The Los Alamos Personnel and Area
Criticality Dosimeter Systems
THE LOS ALAMOS PERSONNEL AND AREA CRITICALITY DOSIMETER SYSTEMS

by

Dennis G. Vasilik and Robert W. Martin

ABSTRACT

Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems.

I. INTRODUCTION

The Health Physics Group of the Los Alamos National Laboratory is responsible for estimating the neutron and photon doses to individuals involved in a potential criticality accident. A Personnel Neutron Dosimetry (PND) packet is used to estimate the neutron dose to a person carrying the device. PND packets are issued to persons working in all areas where a nuclear criticality accident is possible. The elements of the PND system are given in Table I. Figure 1 is a line drawing of a PND packet. Personnel Photon Dosimetry is accomplished with a Thermoluminescent Dosimetry (TLD) badge. TLD badge estimates of the photon dose to an individual are described in the literature (Ref. 1).

The Los Alamos Criticality Dosimeter (LACD) packet is an area monitor located wherever a potential exists for a nuclear criticality accident. The elements of the LACD system are given in Table II. Figure 2 is a line drawing of a LACD packet. The LACD packet is capable of providing neutron and photon dose estimates. Photon doses are measured with thermoluminescent dosimeters.

1
TABLE I

COMPONENTS OF PND PACKET

<table>
<thead>
<tr>
<th>Dosimeter</th>
<th>Neutron Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare indium foil</td>
<td>0.025–0.5 eV</td>
</tr>
<tr>
<td>Cadmium-covered indium foil</td>
<td>0.5–2.0 eV and</td>
</tr>
<tr>
<td>Cadmium-covered copper foil</td>
<td>1–9 MeV</td>
</tr>
<tr>
<td>Sulfur tablet</td>
<td>10^{-5}–1 MeV</td>
</tr>
<tr>
<td></td>
<td>2.9–9 MeV</td>
</tr>
</tbody>
</table>

INDIUM FOIL (BARE) (0.25 g)

INDIUM FOIL (CADMIUM-COVERED) (0.21 g)

COPPER FOIL (CADMIUM-COVERED) (0.25 g)

SULFUR TABLET (0.41 g)

Fig. 1.

Personnel neutron dosimetry (PND) packet.
TABLE II
COMPONENTS OF LACD PACKET

<table>
<thead>
<tr>
<th>Dosimeter</th>
<th>Energy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare indium foil</td>
<td>0.025–0.5 eV</td>
</tr>
<tr>
<td>Cadmium-covered indium</td>
<td>0.5–2.0 eV and</td>
</tr>
<tr>
<td>foil</td>
<td>1–9 MeV</td>
</tr>
<tr>
<td>Bare gold foil</td>
<td>0.025–0.5 eV</td>
</tr>
<tr>
<td>Cadmium-covered gold</td>
<td>0.5–10.0 eV</td>
</tr>
<tr>
<td>foil</td>
<td></td>
</tr>
<tr>
<td>Cadmium-covered copper</td>
<td>10⁻⁵–1 MeV</td>
</tr>
<tr>
<td>foil</td>
<td></td>
</tr>
<tr>
<td>Sulfur tablet</td>
<td>2.9–9 MeV</td>
</tr>
<tr>
<td>Phylatron diode</td>
<td>0.4–9 MeV</td>
</tr>
<tr>
<td>Thermoluminescent</td>
<td>0.005–15 MeV</td>
</tr>
<tr>
<td>dosimeters (TLD-700)</td>
<td></td>
</tr>
<tr>
<td>Glass rod dosimeter</td>
<td>0.005–15 MeV</td>
</tr>
</tbody>
</table>

Fig. 2.
Los Alamos criticality dosimeter (LACD) packet.
(TLD-700) and silver-activated phosphate glass rods. Both the LACD and PND criticality packets utilize a set of activation foils to determine the neutron dose. Neither dosimetry system relies on elaborate computational or experimental measurement programs. The LACD and PND systems satisfy the suggested IAEA requirements (Ref. 2) of a criticality accident dosimetry program that provide estimates of the dose with an accuracy of 50% in 24 hours and 25% within 4 days.

II. NEUTRON ACTIVATION EQUATIONS

A. Theory

Neutron activation analysis is used to determine the fluence of a neutron spectrum. The activity of the irradiated sample is directly related to the neutron fluence.

B. Derivation of Flux Relationships

A thin foil of known physical and nuclear properties is irradiated by neutrons for a given time t_0. The foil is then removed from the neutron flux and transferred to a detector, where the activity of the foil is measured. Figure 3 shows the time sequence for this procedure. The rate at which neutrons in the beam interact with nuclei in the foil in a small thickness, dx, at the position x (measured from the front face of the foil) is approximated by

$$d\bar{R} = \Phi(x)n_t\sigma_t dx,$$

(1)

where n_t is the total number of nuclei per cm3, σ_t is the total microscopic neutron cross section in cm2, $\Phi(x)$ is the neutron flux in n/cm2-sec, and \bar{R} is the number of interactions/cm2-sec. The microscopic cross section σ is a measure of the probability of the occurrence per target nucleus of a particular nuclear reaction under given conditions. For the particular case stated, σ_t represents the probability that all possible nuclear reactions will occur under the given experimental conditions. The flux is not constant throughout the foil but is equal to the incident flux minus the rate at which
neutrons have been removed from the beam by interactions with nuclei in a thickness x of the foil. That is

$$\phi(x) = \phi_o - R(x).$$ \hspace{1cm} (2)

Substituting Equation 2 into Equation 1 gives

$$dP = (\phi_o - R) n_0 n_t \sigma_t dx$$

or

$$\frac{dR}{(\phi_o - R)} = n_0 n_t \sigma_t dx.$$

Integrating over the thickness of the foil,

$$\ln(\phi_o - R) = -n_0 n_t \sigma_t x + C.$$

At $x = 0$, $R = 0$, so $C = \ln \phi_o$, and the above equation becomes

$$\ln \left(\frac{\phi_o - R}{\phi_o}\right) = -n_0 n_t \sigma_t x.$$
This can be rewritten as
\[R = \phi_o \left(1 - e^{-n \sigma t} \right). \]

The total rate at which neutrons interact with the nuclei in the foil is therefore
\[RA = \phi_o A \left(1 - e^{-n \sigma t} \right), \quad (3) \]

where \(A \) is the area of the foil. Equation 3 gives the total interaction rate, which includes scattering events and many types of absorption reactions. The actual activity that is measured in the foil is produced by one particular nuclear reaction. Therefore, it is the rate at which this particular reaction is occurring, not the total rate as given in Equation 3, that must be related to the activity in the foil.

The particular reaction rate is obtained by multiplying the total rate (Equation 3) by the relative probability that the desired reaction will occur. This relative probability is the ratio of the macroscopic cross section \(\Sigma_p \) for the particular reaction to the total macroscopic cross section \(\Sigma_t \). A macroscopic cross section is equal to the product of the microscopic cross section \(\sigma \) and the number of appropriate nuclei per unit volume \(n \). The rate at which particular nuclei are being activated in a specific way is given by

\[R_p A = \phi_o A \left(1 - e^{-n \sigma t} \right) \frac{\Sigma_p}{\Sigma_t}, \]

where the subscript \(p \) refers to the particular reaction of interest.

The above equation can be written as
\[R_p A = \phi_o A \left(1 - e^{-n \sigma t} \right) \frac{n_p \sigma_p}{n_t \sigma_t}. \quad (4) \]

During activation, the rate of change of the number \(N \) of activated nuclei is equal to the rate at which they are formed minus the rate at which they decay. Thus,
\[\frac{dN}{dt} = RA - \lambda N. \]
where λ is the decay constant.

This can be arranged to the form

$$\frac{dN}{(\frac{RA}{\lambda} - N)} = \lambda dt .$$

Integrating,

$$\ln \left(\frac{RA}{\lambda} - N \right) = -\lambda t + C .$$

At $t = 0$, $N = 0$, so $C = \ln(RA/\lambda)$, and then this equation can be written as

$$\ln \left(\frac{RA}{\lambda} - N \right) = -\lambda t$$
or

$$N = \frac{RA}{\lambda} \left(1 - e^{-\lambda t} \right) .$$

If we let $N = N_0$ at the end of irradiation ($t = t_o$), then the above equation becomes

$$N_0 = \frac{RA}{\lambda} \left(1 - e^{-\lambda t_o} \right) .$$

(5)

During transfer from the neutron irradiation position to the radiation detector, the rate of decay is

$$\frac{dN}{dt} = -\lambda N ,$$

where $t = 0$ is now defined to be at the start of transfer.

Integrating, this becomes

$$\ln N = -\lambda t + C .$$

At $t = 0$, $N = N_0$, so $C = \ln N_0$ and

$$\ln \left(\frac{N}{N_0} \right) = -\lambda t$$
or

\[N = N_0 e^{-\lambda t} \]

At \(t = t_1 \), \(N = N_1 \); thus,

\[N_1 = N_0 e^{-\lambda t_1} \] \hspace{1cm} (6)

Similarly, during counting, the rate of decay is \(\frac{dN}{dt} = -\lambda N \) where \(t = 0 \) is now defined to be at the start of counting. Using the condition that at \(t = 0 \), \(N = N_1 \) and at \(t = t_2 \), \(N = N_2 \), the result is

\[N_2 = N_1 e^{-\lambda t_2} \] \hspace{1cm} (7)

The number of atoms that decay during time \(t_2 \) is just \(N_1 - N_2 \). Denoting this by \(N_T \),

\[N_T = N_1 - N_2 = N_1 \left(1 - e^{-\lambda t_2} \right) \]

Substituting for \(N \) and \(N_0 \),

\[N_T = \frac{R \cdot A}{\lambda} \left(1 - e^{-\lambda t_0} \right) \left(1 - e^{-\lambda t_1} \right) \left(1 - e^{-\lambda t_2} \right) \]

Using Equation 4 this becomes

\[N_T = \frac{0 \cdot A \cdot n \cdot c}{\pi} \left(1 - e^{-n_1 \sigma t} \right) \left(1 - e^{-n_2 \sigma t} \right) \left(1 - e^{-n_3 \sigma t} \right) \]

Equation 8 is an expression for the true number of atoms that decay during the counting period \(t_2 \).

\(N_T \) is also related to the number of counts \(C \) obtained by counting the activated foil. The number of counts \(C \) is related to \(N_T \) by correcting for the branching ratio \(\varepsilon \), any absorption correction factors \(a \), and the detector efficiency \(Q \).

The relation between \(N_T \) and \(C \) is

\[N_T = \frac{C}{Q\varepsilon a} \]
Substituting in Equation 8 one obtains

\[
\frac{C}{Q\varepsilon_{a}} = \frac{\phi_{o} \sigma_{a} \sigma_{p} \rho}{n_{t} \sigma_{t} \lambda} \left(1 - e^{-\sigma_{t} n_{t} x}
ight) \left(1 - e^{-\lambda t_{o}}
ight) \left(1 - e^{-\lambda t_{1}}
ight) \left(1 - e^{-\lambda t_{2}}\right);
\]

or solving for the flux,

\[
\phi_{o} = \frac{n_{t} \sigma_{t} \lambda C}{Q\varepsilon_{a} \sigma_{a} \sigma_{p} \rho} \left(1 - e^{-\sigma_{t} n_{t} x}
ight) \left(1 - e^{-\lambda t_{o}}
ight) \left(1 - e^{-\lambda t_{1}}
ight) \left(1 - e^{-\lambda t_{2}}\right).
\]

This expression gives the neutron flux in neutrons per cm²-sec as a function of the number of counts C measured for a certain radiation (gamma or beta) during counting time t₂.

A criticality burst can be of extremely short duration. Thus, one would not think in terms of neutron flux but rather fluence (n/cm²). The pulse is so short that we can expand (1 - e⁻λt) in a Taylor Series to get

\[
1 - e^{-\lambda t_{o}} = 1 - (1 - \lambda t_{o} + \text{higher order terms})
\]

Thus, Equation 9 can be written

\[
\phi_{o} = n\sigma_{t} C
\]

\[
= \frac{n_{t} \sigma_{t} \lambda C}{Q\varepsilon_{a} \sigma_{a} \sigma_{p} \rho} \left(1 - e^{-\sigma_{t} n_{t} x}
ight) \left(1 - e^{-\lambda t_{o}}
ight) \left(1 - e^{-\lambda t_{1}}
ight) \left(1 - e^{-\lambda t_{2}}\right),
\]

where n is the neutron density (neutrons/cm³) and v₀ is the neutron velocity (cm/sec).

Multiplying both sides of Equation 10 by t₀ results in

\[
n\sigma_{t} t_{o} = \frac{n_{t} \sigma_{t} \lambda C}{Q\varepsilon_{a} \sigma_{a} \sigma_{p} \rho} \left(1 - e^{-\sigma_{t} n_{t} x}
ight) \left(1 - e^{-\lambda t_{o}}
ight) \left(1 - e^{-\lambda t_{1}}
ight) \left(1 - e^{-\lambda t_{2}}\right).
\]

In Equation 11, the term n\sigma_{t} t_{o} is the neutron fluence in neutrons per cm². Thus,
Equations 9 and 12 are the major equations of interest for threshold foil activation analysis. Equations 9 and 12 are based on a beam of neutrons incident normal to the plane of a given foil. The area A is that effective area normal to the direction of the beam. The foil thickness x is that effective thickness parallel to the direction of the beam. The thickness x of the foil is small enough so that the energy spectrum of Φ and the energy dependence of the cross section as a function of x can be ignored.

III. CRITICALITY DOSIMETRY ACTIVATION FOIL REACTIONS

In Table III we show the threshold detectors that are used in the PND and LACD packets. The particular reactions of interest and the applicable energy ranges for the fluence determinations are shown.

In the following discussion of activation foil analyses, we will refer to fluence determinations with Equation 12. Flux determinations can be easily made with reference to Equation 9.

A. Thermal and Epithermal Neutron Fluence Determinations Using Bare and Cadmium-Covered Gold Foils

Gold foils are located solely in the LACD packet. In Table IV, we show important physical and nuclear properties necessary for the application of Equation 12.

The cadmium covers on gold foils are nominally 0.071 cm thick. The cutoff energy is about 0.62 eV (Ref. 3). The thermal fluence thus represents neutrons from thermal energies to 0.62 eV.

Presently, thermal neutron fluence measurements are conducted using gold foils 0.0251 cm thick and 1.27 cm in diameter. Gold in natural abundance is 100% 197Au. When placed in a neutron flux, the following reaction occurs.

\[^{1}n + ^{197}\text{Au} \rightarrow ^{198}\text{Au} + \gamma \text{s} \]
TABLE III
PND AND LACD DOSIMETER THRESHOLD FOILS

<table>
<thead>
<tr>
<th>Number</th>
<th>Foil Type</th>
<th>Dosimeter Type</th>
<th>Energy Range</th>
<th>Nuclear Reaction of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cadmium Covered Indium</td>
<td>PND and LACD</td>
<td>1-9 MeV</td>
<td>115In $\rightarrow ^{0n} + ^{115m}$In $\rightarrow ^{1n'} + ^{1p} + ^{\gamma_{s}}$</td>
</tr>
<tr>
<td>2.</td>
<td>Sulfur Tablet</td>
<td>PND and LACD</td>
<td>2.9-9 MeV</td>
<td>32S $\rightarrow ^{1n} + ^{32p}$</td>
</tr>
<tr>
<td>3.</td>
<td>Cadmium-Covered Copper</td>
<td>PND and LACD</td>
<td>10^{-5}-1 MeV</td>
<td>63Cu $\rightarrow ^{1n} + ^{64}$Cu* $\rightarrow ^{64}$Ni $\rightarrow ^{\gamma_{s}}$</td>
</tr>
<tr>
<td>4.</td>
<td>Bare Indium</td>
<td>PND and LACD</td>
<td>Thermal and Epithermal</td>
<td>115In $\rightarrow ^{1n} + ^{116}$Sn $\rightarrow ^{\gamma_{s}}$</td>
</tr>
<tr>
<td>5.</td>
<td>Bare Gold</td>
<td>LACD</td>
<td>Thermal and Epithermal</td>
<td>197Au $\rightarrow ^{1n} + ^{198}Hg\rightarrow ^{198}$Hg $\rightarrow ^{\gamma_{s}}$</td>
</tr>
</tbody>
</table>

TABLE IV
IMPORTANT PHYSICAL AND NUCLEAR CONSTANTS FOR GOLD FOILS

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Density</td>
<td>ρ</td>
<td>19.32 g/cm3</td>
</tr>
<tr>
<td>2. Isotopic Abundance of 197Au</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>3. Average Atomic Weight</td>
<td>A</td>
<td>196.967 amu</td>
</tr>
<tr>
<td>4. Half-Life of 198Au Decay</td>
<td>$T_{1/2}$</td>
<td>2.698 d</td>
</tr>
<tr>
<td>5. Gamma Ray of Interest</td>
<td></td>
<td>0.412 MeV</td>
</tr>
<tr>
<td>6. Number of 0.412-MeV Gamma Rays Per Decay of 198Au</td>
<td>c</td>
<td>0.997</td>
</tr>
<tr>
<td>7. Particular Cross Section</td>
<td>σ_p</td>
<td>98.8 b (THERMAL)</td>
</tr>
<tr>
<td>8. Number of 197Au Nuclei Per Unit Volume</td>
<td>n_p</td>
<td>5.9073×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>9. Total Number of Gold Nuclei Per Unit Volume</td>
<td>n_t</td>
<td>5.9073×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>10. Decay Constant</td>
<td>λ</td>
<td>2.971×10^{-6} sec$^{-1}$</td>
</tr>
<tr>
<td>11. Total Cross Section</td>
<td>σ_t</td>
<td>107.3b</td>
</tr>
<tr>
<td>12. Epithermal Neutron</td>
<td>σ</td>
<td>1550b</td>
</tr>
<tr>
<td>Resonance Integral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It is possible to measure the neutron fluence by taking advantage of the above reaction, which leads to the formation of radioisotopes whose activity can be determined by gamma-ray spectroscopy.

Equation 12 is used to determine the thermal neutron fluence. It must be multiplied by the cadmium correction factor F_{Cd}.

The cadmium correction factor F_{Cd} is equal to

$$F_{\text{Cd}} = 1 - \frac{A_{\text{EPI}}}{A_{\text{TOTAL}}},$$ \hspace{1cm} (13)

where

- A_{EPI} is the activity of the 0.412-MeV gamma ray resulting from epithermal neutrons (determined from the cadmium-covered foil) and
- A_{TOTAL} is the activity of the 0.412-MeV gamma ray resulting from thermal and epithermal neutrons (determined from the bare foil).

F_{Cd} can also be written

$$F_{\text{Cd}} = \frac{R_{\text{Cd}}^{-1}}{R_{\text{Cd}}},$$ \hspace{1cm} (14)

where the cadmium ratio R_{Cd} equals

$$R_{\text{Cd}} = \frac{A_{\text{TOTAL}}}{A_{\text{EPI}}},$$ \hspace{1cm} (15)

Experimentally,

$$R_{\text{Cd}} = \frac{(\text{C BARE FOIL})(\text{MASS}_{\text{Cd-COVERED FOIL}})}{(\text{C Cd-COVERED FOIL})(\text{MASS}_{\text{BARE FOIL}})}.$$

$$12$$
where the counts from the bare foil (\(C_{\text{BARE FOIL}}\)) and the counts from the cadmium-covered foil (\(C_{\text{Cd-COVERED FOIL}}\)) are accumulated for equal analysis times (or adjusted accordingly).

The resulting thermal and epithermal fluences must be corrected for the flux perturbation factor \(F_1\). The \(F_1\) factor is in the denominator of Equation 12.

In Figure 4 we show a pictorial representation of the flux depression and self-shielding parameters that are collectively referred to as the flux perturbation factor \(F_1\). The factor \(F_1\) (Ref. 4) is equal to

\[
F_1 = G \times H.
\]

where

\[
G = \frac{\phi}{\phi_s} \quad (18)
\]

and

\[
H = \frac{\phi_s}{\phi_0} \quad (19)
\]

Fig. 4.
Flux depression and self-shielding parameters.
Here,

\(\bar{\Phi} \) = mean flux in the foil detector,
\(\Phi_0 \) = unperturbed flux, and
\(\Phi_s \) = flux at surface of detector.

Let us first consider the self-shielding correction factor \(G \). \(G \) is the probability that neutrons entering the sample will not be captured in it. This probability is (Ref. 5)

\[
P_0 = 1 - P_c
\]

for a purely absorbing sample. For a real sample in which scattering takes place,

\[
P_0 = \frac{1 - P_c}{1 - P_c \left(1 - \frac{\Sigma_c}{\Sigma_t} \right)}
\]

Here,

\(P_c \) is the collision probability, (Ref 6)
\(\Sigma_c \) is the macroscopic capture cross section, and
\(\Sigma_t \) is the macroscopic total cross section.

We assume that our disks are made up of infinite parallel plates.\(^5\) Thus,

\[
1 - P_c = \frac{1}{2x} \left[1 - 2E_3(x) \right]
\]

where

\[
x = \Sigma_t a
\]

In Equation 22, \(E_3(x) \) is the third-order exponential integral defined by...
The factor a is the mean chord defined by

$$a = \frac{2V}{S},$$ \hspace{1cm} (24)

where

V is the foil volume and
S is the foil total surface area.

For $x \ll 1$

$$1 - P_c = 1 - \frac{3x}{4} + \frac{x}{2} (\ln x + \gamma) - \frac{x^2}{6} + \frac{x^3}{48} - \frac{x^4}{360},$$ \hspace{1cm} (25)

where

γ is Euler's constant (0.577216).

For gold 0.0254 cm thick and 1.27 cm in diameter,

$\Sigma_t = 6.34 \text{ cm}^{-1}$,

$a = 2.442 \times 10^{-2} \text{ cm}$, and

$x = 1.548 \times 10^{-1}$.

Thus, we calculate

$$G = 1 - P_c = 0.78.$$ \hspace{1cm} (26)

Consider now the determination of the flux depression factor H. The formula used to determine H is that proposed by Skyrme and modified by Ritchie and Eldridge (Ref. 7) with an edge correction by Hanna (Ref. 8).

The formula is

$$H = \frac{1 + \varepsilon}{1 + g \left[\frac{1}{1/2 - E_3(\tau)} \right]},$$ \hspace{1cm} (27)
Here, the correction for edge effects is

\[\varepsilon = \left[\frac{1}{1/2 - E_3(\tau)} \right] \left(\frac{\tau}{\pi R} \right) \left(1 - \frac{\pi \tau}{6} \right), \]

(28)

where

\[\tau = \Sigma t d, \]

(29)

\[\Sigma t = \text{total macroscopic cross section for the foil and} \]
\[d = \text{foil thickness}. \]

Also,

\[R = \text{foil radius}, \]

and

\[\frac{1/2 - E_3(\tau)}{\tau} = 1 - \frac{3\pi}{4} + \frac{\tau}{2} (1n\tau + \gamma) - \frac{\tau^2}{6} + \frac{\tau^3}{48} - \frac{\tau^4}{360}, \]

(30)

where \(\gamma \) is Euler's constant and \(\tau \ll 1 \).

Finally we calculate the value for \(g \) (Ref. 7)

\[g = g_s \left(\frac{g_\infty}{g_s} \right), \]

(31)

Now,

\[g_s = \frac{3L}{2\lambda} \left\{ \frac{4x}{3\pi} - \frac{x^2}{8\pi} + \frac{4x^3}{45\pi} - \frac{x^4}{192} \right\}, \]

(32)

where

\[x = \frac{2R}{L}, \]

(33)

\(\lambda = \text{total mean free path of a thermal neutron in the moderating medium that surrounds the foil and} \)
\(L = \text{diffusion length in the medium surrounding the foil}. \)
The value of $\frac{g_v}{g_s}$ can be determined from Figure 5 (Ref. 7).

We can now calculate H for 0.0254-cm-thick, 1.27-cm-diameter gold foils in air. The diffusion length L of a thermal neutron in air is approximately 2390 cm and the total mean free path is about 373 cm. The value of T is equal to 1.161. The result is that

$$H \approx 1.0.$$

Thus,

$$F_1 = GH$$

and

$$F_1 = 0.78.$$

For higher energy neutrons, $F_1 \approx 1$ because the self-shielding and flux-depression effects are negligible. As the neutron energy increases above thermal, the mean free path increases and F_1 is approximately equal to 1.

Fig. 5.
Values of the ratio of g to the Skyrme g in the infinite foil case.
B. Thermal and Epithermal Neutron Fluence Determinations Using Bare and Cadmium-Covered Indium Foils

Indium foils are located in both the PND and LACD packets. Thermal neutron fluence (or flux) measurements can be conducted using the indium foils. When activated by thermal neutrons, the following reaction occurs in indium.

$$^{115}_{49}\text{In} + ^{0}\text{n} \rightarrow \left(^{116m}_{49}\text{In} \right)^* \rightarrow ^{116}_{50}\text{Sn} + \gamma's$$

The isotopic abundance of 115In in natural indium is 95.72% by weight.

As with the gold foils, it is possible to measure the intensity of the neutron fluence (or flux) by taking advantage of the above reaction, which leads to the formation of a radioisotope whose activity can be determined by gamma-ray spectroscopy. In Table V, we show the important physical and nuclear properties necessary for the application of Equation 12.

Equation 12 must be corrected for F_{Cd} and F_1 as discussed in the previous section for gold foil analysis.

For indium 0.0254 cm thick, 1.429 cm in diameter, and $\Sigma_t = 7.507 \text{ cm}^{-1}$,

$$G = 0.75 .$$

Also, H is calculated to be equal to

$$H = 1.00 .$$

Thus,

$$F_1 = 0.75 .$$

C. Intermediate Neutron Fluence Determinations in the Energy Range of 10^{-5}-1 MeV with Copper Foils

When exposed to a neutron spectrum, a cadmium-covered copper foil activates from the capture of neutrons above the cadmium cutoff at 0.62 eV to about 1 MeV. In Table VI we show important physical and nuclear properties necessary for the application of Equation 12. The cross section is not shown since it is determined according to the methods outlined in Section IV for the appropriate spectral shape.
Copper activation foils are used in LACD and PND packets to estimate the neutron fluence in the energy range of 10^{-5} to 1 MeV. The reaction of interest is

$$^{63}_{29}\text{Cu} + ^{1}_{0}\text{n} \rightarrow ^{64}_{29}\text{Cu} \rightarrow ^{64}_{28}\text{Ni} + \gamma's \ .$$

The positron in this reaction has an energy of 0.656 MeV. The 0.511-MeV gammas from positron annihilation are analyzed with a Ge(Li) or intrinsic Ge detector, and the activity of these gammas is related to the neutron fluence. The copper foil is covered with cadmium in order to reduce interfering reactions and thereby reduce the Compton continuum in the vicinity of 0.511 MeV. The cadmium cover is removed before analyzing the copper foil.

TABLE V

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Density</td>
<td>ρ</td>
<td>7.31 g/cm3</td>
</tr>
<tr>
<td>2. Isotopic Abundance of $^{115}_{49}$In</td>
<td>A</td>
<td>95.72%</td>
</tr>
<tr>
<td>3. Average Atomic Weight</td>
<td>\overline{A}</td>
<td>114.82 amu</td>
</tr>
<tr>
<td>4. Half-Life of $^{115}_{49}$In Decay</td>
<td>$\tau_{1/2}$</td>
<td>54 min</td>
</tr>
<tr>
<td>5. Gamma Ray of Interest</td>
<td>E_{γ}</td>
<td>1.29 MeV</td>
</tr>
<tr>
<td>6. Number of 1.29-MeV Gamma Rays Per Decay of $^{115}_{49}$In</td>
<td>γ</td>
<td>0.85</td>
</tr>
<tr>
<td>7. Particular Cross Section</td>
<td>σ_p</td>
<td>157b (THERMAL)</td>
</tr>
<tr>
<td>8. Number of $^{115}_{49}$In Nuclei Per Unit Volume</td>
<td>η_p</td>
<td>3.67×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>9. Total Number of Indium Nuclei Per Unit Volume</td>
<td>n_t</td>
<td>3.83×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>10. Decay Constant</td>
<td>λ</td>
<td>2.1393×10^{-4} sec$^{-1}$</td>
</tr>
<tr>
<td>11. Total Cross Section</td>
<td>σ_t</td>
<td>196b</td>
</tr>
<tr>
<td>12. Epithermal Neutron Resonance Integral</td>
<td>σ</td>
<td>2600b</td>
</tr>
</tbody>
</table>
TABLE VI

IMPORTANT PHYSICAL AND NUCLEAR
CONSTANTS FOR COPPER FOILS

*FLUENCE DETERMINATION 10⁻⁵ - 1 MeV

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ρ</td>
<td>8.94 g/cm³</td>
</tr>
<tr>
<td>Isotopic Abundance of ⁶³Cu</td>
<td>A</td>
<td>69.0%</td>
</tr>
<tr>
<td>Average Atomic Weight</td>
<td>A</td>
<td>63.54 amu</td>
</tr>
<tr>
<td>Half-Life of ⁶⁴Cu Decay</td>
<td>T₁/₂</td>
<td>12.8 h</td>
</tr>
<tr>
<td>Gamma Ray of Interest</td>
<td>γ</td>
<td>0.511 MeV</td>
</tr>
<tr>
<td>Number of 0.511-MeV Gamma Rays Per Decay of ⁶³Cu</td>
<td>ε</td>
<td>0.38</td>
</tr>
<tr>
<td>Number of ⁶³Cu Nuclei Per Unit Volume</td>
<td>ηₚ</td>
<td>5.86 x 10²² cm⁻³</td>
</tr>
<tr>
<td>Total Number of Copper Nuclei Per Unit Volume</td>
<td>ηₜ</td>
<td>8.47 x 10²² cm⁻³</td>
</tr>
<tr>
<td>Decay Constant</td>
<td>λ</td>
<td>1.504 x 10⁻⁵ sec⁻¹</td>
</tr>
</tbody>
</table>

*Annihilation radiation in copper foil from positron decay of ⁶⁴Cu to ⁶⁴Ni.

In the LACD packet, the copper foil is approximately 2.51 x 10⁻² cm thick. The copper foil in the PND packet is about 2.7 x 10⁻² cm thick.

One major problem associated with the gamma spectroscopic analysis of copper foils in the PND and LACD packets has been understanding the degree of completeness of the positron annihilation. If the positrons do not annihilate, the neutron fluence could be grossly underestimated.

In order to determine the completeness of annihilation, one must have an understanding of the range of positrons in matter. If it is determined that many positrons are not being annihilated in the copper, then one must find a material that can be used to encase the copper and complete the annihilation. It is desirable that any annihilation be completed as close to the copper foils as possible.
Before proceeding, it will be most useful to distinguish between electron range and pathlength. Range is defined as the limiting thickness beyond which none of the incident electrons are emitted. Because of bremsstrahlung energy losses and straggling effects, a precise range does not exist. Electron pathlength is the integral distance that an electron travels and, because of scattering, may be significantly longer than the range. Figure 6 shows a typical path and range. The path is the total length of the line, and the range is the deepest point of penetration.

Several empirical relationships exist for the electron range. One of the best descriptions of the range is given by Katz and Penfold (Ref. 9).

For the present problem we use the relationship for energies from 0.01 to 3 MeV,

$$R \left(\frac{mg}{cm^2} \right) = 412 \ T^n ,$$ \hspace{1cm} (34)

where \(T \) = electron energy in MeV and

$$n = 1.265 - 0.0954 \ ln(T).$$

For the case of 0.656-MeV electrons in copper,

$$R = 2.38 \times 10^2 \ \frac{mg}{cm^2}.$$
Thus, a copper thickness of $2.66 \times 10^{-2} \text{ cm}$ would completely absorb an incident electron with an energy of 0.656 MeV. It is obvious that the activated copper foils in the LACD and PND packets emit many positrons before annihilation is complete. Thus, the copper foil needs to be covered with some material that will complete the annihilation process. Before considering what this material should be and its thickness, let us calculate the pathlength of a 0.656-MeV electron in copper. Mukoyama (Ref. 10) presents an empirical formula for calculating the pathlength by the continuous slowing down approximation (csda). The csda range is the pathlength that an electron would travel in the course of slowing down, in an unbounded homogeneous medium, from its initial energy E to zero energy if its rate of energy loss along the entire track were always equal to the mean rate of energy loss. Below 20 MeV there is very little difference in the energy loss and range between electrons and positrons (Ref. 11).

Mukoyama shows that

$$R_p = (r_h)(X_o)f(E)$$ \hspace{1cm} (35)\hspace{1cm} \tag{35}

where

$$R_p = \text{pathlength in} \left(\frac{E}{\text{cm}^2}\right),$$

$$r_h = \text{the number of radiation lengths},$$

$$X_o = \text{the radiation length in} \left(\frac{E}{\text{cm}^2}\right),$$

and

$$f(E) = \text{a correction factor}.$$

Also,

$$r_h = (\ln 2) \left[\ln \left(1 + \frac{E}{E_c\ln 2}\right)\right]$$ \hspace{1cm} (36)\hspace{1cm} \tag{36}

where

E = incident energy of the electron (MeV) and

E_c = critical energy (MeV).

The critical energy is

$$E_c = \frac{800}{(Z + 1.2)} \text{ MeV}$$ \hspace{1cm} (37)\hspace{1cm} \tag{37} \text{MeV}$$
where

\[Z = \text{atomic number of the medium}. \]

The critical energy is defined as that energy at which the ionization loss caused by collisions with atomic electrons is equal to the radiative energy loss.

The radiation length \(X_0 \) is the mean pathlength over which the electron has its energy reduced by a factor of \(e \). Knasel (Ref. 12) has reported a formula to predict \(X_0 \) for elements \(Z > 6 \) with an accuracy of 1%.

\[
X_0 = \frac{A(1 + 1.4 \times 10^{-5} Z^2)}{(1.4 \times 10^{-3})(Z)(Z + 1)\ln \left(\frac{183}{Z^{1/3}} \right)} \left(\frac{g}{cm^2} \right), \tag{38}
\]

where

\[A = \text{atomic weight of the material}. \]

Mukoyama gives

\[
f(E) = 1.5 - 1.3 \exp(-2E), \tag{39}
\]

where \(E \) is the electron energy in MeV.

For 0.656-MeV positrons incident on copper, \(R_p \) is determined to be \(3.69 \times 10^{-1} \) g/cm\(^2\). This is equal to a pathlength of \(4.13 \times 10^{-2} \) cm. The pathlength is a factor of 1.55 times the range. Monte Carlo calculations \(^{10}\) predict \(R_p \) equal to \(4.6 \times 10^{-1} \) g/cm\(^2\). This is equal to a pathlength of \(5.15 \times 10^{-2} \) cm. Thus, Mukoyama's empirical determination of the pathlength agrees very well with the more laborious Monte Carlo result.

In order to complete the annihilation of \(^{64}\text{Cu} \) positrons, we must identify an element that has a high \(Z \), a high density, and is relatively easy to work with. Equations 34 and 35 were used to determine the range and pathlength for 0.656-MeV positrons for a variety of elements. We determined that lead is the best material to use. According to Equation 34, the range is \(2.09 \times 10^{-2} \) cm. According to Equation 35, the pathlength is \(4.75 \times 10^{-2} \) cm. Monte Carlo calculations \(^{10}\) show a pathlength of \(4.05 \times 10^{-2} \) cm. Here, the pathlength is a factor of 2.27 times the range.

In order to completely annihilate all positrons emitted from our copper foils, we surround the foil with lead that is \(2.54 \times 10^{-2} \) cm thick.
The thickness of lead recommended is, of course, an overestimate because of the fact that the positrons are strongly being annihilated along the entire pathlength. The absorption of the annihilation photons in the lead is corrected in calculations of the activity.

D. Fast Neutron Fluence Determinations in the Energy Range of 1-9 MeV with Indium Foils

Reaction Number 1 of Table III is used to determine the neutron fluence from 1-9 MeV. The inelastic scattering of neutrons from \(^{115}\text{In}\) produces an isomeric state of \(^{115m}\text{In}\). In Table VII, we show important physical and nuclear properties necessary for the application of Equation 12. The cadmium-covered indium is used for the fluence determination to minimize the \(^{115m}\text{In}\) activation that contributes a continuum of gamma rays above which the \(^{115m}\text{In}\) gamma rays must be detected. The determination of the cross section is treated later in Section IV.

TABLE VII

IMPORTANT PHYSICAL AND NUCLEAR CONSTANTS FOR INDIUM FOILS

FLUENCE DETERMINATION 1-9 MeV

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Density</td>
<td>(\rho)</td>
<td>7.31 g/cm(^3)</td>
</tr>
<tr>
<td>2. Isotopic Abundance of (^{115}\text{In})</td>
<td></td>
<td>95.72%</td>
</tr>
<tr>
<td>3. Average Atomic Weight</td>
<td>(A)</td>
<td>114.82 amu</td>
</tr>
<tr>
<td>4. Half-Life of (^{115m}\text{In}) Decay</td>
<td>(T_{1/2})</td>
<td>4.5 s</td>
</tr>
<tr>
<td>5. Gamma Ray of Interest</td>
<td></td>
<td>0.335 MeV</td>
</tr>
<tr>
<td>6. Number of 0.335-MeV Gamma Rays Per Decay of (^{115m}\text{In})</td>
<td>(\epsilon)</td>
<td>0.50</td>
</tr>
<tr>
<td>7. Number of (^{115}\text{In}) Nuclei Per Unit Volume</td>
<td>(n_p)</td>
<td>(3.67 \times 10^{22} \text{ cm}^{-3})</td>
</tr>
<tr>
<td>8. Total Number of Indium Nuclei Per Unit Volume</td>
<td>(n_t)</td>
<td>(3.83 \times 10^{22} \text{ cm}^{-3})</td>
</tr>
<tr>
<td>9. Decay Constant</td>
<td>(\lambda)</td>
<td>(4.2787 \times 10^{-5} \text{ sec}^{-1})</td>
</tr>
</tbody>
</table>
E. Fast Neutron Fluence Determinations in the Energy Range of 2.9-9 MeV with Sulfur Tablets

When exposed to a neutron spectrum, sulfur tablets activate from the capture of neutrons. The threshold for the $^{32}\text{S}(n,p)^{32}\text{P}$ reaction is about 2 MeV. In Table VIII we show important physical and nuclear properties necessary for the application of Equation 12. The determination of the cross section is determined later in Section IV. The previously discussed foils are all evaluated with a Ge(Li) detector. Gamma rays are analyzed and related to the neutron fluence. Phosphorus-31, however, decays strictly by β^- emission. The beta particles are counted with an anthracene beta spectrometer. The spectrometer is calibrated with beta standards in order to determine an efficiency for counting the 1.71-MeV betas given off by ^{32}P.

Sulfur tablets are analyzed after burning. The burning procedure increases the sensitivity of counting. A complete discussion of the burning procedures is discussed in the literature (Ref. 13).

Table VIII

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ρ</td>
<td>1.96 g/cm3</td>
</tr>
<tr>
<td>Isotopic Abundance of ^{32}S</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Average Atomic Weight</td>
<td>A</td>
<td>32.064 amu</td>
</tr>
<tr>
<td>Half-Life of ^{32}P Decay</td>
<td>$T_{1/2}$</td>
<td>14.28 d</td>
</tr>
<tr>
<td>Beta of Interest</td>
<td></td>
<td>1.71 MeV (β^-)</td>
</tr>
<tr>
<td>Number of 1.71-MeV Betas Per Decay of ^{32}S</td>
<td>ε</td>
<td>1</td>
</tr>
<tr>
<td>Number of ^{32}S Nuclei Per Unit Volume</td>
<td>n_p</td>
<td>3.4976×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>Total Number of Sulfur Nuclei Per Unit Volume</td>
<td>n_t</td>
<td>3.6817×10^{22} cm$^{-3}$</td>
</tr>
<tr>
<td>Decay Constant</td>
<td>λ</td>
<td>5.618×10^{-7} sec$^{-1}$</td>
</tr>
</tbody>
</table>
IV. EFFECTIVE CROSS SECTIONS

The purpose of this section is to outline procedures to be followed in the evaluation of effective cross sections for the fast neutron components of the LACD and PND packets. Fast neutrons in the energy range of about 10^{-5} through 9 MeV are measured by means of the following three reactions.

\[^{63}\text{Cu}(n,\gamma)^{64}\text{Cu}, 10^{-5} - 1 \text{ MeV} \]
\[^{32}\text{S}(n,p)^{32}\text{P}, 2.9 - 9 \text{ MeV} \]
\[^{115}\text{In}(n,n')^{115}\text{In}, 1 - 9 \text{ MeV} \]

In each case, foils of the above materials are exposed to an unknown neutron fluence, and the fluences in certain energy groups are evaluated by counting either the gross gamma or beta activities of the foils.

Except for thermal neutrons (the Maxwellian distribution at ambient temperature), one cannot speak in terms of the number of neutrons at a given energy. One must refer either to the number of neutrons above (or below) a given energy or to the number of neutrons in a certain energy range.

An ideal threshold detector would have an activation cross section, which is zero until the threshold is reached, and then immediately reaches a fixed value for all higher neutron energies. If the threshold energy of this detector is E_{th1}, then a measurement of the induced activity of this ideal detector would be a measurement of the fluence of neutrons of energy exceeding E_{th1}. Similarly, if a second ideal threshold detector existed that had a different threshold energy, E_{th2}, a measurement of its activation would be a measure of the fluence of neutrons of energy exceeding E_{th2}. The difference in the two neutron fluence values would be a measurement of the fluence of neutrons in the energy range between E_{th1} and E_{th2}.

Unfortunately, however, ideal threshold detectors do not exist. We must live with threshold detectors with cross sections that are not step functions at a fixed threshold energy and also do not remain constant for higher neutron energies. Additionally, the cross sections may include the presence of resonances over certain energy intervals. It is necessary to treat threshold detectors as if they were ideal detectors with effective thresholds, E_{th}, and with only one cross section, σ. This is only possible if one knows the shape
of the neutron energy spectrum. Then, the effective cross section for the detector is defined by

\[
\bar{\sigma} = \frac{\int_{E_0}^{\infty} \frac{dN}{dE}(E)\tau(E)dE}{\int_{E_{th}}^{\infty} \frac{dN}{dE}(E)dE},
\]

where

- \(\bar{\sigma} \) = the effective cross section for the detector,
- \(\frac{dN}{dE}(E) \) = the irradiating neutron energy spectrum,
- \(\sigma(E) \) = the detector cross-section function,
- \(E_0 \) = the absolute threshold energy for the detector, and
- \(E_{th} \) = the effective threshold energy that one chooses for the detector.

Two things must be noted about this definition of the effective cross section. (1) Although the absolute threshold energy for a detector is fixed by nature, the effective threshold is completely arbitrary and may be chosen equal to the absolute threshold energy or may be greater, or even less than, the true threshold energy. (2) The compilation of the effective cross section depends on the knowledge of the irradiating neutron energy spectrum, and for any given neutron spectrum, the effective cross section becomes strictly a function of the effective threshold energy chosen.

Equation 40 cannot be solved explicitly. The functions for the spectral distributions are not known. One usually knows only the differential energy spectrum and the tabulated cross section. In Equation 40, \(\frac{dN}{dE}(E) \) has the units of \((n/cm^2)/MeV\). It represents the fluence in a narrow energy bin. The cross section \(\sigma(E) \) represents the average cross section of a given threshold detector in that energy bin. The width of the energy bin is \(dE \).

Cross sections for the threshold detectors of interest are well-known (Ref. 14). Once energy bins are defined by a differential neutron energy spectrum, it is an easy matter to refer to the cross-section tabulations for calculational purposes.
The fundamental problem in the measurement of neutron fluences in criticality accidents is to know the energy distribution of the neutrons. Without this information, the accuracy of a dosimeter is poor because the ratio of fluence to detector activity is a strong function of the neutron energy spectrum. Ing and Makra have greatly simplified the evaluation of criticality accident dosimetry problems. They have compiled an extensive collection of neutron spectra, relevant to critical excursions (Ref. 15).

Calculated spectra have complemented various dosimeter measurements. However, a dosimetry program that relies on elaborate computational and experimental evaluations after an accident is unsatisfactory because of the time constraints. It would not satisfy the suggested requirements of an accident dosimetry system where dose estimates have to be obtained within an accuracy of 50% in 24 hours and 25% in 4 days. These requirements can be met with the PND and LACD packets if a reasonable approximation to the actual spectrum is readily available. The compendium of Ing and Makra satisfies this need. Their compendium covers those spectra most likely to be encountered in nuclear accidents. In a nuclear accident, the geometry and material composition of the critical assembly and the environment can be quite complex. Neutron spectra that include the effects of multiple scattering from a room or surrounding objects would vary, not only from one assembly to the next, but also with the location of various individuals for the same excursion. Fortunately the scattered components often contribute little to the total dose (Refs. 16-18). In many cases, the approximation of the actual spectrum by the leakage spectrum from the critical assembly-direct or filtered by various materials-is adequate for accident dosimetry purposes when appropriate dosimeters are used. In the following, we will evaluate the effective cross sections for the three dosimeter materials of primary interest in the PND and LACD packets (copper, sulfur, and indium). Example evaluations will be conducted for slab and spherical sources.

First consider fission neutrons through a 10-cm-thick slab of polyethylene (page 80 of IAEA-180). The fluences given in Table 4.6 of IAEA-180, reproduced here in Table IX, are those integrated over one surface of the slab.

The fluence distribution is labeled as \(\Phi(u) \), which is normalized to one neutron emitted from a planar source. All spectra in IAEA-180 are presented in the form of fluence per unit lethargy (per unit logarithmic energy) vs
TABLE IX

FISSION NEUTRONS THROUGH 10-CM-THICK SLAB OF POLYETHYLENE

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>$\Phi (\mu)$</th>
<th>ΔE (eV)</th>
<th>L_{in}</th>
<th>ΔN (mcc)</th>
<th>$\sigma (\text{Sulfur})$</th>
<th>ΔN (Inium)</th>
<th>ΔN (Copper)</th>
<th>ΔN (Copper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>4.24×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.88x10^{-7}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>3.67x10^{-3}</td>
<td>6.20x10^{-2}</td>
<td>0.285</td>
<td>1.05x10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>3.68</td>
<td>2.50x10^{-1}</td>
<td>0.693</td>
<td>2.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-5}</td>
<td>3.74</td>
<td>5.00</td>
<td>0.693</td>
<td>2.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>3.73</td>
<td>1.15x10^{-2}</td>
<td>0.765</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.65</td>
<td>3.73</td>
<td>2.50</td>
<td>0.771</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-7}</td>
<td>3.90</td>
<td>5.35</td>
<td>0.766</td>
<td>2.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>3.88</td>
<td>9.00x10^{-1}</td>
<td>2.301</td>
<td>8.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.65</td>
<td>4.12</td>
<td>2.50</td>
<td>0.771</td>
<td>2.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-9}</td>
<td>4.20</td>
<td>5.15</td>
<td>0.766</td>
<td>2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>4.30</td>
<td>2.60</td>
<td>0.771</td>
<td>9.34x10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.58</td>
<td>4.43</td>
<td>3.20</td>
<td>0.776</td>
<td>9.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99</td>
<td>4.57</td>
<td>4.10</td>
<td>0.231</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.51</td>
<td>4.75</td>
<td>5.20</td>
<td>0.232</td>
<td>2.32x10^{-3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>4.99</td>
<td>6.50</td>
<td>0.210</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98</td>
<td>5.66</td>
<td>8.20</td>
<td>0.211</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>6.03</td>
<td>7.3x10^{-2}</td>
<td>0.210</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>6.47</td>
<td>1.30</td>
<td>0.211</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.94</td>
<td>6.99</td>
<td>1.63</td>
<td>0.210</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-5}</td>
<td>7.05</td>
<td>2.06</td>
<td>0.211</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>7.29</td>
<td>2.60</td>
<td>0.211</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.58</td>
<td>8.87</td>
<td>3.20</td>
<td>0.226</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99</td>
<td>9.97</td>
<td>4.10</td>
<td>0.231</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.51</td>
<td>1.11x10^{-2}</td>
<td>5.20</td>
<td>0.220</td>
<td>2.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>1.26</td>
<td>6.50</td>
<td>0.220</td>
<td>2.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98</td>
<td>1.46</td>
<td>8.20</td>
<td>0.231</td>
<td>3.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>1.67</td>
<td>1.03x10^{-2}</td>
<td>0.230</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.31</td>
<td>1.92</td>
<td>1.30</td>
<td>0.231</td>
<td>4.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.94</td>
<td>2.21</td>
<td>1.63</td>
<td>0.230</td>
<td>5.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-6}</td>
<td>2.53</td>
<td>2.06</td>
<td>0.231</td>
<td>5.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>2.67</td>
<td>2.60</td>
<td>0.231</td>
<td>6.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.58</td>
<td>3.27</td>
<td>3.20</td>
<td>0.226</td>
<td>7.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99</td>
<td>3.52</td>
<td>4.10</td>
<td>0.231</td>
<td>8.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.51</td>
<td>3.67</td>
<td>5.20</td>
<td>0.232</td>
<td>8.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>3.93</td>
<td>6.50</td>
<td>0.230</td>
<td>8.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98</td>
<td>3.26</td>
<td>8.20</td>
<td>0.231</td>
<td>7.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>2.66</td>
<td>1.03x10^{-2}</td>
<td>0.230</td>
<td>6.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.31</td>
<td>1.30</td>
<td>1.30</td>
<td>0.231</td>
<td>4.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.94</td>
<td>1.63</td>
<td>1.63</td>
<td>0.230</td>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00x10^{-7}</td>
<td>3.70x10^{-3}</td>
<td>2.06</td>
<td>0.231</td>
<td>8.75x10^{-4}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26</td>
<td>2.45x10^{-4}</td>
<td>2.60</td>
<td>0.231</td>
<td>5.66x10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
neutron energy. Since the lethargy unit weights the fluence by the corresponding neutron energy, we write

$$\frac{\Delta N}{\Delta \ln E} = E \frac{\Delta N}{\Delta E} .$$ \hspace{1cm} (41)

This follows from the fact that

$$\frac{d(\ln E)}{dE} = \frac{1}{E} .$$ \hspace{1cm} (42)

We define

$$\phi(u) = \frac{\Delta N}{\Delta \ln E}$$ \hspace{1cm} (43)

and

$$\langle \ln E \rangle = \langle u \rangle = \frac{\Delta N}{E} ,$$ \hspace{1cm} (44)

which is the fluence per given energy group. For the following calculations the average energy is defined to be at the midpoint of the energy bin.

In Table IX we show, for a 10-cm-thick polyethylene slab, the data reduction necessary to determine the neutron fluence per energy group. Also shown are the cross sections for 115In, 32S, and 63Cu. In this table,

$$\Delta nE = \frac{\Delta E}{E} ,$$ \hspace{1cm} (45)

where E is the average energy of the bin.

For sulfur,

$$\bar{\sigma} = \frac{\int_{2.9}^{9} \frac{dN}{dE} (E) \gamma (E) dE}{\int_{2.9}^{9} \frac{dN}{dE} (E) dE} = 1.58 \frac{7.14 \times 10^{-3} b}{2.55 \times 10^{-2}} \quad ;$$

and

$$\bar{\sigma} = 0.280 b .$$
For indium,

\[
\bar{\sigma} = \frac{1}{9} \int_0^9 \frac{dN(E)}{dE} (E) dE ;
\]

\[
\frac{\bar{\sigma}}{6.4 \times 10^{-2}} = 1.54 \times 10^{-2} b ; \text{ and}
\]

\[
\bar{\sigma} = 0.241 b .
\]

For copper,

\[
\bar{\sigma} = \frac{1}{1} \int_1^1 \frac{dN(E)}{dE} \sigma(E) dE ;
\]

\[
\frac{\bar{\sigma}}{1 \times 10^{-5}} = 0.030 \times 10^{-2} b ; \text{ and}
\]

\[
\bar{\sigma} = 0.167 b .
\]

The limits of integration are determined by interpolation from Table IX.

Consider next a fissile solution of water in a spherical geometry with a radius \(R_o \) of 2 cm (Reference page 64 of IAEA-130). The fluences given in Table 3.1 of IAEA-180 are in terms of one neutron produced within the solution. The fluence distribution from the sphere is labeled as \(4\pi R^2 \phi(E) \). The neutron spectrum is normalized to one neutron generated within a spherical critical assembly. The factor of \(4\pi R^2 \) accounts for all neutrons escaping from the assembly surface (that is, the detector is a spherical shell concentric with the assembly). Since neutron emission from the sphere is symmetric, the fluence distribution at a distance \(R \) (when \(R >> R_o \)) is obtained by dividing the values by \(4\pi R^2 \). In Table X we show the data reduction necessary to
<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>E (eV)</th>
<th>E (eV)</th>
<th>ΔE/E</th>
<th>q (N_x(E)) (eV cm)</th>
<th>ΔN (n/cm³)</th>
<th>σ (μ) Copper</th>
<th>σ ΔN Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00x10³</td>
<td>4.00x10³</td>
<td>3.00x10³</td>
<td>1.333</td>
<td>1.98</td>
<td>2.64</td>
<td>9.00x10⁻²</td>
<td>2.38</td>
</tr>
<tr>
<td>1.00x10²</td>
<td>7.50</td>
<td>0.667</td>
<td>2.79</td>
<td>1.86</td>
<td>1.30</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.50x10²</td>
<td>4.60</td>
<td>3.07</td>
<td>2.00</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>2.00</td>
<td>0.667</td>
<td>4.60</td>
<td>3.07</td>
<td>1.50x10⁻¹</td>
<td>4.60x10⁻²</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>5.00</td>
<td>0.545</td>
<td>5.14</td>
<td>2.80</td>
<td>1.50</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>1.00x10³</td>
<td>3.00</td>
<td>0.353</td>
<td>6.13</td>
<td>2.16</td>
<td>6.00x10⁻¹</td>
<td>1.30x10⁻³</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>2.00x10³</td>
<td>2.00x10³</td>
<td>1.000</td>
<td>7.96</td>
<td>7.96</td>
<td>2.00x10⁰</td>
<td>1.59x10⁻²</td>
</tr>
<tr>
<td>6.00</td>
<td>3.00</td>
<td>0.667</td>
<td>9.38</td>
<td>6.26</td>
<td>6.00</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>1.00x10⁴</td>
<td>4.00</td>
<td>0.500</td>
<td>1.19x10⁻²</td>
<td>5.95</td>
<td>1.50</td>
<td>8.9x10⁻³</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.50x10⁴</td>
<td>0.667</td>
<td>1.88</td>
<td>1.25x10⁻²</td>
<td>3.00x10⁻¹</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>2.00</td>
<td>0.667</td>
<td>2.26</td>
<td>1.51</td>
<td>5.80x10⁻²</td>
<td>8.7x10⁻⁴</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>2.00</td>
<td>0.400</td>
<td>2.96</td>
<td>1.18</td>
<td>4.50</td>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>2.00</td>
<td>0.286</td>
<td>3.82</td>
<td>1.09</td>
<td>3.50</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>1.00x10⁵</td>
<td>2.00</td>
<td>0.022</td>
<td>4.40</td>
<td>9.77x10⁻³</td>
<td>2.86</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>5.00</td>
<td>0.400</td>
<td>5.30</td>
<td>2.12x10⁻²</td>
<td>2.26</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>5.00</td>
<td>1.175</td>
<td>0.286</td>
<td>7.19</td>
<td>2.06</td>
<td>2.41</td>
<td>4.95</td>
</tr>
<tr>
<td>2.50</td>
<td>5.00</td>
<td>2.25</td>
<td>0.222</td>
<td>8.99</td>
<td>2.00</td>
<td>2.55</td>
<td>5.09</td>
</tr>
<tr>
<td>3.00</td>
<td>5.00</td>
<td>2.75</td>
<td>0.182</td>
<td>1.01x10⁻¹</td>
<td>1.84</td>
<td>2.60</td>
<td>5.04</td>
</tr>
<tr>
<td>3.50</td>
<td>5.00</td>
<td>3.25</td>
<td>0.154</td>
<td>1.07</td>
<td>1.65</td>
<td>2.64</td>
<td>4.19</td>
</tr>
<tr>
<td>4.00</td>
<td>5.00</td>
<td>3.75</td>
<td>0.133</td>
<td>1.26</td>
<td>1.68</td>
<td>2.40</td>
<td>4.02</td>
</tr>
<tr>
<td>4.50</td>
<td>5.00</td>
<td>4.25</td>
<td>0.118</td>
<td>1.41</td>
<td>1.66</td>
<td>2.50</td>
<td>3.66</td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td>4.75</td>
<td>0.105</td>
<td>1.45</td>
<td>1.52</td>
<td>1.98</td>
<td>3.02</td>
</tr>
<tr>
<td>5.50</td>
<td>5.00</td>
<td>5.25</td>
<td>0.095</td>
<td>1.74</td>
<td>1.65</td>
<td>1.75</td>
<td>2.89</td>
</tr>
<tr>
<td>6.00</td>
<td>5.00</td>
<td>5.75</td>
<td>0.087</td>
<td>1.95</td>
<td>1.70</td>
<td>1.52</td>
<td>2.58</td>
</tr>
<tr>
<td>7.00</td>
<td>1.00x10⁵</td>
<td>6.50</td>
<td>0.154</td>
<td>2.09</td>
<td>3.22</td>
<td>1.20</td>
<td>3.86</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>7.50</td>
<td>0.133</td>
<td>2.55</td>
<td>3.39</td>
<td>1.12</td>
<td>3.80</td>
</tr>
<tr>
<td>9.00</td>
<td>1.60</td>
<td>8.50</td>
<td>0.118</td>
<td>2.83</td>
<td>3.34</td>
<td>1.12</td>
<td>3.74</td>
</tr>
<tr>
<td>1.00x10⁶</td>
<td>1.00</td>
<td>9.50</td>
<td>0.105</td>
<td>2.59</td>
<td>2.72</td>
<td>1.08</td>
<td>2.94</td>
</tr>
<tr>
<td>1.20</td>
<td>2.00</td>
<td>1.10x10⁶</td>
<td>0.182</td>
<td>3.04</td>
<td>5.53</td>
<td>9.70x10⁻³</td>
<td>5.37</td>
</tr>
<tr>
<td>1.40</td>
<td>2.00</td>
<td>1.30</td>
<td>0.154</td>
<td>3.27</td>
<td>5.19</td>
<td>8.70</td>
<td>4.52</td>
</tr>
<tr>
<td>1.60</td>
<td>2.00</td>
<td>1.50</td>
<td>0.133</td>
<td>3.98</td>
<td>5.29</td>
<td>8.00</td>
<td>4.23</td>
</tr>
<tr>
<td>1.80</td>
<td>2.00</td>
<td>1.70</td>
<td>0.118</td>
<td>4.09</td>
<td>4.83</td>
<td>7.40</td>
<td>3.57</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
<td>1.90</td>
<td>0.105</td>
<td>3.79</td>
<td>3.98</td>
<td>7.00</td>
<td>2.79</td>
</tr>
<tr>
<td>2.30</td>
<td>3.00</td>
<td>2.15</td>
<td>0.140</td>
<td>4.02</td>
<td>5.63</td>
<td>6.70</td>
<td>3.77</td>
</tr>
<tr>
<td>2.60</td>
<td>3.00</td>
<td>2.45</td>
<td>0.122</td>
<td>4.05</td>
<td>4.94</td>
<td>6.10</td>
<td>3.01</td>
</tr>
<tr>
<td>3.00</td>
<td>4.00</td>
<td>2.80</td>
<td>0.143</td>
<td>3.77</td>
<td>5.39</td>
<td>5.84</td>
<td>3.15</td>
</tr>
<tr>
<td>3.50</td>
<td>5.00</td>
<td>3.25</td>
<td>0.154</td>
<td>3.43</td>
<td>5.28</td>
<td>5.40</td>
<td>2.85</td>
</tr>
<tr>
<td>4.00</td>
<td>5.00</td>
<td>3.75</td>
<td>0.133</td>
<td>2.74</td>
<td>3.64</td>
<td>5.23</td>
<td>1.91</td>
</tr>
<tr>
<td>4.50</td>
<td>5.00</td>
<td>4.25</td>
<td>0.118</td>
<td>2.28</td>
<td>2.69</td>
<td>5.09</td>
<td>1.37</td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td>4.75</td>
<td>0.105</td>
<td>1.78</td>
<td>1.87</td>
<td>5.00</td>
<td>9.35x10⁻⁵</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00x10⁶</td>
<td>5.50</td>
<td>0.182</td>
<td>1.32</td>
<td>2.40</td>
<td>4.80</td>
<td>1.15x10⁻⁴</td>
</tr>
<tr>
<td>7.00</td>
<td>1.00</td>
<td>6.50</td>
<td>0.154</td>
<td>6.56x10⁻²</td>
<td>1.01</td>
<td>4.48</td>
<td>4.52x10⁻⁵</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
<td>7.50</td>
<td>0.133</td>
<td>3.74</td>
<td>4.97x10⁻³</td>
<td>4.14</td>
<td>2.06</td>
</tr>
<tr>
<td>9.00</td>
<td>1.00</td>
<td>8.50</td>
<td>0.118</td>
<td>2.60</td>
<td>3.07</td>
<td>3.82</td>
<td>1.17</td>
</tr>
<tr>
<td>1.00x10⁷</td>
<td>1.00</td>
<td>9.50</td>
<td>0.105</td>
<td>1.18</td>
<td>1.24</td>
<td>3.53</td>
<td>4.3x10⁻⁶</td>
</tr>
<tr>
<td>1.11</td>
<td>1.00</td>
<td>1.05x10⁷</td>
<td>0.095</td>
<td>4.59x10⁻³</td>
<td>4.38x10⁻⁴</td>
<td>3.27</td>
<td>1.43</td>
</tr>
<tr>
<td>1.20</td>
<td>1.00</td>
<td>1.15</td>
<td>0.087</td>
<td>3.50</td>
<td>3.05</td>
<td>3.06</td>
<td>9.32x10⁻⁷</td>
</tr>
<tr>
<td>1.30</td>
<td>1.00</td>
<td>1.25</td>
<td>0.080</td>
<td>7.81x10⁻⁴</td>
<td>6.25x10⁻⁵</td>
<td>2.89</td>
<td>1.81</td>
</tr>
<tr>
<td>1.40</td>
<td>1.00</td>
<td>1.35</td>
<td>0.074</td>
<td>1.69x10⁻⁴</td>
<td>1.25x10⁻⁴</td>
<td>2.74</td>
<td>3.43</td>
</tr>
<tr>
<td>1.50</td>
<td>1.00</td>
<td>1.45</td>
<td>0.069</td>
<td>9.06x10⁻⁴</td>
<td>6.25x10⁻⁵</td>
<td>2.60</td>
<td>1.63</td>
</tr>
</tbody>
</table>
determine the neutron fluence per energy group. We show the cross sections for copper. In Table X,

\[4\pi R^2 E \phi(E) = E \left(\frac{\Delta N}{\Delta E} \right) \]

(46)

Thus,

\[\frac{\Delta E}{E} 4\pi R^2 E \phi(E) = \Delta N \]

(47)

where \(E \) is the average energy of the bin.

For copper,

\[
\bar{\sigma} = \int_{0}^{0.030} \frac{dN(E)}{dE} \sigma(E) dE
\]

\[
= \int_{10^{-5}}^{1} \frac{dN}{dE}(E)dE
\]

\[
= \frac{1.69 \times 10^{-1}b}{0.991} ; \text{and} \]

\[= 0.170b \]

Any of the neutron spectra of IAEA-180 (or any other reference) can be evaluated using procedures outlined in this report. Once a fluence spectrum is evaluated, cross sections for any threshold detector can be used to generate effective cross sections. Then, the standard activation equations can be used to determine actual fluences and thus the dose received in a possible criticality excursion.

V. NEUTRON FLUENCE TO DOSE CONVERSION FACTORS

Neutron dose determinations (absorbed dose, first collision dose, or kerma dose in tissue) are made by multiplying the fluence in each energy region by the appropriate fluence-to-dose conversion factor and summing the individual doses. In Figure 7 we show:

1. Absorbed dose (Ref. 19) for a homogeneous anthropomorphic phantom that is a right circular cylinder with a radius \(r = 15 \text{ cm} \) and a height
Fig. 7.
Variation of dose with neutron energy.

\(h = 60 \, \text{cm} \). The phantom is composed of hydrogen, carbon, nitrogen, and oxygen in the proportions of standard man (Ref. 20). The absorbed dose is for volume Element 57 of the phantom.

2. First collision dose\(^{20}\) for soft tissue.

3. Kerma dose\(^{21}\) for soft tissue.

Absorbed dose and first collision dose must have the units of rads, whereas kerma is always reported in erg g\(^{-1}\).

Appropriate fluence-to-dose conversion factors can be determined two ways. First, if one has an idea of the average energy for a given energy region, one can determine the fluence-to-dose conversion factor directly from the appropriate curve of Figure 7. Second, one can determine the appropriate factor with more confidence by a weighting technique described by

\[
DF = \frac{\int_{E_1}^{E_2} \frac{dN}{dE}(E)DF(E)dE}{\int_{E_1}^{E_2} \frac{dN}{dE}(E)dE},
\]

where

\(DF(E) = \) appropriate fluence-to-dose conversion factor as a function of energy.
\[\frac{dN}{dE} = \text{irradiating neutron energy spectrum described in Section V, and} \]
\[DF = \text{effective fluence-to-dose conversion factor for the neutron energy region between energies } E_1 \text{ and } E_2. \]

Equation 48 is routine applied to the determination of fluence-to-dose factors for PND and LACD packs at Los Alamos.

VI. NEUTRON DOSIMETRY IN THE ENERGY RANGE OF 0.4-9 MeV WITH PHYLATRON DIODES

The phylatron diode is a silicon p-i-n diode dosimeter for measuring fast neutron fluence (or flux). The diode is a wide-base device with forward current-voltage characteristics that are very sensitive to the lifetime of the minority carriers in the i-type base region. Fast neutron radiation causes damage in the silicon lattice that causes a degradation of the carrier lifetime and thus changes the forward current-voltage characteristics of the device. This change is used to determine the neutron fluence (or flux). The dosimeter is insensitive to photons, electrons, and neutrons below about 400 keV. The dosimeters permit reading over a dose range of 5 to 15 000 rads. Standard calibration curves (forward voltage vs fast neutron dose) were obtained using the fast neutron dose as determined from threshold detector dosimetry and fast neutrons from unshielded fast reactors. The applicability of these dosimeters is limited to measuring neutron sources whose energy spectrum approximates the energy spectrum of an unshielded fast reactor. Within a wide range of uncertainty, it is possible to compensate for spectral changes. In these cases, dose estimates would be based solely upon the threshold activation foil components of the LACD and PND packets. The purpose for using phylatron diodes at Los Alamos is to determine a very rough estimate of the neutron dose in a very short time.
VII. PHOTON DOSIMETRY

A. Thermoluminescent Dosimeters

Photon dose is measured primarily with TLD. Only the LACD packet includes the TLD devices. We use Harshaw TLD-700 LiF chips (0.318 cm by 0.318 cm by 0.089 cm). The TLD-700 dosimeters contain 0.007% 6Li and 99.993% 7Li. The TLD-700 has a very low neutron sensitivity (Ref. 22). Four TLD-700 dosimeters are located inside a plastic disk for protective purposes. Photon doses can be measured from 25 mrad to about 10^4 rads with an accuracy of 10%. Standard calibration curves are used to relate photon dose to the light units determined with a TLD reader.

B. Glass Rod Dosimetry

Fluorescence may be defined as the ability of a material to absorb light at one wavelength and re-emit it at another, and usually longer, wavelength. Silver-activated phosphate glass rods are used for photon dosimetry. They have the ability of fluorescing as a result of being exposed to ionizing radiation. The total fluorescence is affected slightly by temperature and light. It also changes slightly as a function of time. In the fluorometer, which is used to measure the photon dose, the glass rods convert a fraction of the light reaching them into light of a new wavelength. This re-emitted light is then measured. The fraction converted is proportional to the incident photon dose. The rods are 1 by 6 mm and can be used to measure photon doses from 10^2 to 10^5 rads with an accuracy of about 5%. The glass rods have negligible fast neutron sensitivity. Thermal neutron sensitivity is significant (about 1.4 times the 1-MeV gamma sensitivity). The glass rods are located in lithium-lead containers in order to reduce the thermal neutron response of the dosimeter. Standard calibration curves are used to relate the photon dose to the fluorometer reading.
ACKNOWLEDGEMENTS

We are grateful to Dr. J. N. P. Lawrence for his technical support and guidance in support of the criticality dosimetry program within the Los Alamos Health Physics Group.

REFERENCES

