,8 These states would be the analogues of the fission isomers in the act inide nuclef. with \(\mathrm{J}^{\prime \prime}\) values of \(\mathrm{O}^{+}\)and \(\mathrm{B}_{2}\) values of about 0.6 . that is a \(2: 1\) axis ratio. However, because the fusion barrier is much higher for the mercury nuclei, the main decay mode will be gamatray enission or alpha emission. These states are distinct from the high-spin superdeformed states recently found in the rare earth nuclef, where larger angular momentua stabilizes the deformation.

We have chosen two expertments that utilize beta decay of thallium nuclei to try to identify low-spin superdeformed states in mercury isotopes: alpha spectroscooy following \({ }^{106} 51\) decay and gaman-ray spectroscopy following \({ }^{194} \mathrm{Tl}\) decay. These thallium isotopes are both produced in useful quantities by the UIISOR facility. Both have a high-spin and low-spin isomer, and both have favorable O values. Details of the \({ }^{186} \mathrm{Tl}\) experiment are given in Section 2 of this report by \(Y\). A. Akovall et al.

In 19 Hg , the superdeformed state is calculated to be at about 4 MeV of excitation and could be populated by decay of the \(2^{-}\)ground state \(\left(0_{E C}=5.15 \mathrm{MeV}\right)\) or the \((7)^{+}\)isomer \(\left(0_{E C}=\right.\) \(5.45 \mathrm{MeV})\). The most easily observed signature for decay of a superdeformed tsomer in \({ }^{194} \mathrm{Hg}\) would be an ~ \(3.6-\mathrm{MeV}\) E2 gamma ray to the first excited state in \({ }^{194} \mathbf{H g}\) at 428 kev. Gemma-ray and alpha-singies data, and ry and ar coincidence data were accumulated. The data were of high quality, and many previously unobserved features are apparent. Gammays are observed that indicate direct population of levels at about 4 MeV of excitation in 194 Hg . However. only an upper limit can be placed on the
intensity of a 3.6-HeV gama ray in coincidence with the 428-keV transition from the first excited state. Further analysis of these data are necessary to quantify the population implied by these results and examine other potential decay routes.

\author{
1. Lawrence Livermore Mational Laboratory. Livermore, California. \\ 2. UniSOR, Cak Ridge Associated Universities, Oik Ridge, Tennessee. \\ 3. Vandertit University, Mashville, Tennessee. \\ 4. University of Tennessee, Knoxville, Tennessee. \\ 5. Joint Institute for Heavy Ion Research. Oak Ridge, Temessee. Present address: University of cottingen, eottingen, West Cermany. \\ 6. Oregon State University, Corvallis. Oregon. \\ 7. M. S. Weiss, Lewrence Livermore Mational Report, UCRL-96713, (DEC. 1987). \\ 8. J. Dudek et al.. Phys. Rev. Lett. 59, 1405 (1987).
}

\section*{Level structure of \({ }^{119}\) te}
\begin{tabular}{|c|c|}
\hline P. F. Mantical & M. 0. Kortelahij \({ }^{3}\) \\
\hline B. E. Zimmerman \({ }^{\text {l }}\) & M. D. Schmidt-0:t" \\
\hline W. B. Walters \({ }^{1}\) & H. K. Carters \\
\hline E. F. 2ganjar \({ }^{2}\) & W. L. Croft \({ }^{6}\) \\
\hline
\end{tabular}

In August, we performed our first experiment at the Holifield Heavy Ion Research Facility (HNIRF) at Oak Ridge Mational Laboratory. The experiment consisted of the collection of gammeray and conversion-electron singles spectra and gama-electron and gama-gama coincidence data from the decay of \({ }^{119} \mathrm{Te}\) and \({ }^{121} \mathrm{Te}\). Through the analysis of these data, we would calculate the amount of EO admixture for the \(1 / 2^{+}\)to \(1 / 2^{+}\)and \(3 / 2^{+}\)to \(3 / 2^{+}\)transitions in these odd-neutron Te nuclides to determine how much of a role intruder states play in the structure of the odd-mass, odd-neutron nuclides near the \(Z=50\) proton shell closure.

By use of the isotope separator at the UNISOR target station, \({ }^{119} \mathrm{Cs}\) and \({ }^{121} \mathrm{Cs}\), produced in the heavy ion reaction between a \(175-\mathrm{MeV} 32 \mathrm{~S}\) tandem bean at 1 - and an 8 -mg/cm \({ }^{2} 92 \mathrm{Mo}_{\mathrm{m}}\) target, were separated from the other masses produced in the reaction and deposited on a moving tape. The transitions between levels in 119 Te populated
through the beta/electron capture-decay of \({ }^{119}\) I were then studied after allowing ample time for the removal by decay of the Cs grandparent and Xe parent from the deposited sample.

The experimental setup involved the use of parent- and daughter-decay stations. The study of the : \({ }^{19} \mathrm{Te}\) and \({ }^{121} \mathrm{Te}\) nuclides was performed at the daughter station, where gama-ray singles data up to energies of 2.0 MeV were collected, using a Ge detector with l.9-keV full-width at half-maximum (Finm) resolution for the 1332-keV transition in \({ }^{60}\) Co. A Si(Li) detector with 2.4-keV Funk resolution for the \(975-\mathrm{keV}\) K-electron-cui::zesion trassition in \({ }^{207} \mathbf{7 B i}_{\text {i }}\) was used to collect conversion electron data up to energies of 3.0 Mel . Coincidences were collected tetween the Ge gamm-ray and Si(Li) conversion-electron detectors and between the Ge gama-ray detector and a \(\mathrm{Ge}(\mathrm{Li})\) gama-ray detector which had a Fimm of \(\mathbf{2 . 6}\) Mel for the \(1332-\mathrm{keV}\) transition in \({ }^{60}\) Co and an energy range set to 3.0 MeV. At the parent station, a Si(Li) electron detector (Fwan \(=3.2 \mathrm{keV}\) for 975 keV) equipped with a miniorange spectrometer, and a Ge gamma-ray detector (Futh \(=2.1\) MeV for 1332 \(k e V)\) were used to collect conversion-electron and gama-ray singles data for the transitions in the parent \({ }^{119} \mathrm{I}\) and \({ }^{121} \mathrm{I}\) nuclides.

Although analysis of all the data \(i\). not yet complete, some of the initial results of the analysis are interesting. Figures 3.8-3.11 show the proposed level scheme for \({ }^{119} \mathrm{~T}\), obtained from the analysis of the gammegama and electron-gama coincidence spectra and the gamma-ray singles spectra. The proposed level scheme includes 62 gamad-ray transitions betweer, 23 levels, and spin-parity assignments for 1 ? of those levels. The level scheme is much more extensive than any previously reported level scheme \({ }^{b}\) evaluated through the beta/electroncapture population of excited states in 119 Te , as 14 of the levels identified in our study were not identified in any of the earlier betal electron capture-decay studies of 119 I . Spinparity assignments for the levels identified here were made with the aid of a recent in-beam study of 119 Te .

Fig. 3.8. Level scheme for \({ }^{119} \mathrm{Te}\) up to 661 keV . Levels marked with an asterisk have not been previously identified in beta-decay studies.

Detailed analysis of the conversion-electron singles data will begin shortly for the \(1 / 2^{+}\)to \(1 / 2^{+}\)and \(3 / 2^{+}\)to \(3 / 2^{+}\)transitions in \({ }^{119} \mathrm{Te}\). From the convercion-electron and gama-ray singles data, conversion coefficients will be calculated for the \(1 / 2^{+}\)to \(1 / 2^{+}\)and \(3 / 2^{+}\)to \(3 / 2^{+}\) transitions to determine the amount of EO admixture in these transitions. Analysis of the 121Te data and the singles data collected for the odd-mass 1 nuclides will commence with the conclusion of the \({ }^{1 / 9} \mathrm{~T}\) a analysis.
1. University of Maryland, College Park, Maryland.
2. Louisiana State University, Baton Rouge, Louisiana.
3. Louisiana State University, Baton Rouge, Loulsidna. Present address: University of Jyvaskyla, finland.

Fig. 3.9. Level scheme for \({ }^{119}\) Te from 669 keV to 889 keV . Levels marked with an asterisk have not been previously identified in beta-decay studies.
4. Joint Institute for Heavy Jon Research. Oak Ridge, Tennessee. Present address: University of Göttingen, Göttingen, West Germany.
5. UNISOR, Oak Ridge Associated Universities, oak Ridge, Tennessee.
6. Mississippi State University, Mississippi State, Mississippi.
1. Washington and Lee University, Lexington, Virginta.
8. E. H. Spejewski et al., Nucl. Phys. Al46, 192 (1970).
9. T. Rodland et al. . Nucl. Phys. M69, 407 (1987).

Fig. 3.10. Level scheme for 119 te from 964 keV to 1113.7 keV . Levels marked with an asterisk have not been previously identified in beta-decay studies.

Fig. 3.11. Level scheme for 119 te from 1197 keV to 1674 keV . Levels marked with an asterisk have not been previously identified in beta-decay studies.

\section*{4. EXPERMMENTAL ATOMIC PHYSICS}

\begin{abstract}
The experimental atomic physics progran within the Physics Division is carried out by two groups, wose reports are given in this section. Work of the accelerator atomic physics group is centered around the \(6.5-\) HI EM Tandem accelerator and the Holifield 25 -her tandea accelerator; consequently, most of its research is concerned with atomic processes occurring to, or init'ated by, few MeV/nucleon heavy ions. The second group is concerned with lower ener y atoaic collision physics in support of the Fusion Energy Program. These studies utilize the multiply charged ion beams obtained from an electron cyclotron resonance source. In addition to these two activities in experimental atomic physics, other chapters of this report describe the progress in related activities of these groups in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compliations.
\end{abstract}

\section*{aCCELERATOR-BASED ATOMIC PHYSICS}

CHAEE AMD MGELAR CORRELATED IMELASTICITIES in helviag ICm-ATOM COLISIOWS
\begin{tabular}{ll}
H. Schönel & J. P. Giese \({ }^{3}\) \\
R. Schuch & \\
S. Datz & H. F. Krause \\
P. F. Dittner & M. Schul2 \\
& O. C. Kessel
\end{tabular}

We report on simultaneous measurements of scattering angle, recoil charge state and inelasticity in MeV/amu collisions using an Elbek high-resolution mgnetic spectrograph. Ir. general, for inelastic collisions of this type, much of the energy is carried off by either direct ionization or by ionization following inner-shell ionization or excitation. In the case of capture, a balance between energy gain (or loss) due to an increase in binding energy on the projectile and energy loss due to an increase in translational energy of the captured electron determine the inelasticity. We find that a large fraction of the total transferred energy is carried off by the continuum electrons. For this experimint, \(10-\mathrm{HeV}\) carbon beam was poststripped ifter passing through a \(90^{\circ}\) magnet. The \(\mathrm{C}^{6+}\) beim wa! energy- and chargestate selected with a seicnd \(90^{\circ}\) magnet in combination with two sets of slits. The angular divergence mas limited by a thirs slit in front of the gas cell. The degree of multiple target fonization by given piojectile was determined by a time-of-flight technique. A more setailed
description of the setup used is given elsewhere. \({ }^{6}\) A two-dimensional (2D) positionsensitive multichannel plate placed in the focal plane of the Elbek magnetic spectrograph 7 was used to detect the recoiling projectiles. Since the spectrograph is double focusing in the plane of dispersion \((X)\) and nonfocusing in the perpendicular plane (\(Y\)), a displacement in \(Y\) is a measure of the angular differential cross section \(d \sigma / d \theta\). With the given properties of detector and spectrograph, the angular resolution is limited to \(0.005^{\circ}\).

With direct ionization, larger impact parameters are favored more than in the transfer reaction and the differential cross sections are mure sharply peaked at small angles. Subtracting the sum of the ionization potentials (SIP) necessary to create given ionization state in He from the relative inelasticity (RI), we obtain (assuming that the recoil energy and excitation energy is low) the total kinetic energy of the continuum electrons.

In Fig. 4.1a, we plot total energy given to continuum electrons for direct tonizing collisions of \(10 \mathrm{MeV} \mathrm{C}^{6+}\) with He , He, and Ar. In Fig. 4.10, we show the data for charge capture collisions of \(10 \mathrm{MeV} \mathrm{c}^{6+}\) with He , Me, Ar, and Xr targets. We use \(0=1\) as an arbitrary zero of inelasticity because the absolute energy loss of recoll charge state \(l^{\text {t }}\) could not be determined

Fig. 4.1. Total energy deposited into contimum electrons (= measured projectile energy loss relative to recoil-ion charge state \(1+\) (RI) winus the sum of the ionization potentials (IIP)) necessary to form that charge state number of continuum electrons for (a) direct innization and (b) charge capture into \(\mathrm{C}^{5+}\) plus multiple ionization of \(10 \mathrm{MeV} \mathrm{C}^{\mathbf{6 +}}\).
with sufficient accuracy. Statistical errors are, in most cases, smaller than the data point symbols. Systematic errors are indicated only for He. In either channel, the kinetic energy is quite high, with 100 - 200 el per emitted electron. Furthermore, for both reaction channels, the kinetic energy per continuum electron decreases with higher target 2 . A qualitative understanding of these processes can be mode using the heuristic assumption that the electrons are ejected by a binary encounter mechanism. The famact parameter for ionizing d given target electron extends to larger impact parameters for higher target 2. Hence, for
high 2 targets, we expect relatively less energy transfer to the removed electrons due to larger impact parameters. This trend is reflected in the ionization measurements (Fig. 4.1a). At 20 MeV , we expect the total cross section to decline, but the impact parameter dependence of the cross section should peak at and extend to larger distances. The experimental finding of decreased inelasticity with increasing energy is in agreement with the energy deposition model which predicts less energy transfer for distant collisions. \(\Delta E\) may be treated likewise as direct ionization only with a smaller and closer impact parameter range defined by the requirement of sian'taneous capture. As a result, the contimume electron energies are lower for increasing target \(Z\), wile, for given target \(Z_{\text {. }}\) the kinetic energy of an ejected electron is larger in coincidence with electron capture than for direct ionization. Since one electron in the capture channel is not released to the contimum, recoil charge state \(0-1\) corresponds to charge state 0 for direct ionization. The direct comparison of both channels shows qualitatively good agreement with this simple model.

\footnotetext{
1. Graduate student on assignment from the University of Heidelberg, Heidelberg, FRG.
2. MSI. Frescativagen 24, S-104 05 Stockholm 50, Sweden.
3. DRAU Postdoctoral Research Associate.
4. Partial support provided by the Joint Institute for Heavy Ion Research.
5. Department of Physics, University of Connecticut, Storrs, CT 06268.
6. R. Schuch et al.. Phys. Rev. Lett. 60, 10 (1988).
7. J. Borggreen et al., Mucl. Instrum. Meth. 24. 1 (1963).
}

\section*{ELECTROM EMERGY DISTRIBUTIONS ACCOMPANYIMG MULTIPLY IONIZING COLI ISIOWS}
\begin{tabular}{ll}
S. Datz & J. P. Giese \({ }^{2}\) \\
H. Sch \\
C. R. Vane & R. Hippler \\
P. F. Oittner & H. F. Krause \\
M. Schulz
\end{tabular} J. K. Swensons

In experiments that have measured the inelastic losses of energetic ions which accompany multiple fonlzation of the target, it has been observed that these losses far exceed the mintmum necessary for the release of a given number
of electrons. For the reaction
\[
C^{6^{+}}(10 \mathrm{MeV})+M e+C^{\sigma^{+}}+M e^{+}+q e^{-} .
\]
the measured energy loss of \(\mathrm{C}^{6+}\) implied that an average kinetic energy of 200 ev has been imparted to the emitted electrons. 6

To investigate this further, two approaches were followed: (1) we measured the forward (zero degree) electron spectra in coincidence with capture or direct ionization. This approach accents that part of the spectrum which is associated with electrons moving at low relocity in the projectile rest frame. (2) We measured the energy distribution of electrons resulting mainly from emission in the target rest frame by extraction and retardation analysis.

For the first part, we used a zero degree electron spectrometer and measured the spectrum in coincidence with charge capture for collisions of \(\mathrm{C}^{++}+\mathrm{Me} \rightarrow \mathrm{C}^{5+}+\mathrm{Me}^{\mathrm{q}^{+}}+(\mathrm{q}-1) \mathrm{e}^{-}\)and with projectile charge loss in \(\mathrm{C}^{5+}+\mathrm{Me} \rightarrow \mathrm{C}^{\mathrm{C}^{+}}+\)
 observed for both channels as compared with simple target ionization, \(\mathrm{C}^{++}+\mathrm{Me}+\mathrm{C}^{6+}+\) \(\mathrm{Me}^{+}+\mathrm{qe}^{-}\), indicative of the smaller impact parameters associated with these processes. A more prominent binary encounter peak in the charge-capture coincidence spectrum is observed, which gives additional evidence for the nature of the close encounters required for this process.

To measure the energy distribution of electrons relsased predominantly in the target frame, we applied a drawout potential of 150 volis to the scattering cell perpendicular to the direction of the fon beam. The recoll ions were thus extracted on one side wile the electrons were ejected in the opposite direction. The arrival of the electrons at a channeltron initiated a pulse which was then used to measure the time-of-flight and hence the charge state of the recoil lons. We then introduced retarding grid on the electron side and measured the recali-ion spectrum as a function of this retarding voltage. For collisions of 20 MeV \(\mathrm{C}^{6+}+\mathrm{Me}, \mathrm{Fig} .4 .2\) shows some representative spectra and Fig. 4.3 shows the charge fractions as a function of repelier voltage. The prin-

Fig. 4.2. Time-of-flight charge state spectra for Me recoil ions from \(\mathrm{C}^{6+}(20 \mathrm{MeV})+\) He collisions. The peaks from right to left are due to \(\mathrm{He}^{+}\), \(\mathrm{Me}^{3+}\), and \(\mathrm{He}^{\mathrm{i+}}\). Electron retarding voltages are (a) 0 V , (b) 25 V , (c) 50 V . and (d) 150 V .

Fig. 4.3. Charge fractions as a function of electron retarding voltage.
cipal features are the initial decline of the Me \({ }^{1+}\) fraction witnin the first 50 volts of retarding potential and the relative constancy in the ratios thereafter.

A long-range Coulomb iapulse can result in the liberation of a single electron from the target. Within the impulse approximation, such long-range interactions lead to small energy transfer and account for the low-energy dominance of the single ionization events. More significant is the relative constancy of the charge state ratios with increasing repeller
voltage, i.e., the ejected electron-energy distribution is independent of the number of electrons released. This implies the validity of in energy deposition model in which a fixed amount of energy is deposited into the system and is then statistically distributed to the emerging electrons. In this case, the energy aistribution mong the electrons is independent of the nuber of electrons ejected.
i. Graduate student on assignaent from the Uni versity of Heidelberg, Heidelberg. FRG.
2. Calu Postdoctorai Research Associate.
3. Universitat Bielefeld, Fakultit fur

Physik, Postfach 8640, 4800 8ielefeld 1, FR6.
4. Partial support provided by the Joint Institute for Heavy Ion Research.
5. University of Tennessee Postdoctoral Research Associate.
6. R. H. Schuch et al.. Phys. Rev. Lett. 60, 925 (1988).

\section*{ELECTRON-ELECTROM IMTERACTIOMS IM TRAMSFER AD ExCITATION IN F \({ }^{\text {B+ }} \rightarrow \mathrm{H}_{2}\) COLLISIOWS}
\begin{tabular}{ll}
M. Schul2 & 1 \\
J. P. Giese & H. F. Krause \\
J. K. Swenson & \\
S. Datz & H. Schöne \\
C. R. Yane \\
P. F. Dittner & M. Benhennis \\
& S. M. Shafroth
\end{tabular}

Transfer and excitation processes have been studied intensively the last couple of years. \({ }^{6-8}\) The interest was focussed on resonant transfer and excitation (RTE). In this process, a weakly bound target electron excites a projectile electron and is captured to a bound state of the projectile.

In last year's progress report (0 RML -6420), we presented evidence for RTE in \(\mathrm{F}^{6+} \rightarrow \mathrm{H}_{2}\) collisions. In that work, a dominance of high \(n\) state KLn RTE resonances over the KLL resonances was found. Furthermore, a meximum in the cross section was found at projectile energles higher than the RTE resonance energies. The causes for this maximum could not be conclusively clarified in that experiment. However, as one possible explanation, a process proposed by Y. Hahn \({ }^{9}\) was discussed. In this process, which is termed "Two Electron Transfer and Excitation" (2eTE), a projectile electron is excited by one target electron and simultaneously a second target electron is captured by the projectile. In the
present mork, we present evidence for 2eIE in \(\mathrm{F}^{\mathbf{}^{+}}\)- \(\mathrm{H}_{2}\) collisions by measuring \(F\) Auger electrons. Furthermore, we show that the nstate dependence of the RTE resonances is entirely different in the Auger decay channel than the \(x\)-ray decay channel studied in the previous experiment.

At the EM Tanden, we obtained \(\mathrm{F}^{\boldsymbol{+}}\) reams at energies between 17 and 33 MeV . The beam was passed through a differentially pumped \(\mathrm{H}_{2}\) gas target. The electrons produced here mere decelerated by a high voltage, energy analyzed by a high-resolution electron spectrometer, 10 and detected by a position-sensitive micro-channel-plate detector. The beam was collected in a Faraday cup and used for normalization. In Fig. 4.4, the \(F\) Auger electron emission cross sections for KQL, KLM, KLM, and XLO transitions are plotted vs the projectile

fig. 4.4. F Auger electron emission cross sections vs projectile energy for KLL, KLM, KLM. and KLO transitions. The full curves are est:mated 2 eTE cross sections. The open circles \(n\) okLM are the difference between the measured cross sections and the curve.
energy. In okLL. two maxima can be seen at 21 and 29 MeV. For all the other transitions, the cross sections have a maximu at 29 MeV . For initially H -like ions, an Auser electron can be produced only by a transfer and excitation process (except for higher order processes). The arrows in Fig. 4.4 show the RTE resonance energies for the corresponding Auger transition and the RTE KLn series limit (KL-). Only the first aximum in axll agrees with the corresponding resonance energy. The second maximum, as mell as the maxima for the other transitions, are slightly above the An series linit. Thus it is clear that these contributions cannot be due mainly to RTE and must be explained by different transfer and excitation process.

One obvious candidate is 2eTE. The curves in Fig. 4.4 show estimated \(2 e T E\) cross sections. Since these projectile energies \(K\) electron can be excited to the \(L\) shell only by free electron impact, the \(n\) distribution of the states populated by zeTE is determined by the capture probabilities which we calculated within the 08K approximation. The energy dependence in our estimate is a combination of the OBK energy dependence and the momentum distribution (Compton profile) of the exciting target electron. The absolute magnitude was obtained by fitting the estimated \(2 e 7 E\) cross sections with the excitation cross section by a free electron as the only free parameter to the data point in oxLM at 29 MeV . The agreement of our estimate with oxLM and oxlo is very good. In oXLM, the curve approaches the data only at high energies. In oKLL, the agreement is reasonable in the region of the second maximun where the contributions from RTE are small. If in oxLM. the curve is subtracted from the data, then the resulting cross sections (open circles) have an energy dependence which is consistent with a KLM RTE resonance. However, these cross sections are about one order of magnttude lower than the KLL resonance. In oKLM and oKLO, no indication for RTE resonances can be seen.

We conclude that in the Auger decay channel RTE is clearly dominated by KLL states and falls
off rapidly with increasing \(n\). Taking contributions from RTE into account, the \(n\)-dependence and the projectile energy-dependence of the present data are consistent with what is expected for \(2 e T E\) cross sections. We take this as strong evidence for the occurrence of the 2eTE process.

\footnotetext{
1. Partial support provided by the Joint Institute for Heavy Ion Research.
2. ORAN Postdoctoral Research Associate.
3. University of Tennessee Postdoctoral Research Associate.
4. Graduate student on assignment from the University of Heidelberg, Heidelberg, FRG.
5. University of Morth Carolina, Chapel Hill. MC 27514.
6. J. A. Janis et al., Phys. Rev. Lett. 53. 2551 (1984).
7. M. Schulz et al., Phys. Rev. Lett. 58, 1734 (1987).
8. S. Reusch et al., Mucl. Instr. Meth. in Phys. Res. 823, 137 (1987).
9. Y. Hahn. private commication.
10. J. K. Simenson, Mucl. Instrum. Meth. in Phys. Res. B10/11, 899 (1985).
}

DOUBLE EXCITATION OF HE BY FAST PARE IOWS
\begin{tabular}{|c|c|}
\hline J. P. Giese \({ }^{1}\) & S. M. Shafroth \({ }^{\text {ch }}\) \\
\hline M. Schulz \({ }^{2}\) & H. Schone \({ }^{\text {S }}\) \\
\hline J. K. Swenson \({ }^{3}\) & P. F. Dittner \\
\hline H. Benhenni* & C. R. Vane \\
\hline
\end{tabular}

The double excitation of He by fast bare projectiles has been investigated in order to probe the role that electron-electron correlation plays in this process. The importance of electron correlation has been clearly demonstrated in transfer tonization 6,7 and is suggested in double ionization. 8,9 The double excitation of the by bare projectiles is conceptually and computationally simpler than these ionization processes where one or two electrons end up in the continuum. 10 A qualitative examination of the probable excitation mechanisms suggests there should be difference in the dependence of the excitation cross section on the projectile charge. The first mechanism involves a close colliston between the projectile and one of the He electrons. This electron in turn collides with the second electron and both are excited. This mechanism can also be pictured as a "snake-up" transtition. The initial
single excitation of the first electron is known to vary as \(\mathbf{Z}^{2}\), where \(\mathbf{Z}\) is the charge of the projectile. Thus, this mechanism might be expected to vary as \(\mathbf{Z}^{2}\). The second mechanism involves a close collision of the projectile with both electrons and would most likely vary as \(2^{4}\).

We have measured the double excitation of the by \(F q^{+}(q=7-9)\) and \(C q^{+}(q=4-6)\) projectiles at \(1.5 \mathrm{MeV} / \mathrm{am}\) at the ORML En Tandem. The doubly excited the atoms decay primarily via autoionzation producing electrons with line energies between 30 and 45 eV . These electrons have been detected using a high-resolution electron spectrometer \({ }^{11}\) at laboratory observation angles between \(9.6^{\circ}\) and \(60^{\circ}\) relative to the beam axis. The preliminary results indicate that the dominant excitations are to the \(2 p 2 p\left({ }^{10}\right)\) and \(2 p 3 p\left({ }^{1} D\right)\) states of He. As would be expected, there is no sign of population of triplet states then using bare projecile (F9+ and \(C^{6+}\)). A strong Fano profile is seen for all the states, indicating interference between the double excitation and ionization processes. A detailed analysis of these fano profiles will be necessary in order to determine the 2 -dependence of the excitation process. Our plans are to continue this series with protons at \(1.5 \mathrm{MeV} / \mathrm{amu}\) and to measure the energy dependence using protons between 1.0 and \(10 \mathrm{MeV} / \mathrm{amu}\). It is also possible that a complete analysis of the Fano profiles will require measurements at larger observation angles.

\footnotetext{
1. ORAU Postdoctoral Research Associate.
d. Partial support provided by the Joint Institute for Heavy Ion Research.
3. University of Tennessee Postdoctoral Research Associate.
4. University of Morth Carolina, Chapel H111, We 27514.
5. Graduate student on assignment from the University of Heidelberg, Heidelberg. FRG.
6. E. Horsdal Pedersen and L. Larsen. J. Phys. B 12, 4085 (1917).
7. L. H. Andersen et 1. . Phys, Rev. Lett. 57. 2147 (1987
8. J. P. Giese and E. Horsdal, submitted for publication in Muclear Instruments and Methods in Physics Research.
9. J. H. MeGuire, private communication.
10. J. H. MeGuire, Mucl. Instrum. and Meth. in Phys. Res. A262, 48 (1987).
11. J. K. Swensen, Mucl. Instrum. and Meth. in Phys. Res. 810/11. 899 (1985).
}

\section*{RESOMART DIELECTROWIC EXCITATIOM IM CRYSTAL CHANMELS}
\begin{tabular}{ll}
S. Oatz & M. L. Jones \\
C. R. Vane & H. F. Krause \\
P. F. Dittner & P. D. Miller \\
J. P. Giese & \\
J. Gomez del Campo & M. Schulz \\
& \\
& T. M. Rosseel
\end{tabular}

Energetic ions traveling through crystals under channeling condi'ions interact directly only with loosely boand electrons. In this approximation, the electrons in a channel may be treated as a dense electron gas characterized by a Fermi distribution of momenta. Ions traveling through this medium at velocities \(v_{i}\) equivalent to electron velocities required for, e.g., excitation or ionization of an electron bound to the moving ion, should experience events similar to those in a dense plasma but with a relatively narrow electron energy distribution.

To test this hypothesis, we have sought, and observed, effects due to resonant dielectronic excitation (RDE) in cne-electron ions of Si, \(S\), and Ca by electron collisions mile passing through a <llo> axial channel in a silicon crystal.

An electron colliding with the ion moving in the channel excites a previously bound electron and, in so doing, loses energy and is captured to a bound state, e.g.,
\[
A^{(2-1)+}(1 s)+e+\left[A^{(2-2)+}\left(2 p^{2}\right)\right]^{* *} .
\]

In the spirit of Auger notation, we refer to this as a KLL excitation. This process is resonant at a collision energy equal to the KLL energy. Since the electrons in the channel have a Fermi distribution in energy, the resonance will be spread by the Compton profile of the momentum distribution.

In vacuum under single collision conditions, the doubly excited state mould decay either by an Auger process (resonant elastic scattering) back to \(\mathrm{Aq}^{+}+\mathrm{e}^{-}\)or by radiative stabilization (dielectronic recombination = DR) via two photons: first to \([A(2-2)+(1 s 2 p)]^{*}+h v_{1}\) and then to \(A(2-2)+(1 s)^{2}+h v_{2}\). However, if the state is created in a dense electron medium (i.e.. a dense plasma or a crystal channel), collisional processes leading to further excitation and ionization come into play and may even dominate.

The experiments were carried out using the HHIRF tandem to obtain Deams of H-like \(\mathrm{Sl}^{+4}\) at energies ranging from 80 to 210 MeV and \(\mathrm{Ca}^{19+}\) at energies from 150 to 370 MeV . The ion beans passed through the <llo> axis of a silicon crystal \(1.4 \mu \mathrm{~m}\) thick. Measurements mere made of (a) the emerging charge-state distributions using electrostatic deflection and a solid-state position-sensitive detector, and (b) the \(x\)-ray spectra using a Si(Li) detector (130 eV resolution at 5.6 keV).

If we assume 6 electrons per atom, thr electron density in the channel is \(3.6 \times 10^{23} / \mathrm{cm}^{3}\). If we take, as an example. Kll excitation of \(\mathbf{S}^{154}\). the requisite electron-collision energy is 1.87 keV or a \(\mathrm{s}^{15+}\) ion energy of 110 MeV on a stationary electron (note that this is well below the energy required for direct ls \(\rightarrow 2 p\) excitation or for ionization). This gives an electron flux of \(9.4 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}\). Coupling this with the appropriate cross sections for excitation and ionization, we obtain the rates for these processes and compare them with autoionizing and radiative rates in Fig. 4.5 for the configuration \(\left[S^{14+}\left(2 p^{2}\right)\right]^{* *}\). (Note that the most rapid rate is for \(2 \mathrm{~s}-2 \mathrm{p}\) mixing.)
ancerme minne

KUL resonence in 8 rone formeo in a \(<110\rangle\) Chemel in \(S\)
\(D_{0}=3.6 \times 10^{20} \mathrm{~cm}^{3}\)
\(v,-2.6 \times 10^{\circ}\) anvece (110 MOV)
Fig. 4.5. Collisional and radiative rates (in sec \({ }^{-1}\)) for the various possible paths into and out of the \(s^{14 *}\left(2 p^{2}\right)\) configuration at the velocity corresponding to KLL resonance.

The observables are: stabilized charge capture to \(\mathrm{S}^{\mathrm{lu}^{t}}\); collisional excication and ionization
 the doubly excited state \(s^{\prime 4 *}\left(2 p^{2} \rightarrow 2 s 2 p\right)+\) \(h v_{1}\); X-radiation of the He-like \(\mathrm{slt}^{+}\)(\(1 \mathrm{~s} 2 \mathrm{p} \rightarrow\) \(\left.1 s^{2}\right)+h v_{2}\); and X-radiation from the oneelectron excited system \(5^{15+}(2 p+1 s)+h y_{3}\). From these rates, the predicted relative yields are:
\[
\begin{aligned}
& Y(16+)=0.75 \\
& Y(14+)=0.06 \\
& Y\left(h_{v_{1}}\right)=0.31 \\
& Y\left(h_{2}\right)=0.06 \\
& Y\left(h_{v_{3}}\right)=0.23 .
\end{aligned}
\]

However, the hivi and hys are indistinguishable with our Si(Li) detector resolution and the yields should be added.

The results shom in Fig. 4.6 for the chargestate fractions as a function of energy and Fig. 4.7 for the X-ray yields as anction of energy are in qualitative accord with these eapectations. Fig. 4.63 shows no discernable deviation in the charge \(14+\) fraction from a monotonic trend; and Fig. 4.7a. showing the \(5^{14+}(1 s 2 p)+1 s^{2}\) x-ray yield, likewise shows a monotonic decline with increasing energy. Marked oscillations are seen in Fig. 4.6b for the \(5^{16^{+}}\)charge fraction and Fig. 4.7b for the \(X\) rays (h\(\left.v_{1}+h v_{3}\right)\). Subtracting a monotic background reveals the following features: (1) a peak at \(1: 0\) MeY, the predicted position of the KLL resonance; (2) a peak at \(\sim 145\) MeV, corresponding to the peak previously observeds for the complex of higher KLn resonances; (3) an apparent peak at 185 MeV , which is due to direct collisional excitation \(1 s+2 p\) (see below): and (4) a rise in the \(\mathrm{S}^{164}\) near 200 MeV . due to direct ionization.

In the case of Calst \((1 s)+e+\mathrm{Ca}^{18+}\left(2 p^{2}\right)\). the radiative rates are faster, and the collistonal ionization and excitation cross sections are lower than for the \(5^{154}\) case. Here the radidtive rates dominate and lead to the following set of anticipated yields:
\[
\begin{aligned}
Y(20+) & =0.09 \\
Y(18+) & =0.38 \\
Y\left(h_{v_{1}}\right)= & Y\left(h_{v_{3}}\right) \\
Y\left(h_{v_{2}}\right) & =0.91
\end{aligned}
\]

Fig. 4.6. Charge state fractions of (a) \(\mathrm{s}^{14+}\) and (b) \(\mathrm{s}^{16+}\), emerging from a \(1.4-\mu \mathrm{m}^{51}\) <110> channel as a function of entering \(5^{15+}\) ion energy.

The data for Cal \({ }^{19+}\) are shown in Figs. 4.8 and 4.9. Fig. 4.8a shows the formation of He-like Cale \({ }^{10+}\) on a large, but smooth, monotonic background. The effect, though perhaps more evident in Fig. 4.8b ior \(\mathrm{Ca}^{20+}\), is actually smaller than the Cald \({ }^{\text {at }}\) affect by a factor of at, as anticipated. Fig. 4.86 also shows the effect of direct \(1 \mathrm{~s}-2 \mathrm{p}\) excitation intich has a threshold \(E_{\text {th }}=300 \mathrm{MeV}\). Since the excitation cross section is a step function followed by a very gradual decline, we expect that, with a Compton fold, the yield will reach half its maximum at \(E_{\text {th }}\).

The X-ray yields are shown in Fig. 4.9 The \(Y\left(h_{v_{1}}\right)+Y\left(h_{v_{3}}\right)\) in Fig. 4.90 show the expected KLL and KLn features, as well as an indication of the \(1 s \rightarrow 2 p\) diract excitation; but no hint of a

peak due to \(Y\left(h_{v_{2}}\right)\) is seen in Fig. 4.9a, even though we expect a peak with a height of \(\sim!/ 2\) that is seen for KLL in fig. 4.9a. This lack may be due to the large background attributable to direct excitation of non-channeled \(\mathrm{Ca}^{18+}\) or capture to form excited states of \(\mathrm{Ca}^{18+}\) at the exit surface. To alleviate the background problems in these experiments, it will be necessary to measure coincidences between the He-like \(K_{a} X\) rays and charge capture.

\footnotetext{
1. ORAU Postdoctoral Research Associate.
2. Partial support provided by the Joint Institute for Heavy Ion Research.
3. Graduate student on assignment from the Briversity of Heideijery, Heidelberg, West Germany.
4. Analytical Chemistry Division, ORNL.
5. M. Schulz et al., Phys. Rev. Lett 58, 1734 (1987).
}

axis were detected with a mell-calibrated, highresolution Si(Li) detector. A typical spectrum is shown in Fig. 4.10 for \(180-\) HeV \(5^{16+}\) channeled in a 0.4 -m-thick \(\mathrm{Si}<110\rangle\) crystal. The measured REC centroid energies were found to be consistently about 100 eV lower than predicted. On the ocher hand, the peak shapes indicated that REC was proceeding as expected, arising minly from capture of weakly bound electrons residing in the crystallime channels. A plot of measured and calculated REC peak centroid energies and widths is displayed in. y. 4.11.

We decided to repeat inese measurements in gas targets, to eliminate solid state effects, and at high enough energies to ensure that charge-state contanination of the incident ion bean did not shift the REC peak position. Bare oxygen ions at 100 to 225 MeV obtained from the wilkf tandem mere passed through a closed alas cell containing hydrogen or helium at pressures of 5 to 30 Torr. The cell entrance window was a \(1.7-\mathrm{mg} . \mathrm{cm}^{2}\) Al foil. At the lowest energy, the predicted equilibrium fraction of bare (8+) oxygen was 85\%. At energies greater than 160 MeV, the \(8+\) fraction was more than 95\%. X rays were measured at \(90^{\circ}\) with a \(\mathrm{Si}(\mathrm{Li})\) detector which was energy-calibrated before, after, and during the run. Results of these measurments are shown in Fig. 4.12. As indicated there, centroid ene:gies very nearly match the calculated values at all energies tested.

Fig. 4.10. \(X\) rays generated by \(180 \mathrm{MaV} 516+\) tons channeled through a 0,42 amm-thick silicon crystal along with <ilo> axis. Observation anyle was \(46.5^{\circ}\) in the lab frame.

Fig. 4.11. (a) Peak centroid energies for REC by \(\mathrm{S}^{36^{+}}\)and \(\mathrm{S}^{1} \mathrm{~s}^{+}\)ions channeled througn a 0.41 - Si <llo> crystal. Solid line displays the results of theory corrected for projectile energy loss in the target and Doppler shift effects, including those due to intensity variation of REC radiation uver the viewed solid angle aperture. (b) Messured and calculated REC peak widths (FMMN) for \(5^{16+}\) channeled through 0.42 -un 51 silos. Calculati-ns assume a Ferni distribution of target electron momenta with fermi energy of if eV.

It appears then that the REC peak energy shift observed for silicon targets represents a solid-state effect of unknown specific origin. We arc currently exploring theoretically the possibility that shielding of the projectile charge by waike electrons traveling with the ion in the silicon and subsequent lowering of the projectile K-shell binding energy might lead to such an effect.
1. DRAU Postdoctoral Research Associdte.
2. Graduate student on assignment from the University of Heidelbery. Heidelberg, Mest Germany.
3. Partial support provided by the Joint Institute for Heavy Ion Research.
4. Analytical Chemistry Division, OMM.
5. oual, university of tennessee at Chattanooga.

Fig. 4.12. (a) Peak centroid energies for REC by \(0^{84}\) colliding with hydrogen and helium gases at 5 to 30 Torr. Solid line displays the results of theory corrected for projectile ion energy loss in the gas cell entrance window and in the gas and relativistic Doppler shift at the viewing angle of \(89.1^{\circ}\). (b) Measured and calculated REC pedk withs (FWHM) for \(\mathrm{O}^{\mathrm{s}+}\) colliding with \(\mathrm{H}_{2}\) and the. Calculations assume target hydrogenic is wave functions.

\section*{atomic parsics facility at miraf}
P. F. Dittner

An Alm project to construct two deam lines dedicated to atomic physics in the recently constructed south annex (T109) to the halrf has
been completed. An overview of the bean lines is shown in fig. 4.13. The transfer line (beam line 41) is an in-line continuation of the HIRF rotatable line 17 (BL 17). Beam line 41 (BL 41) consists of the following components (starting at the juncture with BL 17): a preimatic isolation valve (1), an \(800 \mathrm{l} / \mathrm{s}\) cryopump (2), a magetic quadrupole triplet (3), a set of horizontal and vertical adjustable slits (4), a presmatic isolation valve (5), a mgretic horizontal and vertical steerer (6), a bean profile monitor (7), a Faraday cup (8), a 60-position feil changer (9), a \(1500 \mathrm{~L} / \mathrm{s}\) cryopump (10), a magnetic horizontal and vertical steerer (11), a magnetic quadrupole (12), a set of horizontal and vertical adjustable slits (13), and a pnemmatic isolation valve (14). \&L 4l ter--inates at a dipole manet (15) used to steer the ion bean to any one of four ports of the vacuum chamber (16) in the magnet. A pressure of \(6 \times 10^{-9}\) Torr has been achieved in BL 41. The elements of BL 41 were chosen such that BL 41 has the optics and the required pressure to also serve as the first part of the transfer line from hilrf to the planned heavy ion storage ring for atomic physics.

Iwo beam lines exit from the mognet chamber. (16), bean line 43 (8 LL 43), at \(+15^{\circ}\) with respect to 8 AL 41 , and beam line 45 (BL 45), at \(-22.5^{\circ}\). The chamber has two other ports, presently blanked off. for bean lines 42 and 46 at \(+30^{\circ}\) and \(-45^{\circ}\), respectively. The manet chamber is pumped by a \(400 \mathrm{l} / \mathrm{s}\) cryopump (17) and a pressure of \(2=10^{-8}\) Torr has been achieved. BL 43 is a mitipurpose beam line with the availability of good collimation for crystal channeling experiments. BL 43 consists of the following elements: preumetic isolation valve (18). two widely separated (2 m) sets of horizontal and vertical adjustable slits (19), a aultipurpose chamber (20) havigg 14 flanges from \(2.75^{\circ \prime}\) to \(8^{\circ \prime}\) in diameter, a \(450 \mathrm{l} / \mathrm{s}\) turbomolecular pump (21), a \(6^{\prime \prime}\) cross (22), and a \(1500 \mathrm{l} / \mathrm{s}\) cryopump (23). A pressure of \(2 \times 10^{-8}\) Torr has been reached in BL 43.

BL 45 is designed to make measurements of dieiectronic recombindtion and consists of the

Fig. 4.13. Overvien of beam lines 41, 43, and 45 in room 1109 of Bullding 6000.
electron target and charge state analyzer previously located at the EN tandem. BL 45 is bakeable (\(150^{\circ} \mathrm{C}\)) and is pumped by three \(220 \mathrm{l} / \mathrm{s}\) cobination ion and Ti sublimation pumps, and two \(1500 \mathrm{l} / \mathrm{s}\) cryopump, achteving \(1 \times 10^{-9}\) Torr pressure. The electron bean has been operated at 1 kV and the magetic charge-state analyzer is operational.

In early September, a bean of Gd ions was succesfully transported as far as the switching angnet as part of the comissioning of the bean lines. Success of this test has allowed us to schedule the first experiments using the merged bean apparatus.

\section*{EM TAMDEA OPERATIONS}

> M. L. Jones P. F. Dittner

During the past year: the EN-12 was operated for 2300 hours in support of the acceleratorbased atomic physics program. Several changes were made to upgrade the performance and reliability of EM-12. New acceleration tubes of an fimproved design mere installed in Movember, resulting in reduced radiation and iaproved performance. Several ion source power supplies mere either replaced or updated for fimpoved source stabtifty and performance. A fatled charging belt was replaced in May after 8700 hours of use. A new radiation monttoring systew was received in February to replace the original equipment that had \(\mathrm{fi} i \mathrm{ies}\) due to age. Replacement of the high-energy vacuum system and installation of a high-speed turbo pump is planned for December 1988. This will be coupled with replacement of \(\mathbf{- 4 0}\) column grading resistors, an upgrade to the terminal stripper gas control value, and finally an increase in tank insulating gas pressure. It is anticipated that completion of these items will provide stable operation at terminal voltages up to 7.2 MV, and that the full benefits expected from the new acceleration tubes will be redilzed.

\title{
osservailiom or lamonu resomances at low MGEMETIC FIELD STREMGTH IM A HIGH-RESOLUTIOM LaSER MDTODETACHEMT STUOT OF \(0^{-}\)
}

\section*{H. F. Krause \({ }^{1}\)}

Studies of the photodetachment process \(\left(A^{-}+h y+A+e\right)\) performed in the presence of a strong laboratory magnetic field (1-8 tesla) have been reported for atomic negative fons of sulfur and selenium. 2,3 then low-density ions contained in a Penning ion trap were illuminated by a narrow-band \(C\) dye laser. the photodetachment yield mas observed to increase periodically close to the reaction threshold (f.e., hy * electron affinity) whenever the laser was tuned to quantized states of the fise electron (f.e.. Landau resonances separated by the classical electron cyclotron frequency, \(28.2 \mathrm{~Hz} /\) tesla). The observed frequency of each broad resonance (\(\Delta f=6 \mathrm{GHz}\)) could be explained by the use of a siaple theoretical model that assumed no interaction between the neutral atom and the departing electron.

More recent theoretical work of Crawford," who assumed a realistic postcollision interaction, indicated chat additional resonances associated with this. interaction (e.g., Feshbach resonances: mint also be observable if the experimental resolution, f/af. could be greatly increased. A much larger photodetachment cross section enhancement (t.e.. a much stronger photodetachment yield at a resonance) also should occur under the improved conditions. Development of a greatly improved highresolution apparatus mould therefore allow the study of Landau spectroscopy at unprecedented levels of precision. provide the Dasis for a new photodetachment scheme that can produce a neutral particle beam at greatly reduced laser power. and perhaps give rise to a new method for producing spin-polarized neutral beams. \({ }^{5}\) A novel beam concept for achieving dramatic improvements in spectral resolution was proposed by Krause. 5 The beam arrangement allows the
effects of Ooppler and Stark broadening to be reduced well below those experienced in a Penning trap (e.g., improvement of \(10-100 x\)) at the same agnetic field strength. Apparatus construction was completed in this reporting period. Preliminary results indicate that the apparatus resolution is 50x higher than achieved heretofore (e.g., spectral bandridth below 100 MHz). The results provide the first evidence that (1) strong Landau resonances occur at a very meak magnetic field (0.03 tesla). (2) resonances are observable well above the reaction threshold (e.g.: \(4 \times 10^{+13} \mathrm{~Hz}\) above threshold) at large Landau quantum muber (\(L\) 40,000), and (3) the study of manetic field effects in \(0^{-}\)photodetachment is feasible.

In the shakedom experiments, \(0^{-}\)ions from a Colution ion source mere accelerated to 1.6 keV . momentum analyzed, and then collimated before injection into an \(E \times B\) photoneutralizer (Wien filter). The ion beam (0.5 -min dia., \(\Delta E=2 \mathrm{eV}\)) was collimated for a Doppler spread below 20 mHz inside the Wien filter. The ion bean intersected with a chopped laser beam at the Dopplerfree angle in the center of the Wien filter (i.e., beams nominally perpendicular at this bean energy). The laser bean, wich was linearly polarized in the direction of the magnetic field and propagated parallel to the direction of electrostatic field lines inside the Wien filter, was produced by a nearinfrared, single-frequency dio.e laser. The CW laser delivered 20 wim of power within a linewidth of 50 Mz . Meutrals mere detected domstrean on a high-resolution two-dimensional position-sensitive detector (TDPSD). The ion beam was deflected into a Faraday cup berween the wien filter and the TDPSD. The beam line had to the mantained under ultrahigh vacuum conditions (i.e.. \(5 \times 10^{-10}\) forr) to minimize the neutral yield resulting from beam-ghs electron detachment processes.

High-resolution spectra mere obtained at a fixed laser frequency in Doppler tuning scans by varying the \(0^{-}\)beam direction in very smell angular steps (\(1 . e ., 25 \mu r a d / s t e p\)) corresponding to a Doppler Prequency shift below 10
\(\mathrm{NHz} / \mathrm{st}\) ep. Throughout these scans, the ion beam entered the Wien filter at afixed location. By introducing a sall imbalance electric field on the Wien filter about the balance condition, \(c=v_{0} B\), the ion bean direction changed before it crossed the laser beam. Since the neutral particles produced at the beam intersection region traveled to the TDPSD in a linear trajectory, the measured angle for each event indicated the direction of the \(0^{-}\)bean with respect to the laser beam at the time of photodetachment. The distribution of neutral intensity vs angle, derived from six-parameter list-mode data while the perturbing \(E\) field was rastered, was converted directly to an intensity vs frequency distribution using the known beam velocity and laser Irequency.

High-resolution photodetachment spectra for \(0^{-}\). obtained for a magnetic field strength of 306 G , is shown in Fig. 4.14. The same spectra accumulated wile the rotating chopper wheel blade was blocking the laser beam were flat. and at least 20 times lower intensity. The observed

Fig. 4.14. High-resolution photodetachment spectri for \(\mathrm{O}^{-}(2 \mathrm{P}, 3 / 2,1 / 2) \rightarrow 0\left(\mathrm{~S}_{2,1,0}\right)\) in a manetic field of 306 6 .2 mumbered resonances are duplicated in cwo Lendau cycles. The electric field vector of the laser was parallel to the applied manetic field (i.e.., \(\Delta M=0\) transitions). The wavelength of the laser was 7112.183 [A].
strength of the largest resonances (peak-valley ratio \(=4\)) is large at this small field compared to the Se observations made at 200x higher magnetic field. \({ }^{2}\) The total angular range for a complete scan was large enough to allow the periodic spectra (86\% WHE :andau frequency) to be observed twice in the same scan. Fig. 4.14 shows that nine different resonances were resolved within each Landau cycle. The centroid position of each structure seen in the left Landau cycle is duplicated in the righl Landau cycle within 20 MHz . Each observed peak corresponds to a Landau resonance at the most probable Zeeman lines (e.g., \(\Delta \boldsymbol{M}=0\) transitions) for any of six electronic band systems of \(0^{-}\left({ }^{2} p_{;}, j=1 / 2,3 / 2\right\rangle+0\left({ }^{3} p_{;} j=2, ~ \cdot 0\right)\). Landau quantum mumbers that are different for each band system lie within the range 9.000 39,0in. Spectra of the same appearance but with shifted phase mere observed when the laser frequency was changed by a nonfnteger multiple of the Landau frequency. The repeat frequency of all spectra mere shown to agree with the classical electron cyclotron frequency for magnetic field intenstifes in the range, \(0.02-0.1\) tesla. Also, measured spectra were flat wen a broadband laser was substituted for the singlefrequency laser. These tests appear to eliminate the possibility that the observations resulted from a hidden apparatus defect.

Although the \(0^{-}\)spectra are extremely complicated, identification of the most prominent lines in terms of the \(0^{-}\)electronic structure should be possible using computer simulation techniques. However, data of higher statistical significance at other laser mavelengths will be required. Important issues such as the possible occurrence of additional lines (e.9.. Feshbach resonances) cannot be addressed until the ongoing effort to assign resonances has been completed.

\footnotetext{
1. Mork supported by the U.S. Aray SOC, Huntsville, Alabama.
2. W. A. M. Blumberg, W. M. Itano, and
D. J. Larson, Phys. Rev. Lett. 40, \(1 \geqslant 20\) (\(19^{-3}\)).
3. R. E. Elmquist et al.. Phys. Rev. Lett. 58. 333 (1981).
}
4. 0. H. Cravford, Proc. 4th Int. Symp. on Production and Meutralization of Negative Ions and Beams, James G. Allessi, ed., Brookhaven National Laboratory, AIP Conf. Proc. Mo. 158 (1987) p. 663.
5. H. F, Krause, Ibid., p. 673.

\section*{EMERGY- MD MMGLE-RESOLVED MDTOELECTRON SPECTROSCOPY OF FAST-MOVIMG MEGATIVE IOWS}
\[
\begin{array}{ll}
\text { D. J. Pegg } \\
\begin{array}{l}
\text { J. S. Thompson } \\
\text { R. K. Compton }
\end{array} \quad \text { J. Dellwo }{ }^{3} \\
\text { G. Alton }
\end{array}
\]

We have used the energy- and angle-resolved technique of photoelectron detachment spectroscopy to investigate the interaction of a fast beam of metastable \(\mathrm{He}^{-}\)ions with radiation. The spectral dependence of the kinetic energies, yields, and angular distributions of the electrons ejected in photodetachment has been studied. Such measurements allow us to determine the electron affinity, the asymetry parameters, and the photodetachment cross sections, qualities associated with the structure of the \(\mathrm{He}^{-}\)ion and its interaction with photons.

The apparatus used in t.ifs work is shown schematically in Fig. 4.15. The apparatus has been described in detail in the paper by Pegg et al.4 and in the previous Physics Division Progress Report (ORNL-6420). A fast beam of Heions is crossed, in a perpendicular geometry, by an energy-resolved beam of photons from a pulsed laser. As a result of the interaction, known

Fig. 4.15. Schematic of the crossed laserion beams apparatus used in the fast-beam photodetachment measurements.
anounts of evergy and angular momentua are transferred to the ions. The tenuous bean of He \({ }^{-}\)ions is produced by double-charge transfer collisions then a mentum-selected beam of \(\mathrm{He}^{+}\) fons from an accelerator is passed through a Li-vapor charge-exchange cell.

Since the source of regative ions used in these experiments is a fast, unidirectional bean, the reference frame in wich the "physics" occurs moves with respect to the laboratory frame in mich measurements are made. Consequently, there will be kinematic adifications of the kinetic energies, yields, and angular distributions of the photoelectrons wich are ejected from the moving ions. Effects such as kinematic line shifting and peak doubling are frequently exploited in our measurements.

During the past year, most of our mork has been concentrated on an investigation of the photodetachment of the metastable negative ion, He \({ }^{-}\), wich is formed in the spia-aligned (\(1 s 2 s 20)^{4} p\) state as result of an electron attaching itself to a He atom in the metastable (1s2s)3p state. Figure 4.16 shours a spectrum of electrons produced men a 40-kel beam of \(\mathrm{He}^{-}\) fons was photodetached using a laser wavelength of 698.5 nim. Peaks 2 and 3 are associated with

One one erine
Photodetachment of He" at 40 keV
\(\lambda=400.5 \mathrm{~nm}\)

Fig. 4.16. A spectrum of electrons photodetached from a beaw of \(\mathrm{He}^{-}\)ions. The origins of peaks 2 and 3 are described in the text. Peaks 1 and 2 form a kinemptically doubled pair.
the photodetachment exit channels that leave the residual He atom in the (1s2p) \({ }^{3} P\) and \((1 s 2 s)^{3} S\) states, respectively. As part of a longer term goal of measuring the partial cross sections for these two competing processes, we have made measurements of the angular distributions of the electrons associated with peaks 2 and 3. These angle-resolved measurements determine the asymmetry parameter. \(B\), wich characterizes the shape of the electron emission pattern. The measurements are made by determining the yield of each photoelectron peak as function of the angle, \(\theta\), between a fixed collection direction (in our case, the direction of motion of the ion beam) and the variable direction defined by the electric field vector of the linearly polarized laser beam. A typical mpasurement is shown in Fig. 4.17. For the present case of planepolarized radfation in the electric dipole approximation and an independent electron model. the shape of the angular distribution should take the form \(1+\beta P_{2}(\cos \theta)\), where \(P_{2}(\cos \theta)\) is the second-order Legendre polynomial. The apparatus has been tested on reference beams of \(\mathrm{Li}^{-}\)and \(\mathrm{o}^{-}\)ions, and the expected \(\cos ^{2} \theta(\beta=2)\) distributions were obtained in each case.

ORLCNO © ine

\section*{Pnotoelectron Angular Distribution}
\[
\mathrm{He}{ }^{-}\left({ }^{4} \mathrm{P}\right)+h \nu \rightarrow \mathrm{He}\left({ }^{2} \mathrm{P}\right)+e^{-}
\]

Fig. 4.11. Angular distribution of electrons photodecached from 30 keV team of \(\mathrm{He}^{-}\)ions. The solid curve is atighted least squares fit of the dats to the form \(1+\beta P_{2}(\cos \theta)\).

The results of the measurements of \(\beta\), as a function of photon energy, for peak 2 is shown in rig. 4.18. These electrons are ejected in the process: \(\mathrm{Hv}_{\mathrm{t}}+\mathrm{He}{ }^{-}\left(\mathrm{ls} 2 \mathrm{~s} 2 \mathrm{p}{ }^{4} \mathrm{P}\right)\)) \(\mathrm{He}\left(1 \mathrm{~s} 2 \mathrm{p}^{3} \mathrm{p}\right)+\) \(e^{-}\). Since an s-orbital electron is ejected, the outgoing electron should carry may, if correlation is neglected, ane unit of orbital angular momentum, i.e., it is a \(\rho\) wave. This situation corresponds to \(\beta=2\) or \(\cos ^{2} \theta\) distribution for all photon energies. A value of \(\theta=2\) mas obtained at a phoion energy of 2.46 eV , but the value of \(a\) for this process is seen to decrease rather sharply and then level off at lower photon energies. Apparatus tests mere made using

Fig. 4.18. The spectral dependence of the asymmetry parameter, \(\beta\), for the photodetachment process, hu \(+\mathrm{He}^{-}(\mathrm{ls} 2 \mathrm{~s} 2 \mathrm{p} 4 \mathrm{P})\) - He(ls2p\(\left.{ }^{3} \mathrm{P}\right)+\mathrm{e}^{-}\).
\(D^{-}\)ions at thase lower energies and \(\beta=2\) was obtained, as expected. An explanation of this anomolous behavior in \(日\). wich must be associated with correlation of sore form, is presently being sought.
1. Adjunct staff member from the Department of Physics, University of Tennessee, Knoxville, IM 37996.
2. Graduate student from the Department of Physics, Intuersity of Tennessee, Knoxvilliz, TM 31996.
3. Health and Safety Research Division. ORNL, and Department of Chemstry, University of Tennessee, Knoxvilie, im 31996.
4. D. J. Pegg et al., Phys. Rev. Lett. 59, 2267 (1987).

\section*{ARGOM RECOIL-IOM CHARGE-STATE DISTRIBUTIONS PRODUCED BY BEANS OF \(23 \mathrm{MeV} \mathrm{Cl}^{\text {St, }} \mathrm{A+}, 10^{+}\)}
J. C. Levinl
H. Cederquist \({ }^{2}\)
C.-S. \(0^{1}\)
C. Biedermann \({ }^{1}\)
I. A. Sellin \({ }^{3}\)

Multiple-vacancy production in target gases by energetic charged projectiles is of fundamental theoretical interest. As a probe of the strong interaciinns between projectile and target electrons, such collisions epitomize the many-body collision problem. Measurements of recoll-ion charge distributions in coincidence with the scattered projectile charge state have been mase for many systems, but only rarely have recoil-ion spectra for coincident single or multiple projectile-electron capture or loss been obtained for the same collision partners." Further, calculated cross sections for capture of one to four electrons from an argon target by \(1.4 \mathrm{MeV} / \mathrm{U} \mathrm{U}^{44^{+}}\)ions are said by the authors \({ }^{5}\) to reproduce well the maxima of the recoilition charge-state distributions but to describe poorly their widths.

We have measured argon recoil-ion distributions prnduced by beams of 23 MeV C15+,0+,10+ as dunction of the degree of projectile capture or ionization. Ion beams produced by the Oak Ridge Mational Laboratory EM Tandem Facility were used to produce Ar recoil ions in a dilute gas target matintained in the extraction region: of a time-of-flight analyzer. Ar \({ }^{+}\)recoil, detected in a dual channel-plate detector \(-1 \mu \mathrm{sec}\) subsequent to creation, provided the start pulses to a time-to-amplitude converter (TAC). Projectiles mere dispersed by an electrostatic charge :oiter and the detected particles. suitably delayed, provided the stop pulses to the TAC.

Recoll ion time-of-flight spectra for single or double capture to, or loss from, beams of \(23 \mathrm{MeV} \mathrm{Cl}{ }^{\text {ot }}\) incident on argon are illustrated in Fig. 4.19. Peak widths are observed to increase as a function of final projectile charge state Indicating greater recoll energy associated with such processes.6.7 More striking is the similarity between spectra corresponding to single lass and single capture, and betwean spectra corresponding to double loss and double capture.

Fig. 4.19. Time-of-flight spectra for argon recoil ions produced by beams of \(23 \mathrm{MeV} \mathrm{Cl}^{\mathrm{st}}\).

Determination of impact parameters which characterize these interactions indicates that capture occurs primarily from the argon \(L\) shell \({ }^{7}\) accompanied by some M-shell ionization. The resultant charge-state distributions for single and double capture can be described well by the assumption of Auger decay of one or two argon L-shell vacancies superimposed upon a binomial distribution of M-shell ionization. The similarity of the loss spectra to the capture spectra suggests that the mechanism by wich projectile electrons are lost is through direct interaction with target electrons, producing inner-shell vacuncies in the target. This is in contrast to classical trajectory Monte Carlo calculations wich indicate that the systems simlar to that being studied here, target Leshell ionization, is accompanied by nearly complete ionization of the \(M\) shell by the projectile. 5
1. Department of Physics, University of Tennessee, Knoxville, Th 37996.
2. Research Institute of Physics, Stockholm, Sweden.
3. Adjunct staff member from the University of Tennessee, Knoxville, TM 37996.
4. A. Miller et al., Z. Phys. D-Atoms, Molecules and Clusters 7, 210 (1987).
5. A. miller et al., Phys. Rev. A 33, 3010 (1986).
6. J. C. Levin et al., Phys. Rev. A 36, 1649 (1947).
7. J. C. Levin et al.. Phys. Rev. A 38, 2674 (1988).

\section*{RECOSL ION, SCATTERED JOM FREE ELECTRON TRIPLE COIMCIDEMCE MEASUREMEMTS}
M. Breinigd J. E. Freyou²

Fast collisions between highly charged heavy ions and neutral gas targets are characterized by many processes, such as projectile and target excitation and ionization and target electron
transfer to projectile-centered, bound, and continuua states. Often many of these processes are involved in the same collision. To characterize a collision as completely as possible, the goal of the experimentalist must be to sinultaneously detersine as many collision parameters as possible, such as projectile and target charge state and state of excitation. projectile and target velocity (sweed and direction), and the velocity of any free clectrons leaving the collision.

For \(1 \mathrm{MeV} / \mathrm{u}\) bare and one-electron oxygen and carbon projectiles colliding with neon targets, \({ }^{3-5}\) we have coincidentally measured the projectile ion charge state and the target recoil-ion charge state after the collision, and the energy of a free electron emerging from the same collision with a velocity close to the beam velocity. The goal of this experiment is to answer the following questions:
(1) If a free electron moving with a velocity close to the beam velocity is produced, wat is the most probable recoll-ion charge state?
(2) If, in addition, the exit charge state \(n-\) the projectile is determined, wat is the most probable recoil-ion charge state?
(3) If a recoil ion of a particular charge state and a projectile ion of a particular charge state are produced in the same collision, how probable is the production of a free electron moving with a velocity close to the bean velocity?

Most cusp electrons accompany a projectile which does not change charge. The nost probsble recoil-ion charge state for this case lies between two and three. Where the projectile captures a target electron into a bound state in addition to a cusp electron being produced, the recoli-ion charge-state distribution shifts towards higher charge states. Electron loss by the projectile does not produce such a large shift. This points to cusp electrons produced in coincidence with projectile electron loss and produced by projectiles wich do not change charge being associated with a more gentle, larger impact, parameter collision. Cusp electron production, in addition to bound state
capture, requires at least two target electrons to be involved which probably happens at smaller impact parameters and leads to higher recoil-ion charge states.

Except for the cases in wich a cusp electron is produced in coincidence with projectile electron loss, the probability of producing a cusp electron if a recoil ion is produced increases with increasing recoil-ion charge state for all incident projectile ions. If the cusp electron is produced in coincidence with projectile ion electron loss, the probability of detecting a cusp electron if a recoil ion is produced decreases with increasing recoil-ion charge state for \(\mathrm{C}^{\mathbf{5 +}}\) and \(\mathbf{0}^{\mathbf{7 +}}\) projectile ions. The probability of producing a cusp electron, if a recoil ion is produced, is highest if the cusp electron is associated with a projectile-ion electron loss event and a low charge-state recoil ion.

\footnotetext{
1. Adjunct staff member from the University of Tennessee, Knoxville, TM 37996.
2. Departiment of Physirs, University of Tennessee, Knoxville, Th 37996.
3. C. L. Cocke, Phys. Rev. A 20, 749 (1979).
4. A. S. Schlachter et al.. Phys. Rev. A 27, 3372 (1983).
5. N. G. Graham et al.. Phys. Rev. A 30, 722 (1984).
}

\section*{PROOUCTION AKE TRAMSPORT OF COWYOY ELECTRONS} In moaphous carsom foils
\begin{tabular}{|c|c|}
\hline J. P. Giobons \({ }^{1}\) & C. E. Gonzalez-Leperal \\
\hline S. B. Elston \({ }^{2}\) & O. Hell \({ }^{3}\) \\
\hline R. DeSerio \({ }^{1}\) & H.-P. HUlskotter \({ }^{1}\) \\
\hline C. Biedermann \({ }^{1}\) & H. Rothard \({ }^{3}\) \\
\hline M. Breinig \({ }^{2}\) & 1. A. Sellin \({ }^{2}\) \\
\hline & R. Vane \\
\hline
\end{tabular}

In recent years, apicture has been emerging of an abundant population of electrons characterized by high angular momenta thal accompany an ion during its passage through a thin solid target. Experiments leading to this view have observed both X-ray" and convoy electron emission. 5 The convoy secondary electron emission distribution produced by fast ions in foll targets becomes enriched in higher-order multipoles with increasing projectile speed. This can be interpreted as reflecting excitation of
states having high and \(\ell\) (in an approximate hydrogenic basis) during passage through the bulk material, followed by electron loss processes \({ }^{6}\) which populate the cusp region of the spectrin.

It is not yet clear how this high-l population is formed, although there is gemeral agreement that it is established in the bulk solid.4.5.7.8 The expected continuity of transition aplitudes across the ionization threshold of free ions \({ }^{6}\) suggests a close connection between these experiments and those that detect large populations of high Rydberg states of projectiles emerging from the target. \({ }^{\text {t }}\) Thus, one afgit suppose population of a complex of dynamic states in the solid amalogous to Rydberg states in free atoms which relaxes upon exit from the target into free Rydberg states below threshold and continuum or convoy states of the projectile above threshold, the quantal version of the classical picture underlying the Monte Carlo stochastic perturbation calculations of Burgdörfer and Bottcher.'

The experiments we describe, performed at HinIRF, address the questions of production of convoy electrons having high angular mementa. and of the transport of such electrons in thin solid-foil targets. Collisions of \(115-\mathrm{MeV} 0 \mathrm{O}^{+}\) ions (projectile velocity \(\nu_{p}=17 \mathrm{~d} . \mathrm{u}_{\mathrm{o}}\)), with \(q=5-8\) with self-supporting carbon-foil targets, were observed with an electrostatic, spherical-sector electron spectrometer equipped with position-sensitive detection (PSO) to provide angle-resolved emission distribution measurements. Most of the apparatus has been described in detail previously. \({ }^{10}\) The output of the PSO system is decoded to recover the eaission angles that, in combination with the spectrometer pass ersery, determine the enission velocity componen.. if the detected electron. 8y scanning the spectrometer defiection field, the entire three-dimisional \(\overline{\mathrm{V}}\) - distribution of the cusp can be obtsined.

Figure 4.20 displays a selection of results of such velocity distribution masurements. The 0 :- hown are contours of equal intensity in c:-. emission-energy and polar-amission-angle plane of vp \(=17.0\) a.u. \(0^{6+}\) and \(0^{7+}\) ions inci-
dent on carbon foil targets. The axes are scaled so that equal intervals in either direction represent approximately equal intervals in longitudinal projectile frame emission velocity \(v_{l}\) and transverse projectile frame eaission velocity \(v_{t}\). The strong transverse emission observed is in agreement with our earlier mork \({ }^{6}\) demonstrating substantial higher-order mitipole strengths, but we now find this true even for the thinnest self-supporting targets available. showing that this excitation occurs within the first few layers of the target at these collision velocities. In fact, our data show little (if any) evolution in altipole content with increasing target thickness, implying that the interactions which dominate the development of the \(l\)-distribution have cross sections sufficiently large to produce mean excitation distances less than or on the order of the thickness of the thinnest target observed, and that we observe in the present experiment enission from an early established, nearly equilibrium n.l distribution. The observation of high nol excitation and the rapidity with which an apparent equilibrium of such excitation is established is in at least qualitative agreement with recent theory. 9 The emission distributions show a gradual broadening with increasing foil thickness which we attribute to elastic and inelastic scattering of the convoy electron dis. tribution in the bulk of the solid. This effect is further demonstrated by the plot, in fig. 4.21. of the emission contour widths of oneelectron oxygen projectiles on foils of varying thickness.

\footnotetext{
1. Department of Physics, University of Tennessee, Knoxville, Th 37996.
2. Adjunct staff member from the University of Tennessee, Knoxville, IN 37996.
3. Institut fur Kernphysik, J. W. Goethe Universityt, D-6000, Frankfurt im Main, FRG.
4. H. \(=\) D. Betz, D. Roschenthaler, and J. Rothermel, Phys. Rev. Lett. 50, 34 (1983). 5. S. D. Berry et al., J. Phys. B 19, L149 (1986).
6. J. Burgdorfer, Phys. Rev, Lett. 51, 374
(1983); J. Burgdorfer, Lecture Motes in Physics;

Fonward Electron Ejection in Ion Collisions, eds. K. O. Groeneveld, W. Mechbach, and
1. A. Sellin (Springer-Yerlag, Berlin. 1984), D. 32.
7. Y. Yamazaki et al., Phys, Rev. A 34, 4493 (1986).
}
8. E. M. Kanter et al., Mucl. Instrum. Meth. in Phys. Res. E10/11, 36 (1985).
9. J. Burgdorfer and C. Bottcher, to be published: J. Burgdorffer, Lecture Motes in Physics 294 (Springer-Verlag, Berlin, 1988), p. 344.
10. S. B. Elston, Mucl. Instrum. Meth. in Phys. Res. 824/25, 214 (1987).

Fig. 4.20. Contour plots of equal convoy emission intensity of \(0^{5+}\) and \(0^{7+}\) at \(v_{p}=17\) a.u in carbon foils of nominal (uncalibrated) thicknesses \(0.5 \mu \mathrm{~m} / \mathrm{cm}^{2}\) and \(32 \mu \mathrm{~g} / \mathrm{cm}^{2}\). Contours shown represent multiples of \(10 x\) of the peak height. Scaling of the axes is chosen so that isotropic emission would produce essentially circular contours.

\section*{ATOMIC PHYSICS FOR FUSION PROGRAM}

\section*{ELECTRON-IMPACT 1OMIZATION OF} MULTIPLY CHARGED CHRDMILH IONS
M. Satakal
D. Swenson \({ }^{3}\)
S. Ontaniz
D. E. Giregory

Absolute cross sections have been measured from below threshold in 1500 eV for electron-

Fig. 4.21. Widths of the \(0^{7+}\) convay distributions as a function of target chickness. The angular width is measured at the 508 contour (FWill), but expressed as the equivalent projectile frame velocity \(\left(=v_{p} \Delta \theta\right)\). The energy width is similariy expressed th velocity units, and is measured at the \(30 \%\) contour to avoid the dominance of the instrumental response near the singularity associated with the cusp.
impact single ionization of chromium ions in initial charge states \(6+, 7+, 8+\), and \(10+\). The measurements utilized the ORML-ECR ion source and electron-ion crossed beams apparatus. Chromium is an tmportant constituent of wall materials in most modern plasma confinement devices, and an accurate knowledge of the characteristics of its ions is vital in order to understand edge-plasma behavior.

The tons in this study all have \(3 s^{2} 3 p^{n}\) ground electron configurations, and we wight expect the cross section curves to exhibit similar characieristics. Measurements on the lowest three charge states (\(6+, 7+\), and \(8+\)) are represented by the \(\mathrm{Cr}^{7+}\) data shown in Fig. 4.22. Also shown in that figure are semimpirical Lot \(z^{4}\) calculations for direct fonization from the ground (\(3 s^{2} 3 \rho^{5}\) - lower curve) and metastable (3s \({ }^{2} 3 p^{6} 3 d-\) upper curve) configurations. Clearly, the measured ionization threshold indicates the presence of metastable ions in the incident beam. The direct ionization calculation for metastable tons is in fairly goor

\section*{RECOMIIMATIOW RESOMANCES IM ELECTROM-IMPACT IOWIZATIOM OF MLTIPLY CHAREED URNMIUN IOWS}
D. C. Gregory
M. Sataka \({ }^{2}\)
M. S. Huql
D. Suenson \({ }^{3}\)
F. W. Meyer
S. Chantrenne"

Single-ionization cross sections for uranium ions with initial charges \(10+\), \(13+\) and \(16+\) have been measured utilizing the ORNL-ECR ion source and electron-ion crossed beams apparatus. The indirect process of excitation of inner-subshell electrons followed by autoionization dominates the cross section, contributing up to a factor of 20 times more than direct ionization to the total. Double fonization of \(\mathrm{ul}^{10+}\) and \(\mathrm{Ul}^{3+}\) mere also measured in order to evaluate the branchings between single and double ionization for those fons.

The resonant recombination of an incident electron with a target ion (capture of a free elestron to an excited level of an ion accomranied by excitation of one of the target-ion electrons) can decay to one of three final states: a stable ion and a free electron (a resonance or excitation event, resulting in no change in the ion charge); a stable ion (a dielectronic recomination event, resulting in an ion of lower charge); or a stable ion and two free electrons (an ionization event, resulting in an ion of higher charge than the target). The final path is the one considered here. The importance of this process to the overall magnitude of seiected cross sections pas been the subject of speculation 5 since 1981. Recombination resonance fonization proved elusive to experimentalists, with the first clear observations coming only recently. 6,7

The first successful recombination resonance ionization measurements in this laboratory are presented in Fig. 4.24 for Ull \(^{3+}\). Individual or closely spaced resonances are clearly resolved in the single ionization channel, with the cross section for the best-resolved feature of \(4 \times 10^{-19} \mathrm{~cm}^{2}\). The 2 eV FWHM resolution of this feature (on the left in Fig. 4.24) is consistent with the predicted energy resolution of the

Fig. 4.24. Recombination resonant ionization features in ullu+. The circles and boxes represent two data scans. The energy width of the feature at lower energy is consistent with our predicted electron beam energy spread.
electron beam at this energy. The other feature (at higher energy) is broader and is due to severil inresolved resonances. We speculate that the resonarces in \(\mathrm{U}^{3+}\) involve excitation of a if electron, but the complicated structure of uranium ions makes positive identificatior of these specific resonances unlikely. A similar pair of resonance structures mere measured between 520 and 540 eV in ionization measurements on \(\mathrm{U}^{16+}\), but again positive identification of the resonances has not been made. Several improvements in our apparatus are planned which may make resonant recombination ionization measurements feasible in simpler systems mere identification of levels will be possible.

\footnotetext{
1. DRAU Postdoctoral Research Associate.
2. Department of Physics. Japan Atomic

Energy Research Institute, Japan.
3. Joint Institute for Laboratory

Astrophysics, Boulder, Colorado, and ORML.
4. Lawrence Livermore Mational Laboratory, Livermore, C-lifornia.
5. ̌̌J. LaGattuta and Y. Hahn, Phys. Rev. A 24, 2.73 (1981).

6 A. Muller, K. Tinschert, G. Hofmann, E. Salaborn, and G. H. Dunn, Phys. Rev. Lett. 61, 70 (1988).
7. A. mulier, G. Moimann, K. Tinschert, and E. Salzborn, Phys. Rev. Lett. 61, 1352 (1988).
}

ELECTROM SPECTROSCOPY OF COUBLE ELECTROM CAPTUE IWTO MTOIOMIZIMS STATES FOWED IN LON-EMERSY MLTICHAEED IOW-ATOM COLISIOMS
\begin{tabular}{|c|c|}
\hline F. W. hyyer & M. S. Huql \\
\hline 2. K. Suenson \({ }^{1}\) & R. A. Phaneuf \\
\hline D. C. Griffin \({ }^{2}\) & K. Sommer \({ }^{3}\) \\
\hline C. C. Havener & N. Stolterfont \({ }^{3}\) \\
\hline
\end{tabular}

Our collaborative study of Auger electron emission during low-energy ton-aton collisions has contimed this fiscal year. Primars emprasis this year was on the determination of the l-distributions of nonequivalent electron configurations populated in low-energy deubleelectron capture collisions. From an malysis of high resolution \(1 s^{2} 2\) pne (\(n=6\) and 7) CosterKroaig electron spectra that was based on Hartree-fock transition energy calculations, we were able to show that very high angular momentum states are produced," as illustrated in Fig. 4.25. As was shown in an earifer poblication. 5 production of the nonequivalent \(2 p n \boldsymbol{l}\) (n>6) configuration mist involve an electro:electron interaction (or electron correlaiion) in which energy is exchanged between the two transferred electrons, leaving one of the electrons in a tightly bound \(2 p\) oroital. while the other is promited to a loosely bound Rydberg state. From yur analysis of the \(\ell\) distributions produced in these same collisions, we arrived at the conclusion that these correlated twoelectron transitions involve not only an exchinge of energy, but also an exchange of

Fig. 4.25. Measured Loster-Krontg electron spectra for \(\mathrm{O}^{+t+}+\mathrm{He}\) collisions at 30,60 , and 105 keV ; shown also are welve-Gausstan fits to spectra, based on Hartree-Fock atomic structure calculations. Labels in \(30-\mathrm{keV}\) spectrum inde cate configurations contributing to each group.
angular momentum, wich enhances the probability that the Rydberg electron occupies a state of very high angular momentum.

In addition to the analysis of edistributions, masurements of Auger electron emission mere also carried out for the cot + He system. For this collision system, the \(2 p n \ell\) doubly excited states formed by double electron capture cannot decay by Coster-Kronig transitions, due to the near-degeneracy of the \(2 \mathrm{~s} / 2 \mathrm{p}\) levels for fully stripped ions. Rather, they decay by \(12 x\) transitions, which occur at energies of a few huadred eV , an energy range much less subject to instrumental effects than the very law energies (\(<16 \mathrm{eV}\)) at wich the \(1 s^{2} 2 \mathrm{pan}\) Coster-Kranig transitions occur in the 06t + He sys:er (see Fig. 4.25). Hopefully, the measurements on the ct+ + He system will provide en independent estimate for the importance of correlation effects in law-energy doubleelectron capture collisions. Analysis of the measured electron energy spectra for this system is in progress.
1. ORAN Postdoctoral Research Associate.
2. Consultant, Rolifins College, Winter Park, florida.
3. Permanent address: Hahn-heitner Institut CmbH, Berlin, FRG.
4. F. W. Meyer et al., Ptys. Ret. Lett. 60, 1821 (1988).
5. M. Stolterfoht et al.. Phys. Rev. Lett. 57. 74 (1986).

\section*{amolat asweetry in The ejccted electrom SPECTRUN PRODUCED IN He \({ }^{+}+\)He COLISIONS}
J. K. Smenson \({ }^{1}\)
C. C. Havene:
F. M. Mayer
H. Stolterfoht \({ }^{2}\)

In a follow-up experiment intended to provide an absolute normalization of the work described above, we performed measurments of the Auger electrons emitted from the symmetric \(\mathrm{He}^{+}+\mathrm{He}\) system in the forward direction. This system had been studied by sordenave-Montesquieu et al.. \({ }^{3}\) tho provided absolute cross sections for Auger electron entssion into laboratory frame observation angles in the range 20 to \(160^{\circ}\). These workers were able to show that.
below about 15-kel projectile energy, the production of doubly exci;ed states mas equally probable in the target and projectile. On the basis of these earlier masurements, we expected to see in our \(0^{\circ}\) measurements of \(10-\mathrm{keV}\) He \({ }^{+}+\)He collisions two sets of Auger lines of equal cross section (after the appropriate frame transformation). corresponding to targei transitions and Doppler-shifted projectile trans:tions. Contrary to this expectation, we observed a strong enhancement of the target Auger transitions relative to the corresponding oress in the projectile, as is shown in Fig. 4.26. Also shown in Fig. 4.26 is a subsequently measured Auger electron spectrum for emission in the backward direction, in wich the projectile luger transitions are strongly enhanced. The results of a detailed experimental study of the dependence of this strong target/projectile asymetry on the Auger transition rate, observation angle, and projectile energy can be submitted as follows. The enhancement occurs for observation angles that require the emitted fast Auger electron to "pass" the slumly moving singly charged colliston partner. Strong enhancement is confined to angles within about \(20^{\circ}\) of the forward/backward direction. The enhancement is strongest for the

Fig. 4.26. Auger electron spectra for \(10-\mathrm{keV}\) \(\mathrm{He}^{+}+\mathrm{He}^{2}\) collisions, measured at 0 and 180 degrees. Note enhancement of target-based transitions (group labeled T) relative to the corresponding projectile-based transitions (labeled \(P\)) at \(0^{\circ}\). and the reverse trend at \(180^{\circ}\).
shortest-lived auger transitions, but increases with increasing projectile energy in the range 5 to 15 keV .

To explain these observations. a model based on the idea of Coulomb deflection of the ejected Auger electron as it passes the singly charged collision partner on its wey to the electron spectrometer was developed." In this model the target/projectile asymmetry observed at \(0^{\circ}\) is due to an aplification of the target electron solid angle collected by the electron analyzer. Due to deflection in the Coulonb field of the charged projectile, all target electrons enitted into an annular cone are collected. In the absence of deflection, only those electrons whose directions lie within the acceptance of the analyzer can be collected. Figure 4.27 shows the strongly forward-peaked angular distribution calculated for target \(2 s^{2}\) is Auger electron enission. In the absence of "Coulomb focusing," the angular distribution of electron emission from this doubly excited state, shown as the dash-dot line in the figure, is, of course, isotropic. The model calculations, which incorporate the time sependence of the electron emission and roulomb deflection processes, also accurately reproduce the observed dependence of the asymmetry on Auger decay rate.
cunamserne
TARGET EMISSION \(25^{2}\) 'S

Fig. 4.21. Calculated angular asymmetry for target \(2 s^{2} 15\) emission following \(10-\mathrm{keV} \mathrm{He}^{+}+\)He collisions due to Coulomb focusing; a calculi.. tion including the effect of projertile angular scattering is shown as dashed lines.

Qualitatively, the longer the Auger lifetime of the state in question, the larger is the mean initial separation between Auger electron and charged collision partner, and the meaker the net deflection of the emitted electron. This results in a smaller asymmetry, in accord with the observed trend. The observed enhancement of the asymetry with increasing projectile energy is at least partially explained by considering the energy dependence of the projectile angular scattering that occurs in the double excitation collisions. In general, angular scattering has an inverse dependence on projectile energy. Since the direction about wich Coulomb focusing occurs is along the lines joining target and (scattered) projectile, the enhancement is smeared out over progressively larger angles as angular scattering increases, i.e., as collision energy decreases. As a result, a progressively smaller fraction of the enhancement will lie within the angular acceptance of the electron analyzer, giving a smaller net asymetry at lower energies, in acord with the observed trend.

Further calculations will be performed to investigate the possibility of interference effects during Coulomb focusing, since there are, in general, almays at least two dffferent trajectories around the charged collision partner that result in the same electron scattering angle in the laboratory frame. Further experimental mork is planned to investigate Coulomb focusing in miticharged collision systems where the effect will be even more pronounced.

\footnotetext{
1. DRAN Postdoctoral Research Associate.
2. Permanent adress: Hann-Heitner lnstitut GabH, Berlin, FRG.
3. A. Bordenave-Montesquieu et al., Phys. Rev. A 25, 245 (1982).
4. J. K. Swenson et al., submitted to Physical Review Letters.
}

ELECTROM CAPTURE IN \(\mathrm{ma}^{+}+\mathrm{H}(\mathrm{D})\) CCLLISIONS at ov-keV emengies usime meneed beans

> M. S. Huqª R. A. Phaneuf

Using the lon-atom merged-beams apparatus, we have continued to masure total cross sections
for electron capture resulting from collisions of various miticharged ions (\(\mathrm{h}^{3}, \mathrm{y}^{4}, \mathrm{~s}^{5}\)) with \(H(0)\) atoms in the relative energy range extending from tenths of an ev/amu to over one thousand eV/ame. \({ }^{2}\) Such measurements are important in astrophysics and in the edge plasm of manetic fusion devices and provide a benchark for collision theory. We are able to obtain such low collision energies by merging a relatively fast (\(-q \times 10 \mathrm{keV}\)) multicharged ion bean from the ORAll-ECR ion source with a neutral \(H\) beam traveling at nearly the same velocity. The 998-pure ground-state H is produced by photodetachment as a bean of \(H^{-}\)passe: through the inner cavity of a \(1.06-\mu m\) Md:Yag laser. The \(80-\mathrm{cm}\)-long interaction path of the beams is maintained at an average pressure of \(2 \times 10^{-10}\) Torr. Details of the apparatus and technique can be found elsewhere. \({ }^{3}\)

Absolute total cross sections for single electron capture \(\sigma_{32}\) for collisions of \(w^{3+}\) with \(H(D)\) are shown in Fig. 4.28 as a function of relative collision energy expressed in eV/anu. As can be seen in the figure, the measurements agree with previous experimental measurements at the higher energies and with the theoretical calculations throughout the entire energy range. It should be noted that most of the \(\mathrm{N}^{+}\)(s 90 s) ions produced by the ECR source are in the metastable state, whereas the caiculations are

Fig. 4.28. Comparison of erged beams data for electron capture ir \(\mathrm{N}^{3+}+\mathrm{H}(\mathrm{D})\) collisions with previous measurements and theory. The error bars denote estimated relative experimental uncertainties estimated at a \(90 \%\) conpidence level.
perfonmed for ground-state :xident \(\mathrm{m}^{3+}\) fons. The good agreement between the calculations and the measurements inaicates tnat the metastable cross section is the sane as the ground-state cross section.

Measurements for single electron capture \(\alpha_{4} ;\) for collisions of \(\omega^{+}+H(0)\) are shom in Fig. 4.29. Agreement is shom to be good with the previous experimental measurement at the highest energy and the theoretical aliculation at the lowest energ. We attempted to extend the measurements below 1 ef/am. wi were prevented by poor signal-to-moise ratios caused by a combination of the law cross section (\(1 \times 10^{-15} \mathrm{~cm}^{2}\)) and the 1 m target thickmess (as the interaction energy approncines zero the beans no longer interact). Since the Li-like \(W^{+}+\)ion bean coes not have any metastable components in it, the measurements presented here correspond to ground-state reactants and have high enosgh accuracy such that future theoretical calculations can be compared critically against these data.

Measurements for the collisions of fot with \(H(0)\) are shown in Fig. 4.30. There is considerable scatter in the data due to the instability of the \(W^{+}\)beal broduced by the ECR ion source. Theoretical calculiations* reveal that charge transfer for this system occurs primarily into

F4g. 4.29. Comparison of merged-beaws data for electron capture in \(\mathrm{N}^{+t+H(D)}\) collisions with previous measurements and theory.

Fig. 4.30. Comparison of merged-beams data for electron capture in \(\mathrm{F}^{++}+\mathrm{H}(\mathrm{D})\) collisions with previous measurenents and theory.
the \(\left(1 s^{2} 4 s\right)^{2} \mathbf{s}\) state of \(\mathrm{w}^{+}\). Capture into the 3s. 3p. and 34 states are found to contribute negligilily at energies less than 1 kev/amu. Despite the large scatter present in the data, the measurements reproduce the general irend of \(0_{54}\) as predicted by theory.

Previous measuraments \({ }^{3}\) with \(0^{5+}\) wich showed a discrepancy with theory ai the lowest evergies has led coward the speculation that capture plus excitation channels my be important for the \(0^{5+}+H(D)\) system belon 20 eV/an. 5 In contrast, these present masurments have agreed well with theory and experiment (where they exist) and have increased our confidence in this techaically difficult techaíque.
1. CaN Postdoctoral Research Associate.
2. Summary of paper: M. S. Heq. C. C. Havener. and \(R\). A. Thaneut Mon-Energy Eiectron Capture by \(\mathrm{N}^{3+}\). \(\mathrm{m}^{4}\), and \(\mathrm{N}^{3+}\) from Hydrogen Atoms Using Merged Reams." to be subuitted to Physical Review A.
3. C. C. Havener et al.. Narged-8eams Measurements of Electron-Capture Cross Sections for \(0^{5+}+H\) at ev Energies." in press. Physical Revien \(A_{\text {. }}\)
4. M. Gargaud and R. McCarroll. J. Phys. B. 18. 463 (1985): E. J. Shipsey, J. C. Browne, and R. E. Oison, J. Phys. 8. 14, 869 (1981).
5. C. C. Mavener et al.. "Electron Capture by Multicharged Ions at eV Energies." in press. Journal de Physique.

ELECTROM SPECTROSCOPY OF MRTICMNEED 10m-SUNFACE IMTEACTIOMS
F. M. Myyer
S. H. Overbury \({ }^{2}\)
C. C. ilvener
K. J. Reed \({ }^{3}\)
D. ML : hnmerl
R. J. Snoudion"

In our contimuing ca! ! atioracive investigations of multicharged ion-surface interactions. progress this year has been made on two fronts. Firstly. we have obtained a more detailed picture of the role of inmer shell processes in the production of the discrete Auger transition features observed in the enitted electron energy distributions. Secondly. the experimental apperatus used for the surface interaction studtes has been substantially faroved.

Our understanding of the role of inmer-shell vacancy transfer processes in multicharged ion-surface interactions has improved by implementing the variable screening model of Eichier and Willes to calculate adiabatic molecular orbital (\(\mathrm{H} D\)) energy levels for a nuber of the collifion systems we have experimentally studied. The calculations give information about the range of internuclear separations at Which MO pseudocrossings or rotational couplings may occur. They also give a more realistic picture of the possible pathways alung mich innershell excitations occur, and now sensitive these pathways are to the collision partners maning up the qust-molecule. For example, the calculations heve provided a qualitative explanation for cur experimental coservation that projectile \(K\)-shell excitation occurs for \(M, O\), and \(F\) fons incident on Cu target, but does not occur for those same ions incident on Au (see Fig. 4.31).

The apparatus used in our studies of multicharged ion-surface interactions was also significantly uggraded this year. The first improvement was the addition of a beam collimation/monitoring section upstredm of the targot manipulator. This monitor allows more convenient nomalization of the measured eafted electron spectra to the incidert ion flux. The mein improvement in the apparatus, however, mas replacement of the fixed-position CMA electron spectrometer by a small hemispherical-sector electron analyzer mounted on rotation feedthrough to permit measuraments of election

Fig. 4.31. Energy distriturion of electrons enitted during collistons of mpt tons incident on hu and Cu targets at \(5^{\circ}\). measured using 3 fixed-posttion cylindrical wirror (CMA) electron enersy analyzer. Mote the presence of a projec\(t\). KLL Auger feature at 400 eV electron energy for \(\mathrm{N}^{+}\)incident on Cu. and the absence of this feature for the same ic! incident on Au.
spectra over large range of ctssion angles. The electron spectrometer also has a deceleration/focusing stage, by which the election piss energy can be reduced with only a minimum of signal loss. The new electron spectrameter thus provides the capability for angle- as mell as entrgy-resolved masurements. Figure 4.32 shows sample electron energy spectra at three different mission angles acquired with this new spectrometer for \(70-k e y ~ 07 *\) projectiles incident on Au at \(10^{\circ}\). From the well deifined Doppler shifts of the KLL Auger features one can deduce that escentially all of the meutralizartion of the multicharged ion occurs prior to

Fig. 4.32. Ejected electron energy distributions for \(0^{7+}\) tons incident on a Ausurface for three different eaission angles (for geometry of measurement, see inset), masured using the new rotatable hemispherical-sector electron analyzer.
penetration of the surface. Extensive measurements are planoed for FY 1989 to exploit the utility and flexibility of the new apparatus by measuring mgular distributions of electron emission, and investigating at ingher resolution the discrete features observed in our earlier electron mergy spectra.
1. Solid State Division, DREL.
2. Chemistry Division, dam.
3. Lawrence Livermore mational Laboratory. Livermore, Californía.
4. Osmabrick University, Osnabreck, FRG.
5. J. Eicmier and U. Wile, Mys. Rev. i 11. 1973 (1975).

\section*{5. THEORETICAL PHYSICS}

\begin{abstract}
Major areas of research in the theoretical physics program in the Division deal with topics in atomic and muclear physics. There is a significant overlap of interests of researchers in the two areas, particularly in the field of computational physics. This is particularly true mere various aspects of relativity and the Coulomb force are involved. This has led us, in the past year, to infiate the development of an Institute for Computational Physics in rooperation with the University of Tennessee and Vanderbilt liniversity. It is envisaged that this institute will involve the of fering of courses in computational physics at the universities, joint seminar series, tine development of a dedicated parallel processor computing facility, and most important, a close and stimulating interaction among researchers at the three institutions.

The ming areas of our studies in muclear physics are relativisitic heavy-ion physics, heavy-ion reactions at low and intermediate energies, and muclear structure physics. These areas complement prograss in experimental muclear physics in the Division carried out at the Holifield Heavy Ion Research Facility, cerin, and cavil. Similariy, the atomic theory programs to study various charge transfer, capture, and ionization processes reflects much of the experimental atomic physics progran on the En Tandem Accelerator and within the Atonic Cross Sections for Fusion program.

In the past year, the theory program has been significantly enhanced by new appointments to the UT-00in. Distinguished Scientist Progran. In January of 1988 F. E. Close joined that program and has already expanded the division research progran in the area of physics at the particle-nuclear interface. In July of 1988, J. H. Macek jotned the group in theoretical atoaic physics. The atomic theory effor: at the Laboratory has almost doubled in the past year with the addition of one postdoc position and the establishment of the ofstinguished Scientist program in atomic theory.

Finally, it is with extreme sorrow that we note the death of Georg Leander in the past year. The strengths he brought to the nuclear structure theory effort by his intellectual strengths and vibrant personality are sorely missed.
\end{abstract}

\section*{lepton pair production in HEAVY-ION COLLISIONS}

\section*{W-EOSOM PAIR ROOOUCTIOM IM ULTRARELATIVISTIC MEAYY-IOM COLLISIOWS}
\[
\begin{gathered}
\text { J. Mol C. Bottcher } \\
\text { M. R. Strayer }
\end{gathered}
\]

Many processes have been discussed as probes of the formation and the decay of the quarkgluon plasme phase of metter in ultrarelativis. tic meavy-ion collisions. \({ }^{2,3}\) Recently, a model4 has been proposed to calculate the lepton pair production froe the decay of vacuum excitations induced by the colliding nuclef. In this model the electromagnetic fields are approximated by the classical fielcs wich are very strong and sharply pulsed near nuclef colliding at relativ. istic velocitios, and the prcduction processes are treated with the perturbative method. For
the lowest-order processes the production cross section can be obtained in terms of phase space integrals. As a direct extension of this model. we may calculate the production of pairs of \(u\) bosons.

In the standard electraweak models the electromagnetic and weak interactions are unified in - common \(S U(2)=U(1)\) gauge structure. The interact:ons between the electromagnetic and charged boson fields arise from the selfinteractions of the non-abelian SU(2) gauge fields as follows:
\[
\begin{aligned}
& x_{3}=-i e \mid\left(a_{v} A_{v}-\partial_{v} A_{v}\right) w^{-u_{N}+v} \\
& \text { - }\left(a_{u} H_{v}^{+}-a_{v} H_{u}^{+}\right) A^{H^{-}} M^{-v}
\end{aligned}
\]
\[
\begin{equation*}
X_{4}=-P^{7}\left(H_{U}^{\dagger} W^{-W_{A}} A_{v}^{v}-W_{\nu}^{*} W_{v}^{*} A^{\nu} A^{v}\right) \tag{2}
\end{equation*}
\]

The lowest-order processes are show in Fig. 5.1. The U-pair production cross section is
\[
\begin{equation*}
a=\int d^{2} b \sum_{P, q}\left|<P^{(t)} q^{(-)}\right| s|0>|^{2} . \tag{3}
\end{equation*}
\]
where the \(p, q\) are the indices for momentum and polarization \((k, \lambda)\), and \(b\) is the inpact parameter.

A dimensional analysis leads to the following cross section for the U-pair production:
\[
\begin{equation*}
a=Z^{4} a^{4} / M_{N}^{2} f_{u}\left(r_{1} M_{W}\right), \tag{4}
\end{equation*}
\]
where \(f_{W}\) is a slowly varying function of the energy \(V\) and \(U\)-boson asss \(M_{N}\). A conservative estimate is
\[
\begin{equation*}
f_{W}\left(r_{0} R_{W}\right) \sim \frac{\ln \left(r_{0} M_{W} / M_{W}\right)}{\ln \left(r_{0} M_{W} / m_{e}\right)} f_{e}\left(r_{i} m_{e}\right) . \tag{5}
\end{equation*}
\]
wich is obtained by scaling the result of the corresponding calculation for the electron pair production. This gives a U-pair cross section for \(\boldsymbol{A u}+\) hu at the energy of 100 GeV per nucieon hundreds of times larger than the cross section for the detection of \(M\)-bosons in a pp collider.

fig. 5.1. The processes for W-pair produceion in heavy-ion collisinns.

For the lowest-order processes, we can take the effective noninteracting Lagrangian for the charged W-boson fields with a mass term, i.e.,
\[
\begin{equation*}
S_{0}=-\frac{1}{2} u_{u v^{+}} u^{-u v}+{r^{2}}_{w_{u}^{+} w^{-\mu}} \tag{6}
\end{equation*}
\]
 reduced to a phase space integral: \(\int d k_{p} d k_{q} d k_{\perp}\), where \(k_{p}, k_{q}\), and \(k_{1}\) are the momenta of \(u^{+}, \mathbf{u}^{-}\). and the transverse momentum of the electromagnetic fields, respectively. This integration can be carried out by Monte Carlo methods with adequate precision." The results will give us the qualitative behavior and a more detailed quantitative estimation for the background of U boson production in ultrarelativistic heavy-ion co \({ }^{-}\)isions.
1. Joint Institute for Heavy Ion Research. ORM.
2. G. Domokos and J. Goldman, Phys. Rev. D 23, 203 (1981): Phys. Rev. D 28, 123 (1983).
3. K. Kajantie and H. I. Wiettenen, Z. Phys. C 9, 341 (1981); 2. Mhy. 14, 357 (1982).
4. C. Bottcher and M. R. Strayer, to be published in Physical Review D.
5. See, for exmple, C. It zykson and c. Zuber, Quantum Field Theory (IncGraw-Hill, Mew York, 1980).

\section*{EFFECTS of ELECTROMNETETIC FOM FACTORS OM heavy leptom pair proouctiom}
C. Bottcher
M. R. St rayer
D. J. Ernst \({ }^{1}\)
J. \(\boldsymbol{M r}^{2}\)

The point charge results discussed above, which apply directly to electron-positron production, can be generalized to the production of muons and tauons. \({ }^{3}\) However, we note important differences in the production and emission of these heavy leptons. In contrast to electron pair production:
(1) Heavy lepton production occurs mainly within the interior of the nucleus, and is sensitive to details of the nuclear charge distribution. Because of the relatively small Compton sizes of the muon and tauon, and the correspondingly large Compton momentum, it is important to include effects from the nucleus and nucleon charge form factor. The compton wavelength of the muon is about 2 fm , so that there is the
possibility that mon production will take place coberently over the interior region of the mucleus.
(2) Tawons with a rest mass of about 1.8 CeV/c \({ }^{2}\) require substantial energy momentua transfer from the electromanetic fields, with correspondingly large inelastic nuclear excitations. This necessitates a detailed description of the muclear currents in terus of structure functions.
(3) The cross section yields for muons and tawons must be very different from those predicted by the equivalent photon approximation, wich cannot correctly treat the nuclear currents. Here again, the details of the form factors and the structure functions can dramatically alter cross-section yields.

The inclusion of finite mucleus and mucleon elastic form factors into the two photion process follows from the usual procedure of vertex modification. We have employed the dipole form of the proton form factor, wile the charge distribution coming from the nucleus was expressed as a Moods-Saxon form, with parameters adjusted to fit elastic electron scattering data.

We have surveyed muon pair production for nuclei and energies of interest to the BuIC design group. Several important features have been noted.
(I) There is some evidence of coherent muon production. The charge mumber dependence of these cross sections is roughly \(\mathbf{Z}^{2 \cdot 4}\). This dependence is significantly less than predicted by calculations with point sources and serves to underscore the importance of the nuclear form factor.
(2) There is a strong dependence on the charge structure of the proton. This is evidenced by the comparison of the point charge and form factor results for the proton collisions.
(3) The largest effects of the proton form factor occurs at high energies. In our colculations the point charge electromignetic interaction is "weakened" by the nuclear charge distributions. This leads to a domain of energies where perturbation theory is valid.

We are also exzaining tawon production. An interesting feature here is that proton-proton collisions produce the largest yields of tavons at high energy. Monetheless, the yield of tasons is greatly supressed by the inclusion of the form factors.
1. Consultant from Texas AMM University, College Station, TX 77843.
2. Joint Institute for Heavy Ion Research.
3. C. Bottcher and M. R. Strayer, submitted to Physical Review.

\section*{ELECTEOM PAIR PRSOUCTIO FROM MESED ELECTRONMCMETIC FIELDS IM RELATIVISTIC MEAYY-IOW COLISIONs \({ }^{1}\)}
C. Bottcher
M. R. Strayer

We present calculations of the electron pair production cross sections in relativistic heavyion collisions. The electron pairs arise from the decay of vacuum excitations induced by the very strong and sharply pulsed electromagnetic fields near nuclei mich collide at relativistic velocities. We present an exact Monte Carlo evaluation of the two-photion terms describing this process, and we discuss at length the inadequacies of the approximation schemes that are inherent to the usual virtual photon approaches. Typical results for collisions corresponding to experiments at the AGS, CERM, and RHIC are discussed.
1. Abstract of paper submitted for publication in Physical Reviem 0.
amowhlous election paid mopuction in hien EMERGY \()^{-}+\)REACTIOMS
D. J. Ernst \({ }^{1}\) C. Bottcher
M. R. Strayer

In studies of hadron-hadron collisions, single lepton and dilepton production has been examined extenstvely. There has emerged from these studies a systemstic rosult trat the ratio of electron to pion yields are large and not understandable in terms of known meson decays. Experiments observing anomalous single electrons
also have yields of positrons which are consistent with the possibility of a parent \(e^{+} e^{-}\) source.

Specifically, we are investigating ancialous electron pair yields from 17 GeV/c collisions of ** \(0_{0}^{2}\) In this experiment, the total cross section for forming anomalous pairs is about 0.25 wh. The pair distribution is measured as a function of the Feynman x-variable. All of the anomilous pairs occur at seall values of the invariant mass and transverse momentum of the pair. We have calculated the leptons produced from the long-range electrangnetic fields in the foregoing collision, initially including the lowest-order twophoton diagrams. Two important points have energed:
(1) The two-photon backgrounds are usually evaluated by using the Heizsäcker-Willians method. For large values of the invariant mass, \(0.2<M<0.6 \mathrm{eeV} / \mathrm{c}^{2}\), the exact Monte Carlo evaluation of the long-range contribution to the tmo-photon diagrams predicts considerably enhanced yields.
(2) The dilepton production from the longrange electromagnetic fields are sharply peaked at low values of the invariant mass. This contribution to the \(\mathrm{w}^{-}+p\) experiment only comes from the tail of the distribution. Thus we expect the diagrams with an extra outgoing photon leg to dramatically increase the result, and we are in the process of calculating these diagrams.

\footnotetext{
1. Consultant from Texas ABM Untversity, College Station, TX 77843.
2. M. R. Adams et 11., Phys. Rev. D 27. 1971 (1983).
}

> C. Bottcher M. R. Strayer

The physics of the fermion vacuum is briefly described and apolied to pair production in heavy-ion collisions. We consider, in turn, low energies (\(50 \mathrm{meV} / \mathrm{nucleon}\)), intermediate energies (< 5 GeV/nucleon), and ultrahigh energies such as would be produced in a ring collider. At high energies, interesting questions of

Lorentz and gauge invariance arise. Finally. sone applications to the structure of high \(Z\) atoms are examined.
1. Abstract of paper: Aucl. Instrum. Meth. 831. 122 (1988).

\section*{ A vaee 2 mancus-}

\section*{A. Mazaki \({ }^{2}\) \\ S. Rumano \({ }^{3}\)}

We explain sharp \(e^{+}\)peaks in heary-ion collisions by analyzing pure GED with a large atanic nuber extermal source. We show that a highly polarized vacun around the source has at least two neutral uscillation modes, whose energies are predicted to be 1.75 MeV and 1.49 MeV with an appropriate choice of the radius of the source. They decay into a pair of \(e^{ \pm}\)only through electromgnetic interactions.

\author{
1. Abstract of paper to be published in Physics Letters B. \\ 2. Hishogakusha University, Rakahagi, Japan. \\ 3. Guest Asstgnee from University of Tennessee, Knoxvilie, TM 37996-1200.
}

\section*{ELECTBON PAIR PRODUCTION AN CAPTURE IM HEAYY-ION COLISTOMS}
A. S. Unarl
M. R. Strayer
V. E. Oberackerl
C. Bottcher

Pair production with the capture of an electron is leading mechanism for destroying the intersecting RHIC beams (beamsstralung). Capture of heavier leptons is also measurable, and if. could provide an interesting probe of the nuclear interior. Monperturbative methods must be developed, at the very least, to calibrate perturbative formulations. They will also be central to any attack on OCD.

Our approach to problems in three space dimensions. which we also following in nonrelativistic and atomic problems, is to discretize on a Cartesian lattice. While time is also discretized, the system variables are usually updated in every successive time step, so that time does not require another index. The use of Cartesian coordinates avoids the
pathologies of rotating frames and the complicated metrics of spherical coordinate systems. The resulting algorithas have a pleasing conceptual and logical simplicity, Wich far outweighs any loss of efficiency because the representation is suboptimal.

In our basis-spline-collocation approach, the Hexiltonian is replaced by a mitrix mose structure is sparse and blocked. The solution of the time-dependent Dirac equation is reouced to a series of matrix \(X\) vector operations, which can be iaplemented efficiently on vectorizing or parallel computers.

A complete solution of the pair production problem requires the propagation in time of a complete set, or at least a substantial sample, of vacum states. We have deferred a direct attack on this problem for the present, though we are pursuing simplified approaches. Rather, we have focussed on the more tractable problem of pair production with capture. This requires only that the final bound state be propagated backwards in time. Such calculations have been completed, with demonstrated convergence, for screened coulomb potentials. The experience accumulated can be extrapolated to estimate the resources needed for calculations with the correct coulomb potentials.

The calculations were performed in the frame of one mucleus (the target), while the other nucleus (the projectile) was Lorentz-boosted. The dependence of the capture probability on inpact parmeter mas calculated at two energies. The probabilities were obseried to converge to physically mell-behaved limits, when the mesh spacing is about one-fifth the Compton wavelength of the lepton, or less. The model mas tunet so that this limit was reached with \(25-40\) mesh points in each direction. We estimate that realistic calculations on \(e^{-}\)or \(\mu^{-}\)capture require 70-100 points in each direction, corresponding to 10 's of hours of computing at 200300 Mrlops, and consuming 100 moords of shared memory.
1. Consultant from Vanderbilt University, Mashvilie, Th 37235.

\section*{ULTRARELATIVISTIC HEAVY-ION PHYSICS COLLISIOWS}

\section*{A MULIPLE COLLISIO MODEL FOR MICH-EMERGY mucueus-mucleus colisions \({ }^{1}\)}
\[
\text { Cheuk-Yin Wong Zhong-Dao Lu }{ }^{2}
\]

We use a Glauber miltiple-collision model to examine the dynamics of mucleus-nucleus rollisions. The model assumes that the incident and the target baryons make mitiple collisions as the collision process proceeds, their probability of collision being given by the baryonbaryon inelastic cross section. In each collision the baryons lose energy and momentum. The model introduces a stopping law mich describes how a baryon loses energy in a basic baryonbaryon collision. The baryon energy loss in each basic collision results in the production of particles. The momentum distribution of the produced particles is described by a particle production law. It is found that the zerodegree calorimeter spectra of the M80 experiments with \({ }^{160}\) fons at 60 GeV and 200 GeV per nuclison \(r\) various targets are vil described by a stopping law which reveals a high degree of stopping in these high-energy nuclear collistons. The transverse energy spectra, however, indicate that there are additional contributions to the transverse energy which may come from other sources.

\footnotetext{
1. Sumary of invited talk presented at the International Conference on Medium- and HighEnergy Muclear Physics, Talpei, Taiwan, May 1988, and paper submitted for publication in Physical Review D.
2. Institute of Atomic Energy, Beijing, PaC.
}

\section*{INTERMEDIATE-EMERGY PHYSICS}

STUDIES OF THE MUCLEAR SIMELE-PRRTICLE RESPOUSE Function in a simple mooel \({ }^{1}\)
\[
\text { 6. D. White }{ }_{\text {P. J. Siemens }}{ }^{3} \text {. Davies }
\]

An expansion for the single-particle response function for a collection of noninteracting fermions in a localized potential well is developed with particular emphasis on applications to
nuclei (hioluding a-hole excitations), comutational techaiques, and comparisons to an infinite Ferel ges. Ground states and excited systess can both be treated with this formalise, although the latter involves significantly more diffizult analysis. Also, a useful dispersion relation is obtained for the response function. Then. an azcurate method is presented for evaluating bowirl state and continuu Eingleparticle mave functions in momention space, the representation in mich one most maturally derives the appropriate single-particle normalization factors. Homever. it is argued that for calculating folding integrals of two singleparticle wave functions coordinate space may be superior to momentum space. Our alin results show that for any reasonable description of light muclai excited by pions, the continuu states mit be includei. Also, in these systems tive overall response of the concinum states is drametically dependent on the real part of the s-particle optical potential.
-. Abstract of paper to be aublished in Annals of Physics.
2. Consultant from Northnestern State University, Hatchitoches, LA 71457.
3. Consultant from Oregon State University, Corvallis, OR 9; j31.

GEMERMIZATIOFS OF TKE POINCARE-bEDTRAMD TMEOREM AD RPPLICATIONS TO MULEAK DISPERSION RELATIONS
K.T.R. Davies

When the product of two principal-value terms occurs in a double integral, it is mell knomn that one must be careful about reversing the order of integration.' In particular, the Poincaré-Bertirand theorem \(\boldsymbol{1}^{2}\) states that
\[
\begin{gather*}
\int d x \frac{2}{(x-u)} \int d y \frac{e}{(y-x)} f(x, y) \\
=\int d y \int d x \frac{2}{(x-u)} \frac{2}{(y-x)} f(x, y)=n^{2} f(u, u), \tag{1}
\end{gather*}
\]
where \(f\) indicates the principal value. Note the extra term on the righthand side of Eq. (1) which arises from reversing the order of integration. This important theorem can be proven veiy generally without recourse to cuplex v:-ín
able theory. \({ }^{2}\) so that its validity does not depend on the analytic behaviar of the function \(f(x, y)\). (How ver, it is assumed that \(f(x, y)\) is "well behaved" within the \(x, y\) domen of integration.)

Equation (i) can be used to prove veay sasily a well-known result fran complex variak ie theory: If one function. \(f(x)\). is the filbert transform of another function, \(g(x)\), then \(g(x)\) is also the Hilbert transform of \(i(x)\). This lif: :le exercise nicely illustrates the usefulness of Eq. (1).

There are many applications of this theorem in muclear physics, particularly in studies of the nuclear response functions arising frow nucleon-delta-mesonic interactions.3,* Consider - causal Green's function, \(G_{e}\), hose spectral representation obeys the mell-known dispersion relation \({ }^{5}\)
\[
\begin{equation*}
\operatorname{Re}\left[G_{a}(\omega)\right]=\frac{1}{T} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\theta}{\left(\omega^{\prime}-\omega\right)} \operatorname{Im}\left[G_{a}\left(\omega^{\prime}\right)\right] n_{a^{\prime}}\left(\omega^{\prime}\right) \tag{2}
\end{equation*}
\]

Where
\[
n_{a}(\omega)= \begin{cases}\tanh \left[\left(-\mu_{\alpha}\right) / 2 k_{8} T\right] & \text { fer bosons } \tag{3}\\ \operatorname{coth}\left[\left(\omega-u_{d} / 2 k_{B} T\right]\right. & \text { for fermions. }\end{cases}
\]
and \(k_{B}\) is the boltzmann constant, \(T\) is the temperature, and \(u_{a}\) is the chemical potential. Then, a typical response function \({ }^{3}, 5\) is proportional to the integral
\[
\begin{equation*}
U_{a \beta}(\omega)=1 \int_{-\infty}^{\infty} d \omega^{\prime} G_{\alpha}\left(\alpha+\omega^{\prime}\right) G_{\beta}\left(\omega^{\prime}\right), \tag{4}
\end{equation*}
\]
and from Eqs. (1). (2), and (3) one can show that
\(\operatorname{Re}\left[U_{a \beta}(\omega)\right]=\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{z}{\left(\omega^{\prime}-\omega\right)}\left[\operatorname{Im}\left[U_{a \beta^{\prime}}\left(\omega^{\prime}\right)\right] n_{a \theta^{\prime}}\left(\omega^{\prime}\right)\right.\)
where

Comparing Eqs. (3) and (6), we see that, as far as the statistics are concerned, two bosons or
two fernions behave like a bosen, wile a boson and a fermion behave like a fermion, wich is a very satisfying result.

Finally, we mention that the basic theorem in Eq. (1) is presently beinq generalized to include the cases of multiple integrals and of higher-order poles. In particular, the case of multiple integrals appears to have direct application tc various products of \(\mathrm{T}=0\) Green's functoons and iesponse functions. Such products are the basic components occurring in the solution of Dyson's equations, either in muclear matter or in fin te nucler. \({ }^{3-5}\)

\footnotetext{
1. R. Belesci. Statistical Mechanics of Charged Particie!: (Interscience Publishers. New York, [\%3), D. 599.
2. M. I. Muskelishvili, Singular Integral Equations (P woordhoff, Mew York, Groningen, The fiethriands, 1953), pp. 56-61.
3. 6. D. White, K.T.R. Davies, and P. J. Siemens, to be published in Annals of Physics.
4. G. D. Mite, F. J. Siemens, M. Soyeur, and h.T.R. Uavies, to be published.
5. A. J. Fetter and J. D. Lalecka, Quantum Theory of Many-Particle Systens (McGraw-Hill, new York, 1971), pp. 292-298.
}

\section*{THEORY AD CALCULATIONS OF THE DYSOM EQUATIONS INOLVIMS MUCLEOM-DELTA-MESOWIC IMTERACTIOMS}
\[
\begin{array}{ll}
\text { K.T.R. Davies } & \text { P. J. Siemens:" } \\
\text { G. D. White } & \text { M. Soyeur }{ }^{3}
\end{array}
\]

To give a quantitatively reliable description. of nuclear collisions at center-of-mass energies of a few mundred MeV per mucleon, a theoretical model must incorporate many aspects of our extensive experience of nuclear structure and forces. It must give a good account of MN and wh scattering in this enerny regime, because the particles in the final state of the collision zollide with each other pairwisp after the density of the matter has been attenuated but before they are detected. It must accurately descr the the motion of nucleons and pions in normal nuclei, including the scattering of nucleons and pions from nuclei, not only because the model must be tested in known cases, but also because of the presence of spectator fragments of nuclear matter in the final state of
many relativistic heavy-ion collisions, It must have free parameters to adjust the properties of hot and cold hinh-density nuclear matter, because the comparison of a range of model predictions to measured data is essential to the process of inductive reasoning from which conclusions on the significance of experiments must be dramn. The :heory also sinould incluoe the main known aspects of muclear collective motion, since we are hoping :o uncover collective effects in the hot dense matter. of course, it has to be built within the framework of relativistic quantum mechanics.

We are presently, wisuing formally such a theory. At the same time, we have initiated a program of practical calculations which will embody the essential ingredients of our formal theory. In particular, we have begun to solve self-consistently the Dyson equations in infinite nuclear matter. So far, we are considering only mucleon-delta and murleon-pion interactions, but eventually we plan to include the effects of heavier mass mesons.

The most difificult mumerical part of such calculations involves the evaluation of certain "Ioop integrals" (see Fig. 5.2). For example, we have made a mumber of calculations of the loop integral containing the nucleon and delta propagators:
\[
\begin{align*}
U_{M \Delta}(p) & =1 \int d^{4} q\left[p^{2}(2 q+p) G_{N}(p+q) G_{\Delta}(q)\right. \tag{1}\\
& +f^{2}(2 q-p) G_{N}(-p+q) G_{A}(q)!
\end{align*}
\]

ORNL-DWG 87-19429

Fig. 5.2. A Feynman diagram for computing the response function. Such a loop integral occurs in the solution of Dyson's equations.
where \(p=(E, \vec{p})\) is a four vector and \(f\) is a "form factor" wich promotes rapid convergence of ;eneral muciear atter 'oop integrals. Figures 5.3 and 5.4 show typicai results for the real and imaginary parts of \(U_{\text {NA }}\).

From the poincaré-Bertrand theoren, it can be shown that both the real and imaginary parts of \(U_{W s}\) can be obtained from the inaginary parts of \(G_{M}\) and \(G_{A}\). The function \(G_{M}\) is the usual non-

Fig. 5.3. The imaginary part of \(U_{n a}\) as a function of the energy \(E=\omega\) for \(p=|\bar{p}|=1.3\) fin \({ }^{1}\). Two different cases are displayed, each shown with and without the form factor.

Fig. 5.4. The real part of \(U_{N A_{A}}\) as a function of \(E=\) for \(p=1.3 \mathrm{f}^{-1}\). NA This function is calculated from the \(\operatorname{Im}\left(U_{M A}\right)\) via a dispersion relation.
relativistic, mean-field nuclear matter propagator, wile the \(\operatorname{In}\left(G_{\Delta}\right)\) is given by
\[
\begin{equation*}
\operatorname{Im} G_{\Delta}(E, \vec{p})=-\frac{1}{2} \frac{r_{\Delta}(E) \theta\left(E-\mu_{\Delta}\right)}{\left(E-E_{A}(P)\right)^{2}+\frac{1}{4} r_{\Delta}^{2}(E)} \text {. } \tag{2}
\end{equation*}
\]
where \(c_{d}(\vec{p})\) is the delta single-particle energy, \(r_{d}(E)\) is the delta width. \(v_{A}\) is the chemical potential, and \(\theta(x)\) is a stap function. In Figs. 5, \({ }^{2}\) and 5.4 we considered two different options: (1) r a constant width, \(\mathrm{r}_{\Delta}(E)=\mathrm{r}_{\Delta}(0)=115\) MeV, and (2) using an energy-dependent width. which vanishes for \(E=m_{n}+m_{p}\) and which rises to a value of \(r_{\Delta}(E)=r_{\Delta}(0)\) at \(E=1244 \mathrm{MeV}\), after wich it remains constant. The latter option corrects certain phase-space difficulties and discontinuities associated with the former one. It can also be seen from Figs. 5.3 and 5.4 that the form factor has little effect on tie nucleon-delta loop integral. However, this form factor will be essential for convergence of the nucleon-pion loop integral.

Once calculated, \(U_{\text {MA }}\) will be inserted as a correction into the free-particle pion propagator. Then the nucleon-pion loop integral can be evaluated, and this will be inserted as a correction into the Green's function in Eq. (2), thus giving a new delta propagator. The mole process will be repeated until one obtains selfconsistency. How rapidly the process converges remains to be determined.
1. Consultart from Morthwestern State University, Matchitoches, LA 71457.
2. Cunsultant from Oregon State University. Corvallis, OR 97331.
3. C.E.W. Saclay, F 91191 Gif-sur-Yvette Cedex, France.

\section*{IMCLUSIVE Y AND *O CROSS SECiIOWS IM MEAVY-IOM REACTIOWS \({ }^{1}\)}

\section*{D. J. Ernst \({ }^{2}\)}
M. R. Strayer

Perturbation theory in a time-dependent basis is used to derive formal expressions for plon and gamma emission in heavy-ion reactions. The structure of the theory motivates an external mean-field phenomenology as a representation of
the actual mean field plus lowest-order collision dynamics. The =zarce function for the emission process is identified as a Wigner function constructed from the tim Fourier transform of the nuclear mavefunctions. A simple nodel of the Uigner function is constructed and used to relate the production cross section for \(0^{0}\) and \(\gamma\) in the reaction \({ }^{14 N}+\) Mi at a laboratory bombarding energy per mucleon of 35 MeV. A direct relation between \(\mathbf{\pi}^{0}\) and \(Y\) cross sections is predicted to hold in the region of high gmea-ray energy where the gama enission is dominated by spin currents.
1. Abstract of paper: J. Phys. 6 14, L37 (1988).
2. Consultant from Texas AM University, College Station. TX 77843.

\section*{PMEMGEMOLOSICAL LOCAL POTENTIAL MDOEL FOR PIOM-MCLEUS SCATTERIMS}

\section*{G. R. Satchler}

Pion-nucleus elastic and inelastic scattering measurements are usually analyzed in terms of a momentum-dependent microscopic" optical model potential and the impulse approximation. It is of inters st to see whether a good, phenomenological description of these data can be given in terms of simple and local potential models (e.9., Moods-Saxon), and what can be learned frow such a description. Preliminary investigations of some elastic scattering have been made with relativistic kinematics but otherwise using the Schrödinger equation (equivalent to a certain approximation to the Klein-Gordon equation.) The results suggest that a simple HoodsSaxon model is sufficient when there is strong absorption, such as at energies near the \((3,3)\) resonance, but that this shape may be inadequate at lower energies.

One interesting question is whether certain features, such as \(\sigma\left(\nabla^{+}\right) / \sigma\left(\nabla^{-}\right)\)ratios for inelastic scattering, depend sensitively on the Interaction model used or whether they are largely model-independent. Early results suggest the latter, at least wen there is strong absorption; provided the elastic scattering is
fitted, the inelastic followis from deforaing the optical potential. This parallels our experience with other hadronic scattering, and implies that the apparently awmalous interpretation of the \(\mathrm{E}^{+/--}\)ratios found \({ }^{1}\) for exciting tas giant quadrupole resonance is probably not due to inacequacies in the interaction model used. Similarly, the dominance of the imaginary interaction at these energies makes the Coulomnuclear interference contribution to the \(\mathrm{m}^{+} \mathrm{m}^{-}\) ratio quite small.
1. S. J. Seestrom-Morris et al., Phys. Rev. C 33, 1847 (1386).

\section*{ MOVENT \({ }^{2}\) \\ S. Kumano \({ }^{2}\)}

The \(M\left(e, e^{-} r\right)\) reaction is investigated to find the \(H-\Delta\) transition quadrupole moment. The cross section is expressed in terms of \(\mathrm{m}-\Delta\) transition form factors, and it shows a typical dipole raciation pattern if the quadrupole moment vanishes. Given a finite transition quadrupole moment, the dipole radiation pattern rotates. In the laboratory frame, the radiation is peaked in the forward direction due to the \(\Delta\) motion. Measurement in the out-of-scattering plane is suggested to find the quadrupole moment. The exchange diagram contribution to the cross section is calculated to be at most 3\% if we use the isobar model for the \(\Delta\) propagator.

\footnotetext{
1. Abstract of paper submitted for publication in Muclear Physics \(A\).
2. Guest Assignee from University of Tennessee, Knoxville, TM 37996-1200.
}

PIOWIC CONTRIBUTION TO THE SCALAR AND
LOMGITUDIMAL R- IRAMSITION QUDRUPOLE
FORM FACTORS \({ }^{2}\)

\section*{S. Kumano \({ }^{2}\)}

The pionic contribution to the scalar and longtrudtnal proton \(\rightarrow \Delta^{+}\)transition quadrupoie form factors is calculated. It is shown that the \(W N\) channel contributes \(+0.023-10.093 \mathrm{fm}^{2}\) at photon momentum \(q=400 \mathrm{MeV}\) (EMR \(-+1.4-15.78\)).

This might be larger than the "core" quadrupole mant, and one should be careful in comparing experimental dati and theoretical predictions. This pionic contribution maker the measurement of the phase of the quadrupole moment more interesting.

\footnotetext{
1. Abstract of paper to be published in Physics Letters 8.
2. Guest Assignee from the University of Tennessee. Knoxyille, IH 37996-1200.
}

\section*{HEAVY-ION REACTIONS}

\section*{RELATIOM BETMEEM \(n_{n,} M_{p}\), MD MDRONIC EXCITATICM STREMGTUS WIEM THERE IS STROMG MESORPTIOM: The \(\mathrm{Zr}\left(\mathrm{a}, \mathrm{a}^{\mathrm{e}}\right) \mathrm{Resctions}{ }^{1}\)}

\section*{6. R. Satchler}

We study the relationship between the \(r^{2}\) radial moments \(M_{n}\) and \(M_{p}\) of neutron and proton transition densities and the corresponding interaction strengths at the large radil sampled by a hadronic probe when there is strong absorption. We use a folding model and a Gaussian alpha-nucleon interaction to generate the transition potentials for \({ }^{A}\) Zr(\(\left.a, a^{\prime}\right)\) reactions at 35.4 MeV. Simple transition density models mere considered, as well as a valence-plus-core polarization model, and applied to some \(2_{1}^{+}\)and \(3_{1}^{-}\)excitations for \(A=90,92\), and 96 . We show that the \(m_{n} / M_{p}\) ratios extracted can be very sensitive to the shapes assumed for the transition densities. The ratios deduced from the \({ }^{\text {A }} \mathrm{Zr}\left(a, a^{\circ}\right)\) data are smailer than those deduced recently using an implicit procedure, but still are considerably larger than \(\mathbf{W} / \mathbf{Z}\) for \(A>90\). Explicit consideration of a few valence mucleons can produce significant variations.

\footnotetext{
1. Abstract of paper submitted for publication in Muclear physics \(A\).
}
the thresholo amomaly for heavy-IOn scatterimg

> G. R. Satchler

The real parts of optical potentials deduced from heavy-ion scattering measurements become rapidly more attractive as the bombarding energy
is reduced close to the top of che Coulonb barrier. This behavior is explained as coupledchannels effect, and is related to the corresponding reduction in the absorptive pctential through a dispersion relation which expresses the consequences cf causality. Another manifestation of this "anomaly" is the striking enhancement observed for the near- and sub-barrier fusion of two heavy ions. The barrier penetration modei of fusion is examined critically in this context. It is aiso stressed that siailar anomalies could appear in the energy dependence of nonelastic scattering.
1. Nbstract of paper: p. 276 in Proceedings 11th Oaxtepec Symposivin on huclear Physics. hotas de fistca, Vot. II, ib. I (1988).

FOACINE nDDEL AMALYSIS of \(12,13 \mathrm{C}+{ }^{12} \mathrm{C} \mathrm{MD}\)
\({ }^{16} 0+{ }^{12} \mathrm{C}\) SCATTERIES AT IMTEMEDIATE
ENERGIES USIMG A DEWSITY-DEPEMDENT IWTERACTION \({ }^{1}\)

\section*{M. E. Brandan \({ }^{2}\)}
G. R. Satchler

Scattering data for \({ }^{12} \mathrm{C}+{ }^{12} \mathrm{C},{ }^{13} \mathrm{C}+{ }^{12} \mathrm{C}\), and \({ }^{16} 0+{ }^{12} \mathrm{C}\) at energies \(E / A=9\) to 120 MeV fer nucleon have been analyzed, using a folded potential based on the density- and energydependent DOw3y interaction. The renormalization required for the real potential is about unity at all energies. A unified description of these data is obtained with a relatively weakly absorbing imaginary potential. Furthermore, only this type of potential provides a successful description of the \({ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}\) data at 140 and 159 HeV which cover almost the wole angular range. Potential abiguities are discussed.

\footnotetext{
1. Abstract of paper to be published in Nuc lea: Physics A.
2. Univeritidad Mactonal Autonoma de Mexico. 01000 Mexíco, D.F., Mexico.
}

\section*{SPIM-ORBIT FORCE IN TDHF CALCULATIONS OF MEAVY-ION COLLISIONS \({ }^{1}\)}

\footnotetext{
A. S. Umar \({ }^{2}\) P.-G. Reinhard \({ }^{3}\)
M. R. Strayer K.T.R. Davies S.-J. Lee \({ }^{4}\)

We discuss the time-dependent Hartree-Fock (TOHF) equations wich inaintain independent
}
nucleon spin degrees of freedon. and which include spin-orbit interactions. The complex numerical task of including the spin-orbit force in reaction studies is described in detail. Calculations are presented wich demonstrate that the spin-orbit force produces a significant enhancement in aissipation fur both light and heavy systems. The fusion window in \({ }^{16} 0+160\) collisions disappears, due to the increased dissipation. For the \({ }^{86} \mathrm{Kr}+139\) La syste at \(E_{\text {lab }}=610 \mathrm{MeV}\). the inclusion of the spin-orbit force results in fusion for central collisions and considerably longer interaction times for deep inelastic collisions. As a consequence of the long sticking times, we observe an orbitingtype phencmenon with a large particle transfer for orbital angular momenta in the vicinity of \(110 \%\).

\footnotetext{
1. Abstract of paper subaitted for pubilication in Physical Review C.
2. Consultant from Vanderbilt University, Mashville, TM 37235.
3. Consultant from University of Erlangen, Erlangen, West Germany.
4. McGill University, Montreal. Quebec H3A 2T8, Canada.
}

\section*{DISSIPATION AD FORCES IN TINE-DEPEMDENT HARTREE-FOCR CALCULATIOWS}
\[
\begin{aligned}
& \text { P.-G. Reinhard } \quad \text { K.T.R. Davies } \\
& \text { A. S. Umar }{ }^{3} \text { H. R. Strayer } \\
& \text { S.-J. Lee }
\end{aligned}
\]

We have performed time-dependent Hartree-Fock calculations for the \({ }^{16} 0+{ }^{16} 0\) system using varfous parametrizations of the skyrme force. These calculations also include the soin-orbit part of the Skyrme force. We have refitted. with improved accuracy, the finite-range version of the Skyrme force to the ground state properties of eight nuclet. Particular emphasis is given to comparisons of calculations with and without the spin-orbit force. We see a strong sensitivity of the results to the different parametrizations of the effective interaction. The spin-orbit force introduces aignificant enhancement of the dissipation. A schematic model of heavy-ion scattering is used to investigate the origin of the observed sensitivity.

We find that the dissipation is essentially determined by the additional residual interaction.
1. Abstract of par \(\because=\) Fhys. Rev. C 37. 1026 (i988).
2. Consultant from thiversicät Erlangen. D-8520 Erlangen, West Cermany.
3. Consultant from Vanderbilt University, Mashyille. TX 37235.
4. McGill .niversity, Montreal. Quebec H3A 2TB. Canada.

\section*{FURTMER CPTICAL MDOEL STUDIES OF 160 SCATTERIMS AT E/A \(=94\) Heyl}

\section*{A. M. Kobos \({ }^{2}\) M. E. 3randan \({ }^{3}\) G. R. Satchler}

We present the results of further cotical model analyses of data for the scattering of \({ }^{160}\) at \(E / A=94\) MeV. In particular, we explored the use of real potential shapes more general than the Moods-Saxon or folded ones. Evidence was found that fits to the \({ }^{160}+12 \mathrm{C}\) data were se 7 sifive to the real potential even at small radif, and involved potentials with relatively weak absorption (S-wave S-matrix elements with \(\left.\left|S_{0}\right| * 0.1\right\rangle\). Significant modifications to the DOM3y folded potential mere required for the best fits to these data. The optimm potentials are represented well by a conventional HoodsSaxon potential with a real depth of 80 MeV . The more general shapes did not improve the agreement with the data for heavier targets.

\footnotetext{
1. Abstract of paper to be published in Nuclear Physics A.
2. Myrias Research Corporation, Edmonton, Alberta T5K 2P7, Canada.
3. Universidad Macional Autonoma de Mexico, 01000 Mexico, D.F. , Mexico.

\section*{FURTHER STUDIES OF DENSITY-DEPENDENT INTERACTIONS FOR THE EXCITATION OF COLLECTIVE STATES \({ }^{\text {I }}\)}
\[
\text { M. El-Azab Farid }{ }^{2} \text { G. R, Satchler }
\]
}

The density-dependent DOM3Y effective nucleon-nucleon interaction was used in a double-folding model with macroscopic transition densities to explore further density-dependent effects on the inelastic scattering of aparticies and protons. In particular, we investigate whether transition densities with a node
near the muclear surface, such as occurs for the giant monopole (breathing mode) resonance, are particularly sensitive to density dependence in the interaction. We also study the imposition of a consistency condition on the use of density dependence for inelastic scattering. In both situations, the effects are soall (\(\leq 20 \%\)) for oparticles but large for protors. The consistency rondition is discussed further in an appendix.

\footnotetext{
1. Abstract of paper: Mucl. Phys. M81, 542 (1988).
2. Teachers Training College, Salalah, Sultanate of Oman.
}

\section*{nUCLEAR STRUCTURE}

\section*{REFLECTIOM-ASTHETRIC DOTOR DODEL of 000-A ~ 219-229 mClEI}
\[
\text { 6. A. Leander }{ }^{2} \text { Y. S. Chen }{ }^{3}
\]

The low-energy spectroscopy of odd-A nuclei in the mass region A - 219-229 is modeled by coupling states of a deformed shell model including octupole deformation to a reflectionasymmetric rotor core. Theory and experiment are compared for the nuclei in wich data are available: \(219,221,223,225 \mathrm{Rn}\). 221, 223, 225, 227Fr, \(219,221,223,225,227 \mathrm{Ra}\), 213,223,225,227,229AC, 221,223,225,227,229Th, and \({ }^{229} 9\). Overall agreement requires an octupole deformation \(\mathbf{8}_{3} \sim \mathbf{0 . 1}\). The results throughout the region are synthesized to evaluate the model.
1. Abstract of paper: Phys. Rev. C 37, 2744 (1988).
2. Deceased.
3. Institute of Atomic Energy. Beijing, China.

> MCLEAR STRUCTUAE OF LIENT THALLIUM ISOTOPES AS DEDUCED FRON LASEA SPECTROSCOPY ON A FAST ATON BEA?
\begin{tabular}{ll}
J. A. Bounds \({ }^{2}\) & G. A. Leander \({ }^{5}\) \\
C. R. Binghan & \\
H. K. Carter & R. L. Mlekodaj \\
H. M. Fairbank, Jr.
\end{tabular}

The neutron-deficient isotopes 109-194T1 have been studied using collinear fast atom beam
laser spectroscopy with mass-separated beans of \(7 \times 10^{\circ}\) to \(4 \times 10^{5}\) ators per second. By laser excitation of the 535-na atomic transitions of atoms in the bean, the \(6 s^{2} 7 s^{2} S_{1 / 2}\) and \(6 s^{2} 6 p^{2} P_{3 / 2}\) hyperfine structures were measured. as were the isotcpe shifts of the 535-nm transitions. From these, the magnetic dipole moments. spectroscopic quadrupole moments, and isotopic changes in mean-square charge radii were deduced. A large isoner shift in \({ }^{193} \mathrm{Tl}\) was observed, implying a larger deformation in the 9/2- isomer thar in the \(1 / 2^{+}\)ground state. The \(189,151,1931^{\text {m }}\) isotopes have deformations that inr.rease as the mass decreases. A deformed shell model calculation indicates that this inCrease in deformation can account for the drop in eaergy of the 9/2- bandhead in these isotopes. An increase in nestron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the spacing of the levels in the 9/2- strongcoupled band. Results for \({ }^{194}\) Tim differ from previously published values, but are consistent with the \(190,192 \mathrm{~T} 7^{\text {min }}\) data.
1. Mbstract of paper: Phys. Rev. C 36, 2560 (1987).
2. Los Alamos mational Laboratory, Los Alanos. M 87545.
3. Adjunct staff member from University of Tennessee, Knoxville, TM 37996-1200.
4. Unison, Oak Ridge Associated Universities.
5. Deceased.
6. Environmental and Health Protection Division, ORML.
7. Oak Ridge Associated Universities.
8. Colorado State University, Fort Collins, co 80523.

SMELL MODEL STHUCTURE OF VAAST STATES IM \(N\) - 50-52 150T0OES MITH \(Z=86-98\)

\section*{J. B. McGrory}

A region where she sptrerical shell model has been applied with considerable success is the mass 89-94 region. (See Ref. 1 for a summary.) Assuming a \({ }^{88}\) Sr core and an active valence space with protors in the \(D_{1 / 2,91 / 2}\) orbits, and neutrons in the \(d_{s / 2,51 / 2}\) orbits, the low-lying spectra of nuclei near the closed shel! have been accurately described in the shell model.

In recent years, refinement of analysis of heavy-ion-induced reactions have greatly expanded the body of dati available in nuclei in this mass region. In particular, the nuclei with \(M=50\) (no valence neutrons in this model) from \({ }^{\text {89 }}\) Y - \({ }^{94} \mathrm{Ru}\) are very accurately described by (Pl/2, \(_{1 / 2 / 2}\)) configurations, i.e., they are very spherical. On the other hand, there is evidence of a clear transition to collective rotational behavior in the Zr isotopes (two valence protons) near \(A=100\). This region then presents a possible region where such a transition might be described quantitatively in a spherical shell modal. However, such a description must involve. an expanded shell model space, which, at a minimum, Eust involve the \(97 / 2\) orbit to take advantage of the strong deformation inducing n-p interaction between the 99,2 protion and the \(97 / 2\) neutron. The interactions involving the \(97 / 2\) neutron are not known. They should be clearly established if one studied the \(M=51,52\) isotopes in this mass region. As a ifirst step of a study of this region, an investigation of the vnown \(\mathrm{W}=50,51,52\) levels ir: muclei with \(2=38\) 48 has been carried out. The two-body matrix elements in the five-orbit space, where the \(97 / 2\) ortit is added to the model space described above, are treated as parameters. The p-p interaction is fixed by the \(M=50\) levels. The \(n-p\) interaction is fixed by the \(N=51\) isotopes. Unfortunately, almost all the levels in the nuclei treated are quite mell fit without the \(97 / 2\) orbit. Two levels can be fit only with the inclusion of the \(97 / 2\) orbit, and these levels are used to fit the \(\mathrm{g}_{7 / 2}\) single-particle energy and the center-of-gravity of the \(g_{9 / 2-97 / 2} \mathrm{n}-\mathrm{p}\) interaction. The \(p-p\) and \(p-n\) matrix elements were left fixed by the \(N=50,51\) results, and we are developing a complete \(n-n\) interaction from the \(M=52\) isotopes from \({ }^{909} \mathrm{Sr}\) to \({ }^{100} \mathrm{Cd}\). Here again, the yrast levels are generally the only ones with firm spin assignments, and most of these are well fit without the \(97 / 2\) orbit. There is a consistent problew with the yrast \(J=6\) levels in the heavier \(M=52\) isotopes. This is the highest spin available in the (\(g_{7 / 2}\)) configuration, and it appears that these levels
and a few other "troublesome" levels may provide a first fix on the \(n-n\) interaction for the \(97 / 2\) ortit. Examples of typical \(M=51,52\) spectra are shom in Fig. 5.5. There the calculated and oisserved spectra of low-lying states in the \(W=\) 51 nucleus \({ }^{90} 9\) are shom, as are the spectra of the \(N=52\) nuclei \({ }^{97}{ }^{\text {R }}\) and \({ }^{98}\) Pd. The effects of the \(97 / 2\) orbit are treated in \({ }^{90} \mathbf{W b}\), wile the \(N=52\) results do not inclide the \(97 / 2\) orbit. The qualitative disagreement of the \(J=6^{+}\)state in \({ }^{98} \mathrm{Pd}\) is seen to a similar extent in \({ }^{96} \mathrm{Ru}\), and much more distiactly in \({ }^{100} \mathrm{Cd}\). In \({ }^{97} \mathrm{P}\) 解 the positions of the calculated \(19 / 2,23 / 2,27 / 2\), and \(31 / 2\) (not shown) states are distinctly too high. It is oossible that these defects will be significantly reduced in the expanded space.
1. J. B. McGrory and B. H. Wildenthal, Ann. Rev. Mucl. Part. Sci. 30, 323 :1980).

\section*{ EVEN-EVEM MOCLEI \({ }^{1}\)}
S. Raman C. W. Mestor, Jr. \({ }^{2}\)
\[
\text { K. H. Bhatt }{ }^{3}
\]

We have completed a compilation of experimental results for the electric quadrupole transition probability \(\mathrm{B}(\mathrm{E} 2)+\) between the \(\mathrm{O}^{+}\)ground state and the first \(2^{+}\)state in even-even nuclei. The adopted \(B(E 2)+\) values have been \(\mathbf{e m}\) ployed to test the various systematic, empirical, and theoretical relationships proposed by several authors (Grodzins, Bohr and Mottelson, Wang et al., Ross and Bhaduri, Patnaik et al.. Hamamoto, Casten, Moller and Kix, and Kumar) on a global, local, or regional basis. These systematics offer methods for making reasonable predictions of unmeasured \(\mathbf{B}(E 2)\) values. For nuclei away from closed shells, the Su(3) limit of the intermediate boson approximation implies that the \(B(E 2)+\) values are proportional to (\(e_{D} M_{D}\) \(\left.+e_{n} N_{n}\right)^{2}\), where \(e_{p}\left(e_{n}\right)\) is the proton(neutron) effective charge and \(H_{p}\left({ }_{n}\right)\) refers to the number of valence protons(neutrons). This proportionality is consistent with the observed behavior of \(B(E 2)\) t us \(N_{p} N_{n}\). For deformed nuclei and the actinides, the \(B(E 2)\) values calculated in a schematic single-particie "SU(3)" simulation or

Fig. 5.5. Observed and calculated spectre of Yrast states in \(M=51.52\) maclei. For the three nuclef, the observed spectra is to the left, and the calculated spectra to the right. In all spectra. positive parity states are indicated by solid lines, and nepative parity states by dotted lines. The spins indicated are \(2^{*} \mathrm{~J}\). Spin assignments for negative states are at the left end of the legend, wille those for positive parity states are at the right end of the legend.
large single-j simulation of major shells successfully reproduce not only the empirical variation of the \(8(E 2)+\) values but also the observed saturation of these values when plo:ted against \(N_{D} n_{n}\).
1. Abstract of pager: Phys. Rev. C 37, 805 (1988).
2. Computing and Telecomminications Division.
3. Western Kentucky University, Bowling Green, KY 42101.

FIMITE RATICLE MHEER EFFECTS AN THE RELATIONSHIP OF TME FERMION DYMNICAL SVEETAY MDOEL UITH THE WILSSAN mDEL!
\[
\begin{array}{ll}
\text { H. W W } & \text { D. H. Feng } \\
\text { C. L. } W^{3} & \text { M. M. Guidry }
\end{array}
\]

The spherical shell model is the fundamental microscopic model of nuclet. However. bacause
of the lack of obvious truncation schemes to reduce the huge matrices encountered in muclet where collective behavior is dominant, the shell model approach can, at best, be considered only as the underpinning; lietle detailed informition can be extracted from it for deforned nuclef. However, the recently proposed fermion dynumical symmetry model (FDSM) is based on a symmetrydictated truncation of the spherical shell model. It allows truncated shell model calculations for strongly deformed nuclet.

We have used the FOSH to study the rotational levels of an add-mass deformed nucleus with the unpaired particle in an sinomal parity level. By using atrong coupling basis, we have demonstrated an analyticsl correspondence between the FDSM (which is an approximation to the spherical shell model) and the deformed shell model
(Milsson model). In particular, we have shom that the FDSM accounts for the ground-state spins of odd-anss, deformed nuclei. By considering the geometrical particle-rotor model as an infinite particle-number approximation to the FDSN, we have suggested aicroscopic origin for the Coriolis attenution problem. This effect originates in the finite numer of particles for the fiysical quantu rotor. According to the FDSi, the Corfolis attemuation should depend in a definite may on the orbital of the unpaired particle as well as the number of particles in the valence shells. In the strong coupling region the same finite particle-number effects my be viewed as providing a renormalization of the monent of inertia and the deformation.
1. Sumary of paper: Phys. Rev. C 37. 1739 (1988).
2. Drexel University, Philadelphia, PA 19104.
3. Joint Institute for Heavy Ion Research. Permanent address: Jilin University, Changchun. People's lepublic of China.
4. Adjunct staff member from University of Tennessee, Knoxville, Th 37996-1200.

\section*{THE MILEAR GBATE MIDONI}
C. L. \(\mathrm{Mr}^{2}\)
D. H. Feng \({ }^{3}\)
H. M. Zhang \(^{3}\)
M. H. Culdry"
L. L. Riedingert

A long-standing problew in low-energy mucleir structure is an understanding of the marron window for the occurrence of oblate geometry, especially for the rare earths. Although there are several approaches unfch can reproduce the general trends in deforation, 5 there is no simple and convincing microscopic explanation as to why nature prefers prolateness over oblateness. In this paper we show that a narrow oblate window occurs naturally in the fermion dynamical symmetry model (FDSM). 6 The suppressed importance of oblate geometry in the FDSM can be deduced immediately without mumerical calculations, but in Fig. 5.6 we show simple numerical FDSN calculation of rare-earth shapes. The numerical

Fin. 5.6. The narrow oblate window for rare-eaith nuclel.
calculations show clearly that the window for oblate geometry in the rare-earth region is very narrow, as observed experimentally. He find that the narrowness of the FDSM oblate window is fundimental, and originates in the FDSM separstion of normal and abormal parity orbitals, and in the FDSM dymanical Pauli effect. 6 it can be predicted without calculation; the mmerical results just provide quantitative details. Thus, the FDSM gives at once a transparent reason for the subsidiary role of oblate rare-earth geometry, and a microscopic formulation in which the geometry can be calculated quantitatively.
1. Abstract of paper submitted to Physics Letters 8 .
2. Joint Institute for Heavy Ion Research. Permanent address: Jilin University, Changchun, Peaple's Republic of China.
3. Drexel University, Philadelphia, PA 19104.
4. Adjunct staff member from University of Tennessee, Knoxville, TII 37996-1200.
5. R. Bengtsson et al.. Phys. Lett. 1830, 1 (1987); K. Kumar and M. Baranger, Mucl. Phys. A122, 241 (1968); P. Moller and J. R. Mix. At. Data Mucl. Data Tables 26, 165 (1981).
6. C. L. mu et al., Phys. Lett. 1688, 313 (1986): Phys. Rev. C 36,1157 (1987); J. Q. Chen, D. H. Feng, and C. L. Hu, Phys. Rev. C 34, 2269 (1986).

\section*{DTMAICAL PALL EFFECTS MD THE SATURATIOM OF MUCLEAR COLLECTIVITVI}
D. H. Feng \({ }^{2}\)
M. W. Guidry \({ }^{6}\)
C. L. \(\mathrm{H}^{3}\)
2. P. Lis

Recently, a symmetry-dictated truncation scheme for the spherical shell model called the fermion dynamical symmetry model (FDSM) was proposed by 1 (tut al.6.7 The FDSM links the concept of dynamical symmetry to the underlying shell structure by assuming that low-energy collective modes are dominated by coherent \(S(L=0)\) and \(D(L=2)\) fermion pairs.

An important feature of the FDSM is that there exists dynamical Pauli effect. A dynamical Pauli effect is defined as a restriction on allowed representations brought about by requirements of the Pauli principle in a particular fermion dynamical symmetry more stringent than those imposed by the particle-hole shell symmetry.

The dynimical Pauli effects predicted by the FDSN are confirwed by experimental B(E2) systematics. It is demonstrated that the saturation of E2 collectivity for deformed nuclei can be well described by a minimal implementation of the FDSM, and that it is a consequence of these Pauiti effects. On the other hand, the minimal implementation of the interacting boson model
(IBA) fails to produce the E2 saturation behavior. The FOSN B(E2) calculations are also superior to the geometrical model (EN) calculations of Ref. 8. However, the \(\mathbf{G M}\) results (unlike the I8N) show the correct position of the onset of saturation and can be brought into better agreement by a simple rescaling of radius parameters. The FOSM calculations presented here are comparable to the best large-scale mumerical calculations in accuracy and far exceed them in transparency; yet they are an amalytical approximation to the spherical shell model, requiring only three adjustable parameters for all heavy nuclei.

\footnotetext{
1. Abstract of paper: Phys. Lett. 2058, 156 (1988).
2. Drexel University, Philadelphia, PA 19104.
3. Joint Institute for Heavy Ion Research. Permanent address: Jilin University, Changchun. People's Republic of China.
4. Adjunct staff member from University of Tennessee, Knoxville, TH 37996-1200.
5. University of Tennessee, Knoxville, TM 37996-1200.
6. C.-L. Hu et al., Phys. Lett. 8168,313 (1986).
7. C.-L. Wet al.. Phys, Rev. C 36, 1157 (1987).
8. P. Moller and J. R. Mix, At. Data Mencl. Data Tables 25,165 (1981).
}

\section*{PHYSICS Of \(\left(e^{+}, e^{-}\right)\)SYSTEMS}

MICRO-POLYELECTRONS - TME COMBEMSATIOM OF (\(e^{+} e^{-}\)) DUE TO MOMCENTRAL, SNORT-RAME ELECTROMCMETIC INTERACTIOWS \({ }^{1}\)

Cheuk-Yin Hong
The experimental data from heavy-ion reactions with a very large combined charge indicates the possible existence of a neutral object at an energy of 1.6-1.8 MeV.2,3 Without introducing new forces, we suggested that such an
object mintained its stability through the electromagnetic interaction of its constituents of electron(s) and positron(s).

Previously, we studied a model (magnetic moment)-(charge current) interaction between in electron and a positron in a Dirac equation and found, for the \(J^{P C}=0^{++}\)state, an effective potential pocket at the distance about 1 fim, which is deep enough to hold a resonance separated from the ordinary positronivis state by a centrifugal barrier." We have recently initiated a more rigorous treatment of the relativistic (\(e^{t} e^{-}\)) two-body bound-state proble in terms of the relativistic constraint dynamics.5.6 Inen we morked out the effective interaction \(V_{\text {eff }}\), we found that, for the \(0^{+t}\) state in question. the moncentral spifi-orbit and tensor force interactions are attractive and strong enough to overwela the centrifugal barrrier at short distances to lead to the presence of barrier separating the long-distance region from the short-distance region. In terns of the radial separation in the center-of-mass system, the noncentral interactions; which vary as \(1 / r^{3}\) at large distances, now behave in this relativistic treatment as \(1 / \mathrm{r}^{2}\) at short distances. For the \(0^{+t}\) state, the total effective interaction, including the centrifugsi \(\ell(\&+1) / r^{2}\) term, behaves as \(\left(-1 / 4-s^{2}\right) / r^{2}\) at short distances, were \(a\) is the fine-st ructure constant. The (\(e^{+} e^{-}\)) twobody system at short distances is therefore supercritical in the \(0^{++}\)state. 6

The supercritical behavior of the (\(e^{+} e^{-}\)) system implies that in the \(0^{++}\)state there wll be the production of (\(e^{+} e^{-}\)) pairs, wich we can take to be coupled to the \(0^{++}\)state, so that there are no met quantum number changes in peir production. The pairs created will act back repulsively on the particles producing the pairs until the attractive interaction is reduced to prevent the collapse of the particles to the center. A condensation of the (\(e^{+} e^{-}\)) pairs will take place to lead to a micro-polyelectron system.

The supercritical sehavior of the (\(e^{+} e^{-}\)) system in this \(0^{+4}\) state can be described in terms
of an imaginary eass and a repulsive selfinteraction. There are then two sinima of the potential of the scalar (\(e^{+} e^{-}\)) field. Oscillation about these two miniaa will give rise to approximately equally spaced energy levels that are doubly degenerate. The double degeneracy is split by the tunneling between the minim. The splittings are expected to be greater for the higher-lying states than for the lower-lying states. Thus. condensation of \(e^{+} e^{-}\)will show approximately equally spaced levels which are nearly doubly degenerate. Experimental data of the positions of the position lines do indeed exhibit approximately such a feature.
1. Sumary of paper to be published in the proceedings of the Fifth International Conference on Clustering Aspects in Duclear and Subnuclear Systems, Kyoto, Japan, July 25-29. 1988. and the Intermational Conference on Medium- and High-Energy Duclear Physics, Taipei. Taiwan, May 23-27. 1988.
2. T. Cowal, and J. Greenberg. p. 111 in Physics of Strong Fields (Proceedings, WTO International advanced Courses on Physics of Strong Fields, Maratea, Italy, dune 1986). Plenw Publishing Corp., New York, 1987.
3. P. Kienle, Am. Rev. Muci. Part. Sci. 36. 605 (1986).
4. C. Y. Mong and R. L. Becker. Phys. Lett. 182, 251 (1986).
5. H. W. Crater and P. van Alstine. Phys. Rev. Lett. 53, 1577 (1984).
6. H. H. Crater, C. Y. Mong, R. L. Becker, and P. van Alstine, submitted for publication in Physical Review D.

\section*{INTERACTION OF A COMOSITE PARTICLE IM A STROMS COLOM FIELD \({ }^{3}\)}

Cheuk-Yin Mong
We study the responses of composite particle to atrong extcrnal coulamb field. We find a new type of romposite effect which arises from the term quadratic in the Coulomb potential. For a charged composite particle, it modifies the effective Coulomb interaction, and for a neutial particle with charged constituents, it lesds to an attractive, central interaction with a medium range. If the constituents are fermions, there are additional effects due to the spinor degrees of freedom. These effects may
lead to the spontaneous production of composite. (\(e^{+} e^{-}\)) particles in a strong Coulomb field.
1. Sumary of paper to be published in the proceedings of the International conference on Medium- and High-Energy Muclear Physics, Taipei, Taiman, May 23-27, 1988, and in Progress of Theoretical Physirs 81 (1989), in press.

\section*{procress on a momperturantive, covariant TREATMENT OF MEUTRAL LEPTOM-MTILEPTOM STSTENS}

\author{
R. L. Becker \\ H. M. Crater \({ }^{1}\) \\ Cheuk-Yin Mong \\ P. van Alstine \({ }^{2}\)
}

Motivated by the desire to better understand the spectroscopy of quark-antiquark systers \({ }^{3}\) and to study the possibility of electrodynamic resonances in lepton-antilepton systems," we are exploring a nonperturbative, relativistic approach to two-fermion systems Dased on Ofrac's "constraint mechanics." The method yields two two. jarticle Dirac equations which must be compatible. The constraints arising from compatibility require that the mutual interaction, referred to as the quasipotential, depends an the re?ative coordinate four-vector only through its space-like part, \(x_{1}\), wich is transverse to the total four momentum. In a center-of-mass frame, \(x_{1}\) reduces to the displacement \(\vec{r}\) of the two particles. Consequently, the relative time can be elininated from the equations, thereby removing a difficu,ty which occurs when employing directly the sethe-Salpeter (8S) equation. Moreover, the constraint dynamical wave function, P, has been shown \({ }^{5}\) to be a transform of the 85 one, \(x\). The quasipotential is an integral, over three four-vectors and a longitudinal coordinate, of the kernel of the BS equation times a factor involving the kernel of the inverse transform, giving \(x\) in terms of \%. Because this miltiple integral would be extremely difficult to evaluate except with drastic approximations, we have proceeded, instead, by expanding the quastpotential in terms of Dirac operators multiplied by invartant functions, and restricting the invariant functions by comparison with quantum electrodynamical (OED) perturbation theory. The constraint potential can be
derived \({ }^{3}\) perturbatively from the field theoretic scattering amplitude by way of a form of the Todorov quasipotential equation.

For the case of positronium (Ps), we reportel last year \({ }^{6}\) that with the invariant function for the one-photon-exchange quasipotent:al chosen' as
\[
\begin{equation*}
\mathscr{S}^{(1)}(r)=e_{1} e_{2} / r, r=\left|x_{1}\right| . \tag{1}
\end{equation*}
\]
we succeeded in reducing the 16 -component equations to an equation of Schrödinger-Pauli form for the positive energy, four-component piece, \({ }^{7}+{ }^{-}\)All teres in the quasipotential could be treated nonperturbatively in all angularmomentum eigenstates except for the \({ }^{3} p_{0}\) states for wich the spin-orbit term is strongest. We verified that the ground-state "hyperfine" splitting, \(\left.E i^{3} S_{1}\right)-E\left({ }^{1} S_{0}\right)\), agreed with perturbative GED to order \(\mathrm{mc}^{2} \mathrm{a}^{4}\), for which only relativistic kinematics and one-photon-exchange contribute. We conjectured that virtual aminilation wight remove the overcriticality in thz \({ }^{3} p_{0}\) state.

We have now derived the reduced equation for the unequal mass rase, wich includes muonium (\(u^{+} e^{-}\)) and hydrogen (with a point proton), and have found that the overcriticality persists. Thus, virtual annibilation could not be a universal cure. We then re-examined the choice of the invariant function, \((r)\). The spinindependent part of the quasipotential is denoted by "S.I." Agreement with low-order QED requires that
\[
\begin{align*}
\text { S.1. } & \equiv 2 e_{w-\alpha^{2}}-2 \varepsilon_{w}(1)-\omega^{(1)^{2}} \\
& \left.+0(1)^{3}\right), r \rightarrow \infty \tag{2}
\end{align*}
\]
where
\[
c_{w}=\left(w^{2}-m_{1}^{2}-m_{2}^{2}\right) / 2 w_{0}
\]
with \(w\) the total energy in the \(C M\) frame. This rules out a term in, a proportional to \(\mathrm{ra}^{2}\). Moreover, the requirement that "S.l, be no more singular at \(r=0\) than \(r^{-2}\) rules out any polynomial in \(r^{-1}\). A further restriction arises from consideration of an invariant function G(a) which enters linearly into the Maxwell fourvector potentials \(A_{1}^{\mu}, 1=1,2\), and which is depined in terms of at by
\[
\begin{equation*}
G^{2}(\alpha)=[1-2 \cdot(r) / v]^{-1} \tag{3}
\end{equation*}
\]

With the original choice for 6 is singular at \(r_{s}=2 a / v\) for the case of two particles with charges of the same sign, e.g., e-te-. For \(-2_{e}, r_{s}\) equals the classical radius of the electron, \(r_{e}-2.8 \mathrm{f}\), which is in the region where the spin-dependent interactions are domimant for \(e^{+} e^{-}\)in our equations. To avoid a singularity at some \(r_{s}>0\), we must have \(\ll\) \(w / 2\) for all \(r_{\text {, }}\) when \(e_{1}=e_{2}\). For example, one phenomenological form giving a masingular 6 is
\[
\begin{gather*}
\alpha(r)=\sim^{(1)}(r)\left[1+c\left(2 f^{(1)}(r) / m\right)^{2}\right]^{-1}, \tag{4}\\
c>1 / 4
\end{gather*}
\]
which also satisfies Eq. (2). For this choice \(|-1|_{\text {max }}=\left(2 c^{1 / 2}\right)^{-1} w / 2\) at \(r_{x}=\left(2 c^{1 / 2} m / w\right) r_{e}\) For \(\mathrm{e}^{-} \mathrm{e}^{-}\)or \(\mathrm{e}^{+} \mathrm{e}^{+} 6\) reaches its maximin value at \(r_{x}\) and approaches 1, rather than 0 at \(r=0\). An important task, on wich we are now working, is to pin down the actual \(f(r)-{ }^{(1)}(r)\) by examining Migher-order terms in classical and quantum electrodynamics.

For positronium, virtual annihilation into a single photon is know to contribute a shift of the order man to the energy of the ortho (\({ }^{3} S_{1}\)) state, wich has odd cilarge parity, \(f=(-)^{L+S}\), but not to contribute to the even charge-parity states, e.g., the para ground state (\({ }^{1} S_{0}\)) and \({ }^{3} p_{0}\). We needed to verify that the constraint formilism respects the charge-parity argument. We did so by adapting a proof wich we constructed for the bethe-Salpeter formalism. The Bethe-Salpeter mave function can be expressed as a \(4 \times 4\) mitrix, \(x\). In the \(C N\) system with the relative momentum, \(\dot{p}\), restricted to a heaisphere and helicities \(h_{1}\) and \(h_{2}\), we can expand \(x\) in Dirac plane-wave spinors
\[
\begin{align*}
x(\vec{p}) & =\sum_{n_{1}, h_{2}}\left[a\left(\dot{p}, h_{1}, h_{2}\right) \cup\left(\vec{p}, h_{1}\right) \bar{v}\left(-\vec{p}, h_{2}\right)\right. \\
& \left.+a\left(-\dot{p}, h_{1}, n_{2}\right) \cup\left(-\dot{p}, n_{1}\right) \bar{v}\left(\vec{p}, n_{2}\right)\right] \tag{5}
\end{align*}
\]
with
\[
\begin{equation*}
a\left(-\vec{p}, n_{2}, n_{1}\right)=-a\left(\vec{p}, n_{1}, n_{2}\right) . \tag{6}
\end{equation*}
\]

The vertex for anninilation into a single photon can be expressed as
\[
\gamma_{u}(p)=\operatorname{Trace}\left[\gamma_{u} x(\vec{p})\right]=\operatorname{Tr}\left[C_{u} C^{-1} C_{x}(\vec{p}) C^{-1}\right](7)
\]
where \(C\) is the charge conjugation atrix. But
\[
C r_{\mu} C^{-1}=-r_{\mu}{ }^{\mathbf{T}} \text {. }
\]
and we can show
\[
C_{x}(\vec{p}) C^{-1}=c x^{T}(\vec{p})
\]
where \(X^{\top}\) is the transpose of \(X\). Therefore \(Y_{u}=\) \(-\mathbb{S Y} \mathrm{in}^{2}\), wich vanishes for \(\mathcal{C}=+1\).

The quasipotential in the constraint formalism is expressed in a coupling scheme in wich one particle is at one vertex and the other particle is at the second vertex, wereas the virtual aminilation diagran has both particles at both vertices. This change of coupling requires a Fierz rearrangement in which the vector particle-antiparticle interaction becomes a sum of virtual particle exchanges for which the vertices have various tensorial characters (scalar, pseudoscalar, vector, and axial vector). Compatibility had been morked out previously for a sum of scalar and vector interactions. \({ }^{7}\) After much mork, it has now been extended to include the other types. \({ }^{\text {B }}\) A nomperturbative calculation, including virtual annihilation for the ortho state, is being studied. A number of technical cifficulties remain. Further along, we hope to treat the virtual annilitiation into two photons for application to the \({ }^{1} \mathrm{~s}\) and \({ }^{3 p}\) states.

\footnotetext{
1. Consultant from University of Tennessee Space Institute, Tullahoma, in 37388.
2. Pacific Sierra Research Corporation (Eaton), Los Angeles, AL 90025.
3. H. W. Crater and P. van Alstine, Phys. Rev. 0 37, 1982 (1988).
C. C. Y. Mong and R. L. Becker, Phys. Lett. 56. 44 (1986).
5. H. Suzdjian. Phys. Lett. 1568, 381 (1982).
6. R. L. Becker, C. Y. Mong, H. W. Crater. and P. van Alstine, p. 390 in Electronic and Atomic Collisions, Abstracts (Proceedings, XV International Conference on the Physics of Electron and Atomic Collisions, Brighton. England, July 1987.)
7. H. W. Crater and \%, van Alstine, Phys. Rev. D 36, 3007 (1987).
8. H. W. Crater ot al., in Proceedings of Workshop on Relatiststic Muclear Many-Body Physics, Ohio State Univer'fity, June 1988, to be pubilished.
}

\section*{A movel (e+e-) resomance behavior fon a highly EMERGY-DEPEMDENT, EFFECTIVE IMTERACTIOM}
Cheuk-Yin Mong
H. W. Crater \({ }^{1}\)
R. L. Gecker
P. var! Alstine \({ }^{2}\)

Previously, we investigated the nonperturbative properties of the (\(e^{+} e^{-}\)) system under their mutual electromagnetic interaction with a twobody Dirac equation derived from constraint dynamics. \({ }^{3}\) The vector interaction in the quasipotential of the equation was obtained by matching it to the one-phcion exchange potential in the perturbative linit. For the \(0^{+4}\left({ }^{3} p_{0}\right)\) state of special interest. the interaction at short distances is supercritical. In the course of our investigation of the effect of the annihilation potential, we found that a one-photon annihilation potential can be represented by a combination of scalar, vector, pseudovector, and pseudoscalar interactions through the fierz transformation. An interesting phenomenological study of high-order diagrams unrelated to the amihilation diagram is to include some of these interactions in the relativistic constraiit dynamics. Because the potential becomes mach wore complicated when \(m\) include the time-like component of the pseudovector interaction, we examine tine case of a vector electromagnetic interaction, in conjunction with only the addition of scalar, vector, pseudoscalar, and the space-like part of the pseudovector interaction. For these additional interactions, the requirement of the compatibility of constraint dyramics leads to a pair of Dirac equations of the form
\[
\begin{aligned}
& S_{i} \phi=\left[6 \theta_{i} p+\varepsilon_{i} \theta_{i} p+H_{i} \theta_{s i}+\Gamma_{i} \theta_{i} \dot{p}+M_{i} \theta_{s i}\right. \\
& +G\left(i \theta_{i} \cdot \partial \ln G \theta_{1 \perp} \cdot \theta_{2 L}+i \theta_{i} \cdot 2 Z \theta_{1 L} \cdot \theta_{21}\right. \\
& +i \theta_{i}-\alpha+i \theta_{2} \cdot 2 \theta_{i} p \theta_{i} p
\end{aligned}
\]
\[
\begin{aligned}
& \text { where }
\end{aligned}
\]
\(\theta_{1}=1 \sqrt{\frac{h}{2}} r_{5} r^{\mu}, \theta_{s}=1 \sqrt{\frac{h}{2}} r_{5}, D=\left(p_{1}-p_{2}\right) / 2\)
is the relative monentum, \(P=P_{1}+P_{2}\) is the total momentum. The term \(\theta_{1} \cdot \operatorname{calnG\theta _{1\downarrow }}{ }_{21}\) is due to the vector one-photon exchange fnteraction
which was considered previously; \({ }^{3} \mathbf{Z}\) is from the space-like pseudovector interaction; \(C\) is from the pseudoscalar interaction; \(J\) is from the time-like component of the additional vector interaction; and \(L\) is from the scalar interaction. The terms \(E_{i}, M_{i}\), and \(T_{i}\) are related to the other basic functions.

We include these additional interaction terms by using a Yukawa form of the potential with an \(e^{-w r / \sqrt{2} / r}\) energy-dependent iange \(\sqrt{2} \mathrm{~h} / \mathrm{w}_{\text {. }}\), where \(w\) is the total energy of the (\(e^{+} e^{-}\)) system with their strengths fixed to match the perturbative results for the anninilation potential for the \({ }^{3} S_{1}\) state. We found that the effective potential for the \(0^{++}\left({ }^{3} p_{0}\right)\) state is no longer supercritical. There is now a potential pocket at the dis'ance of \(\sim 0.2-2\) fin. The attractive part of thr: potential arises mainly from the pseudoscaldr interaction. The interaction is very ener yy-dependent (Fig. 5.7). The integration of the Schrödinger-like equation derived from Eq.

Fig. 5.7. The radial dependence of the effective potential \(v\) for the \(0^{++}\)state. The sciid curve is the effective potential for the cigenstate at \(E=1.300 \mathrm{MeV}\), and the dashed curve is the effective potential for the eigenstate at \(E=1.509 \mathrm{MeV}\). Note the scrong dependence of the potential on the energy.
(1) gives two resonances at \(E=1.306 \mathrm{HeV}\) and \(E=1.609 \mathrm{meV}\). Tine wave functions for these two resonances have the same interior nodal structure (Fig. 5.8). In order to verify the correctness of the calculations, we have separately

Fig. 5.8. Unnormalized wavefunction in the short-distance region obtained with the potentials of Fig. 5.7. The solid curve is for \(E=\) 1.306 MeV, and the dashed curve is for \(E=1.609\) MeV. The two wave finctions have the same nodal structure.
calculated the phase shift as function of energy using the phase equation." We found that the phase shifts \(\delta(E)\) make a sudden change at these energies and they cross the value of \(1 / 6\) ut \(E=1.304076 \mathrm{MeV}\) and \(E=1.609315 \mathrm{MeV}\) (Ftgs. 5.4 and 5.10), confirining the results of eigenvalue solutions obtained by very different method. From the energy variation of the phase shifts, we obtain width of \(r=0.125 \mathrm{keV}\) for the E \(=1.609315 \mathrm{MeV}\) state and a width \(\mathrm{r}=45.3\) eV for the \(E=1.304076\) MeV state.

It is of interest to note a few novel features of the results here. First, strong energy dependence of the effective potential can lead to resonances with similar interior nodal structure, in contrast to energy-independent potentials where the nodal structure of the different -igenstates are different. Second, potental pockets in the (\(e^{+} e^{-}\)) system may lead to sharp

Fig. 5.9. The phase shift function \(\delta(E)\) as a function of energy in the meighborhood of \(E=\) 1.30476 HeV. The phase function \(\delta(E)\) is equal to \(\mathrm{m} / 2\) at \(\mathrm{E}=1.30476 \mathrm{MeV}\).

Fig. 5.10. The phase shift function \(6(E)\) as a function of energy in the region of \(E\) 1.609315 HeV. The phase function \(8(E)\) is equal to \(\mathrm{E} / 2\) at \(\mathrm{E}=1.609315 \mathrm{MeV}\).
resonances, in spite of the large zero-point oscillation which arises from squeezing the system smaller than the size of the Compton wavelength of the constituents. Thirdly, for the resonance at \(\sim 1.3 \mathrm{MeV}\) the phase shift rises with energy, ar one expects from a normal potential resonance. However, for the ~1. 6 MeV resonance the phase shift decreases as function of
energy. Such a decrease is different from the "echo" of resonance observed in enersyindependent potentials, wich has a width much broeder than that of the associated resonance. To demonstrate this difference, we heve calculated the phase shift function \(\delta(E)\) for potentials associated with energies below and above 1.609 MeV, and we treat the potential as energyindependent. Then the phase shifts increase with energy to give resonances at energies delow and above 1.609 MeV (Fig. 5.11). (Phase shifts increase with energy near the resonances.) Thus, because of the strong dependence on energy, only at 1.609315 MeV does the energydependent potential give rise to resonance at the sume energy. Fimally, multiple resonances may result from strong energy dependence. It should, however, be noticed that the occurrence of a resonance irises from a cancellation of the kinetic energy and the attractive short-range force. The location of these resonances at around 1.5 MeV may therefore appear accidental.

\footnotetext{
1. Consultant from University of Tennessee Space Insti:ute, Tullahoms, TM 37388.
2. Pacific Sierra Research Corporation (Eaton). Los Angeles. CA 90025.
3. H. W. Crater, C. Y. Wong, R. L. Becker. and P. van Alstine, subaitted for publication.
4. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New Vork. [967).
}

\section*{COMPUTATIONAL PHYSICS}

\section*{PERIODIC TIME-DEPEMOENT MARTREE-HOCK SOLUTIOMS FRON TME BASIS SPLIEE METMOO}
R. Y. Cusson \({ }^{1}\)
C. Bottcher
J. \(\mathrm{HI}^{2}\)
M. R. Strayer

The basis spline collocation method in coordinate space \({ }^{3}\) is now a meli,-established method for mumerical calculations in physical problems." Recently, this method has been exte..ied to problems in [uclidean times. 5 The time Bspline method, wich combines the B-spline method with the traditional variational principles to obtain numerical soiuttons to partial differential equations, turns out to be uncon-

Fig. 5.11. To investigate whether the reionance it \(E=1.609315\) Hev is an "echo" or a real resonance, we study the phase function \(\delta(E)\) with energy-dependent and energy-independent potentials. When the energy dependence of the potential \(V(E)\) is included, we obtain \(8(E)\) as shown in Figs. 5.11a, 5.9, and 5.10. When we fix the potential \(V(E)\) as obtained at \(E=1.300 \mathrm{MeV}\) and use the energy-independent potential \(V(1,300\) MeV) to calculate the phase shift \(8(E)\) for other energies, we obtain \(\delta(E)\) as the solid curve in Fig. 5.11b. When we use an energy-independent potential \(V(1.306 \mathrm{MeV})\) where the energy is fixed at 1.306 MeV , we obtain \(\mathrm{s}(\mathrm{E})\) as the dashed curve in Fig. 5.11b. Similarly, with energyindependent potentials \(V(1.609 \mathrm{MeV})\) and \(\mathrm{V}(1.610\) MeV), where the energies are fixed at 1.607 MeV and 1.610 MeV , respectively, we obtain \(6(E)\) as the solid and the dashed curve in Fig. 5.11c. Mote the sensitivity of the phase function on the potential.
ditionally stable and very efficient, and may find extensive applications. As an example, we propose the calculation of periodic timedependent Hartree-fock (TDHF) solutions, from which the collective energy levels could be obtained. \({ }^{6}\)

The application of the B-spline method tc TOHF lies in the expancion of single-particle
mavefunctions in terms of basis spline functions in space-time, i.e.,
\[
\begin{equation*}
\psi_{i}(x, t)=\sum_{a, 8}^{a_{i} \beta} u_{a}(x) u_{8}(t) \tag{1}
\end{equation*}
\]

For periodic solutions, we simply use periodic basis spline functions, and the above expansion gwarantees the periodicity. Rather than writing down the equations at a set of discrete points. we minimize the error functional: \({ }^{5}\)
\[
\begin{equation*}
S=\int d x d t|6 \%|^{2} \tag{2}
\end{equation*}
\]
where \(6 \%=0\) corresponds to the time-dependent Schrödinger equations: \({ }^{6}\)
\[
\begin{equation*}
\left[i \frac{\partial}{\partial t}-K-U(t)\right] \psi_{i}^{P}(x, t)=-\lambda_{i} p_{i}^{P}(x, t), \tag{3}
\end{equation*}
\]
where \(\lambda_{i}\) are Floquet parameters. The integration of the basis spline functions in the error functional can be carried out. Variational principles would lead to the set of equations determining the expansion coefficients \(\dot{j}_{i}^{\infty, B}\). We believe that an efficient way to minimize the error functional is to combine the B-spline collocation method and time B-spline method. 5 From the quantization rule for periodic TDFF solutions, we could then obtain the collective energy levels.
1. Science Applications International Corp.. Los Altos, CA 94022.
2. Joint Institute for Heavy Ion Research.
3. C. de Boor. A Practical Guide to Splines (Springer-Verlag, New York, :978).
4. C. Bottcher and M. R. Strayer, Ann. Phys. (\(\mathrm{N}_{\mathrm{I}} \mathrm{Y}_{2}\)) 175, 64 (1987).
5. R. Y. Cusson. P.-G. Reinhard, C. Bottclier, M. R. Strayer, and J. HU, to be published.
6. I. Zahed and M. Baranger, Phys. Rev. C 29, 1010 (1984).

THE MASIS SPLIME COLLOCATION FETHOO APPLIED TO THE DIRAC EQUATION

> J. W. W. M. R. Strayer

Techniques for obtaining highly accurate numerical solutions to problews in quantum field theory have been developed in recent years. \({ }^{2}\) One of these is the basts spline collocation method for relativistic theory of fermions. \({ }^{3}\) In this approach, both state vectors and fields
are expanded in spline functions, and a lattice in space time is introduced, on wich the equations of motion for the state vectors and fields are transformed to coupled matrix equations. For relativistic fermion fields on lattices, problems related to doubling of the spectru and boundary conditions are crucial in the numerical formulation. We propose general algorithms to treat these problens in the B-spline collocation method, wich provide great flexibility in a number of applications.

The difficulties of constructing lattice solutions to the Dirac equation can be addressed by considering the Dirac kinetic energy operator in one space dimension:
\[
K_{D}=\left\{\begin{array}{ll}
m & -i a_{x} \tag{1}\\
-i \partial_{x} & -m
\end{array}\right\}
\]

In Ref. 3 a factorization of the collocation matrix of the kinetic energy operator into a lower and upper triangular form is suggested, 1.e.,
\[
\begin{equation*}
2 T=-D_{2}=D^{-} D^{+} . \tag{2}
\end{equation*}
\]
where \(D_{2}\) is the second derivative operator and the Dirac kinetic energy operator is taken as
\[
x_{D}=\left\{\begin{array}{ll}
m & -10^{+} \tag{3}\\
i 0^{-} & -m
\end{array}\right\}
\]

Here we suggest that the Dirac kinetic energy operator is in the form:
\[
K_{D}=\left\{\begin{array}{ll}
m & -10 \tag{4}\\
10^{t} & -m
\end{array}\right\}
\]
where \(D\) is a matrix appropriate for the first derivative and \(D^{t}\) is its transpose. \({ }^{4}\) For probleas with periodic boundary conditions, it can be proved that \(D, D^{t}\) are commuting and \(-D_{2}=D D^{t}\) is a faithful second-order derivative operator.

Moreover, if D is properly choser, the second derivative operator thus constructed leads to a better dispersion relation. For the finite difference scheme, the forward and backward derivatives are one example of the \(D, D^{t}\) scheme. However, by a judicious choice of \(D\), we can achleve an optimized dispersion relation for \(D_{2}\). For other boundary conditions, only the
matrix elements at the end points are affected, since splines are local functions.

Boundary conditions in the \(8-s p l i n e\) collocation method can be simply imposed. They are constructed by taking as many independent spline functions, each of wich satisfies the boundary conditions. as the muber of collocation points. Generally, in the may \({ }^{3}\) the collocation points are chosen, the number of spline functions is larger than (or equal to) the muber of collocation points. This allows us to jnpose side conditions \({ }^{5}\) to the system. If we reinterpret these side conditions as boundary conditions, the mumber of independent splines can be reduced to the numer of collocation points such that the transformation between the spline expansion coefficients and collocation points is well conditioned. Thus, all differential operators can be converted to matrix operators in the framework of the B-spline collocation method, were all of the boundary conditions are automatically satisfied.

\footnotetext{
1. Joint Institute for Heavy Ion Research.
2. S. L. Adler and T. Piran, Rev. Mod. Phys. 56, 1 (1984).
3. C. Bottcher and M. R. Strayer, Ann. Phys. (N,Y. 175, 64 (1987).
4. C. Bottcher, M. R. Strayer, and J. Wu, to be published.
5. C. de Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
}

\section*{ITERAIIVE RETHOD FOR THE TIME-DEPENDENT RELATIVISTIC MEAM-FIELD THECRY}
\[
\text { J. W. Y. Cusson }{ }_{\text {? }}^{\text {? }} \text { Bait }
\]

The relativistic mean-field theory provides us with a mocelt, 5 to replace the nonrelativistic TDHF calculations based on the Schrödinger equation. In this model, nuclei are described as bound states of many Dirac nucleons interacting through meson fields. This theory is currectly time-dilated, Lorentz-contracted, and has retarded interactions and covariant propagations. Therefore, it is preferrey in the numerical simulation of heavy-ion collistions at intermediate energies. However. the relativistic calculation in three (space) dimensions
involves large amounts of numerical work. He propose an iterative method for the evolution of quantum systems aimed at the reduction of computer time.

The evolution of a quantum system can be described by the Haniltonian, \(H_{\text {, }}\) in the timedependent equation
\[
\begin{equation*}
i \frac{\partial}{\partial t} P(x, t)=M P(x, t) \tag{1}
\end{equation*}
\]
where \((x, t)\) is a state vector. Since we are mainly concermed with many-body systems, I, in general. may have more than one component. The numerical simulation of the time evolution can be realized by the discretization of Eq. (1) on a set of mesh points and discrete time steps. Therefore, Eq. (1) is replaced by the difference scheme
\[
\begin{equation*}
\Psi_{B}^{n+1}=\sum_{a}(1-i H(B, a, n) \tau) Y_{G}^{n} \tag{2}
\end{equation*}
\]
where \(\{a\}\) is the set of mesh points and \(T\) is the time step.

The stability of the difference scheme (2) can be greatly improved by the implicit difference scheme: \({ }^{6}\)
\[
\begin{align*}
\sum_{a}(1 & \left.+i H(B, a, n+1 / 2) \frac{\pi}{2}\right) \Psi_{a}^{n+1} \tag{3}\\
& =\sum_{a}\left(1-i H(\beta, a, n+1 / 2) \frac{\pi}{2}\right) \nabla_{a}^{n}
\end{align*}
\]

The solution of Eq. (3) involves an inverse of the atrix \((1, i H(n+1 / 2) x / 2)\), with slows down the procedure. In order to avoid the calculation of the inverse of matrix with very large dimensions, we propose an iterative procedure to solve Eq. (3). First, we write the solution formally as:
\[
\begin{align*}
& \nabla_{\beta}^{n+1}=\left[\sum_{a}\left(1-i H(B, a, n+1 / 2) \frac{r}{2}\right) \nabla_{a}^{n}\right. \\
&=\sum_{a \neq \beta}\left(1 H(\beta, a, n+1 / 2) \frac{1}{2}\right) \tag{4}\\
&\left.\times \oplus_{a}^{n+1}\right] /\left(1+i H(B, 0, n+1 / 2) \frac{r}{2}\right)
\end{align*}
\]
and then soive Eq. (4) iteratively. The predictor formula for \(\nabla_{\beta}^{n+l .(0)}\) can be obtained simply
by letting \({\underset{a}{n+1}}^{n+1}\) Eq. (4) be \(\overbrace{a}^{n}\). This corresponds to en explicit may of evolution. The predictor thus obtained will be corrected by the successive replacement of \(7^{n+1},(k-1),(k=\)
\(1,2, \ldots\)) on the righthand side of Eq. (4), i.e.,
\[
\begin{align*}
& \nabla_{B}^{n+1,(k)}= {\left[\sum_{a}\left(1-i H(B, a, n+1 / 2) \frac{T}{2}\right) \nabla_{a}^{n}\right.} \\
&=\sum_{a * B}\left(i H(a, a, n+1 / 2) \frac{T}{2}\right) \tag{5}\\
&\left.\times \forall_{a}^{n+1},(k-1)\right] /\left(1+i H(a, B, n+1 / 2) \frac{T}{2}\right) .
\end{align*}
\]

Generally, the iterative process is applied until the convergence is reached, as judged by the. difference \(\left|\nabla_{\beta}^{n+1,(k)}-q_{B}^{n+1,(k-1)}\right|\). Actually, two more iterations are sufficient to give good results, since the predictor \(\nabla_{a}^{n+1,(0)}\) is already a consistent formula. If the Hamiltonian is dependent on P , we must solve it selfconsistently.

The iterative method can be generalized to higher dimensions and to the self-consistent mean-field calculation. As long as the diagonal matrix elements remain the major part, the iterative method is effective. For the relativistic mean-field calculation, the interacting meson fields obey equations of motion which involve second-order derivatives in time. We have to cast them into a form which contains only the Pirst derivatives in time. This can be achieved by introducing additional variables for the first time derivatives. The equations of motion can be factorized as \({ }^{7}\)
\[
\begin{equation*}
\left(B_{\nu} z_{\mu}+\kappa\right) \bullet=f . \tag{6}
\end{equation*}
\]
where 4 and \(B\) 's are properly defined arrays. Using these linear equations for the meson fields and Dirac equations for nucleons, we can apply the iterative procedure to the selfconsistent calculation. Even though the source terms are nonlinear, we can treat them as the off-diagonal part in the procedure. Some numerical calculation has been done and reported in Ref. 8, where the iterative method did result in immense reduction of computer time.

\footnotetext{
1. Joint Institute for Heavy Ion Research.
2. Duke University, Durham, MC 21706.
}
3. Science Applications International Corp., Los Altos, CA 94022.
4. J. D. Malecka, Ann. Phys. (M.Y.) 83, 491 (1974).
5. B. D. Serot and J. D. Walecka, in Advances in Muclear Physics, Vol. 16 (Plenum Press. Rew York, 1985).
6. R. S. Varga, Matrix Iterative Analysis (Prentice-Hall. Englewood Ciliffs, W, 1962). D. 273.
7. See, for example, E. M. Corson, Introduction to Tensors, Spinors, and Relativistic Have Equations, Chapter 5 (Chelsea, Wew York, 1981).
8. J. J. Bai, R. Y. Cusson, J. Mu, P.-G. einhard, H. Stöcker, W. Greiner, and M. R. zyer. Zeit. Phys. 1326, 269 (1987).

\section*{MUMERICAL RETHOD FOR THE CALCULATIOM OF COMTIMUN EXCITATIOM MPLITUNES IM TIEEDEPEMDENT EXTERML FIELD PROBLENS \({ }^{1}\)}
C. Bottcher
A. S. Umar \({ }^{2}\)
M. R. Strayer
V. E. Oberacker \({ }^{2}\)

We introduce a new numerical method for calculating continuum excitation probabilities of complex physical systems under the influence of external, time-dependent, and nonperturbative fields. The method utilizes a discretized form of the Kamiltontan on space lattice and is particularly suited for large-scale computations involving many-body systems. We perform a comparative study for a model problem by solving the same time-dependent Schrödinger equation in spherical and cylindrical coordinates. As a realistic example, we apply the method to the problem of prompt nucleon emission in low-energy heavy-ion reactions.
1. Abstract of paper: Phys. Rev. C 37, 2487 (1988).
2. Consultant from Vanderbilt University, Mashvilie, TM 37235.

\section*{application of vector and parallel computer ARCHITECTURES}
\[
\begin{array}{ll}
\text { C. Bottcher } & \text { G. J. Bottrellil } \\
\text { M. R. Strayer } & \text { J. A. Maruhn }
\end{array}
\]

We have been devoting some effort to optimizing codes on presently available systems (mostly the Cray-2), wile looking ahead to the massively parallel systems which we expect to be avallable in the near future.

By forcing vectorization of loops, and by some modification of the algorithms, we now have
several codes running at around 150 mflops on the Livenmore Cray-2's. These include the codes for Monte Carlo evaluation of Feynan diagrans and for the nonrelativistic TDHF equations.

Two of us (CB and RRS) attended a course at Los Alamos in March 1988 on the FPS T-series hypercubes, as a first step towards moving some of our problems onto a parallel architecture. We have recently begun to work with the matheatical sciences group in the Engineering Physics Division on "Grand Challenge" project. This is aimed at implementing our pair production calculations on a mypercube architecture. initially an Intel system at ORM, and then soving up to a state-of-the-art gigaflop machine.

The usefulness of the hypercube architecture has been demonstrated by J. A. Maruhn. who spent a month bringing up a simple hydrodynanics code on the Intel hypercube, and comparing the run times with those on other computers. It was concluded that codes can be made to run efficiently with a moderate amount of effort.
1. Oak Ridge Associated Universities Postdoctoral Research Associate.
2. Consultant from University of Frankfurt, Frankfurt, West Germany.

\section*{MATHEMATICAL PHYSICS}

\section*{PERICOIC TRAJECTORIES FOR TME TMO-DIMENSIOMAL} MONINTEEABLE MELOON-HEILES HNBILTOMIAM
\[
\begin{array}{r}
\text { T. Huston }{ }^{\text {K.T.R. Davies }} \\
\text { M. Baranger }
\end{array}
\]

We have begun a new numerical study of the two-dimensional, nonintegrable Henon-Heiles Hamiltonian \({ }^{3}\) wich is given by
\(H=\frac{1}{2}\left(p_{x}^{2}+p_{y}{ }^{2}\right)+\frac{1}{2}\left(x^{2}+y^{2}+2 x^{2} y-\frac{2}{3} y^{3}\right)\).

The equipotential contours of the potential term in (1) are shown in Fig. 5.12. As in previous studies \({ }^{4}, 5\) we are calculating the veriodic trajectores for this Hamiltonian using the Monodromy matrix method. 6 We are mainly interested in determining the principal periodic

Fig. 5.12. Equipotential contours of the Hénon-Heiles potential. \({ }^{3}\)
fanilies and their simplest branchings mich originate either at low energies or at small values of the period \(t\). Also, in order to illuminate the connection with chaotic behavior, \({ }^{3.4}\) we are studying representative nomperiodic trajectories wich lie "close" in phase space to the periodic fanilies.

One of the main families being studied is the horizontal family, so called because it originates from the horizontal fanily of small oscillations. This fanily is shown in Fig. 5.13. You see that for small energies the oscillation is completely in the \(x\)-direction; then it rapidly develops a small curve and eventually.

Fig. 5.13. \(x-y\) plots of 180 members of the horizontal family. This type of trajectory is a libration."
for large energies. it becomes a very pronounced \(V\) shape. This fimily continues on indefinitely, growing asymptotically to infinite energy.
Also, it was determined that this family is always unstable. Even at low energies, the trace of the Monodrony matrix \({ }^{4-6}\) is always greater than 4.0. Thus, this fanily does not allow branching to another faily, \({ }^{4}, 5\) and the nearby nomperiodic trajectories always lie in chaotic regions of phase space. \({ }^{3,4}\) Finally, we mention that the potential in Eq. (1) possesses a ternary symmetry, being invariant under rotations of \(120^{\circ} .{ }^{3}\) Thus, for every periodic solution, one can obtain two other valid periodic solutions by rotating the original curve by \(120^{\circ}\) and by \(240^{\circ}\). This is illustrated in Fig. 5.14 for the morizontal family.
1. Participant in University of Tennessee Science Alliance Sumer Research Program from Hendrix College, Conway, AR 72032.
2. Consultant from M.I.T., Cambridge, M 02139.
3. M. Hénon, p. 107 in Chaotic Behavior of Deterministic Systems - Les Houches 1981 (MorthHolland, hasterdin, 1983).
4. M. Baranger ard K.T.R. Davies, Ann. Phys. (N.Y.) 177, 330 (1087).
5. M.A.M. de Aguiar, C. P. Malta, M. Baranger, and K.T.R. Davies, Ann. Phys. (M.Y.) 180, 167 (1987).
6. M. Baranger, K.T.R. Davies, and J. H. Mahoney, Ann. Phys. (N.Y.) 186, 95 (1988).

Fig. 5.14. Several low-energy members of the horizontal fanily and their associated rotated solutions. The horizontal trajectories are the flat. U-shaped curves, and the other two sets of trajectories can be obtained from these by rota\(t\) tons of \(120^{\circ}\) and \(240^{\circ}\).

\section*{THE CLCCUATIOM OF PERIOOIC TRAECTORIES \({ }^{1}\)}

\author{
M. Baranger \({ }^{2}\) K.T.R. Davies \\ J. H. Mahoney \({ }^{2}\)
}

Methods are presented for calculating classical periodic trajectories in a two-dimensional nonintegrable potential problem. The main one is the monodromy method, wich consists in refining an approximate solution by using a "once around the trajectory" procedure. This can be done either for a given period or for a given energy. Other methods proceed by searching on the initial conditions until the trajectory closes. We also discuss how to find new periodic failies. particularly branchings from already know failies, and how to get started when no failies are knom.
1. Abstract of paper: Ann. Phys. (N.Y.) 186, 95 (1988).
2. Massachusetts Institute of Technology, Cambridge 02139.

\section*{COMPLEX-PLANE GETHOOS FOR EVALLATIMG HIGHRY OSCILLATORY INTEGRALS IH MUCLEAR PHYSICS I \({ }^{1}\)}

\section*{K.T.R. Davies M. R. Strayer} G. D. White \({ }^{2}\)

A general progran is being developed for the systematic and careful evaluation of Green's functions in pion-nucleon problems. This paper is the first in a series of projects involving integral methods for the calculation of the pion and nucleon propagators. A method is presented for evaluating efficiently and accurately integrals of the form \(\int r^{m} x_{f_{1}}\left(k_{1} r\right) x_{l_{2}}\left(k_{2} r\right) \ldots\) \(x_{f_{n}}\left(k_{n} r\right) d r\), where \(m\) and \(n\) are arbitrary integers and \(x_{l}(x)\) can be either a spherical Bessel function, \(j_{\ell}(x)\), or a spherical Meumann function, \(n_{i}(x)\). The range of integration depends upon the particular problem encountered. The prototype integral studied is
\(I_{R R^{\prime} L}\left(k k^{\prime} p\right) \equiv \int_{0} r^{2} j_{\ell}(k r) j_{L} \cdot\left(k^{\prime} r\right) j_{L}(p r) d r\)
whose integrand for large \(r\) has a slowly decreasing osctllatory behavior. Rapid convergence is insured by rotating, in the complex plane, the upper part of this integral. giving
an integrand wich decreases exponentially. A scaling formula is used to evaluate \(I_{l \ell-}\) (kk \({ }^{\circ} p\)) for very small or very large values of the momenta. Also, it is shom that, if \(l, l^{\prime}\), and \(L\) satisfy triangular inequalities ard if \(l+\ell^{-}\) \(+L\) is even, then \(k, k^{\prime}\), and \(p\) must also satisfy triangular inequalities, which is che condition required by the vector delta function \(\mathbf{\delta (k)}+\mathbf{k}^{\mathbf{k}}\) \(\overrightarrow{\text { p }}\). Finally, we present sum rules and integral relations for \(I_{\ell_{2}}\left(k k^{\prime} p\right)\).
1. Abstract of paper: J. Phys. 6 14, 961 (1988).
2. Consultant from Mortmestern State University, Matchitoches, LA 71457.

\section*{COMPLEX-PLAME METHOOS FOR EVALUATIMG IWTEGRALS MITM HICHV OSCILLATORY INTEGRNDS \({ }^{1}\)}
K.T.R. Davies

An integral mose integrand oscillates rapidly in the asymptotic region may be evaluated by deforming the contour of integration in the complex plane. By proper choice of a contour. the oscillations may de completely eliminated, giving an integrand wich decreases exponentially. Such methods may be used to evaluate various types of integrals, the most important of wich are of the form \(J=\int_{R}^{\infty} r^{m} x_{l_{1}}\left(k_{1} r\right) x_{i_{2}}\left(k_{2} r\right) \ldots x_{l_{n}}\left(k_{n} r\right) d r\), where \(m\) and \(n\) are arbitrary integers and \(x_{i_{i}}\left(x_{i} r\right)\) is a spherical Bessel or Meumann function. A scaling formula may be used to evaluate \(J\) for very large or very small values of the \(k_{j} ' s\). Also, it is show that, for \(2=0, m=2\); and when all of the \(X_{f}\) 's are Bessel functions, \(J\) vanishes if certain vector inequalities involving the \(k_{i}\) 's are inconsistent with two sets of relations satisfied by the \(\ell_{i}\) 's.
1. Abstract of paper to be published in Journal of Computational Physics.

\section*{potemtial geoup appronch to a class of SOLVABLE POTEMTIALS}
\[
\text { J. Well } \begin{aligned}
& \text { R. Y. Cusson }{ }^{2} \\
& \text { Y. Alhassid }
\end{aligned}
\]

Group theoretic techniques have been used in many fields of physics. Most of the applications are for the analysis of bound-state problems. Recently, there have been attempts", \({ }^{5}\) to extend these techniques to scattering problems. In order to understand these extensions, one would like to learn from the examples for wich exact connections between simple potential probleas and group theory can be established. The solvable class of matanzon potentials \({ }^{6}\) provides us with such examples.

We consider the realization of the \(50(2,2)\) group on the sheet \(\sigma=\operatorname{sign}\left(p^{2}\right)=+1\) of the \((2,2)\) myperboloid \(H^{3}: 7\)
\[
\begin{equation*}
\rho^{2}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=\text { constant } \tag{1}
\end{equation*}
\]

This is a symetric representation in wich the \(s 0(2,2)\) basis \(\left|\omega_{i} m_{1}, \omega_{2}\right\rangle\) is characterized by
\[
\begin{align*}
& C_{2}\left|\omega_{1} m_{1}, m_{2}\right\rangle=\omega(\omega+2)\left|\omega_{0}, m_{1}, m_{2}\right\rangle \\
& v_{3}\left|\omega_{1}, m_{1}, m_{2}\right\rangle=m_{1}\left|\omega_{1} m_{1}, m_{2}\right\rangle \tag{2}\\
& k_{3}\left|\omega_{1}, m_{1}, m_{2}\right\rangle=m_{2}\left|\omega_{0} m_{1}, m_{2}\right\rangle
\end{align*}
\]

If we parametrize the myperboloid in terms of \((x, \phi, a)\) as follows:
\[
\begin{align*}
& x_{1}=p \cosh x \cos \phi \\
& x_{2}=p \cosh x \sin \varphi \tag{3}\\
& x_{3}=0 \sinh x \cos \theta \\
& x_{4}=p \sinh x \sin \theta
\end{align*}
\]
where and a are rotation angles in \(1-2\) and 3-4 two-spaces, respectively, the basis can be written explicitly in the form:
\[
\begin{equation*}
\left|\cdots:, m_{2}\right\rangle=e^{i\left(m_{1} \geqslant+m_{2} a\right)} R_{\operatorname{com}_{1} m_{2}}(x) \tag{4}
\end{equation*}
\]

After a series of variable transformations from \(x\), through \(z\) to \(r\), where
\[
z=\tanh ^{2} x
\]
and the transformation \(z(r)\) is deterained by the differential equation
\[
\left(\frac{d z}{d r}\right)^{2}=\frac{4 z^{2}(z-1)^{2}}{k(z)} .
\]
where
\(R(z)=a z^{2}+b_{0} z+c_{0}=a(z-1)^{2}+b_{1}(z-1)+c_{1}\),
and a similarity transformation
\[
F=\left(\frac{d z}{d r}\right)^{-1 / 2} z^{1 / 2}
\]
we find that \(\ln _{\ln _{1} m_{2}}(r)\) satisfies the Schrodinger equation with the Matanzon potential
\[
\begin{align*}
H H^{R} m_{1 m_{2}}(r) & =\left[-\frac{d^{2}}{d r^{2}}+U(r)\right] R_{-m_{1} m_{2}}(r) \\
& =E R_{-m_{1} m_{2}}(r) \tag{5}
\end{align*}
\]
where
\[
\begin{equation*}
\left.U_{[z}(r)\right]=\frac{f z(z-1)+h_{0}(1-z)+h_{1} z}{h(z)}-\frac{1}{2}\{z, r\}, \tag{6}
\end{equation*}
\]
and the Schwarz derivative of \(z\) is defined by
\[
\{z, r\}=\frac{z^{\cdots}}{z^{\prime}}-\frac{3}{2}\left(\frac{z^{-\cdots}}{z^{\prime}}\right)^{2}
\]

In the realization of the matanzon potential the Hamiltonian of the system is defined as
\[
\begin{equation*}
H_{W}=\left(\frac{z}{R(z)}-\frac{1}{C_{1}}\right)(w+1)^{2}-\frac{z}{R(z)}\left(C_{2}+1\right)+\frac{1+h_{1}}{C_{1}} . \tag{7}
\end{equation*}
\]
which depends only on the \(\mathbf{S O}(2,2)\) Casimir operator \(C_{2}\), where the quantum numbers are determined as
\[
\begin{align*}
(\omega+1)^{2} & =1+h_{1}-c_{1} E_{0} \\
m_{1}^{2} & =1+f-a E_{0} \tag{8}\\
m_{2}^{2} & =1+h_{0}-c_{0} E_{0} .
\end{align*}
\]

It is obvious that the states in the same multiplet are at the same energy but belong to different potential strengths, and both bound states and scattering states can be realized in the realization. This approach is knowr as the potential group approach.4

Once the algebraic structure of Matanzon potentials is found, the close forms of their energy spectra and scattering matrices can be understood through purely algebraic construction. The discrete princigal series of representations, for wich the eigenvalues \(m_{1}\) of the operator \(\mathrm{J}_{3}\) have a lower bound state, describe the bound states; the continuous principal series of representations describe the scattering states. For the fixed potential strength. we can deternine the bound state spectrum by requiring that the state is in a discrete principal series and construct the scattering matrix with the Euclidean connectior method." 5 These exemples reconfirm that the closed forms of bound-state spectra and scattering matrices are closely related to the corresponding group structure.

Since the transformation \(z(r)\) contains three parmeters, \(a, b_{0}\), and \(c_{0}\), and three other parameters, \(h_{0}, h_{1}\), and \(f\), are involved in \(U(r)\), Matanzon potentials constitute a large class of solvable potentials. The mell-known PöschlTeller, Eckart, Rosen-Morse, and Manning-Rosen potentials belong to this family. Recently, another important branch of this family was rediscovered by Ginocchio and studied in detail. These analytical solvable potentials are useful in physics, and an understanding of their group structure is very helpful in their applications. For example, they provide us guidelines in formulating realistic algebraic scattering models.

\footnotetext{
1. Joint Institute for Heavy Ion Research.
2. Science Applications International Corp., Los Altos, CA 94022.
3. Yale Iniversity, Hew Haven, CT 06511.
4. Y. Alhassid, \(F\). Gürsey, and \(F\). lachello, Phys. Rev. Lett. 50, 873 (1983). Ann. Phys. (N.Y.) 148, 346 (1983); Ann. Phys. (M.Y.) 167, 181 (1986).
5. A. Frank and K. B. Holf, Phys. Rev. Lett. 52, 1737 (1984); Y. Alhassid, J. Engel, and J. Mu, Phys. Rev. Lett. 53, 17 (1984); J. Mu, F. Iachello, and Y. Alhassid, Ann. Phys. (N. Y.) 173. 68 (1987).
6. G. Matanzon, Vestnik Leningrad Univ. 10, 22 (1971); Teoret. Mat. Fiz. 38, 146 (1979) [English eransl.].
7. A. Frank and K. B, Wolf, J. Math. Phys. 26, 1973 (1985).
8. J. Ginocchio, Ann. Phys. (N.Y.) 152, 203 (1984): Ann. Phys. (N.Y.) 159, 467 (1985).
}

POIENTIAL EOMP MPROACH AN DIFFEBEWTIAL EqMATIONS
J. Wel R. Y. Cusson \({ }^{2}\) Y. Alhassid \({ }^{3}\)

Group theoretic techniques find their way into many fields of physics. Most of the applications are involved with symmetry groups and dynarical groups. and designed for bound-state problens. In the attempts to extend these techniques to describe scattering states, another kind of group, the potential groum, was suggested." The operators of the potential group connect states it the sume energy but belong to different potential strengths. Both bound states and scattering states can be realized with the same group realization.

Consider the differential realization of \(50(2,1)\) algebra
\[
\begin{gather*}
J_{ \pm}=e^{ \pm 1 \phi}\left[\pm \frac{\partial}{\partial x}+t_{1}(x)\left(i \frac{\partial}{\partial x}-\frac{1}{2}\right)+t_{0}(x)\right] \\
J_{3}=-1 \frac{\partial}{\partial \varphi} \tag{1}
\end{gather*}
\]

The basis for the realization is characterized by
\[
\begin{gather*}
C_{2}|j, m=j(j+1)| j, m, \\
\left.J_{3}|j, m=m| j, m\right\rangle \tag{2}
\end{gather*}
\]
and can be written explicitly as
\[
\begin{equation*}
|j, m\rangle=\varphi_{j m}=\phi_{j m}(x) e^{t m \phi} \tag{3}
\end{equation*}
\]

If the Hamiltonian of a physical system is
\[
\begin{equation*}
H=-\left(C_{2}+\frac{1}{6}\right) \tag{4}
\end{equation*}
\]
the sfimiltancous efgenfunction of \(H\) and \(J_{3}\) leads to ane-dimensional Schrödinger equation
\[
\begin{gather*}
{\left[-\frac{d^{2}}{d x^{2}}+\left(k_{1}^{2}(x)-1\right)\left(m^{2}-\frac{1}{4}\right)+2 \pi \frac{d k_{0}(x)}{d x}\right.} \\
\left.+k_{0}^{2}(x)\right]{ }_{j m}(x)=E \varphi_{j m}(x) \tag{5}
\end{gather*}
\]
where the quantum number mappears to be potential strength and \(-(j+1 / 2)^{2}\) the energy \(E\). Since the hailitontan is related only to the Casimir operator. all states in a representation are at
the same energy, but correspond to different potential strengths. When the potential strength - is given, the fonilconian ms contincous spectrum, mich describes the scattering states for the contimous principal series \((j=-1 / 2\)

\[
\langle H\rangle=k^{2}, \quad 0<k^{2}<-
\]
and a discrete spectrum, which describes bound states for discrete principal series \(\left(0+j=n_{p} n\right.\) \(=0,1,1, \ldots\)). i.e..
\[
\begin{aligned}
\alpha> & =-(j+1 / 2)^{2}=-(m-n-1 / 2)^{2} \\
n & =0,1,2, \ldots\{m-1 / 2\} .
\end{aligned}
\]

In Fig. 5.15, several Morse potentials are plotted and the \(\mathbf{S O}(2,1)\) mitiplets are shown by the horizontal dashed lines.

Fig. 5.15. Morse potential \(V_{m}(x)=m^{2}\) \(\left(e^{-2 x}-2 e^{-x}\right)\) for \(=2,3,4\) are plotted in solid ifnes. The \(50(2,1)\) mitiplets for \(j=-2,-3\), \(-1 / 2+i k\) are show by the horizontal dashed lines.

Attempts have also been made to apply such realizations to more extensive potentials. 5.6 They can be sumarized as:
(1) introduce sinilarity transformation \(F=\) \(e^{s(x)}\) and variable transformation \(x=x(z)\) to the algebra, since the commutation relations are preserved no matter how complicated these transformations could be;
(2) introduce physical systems with more complicated Homiliontan.

Here ve propose the general form of Hzmiltonian for the realization of potential group:
\[
\begin{equation*}
H=(f(z)-a)(j+1 / 2)^{2}-f(z)\left(F C_{2} F^{-1}+1 / 4\right) \tag{6}
\end{equation*}
\]
where \(F\) is a similarity transformation, \(z\) is a related variable transformation, and a \(>0\). In order to cancel the appearance of the \(j\) dependence in the potential, we have to reinterpret the quantum muber \(m\) as a function of potential strength, and the energy such that the explicit j-dependence in the Hamiltonian is cancelled by the implicit dependence from the Casiair operator and the potential in the Schrödinger equation is still independent of energy. For example, in the realization of the first class of Ginocchio potentials, the quantum numbers take the following form: \({ }^{7}\)
\[
\begin{gather*}
\left\langle C_{2}+1 / 4\right\rangle=(j+1 / 2)^{2}=u^{2} \\
\left\langle j_{3}^{2}\right\rangle=m^{2}=(\nu+1 / 2)^{2}+\psi^{2}\left(l-\lambda^{2}\right) \tag{7}
\end{gather*}
\]

He can apply this approach to realize a class of solvable potentials and, therefore, solve their bound-state spectra and scattering matrices with purely algebraic techniques. 5 We can also realize the confluent mypergeometric equation and mypergeometric equation by using \(\mathbf{S O}(2,1)\) and \(S O(m, n)(m, n \geqslant 2)\) groups, respectively. The realizations of these equations imply the general proof that potential problems with analytical solutions in terms of confluent hypergeometric or hypergeometric functions are of the corresponding potential group structure. For further attempts to new solvable classes of potentials, we may have to appeal to other groups and special functions.

\footnotetext{
1. Joint Institute for Heavy Ion Research.
2. Science Applications International Corp., Lus Altos, CA 94022.
3. Yale University, Mew Haven, CT 06511.
4. Y. Alhassid, F. Gürsey, and F. Jachello, Phys. Rev. Lett. 50,873 (1983): Ann. Phys. (\(\mathrm{H}_{\mathrm{I}} \mathrm{Y}\)) 148, 346 (1983); Ann. Phys. (M.Y.) 167. 181 (1986); A. Frank and K. B. Holf, J. Math. Phys. 26, 1973 (1985).
5. J. Wu, R. Y. Cusson, Y. Alhassid, and F. Gürsey, to oe published.
6. A. O. Barut, A. Inomata, and R. Wilson, J. Phys. A20, 4083 (1987).
7. J. Me, R, Y. Cusson, and Y. Alhassid, to be publishod.
}

\section*{QUARKS IN NUCLEI}

\section*{y-scalimg in a simple quark mooel \({ }^{1}\)}
\[
\text { S. Kumano }{ }^{2} \quad \text { E. J. Moniz }{ }^{3}
\]

A simple quark model is used to define a nuclear pair wodel; that is, two composite hadrons interacting only through quark intercrange and bound in an overall potential. An "equivalent" hadron model is developed, displaying an effective hadron-hadron interaction which is strongly repulsive. We compare the effective madron model results mith the exact quark model observables in the kineatic region of large momentum transfer and small energy transfer. The nucleon response function in this y-scaling region is, within the traditional framework, sensitive :0 the mucleon momentum distribution at large momenta. We find surprisingly small effect of hadron substructure. Furthenmore, we find in our model that simple parametrization of modified hadron size in the bound state, motivated by the bound quark momentum distribution, is not a useful may to correlate different observables.

\footnotetext{
1. Abstract of paper to be published in Proceedings of the 3 rd Confertnce on the Intersections 8etween Particle and Nuclear Physics, Rockport, Maine, 1988, and published paper: Phys. Rev. C 37, 2088 (1988).
2. Guest Assignee from University of Tennessee, Knoxvilie, 7N 37996-1200.
3. Massachusetts Institute of Technology, Cambridge, W 02139.
}

\section*{the spin and flavor depemdemce of parton DISTRIEUTIOM FUNCTIOMS \({ }^{1}\)}
\[
\text { F. E. Close }{ }^{2} \quad \text { A. W. Thomas }{ }^{3}
\]

Givon exchange in QCD is shown to lead to systematic flavor and spin-dependent distortion of quark distribution functions. We relate the annucleon mass difference, the ratio of neutron and proton inelastic structure functions, and the deep inelastic polarization asymetries. Excellent agreement is found with existing data, and predictions are made for the polarized neutron asymmetry at \(x \geqslant 0.2\).
1. Abstract of paper to be published in Phystcs Letters B.
2. UT-0RM Distinguished Scientist.
3. University of Adelaide, Adelaide SA 5001. Australla.

PARTOM OLSTRLBUTIOMS IM mOLEI: Qugen on quaniferl
F. E. Close \({ }^{2}\)

Energing information on the way quart, antiquart, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphas is is placed an Drell-Yan and production on muclei, and caution is urged against premature use of these as signals for quagn in heary-ion collisions.

\footnotetext{
1. Nostract of paper to be published in Proceedings of International Conference on Physics and Astrophysics of quart-6luon Plasm. Bomby, India, February 8-12, 1988.
2. UT-0idil Distinguished Scientist.
}

\section*{atomic and molecular physics}

TIME-DEPENDENT MORTREE-FOCR STUDIES OF IOM-ATON COLLISIONS

\author{
C. Bottcher \\ 6. J. Bottrell \({ }^{1}\)
}

We have begun production calculations on ionatom collisions using the time-dependent Hartree-Fock method. Our implementation uses the basis-spline-collocation technique on a three-dimensional Cartesian lattice.

An interesting check of the method was to compare the static atomic mavefunctions of helium and neon with those tabalated by Henman and stillman. The differences are hardly visible on a graph.

A study of \(p+\) He has been completed, and \(C^{6+}+\) ne is in progress. As indicated in other sections of this report, we have assembled the tools to extract a variety of intricate correlations and differential cross sections for direct comparison wth experimental data.
1. Oak Ridge Associated Untversities Postdoctoral Research Associate.

\section*{COWTIMNH ELECTMu SPECTA FO FOTOM IMPMCT On minuesm}

> C. Bottcher 6. J. Bottrell
M. R. Strayer

A formalis. has been developed for calculating continuu excitation probabilities for time-dependent external field problews. 2 In this formilism the contimur excitation probebility is given by
\[
\begin{equation*}
P_{e}(\varepsilon)=\left\langle\psi_{e}(t)\right| F^{T}(\varepsilon) F(\varepsilon)\left|\psi_{e}(t)\right\rangle \tag{1}
\end{equation*}
\]
where
\[
\begin{equation*}
F(E)=(E \Delta)^{-1 / 4} \exp \left[-\left(H_{0}-E\right)^{2} /\left(2 \Delta^{2}\right)\right] \tag{2}
\end{equation*}
\]
and \({ }_{a}(t)\) is the final time-evolved wavefunction. We have improved this method by introducing the approximation
\[
\begin{equation*}
F(E)=\omega\left\{1+\frac{\left(H_{0}-\Sigma\right)^{2}-m}{2 \pi \Delta^{2}}\right\} \tag{3}
\end{equation*}
\]
with M a normalization constant and an integer. In the 1 imit \(m\) * this relation is exact. The inversion of the operator necessary to evalwate its action on \({ }_{\mathbf{a}}(t)\) is achieved using a successive over-relaxation (SOR) procedure.

He have used this approach to examine the electrons eafted from both the target and the projectile in collisions of protons with atomic hydrogen. The accuracy of the procedure is comparable to the previous approach wich involved using a series expansion to evaluate the Gaussian operator. The great advantage of the present procedure is its speed: an order of magnitude or more improvement over the Gaussian expansion procedure.

In addition, we have performed the deconvolution necessary to evaluate the angular dependence of the enitted electrons. This is accomplished by using the Gussian form \(\exp \left[-\left(\dot{n}_{i}-\dot{r}\right)^{2} / \delta^{2}\right]\) with \(n_{i}\) the \(\{-t h\) direction normal, \(\hat{r}\) the integration variable, and 6 factor chosen so that
\[
\begin{equation*}
\sum_{i} \int \exp \left(-\left(\hat{n}_{1}-\hat{r}\right)^{2} / 8-j d^{2} \hat{r}=4 \pi .\right. \tag{4}
\end{equation*}
\]

We are also working to extend these procedures to the examination of systems involving militelectron targets.

\footnotetext{
1. Oak Ridge Associated Universities Postdoctoral Research Associate.
2. C. Bottcher, M. R. Strayer, A. S. Umar, and V. E. Oberacker, Phys. Rev. C 37, 2487 (1988).

\section*{OM THE CDOSS SECTIONS FOP ELECTROM TRAUSFER, ENECTIOM, AD EXCITATIM. :- COINCIDEICE MITM A MOLE IM A SPECIFIC SHELI}
}

\section*{Richard L. Becker}

It is a familiar fact that in the independent Fermi particle model the sum of the ion-induced cross sections for inclusive-single direct ionization, electron transfer, and excitation equals that for inclusive single vacancy production. Me show, however, that the analogous sum for these processes in coincidence with a hole in a particular shell (i.e., with an Auger electron or \(X\) ray) is greater than the inclusive cross section for production of a vacancy in that shell, except in the linit of very meak interactions (exclusively single-electron transitions). These coincidence cross sections are separated into inclusive contributions in wich either single or double electr 1 transitions are explicitly specified. Illustrative calculations for \(\mathrm{He}^{2+}\) and \(\mathrm{C}^{6+}\) on He show the quantitative importance of the double transition terms for direct ionization as mell as electron transfer.

\footnotetext{
1. Abstract of paper to be published in the special issue of Acta Physica Mungarica in honor of \(D\). Berenyi's 60th birtiday.

FOMMLATIO OF THE CHCE WETMNO IM COUPLED CHAMELS THEDRY FOR THE CAPTURE OF peojectile elections
}

\section*{R. L. Becker}

In the theory of energetic ion-atom collisions the case treated most often is that of a structureless projectile ion incident on an atom with one or more active electrons. The ion may be either bare or may contain electron. yreated as inert. However, by tiner reversal invariance,
the first-order transition probability fros a projectile-centered orbital to target-centered orbital is equal to that for the reverse transition and should not be ignored. I In the independent Fermi particle model (IFPN) \({ }^{2}\) the calculation of time-dependent many-electron states is reduced to that of single-electron spin-orbitals. When strong transitions are involved, the coupled-channels approach is called for. If \(Z_{P} \ll Z_{T}\) a single-center expansion in target-centered states is effective, \({ }^{3}\) but when \(Z_{P}\) becomes nearly equal to \(Z_{T}\), a twocentered expansion appears to be needed. The latter leads to very elaborate and slow calculations. The "one-and-a-half-center-expansion" (OHCE) was developed" as a faster, but still fairly accurate, way of treating nearly symmetric collisions. Until now it has been formulated only for the case of an electron initially on the target. described in terms of a basis containing many target orbitals and one projectile orbital, for which case it has been rather successful. \(4,5,1\) Here we present, for the stme basis, the equations for the case of an electron initially on the projectile.

In the impact-parameter method the nuclei move on prescribed trajectories so that the electronic Hamiltonian is time-dependent. It may be decomposed as follows: \(H(t)=H^{\top}(t)\). \(V^{P}(t)=H^{P}(t)+V^{T}(t)\), where the \(V^{\prime}\) s are residual interactions. The two-center orbital is
\[
\psi_{u}(t r, t)=\sum_{n=1}^{N} x_{n}(\stackrel{r}{r}, t) a_{n u}(t)+\oplus_{u}(\stackrel{\rightharpoonup}{r}, t) b_{u}(t)
\]
in wich
\[
\left(i \hbar \frac{\partial}{\partial t}-H^{\top}\right) x_{n}=0-\left(1 \hbar \frac{\partial}{\partial t}-H^{P}\right) \omega_{u}
\]
and
\[
\left\langle x_{n} \mid x_{n}-\right\rangle=6_{n n^{-}},\left\langle\theta_{\nu} \mid \nabla_{u}\right\rangle=1 .
\]

The residual interactions are assumed to drop off more rapidly than \(r^{-1}\) so that, if \(t=0\) at the distance of closest approach, the coefficients \(a_{n u}(t)\) and \(b_{u}(t)\) dre essentially constant for \(t<-t_{L}\) and \(t>t_{L}\) for some large time \(t_{L}\). Then the case we consider is defined by the ini. tial ccnditions
\[
a_{n j 1}\left(-t_{L}\right)=0, \text { all } n \text {, and } b_{\mu}\left(-t_{L}\right)=1
\]

Moreover,
\[
\left\langle x_{n}(, t) \mid \varphi_{n}(, t)\right\rangle \underset{t \rightarrow \pm t_{l}}{ } 0
\]

The variation of a leads \({ }^{3}\) to
\[
\begin{equation*}
\left\langle x_{n}(, t)\right| i n \frac{\partial}{\partial t}-H\left|\psi_{\mu}\right\rangle=0 \tag{1}
\end{equation*}
\]
or
\[
\begin{aligned}
& i K_{i} a_{n u}(t)-\sum_{n}, V_{n n}^{P}-(t) a_{n}-(t)=V_{n u}^{I}(t) b_{u}(t) \\
& -i n\left\langle x_{n}(, t) \mid{ }_{\mu}(, t)\right\rangle \dot{b}_{\mu}(t) .
\end{aligned}
\]

The time-development matrix \(U\) for the targetcentered states is defined \(b_{\text {, }}\)
\[
i n \frac{\partial}{\partial t} U_{n n}-\left(t, t^{\prime}\right)-\sum_{n} V_{n n^{\prime}}^{P}-(t) U_{n} \ldots_{n}-\left(t, t^{\prime}\right)=0
\]
with
\[
U^{t}\left(t, t^{\prime}\right)=U^{-1}\left(t, t^{\prime}\right)=U\left(t^{\prime}, t\right)
\]
so that
\[
U_{n n^{\prime}}(t, t)=\delta_{n n^{\prime}}
\]

Then
\[
\begin{gathered}
a_{n \mu^{\prime}}(t)=-\frac{1}{n} \sum_{n^{-}} \iint_{-t_{L}}^{t} d t^{-} U_{n n^{-}}\left(t, t^{\prime}\right) \\
\times\left[v_{n}^{T}{ }_{\mu}\left(t^{\prime}\right) b_{\mu}\left(t^{\prime} ;-i \beta^{\prime}\left\langle x_{n}-\left(, t^{\prime}\right)\right| \rho_{\mu}\left(. t^{\prime}\right)>\dot{b}_{\nu}\left(t^{\prime}\right)\right]\right.
\end{gathered}
\]

In the two-center method the variation of \(b_{\mu}(t)\) leass to differential equation for \(b_{u}(t)\). The OHCE method is defined by prescribing in advance the shape of the timedepandence of \(b_{\mu}\) and leaving arbitrary only the final value, \(b_{\mu}\left(t_{L}\right)\). The acifivation and justification for this approximation, \(w\) ch benefits from our having a large target-ce :ered basis, is discussed in Ref. 4. Let us rite
\[
b_{\mu}(t)=1+\Delta b B(t)
\]
with
\[
B\left(-t_{L}\right)=0, B\left(t_{L}\right)=1, \text { and } \Delta b \equiv b_{u}\left(t_{L}\right)-1
\]

We then employ ariational principle which leads to
\[
\begin{align*}
\int_{-t_{L}}^{t_{L}} d t & <[1+\Delta b \operatorname{s}(t)] \varphi_{\mu}(, t) \mid \text { in } \frac{\partial}{\partial t} \tag{2}\\
& -H(, t)\left|\psi_{\mu}(, t)\right\rangle=0
\end{align*}
\]

Together with Eq. (1), this gives
\[
\int_{-t_{L}}^{t_{L}} d t\left\langle\psi_{\mu}(, t)\right| i \kappa \frac{\partial}{\partial t}-H(. t)\left|\phi_{\mu}(, t)\right\rangle=0
\]
so that
\[
\begin{gathered}
\left\langle\psi_{\mu}\left(, t_{L}\right) \mid \psi_{\mu}\left(, t_{\mu}\right)\right\rangle \\
=\left\langle\psi_{\mu}\left(,-t_{L}\right) \mid \phi_{\mu}\left(,-t_{L}\right)\right\rangle=1,
\end{gathered}
\]
which iaplies the unitarity of the scattering matrix in the basis of atomic orbitals. The optical choice of the mean field in \(H^{\top}\) implies that \(v_{\mu_{\mu}}^{\top} \equiv 0\). Then, after integration by parts, Eq. (2) with \(B(t)\) real valued leads to
\[
\begin{aligned}
& \frac{1}{2}|\Delta b|^{2}+\Delta b=-\frac{1}{\hbar} \sum_{n} \int_{-t_{L}}^{t_{L}} d t\left\{\left[1+\Delta b^{*} B(t)\right] V_{\mu n}^{T}(t)\right. \\
& \quad+i h^{\left.\Delta b^{*} B(t)<\varphi_{\mu}(, t) \mid x_{n}(, t)>\right\} \cdot a_{n_{\mu}}(t)} .
\end{aligned}
\]

The simplest, physically reasonable choice \({ }^{4}\) for \(B\) is \(B(t)=\theta(t)\), the step function equal to 0 for \(t<0\) and 1 for \(t>0\). Care at \(t \geqslant 0\) is needed. We have \(\delta(t)=\delta(t)\), and in Eq. (2) we encounter
\[
\int_{-t_{L}}^{t_{L}} d t \theta(t) \theta(t)=\frac{1}{2} \int_{-t_{L}}^{t_{L}} d t \frac{d}{d t} \theta^{2}(t)=\frac{1}{2}
\]
so, effectively, \(\theta(0)=1 / 2\). For this choice of \(B(t)\)
\[
a_{n \mu}(t)=a_{n \mu}^{(0)}(t)+\theta(t) a_{n \mu}^{(1)}(t) \Delta b
\]
with
\[
\left.a_{n v}^{(0)}(t)=-\frac{1}{n} \sum_{n} \int_{-t_{L}}^{t} d t^{-} U_{n n}-\left(t, t^{\prime}\right) v_{n}^{T}-t^{\prime \prime}\right)
\]
and
\[
\begin{aligned}
& \text { - in } \left.u_{n n}-(t, 0)\left\langle x_{n}-(, 0)\right| \varphi_{u}(, 0)>\right\} \text {. }
\end{aligned}
\]

In particular
\[
a_{n u}^{(1)}(0)=-\left\langle x_{n}(, 0) \mid \varphi_{u}(.0)\right\rangle
\]
\[
\begin{aligned}
& \text { Then } \\
& |\Delta 0|^{2}+2 \Delta 0=2 \sum_{n}\left\{-\frac{i}{\pi} \int_{-t_{L}}^{t_{L}} d t v_{\mu n}^{\top}(t) a_{n H}^{(0)}(t)\right. \\
& +\Delta 0^{*}\left\langle\nabla_{\mu}(, 0) \mid x_{n}(, 0)\right\rangle a_{n \mu}^{(0)}(0) \\
& +\frac{1}{2}|\Delta \Delta|^{2}\left|\left\langle\varphi_{u}(, 0) \mid x_{n}(, 0)\right\rangle\right|^{2} \\
& -\frac{1}{H} \int_{0}^{t_{L}} d t \quad v_{u n}^{T}(t)\left[\Delta b^{*} a_{n u}^{(0)}(t)\right. \\
& \left.\left.+\left\{|\Delta b|^{2}+\Delta b\right) a_{n \mu}^{(l)}(t)\right]\right\} .
\end{aligned}
\]

Because the only quadratic terms are proportiocal to \(|\Delta|^{2}\), one can find a linear combination of the real and imaginary parts of this equation wich is limear in Reab and lasb. Substitution tinen gives a quadratic equation for Reab or Imab.

The integrals recurring for this case are similar to those wich occurred when the electron was intially on the target, " the only difference being that in some of them the limits of integration are different. Thus, mumerical calculations of about the same speed and accuracy as previous OHCE calculat fons appear feasible. A. variety of applications would be interesting, including those in with transfer from the target is obtained for projectiles of the same \(Z_{p}\). but different values of the ionic charge. \({ }^{2}\)
1. R. L. Becker, Mucl. Instrum. \& Meth. B 27. 506 (1987).
2. R. L. Becker, A. L. Ford, and J. F. Readirg, Phys. Rev. A 29, 3111 (1984).
3. See R. L. Becker, A. L. Ford, and J. F. Reading, J. Phys. B 13, 4059 (1980).
4. J. F. Reading, A. L. Ford, and
R. L. Becker, J. Phys, B 14, 1995 (1981).
5. J. F. Reading, A. L. Ford, and
R. L. Becker, J. Phys. B 15, 625 (1982):
A. L. Ford, J. F. Reading, and R. L. Becker, J. Phys. B 15, 3257 (1982); R. L. Becker. A. L. Ford, and J. F. Reading, Nucl. Instrum. 8 Meth. B 10/11, 1 (1985); R. L. Becker, p. 447 in High Energy Ion-Atom Collisions (SpringerVerlag, Berlin. (988).

\section*{IONIZATION IN COLLISIOWS BETWEEN ELECTRONS MD} COMPLEX IONS!
C. Bottcher D. C. Grififin \({ }^{2}\)
M. S. Mindzola \({ }^{3}\)

Most models of not plasmas containing complex fons still rely on simple, semt-empirical formu-
lae for electron-impact ionization rates. These formulae often fail when applied to complex ions, through neglect of two factors: (1) indirect ionization mechanisms involving autoionizing states, and (2) long-lived metastable states of the target ion. Extensive calculations and measurements on the iron isonuclear sequence, carried out by groups at Dak Ridge, \({ }^{4}\) provide an instructive case study. While the distorted-wave approximation is often adequate, some progress has been made toward more precise calculations. Even approximate calculations on complex systems require extensive computer resources.
1. Abstract of talk presented at Gaseous Electronics Conference, Atlanta, Georgia, October 13-16, 1987.
2. Rollins College, Winter Park, FL 32789.
3. Auburn University, Auburn, AL 36849.
4. M. S. Pindzola, D. C. Griffin, and C. Bottcher, Phys. Rev. A 34, \(36: 18\) (1986).

\section*{ELECTRON-IOM COLLISIONS IM THE AVERAGECOMFIGURATIOM DISTCRTED-MAVE APPROXIMATIOM \({ }^{1}\)}
\[
\begin{gathered}
\text { M. S. Pindzold } \\
\text { C. Bottcher } \\
\text { D. Griffin }
\end{gathered}
\]

Explicit expressions for the electron-iapact excitation, fonization, and resonantrecombination cross sections are derived in the average-configuration distorted-wave approximation. Calculations using these expressions are applied to several types of phenomena in electron-ion scattering where comparison with other theoretical methods and experimental measurements can be made.

\footnotetext{
1. Abstract of paper: PD. 75-91 in Atomic Processes in Electron-Ion and Lon-lon Collisions (Plenum Publishing Corporation, 1986).
2. Auburn University, Auburn, AL 36849.
3. Rollins College, Winter Park, FL 32789.
}

\section*{ELECTRON-IMPACT IONIZATION DATA FOR THE FE ISOMUCLEAR SEQUEMCE \({ }^{1}\)}

\author{
M. S. Pindzold \({ }^{2}\) \\ C. Bottcher \\ D. C. Griffin \({ }^{3}\) S. M. Younger \({ }^{4}\)
}
H. T. Hunter

Collision processes involving highly ionized iron impurities play in important role in magnetically rionfinea fuston plasmas. Avallable
experimental and theoretical cross-section data for electron-impact ionization of ions in the Fe isonuclear sequence in charge states ranging from 1 to 26 are reviewed, and recommended data for each charge state are presented graphically. Contributions to the ionization cross sections due to inner-shell excitation-autoionization have been considered in detail for each ionization stage and make substantial contributions for the intermediate charge states. The role of metastable levels in ionization is also addressed. Maxwellian collisional rate coefficients are calculated from these recomended cross-section data and presented in tabular, graphical, and parametrized form. Comments are made on current research activities leading to future data for Fe ions.

\footnotetext{
1. Abstract of paper: Muclear Fusion Special Supplement. 1987.
2. Auburn University, Auburn, AL 36849.
3. Rollins College, Winter Park, FL 32789.
4. Lawrence Livermore Mational Laboratory, Livermore, CA 94550.
}

PRODUCTION OF HIEH-ANELLAR VDNEUTIU RYDRERG STATES BY STOCHASTIC COLLISIOWS \({ }^{1}\)

\section*{J. Burgdörfer² \\ C. Bottcher}

Projectile-centered Rydberg states of fast, highly charged ions traversing thin solid targets show an unexpected abundance of high 2 states. We present a theory for the production of high \(\&\) states based on classical stochastic dynamics. Oiffusion into high \(e\) states is shown to be universal for single-particle orbits in three dimensions under the influence of a stochastic perturbation, l.e., largely independent of the detafls of the interaction potentials. Monte Cario simulations using a Langevin equation for stochastically perturbed electrons in a dynaically screened Coulanb field yield quanti. tative agreement with experimental data.

\footnotetext{
1. Abstract of Japer submitted to Physical Review Letters.
2. Adjunct staff nember from University of Tennessee, Knoxville, iN 37996-1200.
}

THE v/2 ELECTRON EMISSION IN IOM-ATOM COLLISIONS WITH SHORT-RAMGE FOTENTIALS \({ }^{1}\)
\[
\begin{gathered}
\text { J. Burgdörfer² Bárány } \\
\text { A. Mang³ }
\end{gathered}
\]

Recent classical trajectory Monte Carlo calculations for \(\mathrm{H}^{+}+\mathrm{H}\) collisions by 01 son \(^{5}\) have revealed a qualitatively new feature in the ionization spectrum: a peak near forward direction at \(v\) - \(v_{p} / 2\) (\(v_{p}\) = projectile velocity) of electrons stranded in between the two potential wells of the target and projectile. Data by Meckbach et al. \({ }^{6}\) display a narrowly focused "ridge" in the forward emission spectru of electrons propagating in the saddle point region of the potential in the exit channel. The "height" of this ridge is not yet unambiguously established. \({ }^{7}\) More recently, Olson et al.: found a v/2 hump in the differential ionization spectrum at an angle \(-20^{\circ}\) relative to the forward direction. We have investigated \({ }^{9}\) the existence of a "v/2" peak for ion-atom collisions in one dimension where the coulamb potentials are replaced by Dirac delta potentials. For potentials of zero range (\(\delta\) potentials) the complete velocity spectrum can be calculated exactly. Despite the absence of a saddle point, we find a hump near \(v_{p} / 2\) while the customary ECC and ELC "cusp" electrons near \(v_{e}=v_{p}\) and \(v_{e}=0\) are missing (Fig. 5.16). In this case, the excitation process at low and intenmediate velocities can be traced to a Fano-Lichten type molecular orbital promotion mechanism at imall internuclear distances leading to the excitation of zero-energy (threshold) resonances in the quasimolecular spectrum. \({ }^{10}\) This result points to the independence of the primary excitation mechanism from the long-range part of the electron-nucleus interaction. However, the details of the slope of the peak will depend on the long-ranged postcollisional interaction.6,11 at high velocities the hump near \(v / 2\) disappears iridicating the breakdown of the quastmolecular excitation mechanism.

\footnotetext{
1. Summary of paper: Phys. Rev. A 38, 4919 (1988,.
}

Fig. 5.16. Differential ionization probability vs. electron momentum \(k\) (in units of the projectile velocity \(\mathrm{v}_{\mathrm{o}}\)). \(\mathrm{Z} \mathrm{T}, \mathrm{p}\) denotes target (projectile) charge; the \(v / 2^{\circ}\) electron mimp appears at k/v - \(1 / 2\).
2. Adjunct staff member from University of Tennessee, Knoxville, TM 37996-1200.
3. University of Tennessee, Knoxville, in 37996-1200.
4. Research Institute of Physics, 5-10405 Stockholm, Sweden.
5. R. E. Ol son, Phys, Rev. A 33, 4397 (1986).
6. W. Meckbach et al., Phys. Rev. Lett. 57, 1587 (1986).
7. C. Garibotti, private comunication.
8. R. E. Olson et al., Fhys. Rev. Lett. 59, 36 (1987).
9. J. Burgdörfer, J. Mang, and A. Bárány, Phys. Rev. A 38, 4919 (1988).
10. J. wang and J. Burgoörfer, submitted to Muclear Instruments and methods in Physics Research (1988).
11. Conrerence on the Physics of Electronic and Atomic Collisions, Abstracts of Contributed Papers, Eds. J. Geddes et al. (Brighton, U.K., 1981) p. 605.

TRAMSLATIOM IMEEDDED PERTURBED StATIOMARY STATES \({ }^{1}\)
\[
\text { G. J. Bottrelli } \quad \text { T. G. Helli }
\]

An extension of the method of perturbed stationary states (PSS) is presented. The
translation imbedded perturbed stationary states (TIPSS) method involves an expansion of the total mavefunction in eigenfunctions of the Jacobi nuclear kinetic energies and appropriate electronic states. The resulting equations avoid the usual pitfalls of the PSS approach, f.e.. electronic origin ambiguities and longrange dipole couplings. A simple approximation to these equations is examined for the collisions of the bare nuclei \(\mathrm{He}^{\mathbf{2 +}}\), \(\mathrm{Li}^{\mathbf{3 +}}\), and Be \({ }^{4+}\) with atomic hydrogen for velocities \(v<1.0\) (atomic units). Excellent agreement between theory and experiment is obtained.
1. Abstract of paper submitted to Physical Review \(\mathrm{A}_{\text {. }}\)
2. Oak Ridge Associated Universities Postdoctoral Research Associate.
3. University of Georgia, Athens, GA 30602.

\section*{MWERICAL HARTREE-FOCK MAVEFUNCTIONS FOR TRIATGIC MOLECLES}
\[
\text { G. J. Bottrelli }{ }^{1} \text { J. C. Morrison }{ }^{2}
\]

We have begun a progras to solve mmerically for the wavefunctions of simple triatomic molecules. This solution is found by expanding the wavefunction in a set of local functions known as basis splines. We then perform a mapping into a collocation space allowing us to work with the actual wavefunction rather than a set of expansion coefficients. The result is a matrix eigenvalue problem for the energies.

This set is solved using the method of imaginary time propagation. In this method an initial trial function \(\phi_{\top}^{0}\) is chosen. This trial function can be written as an expansion in temms of the exact eigenfunctions \(\theta_{n}\) as
\[
\phi_{T}^{0}=N^{0}\left[a_{0}^{0} \varphi_{0}+\sum_{n} a_{n}^{0} \varphi_{n}\right]
\]
where \(\varphi_{0}\) is the ground-state wavefunction, \(x^{0}\) is a normalization constant, and the sum is over \(n\). 0 . We now operate with the operator \(e^{-i H}\) where \(H\) is the Hamiltonian and \(i\) is a parameter to be chosen. The result after renormalization is the function \(\varphi \frac{1}{\gamma}\), wich can be written as
\[
\psi \frac{1}{j}=N^{d}\left[a_{0}^{1} \psi_{0}+\sum_{n} a_{n}^{t_{n}}\right]
\]
where the \(a_{n}^{1}\) are related to the \(a_{n}^{0}\) by
\[
a_{n}^{1}=e^{-\left(E_{n}-E_{0}\right) x} a_{n}^{0}
\]

Since \(E_{0}<E_{n}\) for all \(n * 0, a_{n}^{1}<a_{n}^{0}\) for all \(n * 0\), so that \(\phi_{\frac{1}{l}}\) is richer in \(\varphi_{0}\) than mas \(\phi_{\top}^{0}\). gepeated iteration allows the resulting function to be arbitrarily close to \(\varphi_{0}\). The parameter t is chosen in order to speed up this iteration process with the restriction that it cannot be so large that the expansion of the operator \(e^{-T H}\) becomes excessively long. Excited state mavefunctions are obtained by starting with trial function that is orthogonal to \({ }_{0}\).

We have applied this method to finding the ground state of the molecular ion \(\mathrm{H}_{3}^{2+}\). Results
are in quantitative agreement with other calculations. 3 Plans are under may to improve the accuracy of the results, as mell as to allom for exploration of the relevant molecular structure parameters (bond length, bond angle, etc.). Work is also under way to extend this work to multielectron systems, in particular to the heliu-like system \(H_{3}^{+}\)and the neon-like system \(\mathrm{H}_{2} \mathrm{O}\) 。
1. Oak Ridge Associated Universities Postgraduate Research Associate.
2. University of Louisville, Louisville, K: 40292.
3. D. Feller, private comminication.

\section*{6. LASER AND ELECTRO-OPTICS LAB}

\begin{abstract}
The plasma diagnostics development progran focuses on the development of advanced diagnostic systems for existing and future magnetic fusion experiments, relying primarily on optical and laser technology. The Laser and Electro-Optics Lab (LEOL) encompasses these activities and makes this teihnology available to other ORNL programs. The current emphasis is on the application of infrared and far-infrared lasers to the diagnostics of the next generation of ignited fusion reactors. Small-angle Thomson scattering of pulsed \(\mathrm{CO}_{2}\)-laser radiation is being developed as a diagnostic of energetic alpha particles produced by the D-T fusion reaction. A multichannel interferometer far-infrared interferometer system is being developed for measurement of electron density profiles in the Advanced Toroidal Facility (ATF) being placed into operation in the ORML Fusion Energy Division. An infrared laser interferometer/polarimeter system operating at 10.6 and \(28 \mu\) mas also been proposed for the Compact Ignition Tokamak, whose construction has been proposed at Princeton Plasma Physics Laboratory. Other LEOL activities include measurements of damage to optical materials produced by intense laser irradiation. This work formed part of the ORNL program in support of the Strategic Defense Initiative.
\end{abstract}
diagmostic for fusion-Proouced nlpha particles BASED OM SMLL-AMGLE THONSOM SCATTERIWG Of PUSED \(\mathrm{CO}_{2}\) LASER RADIATION
R. K. Richards \({ }^{1}\)
Y. M. Fockedey \({ }^{4}\)
C. A. Bennett \({ }^{2}\)
H. T. Hunter
L. K. Fletcher \({ }^{3}\)
D. P. Hutchinson

\section*{K. L. Vander Sluis}

In a deuterium-tritium fueled fusion reactor the fusion-product alpha-particle behavior is of crucial importance, because the energy transferred to the plasms fuel from the slowing down of these particles is required to maintain ignition. Therefore, the next generation of fusion reactors has as its main physics goal the study of the physics of alpha-particle heating. 5 To study the alpha particle behavior we have examined the feasibility of a Thomson scatter:ag diagnostic based on a high power \(\mathrm{CO}_{2}\) laser. \({ }^{6}\) Recent work on this diagnostic is summarized in references 7 and 8. The scattering is expected to produce a spectrum shown in Fig. 6.1. Note that the scattering from the free electrons produces a small background in the measurement of the alpha particles.

Present and future work is directed toward a proof-of-principle test on a nonburning plasma in the Advanced Toroidal facility (ATF). The god of this test is to onserve the Thomson scattering under similar conditions exsiected in
orve ong in icess

Fig. 6.1, The expected scattered power spectrum from the components in an ignited plasma.
an expertment having alpha particles. However, with no alpha particles, the test will then be a measurement of only the electrons.

\footnotetext{
1. Fusion Energy Divistion, DRNL.
2. On sabhatical from University of w,ith Carolina, Asheville.
}
3. Tennessee Technological University, Cookerille, Tennessee.
4. Catholic University of Lowvain, Louvai, -la-Meure, Bel gium.
5. D. Post et al.. Princeton Plasma Physics Laboratory Report Mo. 2389 (1986).
6. D. P. Hutchinson et al.. Rev. Sci. Instrum. 56, 1075 (1985).
7. R. K. Richards et al.. Rev. Sci. Instrum. 59. 1556 (1988).
8. C. A. Bennett , R. K. Richards, D. P. Hutchinson, orm/TM-i0419, 1988.

\section*{DEVELOPHEIT OF A SUQMILLIMETER-MVE MLTICHAMEL LASER IMTERFERNETER FOR THE ADVAMCED TOROIOAL FACILITY}

\section*{C. H. Ma}
Y. M. Fockedey \({ }^{3}\)
C. A. Bennett \({ }^{1}\)
J. Lee"
A. H. Casson \({ }^{2}\)
K. L. Vander Sluis
D. P. Hutchinson

A 15-channel interferometer operating at a wavelength of \(119 \mu\) ic being developed for the Advanced Toroidal Facility (ATF) experiment at orin. The large number of channels is achieved by the use of reflective beam expansion optics to create beam \(2 \mathrm{~cm} \times 45 \mathrm{~cm} .5\) After passing through the plasma discharge, the elongated beam produced by the cylindrical mirrors is dissected at the focal plane of the optics system by an array of 15 off-axis paraboloid reflectors, each of wich illuminates a single Schottky-diode detector. The use of the beam expanding optics system reduces the average number of optical elements required for the interferometer to approximately \(2-3\) per channel.

The interferometer was operated on a single chanmel during the last quarter of fy 1988 using a free-space lens system to transport the laser beam to the AIF device. The atmospheric attenuation of the FIR laser beam due to witer vapor was found to be prohibttive and ary-nitrogenfilled maveguide transmission system was constructed to replace the free-space lens optics. inis change resulted in adequate signal levels at the plasma and reference detectors to operate the interferometer. During the first half of Fy 1989, the waveguide system will be mated to the beam-expansion-optics set in order to implement the 15 -channel interferometer.

\footnotetext{
1. In sabbatical from University of North Carolina, Asheville.
2. DRALI Posedoctoral Research Associate.
}
3. Catholic University of Louvain, Louvain-la-Meure, Belgiun.
4. University of Tennessee, Knoxville.
5. C.A.J. Hugenholtz and B.J.H. Meddens, Rev. Sci. Instrun. 53, 171 (1982).

\section*{PROPOSAL FOR A TMD-colom \\ INTERFERONETER / POLARINETER FOR THE COMPACT IGNITIO TOKAMK}

\author{
C. H. Ma D. P. Hutchinson
}
K. L. Vander Sluis

During the past year, the feasibility of a two-color infrared interferometer/polarimeter system for simultaneous masurements of electron density and plasma current profiles in the Compact Ignition Tokamak (CIT) has been investigated. A two-color system using \(\mathrm{CO}_{2}\) lasers at a wavelength of 10.6 m and mater-vapor lasers at 28 ymas proposed to correct the measuring errors caused by echanical vibrations of the optic components. The choice of these wavelengths results matnly from a trade-off, being sufficiently short to ifmit both the angle of beam refraction by plasma density gradients and the elliptictty of the polarized wave to an acceptable value, yet sufficiently long to obtain adequate sensitivity for the measurements. 1 A schematic diagram of the \(\mathrm{CO}_{2}\) laser system is shown in Fig. 6.2. The detailed theory and description of the system have been reported elsewhere. \({ }^{2}\)

In the first of two experiments to determine the performance characteristics of the electrooptic modulation system, a mechanical polarization rotator was inserted in the path of the probing beam, and was set at \(45^{\circ}\) with respect to the polarization of the incident beam. Under this condition, a faraday rotation of \(90^{\circ}\) was simulated. Figure 6.3b shows the output signal of the detector and the modulation signal of the if modulator. The frequency spectrum of the heterodyne beat signal at 40 mHz and the sideband Prequencies of \(\pm 70 \mathrm{kHz}\) are illustrated in Fig. 6.3d. It can be seen in the figures that, for a mortulation of about 33\%, the signal-tonoise ratio of the side-bands is approximately 20 tr. The high signal-to-noise ratio was achieved with only one watt of \(\mathrm{CO}_{2}\) laser power and whenout any beam focissing. The output.

Fig. 6.2. Experimental configuration for the polarization-modulation \(\mathrm{CO}_{2}\) laser polarimeter.

(a)

SIGNAL

TIME (10 us/DIV.)
Fig. 6.3. (a) Frequency spectrum of the heterodyne beat signal at 40 Mmz and the sideband Prequencies of \(\pm 70 \mathrm{kHz}\). (b) Output signal of the detector (upper trace) and the modulation signal at 70 kHz (lower trace) with both probing and reference beams.
signal can be synchronously detected by two lock-in aplifiers at 40 mzz and 70 kHz . However, due to linited resources, the signal was analyzed by only one lock-in amplifier synchronized to the modulation frequency (October 1987). Since the signal at the modulation frequency is only proportional to the power of the probing bean, this measurement was performed with the reference bear blocked. The output signal of the detector with probing beam only is shown in Fig. 6.4b. The modulation signal is also illustrated in this figure. Figure 6.4a shows the frequency spectrum of the modulated signal. The output voltage of the lock-in aplifier, \(V\), is given by:
\[
\begin{equation*}
v=v_{0} \sin \left(2 \theta_{p}\right) \tag{1}
\end{equation*}
\]

(a)

TIME (\(10 \mu \mathrm{~s}\) OIV.)
(b)

Fig. 6.4. (a) Frequency spertrum of the modulated signal at 70 kHz . (b) cutput signal of the detector (upper trace) and the mosulation signal (lower trace) with probing texam iml.
where \(\theta_{p}\) is the Faraday rotation in the plasma, and \(V_{0}\) is a calibration constant. For CIT plasma parameters, the maximan value of \(\theta_{p}\) is approximately \(1.5^{\circ} .3^{3}\) Therefore, \(V\) can be considered as a direct measure of \(\theta_{p}\) and Eq. (1) becomes
\[
\begin{equation*}
\theta_{p}=V / Z V_{0} \tag{2}
\end{equation*}
\]

The constant \(V_{0}\) can be obtained by setting the mechanical polarization rotator at a few degrees (\(64^{\circ}\)) and measuring the value of \(V\).

Our second experiment studied the transient performance of the polarimeter. The plasma simulator coil mas driven by a pulsed current. The rotation caused by this simulator coil was directly proportional to the current, wich was monitored by a current probe. The simulated Faraday rotation and the amplifier output mere simeltaneously displayed on an oscilloscope. Typical oscillograph traces are shown in Fig. 6.5. As shown in the figure, for a simulated rotation of approximately \(1.8^{\circ}\), the output voltage of the aplifier is about 330 mV . The base line of the output voltage is in the range of \(\mathbf{1}\) to 2 mV . Therefore, a sensitivity of approximately \(0.01^{\circ}\) was achieved. The time delay between the simulated and measured rotations was due to the large RC constant (3 ms) of the lock-in amplifier. Evidently, the cime resolution of the polarimeter can be improved

Fig. 6.5. Stmulated Faraday rotation angle (lower trace) and the measured lock-in amplifier output (upper trace) vs time for a simulated CIT plasma. Traces indicate that the Faraday rotation medsurement has a sensitivity of about \(0.01^{\circ}\).
easily by increasing the modulation frequency and using lock-in aplifiers with faster time constants. A magneto-optic polarization modulator mas successfully designed, censtructed, and tested. The performance characteristics of the polarimeter with this modulator are being investigated.

An interferometer/polarimeter system employing a \(28-\mu\) mater-vapor laser has been proposed by T. Fukuda et al. and has been tested on a field-reversed theta pinch plasma.t To our knowledge, the feasibility of using polarizationmodulation techniques in polarimeters has not yet been examined at this mavelength. We are currently designing a 28 - \(\mu\) laser systen and intend to investigate the performance of \(28-\mu \mathrm{m}\) polarization modulators.
1. C. H. Ma and D. P. Hutchinson, Bull. Am. Phys. Soc. 32,1870 (1987).
2. C. H. Ma, D P. Hutehinson, and K. L. Vander Sluis, Rev. Sci. Instrum. 58, 1629 (1988).
3. C. H. Wa et al., Space Power 6, 221 (1586).
4. T. Fukuda et al., Int. J. Infrared m Maves 5, 1039 (1984).

\section*{Gptic omage and irradiation studies}

\author{
H. T. Hunter R. K. Richardsl \\ D. P. Hutchinson
}

For many years optical miterials for hightech mifrors and windows have been studied to improve their performance in military and commercial applications. ODIS (Optic Damage and Irradiation Studies), as part of the Laser and Electro-Optics Lab, has designed, constructed, and implemented a high power \(\mathrm{CO}_{2}\) pulsed laser system to study the damage thresholds of opitical components. A sketch of the basic system components is provided in fig. 6.6.

The damage thresholds of superpolished mirrors and windows were determined by varying the pulsed laser power density that irradiated the optic surface. To vary the pulsed laser power density, a gas cell was designed to absorb a controlled amount (up to 99.99\%) of the pulsed laser \(10.6-\mu \mathrm{m}\) rodtation enroute to the sample.

Fig. 6.6. Apparatus (top view).

The extent of optic surface damage mas determined by measuring reflectance changes in situ from a \(0.633 \boldsymbol{\sim} \boldsymbol{\omega}\) laser scatterometer illuminating the irradiation site. All testing mas done while the optic samples mere in vacuum. This allowed irradiating the sample with higher \(\mathrm{CO}_{2}\) laser power densities without absorption of the 10.67 mim radiation by air.

Results obtained are considered sensitive material and therefore may not be disclosed for the purpose of this report.
1. Fusion Energy Division, ORNL.

\section*{7. HIGH ENERGY PHYSICS}

\author{
H. O. Cohn
}

The data taking phase of a high energy neutrino interaction experiment at Fermilab has been completed. The experiment was done employing a 1.4 meter freon-filled bubble chamber and a big array of different large area positionsensitive counters. The collaboration that performed the experiment consisted of physicists from Tonoku University, Brow University, Fermilab, Indiana University, Institute for High Energy Physics of Beijing, China, Massachusetts Institute of Technology, University of Tennessee, Tohoku Gatuin University and Oak Ridge Mational Laboratory. In the following, we describe a new method to investigate the nuclear effect in leptonic interactions (EMC effects).

Since the discovery of the EMC effect. \({ }^{1}\) various experiments have been done including muon scattering studies, electron scattering, and deep inelastic neutrino experiments. All of these experiments obtained the ratio of the deep inelastic structure functions, \(F_{2}(x)\), or equivalent of the cross section. \(\sigma(x)\), for interactions with a heavy nucleus relative to deuterium. The common features of these data are: a small excess of the ratio in the region \((x<0.3)\), a dip in the middle region (\(0.3<x<0.7\)) and a sharp rise for (\(0.8 \leqslant x\)). Here, \(x\) is the Bjorken variable, \(x=Q^{2} / 2 M \nu, Q^{2}\) being the four momentum transfer squared, \(M\) the nucleon mass, and \(v\) the energy transfer between neutrino and muon \(\left(E_{\nu}-E_{\mu}\right)\). Although many theoretical interpretations of this effect \({ }^{2}\) have been advanced, it would appear that a final resolution of its underlying cause will require either more detailed information or, perhaps, experimental data of a different kind. Our experiment presents a new approach to the study of the nuclear effect.

The basis of our idea is that a mucleus is not unifore for this effect. The more loosely bound surface mucleons may be considered quasifree while the more tightly bound mucleons experience motion which is strongly correlated with other mucleons, and the buC effect may be due to interactions involving mucleons of the latter type.

Interactions with the above two categories of nucleons can presumably be differentiated by the nuclear debris associated with neutrino interactions. The dark tracks (stubs) from an interaction vertex in the bubble chamber pictures are thought to be such nuclear debris. It is clear that this procedure will not result in a perfect separation of events due to the two classes of nucleons. Mevertheless, to first order, we shall assume that events with dark tracks are predominantly interactions with deeply bound nucleons while events without dark tracks are primarily interactions with quasi-free surface nucleons. If these assumptions are adequate, we should be able to demonstrate the EMC effect by comparing the two groups of data from a given target mucleus. Furthermore, this should result in a larger effect than is seen in conventional experiments since the latter, perforce, include a large fraction of quasi-pree interactions.

The Tohoku 1.4 m High Resolution Freon Bubble Chamber Hybrid System was exposed to the wide band neutrino beam generated by 800 GeV protons from the TEVATROM. The bubble chamber employs a holographic high-resolution camera, in addition to the three normal stereo-optic cameras. In this experiment, the Freon liquid is a mixture of R116, \(C_{2} F_{6}\) (\(27 \%\) in weight) and R115, \(\mathrm{C}_{2} \mathrm{CRF}_{5}\) (738). The ratio of atoms, \({ }^{12} \mathrm{C}:{ }^{19} \mathrm{~F}:{ }^{35} \mathrm{Cl}\), is 0.25:0.66:0.09 in the atom numbers and 0.16:0.67:0.11 in the event rate. The average

A is 20.7 in the event rate, so that the average target nucleus approximates \({ }^{19} \mathrm{~F}\).

About half of the neutrino events in this heavy liquid are accompanied by dark tracks at the interaction vertices. They are mostly short stopping tracks referred to as stubs, and their multiplicity distribution, \(n\), tails up to nine and the average multiplicity in the observed dark track events, \(\langle n\rangle\), is 1.94 . The distribution of the dark track length, \(l\), rises sharply as \(\ell\) decreases (the mean length is 35 m , corresponding to the mean momentum \(0.34 \mathrm{GeV} / \mathrm{c}\)). The angular distribution of the dark tracks in the laboratory system is quite uniform for \(P\) < 0.3 GeV/c. The primary sample of dert t-arks contained 2.08 of \(\left(x^{+} \rightarrow \mu^{+}+e^{+}\right)\), \(0.3 \%\) of \(\left(\mathrm{K}^{-} \rightarrow \mu^{-} \rightarrow \mathrm{e}^{-}\right)\), and \(1.5 \%\) of \(\left(\mathrm{K}^{-}+\right.\) neutrals), and me removed these observed pion tracks from our dark track samples for the analysis. Therefore, our dark tracks are believed to be mostly slow protons emerging from the target nucleus and to indicate a strong correlation between the interacting nucleons and surrounding nucleors.

The observation of short dark tracks is affected by the sensitivity of the detector, lanin. The data from the nolographic sample have a sensitivity \(\ell_{\text {min }}=0.5 \mathrm{~mm}\) in space and \(\mathrm{P}_{\text {min }}=0.09\) GeV/c. Since the analysis of the holograms is time-consuming, in this preliminary report, we include data wich is based on the results from normal pictures (84\%), where \(l_{\text {min }} 4\) in in space, corresponding to \(P_{\text {min }}=0.17 \mathrm{GeV} / \mathrm{C}\). Meutrino charged current events were selected by aknematical method. A cut was applied to ensure the rejection of neutral curent events and hadron events. The final sample, utilizing a conservative fiducial volume, consisted of 553 events without any dark tracks \((n=0)\) and 538 events with (\(n>1\)). Our assumption is that the presence of dark tracks is the signature of a strong correlation between the interacting nucleon ind its netghbors, and that it is reldtively independent of other detalis of the v-nucleon deep inelastic interaction. it is estimated that dark track events resulting from rescattering constitute less than \(3 \%\) of our
(\(n>1\)) saple, i.e., the bias due to dark tracks of this origin is negligibly small.

In meutrino interactions, \(\sigma(x)\) is very close to \(F_{2}(x)\) except in the sall \(x\) region, and the data of all \(x\) regions are obtained in a bubble chamber experiment. In order to obtain the ratio of \(\alpha(x)\), the directly measured \(d / d x\) distributions in the two groups are used without any Monte Carla correction since the corrections are the same for the two groups. Fig. 7.la shows the ratio of the \(\sigma(x)\) distribution for \((n>1)\) and \((n=0)\) groups, \(R(x)=\sigma(x) n \geqslant 1 /\) \(o(x) n=0\). A muclear effect is clearly seen. The statistics are rather limited in this preliminary result, however, it was checked that the general feature of the ratio was kept for various types of common cuts for both groups.

In Fig. \(7.10-d\) we compare the data of the present experiment with data from a previous FMAL \(v-D\) experiment, \({ }^{3}\) E545. This latter experiment contains 13,106 charged current events,

Fig. 7.1. The ratio of \(\sigma(x), R(x)=\sigma(x)\) // s(x)! !: (a) \(I=(n>l)\) and \(!1=(n=0)\),
(b) \(1:(n \geqslant 1+n=0)\) and

II = (\(v-0)\); the standard EMC plot. \(g(x) \sim / g(x) v=0\).
\((c)!=(n=0)\) and \(11=(v=0)\),
\((a):=(n, 1)\) and \(I I=(v-0)\),
\(x\) marks are for \(E_{v}\) \& 100 GeV cut data, error bars athout 1.5 times the error bars of total datd shown.
mich pernit improved statistical accuracy of the ratios in these comparisons. Fig. 7.lb shows the standard EXC plot for our full data \(v^{-}\) 19F. (\(n=0+n \geqslant 1\)), relative to the deuteriun data. The v-D events mere measured and analyzed by substantially the same method as in the preset experiment. However. they are independent experiments. Fig. 7.1c represents the ratio \(\sigma(x) n=0 / \sigma(x) v-D\) wich shows, as expected, that the effect has essentially disappeared for these events. By contrast, Fig. 7.1d shows \(\sigma(x) n \geqslant 1 / \sigma(x) v-D\), where a strong effect is seen. It is clear that the effect seen in Fig. 7.1e is primarily in the \((n>1)\) group.

The most reasonable conclusion from our results is that the dark track events involve interactions with deeply bound mucleons and show an undiluted nuclear effect wile events without dark tracks are dominated by interactions of quasi-free mucleons.
1. J. J. Aubert et al.: Phys. Lett. 123., 275 (1983).
2. For example. O. Machtman. Proceedines of the lith International Conference on Noutrino Physics (1ga), p.los; C. H. Tlewellyn Sifth, Phys. Lect. 120, 107 (1983); S. Vo Malinichev et al.. Phys. Lett. 158., 485 (1985).
3. For example, J. Manlon et al., Phys. Rev. Lett. 45, 1817 (1980); T. Kitagaki et al., Piys. Rev. Lett. 49, 98 (1982); E545 collaboration.

\section*{8. COMPILATIONS AND EVALUATIONS}

\section*{CONTROLLED FUSION ATONIC DATA CENTER}

R. K. Janev \({ }^{5}\)
M. I. Kirkpatrick
E. W. McDaniel \({ }^{6}\)
F. W. Meyer
T. J. Morgan'
R. A. Phaneuf
M. 5. Pindzola \({ }^{0}\)
J. K. Swenson \({ }^{4}\)
E. W. Thomas \({ }^{6}\)

The Controlled Fusion Atomic Data Center (CFADC) collects, reviews, evaluates, and recommends numerical atomic collision data wich are relevant to controlled thermonuclear fusion research. The CFADC operates with an equivalent of 1.5 full-time staff members and a nunber of expert consultants under contract. Menbers of the Experimental Atomic Physics for Flsion group also contribute a small fraction of their time to literature searches and categorization of relevant publications.

The major activities of the datd center are:
- the maintenance of ar on-line computer data base of fusion-relater publications on atomic collision processes, and periodic distribution of updates to other data centers.
- the preparation and publication of compliations of recommended atomic collision data.
- the deduction of scaling laws and parametrization of atomic-collision data for ease of application in fusion research.
- the establishment of a computer data base of recommended atomic-collision data, and a data exchange format to facilitate their apfiication in fusion research.
- the review of the existing atomic-collision data base with respect to current applications in fusion research, and identification of data needs.
- the processing of individial requests for specific data or literature searches on specific processes.

The CFADC participates in the International Atomic and Molecular Data Center Metwork established by the International Atomic Energy Agency (IAEA) in Vienna and has cosperative agreements with a mumber of other data centers. These include
- the Atomic. and Molecular Processes

Information Center at the Joint Institute for Laboratory Astrophysics, Boulder, Colorado.
- the Data Center for Atomic Spectral Lines and Transition Probabilities at the Mational Institute for Standards and Yechnology, Gaithersburg, Maryland.
- the IAEA Atomic and Molecular Data Unit in Vienna, Austria.
- the Research Information Center at the Institute of Plasma Physics (IPP), Magoya University, Japan.
- the Atomic and nuclear Data Center of the Japan Atomic Energy Research Institute (JAERI), Tokai, Japan.
Updates of our bibliography are sent quarterly on computer diskettes to the IAEA and to both Japanese data centers. This forms the basis for the semiannual IAEA International Bulletin on Atomic and Molecular Data for Fusion. The IAEA publication CIAMDA-87, an indexed bibliography of fusion-relevant atomic and molecular processes covering the 1980-87 period, is based almost entirely on the CFADC bibliography. With supplemental funding ? rom the DOE Office of Fusion Energy, 450 copies of this publication were purchased and distributed by the CFADC to researchers in the United States.

During this reporting period, work has continued on presaration of the five-volume "Redbook" series of recommended data, Atomic Data for Fusion. Three volumes have been published and distributed, and data compliation and eval:ation work has recently been completed
for d fourth volume, entitled "Collisions of H . \(H_{2}\). He and Li Atoms and ions with Atams and Molecules." Publication and distribution of this volume (ORM-6086) is planned for the spring of 1989. All tabular and graphical data for this series are computor-generated in peblication-ready format. Maxrellian rate coefficients are calculated from the cross-section data, and Chebyshev polynoaial fits are given for all the recomended data.

The CFADC also participated in two IAEA-sponsored workshops held in Vienna during the period:
- A Specialists Meeting on Carton and Oxygen Collisior Data for Fusion Plasma Research, were the role of the CFADC was to review the data base for electron collisions and to prepare a summary report, wich will be gublished in a topical issue of Physica Scripta.
- A Consultants Meeting on Atomic Data Base and Plasea Applications Interface.
A major role of the CFADC at tre Applications Interface Meeting was to assist with the implementation of a new atomic data interface program, called "ALADDIN," mich was developed by R. A. Hulse. alasma physicist from Princeton Plasma Physics Laboratory. ALADDIM is a FORTRAN code designed to facilitate effective exchange of data and the establishment of a computer data base for "users." It can accept a wide range of data formats, including tabular, parametrized, and fitted data. and it operates on wide range of computer systems. inci:iding persorial compute. AlAODIM will faci?itate the dissemindtion of recommended data contained in our "Redbook" series. An entire volume containing data for several mundred reactions can be accommodated along with the ALADNin program on a single computer diskette.

Work also has continued on the scaiing: parametrization, and fitting of recommended atomic collision data using functional forms based on analytical physical models for the process. Often the available datc are limited to a narrow energy range, and such "physical" fitting
formulde permit extrapolation of the data outside this range with sone measure of confidence. Such extrapolation of data is impossible with polynomial fits. This approach has been applied successfully during the period to ionization in collisions of \(\mathrm{CQ}^{+}\)and \(\mathrm{OQ}^{+}\)ions with \(\mathrm{H}_{\mathrm{H}} \mathrm{H}_{2}\). and He, and work has been initiated on electroncapture collisions for the same reactants.

As a follow-up to a previous IAEA
Specialists* Meeting, an assessment of atonic and molecular data requirements for fusion plasma edge studies' was prepared during the period in collaboration rith the data center at IPP-Magoya in Japan. Previous data-base assessments for collisions of fron ions vere also published \({ }^{10}\) during this reporting period.

\footnotetext{
1. Instituto de Fisica. Universidad Macional Autonoma de Mexico.
2. Consultant, CRNL.
3. Consultant, Queen's University, Belfast, morthern Ireland.
t. ORAU Postdoctoral Research Associate.
5. Consultant. Institute of Physics. Belgrade. Yugoslavia, and International Atomic Energy Agency, Vienna, Austria.
6. Consultant, Georgia Institute of Technology, Atlanta, Georgia.
7. Consultant, Wesleyan University. Middletown, Connecticut.
8. Consultant., Auburn University, Auburn, Alabains.
9. Atomic and Molecular Data Requirements for Fusion Plasma Edge Studies," H. Tawars and R.A. Phaneuf, Coments on Atomic and Molecular Physics 21, 177-93 (1988).
10. Recommended Data on Atomic Collision Processes Involving Iron and les lons. wictear Fusion, special supplement, 1987:
R. A. Phaneuf, R. K. Janev, and H. T. Hunter, "Charge Exchange Processes Involving Iron lons: "pp. 7-20.
M. S. Pindzola et al.. Electron-Impact

Ionization Data for the Iron Isonuclear
Sequence." DD. 21-41.
}

\section*{wCLEAR DATA PROJECT}
Y. A. Akovali
M. J. Martin
M. R. Lay
M. R. Schaor ak

The Nuclear Oata Project (MDP) is one of five data evaluation centers comprising the U.S. Muclear Data Network (USNDM). The Project is responstole for the evaluat'... of nuclear structure information in the mass region \(A>199\).

The NDP maintains a complete computer-indexed library ar reports anc published articles in eaperimental nuclear structure physics as well as copies of the Evaluated Nuciear Structure Data and Nuclear Structure Reference files (EMSOF, NSR).

The Editor-in-Chief of the Nuclear Data Sheets is member of the Nuclear Data Project staff. All eass chains from the 14 centers in the International Nuclear Data Metwork are edited here, and the Editor-in-Chief has the ultinate responsibility for the quality of the mass chains entered into EMSDF and, thus, for what is published in the Nuclear Data Sheets.

Act1: Ities
Data Evaleation. During this report period, MDP staff nembers prepared revised evaluations
for the \(A=199,214,218\) and 246-266 (even A) mass chains. These evaluations have been published or are in press in the Nuclear Data Sheets.

Mass Chain Editing and Review. NDP staff menbers edited and/or reviewed 18 mass chains.

Information Services. NDP staff members responded to requests for specific information by researchers outside the evaluation center. Responses took the form of searches of the EMDSF and MSR files and personal consultation. A list of reports and preprints received by the NDP is prepared and distributed monthly to division staff members.

Research. NDP staff members have participated in research with other groups in the division. Discussion of these activities may be found in the research section of this report.

\section*{9. ACCELERATOR DESIGN AND DEVELOPMENT}

\begin{abstract}
Ouring this reporting period, work has concentrated on the proposed Heavy Ion Storage Ring for Atomic Physics (HISTRAP) facility wich has been described in previous progress reports. HISTRAP is synchrotron/cooler/storage ring that will allow many new research opportunities in both ataic and nuclear physics. In particular. the ring will be able to accelerate, decelerate, store, and cool fons injected from efther the HilRF tandem accelerator or dedicated ECR source and RFQ pre-accelerator. In-ring experiments with circuIating ions interacting with merged photon, electron, and ion beams will be possible. HISTRAP will have bending power of 2.67 Th, Hich corresponds to a mass-energy product \(k=A E / Q^{2}=344\). With tandew injection, this will provide energies for \(0 / A=1 / 2\) ions of 82 MeV/nucleon and an energy of 11 HeV/nucleon for uranium. This year, accelerator physics studies of injection stacking and tunable dispersion have been completed. Prototype hardmare studies supported by the Laboratory Director's Research and Development Fund have continued. In particular, the vacuum test stand mork has been essentially completed, the RF cavity has been assembied, and a prototype dipole and magnet measurement system have been fabricated and tested.
\end{abstract}

\section*{HISTRAP ACCELERATOR PHYSICS DESIGN STUOIES}
I. Y. Lee
D. K. Olsen
J. B. McGrory
G. R. Young

\section*{Phase Space Stacking for HISTRAP Injection}

A preliminary investigation of beam stacking in horizontal phase space has been made. The design lattice of hISTRAP was used, assuming an ideal beam and no magnetic errors. A single \(k i c k e r\) magnet was placed in the lattice in the short straight section wetween the dipole and the quadrupole triplet. With the kicker so placed, a large distortion of the closed orbit occurs at the middle of the \(4-m\) straight section essentially opposite the kicker magnet. In this study, the kicker magnet wich introduced a deflection of 0.05 radians in the closed orbit, produced a \(3.38-\mathrm{cm}\) displacement in the center of the 4 -m straight. The horizontal acceptance of HISTRAP is limited by the \(25.50-\mathrm{cm}\) of good field in the dipole magnets. The maximum closed orbit displacement produced in any dipole by this same kicker magnet is 3.57 cm and the amplitude of the beta function in the dipole is 12.59 m . Consequently, with the full kicker strength the acceptance of the lattice is 30 rmm mrad .
a zero-width septum was assumed in the center of the \(4-\mathrm{m}\) straight at, horizontal distance of 4.7 on from the equiliorium orbit. A tandem
beam with an emittance of 25m-mrad, a beta function of 3.0 meters, and an alpha function of zero was injected at 4.95 cm from the equilibrium orbit. Test ions mere distributed uniformly on the perimeter of the phase space of this beam and each ion was then tracked through one turn. At the end of each turn, the kicker str ngth was reduced so that the closed orbit deflection was reduced by the ratio of the distance of the closed orbit at injection to the total number of injected ion bunches. At the end of the injection, the closed orbit was at the normal equilibrium orbit. For each turn. the beta function of the lattice was changed to the value appropriate for the corresponding kicker value, and the beam acceptance was increased to the appropriate value. The beta function and the closed-orbit radius vary almost linearly with the kicker strength, thus a linear approximation was used. After each turn, those ions wich were not inside the septum radius were discarded.

Since the lattice has a tune near a one-third integer resonance, the closed orbit should shrink by the diameter of the injected beam after every third turn. In this case, the injected beam diameter was 0.49 cm so that approximately \(3 \times(3.38 \mathrm{~cm} / 0.49 \mathrm{~cm})=21\) turns shouls be stackable in histrap with no losses to
the septum. And indeed the tracking calculations show that 18 turns can be stacked with no losses. Cases stacking more than 18 turns were studied. Ions were distributed uniformly over the horizontal phase space of the injected beam and tracked. In a typical case, if 500 test ions were distributed in an injected bunch, and all ions tracked for 35 turns, then \(98.5 \%\) of the injected particles survived. It remains an open question how much ion loss to the septum can be tolerated, and effects of finite septum length and thickness must be considered. It seems very reasonable for preliminary estimates of HISTRAP beam currents to assume that almost all ions will survive for a 35-turn injection. Fig. 9.1 shows the phase-space profiles of the injected bunches for this case.

\section*{Tunable Dispersion}

The HISTRAP reference design lattice is fourfold symmetric, has four dispersionless straight
sections and has two quadrupole and two sextupole families. Other, more flexible, modes of operating this lattice are also possible if the 12 quadrupoles and 16 sextupoles are divided into more fanilies.

One important set of lattice solutions is shown in Fig. 9.2. For these solutions, the lattice was allowed to be twofold symmetric with the design tunes. The quadrupoles mere divided as shown into the three families OF , QD, and QF2. With QFI \(=\) QF2 \(=0.93 \mathrm{~m}^{-1}\) and \(00=\) \(1.05 \mathrm{~m}^{-1}\) the lattice operates in the fourfold symmetric design mode with four nondispersed straight sections. If the strength of QFI is reduced, then dispersion ca. be introduced into the straight sections as required by the experimentalists. One pair of straight sections \(S_{1}\) will have positive dispersion, whereas the other pair \(S_{2}\) will have negative dispersion. The beta functions and dispersions shown in Fig. 9.2 all occur at the design tunes of \(v_{x}=\)

ORALL-OWG 88-15887

Fig. 9.1. Phase space distribution of 35 turns of ions injected in a perfect histrap lattice. The solid vertical line shows the position of the injected septum. The two large ellipses represent the acceptance of the lattice at injection, kicker on, and after injection, kicker off.

ORAR OWG e0-15500

Fig. 9.2. Beta functions and dispersions in the center of strafght sections \(S_{1}\) and \(S_{2}\) as a function of the quadrupole strength OFl. These littice solutions all occur with the design tunes so they can be adjusted with beam circulat'ng in HISTRAP.
2.309 and \(y=2.274\). Consequently, dispersion can be adiabatically introduced as desfred into the stralght sections while the ion bean is circulating in HISTRAP. These studies show that HISTRAP is very flexible and can provide a variety of beam conditions for in-ring experiments.

\section*{HISTRAP PROTOTYPE MARDWARE STUDIES}
\begin{tabular}{ll}
W. H. Atking & J. W. McConnell \\
D. F. Dowling & W. T. Mi iner \\
J. W. Johnson & S. W. Mosko \\
R. S. Lord & D. K. Dlsen
\end{tabular}
B. A. Tatum

Ultrahigh Vacuum Test Stand
A vacuum test stand has been destigned and constructed to assess the problems associated
with obtaining the ultralow pressure of \(10^{-12}\) Torr that is required in the HISTRAP ring. This vacum test stanc, shown in Fig. 9.3, models appiz:imately \(1 / 16\) of the ring circumference. The vacuun chamber components and sublination pump housings were fabricated in house fron 316L and 316LN stafnless steel and were prebaked at \(950^{\circ} \mathrm{C}\) in vacuum oven before assembly. Pumping was accomplished by two 1000-e/s titanium sublimation pumps (TSPs) and one \(60-1 / s\) agnetic sputter ion purp (SIP). Heating blankets were used for in situ baking at temperatures up to \(300^{\circ} \mathrm{C}\). Pressures were read with two extraction gauges, one Bayard-Alpert gauge and a residual gas analyzer (RGA).

To eliminate all sources of oil contamination, the roughing system consists of three stages of liquid-nitrogen-cooled sorption pumping, followed by an Air Products 20-cmdiameter closed-cycle gaseous helium cryopund. The cryopump was isolated from the sorption pumps and the UHV system by all-metal valves. The sorption punps roughed the chamber and the cryopump to \(3 \times 10^{-3}\) Torr.

Figure 9.4 shows pressure and temperature profiles as a function of time for a system bakeout cycle. The pressure shown is that measured at the tee containing the roughing valve. After roughing to a pressure of \(3 \times 10^{-8}\) Torr, the chamber temperature was increased to \(100^{\circ} \mathrm{C}\) at a rate of \(30^{\circ} \mathrm{C}\) per hour. The temperature was then held fixed at \(100^{\circ} \mathrm{C}\) to check the heating control system. With only the cryopump pumping on the system, the temperature was then raised to \(250^{\circ} \mathrm{C}\) and held for 48 hours. During the \(250^{\circ} \mathrm{C}\) bake, the pressure decreased to \(3 \times 10^{-8}\) Torr. Some components wich did not have a \(250^{\circ} \mathrm{C}\) upper temperature linit were heated to \(300^{\circ} \mathrm{C}\).

During cool-down, the temperature was held fixed at \(120^{\circ} \mathrm{C}\) hile the TSPs, fon gauges, and RGA mere degassed and the SIP was turned on. Cool-down then continued to anbient room temperature and a pressure of \(2 \times 10^{-11}\) Torr was obtained. The titantum sublimators were each flashed for four minutes at 47 A and after the pressure recovered to \(2 \times 10^{-11}\) Torr, the allmetal valve to the cryopump was closed. The

\section*{UNY VACHMM TESI STAMD}

Fig. 9.3. UHV vacum test stand which models \(1 / 16\) th of the HISTRAP vacuum system. The stainless steel chambers were initially vacuum baked at \(950^{\circ} \mathrm{C}\) and are covered with heater blankets for in situ bakes at \(300^{\circ} \mathrm{C}\).

Fig. 9.4. Pressure and temperature profile as a function of time for bakeout cycle of the vacuum test stand. After a pumpdown cycle of one week, a pressure of \(4 \times 10^{-12}\) Torr was obtained.
punp-down continued with the TSP and SIP and after one week, an ultimate pressure of \(4 \times 10^{-12}\) Torr was achieved. The calculated outgassing rate of the stainless steel for this pressure is \(4 \times 10^{-13}\) Torr \(L \mathrm{Cn}^{-2} \mathbf{s}^{-1}\) and an average pressure of \(8 \times 10^{-12}\) Torr is calculated for the equivalent periodic system.

The vacuum firing of the stalnless steel at \(950^{\circ} \mathrm{C}\) and the in situ \(300^{\circ} \mathrm{C}\) bakeout produce residual outgassing rates which allow reasonable pump sizes and pump spacing for obtaining pressures on the \(10^{-12}\) scale. The use of \(a\) cryopump for roughing during bakeout and cooldown provides a contamination-free method, with high pumping speed, of producing pressures of \(2 \times 10^{-11}\) Torr before the final pumping with the TSP and SIP. This should markedly extend life of the titanium filaments and refuce the time required to reach operating pressure. it appears from this work that the gauges themselves may be the matn source of residual gas at
these gressures. Figure 9.5 shows a photograph of the ussembled vacuum test stand.

Prototype \(2 f\) Acceleration/Deceleration Cavity
A prototype rf cavity intended to meet the HISTRAP acceleration and deceleration requirements has been designed, constructed, and tested. Estimated characteristics of the cavity are listed in rable 9.1. The cavity is a halfwave, ferrite-loaded configuration with a single accelerating gap. Tuning is accomplished through application of dc bias current to a set of "figure eight" bias windings. A photograph of the cavity is shom in Fig. 9.6.

The center conductors of the cavity are mechanically separate from the high-vacuum beam line wich contains a ceraic-insulated accelerating gap. Spring-loaded contact fingers provide electrical contact between the cavity high-voltage electrodes and the beam line. These fingers are retractable so that the beam Iine can be thermally isolated from the cavity structure during the vacuum bakeout process.

Table 9.1. Eharacteristics of HISTRAP rf cavity
\begin{tabular}{|c|c|}
\hline Accelerating sap voltage & 2500 Y. P-D \\
\hline Tuning range & \(200 \mathrm{kHz}-2.5 \mathrm{MHz}\) \\
\hline Overall length & 1.2 m \\
\hline Beam tube 1.0. & 0.15 a \\
\hline Ferrite type & 10x 5Y7 \\
\hline \multicolumn{2}{|l|}{Ferrite dimensions:} \\
\hline Number of -ings & 28 \\
\hline Ring outsilte diameter & 0.5 m \\
\hline Ring insidis diameter & 0.3 m \\
\hline Ring thick ress & 0.025 m \\
\hline RF drive power & 20 kH \\
\hline Ferrite power density & \(200 \mathrm{~mm} / \mathrm{cc}\) \\
\hline Ferrite permeability range & 8-1400 \\
\hline Typical initial permeability of Ferrite & 2500 \\
\hline Peak Ferrite bias current & 3000 A-turns \\
\hline Shunt capacitance required & 6000 pf \\
\hline
\end{tabular}

ORML PHOTO 4688-88

Fig. 9.5. Photograph of the assembled vacuum test stand.

Fig. 9.6. Photograph of the HISTRAP prototype rf cavity with 16 ferrite disks and the upper lid removed.

The complete rf cavity will contain 28 ferrite rings, 14 on each half, which are separated by water-cooled annular copper disks. The ferrite-copper stacks in each half of the cavity are supported by fiberglass end plates which are joined by several steel leadscrews. The prototype cavity has been only partially loaded with 16 ferrite rings. This partial load is sufficient for testing and measuring the tuning and power disstpation characteristics of the configuration. Approximately twice as much gap capacitance and rf drive power are required to operate the cavity with the test 16 rings than the design 28 rings.

Ferrite bias is provided through an array of six independent winding segments, three figure eights on each side of the gap. Each segment is a water-cooled buss with termination outside the cavity. Outside bus connections are used for completing each "figure eight" winding. All three windings may be operated in series, parallel, or other arrangement as may be found sultable for obtaining appropriate bias levels while avoiding rf parasitic modes. The prototype is operating with the three windings in series. A 1000-A dc power supply is sufficient to swing the relative permeability over a \(20 n\) to 1 luning range.

The ferrite rings were individually tested to measure relative permeability as a function of de bias and rf excitation. Efforts to measure tuning characteristics of the individual rings mere unsuccessful due to intrinsic inductance in the test apparatus. Tests with all 16 available rings in the prototype cavity were successful in demonstrating a tuning range from 0.25 to 3.0 mzz using a dc bias excitation from 0 to 1000 A turns, respectively. The actual tuning range of the complete cavity will be within the specified iimits when the ferrite load is increased to 28 rings.

Test results are shown in Fig. 9.7 and ifg. 9.8. The low values of " Q " are especially

Fig. 9.7. Relative permeability as a function of bias field. The resonant frequency is proportional to the square root of the permeability.

Fig. 9.8. Shunt impedance and resonant \(n\) as a function of cavity frequency.
interesting, since it will be possible to drive the cavity to frequencies substantially below resonance on the low end of the cuning range. This provides some possible extension to the tuning range, and will provide needed tuner damping in the low-frequency region where slight increments in ferrite bias cause a huge change in resonant frequency. The shunt resistance at about 80 ohms is nearly constant with respect to frequency. Consequently, the cavity will operate comfortably with a balanced drive connected across the accelerating electrodes.

The several ports in the center area are used for access to the bias winding leads and \(r f\) power drive connections. The prototype cavity is driven by a single-ended \(400-\mathrm{W}\) of power ampliffer through a ferrite-core transformer which provides a balanced output at an appropriate fmpedance level. The complete cavity will need a \(20-\mathrm{kH}\) anplifier with a balanced output.

\section*{Magnetic Field Mapping System}

A measurement system mas designed and constructed to map the magnetic field of the prototype dipole and other magnetic elements. The field sensing device is a temperaturecompensated Hall-effect probe. Positioning of the probe within the field area is accomplished by a personal computer (PC) based, \(x-y\) posttioning syster. The mapping structure, shown in Fig. 9.9, is built on a \(4 \times 10 \mathrm{ft}\), non-magnetic, stainless steel, laser table. Two case-hardened and ground-bearing shafts are mounted along the 10-ft dimension at a separation distance of 43.75 in . on center. Twin ball bearing bushings are mounted on each rail and are spanned by an aluminum bridge assembly, to yield one degree of motion. similarly, two shafts and associated bearings are mounted along the bridge, spanned by an aluminum plate, to yield the second degree of motion. Two slise and vise assemblies are mounted vertically on the top bridge to hold a horizontal boom to position the Hall probe in the dipole gap.

A cantilevered, non-magnetic boom was constructed to hold the Hall probe using itight. weight honeycomb paper wrapped with resinimpregnated, graphite tape. Motion in each of

Fig. 9.9. Computer-controlled magnetic field mapping structure. Fields in a horizontal area of about 4 feet by 8 feet can be measured.
the two horizontal degrees of freedom is accomplished by electronic control. Ball screws driven by stepping motors are attached to the bridges by preloaded ball bearing housings. Travel in the horizontal plame is 85 by 35 in. and the maximum manual vertical adjustment is 6 in.

A block diagram of the control and data acquisition system is shom in Fig. 9.10. A stepper motor controller board is mounted in the PC. The board controls the initial and maximum stepping rates, acceleration rate, stepping direction, and number of steps for a maximum of two motors. Step-to-pulse translator/driver/ power supply units provide a necessary external interface between the PC Doard and motors. Each step corresponds to a \(1 . B^{\circ}\) rotation of the motor shaft. Motors are coupled to the ball screws using timing belts to damp out vibrations.

Optical linear scales of \(0.01-\)-min resolution are mounted along each horizontal axis to provide position feedback. Signals from the scales are provided to a digital readout box which converts then to ASCII strings for display and transmission to the PC. The Kall probe contains a thermal sensor and is connected to a controller wich compensates for fluctuations in temperature. A removable INR probe is mounted in the center of the dipole for calibration of the

Hall probe. At regular interrals during the mapping process, the hall probe is positioned over the NWR and comparisons made. Three external thermocouples are used to provide temperature measurements on and near the dipole. Digital panel meters display the temperatures, as well as the power supply current, obtained from a transductor. Each of the above devices provides an RS-232 serial communication interface.

During the mapping process, horizontal motion is controlled by a compiled BASIC program, written in-house, by programing stepping motor controller integrated circuits on the PC board for specified motion patterns. The software also inputs information from the RS-232 devices, displays it, records relative extrena, and writes the information to a floppy disk for later data reduction. Only one PC serial communtcation port is required due to usage of an RS-232 multiplexer box.

\section*{Prototype Dipole Magnet}

The dipole magnets, the most important components in HISTRAP, present sone special design problens. These dipoles are short with a large sagitta. As a result, they have a complicated three-dimensional geometry and integrated field profiles wich depend heavily on end effects.

Fig. 9.10. PC-based control and data acquisition system for the magnetic field mapping structure.

In addition, the dipoles have a large gap to provide space for vacuum bakeout insulation; "ave a "C" design to allow for merged laser beam studies; require a maximum field of 1.6 T ; and need good field quality at both high and low excitation. Because of these uncertainties, a prototype dipole has been designed, fabricated, and is being measured.

From the physics design reported in last year's progress report, the prototype dipole magnet was constructed by Fermilab. The yoke design and assembly was similar to that used for the Indiand University Cooler dipoles. In particular, the yoke was fabrizeied from laminations which were punched from l6-gauge SAE 1004-1006 cold-rolled sheet steel purchased from Inland Steel Corporation. The steel has a phosphate coating to provide electrical insuldtion between laminations and a measured permeability of 182 at an excitation level of 100 Dersteds. In order to eliminate dimensional
problems induced by the stress in the steel, the laminations were punched with a two-stage die. The first punching produced laminations which were about a half-inch larger than desired. These blanks were then allowed to relax overnight before the final dimensions were punched. Sample laminations were dimensionally checked and the pole tips were flat and parallel within 0.001 in.

After being washed to improve adhesion and coated with a thin layer of epoxy, the laminations were etacked in an assembly fixture. This fixture was used to stack both the dipole and end assemblies, which consisted of removable 3.0-in.-thick end packs bolted to l.0-in.-thick back packs. four end packs were fabricated; two end packs were machined with the design Rogowski contours, and two are spares should new end cuts be required. The laminations were stacked between these fabricated end assemblies with the gap facting down. The laminations were centered
about a vertical spacer projecting into the gap and were stacked on two rails which determined the curvature of the magnet yoke. The yoke was then compressed to the proper length with a 25-ton press and fixed in length with long thru bolts in the stacking fixture. Steel plates, 0.75 in. thick, were welded to the top and bottom of the dipole and four curved plates were melded into the side indentations. Finally, the epoxy between laminations was cured at \(300^{\circ} \mathrm{C}\) for five hours. Laminations were glued together with the exception that the end packs were bolted to the back packs.

The four coil pancakes were wound and cured using only one fixture. The \(0.625-\mathrm{in}\). by \(1.750-\mathrm{in}\). copper conductor was first wrapped with one layer of half-lapped B-stage 7-ail mica tape, and then second wrapped with one layer butted B-stage 7-mil glass tape. Each entire pancake was then wrapped with one layer butted 3c-mil scotch ply, and then second wrapped with one layer half-lapped B-stage 7-mil polyester/ glass tape. The coils mere cured on the winding fixture at a temperature of \(300^{\circ} \mathrm{C}\) for five hours. The electrical leads, water leads, and jumpers connect to the coils at the outside center of the dipole. The coils can be tilted at an angle to the pole face as an adjustment to cancel a measured quadrupole field in the dipole. Figure 9.11 is a photograph of the assembled magnet.

Preliminary mapping of the prototype dipole has been completed at low excitation levels. The field was mapped along 21 orbits. The orbits are separated by 1 cm . Mapping points along an orbit were located such that the path
length between points remained constant at 5 mm and a total path length of 209 cm was measured. Positioning accuracy along a single axis is guaranteed to within 0.04 mm .

Measurements have been completed at 50,100 , \(180,300,400\), and 500 A of excitation current spanning a magnetic field range from 430 to 3540 G . The results of these measurements are shown in Fig. 9.12 which plots field profiles in the central region of the dipole and field profiles integrated aiong the ion path length. These preliminary measurements at 300,400 , and 500 A of excitation. show a small quadrupole component in both the central and integrated profiles. This quadrupole component, wich was not pradicted by either the TOSCA or POISSOM codes, also appears in the Indiana and Heidelberg dipoles. The origin of this difference is not understood. In any event, this quadrupole component can be compensated if needed by adjusting the main quadrupole strengths, fabricating pole face windings, or making small geometrical changes. The measured sextupole and octupole components of the field are small and consistent with the magnet code predictions. With increasing excitation, the quadrupole component decreases and changes sign. This decrease is consistent with a remnant field measurement of 30 G with \(\pm 2 \mathrm{G}\) quadrupole component at \(\mathbf{x 6} \mathrm{cm}\). The field quality at about 900 G of excitation, required for storage of decelerated ions, would be excellent. Field maps will be made for the entire range of required excitation levels when the required power supply is delivered.

Fig. 9. 11. Photograph of the HISTPAP prototype dipole.

Fig. 9.12. Measured central and integrated magnetic field profiles of the HISTRAP prototype dipole at low excitation leveis. The integrated results are the open squares connected by straigh* lines, whereas the central results are the triangles.

\section*{10. PUBLCATIONS}

\section*{List Prepared by Shirley J. Ball}

\begin{abstract}
The following list of publications includes primarily those articles by Physics Division staff menbers and associates wich appeared in print. from October 1987 through September 1988. Articles pending publication as of Septemer 30, 1988, are listed inmediately following this section.
\end{abstract}

\section*{800K. JOURMAL. AD PROCEEDIUSS ARTICLES}

Ahmad, A. G. Bomar, H. Crowell, J. H. Hamilton, H. Kawakami, C. F. Maguire, W. G. Mettles, R. B. Piercey, A. V. Ramayy, 2. Soundranayagan, R. M. Ronningen. D. Scholten, and P. H. Stelson
"Coulomo Excitation of \(144,146,141\),150Md." Phys. Rev. C 37, 1836-39 (May 1988)
Albrecht, R., T. C. Ares, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson. A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kampert. B. H. KolD, P. Kristiar.sson, I. Y. Lee, H. Loehner. I. Lund, F. E. Obenshain, A. Oskarsson, 1. Orterlund, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Stemiarczuk, S. ?. Sorensen. E. Stenlund, and G. R. Young (Wa80 Collaboration) "Formard End Transverse Energy Distributions in Oxygen-Induced Reactions at 60 A GeV and 200 A GeV." Phys. Lett. 8 199, 297-303 (Dec. 1987)

Albrecht, R., T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb. P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schaidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young
-Photon and Meutral Pion Distributions in 60 and 200 A GeV 160 + Mucleus and Proton + Mucleus Reactions." Phys. Lett. 8 201, 390-96 (Feb. 1988)

Alorecht, R., T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragen, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kampert, R. W. Kolb, P. Kristiansson, l. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, 1. Otterlund, T. Peitzmann, S. Persson, F. Plasil. A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young
"Charged-Particle Distributions in 160 -Induced Muclear Reactions at 60 and 200 A GeV," Phys. Lett.
B 202, 596-602 (Mar. 1988)

\section*{Alton, G. D.}
"Characterization of a Cesium Surface Ionization Source witn a Porous Tungsten Ionizer. I," Rev. Sci. Instrum. 59, iü37-44 (July 1988)

\section*{Alton, G. D.}
-Aspects of Megative-Ion Generation and Extraction from a Refocus Geometry Cesium Sputter
Negative-Ion Source, Il," Rev. Sci. Instrum. 59, 1045-52 (July 1988)
Alton, G. D., and J. W. McConnell (Invited Paper)
"The Emittances and Brightnesses of High-Intensity Megative Ion Sources," Proceedings, Seventh Tandem Conference, Berlin, West. Germany, April 6-10, 1987, Mucl. Instrum. Methods Phys. Res. A268, 445-55 (May 1988)

Alton, G. D., Y. Mori, A. Takagi, A. Uenc, and S. Fukumoto
"A Versatidz High Intenstiy Plasma Sputter Heavy Megative Ion Source," Nucl. Instrum. Methods Phys.
Res, A270. 194-97 (July 1988)
Andrews, M. C., F. D. McDantrl, J. L. Ouggan, P. D. Miller, P. L. Pepmiller, H. F. Krause, T. M.
Rosseel. L. A. Rayburn, R. Meria, ond G. Lapteki
"L- and M-Shell X -Ray Production Cross Sections of Nd, Gd. Ho, Yb. Au, and Pb Dy \(25-\mathrm{MeV}\) Carbon and 32-Mey Oxygen Jons," Phys. Rev. A 36, 3699-706 (Oct. 1987)

Aronson. S., T. Awes, P. Braun-Munzinger, P. Gorodetzky, E. Gross, G. Landaud, T. Ludlam, M. Murtagh, A. Shor, J. Stachel, and G. Young (Invited Paper)
"Status of the filic Dimion Detector," pp. 47-105 in Proceedings, Second Workshoo on Experiments and Detectors for a Relativistic Heavy Ion Collider (RHIC), Berkeley, California, May 25-27, 1987, CONF-870543, Lawrence Berkeley Laboratory Report LBL-24604, January 1988

Auble, R. L., Editor
"Holifield Heavy Ion Research Facility Mewsletter," Issue Mo. 36 (1988)
Auble, R. L., Editor
""Holifield Heavy Ion Research Facility Mewsletter." Issue No. 37 (1988)
Auble, R. L.. J. B. Ball, F. E. Bertrand, R, L. Ferguson, I. Y. Lee, R. L. Robinson, and G. R. Young \({ }^{*}\) Target/Projectile Mass Dependence of Light Ion Yields from Heavy Ion Collisions," Phys. Rev. C 37. 390-92 (Jan. 1988)

Baktash, C. (Invited Paper)
"Energetic Ml Transitions as a Probe of Muclear Collectivity at High Temperatures," pp. 537-43 in The Variety of Muclear Shapes (Proceedings, International Conference on Muclear Shapes, Crete, Greece, June Z2-July 4, 1987). World Scientific Publishing. Singapore, 1988

Bannister, M. E., D. W. Mueller. L. J. Mang, M. S. Pindzola, D. C. Griffin, and D. C. Gregory
 1988)

Baranger. M., and K.T.R. Davies
"Periodic Trajectories for ? Two-Dimensional Monintegrable Hamiltonian." Ann. Phys. (M.Y.) 177, 330-58 (1987)

Barrette, J., M. Alamanos, F. Auger, B. Fernandez, A. Gillibert, D. J. Horen, J. R. Beene, F. E. Bertrand, R. L. A.sble, B. L. Burks, J. Gomez del Campo, M. L. Halbert, R. O. Sayer, M. Mittig,
Y. Schutz, B. Haas, and J. P. Vivien
"Coulomb Excitation of Giant Resonances in 208 Pb by \(\mathrm{E}=89 \mathrm{MeV} /\) Mucleon 170 Projectiles." Phys. Lett. B 209, 182-86 (1 jg. 1988)

Becker, R. L. (Invited Paper)
-Several Manifestations of Pauli Correlations in Energetic Ion-Atom Collisions, " po. 447-60 in High-Energy Ion-Aton Collisions, Lecture Motes in Physics 294, (Proceedings, Third Horkshop on High-Energy Ion-Atom Collision Processes, Debrecen, Hungary, August 3-5, 1987), Springer-Verlag, Berlin. 1988

Peckerman, M.
"Subbarrier fusion of Two Nuclei," Rep. Prog. Phys. 51, 1047-104 (Aug. 1988)
Beene, J. R., C. E. Bemis, Jr., and M. L. Halbert
"Possibility of Pions Emitted in the Spontaneous Fission of \({ }^{252}\) Cf." Phys. Rev. C 38, 569-71 (July 1988)

Beene, J. R., R. L. Varner, and F. E. Bertrand (Invited Paper)
"Gama Decay of Isoscalar and lsovector Giant Resonances Following Heavy-Ion Inelastic Scattering," Proceedings, Fi,st Topical Meeting on Giant Resonance Excitation in Heavy-lon Collisions, Legnaro, Italy, September 21-25, 1987. Mucl. Phys. A482, 207c-20c (May 1988)

Bennett, C. A.. R. K, Richards, and D. P. Hutchinson "Absolute Broadbani Calibration Procedures for Infrared Heterodyne Receivers." Appl. Opt. 27, 3324-25 (Aug. 1988)

Berman, B. L., J. O. Kephart, R. H. Pantell, S. Datz, H. Park, R. K, Klein, and B. A. Dahling "Channeling Radiation Experiments Between 10 and \(100 \mathrm{MeV}, " p p .239-70\) in Relativistic Channeling, Plenum Publishing, Mew York, 1987

Bertrand, F. E., and J. R. Beene (Invited Paper)
"Excitation and Photon Decay of Giant Resonances Excited by Intermediate Energy Heavy Ions," Nouvelles de GNIL 24, 10 (Feb. 1988!

Bertrand, F. E., and J. R. Beene (Invited Paper)
"Excitation and Photon Decay of Giant Resonances Excited by Intermediate Energy Heavy Ions,"
pp. 49-7l in Proceeding:, Texas AaM Symposiuni on Hot Nuclei. College Station, Texas, December 1-10, 1987. World Sctentific Publishing, Singapore, 1988

Bertrand, F. E., J. R. Beene, and D. J. Horen (Invited Paper)
"Heavy Ion Excitation of Giant Resonances - The Rext Generation," Proceedings, First Topical Meeting on Giant Resonance Excitation in Heavy-Ion Collisions, Legnaro, Italy, September 21-25. 1987. Mucl. Phys. A482, 287c-304c (1988)

Bottcher, C., and M. R. Strayer (Invited Paper)
"Lepton Production in Ultra-Relativistic Ion-Ion Collisions," pp. 471-78 in Frontiers of Heavy-Ion Physics, (Proceedings, 5th Mdriatic International Conference on Muclear Physics, Dubrovnik,
Fcgostavia, June 15-19, 1987), World Scientific Publishing, Singapore, 1987
Bottcher, C., and M. R. Strayer (Invited Paper)
"Pulsed Electromagnetic Production of Leptons," pp. 279-93 in Proceedings, Second Workshop on Experiments and Detectors for \$HIC, Berkeley, California, May 25-29, 1987. CONF-870543, Lawrence Berkeley Laboratory Report LBL-24064, January 1988

Bottcher, C., and M. R. Strayer (Invited Paper)
"Probing the Vacuum with Highly Charged Ions." Proceedings, Symposium on Atomic Spectroscopy and Highly Ionized Atoms, Lisle, Illteiis, August 17-21, 1987, Mucl. Instrum. Methods Phys. Res. B31, 122-30 (1988)

Bottcher, C., M. R. Strayer, A. S. Vmar, and V. E. Oberacker
"Mumerical Method for the Calculation of Continuum Excitation Amplitudes in Time-Dependent External Field Problems." Phys. Rev. C 37, 2487-94 (June 1988)

Bounds, J. A., C. R. Bingham, H. K. Carter, G. A. Leander, R. L. Mlekodaj, E. H. Spejewski. and M. M. Fairbank, Jr.
"Nuclear Structure of Light Thalliua Isotopes as Deduced from Laser Spectroscopy on a Fast Atom Beam." Phys. Rev. C 36, 2560-68 (Dec. 1987)

Bracco, A., J. R. Beene, M. Van Gai, P. F. Bortignon, F. Zardi, and R. A. Broglia "Study of the Breathing Mode of \({ }^{208}\) Pb Through Meutron Decay," Phys. Rev. Lett. 60, 2603-06 (June 1988)

Chen, X. Y., L. W. Smenson, F. Farzanpay, D. K. McDantels, Z. Tang, Z. Xu, D. M. Drake, I. Bergquist.
A. Brockstedt, F. E. Bertrand, D. J. Horen, J. Lisantti, K. Hicks, M. Vetterli, and M. J. Iqbal "Relativistic Medium Effects for \({ }^{208} \mathrm{~Pb}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)\) at Intermediate Energies," Phys. Lett. B 205, 436-40 (May 1988)

Claesson, G., R. Albrecht, T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R. Bock, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund, T. Peftzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund and G. R. Young
"Charged-Particle Distributions from 60 and 200 A GeV 160 Collisions with Target Muclet of Carbon. Copper, Silver, and Gold," pp. 129-32 in Procesdings, International Europhysics Conference on High Energy Physics, Vol. I, Uppsala, Sweden, June 25-July 1, 1987, European Physical Society, Petit Lancy, Switzerland, 1987

Close, F. E., and A. W. Thomas
"The Spin and Flavor Dependence of Parton Distribution Functions," Phys, Lett. E212, 227-30 (Sept. 1988)

Datta, S., R. Caplar, N. Cindro, R. L. Auble, J. B. Ball, and R. L. Robinson "A Refined Coalescence Model for Intermediate-Energy Heavy-Ion Collisions. Applicarion to Deuteron Spectra," J. Phys. 614, 937-48 (July 1988)

Datz, S., Chairman, Committee for the International Survey on Atomic and Molecular Science "International Survey of Atomic and Molecular Science, 1984-1985," National Academy Press, Washington, D.C.. 1987, 55 pages

Datz, S., L. H. Andersen, J. -P. Briand, and D. Liesen (Invited Paper) "Experimental Atomic Physics in Heavy-Ion Storage Rings," Proceedings, Workshop and Symposium on the Physics of Stored and Trapped Particles. Stockholm, Sweden. June 15-19, 1981, Phys. Scr. T22, 224-27 (1988)

Datz, S., B. L. Berman, R. H. Pantell, and J. O. Kephart (Invited Paper) "Radiation Prom Chaineled Electros and Positrons," pp. 185-204 in The Physics of Ionized Gases (Proceedirigs, x!II Interna ional Symposium on Physics in lonized Gases, Sibenik, Yugostavia, September 1-5, 1986), World Scientific Publishing, Singapore, 1981

Datr, S., P. F. Dittner, C. M. Fou, P. D. Miller, and P. L. Pepailler (Invited Paper) "Dielectronic Recombination of Multiply Charged Ions," pp. 61-76 in The Physics of Ionized Gases (Proceedings, XIII International Symposium on Physics in Ionized Gases, Sibenik. Yugoslavia September \(1-5,1986\)), World Scientific Publishing, Singapore, 1987

Davies, K,T.R.
"Complex-Plane Methods for Evaluating Highly Oscillatory Integrals in Muclear Physics. II," J. Phys. 614, 973-94 (July 1988)

Davies, K. T.R., M. R. Strayer, and G. D. White
"Complex-Plane Methods for Evaluating H.ghly Oscillatory Integrals in Muclear Physics. I," J. Phys. 614, 96..-72 (July 1988)
6) Aguiar, M.A.M., C. P. Malta, M. Baranger, and K.T.R. Davies

Eifurcations of Periodic Trajectories in Monintegrable Hamiltonian Systems with Two Degrees of Freedom: Mumerical and Analytical Results," Ann. Phys. (M.Y.) 180, 167-205 (1987)

Defrance, P., S. Rachafi, J. Jureta, F. Meyer, and S. Chantrenne
"Electron Impact Ionization of Ars \({ }^{s}\). Proceedings, Conference on the Physics of Multiply Charged Ions, Groningen, The Metherlands, September 16-20, 1986, !.: I Instrum. Methrds. Phys. Res. B23, 265-67 (1987)

DeSerio, R., C. Gonzalez-Lepera, J. P. Gibbons, J. Burgdorfer, and I. A. Sellin
"Measurements of the Hydrogen 2s-2p Coherence Using the Quantum-Beat Technique," Phys. Rev. A 37, 4111-17 (June 1988)

Dittner, P. F. (Invited Paper)
"Dielectronic Recombination Measurements of Multicharged lons," Proceedings, Horkshop and Symposium on the Physics of Low Energy, Stored and Trapped Particles, Stockholm, Sweden, June 14-18, 1987, Phys. Scr. T22. 65-68 (1988)

Dittner, P. F., S. Oatz, R. Hippler, H. F. Krause, P. D. Miller, P. L. Pepmiller, C. H. Fou. Y. Hahn, and I. Masser "Dielectronic Recombination of the B-Like Ions: \(\mathrm{p}^{+4}\), \(0^{3+}\), and \(\mathrm{F}^{4+}\)," Phys. Rev. A 38, 2762-66 (Sept. 1988)

Dudek, J. (Invited Paper)
"Superdeformed Muclei. Shells-vi-Liquid Drop, Pairing-vs-Thermal Excitations, Triaxial-vs-Octupole Shapes, Super-Superdeformation," pp. 195-221 in The Variety of Muclear Shapes (Proceedings, International Conference on Nuclear Shapes, Crete, Greece, June 29-July 3, 1987), World Scientific Publishing, Singapore, 1988

Dudek, J., B. Herskind, W. Mazarewicz, Z. Szymanski, and T. R. Werner "Pairing, Temperature, and Deformed-Shell Effects on the Properties of Superdeformed 1520y Mucleus," Phys. Rev. C 38, 940-52 (Aug. 1988)

Dudek, J., T. Werner, and L. L. Riedinger "Prediction of Hyperdeformed Muclear States at Very High Spins," Phys. Lett. B211, 252-58 (Sept. 1988)

Ellis-Akovali. Y. A.
"Nuclear Data Sheets for \(A=218, "\) Nucl. Data Sheets 52, 789-809 (Dec. 1987)
Ellis-Akotali, Y. A., K. S. Toth, H. K. Carter, C. R. Bingham, I. C. Girit, and M. O. Kortelahti "a-Decay Reduced Width of \(194 p_{0}\) and Low-Sptn Levels in 194 if Populated in \(194 p_{0}\) a Decay," Phys. Rev. C 36, 1529-39 (Oct. 1987)

Ernst, D. J., and M. R. Strayer
"Inclusive \(\gamma\) and \(x^{0}\) Cross Sections in Heavy-Ion Reactions," J. Phys, 614, L31-L44 (Feb. 1988)
Farid, M. E., and G. R. Satchler
"Further Studies of Density-Dependent Interactions for the Excitation of Collective States," Nucl. Phys. M81, 542-58 (May 1988)

Feng, D. H., C. L. Wu, M. W. Guidry, and 2. P. Li
"Dynamical Paull Effects and the Saturation of Nuclear Collectivity," Phys. Lett. B 205, 156-62 (April 1988)

Fewell, M. P., N. R. Johnson, F. K. McGowan, J. S. Hattula, I, Y. Lee, C. Raktash, Y. Schutz, J. C. Wells, L. L. Riedinger, M. W. Guidry, and S. C. Pancholi
"Lifetimes of Yrast and Mear-Yrast States of \(159,160,161\) Yb," Phys. Rev. C. 37, 101-11 (Jan. 1981)

Garpman, S., R. Albrecht, T. C. Mes, C. Baktash, P. Beckmann, F. Berger, R, Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund. T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter. R. Santo, H. R. Schmidt, T. Siemiarczuk, K. Soderstrom, S. P. Sorensen, E. Stenlund, and G. R. Young "Preliminary Results from Collisions Between \(3.2-\mathrm{TeV} 160\) and Target Nuclei of C . Cu , and Au,"pp. 453-65 in Hadrons, Quarks, and Gluons, Vol. 2 (Proceedings, Hadronic Session of the Twenty-Second Recontre de Moriond, Les Arcs-Savoie, France, March 15-21, 1987), Kis Hup Lee Printing Company, Singapore, 1981

Giese, J. P., and E. Horsdal
"Structure in the Differential Charge-State Fractions of He Following Ionization by Fast Protons," Phys. Rev. Lett. 60, 2018-21 (May 1988)

Girit, I. C., G. D. Alton, C. R. Bingham, H. K. Carter, M. L. Simpson, J. D. Cole, J. H. Hamilton, B. D. Kern, K. S. Krane, and E. F. Zganjar
"UMISOR On-Line Muclear Orientation Facility," pp. 849-52 in Proceedings, Fifth International Conference on Muclei Far from Stability. Rousseau Lake, Ontario, Canada, September 14-19, 1987, alp Conference Proceedings 164, merican Institute of Physics, Mew York, 1988

Goldston, R. J., V. Arunasalam, M. G. Bell. M. Bitter, W. R. Blanchard, M. L. Bretz, R. Budny, C. E. Bush, J. D. Calien, S. Cohen, S. K. Combs, S. L. Davis, D. L. Dimock, H. F. Dylla, P. C. Efthimion, L. C. Emerson, A. C. England, H. P. Eubank, R. J. Fonck, E. Fredrickson, H. P. Furth, G. Gamel, B. Grek. L. R. Grisham, G. Hamett, R. J. Hawryluk, W. H. Heidbrink, D. B. Heifetz, H. W. Hendel, K. W. Hill, E. Hinnor, S. Hiroe, H. Hsuan, R. A. Hulse, K. P. Jaehnig, D. Jassby, F. C. Jobes, D. W. Johnson, L. C. Johnson, R. Kaita, R. Kamperschroer, S. M. Kaye, S. J. Kilpatrick, R. J. Knize, H. Kugel, P. H. LaMarche, B. Leblanc, R. Littie, C. H. Ma, D. M. Manos, D. K. Mansfield, R. T. McCann, M. P. McCarthy, D. C. McCune, K. McGuire, D. H. McMeill, D. M. Meade, S. S. Medley, D. R. Mikkelsen, S. L. Milora, W. Morris, D. Mueller, V. Mukhovatov, E. B. Mieschmidt, J. O'Rourke, D. K. Owens, H. Park, M. Pomphrey, R. Prichard, A. T. Ramsey, M. H. Redi, A. L. Roquemore, P. H. Rutherford, M. R. Sauthoff, G. Schilling, J. Schivell, G. L. Schmidt, S. D. Scott, S. Sesnic, J. C. Sinnis, F. J. Stauffer, B. C. Stratton, G. D. Tait, G. Taylor, J. R. Timberlake, H. H. Towner, M. Ulrickson, V. Vershkov, S. Von Goeller, F. Kagner, R. Weiland, J. 8. Wilgen, M. Williams, K. L. Hong, S. Yoshikawa, R. Yoshino, K. M. Young, M. C.

Zarnstorff, V. S. Zaveryaev, and S. J. Zweben
"Energy Confinement and Profile Consistency in TFTR," pp. 75-8i in Plasma Physics and Controlled Muclear Fusion Research 1986, Vol. 1 (Proceedings, Eleventh International Conference on Plasma Physics and Controlled Muclear Fusion Research, Kyoto, Japan, November 13-20, 1986). International Atomic Energy Agency, Vienna, 1987

Gomez del Campo, J., J. L. Charvet, A. D'Onofrio, R. L. Auble, J. R. Beene, M. L. Halbert, and H. J. Kim "Studies of Emissions of Complex Fragments and Effective Temperatures for Collisions of \({ }^{58} \mathrm{Mi}+\mathbf{5 8}_{\mathrm{Mi}}\) at 11 MeV/Mucleon." Phys. Rev. Lett. 61, 290-93 (July 1988)

Griffin, D. C., R. D. Cowan, and M. S. Pindzola
"Mayer-Ferni Theory and the Long Sequences in the Periodic Table," pp. \(25-47\) in Proceedings, MiO Advanced Study Institute on Giant Resonances in Atoms, Molecules, and Solids. Les Houches, France, June 16-26, 1986," Plenum Publishing, New York, 1981

Griffin, D. C. M. S. Pindzola, and C. Bottcher
"Distorted-Nave Calculations of the Electron-Impact Ionization of Highly Ionized Ma-Like lons," Phys. Rev. : 36, 3642-53 (Oct. 1987)

Gustafsson, H. A., R. Aldrecht, T. C. Anes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S, Garpman, R. Glasow, H. H. Gutbrod, J. W. Johnson, K. H. Kampert, B. W. Kold, P. Kristiansson, l. Y. Lee, H. Loehner, I. Lund, F. E, Dbenshain, A. Oskarsson,
1. Otterlund, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young "Transverse and Zero Degree Energies Observed in 160 -Induced Nuclear Collisions at 60 and 200 A GeV," pp. 125-28 in Proceedings, International Europhysics Conference on High Energy Physics, Vol, I, Uppsala, Sweden, June 25-july 1, 1987, European Physical Society, Petit Lancy, Switzeriand, 1987

Hahn, R. L., K. S. Toth, Y. LeBeyec, R. Lagarde, and M. W. Guidry
"Reactions with "0Ar and \({ }^{44} \mathrm{Kr}\) Leaning to the Same Compound Nucleus, \({ }^{200 \mathrm{PO} \text {." Phys. Rev, C 36, 2132-35 }}\) (Mov. 1987)

Halbert, M. L., J. R. Beene, D. C. Hensley, K. Honkanen, T. M. Semkow, V. Abenante, D. G. Sarantites, and 7. Li (Invited Paper)
"Angular Moment um Effects in Subbarrier Fusion," pD. 323-30 in Frontiers of Heavy-Lon Physics
(Proceedings, 6th Adriatic international Conference on Nuclear Phystcs, bubrovnfk, Yugostavia, June 15-19, 1987), World Scientific Publishing, Singapore, 1987

Harmon, B. A., D. Shapira, P. H. Stelson, B. L. Burks, K. A. Erb, B. Shivakumar, K. Teh, and S. T. Thornton
"Effect of Entrance Channel Asymatry on Fusion Reactions Leading to Compound Muclei with \(A=40,42\)," Phys. Rev. C 38, 572-75 (July 1988)

Harris, J. W., B. V. Jacak, K.-H. Kampert, G. Claesson, K.G.R. Doss, R. Ferguson, A. I. Gavron, H. - A. Gustafsson, H. Gutbrod, B. Kolb, F. Lefebvres, A. M. Poskanzer, H. -G. Ritter, H. R. Schmidt, L. Teitelbaum, M. Tincknell, S. Weiss, H. Wieman, and J. Wilhelmy
"Multifragmentation and Flow in Central Collisions of Heavy Systems," Proceedings, Symposium on Central Collisions and Fragmentation Processes, 193rd Mational Meting of the American Chemical Society, Denver, Colorado, April 7-10. 1987. Nucl. Phys. A471, 241c-52c (Sept. 1987)

Hicks, K. H., and J. Lisantti
"Analysis of \({ }^{\circ} \mathrm{Ca}\left(p, p^{*}\right)\) at 500 MeV Using to Optical Potentials in A Collective Framework." Nucl. Phys. A484, 432-44 (July 1988)

Hill, K. Mo, V. Arunasalam, M. G. Bell, M. Bitter, W. R. Blanchard, M. L. Bretz, R. Budny, C. E. Bush, S. Cohen, S. K. Combs, S. L. Davis, D. L. Dimock, H. F. Dylla, P. C. Efthimion, L. C. Emerson, A. C. England, H. P. Eubank, R. J. Fonck, E. Fredrickson, H. P. Furth, G. Gamei., R. J. Goldston, B. Grek, L. R. Grisham, G. Hammett, R. J. Hawryluk, W. W. Heidbrink, H. W. Hendel, E. Hinnov, S. Hiroe, H. Hsuan, R. A. Hulse, K. P. Jaehnig, D. Jassby, F. C. Jobes, D. W. Johnson, L. C. Johnson, R. Kaita, R. Kamperschroer, S. M. Kaye, S. J. Kilpatrick, R. J. Knize, H. Kugel. P. H. LaMarche, B. Léblanc, C. H. Ma, D. M. Manos, D. K. Mansfield, R. T. McCann, M. P. McCarthy, D. C. McCune, K. McGuire, D. K. McMeill, D. M. Meade, S. S. Medley, D. R. Mikkelsen, S. L. Milora, W. Morris, D. Mueller, V. Mukhovatov, E. B. Mieschmidt, J. O'Rourke, D. K. Owens, H. Park, M. Pomphrey, B. Prichard, A. T. Ramsey, M. H. Redi, A. L. Roquemore, P. H. Rutherford, H. R. Sauthoff, G. Schiliing, J. Schivell, '. L. Schmidt, S. D. Scott, S. Sesnic, M. Shimada, J. C. Sinnis, F. J. Stauffer, J. Strachan, B. C. Sratton, G. D. Tait, G. Taylor, J. R. Timberlake, H. H. Towner, M. Virickson, V. Vershkov, S. Von Goeller, F. Magner, R. Meiland, J. B. Wilgen, M. Hilliams, K. L. Mong, S. Yoshikawa, R. Yoshino, K, M. Young, M. C. Zarnstorff. V. S. Zaveryaev, and S. J. Zweben
"Impurity and Particle Transport and Control in TFTR," pp. 207-16 in Plasma Physics and Controlled Muclear Fusion Research 1985, Vol. 1 (Proceedings, Eleventh International Conferfince on Plasma Physics and Controllé Nuclear Fusion Research, Kyoto, Japan, Movember 13-20, 1936), International At omic Energy Agency, Vienna, 1987

Hippler, R., S. Datz, K. F. Krause, P. D. Miller, P. L. Pepmiller, and P. F. Dittner
"Partial Cross Sections for Electron Capture into Specific \(n\) States for 0.1 - and 0.25 -MeV/Mucleon 19+ - \(\mathrm{H}_{2}\) Collisions (\(\mathrm{q}=12-18\))," Piiys. Rev. A 37, 3201-03 (May 1988)

Hippler, R., S. Datz, P. D. Miller, P. F. Dittner, and P. L. Pepmiller
"Double and Single Electron Capture and Loss in \(0.5-2.5 \mathrm{MeV} / \mathrm{u} 0 \mathrm{q}^{+}-\mathrm{Me}(\mathrm{q}=5,7,8)\) Collisions," 2. Phys. D 8, 163-66 (1988)

Hofmann, H. J., J. Beer, G. Bonani, H. R, von Gunten, S. Raman, M. Suter, R. L, Malker, H. Molfil, and D. Zimmerman
"Beryllium-10: Half-Life and AMS Standards," Proceedings, Fourth International Symposium on Accelerator Mass Spectrometry, Niagara-on-the-Lake, Ontario, Canada, April 27-30, 1987, Nuc1. Instrum. Methods Phys. Res. 829, 32-36 (1987)

Horen, D. J.. J. R. Beene, and F. E. Bertrand
"Comment on the Characterization of the Giant Quadrupole Resonance in 208 pb as Reported from \(\pi^{+} / \pi^{-}\)Scattering," Phys. Rev. C 37, 888-90 (Feb. 1988)

Horen, D. J., M.A.G. Fernandes, B. L. Burks, G. R. Satchler, R. L. Auble, F. E, Bertrand, E. E. Gross, D. C. Hensley, R. D. Sayer, and D. Shapira
"Transfer Reactions at High Energy and Ambiguities in Heavy-Ion Potentials," 2. Phys. A 328, 189-93
(Dec. 1987)
Inn, K.G.W., S. Raman, B. M. Coursey, J. D, Fassett, and R. L. Walker
"Development of the \({ }^{10} \mathrm{Be}^{\prime} /{ }^{9}\) ge Isotoplc MBS Standard Reference Material." Proceedings, fourth International Symposium on Accelerator Mass Spectrometry, Miagara-on-the-Lake, Ontario, Canada, April 27-30, 1987, Mucl. Instrum. Methods Phys. Res. 829, 27-31 (1987)

Johnson, C. H., D. J. Horen, and C. Mahaux
"Unified Description of the Meutron-208 Pb Mean Field Between -20 and +165 MeV from the Dispersion Relation Constraint," Phys. Rev. C 36, 2252-73 (Dec. 1987)

Johnson, C. H., and R. R. Winters
"Evidence for State Dependence of the Imaginary Part of the Empirial Dptical Potential," Phys. Rev. C 37, 2340-49 (June 1988)

Johnson, N. (Invited Paper)
"Nuclear Collectivity at High Spins Determined from Lifetime Measurements." pp. 241-52 in Proceedings, International Conference on Muclear Structure Through Static and Dynamic Moments, Melbourne, Australia, August 25-28, 1987, Conference Proceedings Press, Melbourne, 1987

Jones, C. M., G. D. Alton, J. B. Ball. J. A. Biggerstaff, D. T. Dowling, K. A. Ert, D. L. Haynes, D. E. Moglund, E. O. Hudson, R. C. Juras, S. M. Lane, C. A. Ludemann, J. A. Martin, M. J. Meigs, S. M. Mosko, O. K. 01 sen, and K. F. Ziegler "The Holifield Heavy Ion Research Facility," Proceedings, Seventh Tandem Conference, Berlin, West Germany. April 6-10, 1987, Mucl. Instrum. Methods Phys. Res. A268, 308-12 (May 1988)

Jones, Z. M., K. A. Ert, D. L. Haynes, J. T. Mitchell, M. F. Ziegler, J. E. Raatz, and R. O. Rathmell "Tests of Compressed Geometry Acceleration Tubes in the Oak Ridge 25URC Tandem Accelerator." Proceedings, Seventh Tandem Conference, Ber'in, Hest Germens, April 6-10, 1987, Mucl. Instrum. Methods Phys. Res. 1268, 361-67 (May 1988)

Jones, C. M., K. A. Ert, D. L. Haynes, J. T. Hitchell, M. F. Ziegler, J. E, Raatz, and R. D. Rathmell -Initial Tests of Compressed Geometry Acceleration Tubes in the ORML 25uRC Tandem Accelerator," pp. 65-76 in Proceedings, XX Symposium of Mortheastern Accelerator Personnel, Motre Dame, Indiana, Movember 3-6, 1986, Morld Scientific Publishing, Singapore, 1987

Juras, R. C. (Invited Paper)
"Tutorial on Computer Controls." pp. 93-110 in Proceedings, XXI Symposium of Mortheastern Accelerator Personne1, Tallahassee, Florida, September 28-October 1. 1987, Morld Scientific Publishing. Singapore, 1988

Juras, K. C., M. F. Liegler, M. J. Meigs, R. L. McPherson, D. E. Hogiund, and J. A. Biggerstaff (Invited Talk)
"Evolution and Development of the Oak Ridge 25URC Tandem Accelerator Control System," Proceedings, Seventh Tandem Conference, Berlin, Mest Germany, April 6-10, 1987, Muc1. Instrum. Methods Phys. Res. A268, 549 (May 1988)

Jury, J. W., P.C.-K. Kuo, K. G. McKeill, C. K. Ross, H. R. Weller, and S. Raman "Ground-State 'hotoneutron Reactions in \({ }^{18}\) 0," Phys. Rev. C 36, 1243-48 (Oct. 1987)

Kern, B. D.. G. A. Leander, R. L. Mekodaj, H. K. Carter, M. D. Kortelahti, E. F. Zganjar, R. A. Braga, R. W. Fink, C. P. Perez, P. B. Sesmes, and M. Mazarewicz "Energy Levels and Structure of Light Rare-Earth Huclei. \(136,138,140\) Sm and \(132,134,136 \mathrm{Nd}\), via Beta Decay, "pp. 441-44 in Proceedings, Fifth International Conference on Muclei Far Prom Stability, Rousseau Lake, Ontario, Canada, September 14-19, 1987, AIP Conference Proceedings 164, American Institute of Physics, New York, 1988

Kern, B. D., R. L. Mlekodaj, M. O. Kortalahti, R. A. Braga, and R. W. Fink

Kern, B. D., R. L. Mlekodaj, G. A. Leander, M. O. Kortelahti, E. F. Zganjar, R. A. Braga, R. W. Fink, C. P. Perez, M. Mazarewicz, and P. B. Semines -Transition Through Triaxial Shapes of the Light: Samarium Isotopes and the Beta Decay of 136,138,140Eu." Phys. Rev. C 36, 1514-21 (Or.t. 1987)

Krause, H. F. (Invited Paper)
-A Movel High-Resolution Experimental Approach for Studying Laser Photodetachment in a Magnetic Field," pp. 673-81 in Particles and Fields Series 35 (Proceedings, Fourth International Symposium on the Production and Meutralization of Kegative Ion Beams, Upton, Mew York, October 21-31, 1986), AlP Conf. Proc, 158, American Institute of Physics, Mew York 1981

Leander, G. A.
"Simulation of Mur 'ear Quasicontinuum Gamma-Ray Spectra," Comput. Phys. Commun. 47, 311-40 (Mov./Dec. 198:)

Leander, G. A.
"Statistical El \#, d Ml Gamma Strength Functions from Heavy-Ion,xny Data," Phys. Rev. C 38, 128-36 (Aug. 1988)

Leander, G. A., P. Arve, and B. Lauritzen
"Tails of the Rotatisnal Strength Function in the Nuclear Quasicontinuum," Phys. Rev. C 37, 328-35 (Jan. 1988)

Leander, G. A., and Y. S. Chen
"Reflection-Asymmetric Rotor M, tel of Ddd \(A \sim 219-229\) Nuclei," Phys. Rev. C 37, 2744-18 (June 1988)

Lee, 1. Y-, J. A. Martin, J. 8. McGrory, W. T. Milner, D. K. Olsen, and G. R. Young
Lattice Design of HISTRAP: Heavy Ion Storage Ring for Atomic Physics," pp. 310-12 in Proceedings, 1987 IEEE Particle Accelerator Conference, Washington, D.C., March 16-19, 1987, IEEE Catalog Mo. 87CH2387-9, Institute of Electrical and Electronics Engineers, Mew York, 1987

Lee, S. J.. J. Fink, A. B. Balantekin, M. R. Strayer, A. S. Umar, P.-G. Reinhard, J. A. Maruhn, and W. Greiner
"Reply to Coment by Furnstahl et al.." Phys. Rev. Lett. 60, 163 (Jan. 1988)
Lee, S.-J., A. S. Umar, K. T.R. Davies, M. R. Strayer, and P.-G. Reinhard
"Enhanced Dissipation in Mew Mean-Field Studies of Strongly Damped Collisions," Phys. Lett. B 196, 419-23 (Oct. 1987)

Levin, J. C., H. Cederquist, C.-S. O, R. T. Short, I. A. Sellin, L. Liljeby, S. Huldt, S.-E. Johansson,
E. Milsson, and D. A. Church -Production of Very Cold, Highly Charged lons by Synchrotron Radiation: Comparisons of the 'Scalpel' and 'Hamer' Methods." Proceedings, Second U.S. -Japan Seminar on the Physics of Highly Charged Ions Produced in Heavy Ion Collisions, Kobe, Japan, March 16-20, 1987, Mucl. Instrum. Methods Phys. Res. A262, 106-09 (Dec. 1987)

Levin, J. C., C.-S. O, H. Cederquist, C. Biedermann, and I. A. sitlin -Imortance of Vacancy Cascades in Argon Recoil-Ion Charge-State Distributions Accompanied by Coincident Projectile-Electron Capture and Loss." Phys. Rev. A 38, 2674-71 (Sept. 1988)

Lisanti, J., F. E. Bertrand, D. J. Horen, B. L. Burks, C. H. Glover, D. K. McDaniels, L. W. Swenson. X. Y. Chen, O. Hausser, and K. Hicks
"Excitation of Giant Resonances in \({ }^{28}\) Si with 250 MeV Protons," Phys. Rev. C 37, 2408-17 (June 1988)
Loehner, H., R. Albrecht, T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G, Claesson,
L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H.

Kampert. B. W. Kolb, P. Kristiansson, I. Y. Lee, I. Lund, F. E. Obenshain, A. Ostarsson, I, Otterlund,
T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R.

Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young "Multiplicity Dependence of Meutral Transverse Momentum spectra in 200 A. GeV 0 + Hucleus Reactions," pp. 133-36 in Proceedings, International Europhysics Conference on High Energy Physics, Vol. 1, Uppsala, Sweden, June 25-July 1, 1987, European Physical Society, Petít-Lancy, Switzerland, 1987

Loehner, H., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. H. Kolb, P. Kristiansson, 1. Y. Lee, I. Lund, F. E. Obenshain, A. Dskarsson, I. Otteriund,
T. Peitzmann. S. Persson, F. Plasil, A. H. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R.

Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young
"Meutral Transverse Momentum Spectra in 60 and 200 A.GeV 160 + Mucleus and Proton + Hucleus Reactions," Proceedings, 6th International Conference on Vltrarelativistic Mucleus-Mucleus Collisions, Schloss Mordkirchen, Mest Germany, August 24-28, 1987, 2. Phys. C 38, 97-103 (April 1988)

Lund, I., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R, Bock, G, Claesson, L. Dragon,
R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K, H.

Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Lohner, F. E. Obenshain. A. Oskarsson, l. Otterlund,
T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R.

Schaidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Voung
"Charged-Particle Spectra in 160 -Induced Nuclear Collisions at the CERM SPS," 6th International Conference on Ultra-Relativistic Nucleus-Nucleus collisiors, Schloss Mordkirchen, West Germany, August 24-28, 1987, 2. Phys. C 38, 51-57 (April 1988)

Ma, C. H., D. P. Hutchinson, and K. L. Vander Sluis "A Two-Wavelength Infrared Interferometer/Polarimeter System for CIT." Proceedings, 7th Topical Conference on High Temperature Plasma Diagnostics, Mapa, California, March 13-17, 1988, Rev. Sci. Instrum. 59, 1629-31 (Aug. 1988)

\footnotetext{
Mallory, M. L., P. S. Miller, J. Kuchar, and E. D. Hudson (Invited Paper) "Vacuum Measurements of the K500 Cyclot ron Accelerator Chamber," PD. 404-06 in Proceedings, Eleventh International Conference on Cyclotrons and Their Applications, Tokyo, Japan, October 13-17, 1986, Ionics Publisning Company, 1987

Mansfield, D. K., H. K. Park, L. C. Johnsol , H. M. Anderson, R. Chouinard, V. S. Fonte, C. H. Ma, and B. J. Clifton
"Multichannel Far-Infrared Laser Interferometer for Electron Denstiy Measurements on the Tokamak Fusion Test Reactor," Appl. Opt. 26, 4469-14 (Oct. 1987)
}

Martin, J. A., D. T. Dowling, D. L. Haynes, E. D. Hudson, C. M. Jones, R. C. Juras, S. M. Lane, C. A. Ludemann, M. J. Meigs, W. T. Hilner, S. H. Mosko, D. K. Olsen, and M. F. Liegler (Invited Paper) -Operational Experience for Coupled Operation of the Holifield Tandem Electrostatic Accelerator and Isochronous Cyclotron;" pp. 38-45 in Proceedings. Eleventh International Conference on Cyclotrons and Their Applications, Tokyo, Japan, October 13-17, 1986, Ionics Publishing Company, 1981

McGuire, K., V. Arunasalam, M. G. Bell, M. Bitter, W. R. Blanchard, M. L. Bretz, R. Budny, C. E. Bush, J. D. Callen, M. Chance, S. Cohen, S. K. Combs, S. L. Davis. D. L. Dimock, H. F. Dylla, P. C. Efthimion, L. C. Emerson, A. C. England, H. P. Eubank, R. J. Fonck, E. Fredrickson, H. P. Furth, G. Gamel, R. J. Goldstinn, B. Grek, L. R. Grisham, G. Hamett, R. J. Hawryluk, W. W. Heidbrink, H. W. Hendel, K. W. Hill. E. Hinnor, S. Hiroe, H. Hsuan, R. A. Hulse, K. P. Jaehnig, D. Jassby, F. C. Jobes, D. W. Johnson, L. C. Johnson, R. Kaita, R. Kamperschroer, S. M. Kaye, S. J. Kilpatrick, R. J. Knize, H. Kugel, P. H. Laharche, B. Leblanc, R. Little, C. K. Ma, J. Manickam, D. M. Manos, D. K. Mansfield, R. T. McCann, M. P. McCarthy, D. C. McCune, D. H. Mcheill, D. M. Meade, S. S. Mediey, D. R. Mikkelsen, S. L. Mi lora, D. Monticello, A. W. Morris, D. Mueller, E. B. Mieschmidt, J. O'Rourke, D. K. Owens, H. Park, W. Park, M. Pomphrey, B. Prichard, A. T. Ramsey, M. H. Redi, A. L. Roquemore, P. H. Rutherford, M. R. Sauthoff, 6. Schilling, J. Schivell, G. L. Schaidt, S. D.Scott, S. Sesnic, J. C. Sinnis, F. J. Stauffer, B. C. Stratton, 6. D. Tait, G. Taylor, J. R. Timberlake, H. H. Towner, M. Ulrickson, S. Von Goeller, F. Megner, R. Heiland, J. B. Wilgen. M. Williams, K. L. Hong, S. Yoshikawa, K. M. Voung, M. C. Zarnstorff, and S. J. Zweben
"Conerent and Turbulent Fluctuations in TFTR," pp. 421-31 in Plasma Physics and Controlled Muclear Fusion Research 1986, Vol. 1 (Proceedings. Eleventh International Conference on Plasma Physics and Controlled liuclear Fusion Research. Kyoto, Japan, Movember 13-20, 1986). International Atomic Energy Agency, Vienna, 1987

Meyer, F. W. (Invited Paper)
"Application of ECR Ion Source Beams in Atomic Physics." pp. 520-46 in Proceedings, International Conference on ECR Ion Sources and Their Applications, East Lansing, Michigan, Movember 16-18, 1987, MSU Kational Superconducting Laboratory Report MSUCP-47. Dec. 1987

Meyer, F. H., D. C. Griffin. C. C. Havener, M. S. Huq, R. A. Phaneuf, J. K. Smenson, and K. Stolterfoht (Invited Paper)
"Correlation Effects on Double Electron Capture in Highly-Charged, Low-Energy lon-Atom Col:isions,* PP. 673-83 in Proceedings, XVth International Conference on the Physics of Electronic and itomic Collisions, Brighton, England, July 22-28, 1987, Morth-Holland, ansterdam, 1988

Meyer, F. H., D. C. Griffin, C. C. Havener, M. S. Huq, R. R. Phaneuf, J. K. Swenson, and M. Stolterfoht -Population of High-Angular-Momentun States in Low-Energy Double-Electron-Capture Collisions of \(0^{6+}\) with He," Phys. Rev. Lett. 60, 1821-24 (May 1988)

Meyer, F. M., and J. W. Hale
-Operation of the ORML ECR Source" pp. 319-21 in Proceedings, 1987 Particle Accelerator Conference, Mashington, D.C., March 16-19, 1987, IEEE Catalog Mo. 87CH2387-9, Institute of Electrical and Electronics Engineers, Mew York, 1987

Mitschke, J. M., P. A. Wilmarth, J. Gilat, P. Moller, and K. S. Toth (Invited Paper) "Beta-Delayed Proton Decay in the Lanthanide Region," pp. 697-707 in Proceedings, Fifth International Conference on Muclei Far from Stability, Rousseau Lake, Ontario, Canaतa, September 14-19, 1987, 1IP Conference Proceedings 164, Amerlcan Insr,itute of Physics, Mew York, 1988

Mitschke, J. M., P. A. Milmarth, J. Gilat, K. S. Toth, and F. T. Avignone, III
"Delayed Proton Emission of \(N=81\) Odd-Odd Precursors: \({ }^{148} \mathrm{Ho},{ }^{150} \mathrm{Tm}\), and \({ }^{152} \mathrm{Lu}\)." Phys. Rev. C 37, 2694-703 (June 1988)

Olsen, D. K., G. D. Alton, S. Datz, P. F. Dittner, D. T. Dowling, D. L. Haynes, E. D. Hudson, J. W. Johnson, I. Y. Lee, R. S. Lord, C. A. Ludemann, J. A. Martin, J. B. McGrory, F. W. Meyer, P. D. Miller, W. T. Milner. S. W. Mosko, P. L. Pepmiller, and G. R. Young (Invited Paper)
"The HISTRAP Proposal: Heavy Ion Storage Ring for Atomic Physics," Pp. 134-40 in Proceedings, Eleventh Conference on Cyclotrons and Their Applications. Tokyo, Japan, October 13-11, 1986, Ionics Publishing Company, 1987

Olsen, D. K., K. A. ErD, C. M. Jones, W. T. Milner, and N. F. Ziegler "A Movel Method for Measuring Ream Energies by Time-of-Fifght," pp. 114-21 in Proceedings, xx Symposium of Northeastern Accelerator Personnel. Notre Dame, Indiana, November 3-6, 1986, World scientific Publishing, Singapore, 1987

Pantell, R. H., J. D. Kephart, R. K. Klein, H. Park, R. L. Rerman, and S. Datz
"The Study of Material Properties Using Channeling Radiation." pp. 435-53 in Relativistic Channeling (Proceedings, Maro Advanced Research Workshop on Relativistic Channeling, March 31 -April 4, 1986, Mardtea, Italy), Plenum Puhlishing, Mew York, 1981

Pegg, D. J., J. S. Thompson, R. M. Compton, and G. O. Alton
Evidence for Stable Megative Ion of Calcium. Phys. Rev. Lett. 59, 2267-70 (Mov. 1987)
Phaneuf, R. A., R. K. Janev, and H. T. Hunter
"Charge Exchange Processes Involving Iron Ions," pp. 7-20 in Recommended Data on Atamic Collision Processes Involving Iron and Its Ions (Reviewed at IAEA Advisory Group Meeting on Aiomic Data for Fusion Plasm Modelling, Vienna, Austria, Septemer 18-20, 1985). Special Supplement to Muclear Fusion, 1987

Pindzola, M. S., and C. Bottcher
"Strong-Field Laser lonization of Model Atons," J. Opt. Soc. Am. B4, 752-53 (May 1987)
Pindzola, M. S., D. C. Griffin, and C. Bottcher (Invited Paper)
"Electron-Impact Ionization of Heavy Atcmic Ions." pp. 129-45 in Proceedings, xy International Conference on the Physics of Electronic and Atomic Collisions, Brighton, England, July 22-28, 1987, Morth-Holland, hasterdan, 1988

Pindzola, M. S., D. C. Griffin, C. Bottcher, S. M. Younger, and H. T. Hunter
"Electron-Ipact Ionization Data for the Iron Isonuclear Sequence," pp. 21-41 in Recommended Data on Atomic Collision Processes Involving Iron and Its Ions (Reviewed at IAEA Advisory Group Meeting on Atomic Data for Fusion Plasma Modelling, Vienna, Austria, September 18-20, 1985), Special Supplement to Muclear fusion, 1987

Plasil, F., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R, Glasom, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kamert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarssin, I. Otterlund, T. Peitzmann, S. Persson, A. M. Poskanzer, M. Purschke, H. G. Ritter,
R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R, Young (Invited Paper) "mucleus-nucleus Collisions at Relativistic Energies: The CERN HA8O Experiment." pp. 433-47 in Frontiers of Heavy-Ion Physics (Proceedings, 6th Adriatic International Conference on Muclear Physics, Dubrovifk, Yugosiavia, June : ,-19, 1987). World Scientific Publishing, Singapore, 1987

Platchkov, 5., A. Aaroun, P. Bricault, J. M. Cavedon, P.k.A. de Witt Huberts, P. Dreux, B. Frois, C. D. Goodman, D. Goutte, J. Martino, V. Meot. G. A. Peterson, X. H. Phan, S. Raman, and I. Sick "Measurement of the \(1 \mathrm{f}_{7 / 2}\) Meutron Orbit Radius in \({ }^{1}{ }^{1} \mathrm{Ca}\)," Phys. Rev. Lett. 61, 1465-68 (Sept. 1988)

Raman, S., Editor
"Actinide Mewsletter," Issue 11 (April 1988)
Raman, S., S. Kahane, and J. E. Lynn (Invited Paper) "Direct Thermal-Meutron Capture," Proceedings, Sixth International Symposium on Capture Gama-Ray Spect roscopy, Leuven, Belgium, August 31-September 4, 1987." Inst. Phys. Conf. Ser. Mo. 88, J. Phys. 614 (Supplement), \(5223-30\) (May 1988)

Raman, S., C. W. Mestor, Jr., and K. H. Bhatt
"Systematics of \(\mathrm{B}\left(E 2 ; \mathrm{O}_{1}{ }^{+} \rightarrow \mathbf{2 1}^{+}\right.\)) Values for Even-Even Nuclei," Phys. Rev. C 37, 805-22 (Feb. 1988)
Raman, S., T. A. Walkiewicz, L. G. Multhauf, K. G. Tirsell, G. Bonsignori, and K. Allaart "Decays of \(118 \mathrm{In}, 120 \mathrm{In}\), and 122 In Isomers to Levels in' \(118_{5 n} 120 \mathrm{Sn}_{\mathrm{n}}\), and \(122 \mathrm{Sn}_{n}\)," Phys. Rev. C 37, 1203-28 (Mar. 1988)

Read, P. M., G. D. Alton, and J. T. Maskrey
"High Brightness Sources for MeV Microprove Applications," Proceedings, First International
Conference on Muclear Microprobe Technology and Applications, Oxford, England, September 1-4, 1987, Hucl. Instrum. Methods Phys. Res. B30, 293-99 (1988)

Reinhard, P. G., M. Rufa, J. Fink, J. Maruhn, H. Stocker, W. Greiner, S. Y. Lee, S. Umar, M. R. Strayer,
and R. Y. Cusson (Invited Paper)
"Relativistic Mean-Field Theories and Nuclear Properties," pp. 137-63 in Conerent Effects in Highly Excited Muclef (Proceedings, 18th Mikolajki Summer School on Nuclear Physics, Mikolajki, Poland, September \([-13,1986 . "\) Nuclear Science Research Conference Series. Mo. 12, Harwood Academic, New York, 1987

Reinhard, P. G., A. S. Umar, K. T.R. Davies, M. R. Strayer, and S. J. Lee "Dissipation and Forces in Ttme-Dependent Hartree-Fock Calculations," Phys. Rev. C 37, 1026-35 (March 1988)

Ricnards, R, K., C. A. Bennett, L. Fletcher, K. T. Hunter, and D. P. Hutchinson "A \(\mathrm{CO}_{2}\) Laser Thomson Scattering Diagnostic for Fusion Pronuct Alpha Particle Measurement." Proceedings, 7en Topical Conference on High Temperature Plasma Diagnostics, Napa, Californid, March 13-17. 1988, Rev. Sct. Instrum. 59, 1555-58 (Aug. 1798)

Rufa, M., P.-G. Reinhard, J. A. Maruhn, H. Greiner, and M. R. Strayer
Optimal Parameterization for the Relativistic Mean-Field Model of the Mucleus. Phys. Rev. C 38. 390-409 (July 1988)

Sarantites, D. G., T. M. Semkc. L. G. Sobotka, V. Abenante, z. Li, Z. Majka, M. G. Nicolis. D. W.
Stracener, D. C. Hensley, J. R. Heene, and H. C. Griffin (Invited Paper)
"A Mew Look at Reaction Mechanisms with 4x Charged-Particle and Meutron Multiplicity Measurements," pp. 375-91 in Proceedings, Texas A\&M Syposium on Hot Huclei, College Station. Texas, December 7-10, 1987, Morld Scientific Publishing, Singapore, 1988

Satchler, G. R. (Invited Paper)
*The Threshold Anomaly for Heavy-Ion Scattering," Proceedings, XIth Symposium on muclear Physics, Oaxtepec, Mexico, January 4-7. 1988, Motas de Fisica 11, 275-87 (1988)

Schmidt, H. R., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R, Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Earpman, R. Glasow, H. A. oustafsson, H. H. Gutbrod, K. H.

Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Lohner, I. Lund, F. E. Obenshain, A. Oskarsson,
1. Otterlund, T. Peitzmann. S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo,
T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young (Invited Paper)
"Target Fragmentation in Proton-Mucleus and \({ }^{160}\)-Mucleus Reactions at 60 and \(200 \mathrm{GeV} / \mathrm{Mucleon}\)." 6th
International Conference on UItra-Relativistic Mucleus-Nucleus Collisions, Schloss Mordeirchen, West
Germany, August 24-28, 1987, Z. Phys. C 38, 109-15 (April 1988)
Schmorak, M. R.
"Muclear Data Sheets for \(A=199, "\) Mucl. Data Sheets 53, 331-406 (Feb. 1988)
Schuch, R. (Invited Paper)
"Heavy Ion Storage Rings," pp. 163-82 in Proceedings, Morkshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ins, Argonne, Illinois, January 12-13, 1987, Argonne Mational Laboratory Report ANL-PHY-87-1, 1987

Schuch, R. (Invited Paper)
"Electron Ion Collisions with a Heavy Ion Cooler Ring." Proceedings, Second U.S. Frexico Symposium on Atomic and Molecular Physics: Two-Electron Phenomena, Mexico City, Mexico, January 8-11, 1986, Motas de Fisica 10, 483-501 (1987)

Schuch, R. (lnvited Paper)
"Storage Rings for Investigation of Ion-Atom Collisions," pp. 509-25 in High-Energy Ion-Atom Collisions. Lecture Notes in Physics 294 (Proceedings, Third Morkshop on High Energy Ion-Atom Collisions, Debrecen, Hungary, August 3-5, 1987). Springer-Verlag, Berlin, 1988

Schuch, R., S. Datz, P. F. Dittner, R. Hippler, H. F. Krause, and P. D. Miller (Invited Paper) "Measurement of Inelasticities for Charge Correlated Multiple Ionization of Me by Fast Cst Ions, " Proceedings, Second U.S. Japan Seminar on the Physics of Highly Charged lons Produced in Heavy Ion Collisions, Kobe, Japan, March 16-20, 1987. Mucl. Instrum. Methods Phys. Res. A262, 6-9 (Dec. 1987)

Schuch, R., H. Schone, P. D. Miller, H. F. Krause, P. F. Dittner, S. Datz, and R. E. Olson "Charge- and Angular-Correlated Inelasticities in Collisions of Bare Fast Carbon lons with Meon," Phys. Rev. Lett. 60, 925-28 (March 1988)

Sellin, I. A. (Invited Paper)
"What Is New in Convoy Electron Physics?," in Dynamical Processes of Highly Charged Ions
(Proceedings, International Seminar on Dynamic Processes of Highly Charged Ions, Susono, Japan, August 21-24, 1986), Institute of Plasma Physics Report IPP-AM-48, Magoya University, Magoya, Japan, Oct. 1986

Sellin, I. A., J. C. Levin, C.-S. O, H. Cederquist, S. B. Elston, R. T. Short, and H. Schmidt-Bocking (Invited Paper)
"Cold Highly lonized lons: Comparison of Energies of Kecoll lons Produced by Heavy lons and by Synchrotron Radiation X Rays," Proceedings, Harkshop and Symposium on the Physics of Low Energy, Stored and Trapped Particles, Stockholm, Sweden, June 14-18, 1987, Phys. Scr. T22, 178-82 (1988)

\footnotetext{
Semkow, T. M., D. G. Sarantites, K. Honkanen, Z. I., M. Ross, J. R. Beene, M. L. Halbert, and D. C. Hensley
"Excitation Energy Division in the Ruasielastic Region from Reactions of \(12 \mathrm{MeV} / \mathrm{Muc}\) leon \({ }^{4} 8 \mathrm{Ti}\) with
\(150 \mathrm{Nd}, "\) Phys. Rev. C 37, 169-71 (Jan. 1988)
Shaptra, D., B. Shivakumar, B. A. Harmon, and S. Ayik (Invited Paper)
"Close Collistions Between Light Nuclei - Orbiting and Fusion," pp. 55-72 in Frontiers of Hedvy-Ion
Physics (Proceedings, 6th Adriatic International Conference on Nuclear Physics. Dubrovnik.
Fugostavia, June 15-19, 1987). World Scientific Publishing, Singapore, 1981
}

Silk, J. D., H. D. Holmgren, D. L. Hendrie, T.J.M. Symons, G. D. Westfall, P. H. Stelson, S. Raman, R. L. Auble, J. R. Wu, and R. Van Bibber
\({ }^{-}\)Fragmentation of 160 Projectiles at 100 MeV Per Rucleon. " Phys. Rev. C 37, 158-62 (Jan. 1988)
Snowdon. K. J., C. C. Havener, F. W. Meyer, S. Overbury, D. M. Zehner, and W. Heiland -Technique for Determination of the Metastable Fraction of Multicharged Ion Beams," Rev. Sci. Instrum. 59, 902-05 (June 1988)

Snowdon, K. J., C. C. Havener, F. W. Meyer, S. H. Overbury, D. M. Zehner, and M. Heiland "Charge Exchange at Molecular-Orbital Pseudocrossings as an Important Mechanism for Montinetic-Electron Emission in Slow-Multicharged-Ion (v<vo) Metal-Suriace Scattering," Phys. Rev. A 38. 2294-304 (Sept. 1988)

Sobotka, L. G., D. G. Sarantites, Z. Li, E. L. Dines, M. L. Halbert, D. C. Hensley, J. C. Lisle, R. P Schaitt, Z. Majka, G. Mebbia, H. C. Griffin, and A. J. Sierk
"Angular Momentum Dependence of Complex Fragment Emission," Phys. Rev. C 36, 2713-16 (Dec. 1987)
Sobotka, L. G., D. G. Sarantites, Z. Li, E. L. Dines, M. L. Halbert, D. C. Hensley, R. P. Schaitt, Z. Majka, G. Mebbia, H. C. Griffin, and A. J. Sierk (Invited Paper)
*The Angular Momentum Dependence of Complex Fragment Emission," Proceedings, Symposium on Centra; Collisions and Fragmentation Proceses, 193rd Mational Meeting of the American Chemical Society, Denver. Colorado, April 7-10, 1987, Nuc1. Mys. M71, 131c-48c (Sept. 1987)

Sofield, C. J., P. M. Read, L. B. Bridmell, P. L. Pepmiller, G. D. Alton, D. C. Gregory, and P. D. Miller
"Ionisation of H -, He-, and Li-Like 1 GeV Mi Ions in Solid Carbon Targets," J. Phys. B21, L37-L42 (Feb. 1988)

Sorensen, S. P., R. Albrecht, T. C. Mes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Giasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Lohner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt. T. Siemiarczuk, E. Stenlund, and G. R. Young (Invited Paper)
"Oxygen-Induced Reactions at 60 A GeV and 200 A GeV Studied by Calorimetry," Proceedings, 6th International Conference on Ultrarelativistic Rucleus-Mucleus Collisions, Schloss Mordkirchen, West Germany, August 24-28, 1987, 2. Phys. C 38, 3-14 (April 1988)

\section*{Stelson, P. H.}
"Meutron Flow Between Nuclei as the Principal Enhancement Mechanism in Heavy-Ion Subbarrier Fusion," Phys. Lett. 2058, 190-94 (April 1988)

Stolterfont, H. P. D. Miller, H. F. Krause, Y. Yamazaki, P. F. Dittner, P. L. Pepmiller, I. A. Sellin, and S. Datz
- Production of Autoionizing Rydberg States by Transfer Excitation in High-Energy Ion-Atom

Collisions," Proceedings, Second U.S. Hexico Symposium on Atomic and Molecular Physics: Two-Electron Phenomena. Mexico City, Mexico, January 5-7, 1986, Motas de Fisica 10, 51-61 (1987)

Strayer, M. R. (Invited Paper)
What Lies Beyond the Mean-Field?," po. 353-94 in Proceedings, Workshop on Heavy-Ion Reaction Dynamics Studied with Large Counter Arrays, Toronto, Canada, March 26-27, 1987, Report AECL-MISC-283, Atomic Energy of Canada, Ltd., Sept. 1987

Strayer, M. R. (Invited Paper)
"The Time-Dependent Hartree-Fock Method and Chaos in Nuclear Dynamics," p. 157 in Proceedings, Symposia of the American Physical Society Topical Group on Few-Budy Systems and Multiparticle Dynamics, Crystal City, Virginia, April 20-23, 1987, AIP Conf. Proc. 162, American Institute of Physics, Mew York, 1987

Smenson, J. K., M. Stolterfoht, Y. Yamasaki. P. D. Miller, H. Krause, P. F. Dittner, P. L. Pepmiller, and S. Datz
-Observation of Resonant Transfer and Excitation in \(0^{5}++\) He Colifsims through High Resolution \(0^{\circ}\) Auger Electron Spectroscopy," Proceedings. Second U.S.-Mexico Symposium on: At omic and Molecular Phystcs: Iwo-Electron Phenomena, Mextco City, Mexicc, January 5-7, 1986, Notas de Fistca 10, 85-89 (1987)

Takal, H., C. M. Knott, D. F. Winchell, J. X. Saladin, M. S. Kaplan, L. de Faro, R. Aryaeinejad. R. A. Blue, R. M. Ronningen, D. J. Morrissey, I. Y. Lee, and 0 . Dietzsch "Population of High spin States by Quasi-Elastic and Deep Inelastic Collisions," Phys. Rev. C 38, 1247-61 (Sept. 1988)

Tawara, H., and R. A. Phaneuf
=Atomic and Molecular Data Requirements for Fusion Plasma Edge Studies," Comments At. Mol. Phys. 21, 177-93 (1988)

Teh, K. M., D. Sripira, J. W. McConnell, H. Kim, and R. Movotny
"Data Acquisition for the HILI Detector," Proceedings, 1987 IEEE Muclear Science Symposium, San Francisco, California, October 19-23, 1987, [EEE Trans. Hucl. Sci. WS-35, 272-76 (1988)

Toth, K. S., Y. A. Ellis-Akovali, H. J. Kim, J. W. McConnell, H. K. Carter, and D. M. Moltz (Invited

\section*{Paper)}
"Muclear structure Effects on a Reduced Widths," pp. 665-74 in Proceedinas, Fifth International Conference on Muclei far from Stability, Rocisseau Lake, Ontario, Canada, September 14-19, 1987, Alp Conference Proceedings 164, Mmerican Institute of Physics, Mew York, 1988

Tath, K. S., J. M. Mitschke, P. A. Wilmarth, Y. A. Ellis-Akovali, D. C. Sousa, X. Vierinen, D. M.
Moltz, J. Gilat, and M. M. Rao
"Radioactivities with 146 < \(A \leqslant-52\) Investigated at the 0aSIS Facility: Evidence for \({ }^{147}\) Tm \(\beta\)-Decay," pp. 718-21 in Proceedings, Fifth International Conference on Muclei Far from Stability, Rousseau Lake, Ontario, Canada, September 14-19, 1987, AIP Conference Proceedings 164, Rmerican Institute of Physics, Mew York, 1988

Toth, X. S., D. C. Sousa, J. M. Mitschke, and P. A. Wilmarth
"Beta Decay Properties of \({ }^{148} \mathrm{Er}\) and \({ }^{148} \mathrm{Ho}\)." Phys. Rev. C 37, 1196-202 (Mar. 1989)
Vandenbosch, R., R. C. Connolly, S. Gil, D. D. Leach, T. C. haes, S. Sorensen, and C. Y. Wu "Light-Particle Multiplicity Accompanying Projectile Breakup at 20 MeV/Mucleon." Phys. Rev. C 37, 1301-03 (Mar. 1938)

Van Verst, S. P., D. P. Sanderson, K. W. Kemper, D. Shapira, R. L. Varner, and B. Shivakumar "Sequential Breakup Cross Section of \({ }^{6}\) Li by \({ }^{10} \mathrm{Ca}\)," Phys. Rev. C 36, 1865-69 (Mov. 1937)

Vierinen, K. S., A. A. Shihab-Eldin, J. M. Mitschke, P. A. Wilmarth, R. M. Chasteler, R. B. Firestone, and K. S. Toth
"Beta Decay of \({ }^{156} \mathrm{Lu}\) and \({ }^{154} \mathrm{Yb}\)," Phys. Rev. C 38, 1509-12 (Sept. 1988)
Vourvopoulos, G., D. L. Humphrey, T. VanCleve, D. C. Hensley, and E. E. Gross (Invited Paper)
"Muclear Shapes from Heavy Ion Inelastic Scattering," pp. 143-51 in The Variety of Muclear Shapes (Proceedings, International Conference on Muclear Shapes, Crete, Greece, June 29-July 3, 1987), Mrid Scientific Publishing, Singapore, 1588

Maggoner, W., C. L. Cocke, L. M. Tunnell, C. C. Havener. F. W. Meyer, and R. A. Phaneuf "Angular Distributions for Electron Capture from He by Multiply Charged \(C, W_{i}, 0, F\), and Me Ions," Phys. Rev. A 37, 2386-92 (Apr. 1988)

Wang, D., J. Rapaport, D. J. Horen, B. A. Brown, C. Gaarde, C. D. Goodman, E. Sugarbaker, and T. W. Taddeucci
 285-311 (April 1988)

Wang, L. J., K. Rinn, and D. C. Gregory
"Electron Impact Ionisation of Nickel Ions." J. Phys. B21, 2117-28 (June 1988)
Wang, R, C., and C. Y. Wong
"Finite-Size Effect in Schwinger Particle Production Mechanism," Phys. Rev. D 38, 348-59 (July 1988)
Wilmarth, P. A., J. M. Nitschke, K, Vierinen, K. S. Toth, and M. Kortelahti
"Beta-Delayed Proton Decay of the \(N=83\) Precursor 153 Yb," 2. Phys. A 329, 503-04 (April 1988)
Wong, C. Y. (Invited Paper)
"Theoretical Aspects of High-Energy Heavy-Ion Reactions," pp. 178-230 in Proceedings, 10th
IMS-Kikuchi Spring School on Quarks and Muclei, Shimoda, Japan, April 15-18, 1987, IMS, University of
Tokyo, Japan, Mov. 1987
Wong, C. Y. (Invited Paper)
"Dn the Possibility of OED (\(e^{+} e^{-}\)) Resonances at 1.6-1.8 MeV," PD. 296-303 in Windsurfing the Fermi
Sea, Vol. II (Proceedings, International Conference and Sympostum on Unified Concepts of Many-Body
Problems, Stony Brook, Hew York, September 4-6, 1986), Morth-Holland, Amsterdam, 1987

Mong, C. Y. (Invited Paper)
"Huclear Stopping Power in High-Energy Collisions," pp. 241-56 in Proceedings, International
Symposium on Medium Energy Physics, Beijing, P.R.C., June 23-28, 1987, Worid Scientific Publishing, Singapore. 1988

Ycing. 6. R. (Invited Paper)
"A \(\mathrm{m}^{0}\) Spectrometer for Low-Energy Heavy-lon Reactions," pp. 183-200 in Proceedings, Horkshop on Photon anj Meutral Meson Physics at Intermediate Energies, Los Alamos, Mew Mexico, January 7-9, 1987, Report LA-11177-C, Los Alamos Mational Laboratory, Dec. 1987

Youig, G. R. (Invited Paper)
"Luminosity Depletion in RHIC," pp. 155-76 in Proceedings, Morkshop on the RHIC Performance, Upton, Mew York, March 21-26, 1988, Brookhaven Mational Laboratory Report 3ML-41604 (1988)

Young, G. R. (Invited Paper)
"Electromagnetic Dissociation of Huclei at Relativistic Energies," pp. 253-65 in Proceedings, Workshop on the RHIC Performance, Upton, Mew York, March 2l-26, 1988, Brookhaven Mational Laboratory Report 8mL-41604 (1988)

Zganjar, E. F., M. O. Kortelahti, J. L. Hood, and C. D. Papanicolopulos (Invited Paper)
"Low-Energy EO Transitions in Odd-Mass Nuclei of the Meutron-Deficient 180 < \(A<200\) Region," pp. 313-23 in Proceedings, Fifth International Conference on Muclei Far from Stability, Rousseau Lake, Ontario, Canada, September 14-19, 1987, AIP Conference Proceedings 164, American Institute of Physics, Mew York, 1588

Ziegler, M. F., G. D. Mills, M. J. Meigs, R. L. McPherson, R. C. Juras, C. M. Jones, D. L. Haynes, and G. D. Alton
"Status of the 25URC Accelerator," pp. 5-10 in Proceedings, XXI Symposium of Mortheastern Accelerator Personnel, Tallahassee, Florida, September 28-October 1, 198\%. World Scientific Publishing, Singapore, 1988

Ziegler, i. F., W. T. Milner, G. D. Mills, M. J. Meigs, R. L. McPherson, R. C. Juras, C. M. Jones, D. E.
Hoglund, D. L. Haynes, J. A. Biggerstaff, and G. D. Alton (Invited Paper)
"Status of the ORNE 25 URC Accelerator," pp. 483-86 in Proceedings, \(x X\) Symposium of Mortheastern Accelerator Personnel, Motre Dame, Indiana, Movember 3-6, 1986, Horld Scientific Publishing, Singapore, 1987

Ziegler, M. F., and R. L. McPherson
"Charging and Corona Modifications to the ORNL 25URC Accelerator," Pp. 159-67 in Proceedings, XX Symposium of Mortheastern Accelerator Personnel, Motre Dame, Indiana, Movember 3-6, 1986, Morld Scientific Publishing, Singapore, 1987

Ziegler, K. F., G. K. Schulze, J. K. Rochelle, W. T. Wilner, M. J. Meigs, R. L. McPherson, and R. C. Juras
"Recent Electronic Inprovements to the Oak Ridge 25URC Accelerator," Proceedings, Seventh Tandem Conference, Berlin, Hest Germany, April 6-10, 1987, Mucl. Instrum. Methods Phys. Res. A268, 542-48 (May 1988)

\section*{PROGRESS REPORT}

Ball, J. B., F. E. Bertrand, S. Datz, C. H. Jones, J. B. McGrory, F. Plasil, and R. L. Rooinson Physics itvision Progress Report for Period Ending September 30, 1987, ORNL-6420 (March 1988)

\section*{TOPICAL REPORTS}

\footnotetext{
Bennett, C. A., R, K. Aitharis, and D. P. Hetchinson Design and Calibration of a Two-Channel Low-Hoise Heterodyne Receiver for Use in a \(\mathrm{CO}_{2}\) Laser Thomson Scattering Alpha Particle Diagnostic, ORML/TM-10419, Mar. 1988

Pindzola, M. S., D. C. Grififin. C. Bottcher, S. M. Younger, and H. T. Hunter Electron-Impact Ionization Data for the Fe Isonuclear sequence, ORNL/TM-10297. Nov, 1987

Vane, C. R., M. S. Smith, and S. Raman A Versatile, Highly Efficient, High-Resolution Von Hamos Bragg Crystal X-Ray Spectrometer, ORNL/TM-10658, Feb. 1988
}

\section*{articles pendimg publication}

Akovali, Y. A.
"Nuclear Data Sheets for \(A=214 . "\) Nuclear Data Sheets
Akovali, Y. A., K. S. Toth, A. L. Goodman, J. M. Mits =hke, P. A. Wilmarth, D. M. Moltz, M. N. Raó, and D. C. Sousa
"Single-Particle States in \({ }^{151} \mathrm{Tm}\) and \({ }^{151} \mathrm{Er}\); Systematics of Neutron States in \(\mathrm{K}=83\) Nuclei," Physical Review C

Albrecht, R., T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, G. Clewing, L. Dragon, R. L. Fe'guson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterisnd, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Sieniarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young " \(\pi^{0}\) Momentum Distributions from Central and Peripheral \(160+A_{i}\) Collisions at 200 A GeV." Zeitschrift fuer Physik

Albrecht, R., T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L.
Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K, H. Kampert, B. H. Kolb.
P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund,
T. Peitzmann, S. Persson, F. Plasil, R. M. Poskanzer, Purschke, H. G. Ritter, R. Santo, H. R.

Scnmidt, T. Siemiarczuk, S. P. Sorensen. E. Stenlund, and G. R, Young (Invited Paper)
"Results from CERN Experiment W80," Proceedings, International Conference on Physics and
Astrophysics of the Qilark-Gluon Plasma, Bombay, India, February 8-12, 1988
Alton, S. D. (Invited Paper)
"The Sputter Generation of Megative Ion Beams." Proceedings, Seventh International Conference on Ion Implantation Technology, Kyoto, Japan, June 6-10, 1988, Nuclear Instruments and Methods in Physics Research

Alton, G. D. (Invited Faper)
"The Sputter Generation of Merative Ion Beams: Analytical Modeling," Proceedings, Tenth Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9, 1988, Nuclear Instruments and Methods in Physics Research

Alton, G. D.. and G. D. Mills (Invited Talk)
"Production of Atomic Megative Ion Beams of the Group IA Elements," Prorcedings, Symansium of Northeastern Acillerator Personnel. Hew Haven, Connecticit, October 24-27, 1988

Alton, G. D., and G. D. Wills
"A Technique for Generating Atomic Megative Ion Beams of the Group IA Elements." Letier to the Editors, Muclear Instruments and Methods in Physics Research

Alton, G. D., Y. Mori, A. Takagi, A. Ueno, and S. Fukumoto (Invited Talk)
"A High-Intensity Plasma Sputter Heavy hegative Ion Source." Proceedings. Symposium of Mortheastern Accelerator Personnel, mew Haven. Connecticut, October <4-21, 1988

Alton, G. D., Y. Mori, A. Takagi, A. IJeno, and S. Fukumato (Invited Paper)
"A High-Brightness, Plasma-Sputter Heavy Megative Ion Source," Proceedings, Tentn Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9, 1988, Muclear Instruments and Methods in Physics Research

Alton. G. D., and 9. M. Reart
"The Emittances and Brightnesses of \({ }^{69} \mathrm{Ga}^{+}\)Ion Beams Extracted from Meede-Type, Liquid-Hetal Ion Sources," journal of Phystes D

Ames, T. C.
"A Meural-Network Approach to the Problem uf Photon-Pair Combinatorics," Muclear Instruments and Methods in Physics Research

Awes, T. C., Alirecht, R , C. Baktasin, P. Beckmann, F. Berger, R. Rock, G. Claesson, L. Dragon, R, L.
Farguson. A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Guthrod, K. H. Kampert, B. W. Kolh,
P. Kristiansson, I. Y. Lee. H. Lohner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund,
T. Pettzmann, S. Persson, F. Plasil, d. M. Poskanzer. M. Purschike, H. G. Ritter, R. Sonto, H. R.

Schmitt, T. Stemlarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young
"Energy Measurements in Oxygen-induced Reactions at 50 A GeV and 200 A GeV." Procepoings, International Workshop xVI on Gross Properties of Nuclet and Nuclear Excitations, Hirschegg. Austria, January i8-22, 1988

Ames, T. C., R. L. Ferguson, F. E. Obenshain, F. Plasil, G. R. Young, S. Pratt, Z. Chen, C. K. Gelbke, W. G. Lynch, J. Pochodzalla, and H. M. Xu
"Extended Enfssion Sources Observed via Two-Proton Correlations," Physical Review Letters
Ames, T. C., and S. P. Sorensen (Invited Paper)
"Report on the Oak Ridge Horkshop on Monte Carlo Codes for Relativistic Heavy-Ion Collisions."
Proceedings, Seventh International Conference on Ultrarelativistic Mucleus-Mucleus Colisions, Lenox, Massachusetts. September 26-30, 1988, Nuclear Physics A

Ayik, S., D. Shapira, and 8. Shivakunar
"A Transport Description for Capture Processes in Muclear Colitisions." Physical Review C
Baktash, C., Session Chairman Commentary (Invited Paper)
"Understanding the Structure of Muclei at Finite Temperatures." Proceedings, International Conference
on Contemporary Topics in Muclear Structure, Cocoyoc, Mexico, June 9-14, 1988
Baranger, M., K.T.h. Davies, and J. H. Mahoney
"The Calculation of Periodic Trajectories." Annals of Physics (Mew York)
Barrachina, R. O., and J. H. Macek
"Theory of Emission-Angle-Dependent Auger Trassitions in Ion-Atom Collisions," Journal of Physics B
Becker, R. L.
"On the Cross Sections for Electron Transfer, Ejection, and Excitation in Coincidence with a Hole in a Specific Shell." Acta Physica Hungarica
Bemis, C. E., Jr., F. K. McGoman, J.L.C. Ford, W. T. Wilner. R. L. Robinson, P. H. Stelson, G. A. Leander, and C. W. Reich
"Coulond Excitation of States in \({ }^{229} \mathrm{Th}\)." Physica Scripta
Bertrand, F. E.. J. R. Beene, and D. J. Horen (Invited Paper)
"Excitation and Photon Decay of Giant Multipole Resonances - The Role and Future of Medium-Energy Heavy Ions, - Proceedings, Third International Conference on Mucleus-Mucleus Collisions, St. Malo, France, June 6-11, 1988, Muclear Physics \(A\)

8ingham, C. R., L. L. Riedinger, L. H. Courtney, Z. M. Liu, A. J. Larabee, M. Craycraft, D.J.G. Love, P. J. Molan, A. Kinwan, D. Thornley, P. Bishoo, A. H. Melson, M. A. Riley, and J. C. Maddington "Three Band Crossings in the Yrast Structure of 162 Hf ." Journal of Physics \(G\)

Bottcher, C.. and M. R. Strayer
"Electron Pair Production from Pulsed Electromagnetic Fields in Relativistic Heavy-Ion Coliistons," Physical Review D

Bottcher, C., and M. R. Strayer
"Electromagnetic Pair Production in Relativistic Heavy-Ion Collisions." Proceedings, Tenth Conference on the Application of Accelerators in Research and Industry, Dention, Texss, Movember 7-9, 1988, Muclear Instruments and Methods in Physics Research

Bracco, A., J. R. Beene, F. E. Bertrand, M. L. Halbert, D. C. Hensley, R, L. nut ie. D. J. Horen, R, L. Robinson, and F. O. Sayer
"Meution Decay of Giant Resonances in \({ }^{208} \mathrm{~Pb}\)." Physical Review \(C\)
Bracco, A., J. R. Reene, M. Van Giai, P. F. Bortignon, F. Zardi, and R. A. Broy.ia
"Direct Meutron Decay from the Giant Monopole Resonance in 20 apb." Pruisoditils, Third International Conference on Mucleus-Mucleus Collisions, St. Malo. France, June' 6-11, 1988, Muclear Physics A

Brandan, M. E., and G. R. Satchler
Folding Model Analysis of \(12,{ }^{3} \mathrm{C}+12 \mathrm{C}\) and \(160+{ }^{2} \mathrm{C}\) Scattering at Intermediate Energies Using a Densi'cy-Dependent Interaction," Muclear Physics A

Burgdorfer, J. iInvited Paper)
"Coherence and Correlations in Fasi Ion-Atom Collisions," Proceedings, Symposium on Funfamental
Processer of Atomic Dynamics, September 21-October 2, 1987, Mardeta, italy
Burgdorfer, J., and C. Bottcher
"Production of High-Angular Momen*um Ryaberg and Continuum States by Stachastic Collistons in
Solids." Report: 9. Arbeltsbericht, Arbeitsgruppe, Energiereiche Atomare Stosse, Dberstiorf, West Germany

Burgdorfer, J., al.: C. Bottcher
"Production of High-Angular Momentum Rydberg States by Stochastic Collisions," Physical Review Letters

Burgdorfer, J., and R. Morgenstern
"Coherence and Correlation in Doubly-Excited Helium-Like Atoms." Physical Review A
Burgdorfer, J., J. Mang, and A. Barany
\({ }^{2} / 2\) Electron Emission in Ion-Atom Collisions with Short-Ranged Potentials." Physical Review A
Burgdorfer, J., J. Mang, J. Muller
"Forward Electron Production in Antimatter-Solid Collisions," Physical Review A
Burks, B. L., Fernandes, M.A.G., G. R. Satchler, D. J. Horen, F. E. Bertrand, J. L. Blankenship, J.L.C. Ford, Jr., E. E. Gross, D. C. Hensley, R. O. Sayer. D. Shapira, and T. P. Sjoreen "Optical Model and Coupled-Channels Analyses of the Elastic and Inelastic Scattering of \({ }^{18} \mathbf{0}\) from \({ }^{28} \mathrm{si}\) at 352 MeV ," Physical Review C

Carlton, R. F., R. R. Winters, C. H. Johnson, M. W. Hill, and J. A. Harvey
"Total Cross Section and Resonance Spectroscopy for \(n+86 \mathrm{Kr}\)." Physical Review C

\section*{Casson, W. H.}
"Far-Infrared Scattering Experiment on a Bumpy Torus," Physics of Flutds
Casson, W. H., C. A. Bennett, L. K. Fletcher, H. T. Hunter, D. P. Hutchinson, J. Lee, C. K. Ma, R. K. Richards, and K. L. Vander Sluis
-Infrared and Far-Infrared Laser Development for Plasma Diagnostics at Oak Ridge Wational
Laboratory." Proceedings, Lasers '87, Tenth International Conference on Lasers and Applications, Lake Tahoe, Mevada, December 7-11, 1987

Claytor, M., B. Feinberg, H. Gould, C. E. Bemis, Jr., J. Gomez del Campo, C. Ludemann, and C. R. Yane

Close, F. E. (Invited Paper)
"Parton Distributions in Muclei: Quagma or Ragmire?." Proceedings, International Conference on Physics and Astrophysics of Quark-Gluon Plasma, Bambay, India, February 8-12, 1988

Close, F. E. (Invited Paber)
"The Muclear Dependence of Parton Oistributions," Procpedings, 3rd Conference on the Interseitions Between Particle and Muclear Physics, Reckport, Maine, May 14-19, 1988

Close, F. E. (Invited Paper)
"The Muclear Dependence of Marton Distributions," Proceedings, Topical Confelence on Muclear Chromodynamics, Argonne, Illinois, May 19-?1, 1988

Close, F. E. (Invited Paper)
-The Parton Distributions in Muciei and in Polarized Mucleons." Proceedings, 13th International Conference on Meutrino Physics and Astrophysics, Boston, Massachusetts, June 5-11, 1988

Close, F. E. (Invited Talk)
"Where Mext in Polarized Leptoproduction?:" Proceedings, Symposium on Future Polariaation at Fermilab, Batavia, Illinols, June 13-14, 1988

Close, F. E. (Invited Paper)
"Resonance Photo and Electroprsduction as a Probe of OCD." Proceedings, CEBAF 1988 Summer Workshop, Mewport Mews, Virginia, June 20-24, 1988

Close, F. E. (Invited Paper)
"Testing \(O C O\) with Millitele Electrons." Proceedings, First Eurowean Workshop on Hadronic Physics in the 1990's with Multi-GeV Electrons, Sefllac, France, June 27-July 1, 1988, Muclear Physics A

Close, F. E. (invited Paper)
"Light Quark Spectroscopy," Proceedings, Mmerican Physical Society Meeting, Storrs, Connecticut. August 15-18, 1988

Close, F. E. (invited Talk)
"Exotic Mesons," Proceedings, BNL Workshop o Gluebd:1s, Hyorids, and Exotics, IJpton, Mew York, August 29 -September 1. 1988. American institute of Physics

Close, F. E. (Invited Talk)
"Where is the Proton's Spin?." Proceeaings, Spin 88 Conference. Minneapolis, Minnesota, September 12-17. 1988, American Institute of Physics

Crater, H. W., C. Y. Hong, R. L. Becker, and P. Van Alstine
-Honperturbative Covariant Treatments of the Triplet \(e^{+} e^{-}\)System Using Two-Body Dirac Equations from Constraint Dynamics." Physical Review 0

Datz, S., and P. F. Dittner
"Mrgzd Electron-Ion Beam Studies of Dielectronic Recombination in Multicharged Ions." Zeitschrift fuer Physik D

Davies, K.T.R.
"Complex-Plane Methods for Evaluating Integrals with High Oscillatory Integrands," Journal of Computational Physics

DeSerio, R.
\({ }^{-O n}\) Spherical Sector Electrostatic Analyzers for Measurements of Energy and Angular Distributions,* Review of Scientific Instruments

Donau, F., J. Zhang, and L. L. Riedinger
"On the Solution to Large-Amplitude Collective Motion in finite Interacting fermi Systems." Nuclear Physics A

D'Onofrio, A., J. Gomez del Campo, B. Delaunay, J. Delaunay, H. Dumont, F. Andreozzi, A. Brondi, R. Moro, M. Romano, and F. Terrasi
 740 Mev." Physical Review C

Dudek. J. (Invited Paper)
"From the Secrets of Muclear Shapes into Quantum Muclear Physics," Proceedings, International Conference on Contemprary Topics in Muclear Structure, Cocoyoc, Mexico, June 9-14, 1988

Oudek, J., and T. Merner (Invited Paper)
"Hyperdeformed Muclei and the Residual Pseudo-5u(3) Symmetry," Proceedings, Conference on High-Spin Muclear Structure and Movel Muclear Shapes, Argonne, Illinois, April 13-15, 1988

Dudek, J., T. Merner, and L. L. Riedinger
"Dependence of the First Saddle-Point Energy on Temperature and Spin in Superdeformed Rare Earth Nuclei," Physics Letters B

Firestone, R. B., J. M. Mitschke, P. A. Wilmarth, K. Vierinen, J. Gilat, K. S. Toth,and Y. A. Akovali "Decay of \({ }^{145 E r g+m}\) by Positron and Delayed Proton Emission and Electron Capture," Physical Review C

Gaither, C. C., III, M. Breinig, J. Freyou, and T. A. Underwood
Comparison of Target-Thickness Dependence of the Convoy-Electron Yield and Rydberg-Electron Yield Heasured in Coincidence with Exit Charge States in Fast-Ion-Solid Collisions," Proceedings. Tenth Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9, 1988. Nuclear Instruments and Methods in Physics Research

Gibso:15, J. P., S. B. Elstion, R. Deserio, C. Biedermann, M. Breinig, C. E. Gonzalez-Lepera, O. Heil, H.-P. Hulskotter, H. Rothard, I. A. Sellin, and C. R. Vane
"Production and Transport of Convoy Electrons in Amorphous Carbon Foils." Proceedings, Tenth
Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9. 1988, Muclear Instruments and Methods in Physics Research

Giese, J. P., and E. Horsdal
"Differential Charge State Fractions of He Following Ionization by Fast H-Projectiles," Proceenings, Tenth Conference on the Application of Accelerators in Research and Industry. Denton, Texas, Movember 7-9. 1988, Muclear Instruments and Methods in Physics Research

Girit, I. C., G. D. Alton, C. R. Bingham, H. K. Carter, M. L. Simposon, J. D. Cole, J. H. Hamilton, E. F. Jones, P. M. Gore, J. Kormicki, B. D. Kern, K. S. Krane, Y. S. Xu, P. F. Mantica, Jr., R. E. Zimmerman, W. G. Mettles, E. F. Lganjar, M. D. Kortelahti, and W. B. Mewboit
"UNISOR On-l.ine Nuclear Orientation facility (UNISOR/MOF)," Proceedings, Workshop on On-Line Nuclear Orientation and lelated Topics, Oxford, England. August 3l-Septemher 4, 1988

Halbert. M. L.
"Gamma Decay of Giant Resonaces Exctren by Hedvy lons." Proceenings, international jympnsiam on Heavy Ion Physics and Nuclear Astrophysica. Prohlems, Yokyn, Japan, July 21-23, 190.s

Halbert, M. L., J. R. Beene, D. C. Hensley, K. Honkanen, T. M. Semkow, V. Abenante, O. G. Sarantites, and 2. Li (lnvited Paper)
"Angular Momentum Effects in Subbarrier Fusion," Proceedings. International Symposium on Heavy-Ion Reaction Dynamics in Tandem Energy Region, Hitachi, Japan. August 1-3, 1988

Havener, C. C., M. S. Huq, H. F. Krause, P. A. Schultz, and R. A. Phaneuf
"Merged-Beams Measurements of Electron-Capture Cross Sections for \(\boldsymbol{o}^{+}+\mathrm{H}\) at eV Energies," Physical Review A

Havener, C. C., M. S. Huq, F. M. Meyer, and R. A. Phaneuf (Invited Paper)
"Electror: Capture by Multicharged lons at eV Energies. "Proceedings, International Conference on the Physics of Multiply Charged Ions, Grenoble, France, September 12-16, 1988, Journal de Physique (Paris)

Horen, D. J., J. Lisantti, R. L. Auble, F. E. Bertrand, B. L. Burks, E. E. Gross, R. O. Sayer, D. K. McDaniels, K. W. Jones, J. B. McClelland, S. J. Seestrom-Morris, and L. W. Smenson
"T = 1, Spin-Dipole Strength in \({ }^{\circ} \mathrm{Ca}\), \({ }^{\circ}\) Leitschrift fuer Physik i
Iwazaki, A., and S. Kumano
"Oscillations of the Polarized Vacuum Around a Large 2 "Mucleus"." Physics Letters B
Janev, R. K., R. A. Phaneuf, and H. T. Hunter
Recommended Cross Sections for Electron Capture and Ionization in Collisions of \(\mathrm{CQ}^{+}\)and \(\mathrm{OQ}^{+}\)lons with H , He, and \(\mathrm{H}_{2}\). " Atomic Data and Muclear Data Tables

Jeukenne, J.-P., C. H. Johnson, and C. Mahaux
"Surface Contributions to the Complex Meutron -208 pb Mean Field Between -20 and +20 MeV," Physical Review C

Johnson, C. H., R. F. Cariton, and R. R. Minters
"Extrapolation of the Dispersive Optical Model to the Resonance Region for Meutrons on \({ }^{\mathbf{6}} \mathrm{K} . \mathrm{r}_{\text {." }}\) Physical Review C

Johnson, C. H., and C. Mahaux
"Meutron- \({ }^{40} \mathrm{Ca}\) Mean Field Between -80 and +80 MeV from a Dispersive Optical-Model Analysis," Physical Review \(C\)

Johnson, J. W., W. H. Atkins, D. T. Dowling, J. W. MCConnell, W. T. Milner, and D. K. Olsen "hisirap Vacuum Test Stand for Pressures of 10-12 Torr." Proceedings, American Vacuum Society 35th Mational Symposium and Topical Conference, Atianta, Georgia, Octo'ser 3-7, 1988

Jones, C. M.
" 25.5 m Achieved with Oak Ridge Tandem A.celerator," CERN Courier, "Around the Laboratories" Section
Jones, C. M., D. L. Haynes, R. C. Juras, M. J. Meigs, M. F. Ziegler, J. E. Raatz, and R. D. Rathmell "Improved Voltage: Performance of the Oak Ridge 25uac Tardem Accelerator," Muclear Instruments and Methods in Pi,jsic:s Research

Jones, N. L.
"CiM- 12 at ORNL," Proceedings, Symposium of Mortheastern Accelerator Personnel, Mew Haven, Connecticut, October 24-27, 1988

Juras, R. C., M. F. Ziegler, G. D. Mills, M. J. Meigs, R, L. McPherson, C. M. Jones, D. L. Haynes, and
G. D. Alton
"Oak Ridge 25URC Pandem Accelerator - SNEAP Lab Report." Proceedings, Symposium of Mortheastern Accelerator Personnel, Mew Haven, Connect \({ }^{\text {ffut. October 24-27, } 1988}\)

Kemmler, J., O. Heil, C. Bledermann, P. Koschar, H. Rothard, K. Kroneberger, K. O. Groeneveld, and I. A.
Sellin
"Convoy Electrons in Coincidence with Outgoing Charge States of Mi (920 MeV)." Proceedings, 14th
International Conference on X-Ray and Inner-Sheli Processes, Paris, France, September 14-18, 1987
Kephart, J. O., R. H. Pantell, R. L. Berman, S. Datz, H. Park, and R, K. Klein
"Measurement of the Occupation Lengths of Channeled 17 -MeV Electrons and 54 -MeV Electrons ano
Positrons in silicon by Means of Channeling Radiation," Physical Review B
Kim, H. J. (Inviten Paper)
"Transfer Reactions for the \(50 \mathrm{Ti}+90 \mathrm{Zr}\) System below the Coulomb Barrier," Proceedings, Karkshop on Heavy-Ion Interactions Around the Coulomb Rarrier, Legnaro, ltaly, June 1-4, 1988, Lecture Notes in Physics

Kia. H. J.: J. Gomez del Campo, M. Hindi, D. Shapira, and P. H. Stelson
"Transfer Reactions for the \({ }^{50 \mathrm{Ti}}+90 \mathrm{Zr}\) System Below the Coulomb Barrier." Physical Reviex C
Kobos, A. M. . M. E. Brandan, and G. R. Satchler
-Further Optical Model Studies of 160 Scattering at E/A \(=94\) MeV." Muclear Physics A
Kortelahti, M. O., H. K. Carter, R. A. Braga, R. H. Fink, and B. D. Kern - \({ }^{\text {Hon-yrast }}\) Level Structure of \({ }^{135}\) hd via Beta Decay of 135 Tm , Zeitschrift fuer Physik \(A\)

Kortelahti, M. D., K. S. Toth, K. Vierinen, J. M. Mitschke, P. A. Wilmarth, R. B. Firestone, R. M.
Chasteler, and A. A. Shihal-Eldin - Decay Properties of \(152 y_{0}\) and \(153 T_{\text {m: }}\) : Excitation Energies of the \(s_{1 / 2}\) and \(h_{1 / 2}\) Proton States in \({ }^{153}\) Tw, " Physical Revien C

Kortelahti, M., E. F. Zgarjar, H. K. Carter, C. D. Papanicolopulos, M. A. Grimms and J. L. Hood "Auclear Systematics Far from the Line of Beta Stability: The Low-Lying Excited States of 185.187.189 Au," Journal of Phystics 6

Kuano. S.
"Pionic Contribution to the Scalar and Longitudinal M-A Transition Quadrupole Form Factors," Physics Letters 8

Kumano. \(S_{\text {. }}\)
M(e,e'r) and the N-A Transition Quadrupole Moment." Muclear Physics A
Lasley. S., M. Breinig, and C. C. Gaitner III
- Threshold Behavior of the Cross Section for Collisional Dissociation of Diatomic Molecules." Physical Review A

Lee, I. Y., C. Baktash, J. R. Beene, M. L. Halbert, D. C. Hensley, M. R. Johnson, F. K. HeGowan, M. A. Qiley, and D. G. Sarantites (Invited Paper)
"High Resolution Correlation Studies of Continum Gama Rays of 17inf, "Proceedings, Conference on Higi-Spin Huclear Structure and Novel Ruclear Shapes, Argonne, Illinois, April 13-15, 1988

Lee, 1. Y., C. Gaktash, J. R. Beene, M. L. Halbert, M. R. Johnson, F. K. McGowan, H. T. Milner, H. J. Kim, R. O. Sayer, and D. G. Sarantites
"Spin and Excitation-Energy Dependence of Nuclear Gama-Ray Energy Correlations," Physical Reviex Letters

Levin, J. C., C. Btederman, H. Cederquist, C.-S. O, R. T. Short, and I. A. Sellin (Invited Paper) - Properties of Cold Ions Produced by Synchrotron Radiation and by Charged Particle Impact," Proceedings. Tenth Conference on the Application of Accelerators in Research and Industry. Denton, Texas. Movember 7-9, 1988, Muclear Instruments and Methods in Physics Research

L1. B., and C. Y. Mong
"Muclear Stopping Power and Recoiling Mucleons." Physical Review D
Lisantti, J., D. J. Moren, F. E. Bertrand, R. L. Auble, B. L. Burks, E. E. Gross, R. U, Sayer, D. K. McDanfels, X. W. Jones. J. B. McClellard, S. J. Seestrom Horris, and L. W. Smenson "Collective Model DMBA Malysis of 500 HeV Proton Scattering from \({ }^{\circ} \mathrm{Ca}\)." Physical Review C

Lisantti, J., D. J. Horen, F. E. Bertrand, R. L. Auble, B. L. Burks, E. E. Gross, R. O, Sayer, D. K. McDaniels, K. W. Jones, J. B. MeClelland, S. J. Seestrowntmoris, and L. W. Swenson "Giant Resonance Strength Distribution in \({ }^{40} \mathrm{Ca}\) from Inelastic Scatering of 500 MeV Protons," Physical Review \(C\)

Loehner, H., R. Albrecht, T. C. Anes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. CIaesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, M. . G. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, I. Lund, F. E. Obenshain, A. Oskarsson, l. Otterlund, T. Peitzann, S. Persson, F. Plasil, A, M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R, Schaidt, T. Siemi arczuk, S. P. Sorensen, E. Stenlund, and G. R. Young (Invited Paper) "Momentum Oistributions of Reutral Pions in Heavy-Ion Reactions at the CERN-SPS," Proceedings, Ix International Seminar on High-Energy Physics Problews - Relativistic Muclear Physics and Quantum Chromodynamics, Dubna, U.S.S.R., June 14-19, 1988

Loehner, H., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S, Garpman, R. Glasow, H. A. Gustafison, H. H. Ruthrod, K. H, Kampert, B. W. Kolb, P. Kristiansscn, I. Y. Lee, l. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund, T. Pettzman, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. R. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, E., Stenlund, and G. R. Young
"Meutral Transverse Momentum Spectra in 200 A GeV 0 + Mucleus Reactions." Proceedings, International Symposium on Collective Phenomena in Muclear and Subnuclear Long Range Interactions in muclei. Gad Honnef, West Genmany, May 4-7, 1987

McGowan, F. K., M. R. Jotinson, I. Y. Lee, and C. Baktash
"Reply to Comment y S. Raman." Physical Review Letters
Meyer, F. M., C. i. Havener, S. H. Overbury, K. J. Reed, K. J. Snowdon, and D. M. Zehner (Invited Talk) "Inner-Shell Processes as Probes of Multicharged Ion Meutralization at Surfaces." Proceedings, International Conference on the Physics of Multiply Charged Ions, Grenoble, France, September 12-16, 1988, Journal de Physique (Paris)

Mori, Y., G. D. Alton, A. Takagi, A. Ueno, and S. Fukumoto
"Further Evaluation of the High Intensity Plasma Sputter Heavy Megative Ion Source," Nuclear Instruments and Methods in Physics Research

Morrison, J. D., J. F. Sharpey-Schafer, M. A. Bentley, H. W. Cramer-Gordon. P. Fallon, P. D. Forsyth, D. Howe, A. R. Mokhtar, M. A. Riley, and J. Simpson "Unpaired Collective Band Crossinge in i56 vy Between Spins 35- and 53-." Europhysics Letters

Morsch, H. P., W. Spang, J. R. Beene, F. E. Bertrand, R. L. Auble, J. L. Charvet, M. L. Halbert, D. C. Hensley, I. Y. Lee, R. L. Varner 0. G. Sarantites, and O. W. Stracener
"Observation of Thermal Marrowing and Shape Effects in the Giant Dipole Resonance Decay of Hot Rare-Earth Muclef." Physical Review Letters

Mueller, O. H., L. J. Mang, and D. C. Gregory
"Electron-Impact Double Ionization Cross Sections for Xeft," Physical Review A
'sbenshain, F. E., R. Albrecht, T. C. Ames, C. Baktash, F. Beckmann, F. Berger, R. Bock, G. Claesson, L. Drigon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasom, H. A. Gustafsson, H. H. Gutbrod, K. H. Kempert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, A. Oskarsson, I. Otterlund, -. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen, F. Stenlund, and G. R. Young
"Muclear Stopping in Oxygen-Induced Reactions at 200 A GeV." Proceedings, Xixth International Symposium on Multiparticle Dynamics - Mew Data and Theoretical Trends, Arles, France, June 13-17. 1988

Papanicolopulos, C. D., M. A. Grim, J. L. Mood, E. F. Zganjar, M. Kortelahti, J. D. Cole, and K. K. Carter
"Very Converted Transitions and Particle-Core Coupling in Meutron-Deficient Odd-Mass Au Isotopes," Zeitschrift fuer Physik

Pegg, D. J., J. S. Thompson, R. W. Compton, and G. D. Alton (Invited Paper) "The Structure of the Stable Megative lon of Calcium," Proceedings, ath International Conference on Resonance Resonance Ionization Spectroscopy, Gatthersburg, Maryland, April 11-15, 1988

Pegg, D. J., J. S. Thomspon, R. M. Compton, and G. D. Alton (Invited Paper) -Energy- and Angle-Resolved Photoelectron Spectroscopy of Megative lons." Proceedings, Tenth Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9, 1988, Muclear Instruments and Methods in Physics Research

Peltimann, \(\mathrm{T}_{\mathrm{E}}\), Alorecht, R., T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, G. Clewing, L. Dragon, A. Eklund, R, L. Ferguson, A. Franz, S. Garpman, R, Glasow, H. A. Gustafsson, H. H. Gutbrod, J. Ith, K. H. Kampert, B, W, Kolb, P. Kristiansson, 1. Y. Lee, H. Loehner, I. Lund, F. E. Doenshain, A. Dskarsson, I. Otzerlund, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Stemiarczuk, S. P. Sorensen, E, Stenlund, and G. R, Young "Correlations of Meutral Pions in Ultrarelativistic Heavy Ion Collisions." Proceedings, Seventh International Conference on Ulerarelativistic Mucleus-Mucleus Collisions, Lenox. Massachusetts, September \(\mathbf{Z K}-30,1988\), Nuc lear Physics A

Phaneuf, R. 2., P. Dafrance, D. C. Griffin, Y. Hahn, M. S. Pindzola, L. Roszman, and W. Wiese "IAEA Speciclists Meeting on Carbon and Dxygen Collision Data for Fusion Plasma Research." Proceedings, IAEA Specialists' meeting on Carbon and Oxygen Collision Data for Fuston Plasma Research, Vienna, Austria, May 12-13, 1989, Physica Scripta

Pindzold. M. S., O. C. Griffin, and C. Botecher
-Theoretical Calculdtions of indire: Processes in Electron-lmpact ionization of Atomic lons," Comments on Atamic and Molecular Phystes

Plasil, F., R. Albrecht, T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpaan, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Octerlund, T. Peitzmann, S. Persson, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schaidt, T. Stemiarczut, S. P. Sorensen. E. Stenlund, and G. R. Young
"Results from CERM Experiment Maso," Proceedings, Winter Morkshop on Nuclear Dynamics V, Sun Valley. Idaho, February 22-26, 1988

Poth, H., M. Schwab, B. Seligmann, M. Mortge, A. Molf, S. Baird, M. Chanel, H. Haseroth, C. E. Hill, R. Ley, D. Manglunki, G. Tranquille, J. L. Valet, and P. F. Dittner
"First Results of Electron Cooling Experiments at LEAR." Zeitschrift fuer Physik
Raman, S. (Invited Paper)
"Selected Topics in Muclear and Atomic Physics." Proceedings, VIII International School on Muclear
Physics, Meutron Physics, and Muclear Energy, Varna, Bulgaria, October 19-28, 1987
Raman. S., S. Kahane, and J. E. Lynn (Invited Paper)
"Interplay of Direct and Compound. Mucleus Mechanisms in Meutron Capture by Light Muclides,"
Proceedings, International Conference on Muclear Data for Science and Technology, May 30-June 3.
1988, Mito, Japan
Raman, S., C. W. Mestor, Jr., S. Kahane, and K. H. Bhatt
"Comment on 'Loss of Collectivity at High Spin in 172w'." Physical Review Letters
Raman, S., C. W. Mestor, Jr \({ }_{+0}\) S. Kahane, and K. H. Bhatt
"Predictions of \(B\left(E 2 ; \mathbf{O}_{1}^{+} \rightarrow \mathbf{2}_{1}^{+}\right)\)Values fur Even-Even Muclei," Atomic Data and Muclear Data Tables
Read, P. M., J. T. Maskrey, and G. D. Alton
"Development of Lithium Liquid Metal Ion Source for MeV Ion Beam Analysis," Proceedings, European
Particle Accelerator Conference, Rome, Italy, June 7-11, 1988, Huovo Cimento
Riley, M. A., Y. A. Akovalf, C. Baktash, M. L. Halbert, D. C. Hensley, M. R. Johnson, I. Y. Lee, F. K. McGowan, A. Virtanen, L. H. Courtney, V. P. Janzen, L. L. Riedinger, L. Chaturvedi, and J. Simpson "Irregularities at High Spin in the Odd-Odd Nucleus \({ }^{56}\) Tm," Physica! Review \(C\)

Riley, M. A., C. Baktash, Y. A. Ellis-Akovali, M. L. Halbert, D. C. Hensley, M. R. Johnson, 1. Y. Lee,
F. K. McGowan, V. P. Janzen, L. L. Riedinger, and L. Chaturyedi (Invited Paper)
"Alignments, Shape Changes, Band Terminations and Transition Rates in \({ }^{157}\) Tm," Proceedings, Conference on High-Spin Muclear Structure and Movel Muclear Shapes, Argonne, [llinois, April 13-15, 1988

Sataka, M., S. Ohtani, D. Smenson, and D. C. Gregory
Experimental Cross sections for Electron-Impact Ionization of Chromium Ions: \(\mathrm{Cr}^{6+}, \mathrm{Cr}^{7+}, \mathrm{Cr}^{8+}\). and Cribt." Physical Review A

Satchler, G. R.
ARelation between \(M_{n}, M_{0}\) and Hadronic Excitation Strengths then There is Strong Absorption: The
\(\mathrm{A} \mathrm{Zr}\left(\mathrm{a}, \mathrm{a}^{-}\right)\)Reactions, Ruclear Physics \(A\)
Schmidt, H. R., R. Albrecht, I. C. Mes, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, J. W. Johnson, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Lohner, I. Lund, F. E. Obenshain, A. Oskarsson, I. Otterlund, T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M, Purschke, H. G. Ritter, R. Santo, I. Stemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Ycung (Invited Paper) "Oxygan-Induced Reactions at 200 and 60 GeV/Mucleon," 27 th International Summer School for Theoretical Physics. Zakopane, Poland, June 3-15, 1987, Acta Physica Polonica

\footnotetext{
Schone, H. . R. Schuch, S. Datz, P. F. Ditiner, J. P. Giese, H. F, Krause, M. Schulz, and O. C. Kessel "Charge and Angular Correlated Inelasticities in Mev/Aucleon Ion-Atom Colitisions," Proceedings, Tenth Conference on the Application of Accelerators in Research and Industry, Denton, Texas, Movember 7-9, 1988, Nuclear Instruments and M.thods in Physics Research

Schulz, M., S. Datz, P. F. Dittner, J. P. Giese, H. F. Krause, P. U. Miller, H. Scnone, J. K. Swenson, C. R. Vane, R. Schuch, E. Justiniano, M. Benhenni, S. M. Shafroth, P. H. Mokler, and S. Reusch "Transfer and Excitation Processes Studied in H-Like \(S\) and Li-Like and H-Like F Colilding with \(\mathrm{H}_{2}\) :" Proceedings. Tenth Conierence on the Application of Accelerators in Research and industry. Denton, Texas, Moyember 7-9, 1988, Muclear Instruments and Methods in Physics Research
}

Schulz, M. J. P. Giese, J. K. Smenson, S. Datz, P, F. Dittner, H. F. Krause, H. Schone, C. R. Vane, M. Benhenni, and S. M. Shafroth

Electron-Electron Interactions in Transfer and Excitation in \(\mathrm{F}^{8+} \rightarrow \mathrm{H}_{2}\) Collisions, " Physical Review Letters

Schulz, M., R. Schuch, S. Datz, E.L.B. Justintano, P. D. Miller, and H. Schone
"Resonant Transfer and Excitation in Li-Like F Colliding with \(H_{2}\), " Physical Review A
Shapira, D. (Invited Paper)
"Nuclear Orbiting," Proceedings, Fifth International Conference on Clustering Phenomena, Kyoto, Japan, July 25-29, 1988

Shapira. D.
"Comment on 'Asymmetric Fission of 56 Ni '," Physical Review Letters
Sofield, C. J., L. B. Bridmell, C. D. Moak, P. D. Miller, D. C. Gregory, C. M. Jones, G. D. Alton, P. L.
Pepmiller, and J. Hall "Charge-Exchange Cross Sections for 445 MeV CI Ions in Solid C Targets," Physical Review A

Stelson, P. H. (Invited Paper)
"Meutron Flow Between Nuclei as the Principal Enhancement mechanism in Heavy-ion Subbarrier Fusion," Proceedings, International Symposium on Heavy-Ion Reaction Dynamics in Tandem Energy Region, Hitachi, Japan, August 1-3, 1988

Swenson, L. H., X. Y. Chen, J. Lisantti, D. K. McDaniels, i. Mergquist, F. E. Bertrand, D. J. Moren,
E. E. Gross, C. Glover, R. O. Sayer, B. L. Burks, O. Hausser, K. Hicks, and M. J. Iqbal "Mew Continuum Approaches in the Study of Giant Resonances in 208Pb with 400-MeV Protons, " Physical Review C

Tinschert, K., A. Muller, G. Hofmann, K. Huber, R. Becker, D. C. Gregory, and E. Salzborn - Experimental Cross Sections for Electron Impact Ionization of Hydrogenlike Ions Li2t," Journal of Physics B

Toth, K. S., Y. A. Mkovali, H. J. Kim, J. H. Mitschke, P. A. Hilmarth, and D. M. Moltz "Direct and \(\beta\)-Delayed Particle Decays Mear Closed Sheils," Nuclear Instruments and Methods in Fhysics Research

Toth. K. S., D. M. Moltz, and J. D. Robertson
"Identification of 181 Pb in \({ }^{40} \mathrm{Ca}\) Irradiations of 144 Sm ," Physical Review \(C\)
Toth, K. S., P. A. Wilmarth, J. M. Hitschke, R. B, Firestone, K. Vierinen, M. O. Kortelahti, and F. T. Avignone. III
"Fine Structure in \({ }^{153}\) Tm a Decay." Physical Review C
Umar, A. S., M. R. Strayer, P.-G. Reinhard, K. T.R. Davies, and S. -J. Lee
"Spin-Orbit Force in TDHF Calculations of Heavy-Ion Collisions." Physical Review C
Hang, J., and J. Bu.gdorfer
"v/2 ('Ridge') Electron Emission in Ion-Atom Collisions with Short-Ranged Potentials," Report:
9. Arbeitsbericht, Arbeitsgruppe. Energiereiche Atomare Stosse, Oberstdorf, West Germany

White, G. D., K.Y.R. Davies, and P. J. Siemens
"Stuates of the Nuclear Sing'e-Particle Respone Function in a Simple Model." Annals of Physics (Mew York)

Wong, C. Y .
"Interaction of Meutral Composite Particle with a Strong Coulonb Field," Progress of Yheoretical Phystes

Hong. C. Y. (Invited Paper)
"Origin of Anomalous Positron Peaks in Heavy-Ion Reactions," Proceedings, International Conference on Medium- and High-Energy Nuclear Physics, Taipei, Taiwan, May 23-27, 1988

Wong, C. Y. "Condensation of (\(e^{t} e^{-}\)) Oue to Shor*,-Range Noncentral Electromagnetic Interaction," Physical Review D

Wong. C. Y. (Invited Paper)
"Condensation of (\(e^{+}, e^{-}\)) Due to Short-Range Noncentral Electromagneitc Interaction," Proceadings, fifth International Conference on Clustering Aspects in Nuclear and Subnuclear Systems, Kyoto, Japan. July 25-29, 1988

Mong, C. Y.
"Hicropolyelectrons as Possible Sources of the Anomalous Positron Peaks in Heavy-Ion Reactions," Proceedings, Workshop on Hicroscopic Models in Muclear Structure Physics, Oak Ridge, Tennessee, 3ctober 3-6, 1988, Horld Scientific Publishing

Mong, C. Y., and 2. D. Lu (Invited Paper)
"The Dynamics of High-Energy Mucleus-Mucleus Collisions," Proceedings, International Conference on Medium-and High-Energy Huclear Physics, Taipei, Taiwan, May 23-27, 1988

Mong, C. Y., and 2. D. Lu
"A Multiple-Collision Hodel for High-Energy Mucleus-Nucleus Collisions," Physical Review D
Mu, J., J. J. Bai, and R. Y. Cusson
"Mumerical method for the Time Evolution of Dirac Equation." Physical Review \(\mathbf{C}\)
Ymazaki, Y., M. Stolterfoht, P. D. Miller, H. F. Krause, P. L. Pepmiller, S. Datz, I. A. Sellin, J. M.
Scheurer, S. Andriamonje, D, Bertault, and J. F. Chemin
Angular Momentum Distributions of Autotonizing States Produced by \(1.5-5 \mathrm{MeV}\) Cq+ Ions in Carbon Foils," Physical Review Letters

Zhang, J.-Y., and J. D. Garratt
"Ooservation of Diabolical Points in Rapidly-Rotating Muclei." Physical Review Letters, Comment

\title{
11. PAPERS PRESENTED AT SCIENTIFIC AND TECHNICAL MEETINGS
}

\author{
October 1987 Through September 1988
}

\author{
List Prepared by Shirley J. Ball
}

\section*{1987}

12th International Conference on Atomic Collisions in Solids, Okaym, Japan, October 12-16, 1987
Read, P. M., C. J. Soffeld, G. D. Alton, P. D. Miller, P. L. Pepailler, D. C. Gregory, and L. B. Bridvell
"Electron Capture Cross Sections to Hydrogentc States of 1-Geil Mi in Solid Carbon"
Snowdon, K. J., C. C. Havener, M. Heiland, F. M. Meyer, S. H. Overbury, and D. M. Zehner
- Direct Evidence for the Dominant Role of Target Core Levels in the Meutralization of Slow Multicharged Ions at Metal Surfaces"

\section*{Gaseous Electronics Conference, At lanta, Ceorgia, October 13-16, 1987}

Bottcher, C., D. C. Griffin, and H. S. Pit.izold
"Ionization in Collisions Setween Electrons and Complex Ions"
Phaneuf, R. A. (Invited Talk)
"Heasurements of Electron-Impact loniait.on Cross Sections for Ions"

American Physical Society. Division of mucle'r Physics, Mew Brunswick, Maw Jersey, Dctober 15-17, 1987
Ames, T. C., R. L. Ferguson, F. E. Obenshain, F. Plasil, S. Pratt, G. R. Young, Z. Chen, C. K. Gelbke, W. G. Lynch, J. Pochodzalla, and H. M. XU
"Proton-Protion Correlations in \({ }^{\mathbf{3 2}}\) S-Induced Reactions on Gold: Reaction Source Geometry." Bull. Am. Phys. Soc. 32, 1550 (Sept. 1987)

Johnson, C. H. (Invited Talk)
"Dispersion Relation Analysis of the Meutron- \({ }^{203} \mathrm{~Pb}\) Mean field," Bull. Am. Phys. Soc. 32. 1548 (Sept. 1987)

Lee, I. Y., C. Baktash, J. R. Beene, M. L. Halbert, M. R. Johnson, F. K. McGowan, and D. G. Sarantites "Gamathay Energy Correlation Studies of \({ }^{170} \mathrm{Hf}\)," Bull. Am. Phys. Soc. 32, 1544 (Sept. 1987)

Lisantti, J., F. E. Bertrand, D. J. Horen, R. L. Auble, B. L. Burks, E. E. Gross, R. O. Sayer. K. W. Jones, J. B. McClelland, S. J. Seestrom-Morris, and L. W. Smenson
"Giant Resonance Strength Distribution in "Ca ac Determined with 500 MeV Protons," Bull. Am. Phys. Soc. 32, 1573 (Sept. 1987)

Penumetcha, Y., G. A. Petitt, T. C. Ames, R, L, Ferguson, F. E. Obenshain. F. Plasil, and G. R. Young "Charge and Mass Distribution of Projectile-like Fragrents in the Reaction \({ }^{51} \mathrm{Mi}+165 \mathrm{Mo}\) at \(15.1 \mathrm{meV} / \mathrm{Muc}\) leon," Buli. Am. Phys. Soc. 32, 1542 (Sept. 1987)

Petitt, G. A., C. Butler, V. Penumetcha, T. C. Ares, J. R. Beene, R. L. Fergeson, F. E. Obenshain, F. Plasil, S. P. Sorensen, and G. R. Young
"Meutron Emission in Damped Reactions of \({ }^{59} \mathrm{Mi}+165 \mathrm{Ho}\) at \(15.5 \mathrm{MeV} / \mathrm{Muc}\) leon." Bull. Am. Phys. Soc. 32, 1550 (Sept. 1987)

Shapira, D., P. H. Stelson, B. L. Rurks, B, A. Harmon, B. Shtvakumar, and S. Y. Phornton
"Effect of Entrance Channel Asymmetry on Fusion Reactions Learing to \({ }^{40} \mathrm{Ca}\) and \({ }^{4}{ }^{2} \mathrm{Ca}\)," Bull. Am, Phys. Soc. 32, 1541 (Sept. 1987)

Stelson, P. H.
"Enhancement of Heavy-Ion Sub-barrier Fuston Fross Sections and Meutron interactions," Bull. Am. Phys. Soc. 32, 1541 (Sept. 1987)
```

Mong, C. Y.
"Nuclear Stopping Power in High-Energy Collisions," Bull. Am. Phys. Soc. 32, 1551 (Sept. 1987)
Yowng, G. R. (Invited Talk)
"Experiments with E/A = 200-GeV and 60-GeV Oxygen Beams: Initial Results from CERN Experiment MA80,"
Bull. A. Phys. Soc. 32, 1565 (Sept. 1987)
1987 IEEE Muclear Science Symposiv:, San Francisco, California, October 19-23, 1987
Teh, K. M., D. Shapira, J. U. McConnell, H. Kim, and R. Movotny
"Data Acquisition for the MILI Detector"
VilI Intermatiomal School en Muclear Physics, Meutron Mrysics, and Muclear Energy, Varna, Bulgaria,
October 19-28, 1987
Rman, S. (Invited Talk)
"Selected Topics in Muclear and Atomic Physics"
Third International Symposiva on Laser-Aided Plasma Diagmostics, Los Angeles, California, October 28-30,
1537
Ma, C. H., and D. P. Hutchinson (Invited Talk)
"Feasibility Study of m Infrared Interferameter/Polarimeter System for CIT*
American Pysical Society, 29th Anmul Meeting of the Ofvision of Plasam Mysics, San Diego, California,
Benmett, C. A., D. P. Hutchinson, and R. K. Richards
"Selective Absorption of }\mp@subsup{\textrm{CO}}{2}{}\mathrm{ Laser Radiation Usíng Hot CO2," Bull. Am. Phys. Soc. 32, 1870 (Oct.
1987)
Hunter, H. T., D. P. HutcMinson, and R, K. Richards
"A Migh Power Pulsed CO2 Laser Source for Alpha Particle Measurement by Thomson Scattering," Bull.
Am. Phys.Soc. 32, 1870 (Oct. 1987)
MM, C. M., and D. P. Hutchinson
"An Infrared Interferometer/Polarimeter System for CIT," Bull. Am. Phys. Soc. 32, 1870 (Oct. 1987)
Richards, R. K.. H. T. Hunter, and D. P. Hutchinson
"A CO2 Laser Thomson Scattering 01agnostic for CIT Alpha Particle Measurement," Bull. Am. Phys. Soc.
32, 1922 (Oct. 1987)
Morktmep en Mdvanced Laser Technology for Chmical masurements, Gaithersburg, Marylano, Movember 4-6;
1987
Inn, K.6.W., J. D. Fassett, B, M. Coursey, R. L. Walker, and S. Raman
"Development of the MBS Beryllium Isotopic Standard Reference Material"
Intermational Confsrence on ECR Ion Sources and Their Mpplications, East Lansing, Wichigan, November
16-58, 1987
Mmyer, F. W. : .ited Talk)
"Applicatior, ol ECR Beams in Atomic Physics"
Southeastern Section of the American Physical Society, Mashville, Tennessee, Movember 23-25, 1987
Ames, T. C. (Inviled T. \)
"The Search for the Quark-Gluon Plasma: First Results from CERN Experiment WA80," Bull. Am. Phys.
Soc. 32, 2140 (Mov. 1987)
-gdorfer, J. (lnvited Talk)
"Stochastic Perturbations of rast Atoms in Solids," Bull. Am, Phys. Soc. 32, 2132 (Nov, 1987)

```

Chaturvedi, L., A. V. Ramayya, J. H. Hamilton, C. Girit, J. Kormicxi, X. Zhao, S. Zhu, W.-C. Gao, N. R. Johnson, I. Y. Lee, C. Baktash, F. K. McGowan, M. L. Halbert, M. A. Riley, M. O. Kortelahti, and J. D. Cole
"High Spin States and Multiple Band Structures in \({ }^{68}\) Ge," Bull. Am. Phys. Soc. 32, 2145 (Mov. 1987)
Datz, S. (Invited Talk)
"Channeling Radiation - Atomic and Molecular Physics in One and Two Dimensions," Bull. Am. Phys. Soc. 32. 2128 (1987)

Girit, I. C., J. H. Hamilton, K. S. Krane, H. K. Carter, M. L. Simpson, E. F. Zganjar, J. D. Cole, B. D. Kern, C. R. Bingham
"EiNISOR Muclear Orientation Facility," Bull. Am. Phys. Soc. 32, 2145 (Mov. 1987)
Griffin, J. C., R. W. Fink, C. R. Bingtian, H. V. Carmichael, J. L. Mood, M. O. Kortelahti, and H. K. Carter
- Decay of Mass-Separated \({ }^{19581}\) to Levels in \({ }^{195 \mathrm{~Pb} \text { : Possible Shape-Coexistence in Odd-A Lead }}\) Isotopes," Bull. Am. Phys Soc. 3z, 2145 (Mov. 1987)

Koraicki, J., J. H. Hamilton, A. V. Ramayya, L. Chaturvedi, Z.-M. Chen, I. C. Girit, Mo-C. Ma, S. Wen, K. Zhao, M. R. Johnson, C. Baktash, M. L. Halbert, D. C. Hensley, I. Y. Lee, F. K. McGowan, M. O. Kortelahti, R. B. Piercey and M. G. Mettles

Kortelahti, M. O., B. D. Kern, R. A. Braga, and R. W. Fink
"Energy Levels of Meutron-Deficient Rare-Earth Nuclei via Beta Decay," Bull. Am. Phys. Soc. 32, 2146 (Mov. 1987)

Olive, D. H., and G. D. Alton
"A Quantitative Approach for Deternination of Sputter Ratios Based on Scaled Sigmund Theory, Bull. Am. Phys. Soc. 32, 2147 (Nov. 1987)

Raman, S., C. M. Mestor, Jr., and K. H. Bhatt
"Schematic Interpretations of the Systematics of \(8(E 2)+\) Values Throughout the Periodic Table," Bull. Am. Phys. Soc. 32, 2130 (Nov. 1987)

Sellin, I. A. (Invited Talk)
"Convoy Electron Pruduction: Bulk and Surface Effects," Bull. An. Phys. Soc. 32, 2128 (Mov. 198?)
Simpson, M. L., D. Abraham, and J. M. Rochelle
"High Sensitivity Beam Profile Monitor," Bull. Am. Phys. Soc. 32, 2146 (Mov. 1987)
Young, G, R. (Invited Talk)
"The HISTRAP Proposal: An Accelerator and Storage Ring for Atomic Physics," Bull. Am. Phys. Soc. 32, 2134 (Nov. 1987)
iganjar, E. F. (Invited Talk)
"huclear Shape Coexistence and Electric Monopole Transitions in the \(180<A<200\) Region." Bull. An. Phys. Soc. 32, 2138 (Mcv. 1987)

Zhu, S., L. Chaturvedi, A. V. Ramayya, J. H. Hamilton, C. Girit, J. Kormicki, X, Zhao, W. -B. Gao, N. R. Johnson, I. Y. Lee, C. Baktash, F. K. McGowan, M. L. Halbert, M. A. Riley, M. O. Kortelahti, and J. D. Cole
"High Spin States in \(65,67 \mathrm{ga}, "\) Bull. Aa. Phys. Soc. 32, 2146 (Mov, 1987)

Texas AMM Symposium on Hot Muclef. Collage Station, Texas, Decenter 7-10, 1987
Bertrand, F. E., and J. R. Beene (Invitec Talk)
"Excitation and Photon Decay of Giant Resonances Excited by Intermediate Energy Heavy Ions"
Sarantites, D. G., T. M. Semkow, L. G. Sobotka, V. Abenante, Z. Li, Z, Majka, N. G. Micolis. L. W. Seracener, D. C. Hensley, J. R. Beene, and H. C. Griffin (Invited Talk) "A New Look at Reaction Mechanisms with 4n Charged-Particle and Meutron Multiplicity Measurements"

Lasers '87, Tenth International Conference on Lasers and Applications, Lake Tahoe, Wevada, December 7-11, 1987

Casson, W. H., D. P. Hutchinson, C. H. Ma, R. K. Richards, and K. L. Vander Sluis
"Infrared and Far-Infrared Laser Development for Plasma Diagnostics at Oak Ridge Mational Laboratory"

12th International Conference on Infrared and Milliaeter Maves; Orlando, Florida, December 14-18, 1987
```

Hutchinson, D. P.. W. H. Gasson, and C. H. Ma (Invited Talk)
"A Multichannel Far-Infrared Interferometer on ATF"
Ma, C. H., and D. P. Hutchinson
"An Infrared Interferometer/Polarimeter on the Compact Ignition Tokamak"

```

\section*{1988}

International Morkshop XVI on Gross Properties of Muclei and Muclear Excitations, Hirschegg, Austria, January 18-22. 1988

Ames, T. C. (Invited Talk)
"Forward and Transverse Energy Measurements from CERM Experiment M Mo" \(^{*}\)

Xith Symposium on Muclear Mysics, Oaxtepec, Mexico, January 4-7, 1988
Satchler, G. R. (Invited Talk)
"The Threshold Anomaly for Heavy-Ion Scattering"

International Conference on Physics and Astrophysics of the Quark-6luon Plasme, Bombay, India, February 8-12, 1988
```

Albrecht, R.. T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, L. Dragon, R. L.
Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb,
P. Kristiansson, 1. Y. Lee, Ho Loehner, I. Lund, F. E. Doenshain, A. Oskarsson, I. Otterlund,
T. Peitzmann, S. Persson, F. Plasil, A. M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R.
Schmidt, T. Siemiarczuk, S. P. Sorensen, E. Stenlund, and G. R. Young (Invited Talk)
"Results from CERN Experiment UAB0"
Close, F. E. (Invited Talk)
Parton Distributions in Muclei: Quagma or Quagmire?"
Minimorkshop on Experimental Techniques in Relativistic Heavy-Ion Experiments, Bombay, India, February
13, }198
Plasil, F. (Invited Talk)
"Calorimetry Applied to Nucleus-Nucleus Collisions at Ultrarelativistic Energies"

```

\section*{Minter Workshop on Muclear Dynamics V, Sun Valley, Idaho, February 22-26, 1988}
```

Plasil, F., R. Albrecht, T. C. Awes, C. Baktash, P. Beckmann, F. Berger, R, Bock, G. Claesson,
L. Oragon, R. L. Ferguson, A. Franz, S. Garpman, R. Glasow, H. A. Gustafsson, H. H. Gutbrod, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee. H. Loehner, I. Lund, F. E. Obenshain, A. Oskarsson. 1. Otterlund, T. Peitzmann, S. Persson, A, M. Poskanzer, M. Purschke, H. G. Ritter, R. Santo, H. R. Schmidt, T. Siemiarczuk, S. P. Sorensen. E. Stenlund, and G. R. Young "Results from CERN Experiment MA80"
7th Yopical Conference on Wigh Tamperature Plasm Diagnostics, Mapa, Caifornia. March 13-17, 1988
Ma, C. H., D. P. Hutchinson, and K, L. Vander Sluis
"A Two-Wavelength Infrared leierferometer/Polarimeter System for CIT"
Richards, R. K., C. A. Bennett, L. Fletcher, H. T. Hunter, and D. P. Hutchinson
"A $\mathrm{CO}_{2}$ Laser Thoms on Scattering C'agnostic for Fusion Product Alpha Parcicle Masurement."

```

American Physical Society Meeting, Mew Orleans, Louisiane, March 21-25, 1988
McGuire, S. C., L. P. Clark, J. B. Ball, S. Raman, C. R, Vane, and E. G. Stassinopoulos "Facility for Heavy-Ion-Induced Singie-Event Upset Measurements," Bull. Am. Phys. Soc. 33, 371 (Mar. 1988)

Workshop on the HHIC Performance, Upton, Mew York, March 21-26, 1988
```

Young, 6. R. (Invited Paper)
Electromagnetic Dissociation of Nuclei at Relativistic Energies*
Young, G. R. (Invited Paper)
"Luminosity Depletion in RHIC"

```
4th International Conference on Resonance Ionization Spectroscopy, Gaithersburg, Maryland, April 11-15,
1988

Pegg, D. J., J. S. Thompson, R. M. Compton, and G. D. Alton (Invited Talk)
"The Structure of the Stable Negative Ion of Calcium"

Conference an High-Spin Muclear Structure and Movel Muclear Shapes, Argonne, Illinois, April 13-15, 1988
n.udek. J., and T. Werner (Invited Talk)
"hyperdeformed Muclei and the Residual Pseudo-SU(3) Symmetry"
Lee, I. Y., C. Baktash, J. R. Beene, M. L. Halbert, D. C. Hensley, M. R. Johnson, F. K. McGowan, M. A. Riley, and D. G. Sarantites (Invited Talk) "High Resolution Correlation Studies of Continuum Gama Rays of \({ }^{170} \mathrm{Hf}\) "

Riley, M. A., C. Baktash, Y. A. Ellis-Akgvali, M. L. Halbert, D. C. Hensley, M. R. Johnson, I. Y. Lee, F. K. McGowan, V. P. Janzan, L. L. Riedinger, and L. Chaturvedi (Invited Talk) "Alignments, Shape Changes, Banc Terminations and Transition Rates in \({ }^{157}\) Tm"

Annual Meeting of the Division of Atonic, Molecular, and Optical Physics, American Physical Society, Baltimore, Maryland, April 18-20, 1988

Bottcher, C., G. J. Bottrell, and M. R. Strayer "Time-Dependent Hartree-Fock Description of highly Charged Ion-Atom Collisions: C \(C^{++}+\)Me." Bull. Am. Phys. Soc. 33, 921 (Apr. 1988)

Bottcher, E., G. J. Bottrell, and M. R. Strayer "Charge Capture in Antiproton-Positronium Collisions: A Mumerical Semiclassical Treatment." Bull. Am. Phys. Soc. 33, 1055 (Apr. 1988)

Bottcher, C., and M. R. Strayer
"Fully Three-C+mensional Solution of the Dirac Equation for Heavy-Ion Collisions at Relatiaistic Velocities," Bull. Am. Phys. Soc. 33, 997 (Apr. 1988)
Breinig, M., S. Datiz, R. Hippler, P. D. Mi : : - R, H. Schcene, and R. Schuch
"Hot Electrons trom Single lonization and Transfer Ionization in Collisions of \(19^{+}\)with \(\mathrm{He}^{2} \mathrm{H}_{2}\), and \(\mathrm{O}_{2}\) Targets," Bull. Am. Phys. Soc. 33, 1054 (Apr. 1988)

Buie, M. J., M. S. Pindzola, S. Chantrenne, and D. C. Gregory
"Electron-Impact lonization of the Tist Ion," Bull. Am. Phys. Soc. 33, 939 (Apr. 1988)
DeSerio, R., and J. P. Gibbons
"Simulation of Measurements of a Dettmann Cusp Using Electrostat'c Spherical sector Spectrameters," Bull. Am. Phys. Soc. 33, 1002 (Apr. 1988)

Freyou, J., M. Breinig, C. C. Gatither, and T. A. Underwood

Huq, M. S., C. C. Havener, and R. A. Phaneuf
"Total Cross Sections for Electron Capture in Collisions of \(19{ }^{+}\)(\(q=3,4,5\)) with \(H\) and \(O\) Atoms at keV to eV Energies Using Merged Beams." Bull. Am. Phys. Soc. 33, 1004 (hpr. 1988)

Levin, J. C., C-S. D, H. Caderquist, C. Biedermann, and 1. A. Sellin Recoll-lon Energy and Impact Parameter Dependence on Coincident Multiple Projectile Electron cipture and Loss," Bull. Am. Phys. Soc. 33, 1054 (Apr. 1928)

Levin, J. C., C-S. O, and I. A. Sellin
"Monte-Carlo simulations of Time-of-fitght Spectra." Bull. Am. Phys. Soc. 33, 1002 (Apr. 1988)

Meyer, F. M., C. C. Harener, W. Heiland, K. J. Snowdon, and D. M. Tehner
"Electron Emission in Ccilisions of tighly Charged Ions mith Au and Cu Surfaces."Bull. Am. Phys. Soc. 33, 933 (Apr. 1288)

Satakd, M., S. Ortani, D. Smenson, and D. C. Gregory
Electron Impact Iontzetion of Chronium Ions," Bull. Am. Phys. Soc. 33, 939 (Apr. 1988)
Schoene, H., S. Datz. P. F. Dittner, Q. C. Kessel, H. F. Krause, J. K. Smenson, and C. R. Vane
- Zero Degree Electron Spectroscopy in Cotncidence with Proiectile Charge State in \(10-\mathrm{MeV} \mathrm{C}\left(\mathrm{q}^{+}\right)\)-Me Collisions, " Bull. Am. Phys. Soc. 33. 921 (Apr. 1988)

Schulz, M., R. Schuch, S. Datz, E.L.B. Jus:iniano, P. D. Miller, and H. Schone
"RTE Observed in \(\mathrm{F}^{+}\)- H2 Collisions by X-Ray Coincidences, Bull. Am. Phys. Soc. 33, 1054 (Apr. 1988)
 "Enhanced Transport Length for Convoy Electrons Produced by 15.6 MeV/u Mi Ions in C Targets Observed in Coincidance with Emergent Projectile Charge." Bull. Am. Phys. Soc. 33. 1055 (Apr. 1988)

Smenson, J. K., D. C. Griffin, C. C. Havener, M. S. Huq, F. W. Meyer, R. A. Phaneuf, and M. Stolterfoht "Spectroscopy of Low Energy Collistons of \(\sigma^{+}\)with He, Re, and \(H_{2}\) " Bull. Am. Phys. Sor: 33, 1003 (Apr. 1988)

Undermood, T. A.. M. Breinig, C. C. Gaither, and J. Freyou
Heasurement of Cross Sections for Cusp Electron Production in Single Ionization and Transfer Ionization Events for .1 MeV/u \(1+13\) Incident on He and \(H_{2}\) Gases," gull. Am. Phys. Soc. 33, 105A (Apr. 1988)

Vane, R., S. Raman, S. Kahane, T. Rosseel, S. Stewart, and T. Malkiewicz
"Chemical Sensitivities of Heavy-lon-Induced X-Rays "rom Al Compounds and Alloys," Bull. Am. Phys. Soc. 33, 1004 (Apr. 1988)

Wang, \(J_{0}\), and \(J_{\text {. Burgdorfer }}\)
' \(v / 2\) ' Electron Emission in Ion-Atom Collisions with Short-Ranged Potentials," Bull. Am. Phys. Soc. 33. 1055 (Apr. 1988)

\section*{Rmerican Physical Society 'meting, Altimore, Maryland, April 18-21, 1988}

Beene, J. R. (Invited ialk)
Gand Decay Studias of Isovector Giant Resonances," 8ul1. Am. Phys. Soc. 33, 957 (Apr. 198R)
D'Onofrio, A., J. © omez del Campr, R. L. Auble, J. R. Beene, M. L. Halbert, H. J. Kim, and J. L Charvet "Population of Excited States of Complex Fragments Enitted in Collisions of \(630-\mathrm{MeV} 58 \mathrm{Mi}\) on 58 Ni ." Bull. An. Phys. Soc. 33. 928 (Apr. 1988)

Gomez del Campo, J., R. L. Auble. I. K. Beene, M. L. Halbert, H. J. Kim, J. L. Charvet, and A. O'Gnofrio
"Study of Complex Fragments Emitted in wollisions of \(58 \mathrm{Ni}+58 \mathrm{Nt}\) at \(11 \mathrm{meV} / \mathrm{Nucteon}\), dull. Am. Phys. Soc. 33, 928 (Apr. 1988)

Gross, E. E., D. C. Hensley, J. R. Beene, F. E. Bertrand, M. L. Malbert, G. Vourvopoulos, T. YanCleve, and \(D\). L. Hemphrey
"E2 and E4 Matrix Elements For \({ }^{24}{ }^{4} \mathrm{Mg}\) from HI Inelastic Scattering," Bull. Am. Phys. Soc. 33, 929
(Apr. 1988)
Johnson, C. H., and C. Mahaux
"Unified Description of the Meutron \({ }^{4}{ }^{2} \mathrm{Ca}\) Mean Field for \(-80<E<80 \mathrm{MeV}\)," eull. Am. Phys. Soc. 33. 964 (Apr. 1988)

Kin, H. J., J. Gomez del Campo, M. Hindy, D. Shapira, and P. H. Steison
"Transfer Reactions for the 50 T1 +90 Zr System below the Coulomb Rarrier," Bull. Am. Phys. Soc. 33, 1021 (Apr. 1988)

Lisantti, J., F. E. Bertrand, D. J. Horen, R. L. Burks, C. W. Glover, D. K. McDaniels, L. W. Swenson, K. Y. Chen, D. Hausser, and K. Hicks

Excitation of Giant Resonances in \({ }^{28} \mathrm{Si}\) with 250 MeV Protons." Bull. Am. Phys. Soc. 33, 962 (Apr. 1988)

Lord, R. S., and D. K. Olisen
"Three Dimensional Design of the HISTRAP Prototype Dipole Magnet." Bull. Am. Phys. Soc. 33, 1027 (Apr. 1988)

Penumetcha, V., F. Butler, G. A. Petitt, T. C. Awes, J. R. Beene, R. L. Ferguson, F. E. Obenshain, F. Plasil. S. Sorensen, and G. R. Young
"Mass. Charge, and Excitation Energy Distributions for Heavy Fragments in Strongly Damped Reactions \(58 \mathrm{yi}+{ }^{165} \mathrm{Ho}\) at \(16 \mathrm{MeV} / \mathrm{amu}\)." Bull. Am. Phys. SoC. 33927 (Apr. 1988)

Saini, S., T. C. Ames, F. E. Obenshain, F. Plasil, D. Shapira, G. R. Young, V. Penumetcha, G. A. Petitt. and G. Masreen
"Meutron-4eutron and Meutron-Light Ion Correlations in the Reaction \({ }^{325}+197 \mathrm{Au}\) at \(21.9 \mathrm{MeV} /\) Mucleon."
Bull. Am. Phys. Soc. 33, 978 (Apr. 1988)
Shivakumar, B., and D. Shapira
"Orbitiny Phenomena in Heavy Ion Reactions," Bull. Am. Phys. Soc. 33, 928 (Apr. 1988)
Thompson, J. R.. D. J. Pegg, R. M. Compt on, and G. D. Alton
-Photoelect ron Spectroscopy of Ca-. Bull. An. Phys. Soc. 33, 1036 (Apr. 1988)
Varner, R. L., J. R. Beene, R. L. Auble, F. E. Bertrand, M. L. Halbert, D. C. Hensley, D. J. Moren, R. L. Robinson, and R. O. Sayer
"Photon Decay Studies in \({ }^{9} 0 \mathrm{Zr}\) and \({ }^{209} \mathrm{Bri}^{\prime}\) " Bull. Am. Phys. Soc. 33, 978 (Apr. 1988)
Mells, J. C., M. R. Johnson, A. Virtanen, M. A. Riley, C. Baktash, I-Y. Lee, and F. K. McGowan
-Gama-Ray Measurements on High-Spin States of \({ }^{172}{ }^{\circ}{ }^{\circ} \mathrm{s}\). Bull. Am. Phys. Soc. 33, 981 (Apr. 1988)
Winters, R. R., and C. H. Johnson
"Evidence for Shell Dependence of the Imaginary Part of the Meutron Optical Potential." Bull. Am. Phys. Soc. 33, 1061 (Apr. 1988)
```

IAEA Spacialists' Neeting on Carbon and Oxygen Collision Data for Fusion Plasm Research. Vienna,
Austria., May 12-13, 1988
Phaneuf, R. A., P. Defrance, D. C. Griffin, Y. Hahn, M. S. Pindzola, L. Roszman, and W. Miese
"IAEA Specialists' Meeting on Carbon and Oxygen Collision Data for Fusion Plasma Research"
3rd Conference on the Intersections Betmeen Particle and Muclear Physics, lockport, Maine, May 14-19,
1588

```
Close, F. E. (Invited Talk)
 "The Muclear Dependence of Parton Distributions"
Topical Conference on Muclear Chromodynamics, Argonne, Illinots, May 19-21, 1988
Close, F. E. (Invited Talk)
 "The Muclear Deoendence of Parton Distributions"
International Conference on Medium- and High-Energy Muclear Physics, Talpet, Tatwan, May 23-27, 1988
Mong, C. Y. (Invited Taly)
 "Origin of Anomalous Positron Deaks in Heavy-Ion Reactions"
Wong. C. Y., and 2. D. Lu (Inviter, Talk)
 "The Dynamics of High-Energy Nucleus-Nucleus Collisions"
International Conference on Muclear Data for Science and Technology, May 30-June 3, 1988, Mito, Japan
Raman, S. (Invited Talk)
 "Validity Between Direct and "ommound Nuclear Models of Slow Nejtron Capture"
Workshop on Heavy-Ion Interactions Around the Coulomb Barrier, Legnaro, Italy, June 1-4, 1988
Kim: H. J. (Invited Paper)
 "Transfer Reactions for the 50 Ti . 90 Zr System Delom the Coulomb Barrier"

Seventh International Conference on Ion Iaplantation Tecrnology, Kyoto, Japan, June 6-10, 1988
```

Alton, 6. D. (Invited Talk)
"The Sputter Generation of Negative Ion Beams"
Alton, 6. D., Y. Mori, A. Takagi, A. Ueno, and S. Fukumoto
*A Higr-Brightness, Plasmd-Sputter Negative lon Source"

```
13th International Conference on Meutrino Physics and Astrophysics, Boston, Massachusetts, June 5-11,
1988
Close, F. E. (Invited Talk)
 "The Parton Distributions in Muciei and in Polarized Mucleons"

\section*{Symposium on On-Line Mass Separators, Radionctive Beams, and Muclei Far from Stability, American Chemical Society Meeting, Toronto, Canada, June 6-11, 1988}
```

Toth, K. S. (Invited Talk)

```
 "Investigation of Alpha-Particle and Delayed-Proton Decays at and near Closed Shells"

Third International Conference on Mucleus-Mucleus Collisions, St. Malo, France, June 6-11, 1988
Ares, T. C., Z. Chen, R. L. Ferguson, C. K. Gelbke, W. G. Lynch, F. E. Obenshain, F. plasti, J. Pochodzalla, S. Pratt, H. M. Xu, and G. R. Young
"Extended Emission Sources Observed via Two-Proton Correlations"
Bertrand, F. E., J. R. Beene, and D. J. Horen (Invited Talk)
"Excitation and Photon Decay of Giant multipole Resonances - The Role and Future of Medium-Energy Heavy Ions"

Bracco, A., J. R. Beene, M. Van Giai, P. F. Bortignon, F. Zardi, and R, A. Broglia
-Direct meutron Decay from the Giant Monopole Resonance in \({ }^{20}{ }^{\circ} \mathrm{Pb}\) -
Kim, H. J., K. S. Toth, and J. W. McConnell
"Alpha-Particle Decay Studies Mear \(M=130\) with the Use of Velocity Filter*
Morsch, H. P., W. Spang, J. R. Beene, F. E. Bertrand, R. L. Ausle, M. L. Malbert, D. C. Mensley, R. L. Varner. D. G. Sarantites, and D. W. Stracener
"Observation of Temperature Marrowing in the Giant Dipole Resonance Decay of Hot Muclei and Muclear Shapes at High \(\mathrm{T}^{*}\)

Obenshain. F. E.
"Huclear Stopping in Oxygen-Induced Reactions at 200 A GeV*

European Particle Accelerator Conference, Rome, Italy, dune 7-11, 1998
Read, P. M., J. T. Maskrey, and G. D. Alton
"Development of a -ithium Liquid metal ion Source for Mey Ion Beam Analysis"
```

Molp, A., H. Poth, W. Schwab, B. Seligmann, M. Wortge, P. F. Dittner, H. Haseroth, C. E. Hill. J. L.
Vallet, S. Baird, M. Chanel. P. Lefevre, R. Ley, D. Manglunki, D. Mohl, G. Molinari, and G. Iranquille
"Results from Electron Cooling Experiments at LEAR"

```

International Conference on Contemporary Topics in Muclear Structure, Cocoyoc, Mexico. June 9-14, 1988
Baktash, C. (Invited Talk), Session Chairman Commentary
"Inderstanding the Structure of Nuclei at Finite Temperatures"
Dudek. J. (Invited Talk)
"From the Secrets of Nuclear Shapes into Duantum Nuclear Physics"

Symposium on future Polarization at Fermilab, Batavia, Illinots, June 13-14, 1988
```

Close, F. E. (Invited Talk)
"Where Next in Polarized Leptoproductior?"

```
```

XlXth International Symposium on Multiparticle Dynamics - Mew Data and Theoretical Trends, Arles,
France, June 13-17, 1988

```

```

L. Iragon. 2. L. Ferguson, A. Franz. S. 'marpman. R. ज'asow, 4. A. Gustafsson, 4. 4. Gutbrod. k. 4.
kampert. .. H. kolb, D. kristiansson, 1. Y. Lee, 4. Loehner, !. Lund, 4. Dskarsson. !. Otteriund,
T. Dei:zmann, S. Dersson, F. Plas:I, A. M. Doskanzer, M. Purschke, H. G. RiEter, R. Santo, H. R.
Scnmidr. T. Siemiarczisk,S. D. Sorensen, E. Stenlini, and G. R. Young
*Wuclear Stopping in Juygen-induced Reactions at 200 \& 'ev*
IX International Seninar on High-Energy Physics Problems - Relativistir Muclear Physics and Quantum
Cr,romodynamicS, Dutna, U.S.S.R., June 14-19. 1988
Loehner, H., R. Albrecht, T. C. mes, C. Baktash, D. Becimman., F. Beryer, R. Bock, G. Claesson.
L. Dragon, R. L. Ferguson, A. Franz, S. Garpman, R. Giasom, H. A. Gustafsson, H. H. Gutbrod, K. H.
kampert, B. W. Kolo, P. kristiansson, I. Y. Lee, I. Lund, F. E. Donshain, A. Oskarsson, I. Otteriund.
T. Peitzmann, S. Persion, F. Plasil, A. M. Poskanzer, M. Purschke, i.G. G. Ritter, R. Santo, H. R.
Schmidt. T. Siemiarczck, S.P. Sorensen, E. Stenlund, and G. R. Young (Invited Talk)
"Momentum Distributions of Meutral Pions in Heavy-Ion Reactions ut the CERN-SPS"
American Physical Society Joint meeting with the Canadian Mssociation of Physicists, Montreal. Canada,
June 20-22, 1988
Dittner, P. F. (Invited Ta!k)
"Dielectronic Recombination Measursments of Multiply Charged Ions," Bull. Am. Phys. Soc. 33, 1205
(My 1988)
Phaneuf, R. A. (Invited Talk)
"Electron Impact Ionization of Highly Charged lons." 8ull. Am. Phys. Soc. 33, 1205 (May 1988)
CEBAF 1988 Summer Mork shop, Mewport Mews, Virginia, June 20-24, 1988
Close, F. E. (Invited Talk)
"Resonance Photo and Electroproduction as a Probe of QCO"
First European Morkshop on Madronic Physics in the 1990's with Multi-GeV Electrons, Sellac, France, June 21-July 1, 1988

```
```

Close, F. E. (Invited Talk)

```
Close, F. E. (Invited Talk)
 "Testing Qro with Milli-TeV Electrons"
Eleventh International Conference on Atomic Physics (ELICAP), Pa;is, France, July 4-8, 1988
Burgdorfer, J., and C. Bottcner
 "Regular and Stochastic Motion of Rydberg Electrons in Solids"
Levin, J. C., C.-S. O. H. Cederquist, C. Biederman, and l. A. Sellin
 "Argon Recoli-Ion Charge-State Distributions Produced ny Beams of 23 MeV C15+,8+,10+M
```

```
International Symposium on Heavy Ion Physics and Nuclear Astrophysical Problems, Tokyo, Japan, July
```

International Symposium on Heavy Ion Physics and Nuclear Astrophysical Problems, Tokyo, Japan, July
21-23. 1988
21-23. 1988
Halbert, M. L., R. L. Auble, J. R. Beene, F. E. Mertrand, R. L. Murks, J. Gomez del Campo, D. C. Hensley, D. J. Horen, J. Lisantit, R. L. Robinson, R. O. Sayer, R. L. Varner, W. Mittig, Y, Schutz, B. Haas, J.-P. Vivien, N. Alamanos, F. Auger, J. Barrette, R. Fernaniez. A. Calllibert, and A. M. Nathan "Gamma Decay of Giant Resonaces Excited by Heavy lons"
Fifth International Conference on Clustering Aspects in Muclear and Subnuclear Systems, Kyoto, Japan. July 25-29, 1988
Snapira, O. (Invicen Talk)
"Nuclear Trbiting"

```
```

Mong, C. Y.
Condensation of ( ( + +e-) Oue to Short-Range, Mon-Central Attractive Forces"
Mong, C. Y.
"Interaction of a Mev*ral Composite Particle with a Strong Coulomb Field"
Intermational Symposium on Heavy-Ion Reaction Dynamics in Tandem Energy Region, Hitachi, Japan, August
1-3. 1988
Halbert, M. L., J. R. Beene, D. C. Hensley, K. Honkanen, T. M. Semkor, V. Abenante, D. G. Sarantites,
and 2. Li (Invited Talk)
"Angular momentum cffects in Subbarrier Fusion"
Kim, H. J., J. Gomez del Campa, D. Shapira, and P. H. Stelson
"Transfer Reactions for the 50Ti + \$0 Zr System"
American Physical Society Meeting, Storrs, Connecticut, August 15-18, 1988
Close, F.E. (Invited Talk)
"Light Quark Spectroscopy"
8m Morksmop on 6lueballs, Hybrids, and Exotics, Upton, Mem York, August 29-September 1, 1988
Close, F. E. (Invited ialk)
"Exotic Mesons"
Morkshop an On-Line muclear Orientation and Related Topics, Oxford, England, August 31-September 4, 1988
Girit, I. C., G. D. Alton, C. R. Bingham, H. K. Carter, M. L. Simpon, J. D. Cole, J. H. Hamilton, E. A.
Jones, H. Xie, B. D. Kern, K. S. Krane, P. F. Mantica, Jr.. W. B. Mewbolt, and E. F. Lganjar
-The UNISOR On-Line Muclear Orientation Facility"
International Conference on the Physics of Multiply Charged Lons,Grenoble, France, September 12-16,
1988
Havener, C. C. (Invited Talk)
"Electron Capture by Multicharged Ions at eV Energies"
Meyer, F. W. (Invited Talk)
"Multicharged Ions as Prohes of Surfaces"
Smenson, J. K., C. Bottcher, C. C. Havener, N. Stolterfoht, and F. W. Meyer (Invited Talk)
"Observation of Strong Asymmetry in the Emission of Autoionization Electrons at 0' and 180
10 keV He+ + He Collisions"
Spin 88 Conference, Winneapolis, Winnesota, September 12-17, 1988
Close, F. E. (invited Talk) "Where is the Proton's Spin?"
Seventh International Workshop on Inelastic Ion Surface Collistons, Krakow, Poland, September 19-23, 1988
Havener, C. C. (Invited Talk)
"Interacticn of Multicharged lons with Solid Surfaces"
ACS Symposium on The Interface Between Nuclear Structure and Reactions, Los Angeles, California, September 26-29, 1988
Beene. J. R. (Invited Talk) "Gamma Decay Studies of Giant Resonances"

```

Seventh International Conference on Ultrarelativistic Mucleus-Mucleus Collisions, Lenox, Massachusetts, September 26-30, 1988

Awes. T. C.. and S. P. Sorensen (Invited Talk)
"Report on the Jak Ridge Workshop en Monte Carlo Codes for Relativistic Heavy-Ion Collisions"
Peitzmann, T., Aldrecht, R., T. C. Ames, C. Baktash, P. Beckmann, F. Berger, R. Bock, G. Claesson, G. Clewing, L. Dragon, A. Eklund, R. L. Ferguson, A. Franz, S. Garoman, R. Glasow, 4. A. Gustafsson, H. H. Gutbrod, J. Idh, K. H. Kampert, B. W. Kolb, P. Kristiansson, I. Y. Lee, H. Loehner, I. Lund, F. E.
Obenshain, A. Oskarsson, I. Otterlund, S. Persson, F. Plasil. A. M. Poskanzer, M. Purschke, H. G.
Ritter, R. Sanio, H. R. Schmidt, T. Siemiarczuk. S. P. Sorensen. E. Stenlund, and G. R. Young
"Correlations of Weutral Pions in Ultrarelativistic Heavy Lon Collisions"
Hong, C. Y., ana Z. D. Lu
"Nuclear Stopping Power in High-Energy Vucleus-Nucleus Collisions"

\section*{12. GENERAL INFORMATION}

\author{
PERSOMRL CHANGES
}

New Staff Members
A. Scientific Staff
F. E. Close, UT/Oinil Distinguished Scientist, Rutherford Appleton Laboratory, Chilton, England
J. D. Garrett, Miels Bohr Institute, Copenhagen, Denmark
J. H. Macek. UT/OMR Distinguished Scientist, University of Mebraska, Lincoln, Mebraska
B. A. Tatua, Tennessee Technological University, Cookeville, Tennessee
B. Mdinistrative and Technical Staff
F. P. Ervin, Secretary (transferred fron Instrymentation and Controls Division)
B. K. Sizemore, Accelerator Operations
5. D. Taylor, Accelerator Operations

\section*{Staff Transfers and Terminations}
A. Scientific Staff
C. H. Johnson (retirement)
P. D. Miller, Jr. (retirement)
P. L. Pepmiller (present address: Harvard Medical School, Cambridge, Massachusetts)
B. Ad inistrative and Technical Staff
C. A. Maples, Accelerator Operations (transferred to Metals and Ceramics Division)
R. T. Webber, Secretary (transferred to Central Waste Management Offices)

\section*{Temporary Assignments}
A. Visiting Scientists
2. Lu, Institute of Atomic Energy, Beijing, People's Republic of China
M. Sataka, Japan Atomic Energy hesearch Institute, Tokai-mura, Maka-gun, Ibaraki-ken, Japan
R. Wang, University of Science and Technology of China, Hefei, Anhuf, People's Republic of China
B. ORND Faculty Research Participants
C. A. Bennett, Jr., University of Morth Carolina, Asheville, Morth Carolina
W. G. Mettles, Mississippi College, Cinton, Mississippi
T. A. Walkiewicz. Edinboro University of Pennsylvania, Edinboro, Pennsylvania
?. D. White, Morthmestern State University, Matchitoches, Louisiana
i. F. Zganjar, Louisiana State University, 8aton Rouge, Louisiana
C. Postdoctoral Research Associates
A. D'Onofrio, Matioral Institute of Nuclear Physics, Naples, Italy
Y. M. Fockedey, Catholic University of Louvain, Louvain-la-Neuve, Belgium
J. C. Levin, University of Tennessee, Knoxyille, Tennessee
J. E. Lisantti. TRIUF, Universiey of Britisn Columia, Vancouver, Canada
A. Ray, University of Tennessee, Knoxvilie, Tennessee
M. A. Riley, Niels Bohr Institute, Roskilde, Denmark
S. Saini, University of Pennsylvania, Philadelphia, Pennsyivania
M. Schulz, Heidelberg University, Heidelberg, West Germany
K. M. Teh, Vanderbile University, Nashville, Tennessee
U. Thum, Freiburg University, Frefburg, Lest Garmany
M. L. Tincknell. Lawrence Berkeley Laboratory, Berkeley, California
A. J. A. Virtanen, University of Jyaskyla, Jyvaskyla, Finland
3. P. Wieleczko, Comissariat a l'Energie Atomique, Gif-sur-Yvette Cedex, France
J. Wu. University of Tennessee, Knoxville, Tennessee
D. ORAU Postgraduate Research Training Program
G. J. Bottrell. University of Georgia, Athens, Georgia
J. P. Giese, Kansas State University, Manhattan, Kansas
M. S. Huq, College of 甘illiam and Mary, Williamsburg, Virginia
J. K. Swenson, University of Morth Carolina, Chapel Hill, North Carolina
E. Graduate Students
H. V. Carmichael, University of Tennessee, Knoxville, Tennessee
M. P. Carpenter, University of Tennessee, Knoxville, Tennessee
R. L. Clark, Vanderbilt University, Mashville, Tennessee
J. Delliwo, University of Tennessee, Knoxville, Tennessee
L. K. Fletcher, Tennessee Technological University, Cookeville, Tennessee
J. E. Freyou, University of Tennessee, Knoxville, Tennessee
C. C. Gaither, University of Tennessee, Knoxville, Tennessee
J. P. Gibbons, University of Tennessee, Knoxville, Tennessee
R. C. Hunt, University of Tennessee, Knoxville, Tennessee

Y-r. Jiang, Vanderbilt University, Mashville, Tennessee
H. Jin, University of Tennessee, Knoxville, Tennessee
E. F. Jones, Vanderbilt University, Mashville, Tennessee
R. W. Kincaid, University of Tennessee, Knoxville, Tennessee
M. Korolija, Ruder Boskovic Institute, Croatia, Yugosiavia
S. E. Lasley, University of Tennessee, Knoxvilie, Tennessee
X. T. Liu, University of Tennessee, Knoxville, Tennesfee
J. Mueller, University of Tennessee, Knoxville, Tennessee
J. D. Richards, University of Tennessee, Knoxville, Tennessee
H. Schone, University of Frankfurt, Frankfurt, West Germany
J. V. Shea, Vanderbilt University, Mashville, Tennessee
J. S. Thompson, University of Tennessee, Knoxville, Tennessee
T. A. Underwood, University of Tennessee, Knoxville, Tennessee
H. Xie, Vanderbilt University, Nashville, Tennessee

Y-s. Xu, Oregon State University, Corvallis, Oregon
S. Zhu, Vanderbilt University, Nashville, Tennessee
F. ORAU Graduate Research Participants
D. J. Dear, Vanderbilt University, Nashville, Tennessee
M. P. Met lay, University of Pittsburgh, Pittsburgh, Pennsylvania
G. Joint Institute for Heavy Ion Research

K, H. Bhatt, Western Kentucky University, Bowling Green, Kentucky
J. Dudek. Centre de Recherches Nuc leaires, Strasbourg, France

W-B. GaO, Vanderbilt University, Nashville, Tennessee
G. J. Garcia-Bermudez, Comision Macional de Energia Atomica, Buenos Aires, Argentina
J. J. Griffin, University of Maryland, College Park, Karyland
\(X-L\). Han, Jilin University, Changchun, People's Republic of China
S. Kahane, Nuc lear Research Center-Negev, Beer Sheva, I srael
L. J. Lantto, University of Oulu, Oulu, Finland
1. Lund, CERN, Geneva, Switzerland
N. B. Neskovic, Boris Kidric Institute of Muclear Sciences, Be lgrade, Yugosiavia
D. Rentsch, University of Giessen, Giessen, Hest Germany

W-D. Schaidt-Ott, University of Gottingen, Gottingen, West Germany
M. L-A. Soyeur, Comissariat a l'Energie Atomique, Gif-sur-Yvette Cedex, France
J. Wang, Lanzhou University, Lanzhou, People's Republic of China

C-L. Hu, Jilin University, Changchun, People's Republic of China
\(x\). Yang, Institute of Atomic Energy, Beijing, People's Republic of China
J. Y. Zhang, Lanzhou University and Institute of Modern Physics, Lanzhou, People's Republic of China
L. Zhou, Institute of Atomic Energy, Beijing, People's Republic of China
H. ORAU Student Research Participants
G. J. Baker, Southern Methodist University, Dallas, Texas
M. D. Hipshire, University of Tennessee, Knoxville, Tennessee
I. Oak Ridge Science and Engineering Research Semester (ORSERS) Participants
K. A. Childress, Whitworth College, Spokane, Nashington
S. M. Sipe, Anderson College, Anderson, Indiana
C. M. Sieele, Georgia Southern College, Statesboro, Georgia
R. T. VarHook, Hendrix College, Comay, Arkansas
J. Great Lakes College Association Science Program
A. M. Calairese, Depaun University, Greencastle, Indiana
S. T. Churcmell, Earlham College, Richmond, Indiana
R. L. Kehoe, Ear iham College, Richmond, Indiana
S. S. Mclilifiams, Earlhim College, Richmond, Indiana
M. P. Mesnidal, Lawrence University, Appleton, Wiscons in
B. J. Vartanian, Albion College, Albion, Michigan
K. Great Lakes College Association Faculty Participant
R. R. Minters, Denison University, Granville, Onio

Sumber Assignments
A. ORNW STRIVE Participants
A. J. Donkorski, Webb School of Knoxville, Knoxville, Tennessee
E. M. Mike, Hillsboro High School, Mashville, Tennessee
B. ORAN Professional Internship
D. H. Olive, Jr., Vanderbilt University, Mashville, Tennessee
C. University of Tennessee/ORNL Science Alliance Undergraduate Program
P. K. Card, Hendrix College, Conway, Arkansas
J. M. Gaines, Rhodes College, Memphis, Tennessee
G. M. Homard, Middle Tennessee State University, Murfreesboro, Tennessee
R. C. Hunt, Western Carolina University, Cullowhee, Morth Carolina
T. E. Huston, Hendrix College, Conway, Arkansas
L. E. Kidder, Mrake University, Des Moines, Iowa
E. M. Landes, University of Illinois at Urbana-Chamaign, Urbana, Illinois
J. S. McCarley, Georgia Institute of Technology, Atlanta, Georgia
S. Maguleswaran, Hanover College, Hanover, Indiana
L. Morean, The Evergreen State College, Olymia, Mashington
J. W. Sedier, University of Maryland, College Park, Maryland
S. M. Sipe, Anderson College, Anderson, Indiana

\section*{PHYSICS OIVISION SEMIMARS: OCTOGER 1987-SEPTEMBER 1988}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Seminars arranged by the Physics Division and announced in the ormu Technical Calendar are listed below. During the period of this report, Terry C. Wes (October 1987) and Edward E. Gross (Movember 1987-September 1988) served as Seainar Chairaen.} \\
\hline Date & Speaker & Title \\
\hline \multicolumn{3}{|l|}{1987} \\
\hline Oct. 6 & Shunzo Kumano Uaiversity of [llinois Urbana, Illinois & "Meson Decay in the flux Tube Model" \\
\hline \multirow[t]{3}{*}{Oct. 8} & Carl M. Shakin Brooklyn College of the CUNY Brooklyn, Mew York & "Condensed Matter Dynamics in muclear and Particle Physics" \\
\hline & \begin{tabular}{l}
Ulrich Brosa \\
Philipps-Universitat Marburg Marburg \\
Federal Republic of Germany
\end{tabular} & -fission of the Actinides* \\
\hline & E. Salzborn Justus-Liebig Universitat Giessen Fedzral Republic of Germany & "Ion-Ion Collisions: Recent Experimental Results for \(\mathrm{He}^{+}+\mathrm{He}^{+}, \mathrm{Bi}^{+}+\mathrm{Bi}^{+}, \mathrm{H}^{+}+\mathrm{H}^{-}\), and \(\mathrm{Cs}^{+}+\mathrm{H}^{-}\) \\
\hline Oct. 22 & \begin{tabular}{l}
Michel Baranger \\
Massachusetts Institute of Technology \\
Cambridgé, Massachusetts
\end{tabular} & The Mew Classical Mechanics: Is There a Quantua Equ: ;alent? \\
\hline 0ct. 29 & \begin{tabular}{l}
Tom Hemanic \\
GSI, Darmstadt \\
Federal Republic of Germany
\end{tabular} & "Ultrarelativistic Heavy-ion Collisions at \(200 \mathrm{GeV} / \mathrm{A}\) at the CERM SPS* \\
\hline Oct. 30 & mitsuru Tohyama mational Superconducting Cyclotron Laboratory Michigan State University East Lansing, Michigan & "Applications of Quantum Theory of ?mo-80dy Collisions" \\
\hline Mov. 5 & \begin{tabular}{l}
Friedrich Donau \\
ZFK \\
Rossendorf, East Germany
\end{tabular} & *Spin Orientation in Deformation" \\
\hline Mov. 12 & \begin{tabular}{l}
Y. Sharon \\
Princeton University \\
Princeton, New Jersey
\end{tabular} & "Analysis of High-Angular-Momentum Yrast States in Even-Even Actinides" \\
\hline Mov. 17 & \begin{tabular}{l}
Daniel R. Bes \\
Comision Macional de Energia \\
Atomica \\
Buenos Aires, Argentina
\end{tabular} & "Gauge Methods in muclear Mhysics" \\
\hline Mov. 20 & M. Sekiguchi Institute for Muclear Study University of Tokyo. Japan & "Status of the TARM II Project" \\
\hline Mov. 23 & Craig L. Hoody Brookhaven Mational Laboratory Upton, New York & "High-Rate E.M. Calorimetry with BaF \({ }^{\text {a }}\) Detectors" \\
\hline Dec. 10 & Michael J. Saltmarsh Fuston Energy Division, ORNL & "ORML's Role in the Fusion Energy Program" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Date & Speaker & Title \\
\hline 1987 & & \\
\hline Dec. 17 & \begin{tabular}{l}
Da. H. Feng \\
Drexel University \\
Philadelphia, Pennsylvania
\end{tabular} & "Symmetry-Dictated Pauli Effects and the Solution of E2-Collectivity* \\
\hline 1988 & & \\
\hline Jan. 14 & Dave K. Mristen Solid State Division, anm & "High-Temerature Oxide Superconductors" \\
\hline Jan. 18 & \begin{tabular}{l}
Dieter Schneider \\
Lamrence Livermore hational \\
Laboratory, Livermore, California
\end{tabular} & "Electron Spectra Measured in the Fonward Direction in Ion-Aton Collisions" \\
\hline Jan. 28 & Malter Greiner Frankfurt Universtty, Federal Republic of Germany & "Muclear Equation of State from Relativistic Heavy Ion Collisions \({ }^{-}\) \\
\hline Feb. 11 & Jotin Go Cramer, Jr. University of Ueshington Seattle, Mashington & "Transactional interpretation of Quantum Mechanics" \\
\hline Feb. 25 & \begin{tabular}{l}
Gary T. Alley \\
Instrumentation and Controls Divistion, orim
\end{tabular} & Recent Developments in Very Large scale Integrated Circuits \\
\hline Mar. 3 & Keh-Fei Liu University of Kentucky Lexington, Kentucky & "Role of sinding Energy in the eme Effect* \\
\hline Mar. 4 & \begin{tabular}{l}
Ivo Slaus \\
Institute Ruder Boskovic \\
Zagreb, Yugoslavia
\end{tabular} & "Violation of Charge Symmetry" \\
\hline Mar. 10 & \begin{tabular}{l}
Roscoe E. Marrs \\
Lawrence Livermore hational \\
Laboratory, Livermore, California
\end{tabular} & "Studies of Highly Charged Lons in the Electron-Beam Ion Trap at Lairence Livermore Laboratory" \\
\hline Mar. 24 & 6. Claesson Lund University, Lund, Sweden & "Results from ma80 at CERM: Charged-Particle Distributions" \\
\hline Apr. 7 & \begin{tabular}{l}
Edward R. Flynn \\
Los Al amos Mational Laboratory \\
Los Alamos, New Mexico
\end{tabular} & Measurement of Magnetic Fields in the Hman Brain* \\
\hline Apr. 11 & Manuel Menendez University of Georgia Athens, Georgia & "Electron Dynamics mear the Line Joining Two Coulombic Centers" \\
\hline Apr. 14 & \begin{tabular}{l}
Avi Gover \\
Science Applications International Corporation, Mclean, Virginia
\end{tabular} & "High-Power Electrostatic Accelerator Free-Electron Lasers-Fusion and Other Applications" \\
\hline Apr. 28 & S. Rzman Division Staff Member & "Quantulumcunque-Concerning \(B(E 2)\) Values* \\
\hline Apr. 29 & Michael Thoennessen State University of Mew York Stony Brook, Mew York & "Giant Dtpole Gama-Fission Angular Correlation in Excited Heavy muclel" \\
\hline May 6 & \begin{tabular}{l}
Reinhold Mann \\
Engineering Physics and Mathemdtics Division, DRML
\end{tabular} & "Intelligent sensor Systems for Mobile Robots" \\
\hline May 12 & Ralph M. Moon, Jr. Solid State Division, ORML & "Scientific Opportunities with the Advanced Meutron Facility" \\
\hline
\end{tabular}

Date
Speaker
! 988
May 19 Rudi Malfliet
KYI, Gron ingen, The Metherlands
May 19
Samel \(h_{0}\) Aronson
Brookhaven Mational Laboratory Upton, Mew Yu:t

May 26 Timothy J. P. Ellis,in
Indiana University Cjclotron Facilit:, Bloopington, liodiana

June 1 Fred E. Bertrand Division Staff Member

June 2 Wichael Witschke
Laurence Berkeley Lavoratory Berikeley, California

June 9 Richard C. Durfee
Computing and Telecommuications Division. Martin Marie:t: tnergy Systems. Inc.

July 14 Dietrich Pelte
Universi:y of Heidelberg
Federal Republic of Germany
July 21 Volíker Metag
University of Giessen
Federal Reputiic of Gemany
Aug. 5 Thomas Weber
Institute for Mur.lear Physics Giessen, Federal Republic of Germany
aug. 9 R. F. Bishcp \(\quad\) University oi Manchester, England
Aug. 11 J. P. Coffin
Centre de Recherche Mucleaire Strasbourg. France

Aug. 18 Kumar Bhatt
Western Kentucky University Bowling Green, Kentucky

Aug. 25 Wolf D. Schmitt-Ott
: University of Gottingen
Federal Republic of Sermany
Sept. 7 Alan Harmon
Lawrence Berkeley laboratory
Berkeley, Californta
Sept. 15 David J. Pegg
Division Stâf Member and University of Tennessee

Sept. 29

Title

\author{
-girac-Brueckner Approach to Muclear Matter in Equilibrium and Monequilibrium" \\ "Experimental Status of the 5th Force" \\ "Status Report on the IUCF Cooler Ring" \\ "Heavy-Ion Excitation and Photon Cecay of Gfant Resonances" \\ "Beta-Delayed Proton Decay in the Lanthanide Region"
}

Geographic Information Systems Technology and Spatial Modeling"
"Investigations of Multifragmentation Processes in Heavy-Ion Collisions"
"hifgh-Energy Photons and Meutral mesons: Sensitive Probes of Reaction Dynamics in Heavy-Ion Collisions"

Recpat Results of the \(235,238 \mathrm{U}(\mathrm{e}, \mathrm{e}\) ' f\()\) Coincidence Experiments"
"Extended Coupled Cluster Theory: Quantum Many-Body Theory Made Classical \({ }^{\text {- }}\)
"Prompt and Delayed Charged-Particle Enission from Heavy-Ion Collísions Mear the Fermi Er.argr (\(\sim 27\) MeV per nucleon)"
"How and mere are Single Mords Processed in the Brain"
"Meutron-Rich lsotopes Produced in Fragmentation
Reactions at GAMIL"
"Observation of Constant Average Angular Momentum in
Subbarrier fusion"
"Photo Detachment of Magative lons"
"Why a Rotating mucleus Shrinks"

\title{
Workshop on the Proposal for a Matiomil Guma-Ray Detector Facility Oak Ridge, Tennessee, Movember 19-21, 1987
}
W. R. Johason, organizer

Lomputational Atomic and Nuclear Physics at One Gigaflop
Gak Ridge, Tennessee, April 14-16, 1988
J. B. Mctrory, M. R. Strayer, ani C. Bottcher, organizers

Horkshep on High-Energy Nuclear Collision Monte Cario Codes
Oat Ridge, Tennessee, September 12-23, 1988
S. P. Sorensen and T. C. Aves, organizers

\begin{tabular}{|c|c|c|c|}
\hline & E. D. Rebischer & 231. & Laboratory Records, ORM R.C. \\
\hline 2. & Y. A. Akovali & 23ic. & S. N. Lane \\
\hline 3. & G. D. Alton & 233. & M. R. Lay \\
\hline 4. & T. D. Anderson & 234. & 1. Y. Lee \\
\hline 5. & B. R. Appleten & 235. & A. B. Livingston \\
\hline 6. & R. L. Auble & 236 & A. L. Lotts \\
\hline 7. & T. C. Mres & 237. & C. A. Ludemann \\
\hline 8. & C. Baktash & 238. & C. H. Ma \\
\hline 9-170. & J. B. Ball & 239. & J. H. Mazek \\
\hline 171. & S. J. Ball & 240. & F. Matenschein \\
\hline 172. & C. F. Barnett & 241. & J. A. Martin \\
\hline 173. & R. L. Becker & 242. & H. J. Martin \\
\hline 174. & M. Beckerman & 243. & O. J. McBride \\
\hline 175. & J. R. Beene & 244. & J. M. MeConnell \\
\hline 176. & C. E. Benis, Jr. & 245. & F. K. DicGoman \\
\hline 177. & F. E. Bertrand & 246. & J. 8. McGrory \\
\hline 178. & J. A. Biggerstaff & 247. & G. S. Melielliy \\
\hline 179. & C. R. Binghan & 248. & P. E. Melroy \\
\hline 180. & Biology Library & 249. & J. R. Merriman \\
\hline 181. & C. Bottcher & 250. & F. W. Heyer \\
\hline 182. & H. R. Brashear & 251. & R. W. Wies \\
\hline 183. & H. Breinig & 252. & P. D. Miler \\
\hline 184. & J. Burgdorfer & 253. & W. T. Hiner \\
\hline 185. & H. K. Carter & 254. & O. 8. Morgan, Jr. \\
\hline 186-187. & Central Research Library & 255. & S. W. Mosko \\
\hline 188. & F. E. Close & 256. & F. R. Mynatt \\
\hline 189. & H. O. Cohn & 257. & F. E. Obenshain \\
\hline 190. & S. Datz & 258. & D. K. 01:en \\
\hline 191. & K. T. R. Davies & 259. & ORM - Y-12 Technical Library \\
\hline 192. & P. F. Dittner & & Document Reference Section \\
\hline 193. & D. T. Dowling & 260. & F. M. Ownty \\
\hline 194. & B. 6. Eads & 261. & R. W. Peelle \\
\hline 195. & S. B. Elston & 262. & D. J. Pegg \\
\hline 196. & F. P. Ervin & 263. & F. G. Perey \\
\hline 197. & R. L. Fe juson & 264. & R. A. Ptianeuf \\
\hline 198. & J. D. Garrett & 265. & H. B. Piper \\
\hline 199. & 1. C. Girit & 266. & Physics Division Library \\
\hline 200. & J. Comez del Campo & 267. & F. Plasil \\
\hline 201. & J. H. Greene & 268. & H. Postan \\
\hline 202. & D. C. Gregory & 269. & M. L. Poutsma \\
\hline 203. & E. E. Gross & 2i1. & S. Reman \\
\hline 204. & M. W. Guidry & 271. & D. E. Reichle \\
\hline 205. & E. C. Halbert & 272. & C. R. Richmond \\
\hline 31. & M. L. Halbert & 273. & L. L. Riedinger \\
\hline 207. & J. A. Marvey & 274. & R. L. Robinson \\
\hline 208. & C. C. Havener & 275. & \(M_{0} W_{0}\). Rosenthal \\
\hline 209. & D. L. Haynes & 276. & T. M. Rosseel \\
\hline 210. & J. R. Heath & 271. & T. H. Row \\
\hline 211. & J. M. Helton & 278. & L. J. Saddia \\
\hline 212. & D. C. Hens ley & 279. & G. R. Satchler \\
\hline 213. & J. R. Hightower & 280. & M. R. Schanrak \\
\hline 214. & D. J. Horen & 281. & 1. A. Sellin \\
\hline 215. & H. T. Hunter & 282. & P. B. Semmes \\
\hline 216. & D. P. Hutchinson & 283. & U. Shapira \\
\hline 217. & C. H. Johnson & 284. & J. Sheffield \\
\hline 218. & J. W. Johnson & 285. & W. D. Shults \\
\hline 219. & W. R. Johnson & 286. & W. D. Siemens \\
\hline 220. & C. M. Jones & 287. & T. P. Sjoreen \\
\hline 221. & M. L. Jones & 288. & S. P. Sorensen \\
\hline 222. & R. C. Juras & 289. & P. H. Stelson \\
\hline 223. & S. V. Kaye & 240. & J. O. Stiegler \\
\hline 224. & H. J. Ktm & 291. & M. R. Strayer \\
\hline 225. & M. I. Kirkpatrick & 292. & A. S. Tate \\
\hline 226. & C. H. Krause & 293. & B, A. Tatum \\
\hline 227. & H. F. Krause & 294. & J. K. Thacker \\
\hline 228. & E. H. Krieg, Jr. & 295. & K. S. Toth \\
\hline 229-230. & Laboratory Records Department & 296. & A. W. Trivelpiece \\
\hline
\end{tabular}

\section*{EXTERMAL DISTRIBUTION}
311. J. M. Alexander. Departaent of Physics, SUMY at Stony Brook, Stony Brook WY 11794 B. J. Allen, Physics Division. Australian Atomic Energy Comission, Sutherland, M.S.M., Australia
313. J. U. Andersen, Institute of Physics, Aarhus University, DK-8000, Aarhus C, Denark
314. Sakir Ayik, Tennessee Technological Lniversity, Physics Department, Cookeville, TM 38505
315. A. B. Balantekin, Department of Physics, University of Misconsin. 1150 University Avenue, Madison, WI 5370.
316. Charles A. Barnes, Division of Physics and Astronomy, California Institute of Technclogy, Pasadena, CA 91125
317. 6. A. Bastin. Centre de Spectrometrie Mucleaime et de Spectrometrie de Masse. B. P. 104, 91406 Orsay, France
318. Bates Linear Accelerator, P. O. Box 95, Middleton, Mi 01949
319. H. Behrens. Zentralstelle fur Atomkernenergie-Dokumentation. Kernforschungszentrum Karisruhe 7514. Eggenstein-Leopoldshafen-2. Federal Republic of Germany
321. Ingnar Bergstrom, Wojel Institute of Physics, Stockhola 50, Sweden
321. B. L. Berman, Department of Physics, The George Mashington University, Mashington, DC 20052
322. Bibliotheque - Madame Belle, Universite de Grenoile, Institut des Sciences Mucleaires. 53, rue des Martyrs, 8. P. 21, 38 Grenoble. France
323. J. P. Blaser, Paul Scherrer Institute (PSI). CH-5234 Yilligen, Switzerland
324. P. Blasi, Universita di Fierenza, Largo E. Fenmi 2, 50125 Fierenza, Italy
325. S. D. Bloom, University of California, Lawrence Livermore Pationil Laboratory. P. 0. Box 808. Livermore, CA 94550
326. H. G. Blosser, Cyclotron Laboratory, Michigan State University, East Lansing, M: 48824
327. R. Bock, Gesellschaft for Schwerionenforschung, Postfach 110541,6100 Darmstadt. West Germany
328. H. Bohn, Physik-Department E12, Technische Universitat, 8046 Garching bei Munchen, Federal Republic of Cermany
329. A. Bohr, Copenhagen University, Hels Bohr Institute, Blegdamsvej 17, Copenhagen, Denamp
330. Peter Braun Hunzinger. Department of Physics, SUWY at Stony Brook, Stony Brook, WY 11794
331. L. B. Bridwell, Office of the Presideat, S.M. Missouri State University, gol South Mational, Springfield, MD 65804
332. J. S. Briggs, Theoretical Physics Division, Atomic Enprgy Research Estabiishment, Hamell. Didcot, Oxfordshire OX 11 0RA, England
333. J. A. Brink, Library Division. The Merensky Institute of Physics, University of Stellenbosch, Stellenbosch, Republic of South Africa
334. H. C. Britt, Lawrence Livermore Laboratory. P. O. Box 808, Livermore, CA 94550
335. Ricardo Americo Broglia, Miels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O, Denmark
336. D. A. Bromley, Nuclear Structure Laboratory, Yale University, New Maven, CT 06520
337. Peter Anthony Butler, University of Liverpool. P. O. Box 147. Liverpool L69 3x, United Kingdom
338. T. A. Cahill. Director. Crocker muclear Laboratory, University of California. Davis, CA 95616
339. R. Caplar, Ruder Coskovic lnstítute, Bijenicka 54, 41001 Zagreb, Croatia, Yugoslavia
340. Jose L. S. Carvalho, Instituto de Radioprotecao eosimetria, C. M.E. W., Av. das Americas km 11.5 Barra de Tijuca - R. J., 22700 - Rio de Janeiro, R. J. Brazil
341. Yong Shou Chen, Institute of Atomic Energy, Academia Sinica. P. J. Box 275, Beijing, China
342. F. E. Chukreev, Kurchatov Institute of Atomic Energy, Kurchatov Square, 123 182 Moscow, USSR
343. N. Cindro, Ruder Boskovic Institute, Bijenicka 54, 41001 Zagreb, Yugosiavia
344. David Clark, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
345. Douglas Cline, Ruclear Structure Rasearch Laboratory, University of Rochester, Rochester, NY 14627
346. J. D. Cole, EGRG Idsho, Inc., TRA 652, Jdaho Falls, ID 83415
347. University of Colorado, Department of Physics, Boulder. CO 80309
348. D. H. Crandall. Branch Chief for Experimental Research, Applied Plasma Physics Division, Office of Fusion Energy. Ex 542, G-226, GTM, U.S. Departiment of Energy, Washington, DC 20545
349. F. L. Culler, Office of the President, Electric Power Research Institute, P. 0. Box 10412, 3412 Hillview Avenue, Palo Alto, CA 94303
350. R. E. Culp, Martin Marietta Denver Merospace, P.0. Box 179. M/S P0540, Denver, CO 80201
351. T. J. Curtin, Director, Office of Research and Grants Administration, Texas Momen's University, Box 22939, NU Station, Denton, TX 76204
352. R. Y. Cusson, Physics Department, Duke iniversity, Durham, IC 21706
353. Cyclotron Library, Inciam University Cyclotren Facility, 2401 Milo 8. Smpson Lane. 8100mington, IM 47405
354. B. A. Dahling, Lamrence Livermore Mational Laboratory, University of California, Livermore, CA 94550
355. Solange de Barros, Head, Department of Muclear Physics, Universidade Federal do Rio de Janeiro, Instituto de Fisica - Department Fisica Muclear, Centro de Technologia - Bloco A, Ilha do Fundao - Rio de Janeiro, Brasil
356. Adriano de Lima, Physics Laboratory, University of Coimbra, Coimbra, ‥tugal
357. Claude Detraz, Director, GAMIL, B. P. 5027, 14021 Caen Cedex, Fiance
358. R. M. Oiamond, Chemistry Division, Laurence Berkeley Laboratory, Berkeley, CA 94720
359. Olacio Dietzsch, Depto. de Fisica Experimental. Instituto de Fisica, Universidade de Sao Paulo, Cx. Postal 20516, Sso Paulo, S.P., Brazil
360. J. L. Ouggan, Department of Physics, Morth Texas State University, Denton, TX 76203
361. K. A. Ert, Mational Science Foundation, Ray. 341, 1800 G Street M, Mashington, \(\mathbb{X C} 20550\)
362. John R. Erskine, U.S. Department of Energy, Division of luclear Physics, ER-23, GTM. Mashington. DC 20545
363. U. Facchini, Phy:ics Department, University of Milan, Via Salidini 50, Milan, Italy
364. Amand Faessler, Institut fur Theoretische Physik, Universitat Tubingen, Auf der Morgensicelle 14. D-1400 Tubingen, West Cermany
365. D. H. Feng, Department of Physics, Drexel University, Philadelphia, PA 19104
366. M. P. Fevell, Australian mational university, Canberra, 2600 Aust ralia
367. R. W. Fink. School of Chemistry, Georgia Institute of Tachnology, Atlanta, 6A 30332
368. 6. M. Fleror, Laboratory for Muclear Reactions, Dubne Joint Institute for Muclear Research. Dubna, Moscow Oblast. U.S.S.R.
369. J. S. Forster, Muclear Physics Branch. Atomic Energy of Canada Limited, Chalk River Muclear Laboratories, Chalk River, Ontario, Camada kOJ 1,10
370. J. D. Fox, Department of Physics, Florida State University, Tallahassee, FL 32306
371. I. M. Frank, Laboratory for Muclear Reactions, Dubna Joint Institute for muclear Research, Dubna, Moscow Oblast. U.S.S.R.
372. Claus-Konrad Gelbke, Mational Superconducting Cyclotron Laboratory, wichigan State University, East Lansing, MI 48824
373-382. GLCA-ORS, Attention: R. R. Winters, Denison University, Granville, OH 43023
383. Alan Goodman, Department of Physics. Tulane University, Mew Orleans, La 70118
384. Harvey A. Could, Lawrence Berkeley Laboratory, I Cyclotron Blvd., Berkeley, CA 94720
385. H. E. Gove. muclear Structure Laboratory, University of Rochester, Bldg. Sion, Rochester, WY 14627
386. Malter Greiner, Institut fur Theoretische Physik der Universitat frankfurt Main, Robert MayerStrasse 8-10, West Germany
387. H. Grunder, Continuous Electron Beam Accelerator Facility (CEBAF), 12070 jefferson Avenue, Mewport hews, va 23606
388. M. Grypeos, University of Thessaloniki, Department of Theoretical Physics, Thessaloniki. Greece
389. H. H. Gutbrod, Gesellschaft for Schwerionenforschung, Dostfach 110541,6100 oarmstadt 1 , Mest Germiny
390. J. H. Mamilton, Department of Physics, Vanderbilt University, Mashville, TM 37203
391. 01e Hansen, Brookhaven Mational Laboratory, Bldg. 901A, Upton, WY 19973
392. J. S. Hettula, Department of Physics, Iniversity of Jyvaskyla, Seminaarinkatu 15, SF-40100 Jyvaskyla 10, Finland
393. R. L. Heath, Idaho Mational Engineering Laboratory, E6sG Idaho, Inc., P. O. Box 1625, Idaho falls. 1083401
394. David L. Hendrie, Director, Division of Muclear Physics, ER 23, Mail Station J-309, U.S. Department of Energy, Mashington, OC 20545
395. Ronald Henry, Oepartment of Physics and Astronomy, Lovisiana State iniversity, 202 Micholson hall, Baton Rouge, La 70803-4001
396. Bent Herskind, Wiels Bohr Institute, Riso, OK-4000 Roskilde, Denaark
397. Rainer Hippler, Universitat Bielefeld. Fakultat fur Physik, University of Bielefeld. Postfach 8640, 4800 Bielefeld 1, West Germany
398. Harry D. Holmgren, Department of Physics, University of Maryland, College Park, MD 20742.
399. J. R. Hyizenga, Department of Physics and Astronomy, University of Rochester, Rochester. NY 14627
400. P. Hvelplund, Institute of Physics, Aarhus University, DK-8000, Aarhus C, Denmark
401. H. R. Mck. Hyder, Muclear Physics Laboratory, Oxford Untversity, Keble Road, Oxford OxI 3RH, England
402. W. V. Hynes, Department of Physics, Los Alamos Mational Laboratory, University of California, Los Al amos. Mr 97545
403. Francesco Lachello, Yale University, Department of Physics, Kaw Haven, CT 06520
404. University of 111 inois at Urbana-Champaign, Department of Physics, Urbana. IL 61801
405. Institute for Energy Analysis. P. O. Box 117, Oak Ridge. TK 37830
406. Institute of Physics, High Energy and Muclear Physics Library, C. Postal 20.516,0100-SaO Paulo, S.P., Brasil
40;. 1. Iori, Istituto di science Fisiche, Aldo Pontromoli, Via Celoria 16, 20133 Milano, Italy
408. Iow State University, Department of Fhysics, mes, IA 50011
409. J. M. Irvine, Department of Physics, University of Manchester, Oxford Rd., G8-Manrhester N13 9 PL . United Kingdom
410. Beth Jinkerson, 00Au/UPO, Oak Ridge. Tm 37831-0117
411. R. C. Johnson, University of Surrey, Guildford, Surrey \(0 \mathbf{V} 2 \mathbf{5 X H}\), Linited Kingdom
412. R. Kimermans. Fysisch Laboratorius. Rijksuniversiteit Utrecht, P. O. 80x 80.000, 3508 TA UTRECHT, The metherlands
413. H. Kamitsubo, Head, Cyclotron Laboratory, Institute of Physical and Chemical Research. Hako-shi, Saitime, 351 Japan
414. D. 6. Kanke, 2uhr-Universitat Bochum, Dynamitrun Tandem Laboratory, Universitatsstr., 150 Gibaunde MT, Postfach 1021 48, 4360 Boctua 1, Federal Republic of Germany
415. University of Ransas, Department of Physics, Lawrence, KS 66045
416. Morihisa Kato, Department of Physics, Kyushu University, 33 Fukuoka, 81?, Japan
417. H. Kawakani, Institute for Muclear Study, University of Tokyo, midori-cho, Tokyo, Japan
418. J. O. Kephart, Department of Electrical Engineering, Stanford University, Stanford, CA 94305
419. 8. D. Kern, Department of Physics Astronomy, University of Kentucky, Lexington, KY 40506
420. Une Keyser, Institut F. Wetallphysik und Hukleare, Festkoerperphysik Techn.-Universitaet, 03300 Braunschmeig, mendelssohnstr. 3, Federal Republic of Germany
421. R. K. Klein, Department of Electrical Engineering, Stanford University, Stanford, Ca 94305
422. P. K. Kloeppel, Continuous Electron Eam Accelerator Facility, 12070 Lefferson Avenue, Mewport Hews, VA 23606
423. H. Knudsen, Institute of Physics, Aarhus University, DK-8000, Marhus C, Denmark
424. Steven E. Koonin, Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125
425. M. O. Kortelehti, Physics Department, University of Jyvaskyla, Seminaarink 15, 40100 Jyvaskeyla, Finland
426. K. S. Krane, Department of Physics, Oregon State University, Corvallis, OR 97331-6507
427. B. Krishnarajulu, Department of Physics, Gulbarga University, Gulbarga 585106, India
428. Thomas J. Kvale, Department of Physics \& Astronomy, University of Toledo, Toledo, OH 43606
429. Michel Letournel, Centre de Recherches Mucleaires, Service des Accelerateurs, B. P. 20 CRO, 67037 Strasbourg Cedex, france
430. Librarian, Atomic Energy Centre, P. O. Box Mo. 164, Rama, iacca, Bangladesh
431. Librarian, Chen kin-hai, institute of Modern Physics, Acadeaia Sinica, P. O. Box 31, Lanzhou, People's Republic of China
432. Librarian, Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824
433. Librarian, Cyclotron Laboratory, RIKEN (The Institute of Physical and Chemical Research). Mako-shi. Saitame 351, Japan
434. Librarian, Department of Physics, Georgia State University, Atlanta, GA 30303
435. Librarian, Fermi Mational Accelerator Lab., P.0. Box 500, Batavia, il 60510
436. Librarian, GAMIL, 8. P. Mo. 5027, 14004 Caen Cedex, France
437. Librarian, GSI, Postfach 110541,6100 Darmstadt, Federal Republic of Germany
438. Librarian, Institut des Sciences mucleaires, B. P. No. 257 - Centre de Tri, 38044 Grenodie Cedex, france
439. Librarian, institute of Huclear Research of the Hungarian Academy of Sciences, P.0. Box 51, Debrecen. H-4001 Hungary
440. Librarian, MERT Division Library, Oak Ridge Associated Universities, P. O. Box 117, Oak Ridge, TN 37831-0117
441. Librarian, Muclear Physics Group, Department of Physics, Schuster Laboratory, The University, Manchester, M13 9PL, Linited Kingdom
442. Librarian, muclear Physics Group. Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
443. Librarian, Muclear Physics Lab, University of Oxford, 1 Keble Rd., Oxford \(0 \times 133 \mathrm{H}\), United Kingdom
444. Librarian, Physics Department, 314 Bausch and Lomb Building, University of Rochester, Rochester, WY 14627
44 Librarian, Universidade de Sao Paulo, Instituto de fisica - Biblioteca Depto fisica muclear, Caixa Postal, 20516 - 01498 - Sa Paulo, Brasil
446. Liorary of the Institute of Atomic Energy, Beijing, People's Republic of China
447. Rainer M. Lleder, Institut fur Kernphysik, Postfach 1913, 5170 Julich, West Germany
448. J. S. Lilley, Daresbury Laboratory, GB-Warrington WA4 \(4 A D\) Chesnire, England
449. J. C. Lisle, Dept. of Physics, Schuster Laboratory, Manchestar Uilivirsity, Manchester mI 39 M13 9 PL, United Kingoom
450. H. Lizurej, Jagellonian University, Institute of Physics, Reymonta 4, \(30-059 \mathrm{krakow}\) 16, Poland
451. Tom Lonnroth, Department of Physics, Abo Akademi, Porthansgatan 3, SF-20500 Turku, Finland
452. Malcolm Macfarlane, Cepartment of Physics, indiana University, Blovaington, IM 47405
453. A. D. Mackellar, Department of Physics and Astronomy, University of kentucky, Lexington. KY 40506-0055
454. G. Madurga, Departame:-O de fisica Atomica y Muclear, Facultad de Ciencias, Universidad de Sevilla, Sevilla, Spa:n
455. Claude Charles Mahaux. Institut de Physique 85 Universite de Liege, Sait Tilman, B-4000 Liege 1. Belgium
456. Rooert S. Marianelli, Division of Chemical Sciences, office of Basic Energy Sciences, U.S. Department of Energy, Mail Station G-334, GTN, Hashington, OC 20545
457. Mario Mariscotti. Comision Macional de Energia Atomica, Departmento de Fisica, Avenida del Libertador 8250, 1429 Suenos Aires, Argentina
458. Miels Marquardt, Universitat Dortmund Lehrstuhl fur Beschleunigerphysik, P.O. Box 500500 , D-4600 Dortmund 50 , West Germany
459. J. V. Martinez. Division of Chemical Sciences, Mail Stop J309 GTM, U.S. Department of Energy, washington, © 20545
460. Floyd D. McDaniel, Department of Physics, Morth Texas State University. Denton, TX 76203
461. W. R. McMurray, Denuty Chief Srientist, Kerninstituut Van Die Suidelik. Jniversiteite, Southern Uriversities Muclear Institute, Republic of South Africa
462. 6. K. Mehta, Professor of Physics, Van de sraaff Laboratory, Indian Institute of Technology Kanpur, Kanpur 208 016, India
463. Eugen Merzbacher, University of Morth Carolina, Department of Physics and Astronomy, Chapel Hill, WC 27514
464. R. J. Meyer, Muclear Physics Department, Fysisch Laboratorium Rijksuniversiteit, P. O. Box 80 000, 3508 TA Utrecht, The Metherlands
465. R. Middleton, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
465. E. Wigneco. IMFN Laboratcrio Mazionale del Sud, Corso Italia 57, 95121 Catania, Italy
467. Alice C. Mignerey, Department of Chemistry, University of Maryland, College Park, mo 20742
468. J. C. D. Milton, Physics Division, Atomic Energy of Canada Ltd., Chalk River, Canada k0J ljo
469. University of Winnesota, Mysics Department, 116 Church Street \(S W\), Minneapolis, MN 5,455
470. C. D. Moak, 332 Louisiana Avenue, Oak Ridge, TM 37830

472. U. Mosel, Institut fur Theoretische Pysik, Universitat Giessen, 6300 Giessen, West Germany
473. Brian W. Moudry, c/o Ms. helene Perry, Department of Physics, Loyola College, Baltimore. MD 21210
474. S. C. Mukherjee, Litrarian, Saha Institute of Muclear Physics, 92, Acharya Prafulla Chandra Road, Calcutta - 9, India
475. Shoji Magamiya, Department of Physics, Columbia Univerrity, Mew York, MY 10027
476. H. A. Magarajan. Daresbury Laboratory, G8-Warrington WAA AMD Cheshire, England
471. Y. Makamura, JPL, Systems Analysis Section, California Institute of Technology, 4800 0ak Grove Drive, Pasadena, CA 91103
478. Witek Mazarewicz, Institute of Physics, Puiitechnika Marszawska ul. Koszykowa 75, PL-00662 Marszawa, Poland
479. John H. Meiler, 853 Mest Outer Drive, Oak Ridge, TN 37830
480. Mebojsa Meskovic, Boris Kidric Institute of Muclear Science - Vinca, Institute for Research in Physics, P.O. Box 522, 11001 Beograd - Yugoslavia
481. John Mewton, Dept. of Muclear Physics, The Australian Mational University, P. O. Box 4, Canberra ACT 2600, Australia
482. Ray Mix, Muclear Theory, T-9, MS 8279, Los Alamos Mational Laboratory, Los Alamos, M 87545
483. Ranier W. Movotny, II. Phystkalisches Institut, Justus-Liebig Universitat, Heinrich-Buff-Ring 16, 6300 Giessen, Hest Germany
484-568. Oak Ridge Associated Universities, Office of Information Services, P. O. Box 117, Oak Ridge, TM 37831-0117
569. Office of Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations Office, Oak Ridge, TM 37830
570. Yuko Okamoto, Particle Theory Group, Department of Physics, Mara Momen's University, Mara-shi 630, Japan
571. Masumi Oshima, Japan Atomic Energy Research Institute, Tokai Establishment, Tokai-mura, Naka-gun, lbaraki-ken 319-11, Japan
572. Ingvar Otterlund, Division of Cosinic and Subatomic Physics, university of Lund, Solvegatan 14, S-233 62 Lund, Sweden
573. R. H. Pantell, Department of Electrical Engineering, Stanford University, Standford, CA 94305
574. H. Park, Department of Electrical Engineering, Stanford University, Stanford, CA 94305
575. Peter Paul, Department of Physics, S.U.M.Y. at Stony Brook, Stony Brook, NY 11794
516. Max Peisach, Southern Universities Muclear Institute, P. O. Box 17, Faure, 7131, Republic of South Africa
571. A. A. Pilt, Tandem Accelerator Laboratory, Mcmaster University, Hamilton, Ontario, Canada 1854 Kl
578. University of Pittsburgh, Department of Physics, Dittsburgh, PA 15260
579. J. G. Pochodzalla, Gessellschaft fur Schwerionenforschung, Postfach 1l 0, 4l, Dermstadt 1. Hest Germany
580. R. E. Pollock, Departeent of Physics, Indiand University, Bloomington, IN 47405
581. A. M. Poskanzer. Muclear Science Diyision, Lawrence Berkeley Laboratory, Berkeley, CA 94720
582. Helmut Poth, C.E.R.N., European Laboratory for Particle Physics. CH-1211. Geneva 23, Switzerland
583. F. Pougheon, Institut de Physique Mucleaire, B.P. No. 1, 91406 Orsay, France
584. B. Povh, Max Planck Institut fur Kernphysik, 69 Heidelberg, Saupfercheckweg, Postfach 124B, Federal Republic of Germany
585. James Purcell. Department of Physics, Georgia State University, Atlanta, 6A 30303
586. A. V. Ramaya, Department of Physics, Vanderbilt University, Mashville, TM 37203
587. Jacobo Rapaport, Department of Physics, Onio University, Athens, OH 45701-0640
588. John Rasmussen, Lawrence Berkeley Laboratory, Building 70A, Berkeley, CA 94720
589. Patrick Richard, Physics Department, Kansas State University Yanhattan, KS 66500
590. Shela Robinson, Department of Physics \& Astronomy, Western Kentucky University, Bowling Green, KY 42101
591. L. Rosen, Los Alamos Mational Laboratory, P. O. Box 1663, Los Alamos, M 87544
592. Ranier Santo, Sektion Physik der Universitat Munchen, 8046 Garching, Beschleuigerlaboratorium (Forschungsgelande). Federal Republic of Germany
593. D. G. Sarantites, Department of Chemistry, Mashington University, St. Louis, mo 63130
594. V. Sarantseva, Head, Publishing Department, Joint Institute for Muclear Research, Head Post Office, P. O. Box 79, Hoscow, U.S.S.R.
595. J. P. Schiffer, Physics Division, Argonne Mational Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
596. K. D. Schilling, Zentralinstitut fur Kernforschung, Rossendorf, Bereich 2, D0R-805I Dresden, Democratic Republic of Germany
597. Hermann Schweickert, Cyclotron Laboratory, Kernforschungszentrum Karlsruhe. Institut fur Applied Physik. P. 0. 80x 3640, D-7500 Karlsruhe 1, Federal Republic of Germany
598. David K. Scott, Mational Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824
599. S. Seki. Tandem Accelerator Center, University of Tsukuba, IDaraki 305, Japan
600. J.P.F. Sellschop, Department of Physics, University of Witwatersrand, Johannesburg, South Africa
601. M. H. Sergolle, Director. Institut de Physique Mucleaire - Orsay . B.P. Mo 1. 91406 Orsay Cedex. France
602. J. C. C. Sharp, Information Officer, Daresbury Laboratory, Science Research Council, Daresbury, Warrington MA4 4AD. England
603. J. F. Sharpey-Schafer, Oliver Lodge Laboratory. The University. P. 0. Box 147, Liverpool, L69 38x, Unfted Kingdom
604. N. Shikazono, Division of Physics, Japan Atomic Energy Research Institute, Tokai Research Institute, Postal Area Mmber 319-11. Tokai-mura, Maka-gun, Ibaraki-ken, Japan
605. R. H. Siemssen, Xernfysisch Versneller Instituit der Rijksuniversiteit Zernikelaan 25, 9747 M Groningen, The Metherlands
606. C. Signorini, IMFM Laboratorio Mazionale di Legnaro, Via Romea 4, 35020 Legnaro-Padova, Italy
607. Raghuvir Singh, Horth Eastern Hill University, Departaent of Physics, Laituakhrah, Shillong-793003, India
608. S. J. Skorka. Tandem Accelerator Laboratory, University of Munich, Munich. Federal Republic of Germany
609. Carl Sofield, Muclear Physics Division, Bldg. 477, AERE Harwell, Oxfordshire OX ll ORA, England
610. Hsu Loke S.0, Department of Physics, Manyang University, Singapore 22, Republic of Singapore
611. C. Speth. Institut fur Kernphysik, KFA, Julich, Postfach 1913, D-5170 Julich, Federal Republic of Germany
612. T. Springer, Institut fur Festkorperforschung der kFA Julich Gmbli, Postfach 1913, D-5170 Julich 1, Federal Republic of Germany
613. Stanford University. Department of Physics, Stanford, CA \(\mathbf{9 4 3 0 5}\)
614. Stephen G. Steadman, Massachusets Institute of Technology. Room 26-411, Cambridge, MA 02139
615. Alberto Stefanini. Instituto Mazionale di fisica mucleare, Laboratori Mazionali di Legnaro, 35020 Legnaro (Padova), Italy
616. Donald K. Stevens, Office of Basic Energy Sciences, U.S. Department of Energy. Mail Station J-304, GTH, washington, \(O C 20545\)
617. R. G. Stokstad, Lawrence Berkeley Labordtory, Bldg. B8, Berkeley, CA 94120
618. N. Stolterfoht. Hahn-Meitner-Institut fur Kernforschung Berlin GmbH, Bereich Kern - und Strahlenphysik. D-1000 Berlin 39, West Germany
619. Kazusuke Sugiyama, Department of Nuclear Engineering. Faculty of Engineering, Tohoku University, Sendai, Japan
620. J. K. Smenson, Department of Physics, Iniversity or Morth Carolind, Chapel Hill, NC 27514
621. T. J. Symons, Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley. CA 94720
622. Shigyea Tanaka, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, Japan
623. Hiroyuki Tawara, Institute of Plasma Physics, Magoya University, Chikusa-ku Magoya 464, Japan
624. Lee C. Teng, Fermi Mational Accelerator Laboratory, Accelerator Division, P. 0. box 500 , Batavia, IL 60510
625. The High Energy Group, Institute of Physics, Academia Sinica, Mankang, Taipei, Taiwan, ROC
626. Mauro Donizette Tonasse. Faculdades Integradad de Uberaba, Avenica Afranio de Azevedo no. 115. UBERABA - MG - Brazil
627. P. J. Twin, Daresbury Murlear Physics Laboratory, Daresbury, Mr. Harrington, Lancashire, England
628. J. P. Unik, Argonne Mational Laboratory, Building 200, Argonne, IL 60439
629. Robert Vandenbosch, Department of Chemistry, University of Hashington, Seattle, wa 98195
630. A. van der Houde, Kernfysisch Versneller Institut der Rijksuniversiteit, Universiteitscamplex Paddepoel, Groningen, The Metherlands
631. H. Verheul, Matuurkundig Laboratorium der Vrije Universiteit de Boelelaan 1081, Amsterdan. The Metherlands
632. VICKSI, Sekretariat, Hahn-Meitner Institut fur Kernforschung Berlin embH, Pastfach 390128. D-1000 Berlin 39, Federal Republic of Germany
633. Virginia Polytechnic Institute and State University, Department of Physics, Blacksburg, yA 24061
634. A. J. A. Virtanen, Department of Physics, University of Jyvaskyla, Seminaarinkatu 15, SF-40100 Jyvaskyla, Finland
635. W. von Dertzen, Hahn-Heitner Institut fur kernforschung, Berlin embi, Federal Republic of Germany
636. George Vourvopoulos, Department of Physics, western Kentucky University, Bowling Green, KY 42101
637. Thoms A. Malkiewicz, Edinboro University, Department of Chemistry \& Physics. P. O. Box 589, Hetsell Ridge Road, Edinboro, PA 16412
638. A. H. Mapstra, Institute Yoor Kernphysisch Onderzoek, Doster Ringdijk 18, Amsterdam, The Metherlands
639. David Mard, Muclear Physics Branch, Chalk River Muclear Laboratories, Mntario, Canada kOJ l.JO
640. Harlan L. Matson, Deputy Staff Director, Subcomittee on Energy Development and Applications, Comaittee on Science and Technology. U.S. House of Representatives, 8374 Rayburn House Office Building, Mashington, DC 20515
641. H. E. Wegner, Department of Physics, 901A, Brookhaven Mational Laboratory, Upton, MY 11973
642. D. C. Weisser, Department of muclear Physics, Institute of Advanced Studies, The Australian Mational University, P. O. Box 4, Canberra ACT 2600, Australia
643. W. G. Weitkamp, Muclear Physics Laboratory, G-10, University of Washington, Seattle, wa 98195
644. Robert A. Weller, Jr., Department of Physics, Yale University, Mew Haven. CT 06511
645. Joseph Meneser, Department of Physics, Bldg. 510, Brookhaven Mational Laboratory, Upton, MY 11973
646. E. P. Wigner, Department of Physics, Princeton University, Princeton, WU 08540
647. B. H. Wildenthal, Department of Physics \& Astronomy, University of Hew Mexico, 800 Yale ME, Albuquerque, mir 87131
648. University of Wisconsin, Department of Physics, Madison, WI 53706
649. J. L. Hood, School of Chemistry, Georgid Institute of Technology, Atianta, \(6 A 30332\)
650. Alexander xenoulis, Van de Graaff Laboratory, muclear Research Center, Demokridos, Aghia Paraskevi Attikis, Athens, Greece
651. Takashi ramazaki, Research Center for muclear Physics, Osaka University (Suita Campus), Ibaraki, Osaka, 567 Japan
652. Yasunori Yamazaki, Research Laboratory for Muclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
653. Fujia Yang, Director, Institute of Modern Physics, Fudan University, Shanghai, People's Republic of China
654. D. Youngblood, Cyclotron Institute, Texas R\&M University, College Station, ix 71940
655. E. F. Zganjar, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
656. K. Ziegler, Hahn-Meitner Institut fur Kernforschung Berlin GmbH, Postfach \(390128,0-1000\) Berlin 39, Federal Republic of Germany
657-717. Given distribution as shown in DOE/TIC-4500 under UC-4IO - General Physics.```

[^0]: 1. Manufactured by Caranville-Phillips Co. Boulder. Colorado.
[^1]: 1. Summary of opaper submitted for publication in Huclear instruments and Methods in Physics Rescarch.
 ?. Instrumentation and Controis Division. ORNL.
[^2]:
 oldate: somere: Cylindrical pamatry imizer.

[^3]: 1. V. Rerant, private communication.
 ?. r_{2}. $r_{\text {. Alton, Nurl. Ins:r. and Metn. A244 }}$ (1396) 1??.
 ?. r_{1}. i. Alton and f. 7. Mills, liff rans. Nucl. © © C1. WS-32 (5) 198,5) 15?
 Mill: Dhyiles nivision progress epporte

[^4]: 1. Summary of paper submitted to Physical Review C.
 2. Consultant from University of Liège, Liège, Belgium.
[^5]: 1. Abstract of published paper: Phys. Rev. Lett. 60, 2603 (1988).
 2. Iniversita di Milano and lstituto Nazioncle di Fisica Mucleare, 1-20133 Milano. lealy.
 3. Institut de Physique Nucleaire, F-91406 Orsay Cedex, france.
 4. Centro Seusi Nurleari Enrico Fermi. Politecnico al Milano. 1-20133 Milano, Italy.
[^6]: 1. Abstract of published paper: Phys. Lett. B209, 182 (1988).
 2. Centre d'Etudes Mucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France.
 3. Grand Accelerateur National d'Ions Lourds. 14021 Caen Cedex, France.
 4. Centre de Recherches Nucleaires, 67037 Strasbourg Cedex, France.
[^7]: l. Grand Accelerateur National d'tons

 Lourds, 14021 Caen Cedex, France.
 2. Centre c'Etudes Hucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France.
 3. J. Speth et al.. Phys. Rev. C 31, 230 (1985).
 4. J. R. Beene et al., submitt:t iu rnysical Review C.
 5. P. F. Bortignon, R. A. Broglia, and G. F. Bertsch, Phys. Lett. 1488, 20 (1984).
 6. M. Magao, Y. Yorizukd. Phys. Rev. 302, 1068 (1973).
 7. R. Pi:than, F. R. Buskirk, E. B. Dally, J. N. Dyer. and X. X. Maruyama. Phys. Rev. Lett. 33, 849 (1974); erratum, Phys. Rev. Lett. 34, 848 (1975).
 8. T. Murekami, I. Halpern, D. W. Storm, P. T. Debevec, L. J. Morford, S. A. Wender, and D. H. Dowell, Phys. Rev. C 35, 479 (1987).
 9. P. F. Bortignon, private commanication.

[^8]: 1. Joint Institute for Heavy Ion Resedrch and instituto A : ionale difisica mucleare, Napoli. Ital;
 2. Partial support from the Joint institute for Heavy Ion Research. ORNL.
 3. Dak Ridge Science and Engineeriny Research Semester Participant from Hendrix College. Conway, AK 12032.
[^9]: 4. loid. p. 65.
 5. In1d.. p. 63.
 6. J. Raynal, private communication.
 7. D. L. Henarie, Phys. Rev. Lett. 31, 4/s (1973).
[^10]: 1. Abstract of published paper: Murl. Phys. A484. 432 (1988).
 2. TRlIMMF, Vancouver, British Columbia, C.andrd VGT 2A3.
 3. Partial support from Joint Institute for Heavy ion Resparch, ORNI.
[^11]: IMo uncertainties were given in the references listed in F-i. 11 , so a reasonable value of 10% uncertainty was applied,

[^12]: 1. Abstract of published paper: Phys. Rev. C 37, 2408 (1988).
 2. Partial support from joint institute for Heavy Ion Research. ORNL.
 3. Engineering Physics and Mathematics Division, ORNL.
 4. Iniversity of Oregon, Eugene, Or $9 / 403$.
 5. Oregon State Iniversity, Corvallis, OR 71331.
[^13]: 1. Partial support from the Joint Institute for Heavy Ion Research, ORNL.
 2. M. A. Franey, W. G. Love, Phys. Rev. C 31. 488 (1985); W. G. Love and M. A. Franey, Phys. Rev. C 24. 1073 (1981); Phys. Rev. C 27. 438(E) (1983).
 3. "Scattering Analysis Interactive Dial In," Phase shift code of Rcper and Arndt.
 4. H. V. von Geramb. The Interaction Between Hedium Energy Hucleons in Auclei - 1982, AIP Conference Proceedings, No. 97. P. 44.
 5. K. Makayama, H. G. Love, Phys. Rev. C 38, 51 (1988).
 6. C. W. de Jager. H. de Vries, and C. de Vries, At. Data Mucl. Data Tables 14, 479 (1974).
 7. O. Hausser, private communication (unjublished).
[^14]: 1. Abstract of punlisned paper: 2. Phys. A-Atomic Muclei 328, 189 (1941).
 2. Present adaress: Institute te fisica, Intversitate de SaO Paulo, SaO Paulo. Brajil.
