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ABSTRACT

We present a novel approach to the 3-dimensional high-gain free-electron

laser amplifier problem. The method allows us to write the laser field as

an integral equation which can be efficiently and accurately evaluated on

a small computer. The model is general enough to allow the inclusion

of various initial electron beam distributions to study the gain reduction

mechanism and its dependence on the physical parameters.
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I. INTRODUCTION

Reported here is the progress of determining the e~ beam quality and undulator re-

quirements needed to drive a free-electron laser(FEL) in the amplified spontaneous emis-

sion (ASE) model. Of particular importance toward this goal is the development of simple

and inexpensive computer codes to simulate 3-D FEL physics. The feasibility of such a

device and the likely power levels to be achieved critically depends on the presence of

optical guiding, induced by high gain , and on proper modeling of the inhomogeneity of

the electron pulse. The inhomogeneity is introduced by the initial distribution in phase

space, i.e, energy spread, initial radius and emittance.

Since a complete simulation of the problem requires a large amount of computer CPU

time, we will restrict ourselves to describing the laser field evolution, as it traverses the

undulator, in the weak field regime below saturation.

The electron trajectories are determined by solving the Lorentz equations; these trajec-

tories in turn are used to calculate the transverse current function, the non-linear driving

source term in Maxwell's equation. The elliptical wave equation becomes a parabolic

paraxial equation if we assume the slow wave amplitude and phase approximation. The

evolution of the radiation field is obtained by solving this equation, formally equivalent

to a 2-D time dependent Schrodinger-like equation . There are two basic approaches to

numerically compute the amplitude and phase of the laser wave. In the first approach, we

expand the optical field in terms of orthonormal Gaussian modes (free space modes) so

that our evolution equation is reduced to a system of differential equations for the time

dependent coefficients of the expansion''. In the second approach, we express the field in

the discrete space-time domain and evaluate the wave at the grid points of a mesh in the

transverse coordinates^ at each time step AT.

In this work we use the latter method. An argument used against this approach

has been the extensive computer CPU time required to achieve reasonable accuracy. It

is known"* that if we restrict ourselves to the weak signal regime, we can linearize the

laser field equation and obtain an integral equation which, as we will show later, reduces

to a convolution product in the transverse coordinates. This allows for an efficient and



fast computation of the integral equation using standard Fast-Fourier Transform (FFT)

routines .

As pointed out by Colson ^ it is convenient to normalize the x and y coordinates,

j^x2 —* x2 , j^y2 -* y2. L = NXQ is the length of the undulator, where Ao is the

wavelength of the periodic magnetic field. The diffraction characteristics of the radiation

in free space is determined by the free-space Green function

G (£± |T ) = !l_L_0(r) (1)

with r = j the time variable normalized to the length of the undulator. A numerically

stable solution is obtained if * ?^' =s 1. We also see from the Green function that the

diffraction effects are important when the electron beam radius re and the laser waist wo

are smaller than J^, i.e
- XL ,XL

rt&— , un^ — . (2)
7T IT

Our numerical code assumes an FEL in the high gain regime and a very small but coherent

input wave. Its amplitude is approximately given by the spontaneous emission power

emitted by the electron pulse in a gain length LQ (see next section). We also neglect the

short pulse effects as the condition ~ <£. 1, i.e. the slippage distance** (J = NX) is smaller

than the longitudinal length of the e~ pu'se (crz).

I.a Electron Beam Quality

The bunching of the electron beam over the length of the undulator must be main-

tained for extracting energy from it. Clearly, for a non-perfect e~ beam with energy spread,

angular spread, transverse emittanct, and finite radius, the condition for maintaining ap-

propriate matching between electron, laser light, and undulator is more difficult to achieve

and, in general, there is a degradation of the gain of the device.

The natural width of the gain curve for a perfect e~ beam depends on the value of j

(or equivalently p). The FEL parameter p, defined by Bonifacio et al. in Ref. 7, is widely

used in the literature. To aid the reader we include in square brackets the most important

formulas of this work in terms of this parameter. Any additional broadening induced by a

realistic e" beam is compared to the natural width in order to assess its degrading effects.



In our model calculation the properties of the e beam are manifest in two equally

important ways. First, the normalized current

73mc3

is denned in terms of the particle density n, the undulator parameter K and the length

of the undulator L — JVAo- This parameter describes the macroscopic properties of the

e~ beam. The electron beam is described in real space by a normalized distribution

function / (x±, z) which we assume to be written as the product of uncorrelated distribution

functions

MX\)Mz) (4)

where o-j (i =±,z) is the standard (rms) deviation.

In terms of the total number of particles Af in each micropulse of length cre % 2cr, we

write the particle density as

- * (- \ • t \

n = 5 ji \x±)]2 \z)
(2ir)**2

±<rx

For a cylindrically symmetric e~ beam of initial radius re (77) and angular divergence

A0, we have (0 < TJ,T < 1)

o-j_ = re (r) = re (77) + L*{T - 77) ^ 2 (5)

where 77 is the position of the waist, L is the length of the interaction region (undulator)

and /?* is the focusing function.

Our analysis is valid in the long pulse limit, i.e. <rz » NX, therefore, it is a good

approximation to take a constant distribution in z, J2 (z) = 1. Substituting in Eq. (3) we

obtain

4nN \2

where we used the peak current I = ^~.

3 =8N ..3 2 "—-r 7 - T = J0J1 (*±)
ec{2ir)'i^rt{r)

3

p =



Introducing the normalized emittance of the beam en — ye = fre (77) AS we write

2 = ^ . and re(Vf = ^ . (7)

For a fixed emittance and particle energy the peak current / and consequently j (or equiv-

alently p) increases as the focusing function /?* decreases.

Second, the source of the wave equation is ( -—-^— ) > , an average over the initial

phase and phase velocity of sample electrons contained in a wavelength A (microscopic

scale). The definitions of phase and phase velocity are given in the next section. The

average is written as (. . .) = JQ * dCo / ^ dvofi (Co) fa (uo) • • • where /] (Co) represents a

uniform distribution of the phase (i.e. electrons are uniformly distributed in the longitudi-

nal direction); fa \yo) is a distribution of the phase velocity VQ produced by energy spread

—, angular spread A0, and transverse emittance.

In general this average tends to degrade the gain if the deviation in resonance param-

eter from the filamentary perfect e~ beam is larger than a characteristic quantity a (rms

deviation) which depends on the inhomogeneity of the e~ beam expressed in terms of v<$.

The characteristic rms deviation <TE due to energy spread -3- in the resonance parameter

space is
aE = ^

The above expression is obtained using the energy definition and the resonance condition

/?re# = j^f- (see next section).

Any finite e~ beam radius induces a dispersion in the resonance parameter. In a helical

undulator the energy of an electron following a helical trajectory is a constant of motion;

from g = 0 we can write ( A ^ + A/?J) = - & A & and Af = -£tj+*°> (A/?J + A/?J) .

We show later that the equation of motion in the transverse plane x± = {x,y) for the

corrections to the helical orbit are

d2x , d2y
d^ = ~^X ' * * =

where the betatron frequency is ujf, = —&L. Conservation of energy in this harmonic

motion leads to the relation

= ( ^ ) 2 [x(0)2 + y (0)2] + (AOl + A82
y), (10)



and the rms deviation in resonance parameter due to betatron oscillations is

The geometrical emittance at the entrance of the undulator is ez = A0xx (0) as ey = e

Assuming both terms in <7fc approximately equals using Eq. (7) we obtain /3* = — = W

which is the natural undulator focusing. Therefore,

7

Both terms in the above formula have different behavior with /?*. However, a cursory look at

j in Eq. (3) suggests that decreasing 0* increases the current parameter and consequently

the power gain. On the other hand, for constant transverse emittance any decrease in (3*

results in larger A9Z (i.e. larger <TQ) with the corresponding degradation of the gain. The

constraint on erg is expressed by requiring that the different spreads in resonance parameter

be smaller or comparable to the gain bandwidth*

<T£ , <TQ , <Tf,^><rv. (12)

We estimate the width of the gain curve in the high gain regime by using the following

arguments. The laser evolution equation can be cast in the form of the well known cubic

equation a3 - ivoa2 — $ija = 0, assuming O(T) = e*^+ a) r . At resonance (vo = 0) the fastest

growing root is ao ^ \y/Z (*$•) for jo » 1. Substituting a ss ao + OL\VQ + a^v^ + . . .

and after a simple algebra, ai = | , 02 = ^ and consequently, the gain becomes

G » |-exp (2ao — 9^-UQ\ with rms deviation

= 1.76V2*TrNyfp\ (13)

showing that the bandwidth in the high gain regime is significantly different from the

low-gain bandwidth <rv ss IT.



I.b Optical Guiding

We turn now to the condition of optical guiding . For very high currents j [p] >> 1, the

phase front of the laser radiation is significantly perturbed in the region where the electron

beam overlaps the light. This phenomenon is known as gain guiding and arises from the

fact that the e~ beam is the gain medium for the FEL. In addition, the FEL interaction

tends to curve the laser wave fronts in the opposite direction of natural diffraction; as a

result, spreading of the wave is cancelled and actual focusing of the generated coherent

light takes place. This is known as refractive optical guiding. We include also, bending" of

the laser beam which is the physical consequence of trapping the laser radiation by the high

gain medium, the e~ beam. An off-axis e~ beam leads to an off-axis laser beam. In the

high gain regime all these effects cannot be separated; however, their relative importance

depends on the current j , the transverse dimensions re and transverse profile of the e~

beam, and the resonance parameter VQ. Optical guiding is of paramount importance for

high gain (ASE) amplifiers where long undulators are needed to achieve saturation. The

natural diffraction of the wave conspires to reduce the achievable laser power by means

of early weak saturation i.e., the coherent radiation generated by the e~ beam in the

distance ZR exactly compensates for the weakening of the wave on axis due to diffraction

^ . However, the optical guiding phenomena confines the light beam in the region of

the e~ beam and allows a continuous interaction over many Rayleigh lengths ZR ( or more

appropriately over many gain lengths LQ) - The characteristic Gaussian divergence ZR

of light emitted by a source of transverse dimensions equal to the e~ beam radius re is

given by ZR = ^p . The gain length La is defined as the distance in the undulator where

the radiation will be e-folded ,

To continuously compensate for the phase shift due to free-field diffraction we impose

1



II. THEORETICAL ANALYSIS

An FEL uses a beam of relativistic e~ passing through a long transverse, periodic

magnetic field (undulator) to amplify a copropagating optical wave. The electron dynamics

is described by the Lorentz equation; the Maxwell wave equation, driven by a single-particle

e~ current, governs the wave dynamics. We present a description of the system electron-

laser dynamics following a well-established formalism in the space-time domain. Colson

has published a comprehensive and complete review of the theory and its generalizations to

include the inhomogeneity of the electron beam. We summarize below the main equations

for a free electron laser a la Colson and refer the reader to Rcf. 2 for more details.

Il.a Electron Dynamics

To compute the electron trajectories in the interaction region where both undulator

and laser fields coexist, we solve the Lorentz force equation. The helical undulator field

near the axis is given by,

B v Bo ([1 + -fco(3a;2 + y2)\cos koz - -

I1 + «ko(*2 + 3y2)]sil*koz + -koxy cos koz , (16)

- [1+ g

and the optical field is described by

E = E(x±,t)(cos(kz -uit + 4>{x±,t)), -sin{kz - cut + <t>(x±,t)), 0 j ,

where A = ^— is the carrier wavelength. We assume the customary slow-phase and am-

plitude approximation, i.e., E(x±,t) and (j>(x±,t) are slowly varying functions of time t

(£' >> E" and <(>' » (j>"). Here, E' stands for the time derivative. The transverse velocity

/3j_ is derived from the Lorentz equation, obtaining on axis

7/?_L — —K (cos koz , sin koz , 0)

where we have neglected terms proportional to \E « XoBo. The undulator parameter

is K = m'f̂  . The correction to the helical orbit leads, after an average over AQ, to



harmonic equations for the transverse coordinates with frequency of oscillation given by

"b = I ( ^ ^ ) • T h e o r b i t s

X(T) ZZX(O)COSVI,T-\ — sinu^r
u>b

V ( r) «!f (0) cos u)hT + ^ - i sin whr (176)
&b

with initial conditions a?(0) , y(0), x(0) = L0X and y(0) = £0j,.

The fourth component of the Lorentz force gives the electron energy change

dy KJKkL ... . . . . .
-Y- = cos [(k + ko)z- Lkr + <j>] (18)
Q.T "f

with K = SE*l • The value of the phase (k + fco) z—u/t+<j>(x±, t) determines the decrease or

increase of the electron energy and consequently, by energy conservation, the increase (gain)

or decrease (particle acceleration) of the radiation field energy. The normalized longitudinal

velocity is recovered from the electron energy definition 7~2 = 1— (—) — 01- These

expressions suggest a useful formalism to describe the electron dynamics in the combined

undulator and laser fields; we introduce the electron phase C ( X ± , T ) = (k + ko)z — Lkr

and the phase velocity u (xj_>r) = af = •£ Vs + ^o) fit — Lk, where r = ^ is the normalized

time variable. The resonance condition is obtained by imposing the condition v = 0, i.e.,

0*et = g-jjv- which corresponds to the stationary phase in Eq. (18). Combining /3Z and i>

we can write (the dot denotes r derivative)

£ ( * ± , T ) = * ( * 1 I T ) (19)

where a(x±,r) is the slowly varying dimension]ess complex laser field defined as

o E(x±,r)
( 2 0 )

A o+
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II. b Wave Dynamics

The optical field is governed by the wave equation, which in the slow wave and phase

approximation reads^

where j(x±,r) is the current parameter defined in (6) and < . . . >,» represents an

average over the initial phase and phase velocity of the electrons in a section of the beam

of length A, the carrier wavelength. The transverse coordinate x± is normalized as indicated

in the Introduction.

The coupled system of Eq. (19) and Eq. (21) describes simply and accurately the

physics of the FEL interaction. We have not included in these equations a factor (l — o^w)

which is close to 1 unless the electrons lose an appreciable amount of energy during the

interaction. We also note that this coupled system of Eqs. satisfies energy conservation .

It is useful to define C(xj_,r) = Co + UQT + SC(x±tr) and v(x±,r) = ^^(X±,T). A

formal solution of Eq. (19) is

= f dr' (T - T') Re la (22)

In the weak field regime we neglect SC in the above equation and keep first order terms in

Eq. (21) to obtain,

(23)

still to be computed is the average over the distribution of phase velocities induced by the

inhomogeneities of the electron beam, i.e., energy spread, emittance, betatron oscillations

and finite transverse dimensions. For Gaussian or Lorenztian distributions the average

over i/o in the right-hand side of Eq. (23) can be performed analytically; we obtain

dr'(r - r')e-^{r-r')a(x-±,r')

xF{*E,<ro,<rb,T-T') (24)

where
2
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represents the correction term due to inhomogeneities of the e~ beam. CJJ , <TQ , 0*5 are the

rms deviations defined in Eqs.(8), (9) and (12). We have also written the current parameter

as the product of a constant jo, dependent only on the peak current, and ji (afj.), which

contains all the transverse dependence.

Making use of the Green function theorem , a formal solution of Eq. (24) can be

written as

a{x±ir)=£dr'Jdy1G(x1-y±\T-Tl)S(y1,T
t)

- - [dy±G(x1-yJ.\T)a{y1,O) (25)

where G {x± — y±\r — r') given in Eq.l is the Green function** for the free-particle Schrodinger-

like equation

l + « £ ) G (gL -y±\r- r') = -4TT* (£± - y±) 6 (r - r ' ) ,

and the source term or potential is

dr> (r _ T') e-^-^af
JQ

f
Q

The laser field at time step n {r — nA) is expressed in terms of the values of the field

at all previous time steps and is efficiently computed by working in the Fourier space. In

the numerical implementation, we make use of the fast Fourier transform (FFT) and note

that the source term consists of a convolution product which leads to

FFT[j dyLG(xL - JTJ.IT - rf)j1(jT±)a(y1,r')] =

FFT[G{XL\T - r')] x FFT[h{3M*i.J)] (26)

where the Fourier transform of the Green function, a Gaussian function, is performed

analytically and therefore does not add to the cpu time needed for the problem. We also

note that if the initial laser field is a fundamental Gaussian mode with a waist at the

beginning of the undulator, the second term in Eq. (25) is analytically computed. The

diffractive Gaussian beam of dimensionless waist u>o and physical Rayleigh range ZR =
I * 1.12

at time r is of the form, -—*
/g
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The first term in Eq. (25) contains the current J2(*l) and is the factor we numeri-

cally evaluate in a rectangular mesh of 32 x 32 points. Typically, we compute the con-

volution product in 50 time steps. After multiplying the Green function transform by

FFT\ji(xi)a(xi,T')\ we perform the anti-transform FFT~l . . . and then we perform
L J L J

the numerical time integration (note that at r ' = r the integrand vanishes) using a sim-

ple Simpson subroutine with accuracy (AxjJ5. The above function is added to the free-

diffractive input Gaussian wave to obtain the laser field at time r = nA at each point of

the chosen rectangular mesh in the transverse plane.

The transverse profile of the current function ji(x±) is arbitrary in the theory; we have

considered three different distributions:

a) Gaussian

~~^~ (27a)

b) parabolic

{ r \ ] (276)

0 1*1.1 >*•*

c) step function

(27c)0 \x±\>ve

To simulate an FEL in the ASE regime we start with a very small coherent input field;

of course, the gain of the device is independent of this initial wave field. At the end of

the undulator the laser amplitude and mode content depend on the non-linear interaction

between electrons, undulator magnetic field and the laser field described by the parameters

jo j jl(x±) > ?e , &E , &9 andflfc. The results of the calculation for different parameters are

displayed in various figures.

III . SAMPLE RESULTS AND DISCUSSION

The set of parameters chosen as an example to illustrate the method proposed in this

work are given in Table 1. For comparison we also give the result obtained using a 1-D

theory . This example corresponds to an FEL in the 30 nm wavelength range operating
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in the ASE mode. The e beam has an rms bunch length of <re = lps, an energy spread

^ = 0.1%, a normalized emittance en = 4.2 x 10~6 m - rad and longitudinal brilliance14

V2ireL h

To reach saturation in an ASE mode the length of the undulator is given by N «

p~x % 103. The undulator parameter K is taken to be 1. Fig. 1 is a typical example of the

evolution of the amplitude of the laser field as it traverses the undulator. Fig. 2 displays

the evolution of the phase of the wave subtracted from the input Gaussian quadratic phase

where t\ is the position of the waist at r = 0.

The gain length coefficient LQ versus r is plotted in Fig. 3 and the evolution of the

1/e width of the laser amplitude in Fig. 4. The gain length coefficient is defined as LG —

ln(G(r) + l) with

1+G(r) = m =eLaT- (29)

To illustrate the optical guiding phenomena at this high gain regime we show in Figs. 5 -8

the evolution of the laser field with an electron beam positioned off-axis at x = 5 andy = 2;

the centroid of the laser field is coincident with that of the e~ beam at the end of the

undulator.

This model only describes the weak field regime and does not include saturation.

Furthermore, the finite dimensions of the electron pulse in the longitudinal direction are

neglected. The relevant parameter that quantifies the short-pulse effects is the coupling

parameter fic = —• <! 1.

We have presented a simple model of the FEL interaction in an ASE mode and a

selected sample of results. Tlte development of the numerical code that solves the integral

equation for the laser field, is carried out in dimensionless parameters and therefore is

applied, in principle, to many different sets of electron beam and undulator parameters.

We are continuing our effort to accurately model the physics of the FEL interaction;

in particular we are examining the gain degradation effects introduced by an imperfect

electron pulse. Simultaneously, we are working to optimize the numerical code to reduce
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its running time and benchmark its performance against analytical results15 and existing

3-D codes16.
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Figure Captions

Fig. 1: Transverse profile of the laser field amplitude at several position
along the undulator corresponding to the parameters shown in Table 1. The
initial Gaussian field has a beam waist U/Q equal to electron beam radius re.

Fig. 2: Phase of the laser field minus the quadratic gaussian phase given
in Eq. (28) at several position along the undulator corresponding to the
parameters shown in Table 1.

Fig. 3: Evolution of the gain length coefficient LQ along the undulator.

Fig. 4: Evolution of the 1/e width of the laser amplitude along the undu-
lator.

Fig. 5: Same as in Fig. 1 with an off-axis electron beam.

Fig. 6: Same as in Fig. 2 with an off-axis electron beam.

Fig. 7: Same as in Fig. 3 with an off-axis electron beam.

Fig. 8: Same as in Fig. 4 with an off-axis electron beam.
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Table Captions

Table 1: Electron beam and undulator parameters used in the example
shown in Fig. 1 - Fig. 8.

Energy [GeV]

</e [cm]

en [m-rad]

Ao [m]

L=NA0 [m]

p x 103

A [nm]

Lo[m-»]1-D

3-D

RlMer [mm]

0.76

0.03

0.1

4.0 x 10"6

4.2 x 10~6

0.03

24.0

1.25

33.3

12.56

20.9

1.76 x 10~3
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