NMEI 6-1

RECEIVED BY TINS NOV 2 7 1070 Cm

An Appraisal Study of the Geothermal Resources of Arizona and Adjacent Areas in New Mexico and Utah and their Value for Desalination and Other Uses

Technical Report

MASTER

6

P.O. Box 3EI Las Cruces; New Mêxico 88003 505-646-1745 ON THE BOCUMENT IS UNI UNITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AN APPRAISAL STUDY OF THE

GEOTHERMAL RESOURCES OF ARIZONA AND ADJACENT AREAS IN NEW MEXICO AND UTAH AND THEIR VALUE FOR DESALINATION AND OTHER USES

Principal Investigator: Jonathan F. Callender, Ph.D Department of Geology University of New Mexico

Technical Report

by '

Chandler A. Swanberg, Ph.D Paul Morgan, Ph.D Charles H. Stoyer James C. Witcher Departments of Physics and Earth Sciences New Mexico State University

July 1977

MASTER

This project was conducted under the auspices of the NEW MEXICO ENERGY INSTITUTE at New Mexico State University. The research project was supported by the New Mexico Energy and Minerals Department as Project No. ERB 75-117 and by the U.S. Bureau of Reclamation as Contract No. 14-06-300-2582.

DISTRIBUTICY OF THIS DOCUMENT IS UNLIMITED

ACKNOWLEDGEMENTS

We would like to thank Shari Alexander, Richard Kelley, Tom Rodke, Tony Preslar, David Reiter and Alan Geiger for helping with the field work, and Bruce Stewart for his assistance with the computer programming. Chemical analyses were performed by Andrew Bristol and his staff at the New Mexico State University's Soil and Water Testing Laboratory in the Department of Agronomy. We would also like to thank Dr. William Seager for his help with regional geology. Our thanks as well to the U. S. Bureau of Reclamation and the New Mexico Energy Institute at New Mexico State University for providing the grants which funded the projects.

> Conclusions, opinions and other evaluative portions of this document solely reflect the views of the author(s). Their inclusion herein does not indicate either their acceptance or rejection by the New Mexico Energy Institute at New Mexico State University, project subcontractors or any other cooperating or funding agencies.

TABLE OF CONTENTS

Abstract	ix		
Introduction ·····			
Method of Data Treatment	3		
Literature Search	3		
Hot Spring Study	4		
Regional Chemistry Study	6		
Geochemical Data			
Water Temperature Data	8		
Silica Geochemistry	10		
Na-K-Ca Geochemistry	12		
Geophysics			
Gravity·····	13		
Magnetics	13		
Heat Flow and Temperature Gradients	14		
Earthquake Activity	14		
Geologic Data			
Discussion	15		
References Cited			
Figures ·····			
Tables			

Page

LIST OF FIGURES

Page

Figure	1	Observed temperatures for springs and wells in Arizona, western New Mexico and southwestern Utah 22
Figure	2	Silica geotemperatures for waters from Arizona, western New Mexico, and southwestern Utah 4
Figure	3	Na-K-Ca geotemperatures for waters from Arizona, western New Mexico, and southwestern Utah 6
Figure	4	Distribution of saline waters in Arizona, western New Mexico and southwestern Utah •••••• 8
Figure	5	Regions of hot (>40°C) and warm (30-40°C) wells and springs and the deep sedimentary basins of Arizona and New Mexico
Figure	6	Regions of high geothermal potential as indicated by geochemical data and the distribution of recent volcanics (<2 million years) in Arizona and New Mexico
Figure	7	Major lineaments and historical seismicity in Arizona, western New Mexico, and southwestern Utah
Figure	8	Regions of high geothermal potential as indicated by geochemical data, heat flow and temperature gradient data for Arizona and western New Mexico 36
Figure	9	Histogram of observed temperatures for wells and springs from the three major tectonic provinces of the Southwest
Figure	10	Histogram of silica geotemperatures for waters from the three major tectonic provinces of the Southwest
Figure	11	Silica geotemperatures averaged over a l°xl° grid. 42
Figure	12	Silica geotemperatures averaged over a l°xl° grid and the major tectonic provinces of the

• •

vi

LIST OF TABLES

-

5

Table	1	Temperature, location and geothermetric data for springs and wells in Arizona, western New Mexico and southwestern Utah	46
Table	2	Major cations and anions for springs and wells in Arizona, western New Mexico, and south- western Utah	69
Table	3	Analyses of iron, fluoride, boron, phosphorous, and silica for selected thermal waters in Arizona, western New Mexico, and southwestern Utah	75
Table	4	Analyses of nitrogen species, nickel, lead, antimony, selenium, strontium and zinc for selected thermal waters in Arizona, western New Mexico, and southeastern Utah	i 81
[able	5	Analyses of cadmium, cobalt, chromium, copper, mercury, hydrogen sulfide, lithium, manganese, molybdenum, ammonium, silver, aluminum, arsenic, barium, and bromide for selected waters in Arizona, western New Mexico, and southwestern Utah	84

Page

ABSTRACT

This report is an appraisal investigation of the geothermal resources of a portion of the "Lower Colorado River Region" of the U.S. Bureau of Reclamation. The study area includes most of Arizona, part of western New Mexico west of the continental divide, and a small part of southwestern Utah. Southern California and southern Nevada, which are also part of the Lower Colorado River drainage basin, have not been included.

Almost 300 water samples have been collected from the study area and chemically analyzed. These samples include hot wells and springs in addition to nearby nonthermal waters to help establish background chemistry. Further, almost 10,000 chemical analyses of groundwaters were obtained from the U.S. Geological Survey's "water quality file". Routine geothermal interpretative techniques were then applied to these chemical data to identify geothermal anomalies which might indicate the presence of exploitable geothermal resources. These geochemical anomalies were then evaluated in terms of available geophysical data such as heat flow, gravity, magnetics, basement linears, earthquake epicentral locations, depth of sedimentary basins, quaternary volcanics, recent fault scarps, etc. to further delineate the size and shape of the prospective geothermal sites and help establish their production potential. On the basis of the data contained herein, the following conclusions can be drawn.

ix

1. There are eight prime and numerous potential geothermal anomalies located within the study area which appear to offer excellent opportunities for geothermal desalination. The prime anomalies are located near Phoenix (2), St. Johns (2), Safford, and Bisbee in Arizona, near St. George in Utah, and south of Lordsburg, New Mexico. Several of the anomalies had previously been known and these rediscoveries verify the validity of the present technique. Other anomalies are located near Quaternary volcanics or at the intersection of major basement linears and thus might have been predicted on the basis of their geologic setting. The remaining anomalies represent potential new geothermal discoveries.

2. There are regional variations in geothermal parameters throughout the study area. For example, groundwaters from the Basin and Range province are routinely hotter and yield substantially higher Na-K-Ca and silica geotemperatures than groundwaters from the Colorado Plateau province. This phenomenon is interpreted to represent higher heat flow, deeper circulation of groundwaters, and greater geothermal potential within in the Basin and Range province as opposed to the Colorado plateau. These data also establish background values for the various geothermal parameters and thus make it possible to more readily recognize and evaluate groundwaters showing geothermal potential.
3. About 400 thermal waters (T>30°C) have been examined during the present study. Some of these waters also show geothermal potential on the basis of their geochemistry and tectonic setting and are

х

considered to be prime prospects for geothermal desalination. Other thermal waters show no such promise and their development may be restricted to low temperature uses.

4. The most promising prospects appear to be associated with quaternary volcanics, deep sedimentary basins, and intersecting basement linears, an association which may reflect the origins of the thermal waters.

Introduction

Geothermal energy is basically the natural heat of the earth. This heat escapes from the earth and is radiated into space at a rate of about 10²⁸ ergs/year (1 erg = 9.481x10⁻¹¹ BTU). This amount of energy is far in excess of world wide energy consumption, but unfortunately the energy is generally too diffuse to be commercially exploited. Thus, the development of geothermal energy resources requires the location of geothermal "hot spots" or "anomalies". In these areas, large amounts of geothermal energy are concentrated relatively near the surface and can be commercially exploited for a wide variety of purposes. The states of world wide geothermal energy development is summarized by Muffler (1975) and United Nations Energy Section (1975).

The uses of geothermal energy include the generation of electricity, space heating, mineral extraction, desalting of geothermal brines, health spas, and to supply heat for various industrial and agricultural processes. The main thrust of the present study is geothermal desalination, the current status of which is discussed by Fernelius (1975), and Bechtel (1977).

The search for geothermal anomalies that are suitable for geothermal desalination is more involved than the search for geothermal areas in general. In addition to the standard requirements of high temperatures, land availability, user needs, etc., geothermal desalination also requires a large volume of saline water stored in permeable aquifers. The latter statement recognizes that there is no need to desalt

fresh waters and that even the hottest geothermal anomaly is of little use for desalination if insufficient volumes of water can be produced to augment present available reserves of high quality water.

The areas in the Arizona, New Mexico and Utah parts of the lower Colorado River drainage basin that may be of use for geothermal energy development in general and for geothermal desalination in particular are delineated in the following sections of the report. We have emphasized water chemistry studies as such studies provide information on 1) the location and distribution of geothermal anomalies, 2) the maximum subsurface temperatures that might be encountered during drilling, 3) environmental problems such as the release to the atmosphere or surface waters of such noxious elements as hydrogen sulphide, boron, mercury, fluoride, etc., 4) the distribution of saline waters which delineate the areas most in need of geothermal desalination, 5) and the distribution of such compounds as calcium carbonate (CaCO₃), silicon dioxide (SiO_2) , and hydrogen sulphide (H_2S) that may lead to such production problems as the scaling or corrosion of geothermal wells, pipelines, and other production facilities. In support of this general approach, we have also utilized such geophysical data as gravity, magnetics, heat flow and temperature gradients, the distribution of recent volcanics and basement "linears", and other data that might be available in the literature. These data are used to corroborate the existance of geothermal anomalies, to provide more detailed information as to their exact location, and to provide additional insight regarding their tectonic origin and production potential. Particular emphasis is placed on the depth of sedimentary basins, as this knowledge has

direct bearing on the total amount of water that may be available for production. We have not examined the crucial problems of land availability and/or user needs. Such factors are beyond the scope of this technical appraisal report. All of the geothermal anomalies located during the course of the investigation are presented but the study is not concerned with the problem of how the anomalies should be developed.

Method of Data Treatment

Literature Search. The initial phase of the investigation consisted of an intensive literature search to find the various geological, geochemical, and geophysical data that pertain to the location and evaluation of geothermal resources. Several publications exist that deal directly with geothermal investigations. These include: Summers (1965a, 1965b, 1976), Jiracek, et. al. (1977), and Swanberg (1976) for New Mexico; Mundorff (1970), Swanberg (1974) for Utah; and Gerlach et. al. (1975) and Haigler (1969) for Arizona. Additional information was found in Anderson and Axtell (1972) and United Nations (1970, 1975). A complete bibliography of geothermal resources is contained in ERDA (1976) and its corresponding updates.

Numerous other publications provide basic data upon which geothermal inferences may be drawn. Several of these sources are as follows: regional gravity (West and Summer, 1973; Woolard and Joesting, 1964), regional magnetics (Sauck and Summer, 1970), heat flow (Sass et al., 1976, Reiter et al., 1975), regional geology (Dane and Bachman, 1965; Wilson et al., 1969), temperature gradients (Gerlach et al., 1975; American Association of Petroleum Geologists, 1975), the distribution of Tertiary and Quaternary

volcanics (Gerlach et. al., 1975; Elston and Northrop, 1976; Forrester, 1962; Eastwood, 1974), basement linears (Eastwood, 1974; Gerlach, et. al., 1975; Lowell, 1974), earthquake epicentral locations (Scott and Moore, 1976; Sanford and Cash, 1969; Microgeophysics Inc., Unpl.), depths of sedimentary basins (Gerlach et. al., 1975), hot spring and well locations (Summers, 1976; Haigler, 1969) and water chemistry data (Summers, 1965a; see also following section).

4

All of the above data have been summarized on base maps having a scale of 1:1,000,000. The result of this summary is that nearly all existing data that pertains to geothermal appraisal studies can be readily compared and evaluated in terms of geothermal potential. These maps are reproduced in figures 1-8 and are used as a basis for interpreting the water chemistry data.

<u>Hot Spring Study</u>. Concurrently with the compilation of existing geological and geophysical data, a list of reported thermal springs and wells was compiled. Any water in excess of 30°C was considered to be thermal. Over 400 such waters exist for the study area, the hottest being Gillard and Turkey Creek hot springs and the hot wells at the Lightning Dock KGRA, all of which are about 80°C (see Table 1). The locations of the thermal waters are shown in figure 1 and their legal descriptions, temperatures, and geochemical temperatures are given in Table 1. Nearly all hot springs and wells in the study area were visited, temperatures and geology recorded, and samples collected for chemical analyses. The sampling procedures are those described by Presser and Barnes (1974). An untreated sample was collected in a

polyethylene bottle for analyses of the stable constituents. A second sample, acidified with ENO₃, was collected in a polyethelene bottle for analyses of the unstable constituents such as silica, iron, arsenic, etc. A third sample was treated with zinc acetate for laboratory determination of hydrogen sulphide. A fourth sample, acidified with HNO₃, was collected in a glass bottle for analyses of trace elements such as mercury which might be absorbed by a polyethelene bottle. The chemical constituents of the thermal waters including major, minor, and trace elements are given in Tables 2-4. The laboratory methods used in these analyses are those of the Environmental Protection Agency (1971).

In addition to the thermal waters several nonthermal waters were collected near each occurrence of thermal water. These waters, representing cold springs, wells, and in some cases, surface waters, were chemically analyzed for major and minor constituents only (Tables 2,3). The purpose of analyzing nonthermal waters is to establish background chemistry, against which the chemistry of the thermal waters can be compared and therefore more meaningfully analyzed.

On the basis of the chemical data, both qualitative and quantative geothermometers were evaluated and the results form the primary method whereby each specific area is appraised for geothermal potential. The quantitative geothermometers are silica (Fournier and Rowe, 1966), sodium-potassium (Ellis, 1970), and sodium-potassium-calcium (Fournier and Truesdell, 1973). Geochemical temperatures calculated using the silica and Na-K-Ca geothermometers are given in Table 1. The Na-K geothermometer is an older version of the Na-K-Ca technique and is not presented. The basic assumptions of these geothermometers are discussed

by Fournier et. al. (1974) and can be summarized as follows: 1) temperature dependent reactions in the geothermal reservoir control water chemistry, 2) water-rock equilibrium must exist within the geothermal reservoir, 3) minerals which supply the constituents upon which the geothermometers are based must exist within the geothermal reservoir, 4) re-equilibration must not occur as the water migrates from the reservoir to the sampling point, and 6) there must be negligible mixing with near surface waters of different chemical composition.

6

The qualitative geothermometers include low concentrations of calcium and bicarbonate in near neutral pH waters (Ellis, 1970), low ratios of magnesium to calcium (White, 1970), high ratios of sodium to calcium (Mahon, 1970), highest ratios of chloride to total carbonate $(C\ell/CHCO_3+CO_3)$; Fournier and Truesdell, 1970), and highest ratios of chloride to fluoride (Mahon, 1976). The basic data necessary to apply these geothermometers are given in Tables 2 and 3.

<u>Regional Chemistry Study</u>. In addition to the hot spring study, we have conducted a systematic analysis of the chemical constituents of groundwaters throughout the study area. There are three primary reasons to include cold water geochemistry in a study aimed at regional appraisal of geothermal resources. The first is to establish background chemistry against which the hot spring geochemistry can be compared. For example, typical groundwaters from the Basin and Range province yield silica geotemperatures in 75°-95°C range whereas groundwaters from the Colorado Plateau typically fall in the 40°-60°C range (Swanberg and Morgan, 1977; see also Figures 9-11). This represents a threefold greater concentration of silica in groundwaters of the Basin and Range relative to

waters of the Colorado Plateau. Consequently, silica geotemperatures near 110°C are perfectly normal for the Basin and Range but are well above typical values of the Colorado Plateau and may well reflect geothermal activity. A typical example of such an anomaly is the San Francisco Mountain geothermal area near Flagstaff (Figures 2,6), a clear chemical anomaly and potential geothermal field (Moore et. al., 1976) which might have been overlooked had not background chemistry been established.

A second reason to include cold water studies in a geothermal investigation is to locate new geothermal areas. Swanberg (1975) has shown that it is possible to recognize a geothermal water or detect a geothermal component in waters even though the waters may be of normal temperature. The procedure requires the assumption that a geothermal water, migrating from a geothermal reservoir into a shallow aquifer, will cool physically more rapidly than it looses it geothermal chemical signature, an assumption that gains credence because the speed at which reequilibration occurs becomes slow at colder temperatures. The procedure then is to apply the quantitative and qualitative geothermometers to whatever chemical data may exist in the literature and noting regions that yield high geotemperatures. Regions giving high geochemical temperatures by two or more different geothermometers are likely geothermal prospects.

A third reason to study cold waters is simply to determine the distribution of saline water. Areas showing geothermal potential as well as being characterized by saline water are likely spots for geothermal desalination. Such studies also bear directly on some of the

environmental problems that may be associated with eventual development.

The main source of groundwater geochemistry data used in this study is the water quality file of the U.S. Geological Survey, Water Resources Division. This file, available on magnetic tape, contains the latitude, longitude, and results of chemical analyses of over 10,000 water samples collected between parallels 31° and 37°, meridians 108° and 115° and between the years 1917-1974. A PL1 computer program capable of reading the tape was also supplied by the USGS and this was modified to interface with the standard geothermal subroutines. At this point, the data were scanned for in situ temperatures, total dissolved solids (TDS) and for concentrations of Na, K, Ca, and SiO₂. Geochemical temperatures were then calculated by application of the quantitative geothermometers to the chemical data and the results were printer-plotted (Figures 1-4) such that they correctly overlayed the geophysical maps noted earlier (Figures 5-8). This approach has allowed us to examine a massive amount of valuable data in a very short period of time, and at a trivial cost. Very few reconnaissance techniques can compare in cost-time efficiency with such a study.

Geochemical Data

<u>Water Temperature Data</u>. The temperatures of wells and springs within the three major tectonic provinces of the Southwest (see Figure 12) are shown in Figure 9. It is apparent from these data that both the mean and the modal temperature of waters located within the Basin and Range province are about 10°C hotter than waters from either of the

other two provinces. A large portion of this difference can be attributed to a higher mean annual air temperature within the basin and range province. Gerlach et. al. (1975) report that the mean air temperature for Arizona varies between 15° and 21°C, with the higher values representing the Basin and Range. A similar result is evident from the air temperature data of Druitt (1976), who shows a 6°C difference between the mean annual temperatures of the Basin and Range and Colorado Plateau. Thus it appears unlikely that the entire temperature discrepancy can be wholly explained by variations in mean air temperature, and an additional source of heat is required. One possibility is the higher surface heat flow known to exist within the basin and range (Roy et. al., 1972; see also Figure 10). A second is to assume deep circulation of groundwaters along Basin and Range faults. A third possibility is to envoke the highly exothermic hydration of anhydrite to gypsum. It is likely that all three possibilities operate to some extent.

It is also apparent from the data in Figure 9 that there is a strong concentration of thermal water in the Basin and Range relative to the Colorado Plateau. The precise location of the thermal waters is shown relative to the deep sedimentary basins in Figure 5. Figures 6-8 show the thermal waters giving high geochemical temperatures relative to a range of geological and geophysical criteria that are generally used in geothermal exploration and evaluation. Taken together, Figures 5-8 can be used to determine the tectonic origin of the thermal waters. Many thermal waters are located within deep sedimentary basins (Figure 5). If such waters also yield high geochemical temperatures, their probable origin is deeply circulating groundwaters along existing faults. A typical

example is the Phoenix area which is an excellent prospect for geothermal desalination, not only because of the high geochemical temperatures (Figure 3) but also because of the highly saline waters (Figure 4) and the large volume of water in storage. Some areas where thermal waters exist in deep sedimentary do not give high geochemical temperatures. A possible origin for these thermal waters is the exothermic hydration of anhydrite to gypsum. A typical example is the Coolidge area where deep drilling failed to locate waters greater than 82°C, even though irrigation wells in the area are as hot at 65°C (Dellechaie, 1975). Such areas may not be sufficiently hot for economic geothermal desalination, although such areas might be ideal for direct heat application.

(1

Other thermal waters appear to be closely associated with Quaternary volcanics (Figures 5,6). Such waters may derive their heat from volcanic origins as well as from structural sources.

<u>Silica Geochemistry</u>. The silica geothermometer (Fournier and Rowe, 1966) is based on the temperature dependence of quartz solubility and is regarded by many to be the most accurate of the aqueous geothermometers. As a quantitative geothermometer, it is best applied to thermal springs and wells where it generally gives a minimum prediction of subsurface temperatures. As a qualitative geothermometer, it can be applied to nonthermal waters where abnormally high silica geotemperatures may reflect in thermal component in a nonthermal groundwater (Swanberg, 1975). In either case, it is appropriate to determine the normal silica content of wapers in a given region prior to the use of the silica geothermometer. Once background values of silica have been determined, the mixing models

of Truesdell and Fournier (in press) can be applied to greatly refine subsurface temperature estimates obtained by the silica geothermometer.

The temperatures estimated by applying the silica geothermometer to silica concentrations of waters taken from the three major tectonic provinces of the Southwest are shown in Figure 10. It is clear from this data that estimated temperatures are systematically higher by 30-40°C for waters of the Basin and Range than for waters of the Colorado Plateau. This increase is thought to reflect greater heat flow and deeper circulation of groundwaters in the Basin and Range and is consistent with the in situ temperature data shown in Figure 9.

Silica geotemperatures averaged over a l°xl° grid are given in Figure 11, and compared to tectonic provinces in Figure 12. The obvious correlation between silica geotemperatures and tectonic provinces has significant implications to the study of the Earth's heat flow. Highest silica geotemperatures are found within the Rio Grande Rift and along the Basin and Range - Colorado Plateau boundary, two very high heat flow regions of substantial geothermal potential (Reiter et al., 1975). High silica geotemperatures are found within the Basin and Range province, also a high heat flow province, whereas the lowest silica geotemperatures are found within the Colorado Plateau and the Midcontinent, two areas of normal heat flow. In fact, the actual distribution of silica geotemperatures so closely corresponds to the areal distribution of heat flow (compare the data of Sass et. al., 1975; Blackwell, 1971) that it is possible to map regional heat flow provinces using silica data.

The silica data presented in Figure 11 establishes base values for the silica geothermometer. For the Basin and Range silica geotemperatures

typically fall in the mid-eighties and values near one hundred are common (Figure 10). Even values as high as 110°C should not be considered thermal without supporting evidence. On the other hand, values for the Colorado Plateau are typically in the forties and rarely exceed 75°C. Consequently silica geotemperatures in the 90-110° range are normal for the Basin and Range but are clearly anomalous for the Colorado Plateau. A typical example of such an anomaly is the San Francisco Mountain geothermal area near Flagstaff (Figures 2,6), a clear chemical anomaly and potential geothermal trend (Moore et. al., 1976) which might have been overlooked had not background geochemistry been established.

<u>Na-K-Ca Geochemistry</u>. The Na-K-Ca geothermometer (Fournier and Truesdell, 1973) is based on an empirical relationship between temperature and a function based on the ratios of sodium to potassium and calcium to sodium. As a quantitative geothermometer, it can be applied to thermal and nonthermal waters to estimate possible subsurface temperatures. Unlike the silica geothermometer which is based on absolute concentrations of silica, the Na-K-Ca geothermometer is based on ratios and is thus not appreciably affected by dilution with fresh surface waters. The assumptions governing the use of both quantitative geothermometers are discussed by Fournier et. al. (1974).

The distribution of Na-K-Ca geotemperatures is shown in Figure 3 and regions of high geochemical temperatures are compared with various geological and geophysical criteria in Figures 6-8. The chemically "hot" waters may be associated with deep sedimentary basins (Figure 5), recent volcanics (Figure 6), basement linears (Figure 7), or a combination of the above, an association which probably reflects the origin of the

anomalies. Many anomalous regions are located near the boundary between the Basin and Range and Colorado Plateau provinces, and within the Rio Grande Rift of New Mexico (Figure 12). Anomalous areas also are located within both the Basin and Range and the Colorado Plateau.

Geophysics

<u>Gravity</u>. Interpretation of gravity data is of use in geothermal studies both as a direct prospecting tool (i.e., Biehler, 1971) and as an aid in determining regional structural patterns. In the present study, gravity data has been used primarily to determine the depths of sedimentary basins, an important parameter in determining the total volume of groundwater available for desalination. Also of interest are the two small gravity minima located near parallel 34° on either side of the Arizona-New Mexico boundary. Both closures are less than -250 mgals and such closures are not common outside the Colorado-Wyoming Rockies (Woolard and Joesting, 1964). In fact several of these -250 mgal closures are associated with caldera structures underlying some of the nation's major geothermal areas (i.e., Yellowstone, Wyoming; Valles Grande, New Mexico; and Mono, California). This is not to imply similar geothermal fields in Arizona and New Mexico but the correlation is interesting and the -250 mgal closures are included in Figure 7.

<u>Magnetics</u>. As a geothermal tool, magnetic data is primarily used in conjunction with gravity data although magnetic lows, resulting from hydrothermal conversion of magnetic to pyrite, may be used as a direct indication of geothermal activity. In the present study, magnetic data has been used to delineate major basement linears which may act as a

zone of weakness, permitting the rise of geothermal fluids. Linears based on magnetic data are shown in Figure 7.

<u>Heat Flow and Temperature Gradients</u>. Heat flow and temperature gradients provide direct evidence of the presence of geothermal anomalies. Regions of high heat flow (>2.5 HFU) are shown in Figure 8 along with the geochemical anomalies. The regions of high heat flow essentially outline the broad regions of high geothermal potential within which most of the major geothermal areas are likely to be found. The data set is fairly complete for New Mexico but rather scanty for Arizona at present. Additional heat flow data from Arizona (M. Reiter, personal communication) outlines several additional areas in Arizona having high heat flow.

Also shown in Figure 8 are several small areas having a geothermal gradient in excess of 150°C/Km. These areas should be considered prime geothermal prospects.

Earthquake Activity. Earthquake epicentral locations are of use both to delineate active faults which might control the vertical movement of geothermal fluids and as a method to determine the potential earthquake risk associated with geothermal development. Locations of historic earthquakes are plotted in Figure 7. It is interesting to note that the only major earthquake (> magnitude 7) is located in Mexico, only a few miles from the major chemical anomaly east of Bisbee, Arizona.

Geologic Data

The geologic data used in the present study include the distribution of Tertiary and Quaternary volcanics, and the distribution of basement linears. Linears (Figure 7) may demark zone of crustal weakness where magmas and geothermal fluids may find easy access to the surface. In particular, the intersection of major linears is an important geothermal parameter. The distribution of young volcanics (Figure 6) also delineates regions where magmatic heat may still be present.

Discussion

Geothermal prospects within the present study area that have undergone deep drilling are Chandler and Casa Grande, Arizona (Muffler 1975). Known geothermal resource areas (KGRA) include Clifton, Gillard Hot Springs, and Chandler in Arizona, and Lower Frisco Hot Springs, Gila Hot Springs, and Lightning Dock in New Mexico. In addition Moore et. al. (1976) have delineated the San Francisco Mountains geothermal area near Flagstaff, Arizona. All of these geothermal areas were rediscovered during the present study by applying the chemical geothermometers to thermal and nonthermal waters and comparing the results with various geological and geophysical data. These rediscoveries verify the validity of the present technique. In addition, numerous new potential geothermal areas have been delineateed and are discussed below.

The various criteria used to evaluate the geothermal potential of the study area are summarized in Figures 5-8. For geothermal desalination the most important factors are thermal waters (Figure 5),

high geochemical temperatures (Figure 6,8), deep sedimentary basins (Figure 5) and a source of saline water to desalt, (Figure 4). The most obvious combination of all these factors is the Phoenix area, which appears to be the best prospect for desalination although not necessarily the best overall geothermal prospect. Other such prospects include the Safford area and several smaller areas in western Arizona. Several areas of hot wells such as near Hyder (Gerlach et al., 1975) and near Coolidge (Dellechaie, 1975) do not give very promising geochemical temperatures and the preliminary indications are that such areas can be developed for desalination only as technology becomes developed for lower temperature utilization. The geothermal areas which are associated with volcanics (i.e., Flagstaff) may well be excellent geothermal prospects but the volume of groundwater in storage may not be sufficient to have an appreciable impact on regional water supplies. The area in the southeast corner of Arizona east of Bisbee is an excellent prospect on the basis of the geochemical data and its proximity to very young volcanics, major linement intersections, and seismic activity (Figure 7), but unfortunately, there is no indication of saline water in the area (Figure 4), although brine may be encountered during drilling. Another prime prospect is along the Little Colorado River near St. Johns, Arizona. This area is also located in the junction of major linements (Figure 7), is associated with very young volcanics (Figure 6), and the waters of the area yield high geochemical temperatures (Figure 3). The area is also characterized by very saline water (Figure 4).

. In conclusion, at least eight areas exist within the study area . which appear to be excellent prospects for geothermal desalination.

These areas are located near Phoenix (2), Safford (1), St. Johns (2), Bisbee (1), St. George (1), and Lordsburg (1). All of these areas appear promising by a sufficient number of reconnaissance techniques to warrant detailed geophysical studies and eventual deep drilling. The remainder of the anomalies outlined in Figures 5-8 should perhaps be subjected to additional reconnaissance prior to detailed geophysics and deep drilling.

REFERENCES CITED

- American Association of Petroleum Geologists, 1975, Geothermal gradient map of Arizona and western New Mexico: portfolio map area No. 18, Geothermal Survey of North America, sponsored by Amer. Assoc. Pet. Geol.
- Anderson, D.N., and Axtell, L.N., editors, 1972, Geothermal Overviews of the Western United States: Geothermal Resources Council, Sp. Rpt. 1, 200 p.
- Bechtel, 1977, Operation and maintenance of the East Mesa test site: Final Report, contract number 14-06-300-2622, U.S. Bureau of Reclamation, Boulder City, Nevada, 154p.
- Biehler, S., 1971, Gravity studies in the Imperial Valley, cooperative geological-geophysical-geochemical investigations of geothermal resources in the Imperial Valley area of California, Univ. Calif., Riverside, California, 153 pp.
- Blackwell, D.D., 1971, The thermal structure of the continental crust: in J.G. Heacock (editor), the structure and physical properties of the Earth's crust: Geophys. Mono. Ser., 14, AGU, Washington, D.C., p. 169-184.
- Dane, C.H., and Bachman, G.O., 1965, Geologic Map of New Mexico: New Mexico Bur. Mines and Mineral Resources, Socorro, New Mexico.
- Dellechaie, F., 1975, A hydro-chemical study of the South Santa Cruz Basin near Collidge, Arizona: in Second United Nations Symposium on the Development and Use of Geothermal Resources, U.S. Govt. Printing Office, Washington, D.C., p. 339-348.
- Druitt, C.E., 1976, Mean annual temperature map-state of Arizona: Ariz. Oil and Gas Cons. Comm map GT-2.
- Eastwood, R.L., 1974, Cenozoic volcanism and tectonism of the southern Colorado Plateau: in Geology of Northern Arizona, Part I - Regional Studies, ed. Karlstrom, T.N.U., Swann, G.A., and Eastwood, R.L., sponsored by N.A.U., Museum on N. Arizona, U.S.G.S. Center of Astrogeology, Flagstaff, Arizona, p. 238-256.
- Ellis, A.J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal systems: Geothermics, Sp. Issue 2, p. 516-528.
- Elston, W.E., and Northrop, S.A., 1976, Cenozoic Volcanism in Southwestern New Mexico: A volume in memory of Rodney C. Rhodes, 1943-1975, New Mexico Geol. Soc., Sp. Publ. No. 5, 151 p.
- ERDA, 1976, A bibliography-Geothermal Resources-exploration and exploitation (TID-3354-RI): National Technical Information Service, U.S. Dept. Comm., Springfield, Virginia, 333 p.

Environmental Protection Agency, 1971, Methods for chemical analysis of water and wastes: E.P.A. Water Quality Office, Analytical Quality Control Laboratory, Cincinnati, Ohio, 298 p.

- Fernelius, W.A., 1975, Production of fresh water by desalting geothermal brines - a pilot desalting program at the East Mesa Geothermal field, Imperial Valley, California: Proceedings Second United Nations Symposium on the Development and Use of Geothermal Resources, U.S. Govt. Printing Office, Washington, D.C., p. 2201-2208.
- Forrester, J.A., 1962, Map of outcrops of tertiary and quaternary igneous rocks in Arizona: Ariz. Bur. Mines, Univ. of Ariz., Tucson, Arizona.
- Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells: Amer. Jour. Sci., Vol. 264, No. 9, p. 685-697.
- Fournier, R.O., and Truesdell, A.N., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochem. Cosmochim. Acta, vol. 37, No. 5, p. 1255-1275.
- Fournier, R.O., White, D.E., and Truesdell, A.N., 1974, Geochemical indicators of subsurface temperature, I, Basic assumptions: Jour. Res. U.S. Geol. Survey, vol. 2, No. 3, p. 259-262.
- Fournier, R.O., and Truesdell, A.N., 1970, Chemical indicators of subsurface temperature applied to hot waters of Yellowstone National Park, Wyo., USA: Geothermics, Sp. Issue 2, p. 529-535.
- Gerlach, T., Norton, D., DeCook, K.J., and Summer, J.S., 1975, Geothermal water resources in Arizona: Feasibility Study: Project Completion Report, U.S. Dept. Int., Office Water Res. Research Project A-054-Ariz, Washington, D.C., 36 p.
- Haigler, L.B., 1969, Geothermal Resources: in Mineral and Water Resources of Arizona, Ariz. Bur. Mines Bull., 180, p. 575-577.
- Jiracek, G.R., Smith, C., Ander, M.E., Holcombe, H.T., Gerety, M.T., and Swanberg, C.A., 1977, Geophysical studies at Lightning Dock KGRA, Hidalgo County, New Mexico: Geothermal State of the Art, Geothermal Resources Council, Davis, California, in press.
- Keith, S.B., 1969, Gypsum and Anhydrate: in Mineral and Water Resources in Arizona, Ariz. Bur. Mines Bull., 180, p. 371-382.
- Ligner, J.J., White, N.D., Kister, L.R., and Moss, M.E., 1969, Water Resources: Mineral and Water Resources of Arizona, Ariz. Bur. Mines, Bull. 180, p. 471-569.
- Lowell, J.D., 1974, Regional characteristics of porphyry copper deposits of the Southwest: Econ. Geol., Vol. 69, No. 5, p. 601-617.
- Mahon, W.A.J., Chemistry in the exploration and exploitation of hydrothermal systems: Geothermics, Sp. Issue 2, p. 1310-1322.
- Microgeophysics Inc., unpublished maps of historical seismicity for New Mexico and Arizona.
- Moore, R., Wolfe, E., and Ulrich, G., 1976, The San Francisco Mountain geothermal area: paper presented at the Arizona geothermal energy conference-76, Phoenix, Arizona, Nov. 21-23, 1976.

- Muffler, L.J.P., 1975, Summary of Section I: Present states of resources development: Proceedings Second United Nations Symposium on the Development and Use of Geothermal Resources, U.S. Govt. Printing Office, Washington, D.C., p. xxxiii-xliv.
- Mundorff, J.C., 1970, Major thermal springs of Utah: Utah Geol. and Min. Survey Water-Res. Bull., 13, 60 p.
- Presser, T.S., and Barnes, I., 1974, Special techniques for determining chemical properties of geothermal water: U.S. Geol. Survey, Water Resources Investigations, 22-74, 11 p.
- Reiter, M., Hartman, C.L., and Weidman, C., 1975, Terrestrial heat flow along the Rio Grande Rift, New Mexico and Southern Colorado: Geol. Soc. Am. Bull., Vol. 86, p. 811-818.
- Roy, R.F., Blackwell, D.D., and Decker, E.R., 1972, Continental heat flow: in E.C. Robertson (Editor), Nature of the Solid Earth, McGraw-Hill, New York, p. 506-543.
- Sanford, A.R., and Cash, D.J., 1969, An instrumental study of New Mexico earthquakes: New Mexico Bur. Mines and Mineral Resources, Circ. 102, 7 p.
- Sass, J.H., Diment, W.H., Lachenbruch, A.H., Marshall, B.V., Munroe, R.J., Moses, T.H., Jr., and Urban, T.C., 1976, A new heat flow contour map of the conterminous United States: U.S. Geol. Survey open file report 76-756, 24 p.
- Sauck, W.A., and Summer, J.S., 1970, Residual aeromagnetic map of Arizona: Dept. Geosci., Univ. of Arizona, Tucson, Arizona.
- Scott, J.D., and Moore, R.T., 1976, The Palo Verde Nuclear Power Station -Geotechnical considerations in site selection: Field Notes from the Arizona Bureau of Mines, Vol. 6, nos. 3-4, p. 1-7.
- Summers, W.K., 1965a, Chemical characteristics of New Mexico's thermal water - a critique: New Mexico Bur. Mines and Mineral Res., circ. 83, 27 p.
- Summers, W.K., 1965b, A preliminary report on New Mexico's geothermal energy resources: New Mexico Bur. Mines and Mineral Res., circ. 80, 41 p.
- Summers, W.K., 1976, Catalogue of thermal waters in New Mexico: New Mexico Bur. Mines and Mineral Res., Hydrologic Rpt. 4, 80 p.

Swanberg, C.A., 1974, The application of the Na-K-Ca geothermometer to thermal areas of Utah and the Imperial Valley, California: Geothermics, vol. 13, No. 2, p. 53-59.

Swanberg, C.A., 1975, Detection of geothermal components in groundwaters of Dona Ana County, southern Rio Grande Rift, New Mexico: New Mexico Geol. Soc. Guidebook, 26th Field Conf., Las Cruces Country, p. 175-180. Swanberg, C.A., 1976, Geothermal Studies in Southwest New Mexico: Final Rpt. New Mexico Energy Resources Board, Grant 67, 64 p.

- Swanberg, C.A., and Morgan, P., 1977, The correlation among the silica content of groundwaters, regional heat flow and the geothermal potential of western United States: Abs. of paper presented at the IASPEI/AUCEI Assembly, Durham, England, August 8, 1977.
- Truesdell, A.H., and Fournier, R.O., in press, Procedure for estimating the temperature of a hot water component in a mixed water using a plot of dissolved silica vs enthalpy: Jour. Res. U.S. Geol. Survey, in press.
- United Nations, 1970, Proceedings of the United Nations Symposium on the Development and Utilization of Geothermal Resources: Geothermics, Sp. Issue 2, Vol. 2, Parts 1, 2, 1725 p.
- United Nations, 1975, Proceedings Second United Nations Symposium on the Development and Use of Geothermal Resources: U.S. Govt. Printing Office, Washington, D.C., 2466 p.
- United Nations, Energy Section, Center for Natural Resources, Energy and Transport, 1975, present status of world geothermal development: Proceedings Second United Nations Symposium on the Development and Use of Geothermal Resources, U.S. Govt. Printing Office, Washington, D.C., p. 3-10.
- U.S. Bureau Reclamation, 1972, Geothermal Resource Investigations, Imperial Valley, California, January, 1972, Developmental Concepts: Bur. Rec., Boulder City, Nevada, 58 p.
- West, R.E., and Summer, J.S., 1973, Bouguer gravity anomaly map of Arizona: Lab. Geophys., Dept. Geosci., Univ. of Ariz., Tucson, Arizona.
- Wilson, E.D., Moore, R.T., and Cooper, J.R., 1969, Geologic map of Arizona: Arizona Bureau of Mines, Tucson, Arizona.
- White, D.E., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources: Geothermics, Sp. Issue 2, p. 58-80.
- Woolard, C.P., and Joesting, H.R., 1964, Bouguer Gravity Anomaly map of the United States: Am. Geophys. Union Sp. Comm. for the Geophys. and Geol. Study of the Continents, Washington, D.C.

Figure 1. Observed temperatures for springs and wells in Arizona, western New Mexico, and southwestern Utah. Data from Table 1 and the U.S.G.S. water quality file.

Figure 2. Silica geotemperatures for waters from Arizona, western New Mexico, and southwestern Utah. Calculations based on data from Table 3 and from the U.S.G.S. water quality file.

•

í 25

Figure 3. Na-K-Ca geotemperatures for waters from Arizona, western New Mexico, and southwestern Utah. Calculations based on data from Table 2 and from the U.S.G.S. water quality file.

Figure 4. Distribution of saline waters in Arizona, western New Mexico and southwestern Utah. Data from Table 2 and the U.S.G.S. water quality file.

C

ų

Figure 5. Regions of hot (>40°C) and warm (30-40°C) wells and springs and the deep sedimentary basins of Arizona and New Mexico. Isolated occurrences of thermal water are shown separately. Data from Figure 1 and from Gerlach et al. (1975).

Figure 6. Regions of high geothermal potential as indicated by geochemical data and the distribution of recent volcanics (<2 million years) in Arizona and New Mexico. Data from Figures 2 and 3 and from Gerlach et al. (1975), Forrester (1962), Dane and Bachman (1965), and Wilson et al., (1969).

ယယ

.

Figure 7. Major lineaments and historical seismicity in Arizona, western New Mexico, and southwestern Utah. Linears are taken as follows: volcanic linears from Eastwood (1974), ERTS imagery linears from Gerlach et al. (1975), magnetic linears from the data of Sauck and Sumner (1970), Texas lineament from Lowell (1974). Earthquake epicentral locations are from Scott and Moore (1976), Sanford and Cash (1969), and Microgeophysics Inc. (unpubl.). Selected gravity data are from West and Sumner (1973).

Figure 8. Regions of high geothermal potential as indicated by geochemical data and heat flow and temperature gradient data for Arizona and western New Mexico. Chemical data from Figures 2 and 3. Heat flow data from Reiter et al. (1975) and Sass et al. (1976). Temperature gradient data from American Association of Petroleum Geologists (1975), and Gerlach et al. (1975).

Figure 9. Histogram of observed temperature for wells and springs from the three major tectonic provinces of the southwest. All data are taken from the USGS water quality file. Midcontinent data falls between latitude 102-105 and longitude 29-39 (eastern New Mexico-Colorado); Colorado Plateau between lat. 34.5-37 and long. 108-113 (northeast Arizona-northwest New Mexico) and lat. 37-39 and long. 108-112 (southeast Utah-southwest Colorado); Basin and Range between lat. 31-33.5 and long. 108-115 (southern Arizona). Note that wells near the province boundaries have been omitted from the histograms.

Figure 10. Histogram of silica geotemperatures for waters from the three major tectonic provinces of the southwest. All data are taken from the USGS water quality file. Latitudes and longitudes are the same as in Figure 9. Heat flow data (q) is in milliwatts per square meter (41.8 mWm⁻² = 1.0 μ cal cm⁻² s⁻¹ = 1.0 HFU).

Figure 11. Silica geotemperatures averaged over a l°xl° grid. Silica data is from the USGS Water Quality file. Large numbers represent the average silica geotemperatures and small numbers represent the number of analyses included in each average.

\$1

٤

SILICA GEOTEMPERATURES I° x I° GRID

.

•

Figure 12. Silica geotemperatures averaged over a l°xl° grid and the major tectonic provinces of the southwest.

. .

SILICA GEOTEMPERATURES I° x I° GRID

. ,

Table 1. Temperature, location, and geothermetric data for springs and wells in Arizona, western New Mexico, and southwestern Utah. $T_1 = in situ temp$ erature; $T_2 = temperature estimated by Na-K-Ca geothermometer; <math>T_3 =$ Temperature estimated by SiO₂ geothermometer; $L_1 = topographic map$ quadrangle; $L_2 = location in latitude and longitude in degrees, minutes,$ $and tenths of minutes; <math>L_3 = location in township, range, and section division$ (see section on study area). N/A refers to no data available.

				•		
Field #	Lab #	T 1 °C	T2 °C	т _з °с	L ₁	L ₂ L ₃ Name
AZ 1	1	16.8	31	129	Clifton	109°27.4'W T4S R28E 33°3.0'N Sec 27,SE 1/4 SW 1/4 Spring
AZ 2	2	22.5	47	97	Clifton	109°18.2'W T4S R30E San Francisc 33°5.3'N Sec 18 NW 1/4 SW 1/4 River
AZ 3	3	34.8	175	126	Clifton	109°17.9'W T4S R30E 33°4.2'N Sec 19 SW 1/4 NE 1/4 Seep
AZ 4	4	42	146	116	Clifton	109°26.4'W T4S R28E 33°2.9'N Sec 35 NE 1/4 NW 1/4 Spring
AZ 5	5	48	180	153	Clifton	109°17.8'W T4S R30E 33°4.8'N Sec 18 SW 1/4 SE 1/4 Spring
AZ 6	6	27	82	100	Clifton	109°17.8'W T4S R3OE San Francisc 33°2.4'N Sec 31 SE 1/4 NW 1/4 River
AZ 7	7.	82	139	136	Guthrie	109°20.9'WT5S R29EGillard Hot32°58.4'NSec 27 NE 1/4 NE 1/4Spring
AZ 8	8	22	61	91	Guthrie	109°20.8'W T5S R29E 32°58.2'N Sec 27 NE 1/4 SE 1/4 Gila River
AZ 9	9	24	66	102	Guthrie	109°21.2'W T5S R29E 32°58.4'N Sec 27 NE 1/4 NW 1/4 Gila River (continued)

)
		,
•	E.	/

÷

÷

Field #	Lab #	т ₁ . °с	т ₂ °С	т _з °с	L ₁	L ₂	L ₃	Name
AZ 10	10	47	111	95	Ft. Thomas	109°54.0'W 33°0.1'N	T5S R24E Sec 17 NE 1/4	Indían Hot Spring Dug Well
AZ 11	. 11	46.5	100	95	Ft. Thomas	109°54.0'W 33°0.2'N	T5S R24E Sec 17 NE 1/4	Indian Hot Spring
AZ 12	12	42	85	70	Artesia	109°43.0'W 32°44.7'N	T8S R26E Şec 7 SE 1/4 SE 1/4	Lucats Health Spa (well)
AZ 13	13	41.5	80.	64	Safford	109°43.3'W 32°45.4'N	T8S R26E Sec 7 NE 1/4 NW 1/4	Lebanon Min- eral Bath (well)
AZ 14	14	43.5	70 .	115	Safford	109°44.9'W 32°51.8'N	T6S R25E Sec 36 SW 1/4 SW 1/4	Mt. Graham Mineral Bath (wel]
AZ 15	15	43.5	106	116	Safford	109°33.6'W 32°50.7'N	T7S R27E Sec 11 NW 1/4 NW 1/4 NW 1/4	Pumped Hot Well
AZ 16	16	37.5	101	116	Safford	109°32.9'W 32°51.4'N	T7S R27E Sec 2 NE 1/4 SW 1/4 NE 1/4	Pumped Hot Well
AZ 17	17	44	91	73	Artesia	109°42.5'W 32°43.1'N	T8S R26E Sec 20 SW 1/4 SE 1/4	Artesian Hot Well
AZ 18	18	26.5	33	93	San Simon	109°10.6'W 32°15.4'N	T13S R31E Sec 33 SE 1/4 NE 1/4	Pumped Well
AZ 19	39	22.5	37	128	Clifton	109°28.2'W 33°4.7'N	T4S R28E Sec 28 NW 1/4 NW 1/4	Warm spring
AZ 20	40	31.5	90	104	Ft. Thomas	109°59.0'W 33°4.3'N	T4S R23E Sec 21 NE 1/4 SE 1/4	Warm spring
AZ 21	41	33	106	108	Ft. Thomas	109°54.0'W 33° .00'N	T5S R24E Sec 17 NE 1/4 SE 1/4	Warm spring near Indian Hot Spring (continued)

.

41

C

. .

47

Field ∦	Lab ∦	т °С	т ₂ °С	т _з °с	L ₁	L ₂	L ₃	Name
AZ 22	42	41.5	79	76	Safford	109°43.2'W 32°45.0'N	T8S R26E Sec 7 SE 1/4 NE 1/4	Collins Health Spa (well)
AZ 23	43	39	76	76	Safford	109°44.0'W 32°45.5'N	T8S R25E Sec 12 NE 1/4 NE 1/4 NE 1/4	Artesian Well
AZ 24	44	37	68	82	Safford	109°43.4'W 32°45.1'N	T8S R26E Sec 7 NE 1/4 SW 1/4	Artesian Well
· AZ 25	45	34.5	80	76	Safford	109°43.6'W 32°45.3'N	T8S R26E Sec 7 NW 1/4 NE 1/4	Artesian Well
AZ 26	46	33.5	68	77	Safford	109°43.8'W 32°45.3'N	T8S R26E Sec 7 NW 1/4 NW 1/4	Artesian Well
AZ 27	47	26.5	50	99	Artesia	109°42.5'W 32°41.2'N	T8S R26E Sec 32 SW 1/4 SE 1/4 SE 1/4	Pumped Well
AZ 28	48	33	67	76	Artesia	109°42.5'W 32°41.1'N	T9S R26E Sec 5 NW 1/4 NE 1/4	Pumped hot well
AZ 29	49	33	64	77	Artesia	109°42.3'W 32°41.0'N	T9S R26E Sec 5 NE 1/4 NW 1/4	Windmill well
AZ 30	50	31	42	80	Bowie	109°29.0'W 32°20.7'N	T12S R28E Sec 34 SW 1/4 NW 1/4	Pumped well
AZ 31	51	29	41	. 86	Bowie	109°28.4'W 32°21.1'N	T12S R28E Sec 34 NE 1/4 NW 1/4	Pumped well
AZ 32	52	36	78	80	Bowie	109°28.2'W 32°21.2'N	T12S R28E Sec 34 NE 1/4 NE 1/4	Pumped well
AZ 33	53	36	48	74	Bowie	109°29.0'W 32°19.1'N	T13S R28E Sec 10 NW 1/4 SW 1/4	Pumped well

 \cap

C

49

**

Field #	Lab #	т ₁ °с	т ₂ °с	^т з °С	L ₁	L ₂	L ₃	Name
AZ 34	54	35.5	66	79	Bowie	109°28.9'W 32°24.0'N	T12S R28E Sec 10 SW 1/4 SW 1/4	Pumped well
AZ 35	55	30.5	70	93	Bowie	109°20.8'W 32°26.3'N	T11S R29E Sec 36 NW 1/4 NW 1/4	Howard well
AZ 36	, 56	23	46	112	Bowie	109°16.4'W 32°19.8'N	T13S R3OE Sec 3 NW 1/4 SE 1/4	Windmill well
AZ 37	57	27.5	78	72	Bowie	109°15.7'W 32°18.0'N	T13S R30E Sec 15 SE 1/4 NE 1/4	Windmill` well
AZ 38	58	52.5	52	96	Winchester Mtns.	110°14.3'W 32°20.2'N	T13S R21E Sec 6 NE 1/4 NE 1/4	Hooker's Hot Spring
AZ 39	59	32.5	48	90	Winchester Mtns.	110°14.4'W 32°20.9'N	T12S R21E Sec 31 NE 1/4 SW 1/4	Warm Springs
AZ 40	60	23	68	88	Winchester Mtns.	110°13.6'W 32°19.6'N	T13S R21E Sec 5 SW 1/4 SE 1/4	N-O Spring
AZ 41	61	39	63	92	Aqua Caliente	113°19.4'W 32°59.1'N	T5S R10W Sec 19 NE 1/4 NE 1/4	Artesian well
AZ 42	62	45.8	79	74	Aqua Caliente	113°18.3'W 32°59.6'N	T5S R10W Sec 16 SW 1/4 NW 1/4 NW 1/4	Pumped hot well
AZ 43	63	26.8	70	119	Aqua Caliente	113°18.3'W 32°59.4'N	T5S R10W Sec 16 SW 1/4 NW 1/4 SW 1/4	Pumped well
AZ 44	64	24	80	83	Welton Mesa	114°3.3'W 32°44.2'N	T8S R17W Sec 18 NW 1/4 NW 1/4 NW 1/4	Pumped well
AZ 45	65	41.6	77	98	Palomas Mts (no map)	113°30.5'W 33°0.0'N	T5S R12W Sec 9 SW 1/4 SW 1/4 NE 1/4	Pumped hot well

(continued)

Field ∦	Lab #	т °с	т ₂ °с	т ₃ °С		L ₂	L ₃	Name
AZ 46	66	38.8	92	96	Palomas Mtns (no map)	113°30.5'W 33°0.4'N	T5S R12 W Sec 9 SW 1/4 NW 1/4 NE 1/4	Pumped hot well
AZ 47	67	30.2	86	100	Palomas Mtns (no map)'	113°30.6'W 33°1.0'N	T5S R12W Sec 4 SW 1/4 NW 1/4	Pumped hot well
AZ 48	68	32.2	94	99	Baragan Mtn.	113°28.5'W 33°2.1'N	T5S R12W Sec 3 NE 1/4 NE 1/4 NE 1/4	Pumped hot well
AZ 49	69	38.8	82	99	Baragan Mt.	113°24.5'W 33°6.7'N	T4S R11W Sec 5 NW 1/4 NW 1/4 NW 1/4	Pumped hot well
AZ 50	70	39.5	73	97	llyder Se.	113°22.4'W 33°7.0'N	T4S R11W Sec 2 NW 1/4 NW 1/4 NW 1/4	Pumped hot well
AZ 51	71	27.8	68	97	Hyder Se	113°22.4'W 33°4.5'N	T4S R11W Sec 14 SW 1/4 SW 1/4	Pumped ,
AZ 52	72	28.5	76	74	Cotton Center	112°39.0'W 33°8.7'N	T3S R4W Sec 22 SE 1/4 SE 1/4	Pumped well
AZ 53	73	28.2	80	74	Cotton Center	112°39.0'W 33°10.0'N	T3S R4W Sec 15 NE 1/4 SE 1/4	Pumped well
AZ 54	74	35.2	83	68	Cotton Center	112°38.6'W 33°13.6'N	T2S R4W Sec 26 NW 1/4 SE 1/4	Pumped well
AZ 55	75	. 30	65	72	Cotton Center	112°40.1'W 33°10.7'N	T3S R4W Sec 9 SE 1/4 NE 1/4	Pumped vell
AZ 56	76	25	60	79	Cotton Center	112°41.2'W 33°10.7'N	T3S R4W Sec 8 SE 1/4 NE 1/4	Pumped well
AZ 57	77	48.5	88	89	Buckhorn	111°42.2'W 33°25'N	T1N R6E Sec 23 SE 1/4 SE 1/4	Buckhorn Mineral Bath (well)

бÛ

Field #	Lab #	т ₁ °С	т ₂ °С	T3 °C	L	L ₂	L ₃	Name
AZ 58	78	38.8	65	79	Buckhorn	111°42.6'W 33°24.1'N	T1N R6# Sec 26 NE 1/4 SW 1/4 SW 1/4	Pumped Hot well
AZ 59	• 79	39.4	82	66	Artesia	109°42.7'W 32°44.9'N	T8S R26E Sec 8 SW 1/4 NE 1/4	Hot Artesian well
AZ 60	80	29.4	81	80	Safford	109°41.7'W 32°45.2'N	T8S R26E Sec 9 NW 1/4 SW 1/4	Artesian well
AZ 61	81	38.9	85	64	Safford	109°41.6'W 32°45.3'N	T8S R26E Sec 9 NW 1/4 SW 1/4	Pumped well
AZ 62	82	41.1	97	110	Javelina Peak	109°25.6'W 32°31.4'N	T10S R28E Sec 36 NE 1/4 SE 1/4	Hot Artesian well
AZ 63	83	34.1	121	87	Javelina Peak	109°23.7'W 32°33.0'N	T10S R29E Sec 20 NE 1/4 SW 1/4	Pumped well
AZ 64	84	30.8	95	96	Whitlock Mtns NE	109°21.9'W 32°43.3'N	T8S R29E Sec 22 SW 1/4 NE 1/4 NE 1/4	Rock well windmill
AZ 65	85	32.8	114	110	Dry Mountain	109°22.7'W 32°43.8'N	T8S R29E Sec 21 NE 1/4 NW 1/4	Cat tank windmill
AZ 66	86	20	44	73	Hay Mtn.	109°58.5'W 31°40.3'N	T2OS R23E Sec 26 NW 1/4 NW 1/4	Windmill well
AZ 67	87	25.5	53	71	Hay Mtn.	109°54.1'W 31°40.4'N	T2OS R24E Sec 21 SW 1/4 SE 1/4	Antelope spring
AZ 68	88	19.5	7	88	Swisshelm Mtn.	109°30.5'W 31°35.5'N	T21S R28E Sec 20 NE 1/4 SE 1/4	Lewis spring
AZ 69	89	24.8	2	71	Mt. Wrightson	110°57.8'W 31°41.7'N	T2OS R13E Sec 13 NE 1/4 NW 1/4	Wind mill a t Aqua Calie nte

ы Н

Field ∦	Lab ∦	т ₁ °с	т ₂ °с	т _з °с	L ₁	L ₂	L ₃	Name
AZ 70	90	30.4	76	109	Bellota Ranch	110°43.8'W 32°16.9'N	T13S R16E Sec 20 SW 1/4 SE 1/4	Aqua Caliente spring
AZ 71	91	24.5	33	88	Bellota Ranch	110°42.2'W 32°20.2'N	T13S R16E SE 4 NE 1/4	Mercer spring
AZ 72	92	36.6	157	100	Coolidge Dam	110°31.7'W 33°10.3'N	T3S R18E Sec 17 SW 1/4 SE 1/4	Hot . spring
AZ 73	93	N/A	83	76	Coolidge Dam	110°31.7'W 33°10.2'N	T3S R18E Sec 17 SW 1/4	Gila River
AZ 74	94	24.1	8	81	Cutter	110°41.8'W 33°15.4'N	T2S R16E Sec 15 SE 1/4 NW 1/4	Spring
AZ 75	95	18	7	88	Mescal Warm Spring	110°40.8'W 33°14.1'N	T2S R16E Sec 26 N 1/2	Windmill well
AZ 76	96	27.5	10	64	Mescal Warm Spring	110°39.4'W 33°10.1'N	T3S R16E Sec 13 SE 1/4 SE 1/4	Spring
AZ 77	97	29.1	14	66	Mescal Warm Spring	110°38.2'W 33°9.3'N	T3S R17E Sec 20 SW 1/4 NW 1/4	Mescal warm springs
AZ 78	98	22.2	-6	68	Pine	111°27.2'W 34°19.3'N	T11N R9E Sec 5 SE 1/4 SW 1/4	Tonto Natural Bridge
AZ 79	99	22.2	32	110	Strawberry	111°36.2'W 34°24.4'N	T12N R7E Sec 22 SW 1/4	Spring
AZ 80	100	40	153	122	Verde Hot Springs	111°42.5'W 34°21.3'N	T11N R6E Sec 3	Verde Hot Springs
AZ 81	101	cold	42	64	Lake Montezuma	111°45.1'W 34°38.9'N	T15N R6E Sec 31 NE 1/4	Montezuma well

5

Field #	Lab #	T °C	т ₂ °С	тз °С	L ₁	L ₂	L ₃	Name
AZ 82	102	25.8	49	128	Governor's Peak	112°19.8'W 33°54.9'N	T7N R1W Sec 26 Sec SE 1/4	Mitchell Spring
AZ 83	103	45.5	85	113	Governor's Peak	112°21.7'W 34°59.0'N	T8N R1W Sec 34 SW 1/4 SW 1/4	Castle Hot Springs
AZ • 84	104	32	152	110	Wikieup	113°34.5'W 34°41.6'N	T16N R13W Sec 25 SW 1/4 NE 1/4	Coffers Hot Springs
AZ 85	105	42.2	118	90	Hoover Dam	114°44.7'W 36°0.6'N	T22S R65E Sec 29 SW 1/4	Hoover Dam Hot Spring
AZ 86	106	35.1	75	-30	Muddy Peak Nev.	114°32.9'W 36°25.4'N	T17S R67E Sec 30 SW 1/4 NW 1/4	Water Fountain Valley of Fire, Ne
AZ 87	107	26.1	84	64	Littlefield	113°54.9'W 36°53.8'N	T40N R15W Sec 4 SE 1/4 NW 1/4	Spring ,
AZ 88	108	41.9	192	82	Dixie National Forest	113°16.3'W 37°11.4'N	T41S R13W Sec 25 SW 1/4 SW 1/4	La Verkin Hot Spring, UT
AZ 89	109	20.5	44	51	Dixie National Forest	113°16.1'W 37°11.5'N	T41S R13W Sec 25 SW 1/4 NE 1/4	Virgin River Utah
AZ 90	110	33.5	188	70	Dixie National Forest	113°16.5'W 37°11.5'N	T41S R13W Sec 25 SE 1/4 NE 1/4	Virgin River Utah
AZ 91	111	cold	88	54	Fredonia	112°44.4'W 36°51.8'N	T40N R4W Sec 17 Se 1/4 SE 1/4	Pipe Springs
AZ 92	112	18	192	- 30	Lyman Lake SW	109°23.0'W 34°22.1'N	T11N R28E Sec 9 NW 1/4 SE 1/4 SE 1/4	Well
AZ 93	113	25	32	87	St. David	110°12.9'W 31°52.9'N	T18S R21E Sec 8 NE 1/4 SE 1/4	Artesian well
AZ 94	114	25.6	38	82	St. David	110°12.9'W 31°53.0'N	T18S R21E Sec 8 NE 1/4 SE 1/4	Artesian well

ø

.

.

C

່ ເວັ

Field ∦	Lab 🖞	. T ₁ °C	т ₂ °с	т _Э °с	L ₁	L ₂	L3	Name
A2 95	115	29	72	68	Mobile	112°21.3'W 33°7.4'N	T3S R1W Sec 34 NW 1/4 SW 1/4	Pumped Warm well
AZ 96	116	34.5	1.39	61	Mobile	112°21.9'W 33°12.2'N	T3S R1W Sec 4 NW 1/4 NE 1/4	Pumped Warm well
AZ 97	117	32.8	98	68	Mobile	112°25.5'W 33°13.1'N	T2S R2W Sec 25 SW 1/4 SW 1/4	Pumped Warm well
AZ 98	118	31.2	123	62	Mobile	112°26.6'W 33°14.0'N	T2S R2W Sec 23 SW 1/4 SW 1/4	Pumped Warm well
AZ 99	119	26.7	4	98	Organ Pipe Cactus National Monument	112°58.5'W 32°0.6'N	T16S R7W Sec 28 NW 1/4 NE 1/4	Bonita Well
AZ 100	120	26.5	77	97	Organ Pipe Cactus National Monument	113°1.4'W 31°57.7'N	T17S R7W Sec 18 SE 1/4	Quitobaquito Spring
AZ 101	121	28	45	79	Coolidge	111°34.0'W 32°54.1'N	T6S R7E Sec 13 NE 1/4 SE 1/4	Pumped well
AZ 102	122	61	86	94	Coolidge	111°34.0'W 32°54.2'N	T6S R7E Sec 13 NE 1/4 SE 1/4	Hot pumped well
AZ 103	123	30	51	90	Coolidge	111°33.5'W 32°53.7'N	T6S R8E Sec 18 SW 1/4 SE 1/4	Hot pumped well
AZ 104	124	49.5	69	93	Coolidge	111°35.0'W 32°50.2'N	T4S R7E Sec 1 SW 1/4	Hot pumped well
AZ 105	125	56.8	63	99	Coolidge	111°32.0'W 32°57.6'N	T5S R8E Sec 28 SW 1/4 SE 1/4	llot pumped well
AZ 106	126	55.6	79	91	Coolidge	111°35.4'W 32°56.7'N	T5S R7E Sec 36 NE 1/4 SW 1/4	Hot pumped well
AZ 107	127	41.1	73	81	Coolidge	111°34.5'W 32°59.3'N	T5S R7E Sec 13 SE 1/4 NE 1/4	llot pumped well
								(continued)

 \mathbf{C}

i

ហ

۰.

1

Field #	Lab #	т °С	т ₂ °С	т ₃ °с	L ₁	L ₂	L ₃	Name
AZ 108	128	26.7	51	93	Coolidge	111°35.5'W 32°59.4'N	T5S R7E Sec 13 NW 1/4 SE 1/4	Pumped well
AZ 109	129	22.8	22	87	Cassadore Springs	110°24.0'W 33°30.7'N	T2N R19E Sec 17 NW 1/4	Cassadore spring
AZ 110	130	30.0	71	106	Bronco Gulch	110°12.7'W 33°26.4'W	T1N R20E Sec 12	Warm springs
AZ 111	131	16.7	82	52	Hunt	109°34.6'W 34°37.4'N	T14N R26E Sec 10 SW 1/4 SE 1/4	Stinking spring
AZ 112	179	17.2	71	71	Salado	109°23.9'W 34°26.3'N	T12N R28E Sec 17 NW 1/4 SE 1/4	Salado spring
AZ 113	180	cold	76	62	Salado	109°23.9'W 34°26.2'N	T12N R28E Sec 17 SE 1/4 NW 1/4	Little Colorado River
AZ 114	181	cold	79	63	Salado	109°24.0'W 34°26.1'N	T12N R28E Sec 17 SE 1/4 NW 1/4	Little Colorado River
AZ 115	182	21.7	85	63 ,	Salado	109°23.8'W 34°26.1'N	T12N R28E Sec 17 SE 1/4 SW 1/4 NE 1/4	Salado Spring
AZ 116	183	16.1	77	56	Salado	109°24.2'W 34°24.8'N	T12N R28E Sec 29 NW 1/4 SE 1/4	Salt Spring
AZ 117	184	cold	29	80	Springerville	109°17.4'W 34°11.2'N	T9N R29E Sec 8 SE 1/4	Hooper Ranch Domestic Spring
AZ 118	185	cold	28	86	Springerville	109°15.5'W 34°10.5N	T9N R29E Sec 15	Hooper Ranch Windmill
AZ 119	186	39.4	64	77	Artesia	109°42.4W 32°43.2'N	T8S R26E Sec 20 SE 1/4 SW 1/4	Hot Artesian well

(continued)

41

Field ∦	Lab #	T °C	т ₂ °с	т _з °с	L _{1.}	L ₂	L ₃	Name
AZ 120	187	cold	25	84	Redrock	111°22.0'W 32°37.1'N	T9S R9W Sec 24 SE 1/4 SW 1/4	Pumped well
AZ 121	188	27.2	63	118	Warm Springs	114°18.4'W 34°53.8'N	T18N R19W Sec 33 SW 1/4 SE 1/4	Warm springs
AZ 122	189	28.3	68	94	Warm Springs SE	114°20.5'W 34°45.8'N	T16N R19W Sec 3 NW 1/4 NE 1/4	Pumped well
AZ 123	190	29.4	52	96	Yucca	114°8.9'W 34°48.8'N	T17N R18W Sec 36 SE 1/4 NW 1/4	Pumped well
AZ 124	191	32.2	38	83	Yucca	114°8.6'W 34°52.9'N	T17N R18W Sec 1 SE 1/4 SE 1/4	Pumped well
AZ 125	192	19.4	41	105	Peach Springs	113°22.5'W 35°31.7'N	T25N R10W Sec 29 NW 1/4	Shipley well
AZ • 126	193	19.4	10	62	Peach Springs	113°25.8'W 35°34.7'N	T25N R11W Sec 3 SE 1/4	Peach Springs
AZ 127	194	15.0	40	82	Truxton	113°33.3'W 35°29.8'N	T24N R12W Sec 3 NW 1/4	Mud Flats well
AZ 128	195	28.3	130	78	Tom Brown Canyon	113°36.6'W 34°55.0'N	T18N R13W Sec 25 NW 1/4 SE 1/4	Warm Spring
AZ 129A	196	23.9	33	84	Pilgrim Wash	113°38.8'W 34°53.5'N	T18N R13W Sec 34 SW 1/4	Windmill well
AZ 129B	197 [·]	17.8	53	79	Ives Peak	113°35.3'W 34°14.4'N	T10N R13W Sec 2 NW 1/4 SW 1/4	Pumped well
AZ 130	198	31.1	65	70	Salome	113°34.2'W 33°48.3'N	T5N R13 W Sec 1 SW 1/4	Pumped well

D

56

C

1

x

e,

Field #	Lab #	т °с	т ₂ °с	т _з °с	L ₁	L ₂	L ₃	Name
AZ 131	199	26.1	56	83	Норе	113°33.4'W 33°44.4'N	T5N R12W Sec 31 NE 1/4 NE 1/4 NE 1/4	Pumped well
AZ 132	200	40.0	87	109	Cortez Peak	113°10.2'W 33°28.3'N	T2N R9W Sec 34 SE 1/4 NW 1/4 NW 1/4	Pumped well
AZ 133	201	49.4	66	70	Arlington	112°57.4'W 33°29.4'N	T2N R7W Sec 26 NE 1/4 SE 1/4 NW 1/4	Pumped well
AZ 134	202	28.3	-18	58	Elgin	110°42.2'W 31°38.1'N	T21S R16E Sec 3 SW 1/4	Monkey Spring
AZ 135	203	warm	108	106	Empire Mtns.	110°31.3'W 31°45.6'N	T19S R18E Sec 29 NE 1/4 NE 1/4	011 test
AZ 136	334	25.8	51	126	Cochise	109°42.1'W 32°0.5'N	T16S R25E Sec 28 SE 1/4 SE 1/4 SE 1/4	Pumped well
AZ 137		صر ہی جہ ج _{ر ہے} جد	• •••• ••• •••	۳ تاہ ہے ہے۔ 	sample broken-			
AZ 138	335	24	99	85	College Peaks	109°16.0'W 31°22.7'N	T24S R30E Sec 11 NW 1/4 NW 1/4	Astin Spring
AZ 139	336	cold	94	89	College Peaks	109°16.7'W 31°20.2'N	T24S R30E Sec 15 SW 1/4 SE 1/4	San Bernardino Ranch
AZ 140	337	29.5	62	90	College Peaks	109°15.7'W 31°20.6'N	T24S R3OE Sec 14 NW 1/4	Warm Artesian well
AZ 141	338	25.5	229	129	Guadalupe Canyon	109°10.9'W 31°21.1'N	T24S R31E Sec 10 SW 1/4 SW 1/4	Windmill well
AZ 142	339	28.8	195	89	Guadalupe Canyon	109°14.7'W 31°23.4'N	T23S R30E Sec 36 NW 1/4	Windmill well

(continued)

ţ

44

•

Field #	Lab #	T °C	т ₂ °с	т _з °с	L ₁	L.2	L ₃	Name
AZ 143	340	27.5	78	86	Guadalupe Canyon	109°13.4'W 31°25.5'N	T23S R31E Sec 18 SE 1/4 SW 1/4	Windmill well
AZ 144					sample br	oken	· 	
AZ 145	341	29	84	119	Pedregosa Mtns (no map)	109°15.1'W 31°30.9'N	T22S R30E Sec 14 SE 1/4 NE 1/4	Pumped well
AZ 146	342	>50	123	61	Wellton Mesa	114°4.2'W 32°44.4'N	T8S R18W Sec 12 SW 1/4 SW 1/4	Radium Springs well
AZ 147	343	36	80.7	102	Gila Bend	112°44.2'W 32°56.2'N	T6S R5W Sec 2 NE 1/4 SE 1/4	Pumped warm well
AZ 148	344	25.9	53	95	Theba	112°48.2'W 32°55.7'N	T6S R5W Sec6 SE 1/4 NE 1/4SE 1/4	Pumped well
AZ 149	345	37.5	84	75	Theba	112°45.1'W 32°55.9'N	T6S R5W Sec3 SE 1/4 SE 1/4	Pumped warm well
AZ 150	346	21.5	53	110	Kirkland	112°41.5'W 34°26.8'N	T13N R4W Sec 29 NE 1/4 NE 1/4	Seep
AZ 151	347	cold	24	81	Date Ariz.	112°54.1'W 34°16.2'N	T11N R6W Sec 29 SE 1/4 NE 1/4	Pumped well
AZ 152	348	28	9.1	70	Pakoon Springs	113°57.4'W 36°24.9'N	T35N R16W Sec 24 SE 1/4 NW 1/4	Pakoon Springs
AZ 153 •	349	26	55	68	Klondyke	110°22.5'W 32°59.0'N	T5S R19E Sec 23 SE 1/4	Warm spring
AZ 154	350	20.5	33	93	Klondyke	110°18.5'W 32°48.8'N	T7S R20E Sec 21 NW 1/4 SE 1/4	Cold pumped well
Û

Field ∦	Lab #	т ₁ °с	т ₂ °с	т _з °с	L	L ₂	L ₃	Name
AZ 155	351	29.5	73	76	Thatcher	109°50.1'W 32°49.9'N	T7S R25E Sec 7 SW 1/4 SW 1/4 SW 1/4	Warm Artesian well
AZ 156	352	25.5	71	75	Thatcher	109°51.2'W 32°49.1'N	Ť7S R24E Sec 14 SE 1/4 SE 1/4	Artesian well
AZ 157	353	23	28 .	91	El Capitan Mtn.	110°49.8'W 33°8.4'N	T3S R15E Sec 29 SE 1/4 NE 1/4	Pumped well
AZ 158	354	23.5	36	83	El Capitan Mtn.	110°50.3'W 33°8.7'N	T3S R15E NW 1/4 SE 1/4 NW 1/4	Pumped well
AZ - 159	355	23.5	134	55	Eagar	109°17.9'W 34°5.1'N	T8N R29E Sec 16 SW 1/4 SW 1/4	Pumped well
AZ 160	356	cold	59	74	Voigt Ranch	109°11.1'W 34°17.0'N	T1ON R3OE Sec 8 NE 1/4 NE 1/4	Cold Dug well
AZ 161	357	cold	84	48	Lyman Lakes W	109°22.7'W 34°20.6'N	T11N R28E Sec 21 NE 1/4 NW 1/4	Windmill well
AZ 162	358	cold	96	44	St. Johns South	109°15.3'W 34°27.5'N	T12N R29E Sec 10 NE 1/4 NW 1/4	Windmill well
AZ 163	359	cold	34	77	Ebert Mountain	111°46.0'W 35°32.7'N	T25N R6E Sec 17 SE 1/4 NE 1/4	Cold Spring
AZ 164	360	cold	24	90	Ebert Mountain	111°46.5'W 35°32.2'N	T25N R6E Sec 20 NW 1/4 SE 1/4	Cold pumped well
AZ 165	361	30	55	68	Glendale	112°13.2'W 33°32.3'N	T2N R1E Sec 2 SE 1/4 SE 1/4 SE 1/4	Pumped well
AZ 166	362	23	74	89	Fowler	112°9.1'W 33°25.8'N	T1N R2E Sec 15 NW 1/4 SW 1/4 SW 1/4	Pumped well

(continued)

ŧ١.

Field #	Lab 🕌	т °с	T ₂ °C	т _з °с	L ₁	L ₂	L ₃	Name
AZ 167	363	23	57	77	Fowler	112°9.0'W 33°26.4'N	T1N R2E Sec 10 SW 1/4 SW 1/4 NV 1/4	Pumped well
AZ 168	364	44	61	75	Perryville	112°28.7'W 33°26.4'N	T1N R2W Sec 8 SE 1/4 NE 1/4 SE 1/4	Hot pumped well
AZ 169	365	33	71	70	Perryville	112°24.3'W 33°28.7'N	T2N R1W Sec 31 NW 1/4 NW 1/4 NW 1/4	Hot pumped well
AZ 170	366	N/A	137	93	Норе	113°41.6'W 33°31.4'N	T2N R14W Sec 10 SW 1/4 SE 1/4	Pumped well
AZ 171	367	26.5	6 6	86	Utting	113°53.2'W 33°50.3'N	T6N R16W Sec 26 NE 1/4 NE 1/4 SE 1/4	Pumped well
AZ 172	368	33.0	N/A	N/A	Cortez Peak	113°6.6'W 33°27.9'N	T1N R8W Sec 6 NE 1/4 NE 1/4 NE 1/4	Hot pumped well
AZ 173	369	35.0	73	81	Cortez Peak	113°6.3'W 33°28.8'N	T2N R2W Sec 32 NW 1/4 NW 1/4 NW 1/4	Hot pumped well
AZ 174	370	39.0 .	60	79	Paradise Valley	111°54.8'W 33°32.7'N	T2N R4E Sec 2 SE 1/4 NW 1/4	Hot pumped well
AZ 175	371	23.0	36	114	Chandler	111°48.4'W 33°18.4'N	T1S R5E Sec 26 SE 1/4 SE 1/4 SE 1/4	Pumped well
AZ 176	372	19.1	13	70	Cibola National Forest-North half	107°6.9'W 34°6.4'N	T2S R3W Sec 25 NW 1/4 SW 1/4	Windmill well
AZ 177	373	14.9	13.5	88	Cibola National Forest-North half	107°30.5'W 34°5.0'N	T3S R7W Sec 1 NW 1/4 NW 1/4	Buck well
AZ 178	374	35.2	52.1	108	Cibola National Forest-North half	107°32.6'W 34°6.0'N	T2S R7W Sec 27 SE 1/4 SE 1/4 SE 1/4	Warm well

Ł

(continued)

I)

Æ		
L	/	

اهن و

Field #	Lab #	T °C	т ₂ °С	т _з °с	L 1	L ₂	L ₃	Name
AZ 179	375	17.2	22	77	Cibola National Forest-North half	107°32.6'W 34°5.2'N	T2S R7W Sec 34 SE 1/4 SE 1/4 SE 1/4	East well
AZ 180	376	N/A	16	107	Williams 1:250,000	113°39.0'W 35°26.3'N	T24N R3W Sec 22 SE 1/4 SE 1/4	Windmill well
AZ 181	377	31.0	82	79	Overton Beach Nev.	114°22.3'W 36°27.7'N	T18S T67E Sec 13 NW 1/4 SW 1/4	Spring
AZ 182	378	31.2	76	58	Overton Beach Nev.	114°26.7'W 36°22.6'N	T18S T67E Sec 12 SE 1/4 SE 1/4	Rogers Spring
AZ 183	379	31.0	81	58	Overton Beach Nev.	114°26.1'W 36°23.4'N	T18S R68E Sec 7 NE 1/4 NW 1/4 NW 1/4	Blue Pt. Spring
AZ 184	380	N/A	73	61	Kingman 1:250,000	114°14.7'W 35°24.4'N	T23N R18W Sec 6 SW 1/4 NE 1/4 NE 1/4	Well
J1	N/A	25.6	2.8	51.8	Reading Mountain	108°21.5'W 32°53.4'N	T16S R15W Sec 26 SE 1/4 NW 1/4	Allen Spring
J2	N/A	36.7	51.8	97.4	Dillon Mountain	108°47.9'W 33°49.8'N	T5S R19W Sec 35 NW 1/4 NW 1/4 NW 1/4	Upper Frisco Hot Springs
J3	N/A	43.3	148.6	121.9	Wilson Mountain	108°52.7'W 33°14.6'N	T12S R2OW Sec 23 SW 1/4 NE 1/4 NW 1/4	Lower Frisco Hot Springs
J4	N/A	40.0	97.0	114.3	Wilson Mountain	108°52.6'W 33°14.9'N	T12S R2OW Sec 23 NW 1/4 SW 1/4	Lower Frisco Hot Springs
J5	N/A	48.9	147.9	131.9	Wilson Mountain	108°52.8'W 33°14.5'N	T12S R2OW Sec 23 SW 1/4 NE 1/4 SW 1/4	Lower Frisco Hot Springs
J6	N/A	21.1	38.9	74.1	Buckhorn (no map)	108°41.5'W 33°1.6'N	T15S R18W Sec 3 SW 1/4 NW 1/4 NW Уч	Well

÷1

۲

654

٠

.

Field	Lab #	°L	°Z	т с	L ₁	L ₂	^L 3	Name
J7	N/A	25.0	53.0	78.4	Cliff	108°37.9'W 32°58.5N	T15S R17W Sec 30 NE 1/4 NE 1/4 NE 1/4	Warm Spring
. P1	N/A	23.0	38.1	81.2	Swallow Fork Peak	108°47.6'W 32°8.7'N	T25S R19W Sec 10 NW 1/4 SW 1/4 SW 1/4	Road Well
P2	N/A	85.0	172.9	160.1	Swallow Fork Peak	108°49.9'W 32°8.7'N	T25S R19W Sec 7 NE 1/4 SW 1/4 SE 1/4	Hot Well
Р3	N/A	81.0	168.5	158.2	Swallow Fork Peak	108°49.9'W 32°8.9'N	T25S R19W Sec 7 NE 1/4 NW 1/4 SE 1/4	McCants . Well
P4	N/A	71.0	158.8	145.5	Swallow Fork Peak	108°50.4'W 32°8.7'N	T25S R19W Sec 7 NW 1/4 SE 1/4 SW 1/4	Well
P5	N/A	22.0	60.0	94.2	Swallow Fork Peak	108°50.9'W 32°8.1'N	T25S R2OW Sec 13 NE 1/4 NW 1/4 SE 1/4	Well
P10	N/A	23.0	71.1	111.1	Swallow Fork Peak	108°49.7'W 32°13.6'N	T24S R19W Sec 7 SE 1/4 SE 1/4 NE 1/4	H111 Well
P13	N/A	19.0	49.3	121.1	Swallow Fork Peak	108°52.4'W 32°13.7'N	T24S R2OW Sec 11 SW 1/4 NE 1/4 SW 1/4	Well
P14	N/A	20.0	38.2	100.3	Swallow Fork Peak	108°52.8'W 32°10.1'N	T24S R20W Sec 34 SE 1/4 SE 1/4 SE 1/4	Well
P15	N/A	24.0	57.4	85.0	Table Top Mountain	108°50.7'W 32°6.1'N	T25S R20W Sec 25 SE 1/4 NE 1/4 NE 1/4	Well
P20	N/A	22.0	38.6	102.2	Cotton City	108°54.0'W 32°4.8'N	T26S R20W Sec 5 SE 1/4 SE 1/4 SE 1/4	Well
P22	N/A	22.0	41.6	95.2	Table Top Mountain	108°52.9'W 32°4.1'N	T26S R20W Sec 3 SW 1/4 SW 1/4 SW 1/4	Well
P23	N/A	24.0	45.6	78.4	Swallow Fork Peak	108°48.8'W 32°12.2'N	T24S R19W Sec 2 SE 1/4 NE 1/4 NW 1/4	National Well

ł

C

Field	Lab #	т ₁ °с	т ₂ °с	т _з °с	L ₁	L ₂	L ₃	Name
P24	N/A	N/A	156.0	161.0	Swallow Fork Peak	108°50.7'W 32°10.9'N	T24S R2OW Sec 25 SE 1/4 SE 1/4 SE 1/4	Well
P25	N/A	23.0	50.1	85.0	Swallow Fork Peak	108°52.8'W 32°9.1'N	T25S R2OW Sec 10 NE 1/4 NE 1/4 NE 1/4	Well
Gila	1 SW28	17.7	36.1	94.0	Las Cruces 1:250,000	107°57.5'W 32"28.7'N	T21S R11W Sec 15, SE 1/4	Well
Gila	2 SW29	58.8	78.4	97.2	Dwyer	107°59.7'W 32°33.3'N	T2OS R11W Sec 20 NW 1/4 SE 1/4	Faywood Hot Spring
Gila	3 SW30	21.3	47.0	92.8	Las Cruces 1:250,000	107°58.1'W 32°33.5'N	T2OS R11W Sec 22 NW 1/4	Well
Gila	4 SW31	58.2	74.5	106.8	Dwyer	107°50.1'W 32°44.9'N	T18S R10W Sec 13 NW 1/4 NW 1/4 NW 1/4	Mimbres Hot Spring
Gila	5 SW32	62.8	76.3	119.8	Gila National Forest	108°12.5'W 33°12.0'N	T13S R13W Sec 5 NE 1/4 NW 1/4	Gila Hot Spring
Gila	6 SW33	66.3	77.3	120.5	Gila National Forest	108°12.6'W 33°12.0'N	T13S R13W Sec 5 NE 1/4 NW 1/4	Gila Hot Spring
Gila	7 SW34	64.8	74.4	128.9	Gila National Forest	108°14.2'W 33°14.0'N	T12S R14W Sec 24 SE 1/4 SE 1/4	Hot Spring
Gila	8 SW35	43.6	62.2	128.9	Gila National Forest	108°12.7'W 33°9.8'N	T13S R13W Sec 17 SW 1/4 NE 1/4	Hot Spring
Gila	9 SW36	N/A	44.4	110.3	Gila National Forest	108°00.5'W 32°34.6'N	T2OS R11W Sec 8 SW 1/4 SW 1/4 SW 1/4	Well
Gila	10 SW37	N/A	48.4	111.2	Gila National Forest	108°00.0'W 32°35.1'N	T2OS R11W Sec 8 NW 1/4 SE 1/4 SE 1/4	Well

Field #	Lab #	T °C	т ₂ °с	т _з °с	L ₁	L ₂	L ₃	Name	
Gila ll	SW38	N/A	55.0	105.9	Gila National Forest	108°2.5'W 32°33.8'N	T2OS R11W Sec 18 SW 1/4 SW 1/4 NE 1/4	Well	
LD1	SW132	25.3	141.6	84.0	Lordsburg	108°38.8'W 32°18.9'N	T23S R18W Sec 12 SE 1/4 SW 1/4 NW 1/4	Well	
LD2	SW133	33.0	150.6	91.2	Muir Ranch	108°30.7'W 32°13.7'N	T24S R16W Sec 8 SE 1/4 NW 1/4 SW 1/4	Well	
LD3	SW134	N/A	61.3	95.3	Muir Ranch	108°33.6'W 32°10.6'N	T24S R17W Sec 35 NE 1/4 SW1/4	Well	
LD4	SW135	N/A	57.6	82.5	Coyote Peak	108°34.5'W 32°3.7'N	T26S R17W Sec 10 NW 1/4 NW 1/4 NW 1/4	Lone Hill Well	
LD5	SW136	N/A	94.3	99.1	Playas	108°36.9'W 31°55.8'N	T27S R17W Sec 30 SW 1/4 NE 1/4	Well	
LD6	SW137	N/A	35.8	89.5	Pratt (no map)	108°48.5'W 31°57.0'N	T27S R19W Sec 12 SE 1/4 SW 1/4 NE 1/4	Well	
LD7	SW138	24.4	21.3	99.5	Pratt (no map)	108°46.5'W 31°48.6'N	T29S R19W Sec 4 SE 1/4 SW 1/4 NE 1/4	Well	
LD8	SW139	21.2	18.9	97.2	Pratt (no map)	108°52.5'W 31°50.0'N	T28S R20W Sec 34 NE 1/4 NW 1/4 NW 1/4	Well	
LD9	SW140	18.7	44.7	99.5	Animas Peak (no map)	108°49.9'W 31°40.2'N	T3OS R2OW Sec 25 NE 1/4 SE 1/4 NE 1/4	Well	
LD10	SW141	N/A	57.6	90.9	Animas Peak (no map)	108°52.2'W 31°35.8'N	T31S R2OW Sec 22 NE 1/4 SW 1/4 NE 1/4	Well	
LD11	SW142	18.3	69.9	104.0	Cinenega Springs	108°51.8'W 31°24.2'N	T33S R20W Sec 27 SW 1/4 NW 1/4 SE 1/4	Well	
LD12	SW143	18.0	53.3	86.7	Cinenega Springs	108°54.9'W 31°23.2'N	T33S R20W Sec 31 SW 1/4 SE 1/4 SE 1/4	Well	

Field ∦	Lab #	т ₁ °с	т ₂ °с	т _з •с	L ₁	L ₂	L ₃	Name	
LD13	SW144	17.0	56.2	90.9	Cinenega Springs	108°47.9'W 31°20.4'N	T34S R19W Sec 18 SE 1/4	Cienega Springs	
LD14	SW145	24.9	38.2	51.0	Cinenega Springs	108°50.4'W 31°28.0'N	T33S R2OW Sec 2 NW 1/4	Well	
LD15	SW146	20.6	38,6	99.5	Animas Peak	108°52.4'W 31°34.2'N	T31S R2OW Sec 33 NW 1/4 SE 1/4 NE 1/4	Well	
LD16	SW147	19.1	27.3	93.5	Animas Peak	108°54.3'W 31°37.3'N	T31S R2OW Sec 7 SE 1/4 NW 1/4 NW 1/4	Well	
LD17	SW148	21.6	23.3	95.9	Animas Peak	108°48.6'W 31°44.8'N	T29S R19W Sec 30 SE 1/4 SW 1/4 SE 1/4	Well	
LD18	SW149	N/A	35.1	94.8	Animas Peak	108°48.0'W 31°52.9'N	T28S R19W Sec 8 SE 1/4 SW 1/4 NW 1/4	Well	
Gila 20	SW150	74.6	56.2	116.5	Canyon Hill	108°29.0'W 33°6.5'N ซู	T14S R16W Sec 3 SW 1/4 SE 1/4	Spring on Turkey Creek	
Gila 21	SW151	28.0	53.8	101.8	Canyon Hill	108°29.0'W	T14S R16W Sec 3 SW 1/4 SE 1/4	Turkey Creek	
Gila 22	SW152	69.8	68.3	117.4	Canyon Hill	108°29.0'พ ^{ฎี} 33°6.5'พ	T14S R16W Sec 3 SW 1/4 SE 1/4	Spring on Turkey Creek	
Gila 23	SW153	29.0	50.5	66.0	Canteen Canyon	108°35.8'W 33°1.1'N	T15S R17W Sec 9 NE 1/4 NE 1/4 SW 1/4	Well	
Gila 24	SW154	31.0	41.8	85.3	Cliff	108°35.0'W 32°52.6'N	T16S R17W Sec 34 NE 1/4 NW 1/4	Spring	
Gila 25	SW155	N/A	67.5	99.5	Cliff	108°36.7'W 32°56.1'N	T16S R17W Sec 9 NE 1/4 NE 1/4 SE 1/4	Well	

·

,

65

•

, , ,

Field #	Lab #	T1 °C	т ₂ °с	T3 °C	L ₁	L ₂	^L 3	Name
Gila 26	SW156	19.0	24.0	101.2	Cliff	108°35.9'W 32°55.4'N	T16S R17W Sec 10 SE 1/4 SW 1/4	Well
Gila 27	SW157	20.0	66.7	113.5	Cliff	108°36.4'W 32°57.9'N	T15S R17W Sec 28 SW 1/4 SE 1/4	Well .
Gila 28	SW158	21.5	58.4	104.5	Cliff	108°36.8'W 32°57.9'N	T15S R17W Sec 29 SE 1/4 SE 1/4	Artesian Well
Gila 29	SW159	. 27.0	49.5	108.7	Cliff	108°30.6'W 32°50.5'N	T17S R16W Sec 8 NE 1/4 SE 1/4 SE	Mangas Springs
Gila 30	SW160	24.0	77.8	100.1	Cliff	108°35.5'W 32°48.8'N	174 T17S R17W Sec 32 NW 1/4 SW1/4 SW1	Spring
MFG1	SW161	31.0	34.6	102.7	Alum Mountain	108°15.8'W 33°17.0'N	T11S R14W Sec 35 SW 1/4 SE 1/4(ur	Spring
MF G2	SW162	37.0	19.4	107.2	Alum Mountain	108°16.9'W 33°17.4'N	surveyed) T11S R14W Sec 35 SW 1/4 NE 1/4 (u	Spring
MFG3	SW163	36.0	31.4	107.5	Alum Mountain ,	108°16.9'W 33°17.4'N	surveyed) T11S R14W Sec 34 NE 1/4 SE 1/4 (u	Spring
MF G4	SW164	26.0	22.6	105.4	Alum Mountain	108°15.0'W 33°16.4'N	surveyed) T12S R14W Sec 1 SW 1/4 SW 1/4 SW	Spring
AN1	SW283	18.0	38.5	109.3	Swallow Fork Peak	108°52.2'W 32°11.7'N	(unsurveyed) T24S R2OW Sec 20 NW 1/4 NE 1/4 NE	5 1/4
AN2	SW284	19.0	58.1	54.1	Swallow Fork Peak	108°48.8'W 32°12.2'N	T24S R19W Sec 2 SE 1/4 NE 1/4 NW	1 1/4
AN 3	SW285	16.0	41.0	117.1	Swallow Fork Peak	108°52.8'W 32°10.1'N	T24S R20W Sec 34 SE 1/4 SE 1/4	à
AN4	SW286	24.0	94.0	135.8	Swallow Fork Peak	108°50.7'W 32°9.7'N	T25S R20W Sec 1 NE 1/4 SE 1/4 NI	2 1/4

C		, , , , , , , , , , , , , , , , , , ,				. •	ì	C
Field #	Lab #	т ₁ •с	т ₂ °С	т _з °с	L ₁	L ₂	L ₃	Name ·
AN5	SW287	19.0	60.0	102.3	Swallow Fork Peak	108°50.9'W 32°8.1'N	T25S R20W Sec 1 NE 1/4 NW 1/4 S	3 36 1/4
AN6	SW288	19.0	52.3	79.4	Table Top Mountain	108°51.2'W 32°7.3'N	T25S R20W Sec 1 SW 1/4 SE 1/4 S	3 E 1/4
AN7	SW289	20.0	52.2	78.7	Table Top Mountain	108°50.8'W 32°6.3'N	T25S R20W Sec 2 NE 1/4 NE 1/4 S	5 E 1/4
AN8	SW290	N/A	40.7	84.0	Swallow Fork Peak	108°53.2'W 32°7.7'N	T25S R20W Sec 1 SE 1/4 NW 1/4	5
AN9	SW291	18.0	61.2	-20.9	Table Top Mountain	108°52.8'W 32°4.8'N	T25S R20W Sec 3 SE 1/4 SE 1/4	4
AN10	S₩292	18.0	58.0	89.0	Cotton City	108°53.5W 32°4.5N	T26S R20W Sec 4 NW 1/4 SE 1/4	· ,
AN11	SW293	19.0	44.9	96.5	Cotton City	108°54.6W 32°3.1N	T2OS R2OW Sec 5 SW 1/4 SE 1/4	i
AN12	SW294	21.0	44.8	97.1	Cotton City	108°54.0'W 32°4.7'N	T26S R20W Sec 5 NE 1/4 NE 1/4 N	E 1/4
AN13	SW295	26.0	63 . 9	82.3	Table Top Mountain	108°52.7W 32°3.1'N	T26S R20W Sec 1 NW 1/4 NE 1/4 N	.4 W 1/4
AN14	SW296	20.0	44.6	96.0	Cotton City	108°55.0'W 32°2.7'N	T26S R20W Sec 1 NW 1/4 SW 1/4 S	7 W 1/4
AN15	SW297	24.0	44.1	79.6	Table Top Hountain	108°51.2'W 32°4.3'N	T26S R20W Sec 1 SW 1/4 SW 1/4 S	4 5E 1/4
an16	SW298	20.0	48.1	88.4	Cotton City	108°53.3W 32°3.6'N	T26S R20W Sec 9 NE 1/4 SW 1/4 S) SE 1/4
AN17	SW299	22.0	80.3	79.6	Table Top Mountain	108°52.7'W 32°4.8'N	T25S R20W Sec 3 SE 1/4 SE 1/4 S	5 E 1/4

•

,

Field #	Lab #	т ₁ °с	т ₂ °С	т ₃ °с	L _{1 .}	L ₂	L ₃	Name
AN18	SW300	21.0	45.3	89.0	Table Top Mountain	108°52.2W 32°5.6'N	T25S R2OW Sec 26 SE 1/4 SW 1/4 SW 1	/4
AN 19	SW301	N/A	29.9	91.8	Swallow Fork Peak	108°46.4'W 32°9.1'N	T25S R19W Sec 11 NW 1/4 NW 1/4	
AN 20	SW302	20.0	39.2	101.5	Cotton City	108°53.6'W 32°5.2'N	T25S R2OW Sec 34 NW 1/4 SW 1/4 SE 1	/4
AN21	SW303	19.0	48.7	89.0	Cotton City	108°55.3'W 32°7.2'N	T25S R2OW Sec 20 NW 1/4 NE 1/4 SW 1	/4
AN 22	SW304	19.0	47.6	82.9	Table Top Mountain	108°51.7'W 32°6.3'N	T25S R2OW Sec 25 NW 1/4 NW 1/4 SW 1	/4
AN2 3	SW305	18.0	41.4	88.4	Steins	108°52.7'W 32°9.1'N	T25S R20W Sec 2 SW 1/4 SW 1/4 SW 1	/4
SWAN 306	SW306	34.0	22.7	101.4	Alum Mountain	108°15.0'W 33°16.4'N	T12S R14W Sec 1 SW 1/4 SW 1/4 SW 1 (upsurveyed)	Spring /4
SWAN 307	SW307	32.0	22.7	101.9	Alum Mountain	108°15.0'W 33°16.4'N	T12S R14W Sec 1 SW 1/4 SW 1/4 SW1/ (unsurveyed)	Spring 4
SWAN 308	SW308	7.0	29.5	76.8	Alum Mountain	108°15.0'W 33°16.4'N	T12S R14W Sec 1 SW 1/4 SW 1/4 SW1/ (unsurveyed)	Middle Fork 4 Gila River
SWAN 309	SW309	N/A	29.7	91.3	Alum Mountain	108°12.1'W 33°10.6'N	T13S R13W Sec 8 SE 1/4 NW 1/4 (unsurveyed)	East Fork Gila River
SWAN 310	SW310	N/A	21.8	72.3	Alum Mountain	108°12.3'W 33°10.8'N	T13S R13W Sec 8 NE 1/4 SW 1/4 (upsurveyed)	West Fork Gila River

Table 2. Major Cations and Anions for Springs and Wells in Arizona, Western New Mexico, and Southwestern Utah.

	-				- GLL +	رد، زیدی، میرد، به به به برد.	mg/1				مر مر من
Field #	Lab #	TDS	<u>рĦ</u>	Ca	Mg	Na	<u>K</u>	<u>C0</u> 3	HCO3	<u>C1</u>	<u>50,</u>
AZ1	l	420	8.23	50.2	26.8	22.5	3.1	0	305.0	8.8	26.9
AZ2	2	380	8.12	41.6	10.1	49.7	3.9	0	183.2	57.8	48.4
AZ3	3	12576	7.74	1064.4	52.2	3207.3	209.8	0	91.5	6459.9	0
<u>AZ</u> 4	4	676	8.13	14.4	2.2	197.8	9.0	· 0	287.9	120.7	76.8
AZ5	5	14548	7.86	925.8	22.9	3585.9	243.4	0	150.0	7484.5	0
AZ6	6	808	8.22	73.6	11.4	187.0	11.7	0	190.3	307.4	46.1
AZ7	7	1244	8.04	20.0	0.7	410.8	13.2	0	219.6	463.6	174.7
AZ8	8	424	8.59	34.4	7.8	87.4	4.7	13.2	178.1	38.3	90.3
AZ9	9	432	8.51	31.8	7.3	96.8	5.1	0	198.8	-50.0	90.3
AZ10	10	2672	7.87	79.6	9.0	837.0	13.6	Ō	107.3	1196.3	322.6
AZ11	11	3004	7.88	92.8	10.3	1022.6	12.9	Ō	101.2	1382.0	361.0
AZ12	12	1152	8.50	21.0	0.4	523.7	3.9	Ō	82.9	203.7	282.3
AZ13	13	2256	8.07	69.0	2.6	1053.6	6.6	0	47.6	447.3	604-8
AZ14	14	8292	7.85	135.4	7.9	3027.3	10.9	Ō	80.5	4517.3	787.2
AZ15	15	1076	8.54	7.4	1.3	330.7	4.3	13.2	233.0	203.0	295.8
AZ16	16	1012	8.43	6.2	1.0	357.6	3.9	8.4	250.1	167.5	226.6
AZ17	17	1248	8.38	16.0	0.7	497.9	4.3	0	99.2	197.4	266.9
AZ18	18	280	7.89	39.2	2.9	39.6	2.3	Ô	148.8	6.0	67.2
AZ19	39	352	7.69	29.5	22.8	10.8	3 5	õ	233 1	1 1	12 0
AZ20	40	2556	7.47	94.2	10 2	749 4	10.9	õ	114 7	1153 3	305 5
AZ21	41	3048	7.45	80.6	8.0	920 7	12 9	0	108 6	1/11 7	338 1
AZ22	42	1992	8.50	22.0	0.5	677.7	3.0	24	40 3	817 5	.368.8
4723	43	2660	8 51	64.9	1 1	782 6	5 5	3 6	30 5	1023 5	/06 6
A7.24	44	1160	8 82	18 0	0.2	384 1	2.2	13.2	· /0 3	/18 0	204 4
1725	45	1116	9 00	7 2	0.2	379 1	2.3	16.9	67.7	300 2	234.4
A726	46	000	8 97	9.2	0.1	306 0	1 6	10.0	/g g	203 5	105 0
A727	40	540	7 95	21 6	1 8	141 6	2.0	10.0	161 1	293.J 86 1	11/ 3
1728	48	50%	8 50	4 5	0 1	167 0	1.2	96	136 7	109 1	105 7
4729	40 7.0	740	8 1 8	17 2	1 0	268 9	2.2	5.0	219 /	157 0	172 /
AZ2)	50	268	8 03	22 2	1 9	55 1	2.0	0	210.4	37 5	61 0
AZ30	57	424	7 69	41 0	6 4	77 4	2.0	0	170.8	66 3	78.8
A232	52	302	8 65	7 6	0.2	172 6	2.1	60.	83 0	62 7	172 9
1733	53	256	8 08	22.2	2 1 ~	49 4	27	0.0	117 1	26.9	56 7
A734	54	704	8 06	26 2	0 4	204 3	3 5	Õ	117 1	173 3	120 6
1735	55	2016	7 01	<u>81</u> 1	12 0	517 0	6 2	.0	18/ 3	175 1	1025 9
4736	56	584	7 99	27 4	8 4	145 0	2 0	, ñ	324 6	20 5	134 0
AZ30	57	372	9 30	1 2	0.1	1.36.3	0.8	58 5	153 8	1 8	56.7
A738	58	252	8 0g	1 2	0.1	62 7	0.0	27 6	109.8	0 4	8 1
4730	50	180	8 00°	1 4	006	55 4	0.4	27.0	107 4	0.4	5 8
A240	60	280	7 01	17 8	14.2	36 3	5 1	0	208 7	1 8	16 3
A7/1	61	676	7 67	13 6	0 7	213.6	2 0	Ő	74 4	201 7	135 4
A769	62	670	9 47	2 N	0.7	222 7	2.0	مد	76 0	201.7	150 0
A71.2	42	2020	7 40	112 2	127	1202 0	د.ي د م	<i>3</i> .0	370 5	200.0 Q50 A	12/0 2
Δ 2 μμ) Δ 7 μμ	64	2752U 2752	7 51	۰، ۲ ۱۲۵ ۲	208 3	2320-1	12 0	ů č	520 1	3075 5	1582 6
17/5	65	626	8 02	27 £	1 7	157 2	14 · J / 7	0	124 7	165 0	200.0 / 28
1746 1746	20	1024 1024	8 02	21.0 15 /	10	د.تير 150 2	4./ 5 0	0	133 0	102.7	00.4
 1747	67	750	7 01	12.4	±•0 7 /	200.2	2.7	0	1/8 0	103 0	152 2
4749	68	562	/•31 7 07	4J./ 20 2	7 • 4 7 <i>1</i> .	152 1	7 /	0	127 0	120.2	47 2 47 2
	- u u	200	1	<u> </u>	<u> </u>	1.1.1.1.1	/	U	·//.7	14741	26.6

							اختذ جيوي خادوب وجريد ويركه زد	mg	g/ <u>1</u>		، بي	
	Field #	Lab #	TDS	<u>pH</u>	<u>Ca</u>	Mg	Na	<u>×</u>	<u>CC</u> 3	HCO3	<u>C1</u>	SC ₄
	AZ49	69	532	7.99	23.4	1.9	140.5	5.9	0	114.7	119.1	88.0
	AZ50	70	880	8.18	34.8	1.7	283.5	4.7	0	90.3	305.6	132.0
	AZ51	71	640	8.52	16.0	1.8	197.0	2.7	10.8	100.0	185.0	115.7
	AZ52	72	3276	7.54	272.7	16.8	607.4	15.6	0	131.8	1149.0	498.1
	AZ53.	73	1848	7.67	117.8	6.0	480.7	10.9	0	128.1	714.0	333.3
	AZ54	74	2008	7.85	113.2	3.5	533.3	11.3	0	150.1	889.1	168.1
	AZ55	75	2008	7.73	167.3	26.1	406.9	9.0	0	163.5	711.5	344.9
	AZS6	76	2008	7.48	180.1	66.1	394.5	8.2	0	220.9	828.2	233.4
	AZ57	77	740	8.07	22.8	1.1	244.8	5.9	0	93.9	306.7	70.1
	AZ58	78	384	8.53	14.2	0.6	108.3	2.7	8.4	93.9	126.2	35.5
	AZ59	79	3000	7.86	42.1	5.7	1024.6	6.2	0	117.1	1124.9	584.5
	AZ60	80 1	9048	7.60	67.9	20.7	3283.4	14.1	0	164.7	4096.9	1687.8
	AZ61	81	1464	7.90	37.7	11.4	442.8	6.2	<i>,</i> 0	172.0	365.1	410.2
	AZ62	82	960	8.32	6.6	0.4	350.6	3.5	0	191.6	200.0	283.8
	AZ63	83	720	9.02	2.2	0.2	253.3	4.3	22.8	129.3	111.0	206.5
	AZ64	84.	860	8.28	35.8	9.5	236.8	9.8	. 0	117.1	183.6	273.8
	AZ65	85	1000	8.53	5.4	0.5	332.0	5.1	13.2	194.0	190.0	269.0
	AZ6ó	86	432	8.16	46.9	16.0	31.5	4.3	0	263.6	1.8	32.7
	AZ67	87	120	7.26	15.0	3.3	3.4	5.9	0	57.3	0	10.6
	AZ68	88	416	7.84	81.0	9.5	19.1	1.5	0	203.8	0	94.2
	AZ69	89	408	7.85	75.7	14.8	17.0	1.2	0	220.9	1.1	90.8
	AZ70	90	632	1.79	26.4	2.4	132.6	5.5	0	195.4	23.9	100.3
	AZ 71	91	256	7.41	17.2	4.2	27.5	1.5	0	35.4	4.1	- 00,U
	AZ72	92	2096	/.3/	124.4	29.0	519.8	30.9	0	331.9	748.4	105 7
	AZ73	93	852	/./1	35.9	22.1	193.3	/ . 4	0	200.1	228.4	103.7
	AZ/4	94	492	7.80	. 69.T	33.4	· 17.0	1.0	0	291.0	17.0	53.3
	AZIS	95	248	1.52	63.3	32.2	20.2	1-4	0	270.0	1,1.0	9.0
	AZ/6	96	404	1.13	50./	24.3	1/.0	1.5	0	344.4	J.J 15 6	7.1 S 1
	AZ//	97	332	1.85	44.4	19.2	14.7 6 7	1.5	0	243.2	0.7	0.1 g 1
	A. (۵)	70	308	0.00	40.3	20.7	101	3 9	0	397 0	1 1	2 9
	A2/9	99	404	6.31	40.2	47.7	10.1	2.3	0	1799 1	528 0	550 4
	AZ80	100	2220	7 77	111 9	29.2	50 6	40.3	0	1100.1	42 2	8 1
	A481	101	100	7 5 5	72 1	27.4	20.0	5 1	0	283 1	36 1	104 7
	A232	102	760	7.55	20 0	20.5	202 1	5.1	0	135 4	143 9	195 0
	3403	104	1174	7.00	23.0	2.5	345 5	16.0	25 2	327 0	186 1	252 1
	A404	104	1040	0.00	22:4	20.5	277 0	7 4	22.2	113 5	143 6	497 3
	ALOJ 1796	105	140	0.14	5 0	0.7	35 6	27	ő	36.6	8.1	63.9
	1707	107	2740	7 15	15 S	110.9	231 5	36 4	õ	449.1	385.7	1108.1
	A40/	102	2740	6 52	750 5	146 7	2290.7	216.2	Õ	991.5	3362.7	1687.8
	AL30	100	5/40	8 0/	7J3.J 65 7	26 4	52 2	4.7	õ	192.8	52.8	134.0
	1790	110	5060	7 11	416.8	79.2	1032.7	107.1	õ	598.0	1700.0 .	936.6
·	1701	117	352	7 79	-10.0	5 1	76.5	3.5	Ö	224.5	23.4	5.8
	1797	112	300	8:92	6.0	5.1	79.3	10.2	õ	107.4	81.2	5.8
	A793	113	200	7 58	24 6	1 3	23.2	2.0	õ	142.8	0	3.8
	1794	114	200	7.83	13.4	0.7	32.4	1.5	Ō	117.1	Ō	5.8
	4295	115	632	7.64	32.9	8.1	172.9	5.1	Ō	159.9	174.8	86.4
	4796	116	868	7.77	25.4	3.2	263.0	10.2	_ 0	86.6	323.3	112.4
	4797	117	996	7.84	29.0	5.5	295.9	8.6	- 0	114.7	352.4	168.1
	AZ98	118	736	8.13	14.8	1.6	245.5	6.2	õ	90.3	256.3	104.2

· · · · ·		م العلي العلي التي التي ال الم				ينسنه خانبات العربية الأرمة خدارية ها		mg/l-	نه دری خرب بر ک مونک	مر الم مردانة مسلمة المجام ال	
Fiald #	Lab #	TDS	PH	Ca	ME	Na	<u>K</u> .	<u> </u>	HCO3	<u>C1</u>	<u>50</u> 4
AZ99	119	408	7.64	56.1	10.9	39.1	0.8	0	323.4	0.7	7.2
AZ100	120	768	7.66	33.9	9.8	177.2	6.2	õ	317.3	141.4	90.8
AZ101	121	616	7.63	67.5	3.0	103.7	3.9	Ő	142.8	156.3	92.2
AZ102	122	924	8.67	11.0	0.8	412.2	3.1	õ	75.7	358.8	301.6
AZ103	123	2952	7.41	359.3	50.9	498.6	8.6	Õ	252.6	799.8	877.5
AZ104	124	572	8.93	8.8	0.4	164.4	2.0	8.4	89.1	121.2	110.0
• AZ105	125	744	8.81	14.2	0.8	236.8	2.0	0	67.1	206.0	183.0
AZ106	126	1172	8.59	23.6	1.8	388.3	3.9	Ō	62.2	425.8	229.6
AZ107	127	552	8.57	9.2	0.1	163.4	2.3	Ō	94.0	127.6	107.1
. AZ108	128	1020	7.68	144.5	21.7	106.7	7.8	0	218.4	23.4	444.7
AZ109	129	400	7.70	48.5	19.7	16.1	2.3	õ	278.2	4.9	5.8
AZ110	130	748	7.67	43.3	20.5	157.5	6.2	õ	245.3	244.2	7.2
AZ111	131	2572	7.02	255.9	88.7	432.9	20.3	Õ	537.0	641.3	587.4
AZ112	179	2272	7.46	269.3	58.1	352.2	16.0	Ó	49.3	408.6	404.4
AZ113	180	1704	7.80	195.8	52.3	288.5	16.4	0	603.5	282.6	452.0
AZ114	181	1760	7.70	226.5	53.0	313.4	19.2	0	677.3	318.7	476.9
AZ115	182	2312	7.34	321.0	55.7	387.6	26.6	0	910.4	406.3	582.6
AZ116	183	2380	6.91	329.0	68.8	213.1	25.8	0	485.7	400.6	609.0
AZ117	184	244	7.71	34.5	16.6	19.1	2.3	0	202.6	7.1	15.8
AZ118	185	188	7.88	28.0	13.5	17.0	2.0	0	151.3	5.7	17.8
AZ119	186	816	8.80	7.2	0.1	303.5	1.2	9.0	86.0	259.5	203.2
AZ120	187	1152	7.67	189.4	28.3	73.1	3.9	0	296.5	197.5	232.9
AZ121	188	372	7.81	34.1	18.4	50.8	5.9	0	239.2	31.2	24.5
AZ122	189	392	7.88	36.3	12.9	71.0	6.6	0	228.2	74.1	29.8
AZ123	190	412	7.84	43.5	21.6	41.2	5.1	0	181.8	60.6	70.6
AZ124	191	284	7.87	39.9	12.1	32.2	3.1	0	62.8	41.5	107.6
AZ125	192	1016	8.79	27.4	35.0	30.6	2.7	22.2	52.5	51	28.3
AZ126	193	624	8.08	64.9	44.6	19.8	1.5	0	362.4	37.9	17.8
AZ127	194	284	8.12	26.2	29.8	17.9	3.1	0	170.2	29.4	24.5
AZ128	195	1580	7.93	32.9	9.6	522.5	13.7	0	413.7	492.1	217.1
AZ129a	196	372	. 7.92	63.3	14.1	45.1	3.1	0	282.5	25.9	54.7
AZ1295	197	652	7.85	76.2	23.0	139.1	5.1	0	404.5	114.5	125.4
AZI30	198	328	8.44	6.8	1.7	118.6	1.6	0	201.4	41.1	8.7
AZIJI	199	444	7.66	32.5	9.6	111.3	3.5	0	311.2	48.0	58.1
AZ132	200	544	8.03	17.4	10.0	153.6	5.5	0	209.3	57.1	160.9
AZIJJ	201	612	8.00	15.0	0.7	229.9	2.3	0.	102.5	243.9	79.2
AZL34	202	T000	7.42	180.4	53.7	3.9	1.2	0	322.2	0	407.8
AZ135	203	/44	11,1/	1.8	• 1	319.3	3.5	170.1	37.7	107.1	122.0
. A4130	334	292	8.4/	21.0	.4	57.5	2.7	0	139.1	8.1	50.9
A4138	222	404	/.81	39.3	32.0	54.0	19.2	0	360.0	21.3	43.4
A4139	227	292	8.02	18.0	24.9	41.8	TO . 9	10 1	270.9	8.5	14.4
- <u>AZI4U</u>	22/	20U 797	0/3	20.8	10.0	37.0	3.7	19.2	233.3	30.1	
<u>₩4</u> 144 x 77 4 7	220	104	7 20	7.0 77 2	43.34	200.0	35. 2.	· /0.0	J00.4 1100 0	40.7	04.4 12 /
86146 87182	370	7000 7000	2.77	14 /	13 0	431.1 A7 2	2.در ه ک	18 0	175 7	17.0	4 د <u>د</u>
84143 17115	2/1	200	7 27	15 6	13 0	4/.J	J.7 7 9	TO.U	1/2./		J.0 6 7
AZI43 AZI42	347	244	1.04 g 4/	0.01	11 7	34.3	17 7	24 0	203.8	3.U 1056 1	0./ 150 5
<u>861</u> 77	3/2	1/20	g /.a	40.1 60 1	o o ۲۳۰/	/22 2	⊥/•4 on	44.U A	47/.0	1030.L	1/7 0
<pre>< 44 (< 471 / 2 </pre>	242	2835	0.47 7 63	478 Q	75 7	442.4	0.4	Å.	10.7	040.0 25n/ /	147.7 9/5 3
477/0)44 3/. 5	- 119/	/.03 	1 2 1 2	/.L/ 2	7702°/	LU.4 6 7	0	1/4·1 6= 0	2304.4	1/7 0
-ALL47	ربور	7704	/ • / 🏎	41.0	• 2	207.2	0.4	U	2.7	222.4	14/.7

									د و و مرد م	بزره هبالله خبدجه بيوبود زعاد	جنه هذه هن و
Field #	Lab #	TDS	HO	Ca	Mg	Na	K	<u><u> </u></u>	HCO3	<u>C1</u>	<u>so,</u>
AZ150	346	316	8.73	40.7	20.4	26.7	5.9	18.0	202.6	25.9	10.6
AZ151	347	512	8.01	67.3	15.9	65.1	1.9	0	249.0	69.5	65.3
AZ152	348.	296	8.16	55.1	19.1	21.1	8.2	0	245.3	3.2	64.4
AZ153	349	348	7.50	93.8	10.1	16.3	1.9	0	286.3	7.8	57.6
AZ134	350	232	7.47	38.l	7.8	23.0	2.7	0	201.3	1.1	21.1
AZ155	351	9288	8.11	132.9	28.1	3071.7	14.5	0	46.4	3956.2	1455.3
AZ156	352	1804	8.26	9.2	.7	709.2	2.7	0	107.4	687.8	431.5
AZ157	353	252	8.53	25.2	29.0	29.6	1.6	12.0	202.6	11.0	39.4
AZ158	354	296	8.70	20.6	31.2	26.2	1.9	15.6	220.9	11.3	2.8
AZ1:59	355	512	9.12	2.0	.7	. 205.3	5.1	50.4	405.4	8.9	20.9
AZI60	356	352	8.85	32.5	34.5	61.6	3.9	37.2	206.2	44.3	23.0
AZ161	357	540	8.23	50.1	33.3	102.1	11.7	0	183.0	118.7	132.7
AZ162	358	1920	7.43	1/3.9	81.5	337.5	45.8	0	242.2	202.0	200./
AZ163	359	188	7.74	1/.0	0.0	20./	1.9	0	241 6	2.4	4.0
A4104	360	496	/.90	/0.2	20.7	41.0 62 3	30	0	126 9	97.9	40 3
A4100	262 201	404	0.30	51.5	37 0	275 2	5.5	Ő	261 1	361 3	124 9
AG100	202	1369	7 32	109 0	14.8	287 8	5.0	. 0	389 3	398 5	174.8
17168	364	1040	8 27	52 3	9 0	335.4	3.9	ů C	102.5	446.3	174.8
17160	365	2864	8 30	97.8	15.9	939.1	5.9	õ	101.3	1246.9	398.6
47170	366	432	8.57	9.2	1.4	158.8	5.9	õ	163.5	80.8	113.3
47171	367	1592	8.32	115.6	22.7	398.2	7.4	0	269.7	339.5	497.6
AZ173	369	536	8.25	27.2	4.5	177.5	4.7	0	101.3	199.2	94.1
AZ174	370	204	8.11	16.0	19.3	54.0	3.1	0	250.2	20.5	10.6
AZ175	371	1972	7.55	234.8	61.8	157.9	5.5	0	314.8	495.3	188.3
AZ176	372	176	7.91	33.9	6.4	17.5	1.2	0	139.1	9.9	27.8
AZ177	373	132	7.81	33.5	5.1	18.2	1.2	0	137.9	14.5	6.7
AZ178	374	232	8.48	6.4	.7	74.2	1.2	0	140.3	17.0	40.3
AZ179	375	158	8.41	28.0	12.0	38.2	1.2	0	139.1	22.0	49.0
AZ180	376	340	8.08	57.1	28.1	15.9	1.9	0	281.9	34.0	7.7
AZ181	377	4788	7.73	521.2	191.3	415.9	33.2	0	230.6	451.3	1878.0
AZ182	378	3368	7.49	371.9	141.2	300.5	24.2	0	174.5	329.7	1588.1
AZ183	379	3816	7.59	374.3	150.7	342.8	27.4	0	175.7	373.7	1532.2
AZ184	380	3308	7.84	272.9	135.3	171.3	22.3	0	236.7	753.3	342.0
JW-1	N/A	492	8.12	77.8	38.2	8.3	1.6	())	389.3	2.5	48.0
J₩-2	N/A	156	9,60	1.2	<.1	62.8	.4	49.2	/2.0	.4	19.4
JW-3	N/A	992	7.89	49.7	6.0	207.4	13.6	0	126 7	442.3	57.0
JW-4	N/A	768	/.95	39.3	/.4	213.0	10 0	0	107 /	294.0	44.2
JW-J	N/A	1280	1.19	34.3	0.9	408.0	10.0	0	121 9	J/4.J 1	19.2
6	N/A	160	7 20	10.8	/.J 6 0	23.2	2.0	0	1/0 3	1.4	15 4
Jw-/	N/A N/A	104 / 0/	2.09	13.0	7 7	27.4 69.7	2.7	0	193 1	20.5	79 3
51	N/A M/A	404	0.20 7 71	20.0	7.5	333 6	23 5	° C	106 8	88 3	497.1
82	N/A N/A		9 16	22.0	0.5	318 6	21.1	ő	103.7	87.6	480.0
י בי עם	N/A N/A	1608	7.84	<u>د</u> ب د 67 ع	5.3	493.1	27.8	õ	118.9	111.3	893.4
24	517 AL	1660	8 08	190.2	34.9	231.7	9.0	õ	209.3	181.9	956.3
חופ	N/A	1708	8,18	67.9	17.1	366.2	6.3	Ō	255.0	133.6	939.0
213	N/Δ	756	7.90	38.3	2.7	105.5	3.1	ō	237.9	16.7	298.7
P14	N/A	668	8.00	47.9	4.4	71.0	2.7	Ō	209.3	23.0	• 289.6
- P15	N/A	868	8.07	78.7	12.6	152.2	5.9	0	201.4	80.5	483.7
P20	N/A	632	8.02	43.2	4.1	97.0	2.3	0	192.2	21.3	305.0

1									mg/1		ويستد جنيب طيبته تتابته أذخته	
	Field #	Lab #	TDS	рĦ	Ca	Mg	Na	K	<u>co</u> 3	HC03	<u>C1</u>	<u>so,</u>
	P22	N/A	600	7.90	49.3	44	111 3	27	0	197 2	38.6	311 7
	P23	N/Δ	640	8 08	18.6	2 4	120 2	1 6	0	250 2	20.0	308 3
	· P24	N/A	1348	7 92	39 5	1 9	221 /	10 0	0	230.2	49.1 70.1	300.3
	227	M/A	40%	9 75	20.7	1.0	341.4	10.0	0	273.8	/9.1	/68.3
		17A	261	0.32		3.7	/0.0	3.5	Ű	183.1	8.9	285.8
		20	204	0.10	40.8	7.9	17.4	3.9	0	207.4	1.1	21.0
	GLLA 2	27 20	492	7.74	35.6	7.6	90.8	8.2	0	283.0	14.2	72.0
	GLLA S	30	430	7.03	25.8	9.6	90.8	2.3	- 0	256.2	20.8	64.2
		77	320	8.9/	2.4	<.006	91.7	1.2	20.4	67.1	14.5	84.0
	GILA)	34	408	8.19	10.5	0.1	123.0	3.1	0	108.6	99.4	69.6
	GILA 6	22	410	3.12	10.4	0.2	129.7	3.1	0	115.9	100.1	67.2
	Gila /	34	548	7.92	15.4	0.1	151.5	3.5	. 0	131.1	104.3	118.0
	Gila 8	35	516 -	8.08	18.4	0.8	141.9	2.7	0	125.0	115.7	93.6
	Gila 9	36	320	8.15	31.6	13.0	28.9	3.5	0	227.5	1.4	24.0
	Gila 10	37	344	7.84	32.0	18.1	24.8	4.3	_ 0	213.5	17.0	16.2
	Gila 11	38	428	7.82	39.8	13.2	47.1	5.1	Q	236.6	8.5	50.4
	LD1	132	564	8.09	7.6	1.4	143.2	5.9	0	234.3	27.6	93.7
	LD2	133	816	7.86	28.0	2.7	216.1	11.7	0	314.8	47.5	223.8
	LD3	134	740	7.48	117.4	18.7	98.6	10.2	0	218.4	116.6	181.5
	LD4	135	592	7.94	10.2	1.8	159.3	1.5	0	301.4	33.0	104.2
	LDS	136	796	7.82	15.6	1.3	234.5	5.5	0	400.3	50.7	154.6
	LD6	137	208	7.92	22.0	7.3	27.6	2.0	0	147.7	3.5	19.2
	LD7	138	. 208	7.82	40.3	4.9	15.2	2.0	0	156.2	2.5	4.3
	LD8	139	184	7.57	26.0	2.2	21.1	1.2	0	109.8	2.8	4.3
	LD9	140	176	7.39	21.0	3.2	6.2	4.5	0	65.9	0.7	33.6
	LD10	141	156	7.31	17.8	3.3	6.9	6.2	0	57.3	1.4	40.3
	LD11	142	200	7.74	16.6	4.8	36.8	5.1	0	173.3	1.4	3.8
	LD12	143	136	6.38	15.8	2.9	13.8	3.5	0	37.8	0.7	52.8
	LD13	144	132	7.00	8.2	1.7	15.2	2.7	0	22.0	1.4	40.3
	LD14	145	160	8.80	2.4	0.5	54.7	0.4	0	137.9	4.2	16.3
	LD15	146	. 212	8.11	27.6	3.2	16.3	3.1	0	124.4	1.0	13.4
	LD16	147	164	7.94	29.4	1.7	11.5	2.3	0	117.1	0.1	5.7
	LD17	148	168	8.06	21.2	0.7	12.9	1.5	0	98.8	0.1	9.1
	LD13	149	320	8.15	16.4	0.6	65.3	1.2	, O	173.3	4.2	32.7
	Gila 20	150	236	8.66	6.8	1.6	61.1	1.5	.0	94.0	4.2	64.8
	Gila 21	151	200	8.33	10.6	3.5	48.7	2.0	0	103.7	3.9	43.7
	Gila 22	152	260	9.10	2.8	<0.1	59.2	1.2	20.4	40.3	5.0	75.9
	Gila 23	153	292	8.53	10.4	0.6	77.9	1.5	0	75.7	25.9	99.4
	Gila 24	154	332	8.13	18.4	1.3	92.4	1.5	0	234.3	6.4	49.0
	Gila 25	155	400	8.04	8.2	0.8	118.4	2.0	0	244.1	13.1	55.2
	Gila 25	156	<u>444</u>	7.64	36.1	6.9	79.3	1.2	0	290.4	10.6	45.1
	Gila 27	137	472	8.79	2.4	0.1	146.7	0.8	13.2	175.7	33.0	107.1
	Gila 28	158	272	9.36	1.0	<0.1	87.6	0.4	46.8	125.7	2.8	13.4
	Gila 29	159	544	8.00	87.0	16.5	34.9	7.8	0	390.5	18.8	35.0
	Gila 30	160	672	7.98	10.0	1.3	190.6	2.7	0	336.8	18.8	142.6
	MFG1	161	196	8.08	20.4	2.6	40.0	1.6	0	145.8	3.2	29.8
	MFG2	162	188	8.07								
	MFG3	163	192	8.09	16.8	1.6	43.7	1.2	0	139.7	3.9	28.3
	MFG4	164	168	8.15	14.8	1.5	37.5	.8	0	131.2	3.2	19.2
	ANI	283	300	7.88	26.2	2.2	54.0	2.0	0	151.3	7.1	42.
\sim	AN 2	284	360	8.00	13.0	1.6	115.4	2.0	0	241.0	23.7	44.0

				و برای است. بین و است.		المحية فانجد الأرقي والقارب المراك		-Mg/1			
Field #	Lab #	TDS	DH	Ca	Mg	Na	K	<u>co</u> 3	нсоз	CI	SO/
ANB	285	380	8.29	39.7	3.8	66.9	2.7	0	207.4	15.6	64.8
AN4	286	1372	7.59	79.7	8.3	353.3	14.1	- 0	228.8	122.7	492.8
AN 5	287	1184	7.82	22.0	25.3	178.6	8.2	0	172.1	144.3	351.9
AN6	288	1020	8.00	25.2	14.6	161.4	6.6	0 ·	83.6	117.0	369.
AN7	289	624	7.52	60.5	9.7	134.3	4.3	0	195.2	68.1	167.
AN8	290	272	7.83	28.8	2.7	55.6	2.3	0	170.8	3.5	51.6
AN 9	291	384	7.85	19.8	4.7	98.2	3.1	0	81.1	59.2	107.3
AN10	292	524	7.92	29.8	8.5	112.2	3.5	Ó	156.8	53.9	111.7
ANII	293	688	7.68	81.8	9.1	110.6	4.3	Õ	202.0	38.3	198.6
AN12	294	384	7.73	34.5	3.0	77.9	2.7	ō	185.5	8.5	74.8
AN13	295	420	8.26	25.0	1.3	103.4	3.9	0	167.8	27.3	84.
AN14	296	340	7.75	26.0	1.8	70.3	2.3	Ō	176.3	1.8	58.8
AN15	297	240	7.93	18.2	2.5	49.6	2.0	0	139.1	5.4	38.4
AN16	298	384	8.39	30.7	3.0	89.9	2.7	0	178.8	19.8	86.9
AN17	299	524	8.17	30.7	5.7	129.2	7.0	0	237.4	29.4	113.3
AN18	300	352	8.43	31.3	3.2	67.8	2.7	Ō	157.4	27.3	58.8
AN19	301	675	8.33	81.0	23.5	74.5	2.7	. 0	181.8	41.5	197.0
AN20	302	628	7.41	76.1	7.2	91.7	3.5	Ó	187.9	64.2	124.9
AN21	303	404	8.27	39.9	6.3	74.5	3.5	0.	186.7	9.6	88.5
AN 22	304	396	8.41	25.4	2.5	93.8	2.3	0	172.1	20.9	76.
AN 23	305	284	8.44	22.0	2.1	53.4	2.0	0	148.	2.1	51.8
N/A	306	.192	8.12	14.2 -	1.3	35.2	·0.8	0	82.0	1.4	44.0
N/A	307	.224	8.44	14.0	1.3	.34.0	0.8	0	97.6	1.1	23.
N/A	308	.116	7.89	9.0	2.3	9.9	1.2	0	54.3	0.4	11.6
N/A	309	240	8.45	24.4	4.2	31.5	1.6	Ó	109.8	18.8	25.4
N/A	310	76	8.02	12.4	2.4	7.1	1.2	0	51.2	0.4	8.8

Table 3.	Analyses of Iron, Fluoride, Boron,
	Phosphorous, and silica for selected
	Thermal Waters in Arizona, Western New
	Mexico, and Southwestern Utah

		بجثه فلك المدورية الثار ويوفينه	ه وه چه بنه بنه به به به به به به م	ppm-		به هرها ها به به که خاریه خداد در .
Field #	Lab #	Fe	<u>F</u>	B	<u>P</u>	<u>sio</u> 2
AZ1	1	<.10	. 33	.01	.03	86.26
AZ2	2	- 28	.65	. 02	06	44 56
AZ3	3	. 34	1.80	1 48	.00	81 70
AZ.4	4	<.10	10.20	15	.01	66 96
AZ5	5	72	3 50	1 51	0	127 25
AZ6	6	28	2.20	1.71	.01	T3T.37
A77	7	< 10	10.60	.00	.07	47.90
A78	8	< 10	2 13	.40	02	5/ • / Z / O 11
A79	9	20	2.10	.09	.02	40.11
4710	10	.20	2.52	.00	.02	JU.12 42 45
A210	11	< 10	2 90	.30	0	43.45
AZ11	12	< 10	12.60	.70	. 0	43.45
AL12	12	< 10	13.00	.90	0	23.58
A413	13	<.10 24	9.00	1.29	0	20.43
AZ14	14	• 24	7.20	1.65	0	65.83
AZIS	15	<.10	10.60	.43	0	66.96
AZLO	10 17	<.10	10.20	.46	0	66.96
AZ1/	1/	<.10	14.20	.55	0	25.78
AZ18	18	<.10	1.25	0	0	41.22
AZI9	39	<.11	.23	.04	.03	83.80
AZ20	40	.14	3.60	.60	.01	52.43
AZ21	41	.73	3.90	.84	.10	56.61
AZ22	42	<,11	9.60	1.04	0	27.58
AZ23	43	<.11	8.40	1.18	0	27.58
AZ24	44	.18	11.70	.80	0	31.70
AZ25	45	<.11	13.95	.94	.03	27.58
AZ26	46	<.11	14.55	.60	.01	28.60
AZ27	47	4.36	4.50	.14	.06	47.26
AZ28	48	.20	10.35	.28	0	27.58
AZ29	49	. 22	14.55	.30	0	28.60
AZ30	50	<.11	.30	.02	0	30.68
AZ31	51	.14	.82	.10	0	34.81
AZ32	52	<.11	1.02	.04	0	30.68
AZ33	53	<.11	.11	.02	0	26.08
AZ34	54	.14	2.17	.14	0	29.57
AZ35	55	.16	4.65	1.18	0	41.05
AZ36	56	.16	5,10	.22	0	61.27
AZ37	57	<.11	16.80	.18	.02	24.90
AZ38	58	.16	1.98	0	0	44.48
AZ39	59	.16	1.27	0	0	38.79
AZ40	60	<.11	.93	0	0	36.48
AZ41	61	. 26	6.30	1.66	0	39.92
AZ42	62	. 57	3.90	1.58	0	26.08
AZ43	63	<.11	8.70	8.00	.10	71.13
AZ44	64	.61	4.65	4.20	0	33.03

	Field #	Lab #	Fe	<u>F</u>	B	<u>P</u>	<u>sio</u> 2
	AZ45	65	<.11	3.60	.54	.03	45.61
	AZ46	66	<.11	4.35	.38	.03	44.48
	A7.47	67	<.11	3.18	.52	.05	47 86
	A748	68	<.11	3.48	. 36	.01	46 74
	4749	69	< 11	3 66	34	.01	46.74
	4750	70	< 11	5.67		.01 .	40.74
	AZJU AZ51	70	N.II < 11	5 21	.00	.01	44.40
	A252	71	ヽ.⊥⊥ 10	2.2T	.00	.01	44.48
	A452	72	. 13	2.91	1.76	0	26.08
	AZ53	-73	.1/	4.44	1.40	0	26.08
	AZ54	/4	<.11	4.95	1.02	0	22.57
	AZ55	-75	.13	3.48	1.38	0	24.90
	AZ56	76	<.11	.69	.44	0	29.57
	AZ57	77	<.11	5.67	. 44	. 0	37.63
	AZ58	78	<.11	1.65	.12	0	29.57
'	-AZ59	79	.23	9.45	1.78	.11	21.39
	AZ60	80	17.35	1.17	8.40	.07	30.06
	AZ61	81	.14	5.40	2.06	.01	20.32
	AZ62	82	<.15	9.90	.50	.01	59.19
	AZ63	83	.71	4.95	.30	0	35.56
	AZ64	84	1.53	1.14	.24	0	44.45
	AZ65	85	<.15	8.25	. 44	. 02	59,19
	AZ66	86	2.87	. 46	.22	. 01	25 71
	AZ67	87	1.42	.46	56	51	24 62
	1758	88	< 15			02	24.02
	A760	80	68	• 47	12	.02	2/ 62
	AZ03	0.9 0.0	.00	. 2.5	• ± 2	.01	24.02
	AZ70	90	. 4/	/•11	.12	.02	30.00
	AZ/1	91	<.15 ·	.44	.04	.02	30.0/
	AZ/2	92	<.15	3.30	1.26	.02	47.81
	AZ/3	93	<.15	.93	.26	.01	27.88
	AZ 74	94	.17	.29	.06.	.01	31.15
	AZ75	95	.52	. 44	.06	.01	36.67
	AZ76	96	.17	.25	.06	0	20.32
	AZ77	97	<.15	.25	.04	Q	21.39
	AZ78	98	.33	.12	.06	.01	22.48
	AZ79	99	.30	.10	3.80	.01	59.15
	.AZ80	100	.78	1.52	.44	.50	75.24
	AZ81	101	<.15	.31	.12	.04	20.54
	AZ82	102	<.15	1.45	.46	.01	84.57
	AZ83	103	<.15	8.25	.88	.01	62.57
	AZ84	104	.61	5.40	. 31	.05	59.15
	AZ85	105	<.15	4.05	.58	.01	38.94
	1200	106	< 15	10	57	.01	64
	A7.87	107	<.15	1.16	.58	ت	20 54
	A788	108	16	2 85	2 30	08	20.04
	1780	100	.10	17	11	.00	1/ 22
	A700	110	**0	• 1 / 5	1 20	.00	14.33
	A701	111	. الا الا	2.40	11 11	.02	43.33
	A702	110	*•T) *•V	. 20	• ↓ ↓	.UI	15.40
	AZ74	112	. 30	2.40	.10	.01	.64
	AZ93	<u>د ۲۲</u>	<.15	2.6/	.08	.02	36.22
	AZ94	114	<.15	2.16	.07	.01	31.55

)	•			ppm						
	Field	Lab	Fe	F	В	P	SiO			
	#	#					2			
	AZ95	115	<.15	. 93	. 21	.01	22 33			
	AZ96	116	<.15	.72	18	02	18 03			
	AZ97	117	< 15	2.58	27	.02	20.33			
	AZ98	118	.18	3,30	23	0	10 38			
	AZ99	119	<.15	.37	.25	01	45 89			
	AZ100	120	<.15	4.77	92	.01	44 63			
	AZ101	121	<.15	. 42	20	.01	20 01			
	AZ102	122	<.15	5.40	.20	0	42 12			
	AZ103	123	.43	.53	1 36	01	38 40			
	AZ104	124	<15	3.18	54	01	60.88			
	AZ105	125	<.15	7.35	66	02	40.00			
	AZ106	126	<.15	4.35	.00	.02	30 6/			
	AZ107	127	<.15	5.40	.70	.01	31 11			
	AZ108	128	<.15	. 90	70	0	40.88			
	AZ109	129	<.15	. 44	.06	Ó	35 94			
	AZ110	130	<.15	.24	.00	01	54 34			
	AZ112	179	<.10	2.27	70	.01	24 5			
	AZ113	180	.46	1.92	.40	04	19 5			
	AZ114	181	. 49	2.09	. 60	.13	20.0			
	AZ115	182	.61	2.57	.75	11	20.0			
	AZ116	183	.42	2.46	.60	.17	16.5			
	AZ117	184	<.10	.61	.03	.03	30.5			
	AZ118	185	<.10	. 47	.09	.07	35.5			
	AZ119	186	<.10	14.54	.84	.02	28.0			
	AZ120	187	<.10	.45	.10	.05	34.0			
	AZ121	188	.16	.56	.12	.15	70.0			
	AZ122	189	3.70	. 89	.23	.08	42.5			
	AZ123	190	<.10	. 82	.09	.07	44.0			
	AZ124	191	<.10	1.06	.14	.05	32.5			
	AZ125	192	7.14	.07	.16	.01	53.5			
	AZ126	193	<.10	.16	.03	.04	19.0			
	AZ127	194	.42	.43	.17	.11	32.0			
	AZ128	195	.19	8.72	4.00	.16	29.0			
	AZ129a	196	.49	.69	.16	.11	33.5			
	АZ129Ъ	197	1.99	1.69	.35	.08	30.0			
	AZ130	198	<.10	2.27	.23	.04	24.0			
	AZ131	199	<.10	1.15	.30	.06	33.0			
	AZ132	200	<.10	1.06	. 44	.11	58.0			
	AZ133	201	8.74	5.07	.73	.04	23.5			
	AZ134	202	<.10	.26	.07	.11	17.5			
	AZ135	203	.46	2.35	.72	.15	54.5			
	AZ136	334	<.10	4.71	.05	.14	81.5			
	AZ138	335	1.10	.51	.23	.02	34.0			
	AZ139	336	<.10	.34	.07	.01	38.0			
	AZ140	337	.16	.40	.20	.01	38.5			
	AZ141	338	4.53	2.46	.11	.01	86.5			
	AZ142	339	<.10	2.94	.31	.01	37.5			
	AZ143	340	.18	.38	0	.01	35.5			

				ррп		
Field #	Lab #	Fe	<u>F</u>	B	P	<u>sio</u> 2
47145	341	. 42	. 48	0	.01	71.5
A7145	242	/ 72	40	2 1 9	10	18 5
AZ140	342	4.72	4.14 E 12	95	.10	50.0
AZ147	343	<.10	5.15	.05	.04	10.0 10.0
AZ148	344	.13	2.41	3.10	<.UI	43.5
AZ149	345	<.10	5.79	1.01	<.01	27.0
AZ150	346	.25	.73	.07	.01	59.0
AZ151	347	<.10	.94	0	.02	31.5
AZ152	348	<.10	<.20	.07	.01	22.5
AZ153	349	<.10	1.03	.08	.01	24.0
AZ154	350	<.10	.35	0	.02	41.0
AZ155	351	.13	6.27	2.33	.01	27.5
AZ156	352	.16	7.80	1.62	.01	27.0
AZ157	353	<.10	<.20	.44	.01	39.0
AZ158	354	<.10	<.20	.19	.01	32.5
AZ159	355	<.10	2.55	.58	.04	16.0
AZ160	356	.10	1.44	.57	.06	26.5
AZ161	357	.92	2.40	.40	.01	13.0
AZ162	358	18.46	2.49	.75	.01	11.5
AZ163	359	1.01	<.20	.22	.04	28.0
AZ164	360	<.10	<.20	.11	.04	38.5
AZ165	361	<.10	<.20	.35	.01	22.5
AZ166	362	<.10	<.20	1.23	.01	38.0
AZ167	363	<.10	<.20	.47	.01	28.0
AZ168	364	<.10	2.91	1.07	.28	27.0
AZ169	365	1.19	2.02	.87	.01	24.0
AZ170	366	1.60	9.45	.89	.01	41.0
AZ171	367	1.40	4.14	1.81	.01	35.0
AZ172	368	(.33)		-missing	ی وی بوند او این او این او ای بوند او ای بوند او	(31.0)
AZ173	369	4.78	2.91	.71	.01	31.0
AZ174	370	<.10	.46	.43	<.01	30.0
AZ175	371	<.10	<.20	.81	<.01	64.5
AZ176	372	1.96	<.20	.16	.01	23.5
AZ177	373	2.01	<.20	.35	.01	36.5
AZ178	374	. 64	3.24	.28	.01	57.5
AZ179	375	.24	.75	. 27	<.01	28.5
AZ180	376	.57	. 36	.13	.01	56.0
AZ1 81	377	. 29	1.75	1.53	.01	29.5
AZ182	378	<.10	1.33	1.16	.01	17.5
A7183	379	<.10	1.43	1,20	.01	17.5
A7184	380	1 28	. 62	.28	<.01	18.5
	200	< 10	1.05	.04	.02	14.50
		< 10	. 72	.03	.02	45.35
TTT_ 2		· < 10	1.43	. 28	.02	75.18
5		< 10	1_49	.22	.01	64.80
Jw4 π.15		< 10	1 80	. 38	.01	90.94
5 w− 5 π.i_4		< 10	51	.02	.02	26.33
JW-0 TL7_7		< 10	.62	. 04	.01	29.31
Jw−-/ נדו		1 10	. U E 25	.04	.01	31.3
21F 21P		20	12 6	48	.02	147.5
25		.20	12 0	.40	02	143.0
זנ		.40	14·V	·	• • • • •	

				bb)	
Field #	Lab #	Fe	<u>F</u>	B	<u> </u>	<u>510</u> 2
4P		.83	7 25	4.2	•-	
5P		< 10).2J) EE	.42	.01	115.6
10P2		52	3.33	.25	.01	42.3
1 3P			7.25	.51	.01	60.7
1/12		1.31	3.90	.10	. 01	7/ 1
157		.16	.85	.06	01	/4•1
LDP		<.10	2.35	.18	.01	48.4
20P		<.10	2.65	10	.01	34.3
22P		<.10	1 20	.10	.01	50.4
23P		7.66	1 15	.00	.01	43.3
24P		21 19	1.15	• 12	.01	29.3
25P		22.10	9.35	.50	.01	149.7
G11a 1	28	• 30	3.55	.12	.01	3/ 3
	20	<.10	.53	. 0	0	42 OC
GITA Z	29	.12	6.10	.01	01	42.00
GILA 3	30	.25	3.10	.02	.01	45.16
Gila 4	31	<.10	16.00	.02	0	41.03
Gila 5	32	<.10	8 70	02	U	55.56
Gila 6	33	<.10	8 70	.03	0	72.27
Gila 7	34	.22	0.70	.02	0	73.31
Gila 8	35	1 25	9.50	.07	0	85.89
Gila 9	36	20	8.70	.11	.01	85.89
G_{11a} 10	37	. 29	.61	.01	. 0	59 73
	J/ ·	3.11	.66	.01	0	60 79
UTTA TT	20	<.11	3.00	.01	Ô	54 52
	132	<.15	3.66	.46	Õ	- 14.33
	133	<.15	6.90	. 46	0	33.52
EU3 :	134	<.15	. 44	32	.01	39.64
LD4	135	.37	2.67	50	.01	43.36
LD5	136	<.15	7 11	• • •	.01	32.30
LD6 j	L37	. 62	20	.04	.01	47.15
LD7 j	L38	4 70	. 30	• 12	.01	38.08
LD8 1	39	6 30	.10	.12	.02	47.62
LD9 1	40	0.39	1.34	• 06	.01	45.23
LD10 1	41	N. 10 54	.12	•04	.14	47.62
LD11 1	47	• 20	.11	.04	.01	39.28
LD12 1	. 	5.77	1.12	.12	.01	52 37
בבתב בותו	.45 	<.12	.18	.06	.01	35 68
	.44	<.15	.14	.06	.01	20.20
	.45	.56	.31	.10	.01	14 22
	46	1.49	.42	.08	01	14.23
LD16 1	47	.22	. 22	.08	10.	47.62
LD17 1	48	1.91	.16	08	.01	41.65
LD18 1	49	. 78	2.26	12	U	44.03
Gila 20 1	50	.31	0 / 5	• 14	0	42.85
Gila 21 1.	51	<.15	7 65	• 12	.01	67.65
Gila 22 1	52	<.15	1/+UJ. 11:02:	.08	.01	50.00
Gila 23 1	53	25	TT.00	.12	0	68.91
Gila 24 1	54	•4J ~ 1E	10.20	.92	0	21.39
Gila 25 14	55	>•T2	5.85	.16	0	34.51
Gila 24 10	55	<.12	7.35	. 44	0	47.62
$-\frac{1}{2}$		<.15	3.00	.14	.01	49 40
Gil= 20)/	<.15	19.05	2.56	.01	43.40 ×
GILA 28 15	8	<.15	1.00	.12	01	03./3
					• OT	24.95

÷

			ن هو جد اند کا تاریخه بله بله بید بازدهه چه چه به بله	bt) M	یے قاند نیند رود کادورد کا جات ج ·
Field #	Lab #	Fe	F	B	<u>P</u>	<u>510</u> 2
Gila 29	159	<.15	.49	.14	.23	57.75
Gila 30	- 160	. 49	18.45	.42	.06	48.22
MFG1	161	.37	4.86	.05	.20	51.0
MFG2	162	.42	5.28	.02	.16	56.0
MFG3	163	<.10	5.28	.07	.09	56.5
MFG4	164	<.10	5.07	0	.09	54.0
AN1	283	<.10	1.60	.12	.05	58.5
AN2	284	14.3	.95	.17	.01	15.5
AN3	285	14.92	.66	.02	.04	68.5
AN4	286	<.10	2.85	.59	.01	97.5
AN5	287	<.10	3.48	.18	.01	50.5
AN6	288	74.58	1.98	.78	0	30.0
AN 7	289	1.73	2.28	.17	0	29.5
AN8	290	3.01	1.14	.05	0	33.5
AN9	291	47.69	.84	.01	0 .	.95
AN10	292	8.54	.63	.02	0	37.5
ANII	293	<.10	2.85	.19	0	44.5
AN12	294	10.31	2.28	0	.01	45.0
AN13	295	21.85	3.03	.12	.02	32.0
AN14	296	<.10	3.45	.04	.01	44.0
AN15	297	17.98	.63	0	0	30.0
AN16	298	.29	1.32	0	.01	37.0
AN17	299	<.10	4.02	.13	.01	30.0
AN18	300	<.10	1.71	.18	.01	37.5
AN19	301	3.63	Not enough	.04	.01	40.0
AN20	302	.68	.69	.05	0	49.5
AN21	303	<.10	3.81	.04	.01	37.5
AN22	304	. 83	2.16	.05	.01	32.5
AN23	305	.65	.93	· 0	.01	37.0
	306	<.10	5.01	0	.01	49.5
	307	<.10	5.01	0	.01	50.0
	308	<.10	.75	0	0	28.0
	309	<.10	2.07	.02	.04	39.5
	310	<.10	.46	0	.03	25.0

Table 4. Analyses of nitrogen species, nickel, lead, antimony, selenium, strontium, and zinc for selected thermal waters in Arizona, western New Mexico, and southwestern Utah.

÷

đ

_				, 				، به کاری موجو موجو	-
-	Riald	Tab	NO +NO	Nf	Ph	SP -	Se	Sr	Zn
	rieid #	Lab #	<u>N03+N02</u>	<u> </u>	<u>.</u>	<u></u>	<u></u>	<u> </u>	
	AZ1	1							
	AZ2	2							
	AZ3	3							
2	AZ4	4	.10				.006	.07	.09
	AZ5	5	0	· ·			.256	24.20	.10
	AZ6	6							
÷	AZ7	7	1.34				.014	.09	.13
	AZ8	8							
	AZ9	9							
	AZ10	10	.70				.021	1.02	.12
	AZ11	11						-	
	A712	12							
	A713	13							
	AZIJ	14	06				. 053	1.88	. 09
	AZ14	15	.00			·	.008	.03	. 09
	AZIJ	10.	U .				.000		
	AZIO	17	15				018	19	09
	AZI/	1/	• 12				.010	• + 7	•••
	AZ18	18							
	AZ19	39				•			
	AZ20	40							
	AZ21	41				•			
	AZ22	42	_						
	AZ23	43	0			•	.028	1.0/	.05
-	AZ24	44							
	AZ25	45							
	AZ26	46							
	AZ27	47							•
	AZ28	48	·						
	AZ29	49							
	AZ30	50							
	AZ31	51	-	•					
	AZ32	52	2.04				.005	.03	.04
	AZ33	53							
	4734	54	· · ·					·	
	A735	55					-		
	A736	56							
	×737	57							
	AZ37	59	51				.002	<.02	
	AZ 30	50	•						
	AZ39	59	•••				,		
	AZ40	6U 61	5 00				008	.07	
	AZ41	C C C	J. JU 6 41		•		007	.05	
	AZ42	62	J.01		÷		.007	•••	
	AZ43	63							
\ \	AZ44	64					005	04	00
	AZ45	65	18.76				.005	.04	• 00
	AZ46	66							
	AZ47	67							
	AZ48	68							
	AZ49	69							

	•	، متحدثات نبعة جنب والاختار بحد حدد	بالدجميي وادنابه ويدبيه بيسوا			ه هدري المنه، هديد ننديد المرب ا	وجود تتدعه وردود جردود هاد	
Field	Lab	NO ₂ +NO ₂	Ni	РЪ	SЪ	Se	Sr	Zn
- #	#	2				. .		
AZ50	70	20.10				.006	.44	.06
AZ51	71						1 01	.
AZ52	72	100.50				.063	4.06	.07
AZ53	73	00 70				01.9	2 07	< 03
AZ54	74	28.70				.018	2.07	<.05
AZ55	/5 72							
AZ56	70	F 01				009	17	06
AZ57	7.7	5.44				.008	• 1 /	.00
AZ58	78	1 11				020	1 70	< 02
AZ59	/9	2.23				.020	4 11	02
AZ60	00 01	2 / 5				.150	1 72	< 02
AZ61	81					.019	1.72	< 02
AZ62	82	.09				.013	.05	< 02
AZ/0	90	T.03				.007	.05	<.02
AZ72	92	2.04				.010	1.34	< 02
AZ/3	93	.00				.024	. 25	< 02
AZ//	97	5.21				<.002	.05	<.02
AZ80	100	. 31				.024	3.19	< 02
AZ83	103	.09				.007	.10	< 02
AZ85	107	2.04				.014	2 21	06
AZ87	107	.00				.022	2.21	< 02
A288	108	11 25				.107	0.09	< 02
AZIOO	120					.010		< 02
AZIUZ	122	0.19				005		04
AZ104	124	0.14				.005	1 94	.04
AZIIZ	192	0				.012	1 03	.02
AZ113	194	1 59				.012	1.95	44
AZII/	104	21 29				.005	.05	02
AZ121	100	15 03				.002	.05	17
ALLLA	102	13.03				004	.04	05
AL120	195	20				.004	.03	.05
A6100	201	• 4 3				.003	1.66	<.02
AZ104	202	7/				.004	1.08	.28
AZ141	330	•/ 4 8 65				.001	<.01	.06
AZ145	341	0.05				001	. 57	<.02
AZ149	242	20				.005	.24	.05
AZ152	240	. 20				.002	.03	.43
A4100	249	4.40				001	< 01	.10
AZ154	350	4.50				155	9.84	.12
A2133	351 351	14 25		· •		001	06	23
AZ150	354	14.23				003	.02	.13
AZ159	- 222	.09				.005	1.85	1.50
AZ102	350	10 38				.006	96	.14
A6104	28	TO • 20					• 2 9	• • •
GILA L Cilo 2	20	۰ ·	<.13	.014	<.6	. 004	- 10	<.028
GITA 2	30	v		.017				
GILA J	10	n	<.13	.051	<.6	.004	<.02	<.028
GIIA 4 C414 5	32	20	< 13	.024	< 6	• .005	.02	,06
	22	10	2.13	021	< 6	.005	. 02	.06
GILA D	27	• 10	-12 2 12	021	< 6	.005	.03	<. 028
GLIA /	54	• 17	ו ⊥ J	.041				

•		موجدة معاقب القاقة بالأكا		-				
Field #	Lab #	<u>N03+N0</u> 5	Ni	Pb	<u>Sb</u>	Se	Sr	<u>Zn</u>
Gila 8 Gila 9	35 36	0	<.13	.021	<.6	.006	.02	. 05
Gila 10	37							105
Gila 11	38	•				c.		
LD1	132	4.48	- 16	005	_		and star	
LD2	133	.19	~ 16	.005	<.5	.005	.03	<.02
LD3	134	42.65	< 16	.009	<.5	.009	.15	<.02
LD4	135	15.30	< 16	.006	<.5	.016	.46	.21
LD5	136	15.02	< 16	.006	<.5	.008	.07	.33
LD6	137	4.93	< 16	.008	<.5	.010	.04	.05
LD7	138	7.12	< 16	.001	<.5	<.002	.06	.13
LD8	139	22.75	<.16	.039	<.5	<.002	.03	2.68
LD9	140	9.77	<.16	.008	<.5	<.002	.02	1.22
LD10	141	1.47	<.16	.001	<.) 	.002	.02	<.02
LD11	142	2.15	<.16	.004	<.J	.002	.03	.20
LD12	143	0	<.16	.001	J z	<.002	<.02	.44
	144	3.70	<.16	.001	< 5	<.002	.03	.04
	145	3.59	<.16	.002	< 5'	<.002 003	<.02	.03
	146	4.88	<.16	.002	<.5	- 003	<.02	.17
	147	7.97	<.16	.001	<.5	< 002	.03	.73
	148	1.28	<.16	867.5	3,19	< 002	.02	.21
Cilo 20	149	7.53	<.16	.025	<.5	002	.03	.63
	150	.72				<. 002	.05	.17
$G_{112} 2_1$	152	.15				.003		<.02
Gila 22	152	•06				.003	·	.03
Gila 24	15%	6.72				.003		1.02
Gila 25	155	.17				.003		• 14
Gila 26	156	2.00				.004		N. UZ
Gila 27	157	.59				.003		.05
Gila 29	159	0				.006		.22
Gila 30	160	.89				.003		<. 02
JW-1	200	1.47 5.22	<.16	.008	<.5	.006	.03	.07
JW-2		5.23	<.03	.027	<.5	.003	.12	.17
JW-3	. •	.00	<.03	.006	<.5	<.002	<.04	.14
J₩-4	•	1.05	~ 03	.021	<.5	.006	.33	.14
JW-5		.96	< 03	.018	<.5	.005	.28	.15
JW-6		2.12	< 03	.042	<.5	.007	.43	.12
JW-7		1.88	< 03	.004	<.5	<.002	.03	.14
3P		.66	<.03	· UU J	<.) < F	.020	.04	. 12 ·
26P		40.0	<.03	• 44 4 1 2 1	5.3	.006	.47	.10
				• 0 3 T .	<.J	.003	. 54	48

¢

Table 5. Analyses of cadmium, cobalt, chromium, copper, mercury, hydrogen sulfide, lithium, manganese, molybdenum, ammonium, silver, aluminum, arsenic, barium and bromine for selected waters in Arizona, western New Mexico, and southwestern Utah.

.

13

Ų ar a

	Field #	Lab #	Cd	<u>Co</u>	Cr	Cu	Нд	H ₂ S	<u>L1</u>	Mn	Mo	<u>NH</u> 4	Ag	<u>A1</u>	As	Ba	Ī
	AZ1	1							• •								
	AZ2	2															
	AZ3	3														• .	
	AZ4	4				<.12	<.0002	<.1	.45			.10	<.07	<1.10	.030	<.20	
	AZ5	5				<.12	.0035	<.1	6.96			.40	<.07	<1.10	.017	3.55	
	AZ6	6													,		
	AZ7	7				<.12	.0007		1.01			.05	<.07	<1.10	.061	<.20	
	AZ8	8					*									• .	
	AZ9	9	•														
	AZ10	10				<.12	.0006		1.30			.05	<.07	<1.10	.036	. 30	
	AZ11	11															
	AZ12	12		•							,						
	AZI3	13															
	AZI4	14				<.12	.0007		2.77			.25	<.07	<1.10	.070	. 37	
	AZIS	15				<.12	.006		.36 ·			.05	<.07	<1.10	.095	<.20	
	AZI6	10				. 10											
	AZ1/	1/				<.12	.006		1.38			.10	_<.07	<1.10	.011	<.20	
co	AZ18	10															
ũ	AZ19 .	70		*													
	AZZU 4721	40			1										•		
	AZZ1 4722	41															
	ALLL A723	42				× 19	0000		0 (0)								
	AZZJ 4794	43				<.IZ	.0008		2.40			. 25	<.07	<1.0	.023	.20	
	A725	44															
	A776	45															
	A727	40															
	A728	48															
	A729	49															
	AZ 30	50															
	AZ 31	51															
	AZ32	52				< 12	0006		17			< 05	< 07	<i><</i> 1 10	007		
	AZ33	53				·• + •	.0000		• 1 /			N.05	<.07	<1.10	.007	<.20	1
	AZ34	54										•					
	AZ35	55						•									
	AZ36	56	·														
	AZ37	57					•										
	AZ 38	58				<.12	.0007		12			10	< 07	<1 10	010	~ 00	
							. 5667		• . 4 . 6a			. 10	\.U /	1.10	.013	<.20	

-թթա-

		· ·							-0.00							
	Field #	Lab #	Cd	Co	<u>Cr</u>	<u>Cu</u>	<u>Hg</u>	<u>H₂S <u>L1</u></u>	<u>ppm</u> <u>Mn</u>	Mo	<u>NH</u> 4	Ag	<u>A1</u>	As	Ba	Br
	AZ 39	59														
	AZ40	60														
	A241	61				<.12	. 0009	. 30			.05	<.07	<1.10	.040	<.20	
	AZ42	62				<.12	.0014	.25			<.05	<.07	<1.10	.051	<.20	
	AZ43	63													•	
	AZ44	64					· .						1999 1999 - 1992 1999 - 1992			
	AZ45	65	÷			<.12	.0009	.19			<.05	<.07	<1.10	.110	<.20	
	AZ46	66														
	AZ47	67										•				
	AZ48	68														
	A249	69												054		
	AZ50	70			•	<.12	.0008	. 26			<.05	<.07	<1.10	.054	<.20	
	AZ51	71										07		0.04		
	AZ52	72				<.12	.0011	.51			<.05	<.07	<1.10	.034	•03	
	AZ53	73										. 07		0.01	27	
	AZ54	74				<.12	.0009	. 42			<.05	<.07	<1.10	.021	. 37	
	AZ55	75													,	
58	AZ56	76											.1 10	010		
	AZ57	77				<.12	.0008	• 36			<.05	<.07	<1.10	.019	<.20	
	A258	78						0.00			. 05		.1 0	040	~ 20	
	AZ59	79				<.10	.002/	2.32			<.05	<.U0	<1.U	.042	<.20 27	
	A260	80				<.10	.0002	5.16			<.05		4.00	. 012	. 37	
	AZ61	81				<.10	<.0002	.93			<.05	<.00	<1.0	.014	~ 20	
	A262	82				<.10	<.0002	. 48			<.05	<.00	<1.0	.044	< 10	
	AZ70	90				<.10					<.05	<.U0	<1.0 / 0	.010	. 20	
	AZ/2	92				<.10	<.0002	1.85			<.05	<.00 < 06	4.0	.031	, 40	
	AZ/3	93				<.10		.14			<.05	< 06	~1.0	.000	< 20	
	AZ//	97				<.10	<.0002	<.014			< .05	< 06	<1.0	.003	~. 20	
	AZBO	100				<.10	.0003	1.33			<.UJ	< 06	<1.0	.051	~ 20	
1	AZ83	103				< 10	.0003		· .		< .05	< 06		.024	<.20 <.20	
	AZAD	102				<.10	<.0002	.20			N.UJ	< DA		056	- 00	
	AZU/	107				<.10	<.0002	.09			~ V¢ T'T)	< D6	<1.0	150	1 73	
	AZ88	108				<.10	<.0002	4 C .			.03.05	<.UU < A6	<1 0	.130	2 20	
	AZIUU	120				<.10	<.0002	.1.			.	< 00 × 00	~1.0	.017	< 20	r
	AZ102	122	•			<.10	.0004	N.L .48			< 05	< 06	<1 0	.037	< 20	
	A2104	124	•			<.10	<.0002 0002	.1/ .23			U 3	< 06	<1 0	0.014	< 4	
	A6112 17115	100				<pre><.10</pre>	.0000	- N.L - 107			0.5	<.00 < D6	<1 0	0,00	< 4	
	ALII)	107				N. 10		N.I .00			U.J	~• UU	~+•V	.003	· · · · · · · · · · · · · · · · · · ·	

•

.

· · · ·

1

C

19

								t, t	ւհա							
F1eld ∦	Lab #	Cd	Co	Cr	Cu	llg	<u>H2S</u>	<u>L1</u>	Mn	Mo	<u>MII4</u>	Ag	<u>A1</u>	As	Ba	Br
AZ116	183				<.10	.0007	<.1	<.02		•	0.3	<.06	<1.0	.011	<.4	
A2117	184				<.10	.0007	<.1	.03			0.3	<.06	<1.0	.078	< 4	
AZ121	188				<.10	.0007	<.1	.03			0.2	<.06	<1.0	.008	<.4	
AZ126	193				<.10	.0003	<.1	<.02	•		0.1	<.06	<1.0	.010	< 4	
AZ133	201				<.10	.0005	<.1	:29			0.2	<.06	<1.0	.074	< 4	
AZ134	202				<.10	.0004	<.1	.02			0.2	<.06	<1.0	.010	<.4	
AZ141	338				.11		<.3	.52			,	<.05	<1	.030	.6	
AZ145	341				<.10		<.3	.01				<.05	<1	.015	<.4	
AZ149	345			•	<.10		<.3	.28				<.05	<1	.037	<.4	
AZ152	348				<.10	· .	1.9	.05				<.05	<1	.047	<.4	
AZ153	349				. 20		<.3	.04				<.05	<1	.017	1.0	
AZ154	350				.18		<.3	.02	•			<.05	<1	.011	<.4	
AZ155	351				. 22		<.3	4.05			<i>e</i>	<.05	<1	.170	1.1	
AZ158	354				. 22		<.3	.03				<.05	<1	.020	<.4	
AZ159	355				. 20	-	<.3	.20				<.05	<1	.020	<.4	
AZ162	358				. 24		<.3	.46				<.05	<1	.035	1.0	
AZ164	364		:		. 20		<.3	.21				<.05	<1	.040	<.4	
		<.01	<.15	<.1	<. 10	.0012	<.1	.02	<.07	<.5	. 30	<.03	<2.5	.001	<.7	.54
₩-2		<.01	<.15	<.1	<.10	.0011	<.1	.01	<.07	<.5	.90	<.03	<2.5	.007	<.7	.31
JW-3		<.01	<.15	<.1	<.10	.0012	<.1	.48	<.07	<.5	.13	<.03	<2.5	.018	<.7	.56
JW-4		<.01	<.15	<.1	<.10	.0012	<.1	. 34	<.07	<.5	1.24	<.03	<2.5	.014	<.7	.43
JW-5		<.01	<.15	<.1	<.10	.008	<.1	.65	<.07	.<.5	1.35	<.03	<2.5	.021	<.7	.56
JW-6		<.01	<.15	<.1	<.10	.0011	<.1	04	<.07	<.5	1.16	<.03	<2.5	.002	<.7	.22
JW-7		<.01	<.15	<.1	<.10	.0006	<.1	.03	<.07	<.5	.69	<.03	<2.5	.002	<.7	.27
3P		<.01	<.15	<.10	<.10	.0006	<.1	.64	.08	<.50	. 30	<.03	<2.5	.019	<.70	. 56
26P		<.01	<.15	<.10	<.10	.0003	<.1	.05	<.07	<.50	.90	<.03	<2.5	.008	<.70	.47
Gila l	28															
Gila 2	29	<.02	<.18	<.10	<.12	.0006		.16	<.063	<.45	<.05	<.07	<1.10	.009	<.20	<.0
Gila 3	30									•	-					• -
Gila 4	31	<.02	<.18 [·]	<.10	<.12	.0006		.11	<.063	<.45	<.05	<.07	<1.10	.006	<.20	<.0
Gila 5	32	<.02	<.18	<.10	<.12	.0033		. 26	<.063	<.45	<.05	<.07	<1.10	.007	<.20	<.0
Gila 6	33	<.02	<.18	<.10	<.12	.0007		.26	<.063	<.45	<.05	<.07	<1.10	.008	<.20	<.0
Gila 7	34	<.02	<.18	<.10	<.12	.0005		.43	<.063	<.45	<.05	<.07	<1.10	.006	<.20	<.0
Gila 8	35	<.02	<.18	<.10	<.12	.0006	•	. 31	<.063	<.45	<.05	<.07	3.10	.009	<.20	<.0
G11a 9	36									• • •	•	• - •				
Gila l	0 37					· -										

Gila 11 38

C

									թթա				·····			ختر ہے۔ یہ ہ
Field ∦	Lab #	<u>Cd</u>	<u>Co</u>	Cr	<u>Cu</u>	llg	<u>1125</u>	<u>L1</u>	Mn	Mo	<u>NH</u> 4	Ag	<u>A1</u>	As	Ba	Br
LD1	132	<.02	<,14	<.1		<.0002	<.1	.14	<.05	<.5	<,05	<.06	<1.0	.012	<.20	.53
LD2	133	<.02	<.14	<.1	<.10	<.0002	<.1	.31	<.05	<.5	<.05	<.06	<1.0	.017	<.20	.67
LD3	134	<.02	<.14	<.1	<.10	.0002	<.1	.09	<.05	<.5	<.05	<.06	<1.0	.008	<.20	1.52
LD4	135	<.02	<.14	<.1	<.10	<.0002	<.1	.13	<.05	<.Š	<.05	<.06	<1.0	.018	<.20	.56
LD5	136	<.02	<:14	<.1	<.10	<.0002	<.1	.23	<.05	<.5	<.05	<.06	<1.0	.017	<.20	.99
LD6	137	<.02	<.14	<.1	<.10	.0002	<.1	.03	<.05	<.5	<.05	<.06	<1.0	.003	<.20	0
LD7	138	<.02	<.14	<.1	.69	<.0002	<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.003	<.20	. 28
LD8	139	<.02	<.14	<.1	<.10	<.0002	<.1	.02	<.05	<.5	<.05	<.06	<1.0	.005	<.20	.32
LD9	140	<.02	<.14	<.1	<.10	<.0002	<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.003	<.20	0
LD10	141	<.02	<.14	<.1	.11	<.0002	<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.002	<.20	0
LD11	142	<.02	<.14	<.1	<.10	<.0002	<.1	.02	<.05	<.5	<.05	<.06	<1.0	.006	<.20	. 35
LD12	143	<.02	<.14	<.1	<.10	<.0002	<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.003	<.20	.12
LD13	144	<.02	<.14	<.1	<.10	<.0002	.10	<.02	<.05	<.5	<.05	60.>	<1.0	.017	<.20	.16
LD14	145	<.02	<.14	<.1	<.10	.0004	<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.004	<.20	.41
LD15	146	<.02	<.14	<.1	<.10	.0006	.13	<.02	<.05	<.5	<.05	<.06	<1.0	.003	<.20	.23
LD16	147	<.02	<.14	<.1	<.10	.0004	`<.1	<.02	<.05	<.5	<.05	<.06	<1.0	.003	<.20	.25
LD17	148	<.02	<.14	<.1	<.10	.0009	<.1	.02	<.05	<.5	<.05	<.06	<1.0	.031	<.20	.23
' LD18	149	<.02	<.14	<.1	<.10	.0004	<.1	.11	<.05	<.5	<.05	<.06	<1.0	.007	<.20	.41
Gila 20	0 150				<.10	.0004	<.1	. 06			<.05	<.06	<1.0	.007	<.20	
Gila 2	1 151				<.10	.0003	<.1	.03			<.05	<.06	<1.0	.004	<.20	
Gila 22	2 152				<.10	.0004	<.1	. 11			<.05	<.06	<1.0	.006	<.20	
Gila 23	3 153				<.10	.0006	<.1	.13			<.05	<.06	<1.0	.002	<.20	
Gila 24	4 154				<.10	.0006	<.1	.08			<.05	<.06	<1.0	.006	<.20	
Gila 2	5 155				<.10	.0006	<.1	.14			<.05	< 06	<1.0	.011	<.20	
Gila 20	6 156				<.10	.0006	<.1	.15			<.05	<.06	<1.0	.006	<.20	
Gila 21	7 127				<.10	.0006	<.1	. 20			<.05	< .06	<1.0	.015	<.20	
Gila 29	9 159				<.10	.0006	<.1	. 02			<.05	< 06	<1.0	.004	<.20	
G11a 30	0 160	<.02	<.14	<.1	<.10	.0006	<.1	. 22	.40	<.5	<.05	<.06	<1.0	.014	<.20	.15