
ANALYSIS OF NONLINEAR FLUID STRUCTURE 
INTERACTION TRANSIENT IN FAST REACTORS 

C. Y. Wang 

BASE TECHMOLQGY 

ARGONME NATIONAL LABORATORY, ARGONNE, ILLINOIS 

Operated for the U. S. DEPARTMENT OF ENERGY -,.. 8 -I;,, >*;-- -- . 
.r"i , .J~?,: . . * 

under Contract W-3'1-109-Eng-38 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 





Distribution Category: 
LMFBR Safety (UC-79p) 

ARGONNE NA.TIONAL LABORATORY 
9700 South C a s s  Avenue 
Argonne,  I l l inois.  60439 

ANALYSIS O F  NONLINEAR FLUID STRUCTURE 
INTERACTION TRANSIENT IN FAST REACTORS - 

C. Y. Wang 

Reac tor  ~ n a l q s i s  and S.afety Division 

November 1978 

NOTICE 

This rcpon was prepared aa an account of work 
sponsored by the United States Government. Neither the 
United States nor the United States Department of 
Energy, nor any of L e b  employees, nor any of Ihei! 
pntrlctors, subcontracton, or their rmployeer, maker 
any warranty, express or implied, or m u r n u  m y  legal 
liability or mpondbility for Ihc accuracy, cornpleteneu 
or urcfvlneu of any informtion, apparatus, product or 
proceu disclosed, or represents that its use would not 
infringe privately owned righu. 
-. - 



T H I S  PAGE 

WAS INTENTIONALLY 

L E F T  BLANK 



TABLE O F  CONTENTS 

Page 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . .  . . . . . . .  . I THE NUMERICAL TECHNIQUE ; 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A . Basic Hydrodynamics 10 

. . . . . . . . . . . . . . . . . . . . . . . . .  . 1 The Computing Region 10 
. . . . . . . . . . . . . . . . .  2 . The Part ial  Differential Equations 1 1  

. . . . . . . . . . . . . . . . . .  3 . The Finite-difference Equations 12  
. . . . . . . . . . . . . . . . . . . . . . . . .  4 . Part icle ~ ' o v e m e n t  . .  16 

. . . . . . . . . . . .  5 . Rigid Obstacle and Rigid Thin Membrane 17 

. . . . . . . . .  B . Flexible Vessel and Arbitrarily Shaped Boundary 20 

. . . . . . . . . . . . .  1 . Moving External Rolindary and Cell Flag 20 
. . . . . . . . . . . . . . . . . . . . . . . .  2 . Fluid-vessel Interaction 21 

3 . Velocity and Pressure  Calculations near Boundary . . . . . .  23 

. . . . . . . . . . . . . . . . . . . . . .  C . Deformable Internal Structure 2 4  

. . . . . . . . . . . . . . . . . . . . .  . .  1 . General Considerations ; 24 
. . . . . . . . . . . . .  2 . Source-term Modification near Structure 25 

3 . Interaction of Fluid with Internals and Perforated 
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

. . . . . . . . . . . .  . 4 . Calculation of Multivalued Field Variables L4 
. . . . . . . . . . . . . . . . . .  . 5 Part icle Movement near Corner '31 

. . . . . . . . . . . . . . . . . . .  D . Moving Cover and Coolant Spillage 32 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  F . Structural Dynamics 34 
1 . . . . . . . . . . . . . . . .  . 1 . Finite element Structural Program 34 

. . . . . . . . . . . . . . . . . .  2 . Finite-difference Shell Program 36 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  G . Numerical Stability 37 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  uli . SAMPLE PROBLEMS 39 

. . . . . . . . . . . . . . . . . . . . . . . . .  A . Bubble . coolant Interaction 39 

. . . . . . . . . . . . . . . . . .  B . Wave Propagation in a Straight Pipe ' 40 

. . . . . . . . . . . . . . . . .  . C Response of the Pr imary Containment 41 



. 
TABLE O F  CONTENTS 

Page 

. . . . . . . . . . . . . . . . . . .  Dl Simulation of the Excursion Model 43 

. . . . . . . . . . . . . . . . . .  E . Responses of S t ruc tura l  Components 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 CONCLUSIONS 50 

APPENDIX: Formulat ion of Explicit Boundary Conditions . . . . . . . . .  52 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  R E F E R E N C E S  57  



LIST O F  FIGURES 

Title Page 

1 . Configuration Showing Eulerian Computational Mesh and 
. . . . . . . . . . . . . . . . . . . . . . . .  Lagrangian Structure Boundary 1 0  

2 . The Locations of the Cell Variables in a Eulerian 
. . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  Computational Cell ; '12 

3 . Linear Interpolation for uk and vk with Position of 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kth Part icle  a s  Shown 17 

. . . . .  4 . Velocity Arrangement in the Vicinity of the Rigid Obstacle 1 8  

5 . Velocity Arrangement in the Vicinity of a Rigid Thin Membrane . . 19 

6 . Velocity Components of Marker Par t ic le  near  Rigid Obstacle 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  and Thin Membrane 19 

. . . . . . . . . . . . . .  7 . Configuration of a Moving External Boundary 21 

. . . . . . . . . . . . . . . . . . .  8 . Different Types of Eulerian Cell Flags 21 

9 . Calculations of Vessel P r e s su re  and Boundary-cell Velocity . . . .  23 

10 . Example Illustrating the Need for  the Multivalued Field . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Variables '25 

11 . Velocities Needed for Ri+ ( l / 2 ) j  Calculation near the 
. . . . . . . . . . . . . . . . . . . . . .  Deformable Internal Structure . .  ' 26 

12 . Velocities Need for Ri+ ( l l 2 ) .  Calculation in the Internal 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Boundary Cell (1. J )  27 

13. Irregular  Cell ( k. 1) Containing Deformable Structure with 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Perforated Openings 28 

14 . Eulerian Finite-difference Mesh with Multivalued Field 
Variables Adjacent to the 'l'hick Infernal Struclure . . . . . . . . . . .  3 0  

1 5  . Eulerian Finite-difference Mesh with Multivalued Field 
Variables Adjacent to the Thin Internal Structure . . . . . . . . . . . .  3 1  

16 . Par t ic le  Velocities near the Corner . . . . . . . . . . . . . . . . . . . . . .  32 

I . 7 . Quasi- Euleriaa Cell and Penetration Openings . . . . . . . . . . . . . . .  32 

. . . . . . . .  . 18 Flow Chart ~ e ~ r e s e n t i n ~  the Computational Procedure 3 5  

19 . Shell of Revolution and F r e e  -body Diagram . . . . . . . . . . . . . . . . .  37 

. . . .  . 20 Bubble Motion and Coolant Configuration at Different Times 39 

2 1 . Mathematical Model and Configuration of Elastic -'Plastic 
. . . . . . . . . . . . . . . . . . . . . . .  Pipe Used in the ICECO Analysis 4 0  



LIST O F  FIGURES 

Title Page 

23 . Radial Deformations a s  a Function of Time at  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Locati'ons D l .  D2. and D3 42 

2 4  . Initial configuration of the Pr imary  Containment Used 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  in the Analysis 42 

. . . . . . . . . . . .  25 . Reactor Configurations at Three Different Times 43 

. . . . . . . . .  26 . Model Test Configuration for the Containment Studies 43 

. . . . . . . . . . . . . . . . . . . . .  27 . Configurations of Thin-ves se l  Test 44  

. . . . . . . . . . . . . . . . . . . . . .  28 . Vessel Deformation at z = 36 c m  46 

. . . . .  . . . . . . . . . . . . . . . . . .  29 . Vessel Deformation a t  z = 4 c m  ; 46 

. . . . . . . . . . . . . . . . . . . .  30 . Final Deformation of the Thin Vessel 47 

3 1 . The Mathematical Model Used for t'he component- r esponse 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Analysis 47 

3 2 . Configurations of Pr imary Containment and Components 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  at Three Different Times 48 

. . . . . . . .  . 33 Calculated Axial Displacements as a Function of Time 48 

3 4  . Calculated Radial Displacements as  a Furiction of Time . . . . . . .  49 

A1 . Vessel with Almost Vertical Orientation for the 
Derivation of the Explicit Boundary Condition . . . . . . . . . . . . . .  53 

. . 

A2 . Vessel with Almost Horizontal Orientation for the 
. . . . . . . . . . . . . . .  Derivation of the Explicit 'Boundary Condition 55 

TABLE 

Title Page 

45 . . . . .  I . Source Characteristics for the Thin-vessel Model 



ANALYSIS OF  NONLINEAR FLUID STRUCTURE 
INTERACTION TRANSIENT IN FAST REACTORS 

by 

C. Y.  Wang 

ABSTRACT 

A generalized Eulerian method i s  described for analyz - 
ing the fluid transients and the structural response in nuclear 
reactors under the postulated accident conditions. The phe- 
nomena to be considered a r e  the wave propagation, slug impact, 
sodium spillage, bubble migration, and the fluid- structure 
interaction. 

The implicit, iterative finite-difference scheme i s  em- 
ployed in the numerical analysis together with implicit t rea t -  
ment of the density variation in the equation of state of the 
media. Many options a r e  provided to model the complicated 
structural components in a typic a1 r e  actor configuration, in- 
cluding the rigid obstacle, rigid thin membrane, arbitrari ly 
shaped boundary, flexible moving vessel,  deformable internals, 
perforated core-support structure, andthe movable cover with 
penetrations . 

The method uses Poisson equations to determine the ., 

hydrodynamic pressures  in the fluid region as  well a s  under- 
neath the head, while utilizing the relaxation equations to com- 
pute the pressures adjacent to the vessel  and internals. A 
generalized coupling schzn~c  is dcvcloped for treating the 
sliding-boundary conditions at  the fluid-structure interfaces. 
This scheme enables the Eulerian hydrodynamic technique to be 
linked with any Lagrangian structural  dynamics program. 

In this report,  the basic equations and numerical for- 
mulation a r e  presented in detail. Sample calculations a r e  given 
to illustrate the analysis. It is shown from the results that this 
implicit, iterative rrlethod is unconditionally stablc and i~ 
especially suitable for problems involving large material  
distortions. 



In the design of Liquid Metal Fast  Breeder Reactor (LMFBR) i t  i s  
necessa ry  to a s su r e  that the containment system can withstand al l  the conse- 
quences during a Hypothetical Core Disruptive Accident (HDCA). The destruc - 
tive phenomena to be considered a r e  the wave propagation, slug impact, 
sodium spillage, and the expanding gas bubble.' The pr imary containment is  
designed to sustain the p ressure  waves emanating f rom the reactor  core.  The 
secondary containment i s  to confine the radioactive materials  f rom being 
re leased to the surrounding environs. To achieve this objective, an analysis 
of the s t ructure  response generated by the fluid-structure interaction i s  of 
p r imary  importance. 

~ n a l y s i s  of the coupled fluid- s tructure problem i s  a complex subject 
since it involves calculations of fluid transient,  fluid- s tructure interaction, 
and the resulting s t ructure  response. For  a s tructur  a1 component enclosing 
o r  submerged w.ithin a fluid, the motion of the s tructure depends on the p res -  
su r e  loading transmit ted f rom the fluid region, whereas the motion of the fluid 
depends on the movement of the s tructure boundary. Thus fluid and structure 
a r e  coupled together. In fast-reactor  safety analy,sis the problem of fluid- 
s t ructure  interaction i s  further complicated by the facts that (1) the s tructural  
components usually have both geometrical and mater ia l  nonlinearities, ( 2 )  the 
fluid i s  almost inviscid and tend; to slide along the interface, ( 3 )  geometrical 
discontinuities like sharp  corners  and irregulari t ies  may exist in the fluid 
region, and (4) large mater ia l  distortion, such a s  bubble contraction and so- 
dium spillage, may occur during an HCDA. Since there a r e  numerous finite- 
element structural-dynamics programs available for solving complicated 
s t ructures  with mater ia l  nonlinearities, the trend of current  research concen- 
t r a t e s  on the development of an effective method to t rea t  the fluid transient 
and fluid- s tructure interaction. 

In attempts to solve the coupled fluid- s tructure problem, substantial 
r e sea rch  effort has been devoted in the application of existing hydrodynamic 
techniques for performing the numerical analysis of the fluid- s truc ture inter - 
action. Among these techniques, the Lagrangian finite-differ ence 
have been widely used by many investigators. These methods provide great 
resolution at the ear ly  stage of excursion, but cannot handle large mater ia l  
distortion such a s  bubble contraction and sodium spillage. Also, i t  is difficult 
to t r ea t  the sliding- boundary condition at interfaces between fluids and reactor 
internals ,  as  well a s  to handle the fluid motion at geometrical discontinuities, 
such a s  sharp corners  and other i rregulari t ies .  

On the other hand, the Eulerian hydrodynamic methods4j5 a r e  excellent 
in treating distortions. However, these methods lack the capability to t rea t  
the time-dependent i r regular  cells created by the movement of the s tructure 
with respect to  the fixed Eulerian coordinates. Thus, engineering applications 
have been limited by the requirement that the external boundary and internal 
s t ructure  must be placed on the Eulerian grid lines. 



To overcome the difficulties of both the Lagrangian and Eulerian 
methods, this report  describes a generalized Eulerian method for analyzing 
the fluid- s tructure inter action in reactor  containments and components. The 
emphasis i s  on the development of a generalized hydrodynamic scheme for  
treating the i r regular  cells and providing sliding capabilities a t  the interface, 
as  well a s  analysis of the fluid motion at the geometrical discontinuities. 
Thus, the developed scheme enables us to model reactor  configurations rea l -  
istically, using options such as  the rigid obstacle, rigid thin membrane,  curved 
vesse l  boundary, perforated core-support s tructure,  and movable head with 
penetrations. It a lso enables the implicit continuous -fluid Eulerian (ICE) 
technique to be coupled with any Lagr angian structur a1 dynamic program. 
Recently, the Eulerian hydrodynamic code I C E C O ~  has been successively 
linked together with both finite-difference and finite- element Lagrangian pro: 
grams.  The new version of the ICECO code, which has capabilities of investi- 
gating the s t ruc tu re  - response, i s  called ICECO-STR (or ICECO-11). 

In the analysis,  the Eulerian description i s  used in.the hydrodynamic 
calculation while the Lagrangian representation i s  employed for the s tructure 
analysis. These two calculations a r e  coupled together at the interface where.. 
the boundary conditions a r e  satisfied. Thus, the ICECO-STR has essentially,  
features s imilar  to coupled .Euler-Lagrangian pr'ograms such as  the PISCES- 
~ D E L K ~  and CEL' codes. The major difference i s  that the present technique 
uses  implicit integration in the hydrodynamics, while the two techniques men- 
tioned above employ an explicit integration scheme. As will be demonstrated 
la ter ,  the implicit scheme provides rem'arkably stable solutions. However, 
the explicit technique usually leads to numerical instabilities and needs to 
introduce artificial viscosities to eliminate the spurious oscillations. 

In this report ,  the basic equations a r e  given in Sect. 11, together with 
the mathematical treatment of the rigid obstacle, rigid thin membrane, curved 
vesse l  boundary, deformable internals,  etc. Sample problems a r e  presented 
in Sect. 111. 



11. TIIE NUMERICAL TECHNIQUE 

A. Basic  Hydrodynamics 

1. The Computing Region 

To facil i tate the numer ica l  calculations, the fluid regions a r e  
r ep resen ted  by the m a r k e r  par t ic les  s imi lar  to the Marker  and Cel l  (MAC) 

m e t h ~ d . ~  The s t ruc tura l  component 
can be discret ized into number of node 
points descr ibed by the Lagrangian 
coordinates a s  shown in Fig.  1. 
The boundaries of the s t ruc tu res  
thus can be denoted by one o r  m o r e  
Lagrangian l ines through conner - 
tions of ex ter ior  nodes of the s t ruc -  
turoo. Thooc moving Lagrangian 
l ines intersecting the fixed Euler ian 

5EL m e s h  will  c rea te  numerous t ime-  
dependent boundary cel ls  which 
partially contain the fluid. In the 

'ORE 'IRREL computer program,  a cel l -  
identification scheme i s  developed 
so  that different types of cel ls  can 
be disti.nguished and the c o r r e -  

LAGRANGIAN sponding governing equations can 
BOUNDARY 
LINE 2 be assigned. Here ,  a few important 

ce l l s  should be mentioned and their  
numerical  t rea tments  will  be p r e -  

LAGRANGIAN NODES 
sented in the following sections: 

F :  FULL CELL A: ADJACENT CELL 

0 :  BOUNDARY CELL 10: INTERNAL BOUNDARY (1) A full (F) cel l  contains 
0 :  QUASI- EULERIAN CELL CELL f1.ui.d only. 

Fig. 1. Configuration Showing Eulerian Computational 
( 2 )  A boundary .(B) cel l  con- 

Mesh and Lagrangian Structure Boundary. ANL 
tains segment of vesse l  boundary. 

Neg. No. 900-77-191 Rev. 1. 

( 3 )  An internal  boundary (IB) cel l  has  a boundary segment of the 
internal  s t ruc ture  which may  have perforated openings. 

(4) An adjacent (A) ce l l  i s  full with fluid, but i s  located next to 
the  internal  boundary cell. 

(5)  A Quasi-Euler ian (Q) cel l  i s  underneath the reac tor  cover 
where  sodium spillage may occur .  



2. The Par t ia l  Differential ~auat i .6ns  

The partial  differential equations used in the method a r e  the con- 
servation equations of continuum mechanics. These equations a r e  written in 
cylindrical coordinates with axial symmetry. Fo r  problems involving plane 
coordinates, the equations a r e  modified by maintaining r = 1.0 throughout. 
Only nonturbulent flow i s  considered, and no external energy source is  a s - .  . 

sumed to exist inside the flow region. Thus, the m a s s ,  momentum, and 
energy equations a r e :  

and 

where 

r and z a r e  the radial and axial coordinates, respectively, u and v a r e  the 
corresponding radial  and axial velocity components, P i s  the density, t is  the 
t ime,  p is  the p ressure ,  E is  the specific total energy, and h and CL a r e ,  
respectively, the f i r s t  and second viscosity coefficients. These coefficients 
can be used a s  "artificial viscosities" to eliminate the shock discontinuity 
and numerical instability. The fluid i s  considered to be nonheat - conducting, 
and no external energy source is  assumed to exist inside the fluid region. 
The p ressure  p i s  related to P and I by an equation of state: 



in which 

i s  the specific internal energy. 

3. The Finite-difference Equations 

A Euleri'an finite-difference mesh  i s  shown in Fig. 2, which illus - 
t r a t e s  the centering of the physical variables relative to a typical cell. The 
center  of the cel l  i s  labeled with the indices i and j,  which increase in the  
radial  and axial 'directions, respectively. The veldcities a r e  defined at cell  
boundaries with u a t  i f (112) and v a t  j -1 (112). Other field variables such 
a s  p ,  P ,  E ,  and I a r e  a l l  defined at  the cell  center.  

CELL (i, j 

Fig. 2 

Pi]' PI]. Eii I 
j - - - -  ", a2 The Locations of the Cell Variables 

1-112, j I I Y  I +  112.i , in a / u ~ r i a n  ~omp~l ta t iona l  ce l l ;  

I I ' 1 ANL Neg. No. 900-78-140. 

Thus, the viscous p ressure  q expressed in the difference form 
becomes 

where 6r i s  the dimension of a cel l  in the r direction. 

To approximate the momentum equations in the finite -difference 
equations, the momentum-flux t e r m  can be expressed in either the ZIP o r  
complete donor -cel l  form. Thus, using the ZIP difference scheme, we have, 
for  example in the one -dimensional case ,  



In complete donor-cell 'expressions we obtain 

' .  

Each of these two types of flux expressions has  certain advantages. 
The ZIP fo rm allows the conservation of momentum in the immediate vicinity 
of a rigid wall, and can eliminate certain nonlinear contributions to instability 
and diffusion-like truncation errors. ' '  Thus, a s  recommended by Harlow and 
Amsden in the ICE technique, the ZIP fo rm  i s  used in most occasions. How- 
ever ,  the complete donor-cell expressions have an advantage in the case of 
violent fluid motion and can ass i s t  in giving an automatic mitigation of 
t runcat ion-error  effect. Such donor-cell fo rm i s  therefore prefer red  in the 
sodium spillage analysis. 

By use of the ZIP form the finite -difference expressions of the 
two momentum equations a r e  : 

and 

1 - c P  
+ T ( ~ r , j  - pY,jtl) ' Si,j+(l/r)* 

where 

- 1 1 
, R i + ( ~ / ~ ) , j  = r i t ( ~ / ~ )  [ ~ ~ ~ ( ~ ~ ~ ~ , ~ ( ~ ~ , j r i ~ i _ ~ ~ ~ ,  - Pitll-i+lUi+(3121,j)It z [ ( ~ u v ) i t ( l h ) , j - ( l h )  - ( ~ ~ ~ ) i + ( l / z ) . j + ( l / Z l ]  

I p Ui+( l / z ) , j+~  - Ui+(i /z) , i  'Vi+l , j+(~ /z )  - V i , j + ( l / ~ )  1 
- qi+l ,j)  + grPi+(l/z),j + 62 - 

6 z + ~ ( q i , j  6 r  

Ui+(l/z),j - ui+(l/zl,j-1 Vit l , j -( l /z)  - vi ,j-( l /2)  + 
bz br 



and 

In the above equations, the superscripts  nfi  and n denote the 
(n + 1) -th and nth time' cycles. Variables lacking the time index a r e  evaluated 
a t  the nth time cycle. R and S a r e  the source t e rms  of the momentum equa- 
tions that contains the nth cycle values of nonlinear convective flux and viscous 
dissipation terms.  Also, a weighting constant rp appearing in the p ressure  
gradients of Eqs. 9 and 10 i s  used in the numerical treatment,  a s  suggested 
in the ICE technique. This constant rp, with a magnitude between 0.0 and 1.0, 
represents  the relative level of t ime centering of the pressure-gradient te rm.  
F o r  cp = 1.0, that t e r m  i s  expressed a t  the advanced time and the technique 
i s  purely implicit. F o r  cP = 0.5, the pressure  .gradient t e r m  i s  t ime-centered. 
This feature i s  used to eliminate certain truncation e r r o r s .  

The equation of state can be put in the finite-difference form 

where 

i s  related to the speed of sound. 

Physically, Eq. 13 implies that the unknown advanced-time p res  - 
su r e  depends implicitly on the density variation, but can remain purely explicit 
f o r  the internal energy, a s  in 'the conventional explicit techniques. 



F o r  a condensed material  such a s  sodium o r  water ,  c t j  can be 
written as6 . 

where a. and po a r e  the sound speed and density at standard condition, r e -  
spectively. The constant v is  the isentropic exponent (or  the pressure  
derivative of the bulk modulus). 

Similar to the development of momentum equations, the m a s s  
equation can also be expressed in the time-centered form by introducing a 
weighting constant 8 (0.0 < 8 2 1.0): 

where 

represents  the convection of m a s s  flux of cell  ( i ,  j) at  the advanced-time 
cycle, and D:~ has exactly the same form a s  Dntl except that all  t e rms  a r e  

1,j 
evaluated a t  the nth cycle. 

Ellminatlng Llle advdllcccl-tinie quantitico p ? t l ,  (pu)"+' and 
1,J i?(1/2),jJ n t l  

(pv)i, jk(1/2) in Eq. 15 by means of Eqs. 9 ,  , lo,  and 13, we obtain a Poisson 

equation which has the form 

n t l  n t l  ' ri-(lh)Pi+l , j  t Pi,j-1 + Pi I j t l  
ri6rz 6 z.2 ) , 



where  

i s  the source  t e r m  of the p r e s s u r e  equation. It i s  a function of momentum 
source  t e r m s  Ri?r(l/2),j and Si, j+(l/r)  a s  well  a s  nth-cycle velocities,  densit ies,  
p r e s s u r e ,  and sound speed. This source  t e r m  m u s t  be modified in the region , 

n e a r  the s t ruc ture .  

Note that  Eq. 16 i s  the governing difference equation f o r  the 
advanced-time p r e s s u r e  in  a ce l l  completely filled with the fluid. In other  
words ,  this  equation i s  applied fo r  a full  cel l  (F) shown in Fig. 1. It consis ts  
of five unknowns and i s  solved by the i terat ion technique. 

In the ileraliorl p rocess ,  a rr~uch improved lor r~ iu la  i s  used by 
h t l  

r e p l a c i n g  ( p and (pr,\!lr with the la tes t  i t e ra tes  (p';:, j) and (p:l,)y,)h+' 
while sweeping the direct ion of increasing i and j. . F o r  a purely implicit 
scheme ( i .  e . ,  8 = cp = . I ) ,  this  yields 

where  h and h + 1 denote the previous and la tes t  i terat ions,  respectively. 

If the fluid i s  bounded by the rigid walls and the wall  boundaries 
coincide with the Euler ian grid.  l ines ,  Eq. 17 i s  sufficient to determine the 
advanced-time p r e s s u r e  field. After new p r e s s u r e s  have been calculated in 
a l l  the Euler ian ce l l s ,  the new densi t ies  can  be found f r o m  Eq. 13. Next, the 
new values of velocities can  be computed f rom Eqs. 9 and 10. 

To check the numerical  accuracy,  one can proceed to  find the new 
energ ies  for  every  cel l ,  using the finite-difference approximation to  Eqs. 4 
and 6' given in Refs. 4 and 6. 

4. Pa r t i c l e  Movement 

After solving fo r  the advanced-velocity field and other  field va r i -  
ab les ,  a new configuration of the flow field i s  generated by moving the m a r k e r  
par t ic les  to  their  new positions: 



where uk and vk .denote the velocity components for the kth particle. The 
values of uk and vk a r e  obtained by averaging f rom the u and v fields,  r e -  
spectively. F o r  example, if particle k i s  located within the cell  where.ul,  
u,, u3, and u4 a r e  defined a t  the nearby locations ( see  Fig. 3 ) ,  uk can be cal-  
culated by the area-weighting method: 

s imilarly,  vk i s  calculated by 

Fig. 3. Linear Interpolation for uk and vk with Position of 
kth Particle as Shown. ANL Neg; No. 900-78-913. 

5. Rigid Obstacle and Rigid 'I'hin Membralie 

In the basic hydrodynamic technique rigid obstacles can be intro- 
duced in the computing region to model relatively thick s t ructures  such a s  
the radial  shield and the core-  support structure. The restriction i s  that each 
obstacle must occupy one full Eulerian cell  with i t s  four bouridarles localed 
on the cell  edges. Likewise, a rigid thin membrane,  whether it i s  a shell o r  
a plate, can also be used to simulate a thin s tructure like the core barrel .  
But the thin membrane must  also be placed on the cel l  boundary with i ts  
dimension exactly equal to the width of the Eulerian cell. These two options 
could be very useful in analyzing the flow-blockage phenomena in other 
LMFBR components. In general,  by modeling the internals a s  rigid mater ia ls  
the analysis would give a large impact on the vesse l  head and large vesse l  
deformation a t  the upper containment wall; hence, the resul ts  a r e  conservative. 
Conservatism is  essential in the design of the head compartment. 

Flaw around the corners  of obstacles presents  numerous problems 
that must  be considered consistently throughout the numerical analysis,  a s  
mentioned in the  MAC^ meth.od. First, when applying the Poisson equation to 
a full cell  (F) adjacent to an obstacle cel l ,  the p ressure  in the obstacle cell i s  



not uniquely defined, but depends upon which full cell  'is being considered. 
During each iteration sweep, when applying the.boundary conditions for  
ce l l  (i, j) (see Fig. 4) the boundary p ressure  P i t l , j  i s  different f rom that in 

, 
the case  of cell  ( i  + 1,  j + 1). This causes no problem but must be kept in mind 
during the p ressure  iteration. 

Second, consideration must  be given in calculating source t e rms  
Ri+clh), j, Si, j+(l/2)J and Gi,j, since these source t e rms  involve the velocities 
and densiti,es in the neighboring obstacle cell. F o r  the case  shown in Fig. 4 ,  
~ i + ( ~ / ~ ) , j  must be se t  equal to zero al l  the time. However, in making Ui+(l/2),j 
equal to zero,  which means if we actually calculate this velocity component 
f rom the radial momentum equation, we would indeed get zero. Therefore,  
a careful  examination of the equation shows that in o rder  to have zero  radial 
velocity for  cell  ( i ,  j) the source t e r m  Ri+(l/2) , j  must  be set equal to zero. 
F o r  a general fluid with nonzero viscosities the vanishing of Ri+(iI2),j suggests 
that 

In the above equations, the tilde quantities a r e  the dummy values which a r e  
different from those computed by the conservation equations. 

1 :  
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Velocity Arrangement in the 
Vicinity of the Rigid Obstacle. 
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Cells diagonal to a corner  o r  next to a rigid thin membrane also 
need special treatment.  In calculating Ri+(lh) , j+l  for ce l l  ( i ,  j t 1) shown in 

Figs. 4 and 5, the stored value of U ~ + ( I / ~ )  , j  (zero)  should not be used, but ac-  

cording to the inviscid boundary condition this velocity is  set  in such a way 
that 

Fig. 5 

Velocity Arrangement in the Vi- 
cinity of a Rigid Thin Membrane. 
ANL Neg. NO. 900-78-012. 

\ 

RIGID THlN MEMBRANE 

Third, considerations also need to be given for the movement of 
a particle near  rigid obstacle o r  thin membrane. Again, let  u s  consider the 
calculation of the radial velocity component for the two cases  shown in Fig. 6. 
Accai-ding to thc inviscid boundary conrlitinn, a. particle below Line A must  
be moved with a radial velocity which assumes that the wall extends upwar,d 
( i .e . ,  u1 = 0). On the other hand, a particle above Line A must be moved in 
the radial direction a s  if the obstacle o r  thin membrane did not exist (i. e . ,  

u3 = ul). Similar considerations can be applied to the axial particle-velocity 
cul~lpuL~liofi  and to sthcr orientations of obatarlc or th in  memhra.ne. 

( a )  OBSTACLE 

' RIGID THlN 
SHELL 

Fig. 6. Velor.ity Cnmpnnents of Marker Particle near Rigid Ob- 
stacle and Thin Membrane. ANL Neg. No. 900-78-916. 



B. Flexible Vessel  and Arbitrar i ly Shaped Boundary 

1. Moving External  Boundary and Cell Flag 

As mentioned before, the Poisson equation i s  applicable only to a 
ce l l  completely filled with the fluid. If the cel l  contains a boundary of the 
solid s tructure,  the governing equation derived must  satisfy the boundary con- 
dition a t  the fluid-structure interface. Since in each full cell  the advanced- 
t ime pressure  i s  the pr ime variable,  it i s  advantageous to derive the equation 
for the boundary ce l l  in t e r m s  of the advanced-time pressure  so that all  the 
equations can be s'olved together. 

The scheme for treating the flexible containment vessel  i s  s imilar  
to that used by ~ i e c e l l i " " ~  in the calculation of incompressible fldws bounded 
by moving walls. In the case  of inviscid boundary conditions the motio-n of an 

' 

interface between the coolant and the arbi t rar i ly  shaped boundary (deformable 
containment vesse l  o r  curved rigid wall) i s  equivalent to that of a f ree  surface 
with an applied p ressure  distribution. Given any interfacial shape or  motion, 
one can produce that shape o r  motion with some unique pressure  distribution 
applied to a f ree  surface. Since the ICE technique.and MAC method already 
have a technique for treating f ree  surface, it i s  only necessary to find a way 
of relating the required p ressure  distribution to the motion and shape of the 
boundary. 

A moving wall can be specified by a locus of node points described 
by the Lagrangian coordinates. These nodes a r e  normally placed along the 
Eulerian grid lines a s  shown in Fig. 7a. The vesse l  boundary i s  therefore de- 
fined by a polygonal Lagrangian line, which i s  made up of straight line seg- 
ments  connecting the node points. A moving polygonal line intersecting the 
fixed Eulerian mesh will c rea te  numerous time-dependent i r regular  cells.  
Our approach i s  to match the boundary condition at the midpoint of each 
s e gment . 

To simplify the analysis, we assume that (1) the vessel  boundary 
i s  fa i r ly  smooth, and that there a r e  no situations in which the boundary wanders 
in  and out of a single cel l ,  creating irregulari ty,  and (2)  each boundary cell  
contains one and only one midpoint of the vesse l  segment, and thus avoids 
overdetermination of the pressure  field. Having decomposed the boundary into 
a se t  of straight-line segments,  each associated with a unique Eulerian cell ,  
one can specify the position of each segment by a unit vector normal to the 
boundary with base positioned at the midpoint of the segment. Fig. 7b shows 
the convention used in the analysis with the normal pointing into the coolant 
and to the left a s  one advances f rom the i- th to (i + 1)-th boundary point. 
Since the boundary may be moving, i t  is  also necessary  to calculate a boundary 
velocity vector at the midpoint of each segment. This can be done simply by 
linear interpolation f rom the velocities obtained a t  the associated two node 
points through the structur  a1 dynamics calculation. 
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(b) BOUNDARY CELL ( k .  t )  

OEFORMABLE 
WALL 

B-BOUNDARY C E L L  

l a )  CONFIGURATION 

Fig. 7. Configuration of a Moving External Boundary. 
ANL Neg. No. 900-5304 Rev., 1. 

K.1 K - 9  K - l l  

. 1.1+1/2 
l 'he  next sf ep i s  to determine m. the boundary cell  flag. A boundary flag 

ui -~ /e , j  1,112, j identifies the Eulerian cell  that contains 
the solid materials  and provides geo- 

I, I-112 metrical  information of how the vessel  
K.59 ~ = 6 9  K.79 segment i s  oriented with. respect to. the a' Eulerian cell. At .present, 15 flags 

.have been considered for all  possible 
intersections of the Lagrangian bound-' 
a ry  with the fixed Eulerian grids. 

K.8 K'12 These flags a r e  given in Fig. 8 ,  where 

the boundaries of the structure a r e  
indicated. by cros,shatch lines. If 
additional flags a r e  needed, they can 
easily be incorporated into the com- , [ , v K '  , , .K:411 puter program. 

. 2. Fluid-Vessel Interaction 

The viscous effect i s  
neglected at the fluid-vessel interface. 
The method t reats  the moving ves sel  in 
such a way that the fluid slides along 
the wall, but in the direction normal 

Fig. 8. Different Types of Eulerian Cell  Flags. to the wall boundary, the fluid and 
ANL Neg. No. 900-78-914. the vessel  wall being forced to move 



together. Thus, for each ccl l  that contains the moving boundary, the inviscid 
boundary condition yields 

In this equation v ~ ' ~  i s  the velocity vector of a virtual particle located at the 
midpoint of the structure segment and can be computed by an area-weighting 
formula; ii i s  the unit normal vector pointing into the fluid region; Vb i s  the 
velocity vector of the structure segment obtained from the Lagr angian 
structural-mechanics calculation; at the present time, Tb is  evaluated at the 
previous time step, which i s  one cycle behind the particle velocity calculation. 
As can be seen from the later  comparison between the analytical and experi- 
mental results ,  the approach used here  provides very good results .  Of course, 
the evaluation of Th at the advanced-time cycie i s  also feasible. However, 
this would bring Tb in the iteration process,  which i s  very time- consuming 
and will be done only i f  justified by the future need. 

A convenient procedure to solve Eq. 2 1 in the boundary cell i s  to 
express that equation in t e rms  of the advanced-pressure field; then Eqs. 21 
and 17 can be solved together. One way of doing this, according to ~ i e c e l l i , ' ~  
i s  by introducing the relaxation parameter A T  into the iteration process. Thus, 
denoting by h and h t i  the previous and latest iteration, respectively, the 
advanc ed-pres sure  field i s  

( p t ~ i )  l = ( P c i )  - ( ) { [ (  ) - 'b] '} k,  

in which b = min (br ,  6 z )  and A T  5 pk,&b2/26t. 

In Eq. 2 2  the subscripts k and 4, refer  to thc boundary ccll  (k,&) 

having the vessel  segment; is a new iterate that must be rec'omputed 

each time the pressures  and velocities a r e  adjusted. Note that by a continued 
iteration process,  Eq. 2 2  i s  just the asymptotic solution of Eq. 21. Also, during 
the pressure  iteration one can see  that if the fluid attempts to c ross  the bound- 
ary ,  the pressure  in the boundary cell  will be increased, forcing fluid to flow 
away f rom the boundary. On the other hand, i f  the fluid tends to separate from 
the boundary, the pressure  will decrease. until the fluid flows tangent to the 
boundary. 

A rea l  advantage of the implicit simultaneous iteration of Eq. 22  
and the regular Poisson equation is  that it  gives a simple automatic way of 
including complicated boundary conditions. Thus, Eq. 2 2 i s  the principal 
formula used at  the fluid-vessel interface and has been used in al l  the sample 
problems concerning the response of the containment vessel.  Of course, one 
could iterate the advanced-time pressure  field only by using the Poisson equa- 
tion without computing the new densities and velocities as  required by the 
relaxation equation. However, to do this ,  a s  discussed in Appendix A, one 



would have to derive explicit boundary conditions such that the flow would 
move tangential to the boundary. Although this can be done, it appears to be 
a formidable task to accomplish with generality because there a r e  so  many 
cases depending on the shape and orientation of the boundary. 

3 .  Velocity and P re s su re  Calculations near Boundary 

At each cycle of calculation, the hydrodynamic analysis supplies 
the structural-dynamic analysis with' the hydrodynamic pressure ,  which i s  
used to calculate the vessel  response. In return, the structural-dynamic 
analysis feeds back the position and velocity of the structural  member to the 
hydrodynamic analysis. Since in the fictitious boundary cell the hydrodynamic 
pressure  must satisfy the interfacial boundary condition and could vary dras  - 
tically from cycle to cycle, the fluctuating pressure  sometimes will lead to 
unstable structural-dynamic analysis. Thus the pressure  in the boundary cell  
should not be used for calculating the structural response. Instead, the pres - 
sure in the fluid cell immediately adjacent to the boundary cell  will be con- 
sidered a s  the pressure acting on the structural segment. Based on this 
approach, good results a r e  .obtained when comparisons of analytical and ex- 
perimental solutions a r e  made. 

In the generalized method, the pressure  transmitted to the struc - 
tural  member i s  easily determined i f  the vessel  segments a r e  oriented nearly 
vertical or  horizontal. However, for the inclined vessel  segment, the applied 
pressure can be interpolated either from the radial or axial direction, depend- 
ing on which direction has the shortest distance f rom the cell  center to the 
vessel  segment. For the vessel  segment shown in Fig. 9,  the pressure applied 
to the structure ie 

p i - ,  j i f  d l >  d,. 

EXTERNAL STRUCTURE rar I I 

Fig. 9 

Calcula t ions  o f  Vessel Pressure and Boundary- 
cell Velocity.  ANL Neg. No. 900-78-929. 



. Velocities at exterior sides of the boundary cells and other ex- 
t e r io r  points a r e  necessary in computing ( ~ " + l ) ~  given in Eq. 22  and must be 

P 
recomputed during each iteration sweep. These velocity components a r e  de - 

. termined in the same way as  those on the open sides of f ree  surface cells in 
the MAC method except for neglect of the effect of compressibility. The rea-  
.son for the incompressibility assumption is  also because a drastic change of 
the pressure  in the fictitious cell could cause a significant change in density, 
which, in turn, will slow down the iteration process. Thus, for the case shown 
in Fig. 9 ,  the velocity components on the exterior sides are :  

and 

C.  Deformable Internal Structure 

1. General Considerations 

Analysis of the fluid-structure interaction involving the reactor 
internals i s  very complicated due to the fact that the internal components may 
create  discontinuities of fluid motion across the solid material ,  and that ges- 
forated structure and components w=th sharp corners  may be present in the 
computing region. To analyze this problem rigorously a generalized coupling 
scheme i s  developed which includes the following considerations: (1) creating 
multivalued dummy variables near the structure, ( 2 )  generating a cell flag to 
indicate the relative position of the fluid with respect to the structure, ( 3 )  inodi- 
fying the source t e rms  in the momentum equations, (4) treating the structure 
components which may possess perforated openings, (5)  calculating the multi- 
valued field variables for different s tructures,  and (6) moving particles near 
the sharp corner or irregularity. Here, we briefly discuss the f i rs t  two items 
and leave others in the subsequent sections. 

F i r s t ,  multivalued dummy field variables must be introduced in 
the vicinity of the structure,  which is  not necessary for the case of a moving 
external wall. This i s  because in. the case of a moving external boundary, 
fluid i s  located only a t  one side of the structure. Thus, the field variable at  
the exterior side of the boundary cell can be extrapolated from the interior 
(fluid) side and has a single value throughout each cycle of calculation. 
However, this i s  not the case for the internal s tructure,  which may have more 
than one side contacting the fluid. Here, the fluid variable defined at  one lo- 
cation can be either computed from the conservation equation or extrapolated 
f rom different fluid sides, depending on which portion of the structure is  being 



considered. For instance, let us consider just one radial velocity component ul 
near a structure submerged in the fluid shown in Fig. 10. In cell  (i ,  j) the fluid 

i s  located at the bottom of the struc - 
INTERNAL STRUCTURE 

I 
ture,  and the particle velocity vector 
(Vp)i,j,  according to the area-  
weighting formula, i s  a function of 
unknown ul.  This unknown velocity 
component i s  extrapolated from the 
bottom side of. the structure as i f  
the structure occupied the entire 
region above AB. Likewise, in cell 
(i, j + 1) the particle velocity vector 
(Vp)i, j+l i s  also a function of ul. 
But this time ul i s  directly com- 
puted from the momentum equation 
applied to cel l  (i - l,, j + 1). Obviously, 
this radial velocity has two distinct 
values, and the value used for cell 

Fig. 10. Example Illustrating the Need for ( i ,  j + 1) will override the f irst  value 
the Multivalued Field Variables. 
ANL Neg. No. 900-78-928. utilized for cell (i, j). This velocity 

will also be used at  other occasions, 
such a s  for the source-term calculation and the particle movement. The two 
different values shou1.d he saved. One way to remedy this situation i s  to intro- 
duce multivalued variables; the variable obtained from the conservation equation 
i s  designed in the n o r k a l  manner, whereas the value extrapolated from the fluid 
side i s  denoted by a superscript which indicates the relative position of the fluid 
with respect to the structure. . . 

Second, having introduced multivalued variables, a criterion ' 
(or a flag) must be established to indicate the position of the fluid relative to 
the structure. Here, we refer to Fig. 8 and assume that the fluid i s  at the 
left when the flag KF  equals to 1, 9 ,  11, 59, 69,  or  79; the fluid i s  at top when 
K F  equals to 8 ,  12, or  13; at right when K F  equals to 4, 6, or  14; and at bottom 
when K F  equals to 2 ,  3 ,  or  7. 

Since we have introduced multivalued field variables near the struc- 
ture ,  source t e rms  of the momentum equations and the Poisson equation in 
the fluid cell  adjacent to the structure and in the cell  containing the boundary 
need certain modification. Thus, we should identify both adjacent and boundary 
cells before doing the modification. The boundary cell  i s  already identified 
hy t h e  boundary-cell flag. The adjacent cell also can be easily identified 
simply by searching i ts  eight surrounding cells.  

2 .  Source-term Modification near Structure: 

If a cell i s  an adjacent (A) cell, special consideration must 'be 
given in calculating its source terms Ri+ (-(lt j, Si,j-l and GiSj, because 



these source t e rms  involve the velocities in the neighboring boundary cel ls ,  
which cannot be computed directly from the momentum equations. To illustrate 
the necessary modification of the source t e rm ,  we consider some velocity 
treatment of Ri+ (1,2), for an adjacent cell  (i ,  j) shown in Fig. 11. For conve - 
nience, we neglect the viscous-diffusion and body-force t e rms ,  and express 

Ri t  ( l / t ) , j  explicitly as  

With an ex (x) indicating the u velocities and a dot ( a )  the v velocities needed 
for computing Ri+(l /2) , j  a s  shown in Fig. 11, one can see that there a r e  three 
velocities (vd 4 il l , j l  v l + i , - ~ - ~ '  

and u$  ., denoted by two dots and one ex) located , 
11 J I L I J  

at  positions occupied by the structure. Since cell  (i + 1, j) i s  a partial cell  these 
three velocities cannot be obtained f rom the hydrodynamic equations, but a r e  
extrapolated f r o m  the fluid region at the left-hand side in accordance with the 
sliding-boundary condition at  the interface. If the superscript 4, i s  used to 
denote the position of cell  (i ,  j) relative to the structure, the unknown axial 
velocities a re  calculated from 

r- I I ,INTERNAL STRUCTURE 

Fig. 11 

Velocities Needed fur Ri+(l/2), j Calcula- 
tion near the Deformable Internal Struc- 
ture. ANL Neg. No. 900-77-505 Rev. 3. 

x = u VELOCITIES 

= V  VELOCITIES 

4 The unknown radial velocity ui + ( , ~ ~ . ) , j  can be calculated from the 
m a s s  equation by neglecting the variation of density and has the form 



Similar considerations' must be given to the calc'ulations of Si, j+ (1/2) 

and of other orientations of structure components relative to the cell  (i, j). 

If a cel l  i s  an internal boundary (IB) cell ,  attention also should be 
given in computing Ri+(,/,),j or Si,j+(l/2),  since these t e rms  may be needed to 
calculate the source t e r m  of the Poisson equation for i ts  adjacent full (F) cell. 
One typical example is  shown in Fig. 12, where Ri+ j i s  utilized for com- 

r r 
puting Gi+,,j. Again, in this case the four unknown velocities ~ i - ( , / ~ ~ , j ,  ~ i , j + ( ~ / ~ ) ,  

. v r t 
i , j -  ( 1 1 ~ ) ~  and ui+ (1121,j-1 (represented by two dots and two exes) can be obtained 

from an inviscid boundary condition and the mass  -conservation equation, s im- 
i lar  to the scheme used in an adjacent (A) cell. 

INTERNAL STRUCTURE 
l--sr--l / 

Fig. 1 2  

Velocities Needed for R i + ( l / 2 ) ,  j Calcula- 
tion in the Internal Boundary Ceii (i, j). 
ANL Neg. No. 900-78-930. 

3 .  Interaction of Fluid with Internals and Perforated Structure 

Although the internal so1i.d structure can be modeled by rigid ob- 
stacles and thjn membranes a s  mentioned in Sect. III.A.5, the solutions obtained 
usually overestimate the pressure loadings and vessel  deformations near the 
upper. containment vessel.  Another difficulty i s  to model the core-support- 
structure openings correctly. If we assume the opening i s  a full cell., the 



resul ts  would overest imate the p ressure  loadings in the reactor lower plenum. 
Also, the limitation on the locations of rigid obstacle and thin membrane i s  
found to be too restr ict ive.  Therefore, a general method for treating deform- 
able internals a s  well a s  perforated structure must be developed to analyze 
the response of the p r imary  containment systems realistically. 

In order  to accommodate the deformable internal and the perfo- 
ra ted  s t ructures ,  we provide a scheme which st i l l  uses the relaxation equation 
to obtain the p ressure  adjacent to the s tructure but modifies that equation to 
account for the sodium flow through the openings. The basic idea i s  to homoge- 
nize the perforated s t ructure  member so that the total mas s  flux through the 
openings i s  uniformly distributed throughout the ent ire  member . ,  In other 
words,  for those members  containing openings, such a s  AB and CD in Fig. 1 3 ,  
we allow fluid penetration and separation at the boundaries. To simplify the 
analysis ,  we further  propose, that: 

(a) Fluids inside the coolant passage move one dimensionally. 

(b) Sodium flows perpendicularly to the boundary at the entrance 
or exit. 

(c) The density variation inside the coolant passage i s  negligible, 
so  that the amount of m a s s  flowing into the passage i s  equal to the mass  flow- 
ing out of the passage. 

Fig. 13 

lrregular Cell (k, 1) Containing Deformable 
Structure with Perforated 0pe.nings. ANL 
Neg. No. 900-77-241A. 



Thus, for a structure with or .without coolant passage openings, 
the inviscid condition implies that the mass  f I w  across  the boundary must be 
equal to the total mass'  passing through the openings: . . 

where 8 i s  the amount of mass  flux through the openings. 

Note that with 8 equal to zero, the above equation is  just the non- 
penetration condition applied at  the boundary of the deformable structure.  
Also note that a superscript t indicating ,the position of the fluid relative to 
the structure has been omitted. 

Similar to the development of the relaxation equation at the coolant- 
vessel  interface, the h t  1 iteration value of the advanced-pressure. field i s  

For the perforated structure (see Fig. 13), the amount of mass  
flux, 8k,4, through the structure openings can be calculated f rom 

where Jr .is the perforation ratio, ,defined as the ratio of the flow area  to the 
total area  covered by the structural  member.  The changeaof the fluid velocity 
u In the coolant-pa6sclge bpenings can be ~a icu la tcd  f rnm 

where p 
k,.e-l and pk g a re  the pressures  on both sides of the structure, L is 

1 

the mean length of the coolant passage associated with the corresponding struc- 
tural  member,  and Ap i s  the pressure loss due to friction, which in certain 
circumstances can be directly related to I U  ( s e e  Ref. 13). 

4. Calculation of Multivalued Field Variables .*.-,... 

Since fluids have different motions on both sides of the internal 
structure, the field variables in a cell  containing structure a r e  assumed to 
have different values. , In particular,  the velocity field i s  used to compute the 
source t e rms  in the momentum and Poisson's equations, and also to move the 
marker  particles. It i s  also utilized in handling the fluid motion at  the geo- 
metrical  discontinuities. Thus, for a structure submerged in the fluid, a s  
shown in Fig. 14, the two sets  of velocity field: uf, vf, vf and u:, v:, v:, a r e  



calculated from the inviscid boundary conditions and the mass  equations 
corresponding to the fluid located at the left-hand and right-hand sides, r e -  
spectively. Upon neglecting the density variations, these velocities can be 
expressed as 

and 

INTERNAL STRUCTURE 

t - a r l / '  

Fig. 14 

Euleriari Finite-difference Mesh with 
Multivalued Field Variables Adjacent 
to the Thick Internal Structure. ANL 
Neg. No. 900-78-927. 

Although at  the present time the method still cannot t rea t  the thin 
structure surrounded by fluid, it can be easily generalized to handle the thin 
component based on the scheme ,outlined above. F n r  instance, i f  the cell (i, j)  



contains the core barre l  as  shown in Fig., 15, then the fluid variables should 
4, have two sets  of value. The variables pk,  uk, and v a r e  calculated in 

such a way that the fluid on the left-hand side of the core barrel  slides tan- 
gentially. Likewise, p r ,  pr, u r ,  and vr  a r e  obtained so that the fluid on the 
right-hand side also moves tangentially. 

SHELL SHELL 

LEFT RIGHT 

Fig. 15. Eulerian Finite-difference Mesh with Mulrivalued Field Variables Adjacent 
to the Thin Internal Structure. ANL Neg. No. 900-78-921. 

Similar to the cases mentioned above, field variables' can be ob- 
tained for the fluid located at the top or  bottom of the structure. Thus, a cell 
can have up to four se ts  of field variables. Also, it  should be mentioned that 
we have to extrapolate the velocities far  enough so that velocities needed for, 
moving the particles around the structure a r e  available. 

In general, the multivalued pressure  field; a r e  determined by the 
sliding conditions; the density fields a r e  calculated f rom the equation of state; 
the velocity fields a r e  obtained f rom the mass  equation a s  well a s  the inviscid 
conditions outlined above. For those variables (such as  the densities if one 
wishes to use the complete mass  equation) at  the exterior side of the Eulerian 
cell  which cannot be computed by the conservation equations, extrapolation 
of their values f rom the interior region i s  necessary. 

5. Part icle Movement near Corner 

After solving for the advanced-velocity field and other field vari-  
ables, a new configuration of the flow field i s  generated by moving the particles 
to their new positions. Since particle-velocity components i s  obtained by 
averaging f rom the velocities at  the nearest  four locations, c a r e  should be 
taken for the particle movement near the corner and other irregularities.  
Figure 16 shows an internal structure submerged in the fluid together with 
the velocity field required for moving particles around the corner. Thus, for 



conditions. However, the size of 
the wall opening in the basic ICE method is  limited to multiples of the cell 

v 
4 I 
I 
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size.  In other words, i f  the wall opening is small,  the Eulerian cell dimension 
must  also be made small.  In addition, the size of the opening in the basic 
ICE technique must remain constant. Thus, the opening does not vary with 
t ime,  which is different from a gap generated by the slug-impact force on the 
reactor head cover at  the head-vessel junction. Therefore, the basic ICE 

. v 
1 7  
I 

--u2 

technique must be expanded in order to t rea t  the coolant spillage problem 
more  realistically. 

a particle located above the struc- 
ture, such a s  particle x, we use 

t t n t l  ul, u,, us, and u4 to compute u, ; 
t we use vl,  vZ, vi, and v7 to calcu- 

late vztl. Similarly, for a particle 

To. accomplish this objective, a Movoble Penetrotion Openings 
quasi-Eulerian method has been devel- 
oped14 and recently been incorporated 
into the ICECO-STR for treating the 
coolant spillages. In this scheme when 
the vessel  head moves upward a set  of Fictitious 

Zone Cover Heod ond i rregular  cells,  whose size varies in Reactor Wall . 
the axial direction according to the 
head displacement, i s  introduced on the 
top of the full-zone regular cell, as  
showninFig. 17. Sincein these i r reg-  
ular cells only the axial dimension of 
the cel l  varies,  but the shape remains Fig. 17. Quasi-Eulerian Cell and Penetration Openings. 

rectangular,  it i s  possible to derive the A N L  Neg. No. 900-77-1806 Rev. 1. 

governing difference equations with r e  - 
spect to these irregular  cel ls .  Here, the control-volume technique similar 
to the ICE technique i s  used, in which the conservation equations a r e  general- 
ized to take into account the penetration holes and the side opening. ' 'he tops 

[ P A R T I C L E  x 

c Spillage 

The Eulerian l ~ y d r o d y ~ ~ a n ~ i c s  
i n  i d e a l  for long duration cslcula 
t ions fo r  problems involving large 
material  distortions. The basic 

Fig. 16. Particle Velocities near the Corner. ICE technique has an option for 
ANL Neg. NO. 900-77-1852. treating inflow and outflow boundary 
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structure, say particle y, we use 
u,, u,, 4 u,, and u t  to calculate the 
q t l ;  we use +, v:, v1, and vg for  
the calculation of vFt . 

D. Moving Cover and Coolant 



of the quasi-Eulerian cells a r e  considered as an inviscid boundary, moving 
with the same velocity as  the cover head. Thus, separation of the entire cool- 
ant f ree  surface with the'reactor cover i s  not permitted after the slug impact. 

For simplicity, it i s  further assumed that (1) the penetration opening 
i s  located on the top center of the quasi-Eulerian cell; (2) only one penetration 
i s  allowed for each'cell; (3) the penetration is considered to become open when 
the impulse on this penetration area  exceeds a certain input value. With these 
assumptions, a modified Poisson equation is  obtained which has the form 

whcrc Tiis the ratio of the opening a r ea  to the cell area  at the quasi-Eulerian 

cell (i, j)? poi , j t1  i s  the pressure  outside the opening, HiPj is the source t e r m  
of the Poisson equation, which is  a function of the momentum source t e rms ,  
opening ratio Ti,  and the opening velocity v o ,  a s  well as the cover velocity at  
the lith cycle. 

E.  Simultaneous Iteration 

We have presented the equations governing the advanced-pressure 
field for the entire computing domain. In summary, the governing difference 
equations used in different cells for  a typical Eulerian mesh shown in Fig. 1 
a r e  

(1) Poisson equation (i. e. ,  Eq. 17) for the full cell  (F); 

(2) Relaxation equation (Eq. 22 )  for the external boundary cel l  (B); 

(3 )  General.i.zed relaxation equation (Eq. 27) for the internal boundary 
cell  (IB); 

(4) Modified Poisson equation (i.e., Eq. 32)  with modified source t e rms  
of the momentum equations and pressure equation for the quasi- . 

Eulerian cell (Q). 

In the analysis, Eqs. 17, 22 ,  27, and 32 a r e  solved t ~ ' ~ e t h e r  by the 
regular iterative technique, which sweeps through all  the regular and i r -  
'regular cells in  th.e ?irections of increasing i and j. During each iteration 



sweep, say at 
f rom Eq. 17, 
The iteration 

: iteration cycle h t  1, the new value of (pn+.l) hti i s  obtained either 
22, 27, or  32 and is  used to replace th:sJold value of p ~ t l  htl. ( 1,J ) 
i s  terminated when the new values do not differ much from the 

old -- . - values. In other words, the convergence i s  achieved when 

has  been satisfied for all  cells.  Here E i s  usually of the order 5 x lo-* or  
equal to some other suitable small number. 

Because the source t e rm  of the relaxation equation at the fluid-stri~ct.iire 
interface is  proportional to the mass  flux, the pressure ,  density, and velocity 
fields must be iterated simultaneously. Thus, after each i terate giving the 
p ressure  field, the density and velocity fields a r e  immediateiy computed by 
the equation of state and the momentum equations, respectively. Based upon 
the new density and velocity, the mass  flux at  the interface is appropriately 
adjusted, which results in a new pressure  in the boundary cell. This proce- 
dure i s  repeated until the boundary conditions at all interfaces a r e  rigorously 
satisfied. 

For  problems. involving a movable head or  coolant spillage we first  
calculate the cover velocity, using themiterated pressure force exerted on the 
cover head. Then,the .pressure above the quasi-Eulerian cell  i s  computed, 
using the axial momentum equation in which the penetration opening V i  i s  

n+l . assumed to be zero'. Finally, the new iterated pressure pipj i s  calculated. 
This procedure i s  repeated until Eq. 3 3  i s  also satisfied for every quasi- 
Eulerian cell. 

Figure 18 is  a flow chart representing the computational procedure. 

F. Structural Dyrla~nics 

Lagrangian coordinate systems a r e  employed in t h e  structural-dynamic 
analysis. Because of complicated structure components involved in a typical 
reactor configuration, several  separate programs. a r e  employed for analyzing 
the structural response. In the analysis of the plug- jump and sodium- spillage 
problem, the motion of the reactor head, which is  assumed to have only rigid- 
body motion under the constraint of the holddown bolts, i s  calculated by a 
finite-difference program. Two other programs,  one using a finite- element 
formulation and the other using a finite-difference approach, a r e  discussed 
br.iefly in the following. 

1. Finite- element Structural Program 

The responses of containment s t n i r t i i r ~ s  siich a the radial shield, 
the core  barrel ,  the core support s tructure,  and the primary vessel  can be 
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Fig. 18. Flow Chart Representing the Computational brocedure. ANL Neg. No. 900-78-919. 



analyzed by a modified version of finite- element program. 15,16 This program 
used a Lagrangian (or convective) coordinate scheme in the numerical analysis 
and i s  best suited for large-displacement, small  s train,  elastic-plastic dy- 
namic problems . 

In this scheme Lagrangian coordinates of the element rotate but 
do not deform with the elements. The strain i s  linearly related to the displace- 
ment of the element relative to the Lagrangian coordinates. Similarly, the 
nodal forces a r e  linearly related to the element s t resses .  The original pro- 
gram,  WHAM, has the conical- shell element and axisymmetric triangle ele- 
ment which can be used to model the complicated structural components. 

. The displacement field of the shell element consists of cubic trans-  
ve r se  displacements and linear axial displacements. Resultant forces a r e  
computed by five-point numerical integrations across  the depth of the element. 
The triangle continuum element uses linear displacement fields. It can be 
used to simulate fluid o r  elastic-plastic solid. Recently, a quadrilateral fluid 
element and a quadrilateral elastic-plastic element have been added to the 
program. 

2 .  Finite-difference Shell Program 

A finite-difference thin- shell program has been used previously 
in analyzing the response of the primary vessel. This program is now avail- 
able as  an option to the WHAM program to another version of'ICEC0. The 
differential equations of dynamic equilibrium of a shell of revolution (see 
Fig. 19) undergoing large deflections are17*18 

a a 
[ ~ ~ r  cos cp] - as [Qvr sin cp] - N o  + pr sin cp - mri: = 0; 

a - [ ~ ~ r  sin cp] + a 
[Qcpr cos 'PI - pr  cos cp - m r z  = 0; a s  

My C O S  cp - 

where s i s  the length of the shell along the meridian, measured from the ver-  
tex of the shell, m is  the mass  of the shell per unit area ,  (p is the angle of 
inclination of the element with respect to the r direction, p i s  the pressure ,  
N and N o  a re  two tangential s t r e s s  resultants, and Q is  the transverse cp v 
s t ress .  The shell i s  idealized by layers of subshells that can ca r ry  only nor- 
ma l  s t resses  in the planes parallel to the tangential plane of the shell structure. 
These subshells a r e  connected by the material  that c a r r i e s  only shears.  The 
vessel  material  i s  considered to be elastic-plastic and strain-hardening. The 
strain-hardening shell i s  represented by a model in which the thickness of 
the subshell i s  further decomposed into subregions of elastic-perfectly-plastic 
materials  having different yield s t resses ,  but common strains.  The von Mises 
yield condition i s  used. 



/-zL G. Numerical Stability 

For the consideration of numerical 
stability, the time step 6th chosen for the 
hydrodynamic analysis must satisfy the mod- 
ified "Courant Condition. " The restriction 
i s  that fluid must not be permitted to flow 
across  more  than one computational cell in 
one time step, that i s ,  

b r 
x 6 t h < 1 n i n ( ~ , ~ + ) .  max max (35) 

d N 4  N++ - d s  Since in the plug- jump (movable -head) 
as 

dS 
problem the axial dimension of the quasi- /+ M + + - ~ s  Euler iance l lvar ieswi th theheaddisp lace-  

a S 
ment and i s  much smaller than the axial 

No ?A7i&&r'@ dimension of the regular cell, the time step 

P used at the inception of slug impact i s  further 
restr icted by 

/+% 
N+ (b, 

(36) 

Fig. 1 9  where b y  i s  the axial dimension of the quasi- 
Shell of Revolution and Free-body Diagram. Eulerian cell and v is  the axial velocity 
ANL Neg. No. 900-75-523. 

Y 
component in the quasi-Eulerian cell. 

For the coupled fluid-structure analysis, the time step 6ts employed 
for the structural dynamic program must satisfy the following requirements 

and 

Equation 37 applies to all  elements, Eq. 38 only to flexural shell ele- 
ments. Here i s  a reduction factor usually between 0.5  and 0.8; 4, is the 
distance between two nodes; ct and cb a r e  longitudinal and flexural wave veloc- . 

i t ies ,  respectively, and a r e  defined in Ref. 16. 

Because the hydrodynamic program uses an implicit integration scheme 
while the structural dynamic program utilizes an explicit integration procedure, 



6th i s  larger than 6ts . ,  'I'hus, within each time step several  structural dynamic 
calculations must be performed in order to match one hydrodynamic calcula- 
tion. The number of structural  calculations (or subcycles) N can determined 

by 

where I denotes the integral part of the ratio. 

In certain circumstances, the viscosity coefficients A and p should 
be used to damp out the pressure  oscillation, particularly in a high-energy 
excursion. Thus, s imilar  to the treatment of the ICE 'technique, the coefficients 
A and p should be large enough so that 



111. SAMPLE PROBLEMS 

A. Bubble -Coolant Interaction 

Although the Eulerian hydrodynamic method has been coupled together 
with the Lagrangian structural-mechanics technique for analyzing the problem 
of the fluid-structure interaction, the program still i s  very flexible. It can be 
used for purely hydrodynamic analysis in which the structural-dynamic calcu- 
lation i s  completely bypassed. To illustrate the capability of the basic hydro- 
dynamic code, a problem concerning bubble -coolant interaction is  presented. 
Figure 20  depicts the initial configuration with initial core pressure equal to 
9.8 MPa. In this configuration the bottom part of reactor containment i s  r e  - 
moved to simplify the analysis. .All solid structures a re  assumed to be rigid 
with their boundaries coinciding with the fixed Eulerian grids. The radial 
shield is simulated by the rigid obstacles. 

: RIGID COVER I 

WALL 
TIME, msec = 0 

(a)  

Fig. 20. Bubble Motion and Coolant Configuration at  Dif- 
ferent Times. ANL Neg. No. 900-3452 Rev. 2. 

Figure 20 presents the bubble motion and coolant configuration at  
three different times. Before the slug impact, the bubble shape was not 
spherical, but rather toroidal. After the slug impact, an intense pressure 
wave traveled back into the coolant, which greatly distorted the interface and 
generated a spike near the top surface of the bubble. The formation of this 
spike can be inferred by the mechanism of the Taylor instability. The con- 
tinuing growth of this spike may cause bubble collapsing and turbulent mixing. 
The peak force exerted on the vessel cover i s  approximately 1.85 GN (185 x 
1 OIL dynes). 



Several calculations have been performed by varying the excursion 
magnitude and configuration. Results reveal that, in all  cases  studied, if the 
initial bubble position i s  not too high relative to the initial position of the free 
surface, the bubble will not surface upward, but collapse. The reason fo r  the 
bubble collapse i s  that i t  cannot sustain the reflected pressure loading in the 
surrounding coolant. 

B. Wave Propagation in a Straight Pipe 

This work deals with the response of a straight pipe in which the pipe 
wall i s  treated a &  elastic -plastic material .  The effect of pipe -wall deforma - 
tion on pressure  -wave attenuation i s  also studied. 

'I'he mathematical model used in the analysis i s  a 3 -ft (91 -44-cm) -long 
pipe made of stainless s teel  (see Fig.. 21). A constant pressure  of 4.2 MPa 

waa impoeed at one enil uf the pipe, the 

I other end 'being assumed to be a f ree  

Free Surface surface. To under stand further the 
effect of wall deformation upon the pres - 
sure attenuation, a rigid-wall calculation 
was also made. 

Figure 2 2  shows calculated 
0.1016-cm Pipe Wall 

(Stainless Steel 1 
- pressure  histories a t  locations A, B, and 

C indicated in Fig. 21 for both rigid and 
elastic -plastic pipes. In the rigid-wall 
analysis, the peak pressures  a r e  about 

C 4.2 MPa; this corresponds to the peak 

4.2 MPo 
Constant 

value of the input pulse. However, in 
the elastic -plastic -wall analysis, the 
peak pressures  change significantly. At 
positions close to the source, such a s  
A and 13, the computed peak pressures  
a r e  lower than the input pressure ,  but 
higher than the yield pressure  (about 
3.4 M P ~ )  of the pipe wall. At positions 
away from the source, the peak pressures  
a r e  attenuated, and their values a r e  l ess  
than the yield pressure,  a s  indicated for 
location C .  The wall deformation also 
has  a n  effect of delaying the loading time 
of the pressure  pulse. The pressure  

I I histories obtained in the elastic -plastic - 
.Fig. 21. Mathematical Model and Configuration wall calculation a r e  fairly smooth. The 

of Elastic-Plastic Pipe Used in the ICECO small  oscillation observed i s  probably 
Analysis. ANL Neg. No. 900-78-922. due to the response of the pipe wall. 
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This type of oscillation can probably be 
eliminated by introducing the structural 
damping in the shell subroutine. 

Figure 2 3  shows the radial defor - . 

mations a s  a function of time a t  the three 
locations Dl ,  D2, and D3 indicated in Fig. 2  1. 
Plastic deformations resulting from the 
transient pressure loading take place near 
the source region.' At downstream positions, 
only elastic deformations a r e  noticed, as 
shown in Fig. 23 .  This i s  because the pres - 
sure loading a t  downstream positions a r e  
below the yield pressure.  

C. Response of the Pr imary  Containment 

Figure 2 4  i s  the configuration of 
the primary containment used in the analy - 
s is .  Features included are :  (1) core, 
(2 )  core-support structure, (3) coolant pas- 
sage hole s in the core -support structure, 

. ( 4 )  core barrel ,  (5)  reactor vessel  with 
curved bottom, (6) cover gas above the 
coolant, and (7)  rigid vessel  head. The 
reactor -vessel material  i s  elastic -plastic 
and strain-hardening. The core barre l  and 
core-support structure a r e  assumed to be 
rigid. The energy release in the core was 
characterized by a pressure -volume r e -  
lationship, which has  an  initial pressure of 
2  0 . 4  MPa and decays exponentially. 

The reactor configurations a t  three 
different times a r e  shown in Fig. 25. The 
expansion of the gas bubble, the movement 

of the coolant, a s  well a s  the deformation of the reactor vessel  can be clearly 
seen. These configurations reveal strong disturbances a t  the upper edge of the 
core barre l ,  which will cause severe zone distortions in the Lagrangian anal- 
ysis .  They also show different fluid motion a t  two sides of the core barrel .  
At the left-hand side the fluids slide along the core barrel ;  a t  the right -hand 
side the fluids remain relatively undisturbed. It  i s  also noted that a sufficiently 
large amount of coolant has been pushed downward through the coolant passage 
holes into the lower region of the reactor vessel  to cause the coolant pressure 
below the core-support structure to increase considerably. The phenomena of 
wave transmission and mass  transfer  between the upper and lower reactor 
plena a r e  very difficult to analyze by the conventional Lagrangian method. 
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Fig. 24. Initial Configuration of the Primary 
Containment Used in the Analysis. 
ANL Neg. No. 900-76-53 Rev. 

Fig. 23. Radial Deformations as a Function 
of Time at. Locations Dl ,  D2, and 
D3. ANL Neg. No. 900-78-915. 



Fig. 25. Reactor Configurations at Three Differ- 
ent Times. ANL Neg. No. 900-76-54. 

D. Simulation of the Excursion Model 

In order to validate the analysis of the two -dimensional fluid- structure 
interaction, a comparison of code prediction with experimental data was made .' 
The configuration of the reactor containment vessel  i s  shown i n  Fig. 26, which 

Explotive Charge; pig. 26 
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the Containment Studies. ANL 
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was a scaled tes t  model of the German Demonstration Plant SNR -300. The 
basic tes t  configuration consists of a spherical pressure-volume source im-  
mer sed  within a pool of water, which in turn i s  held by a cylindrical container; 
the space i s  occupied by a i r .  The cylindrical walls of the container a r e  pre-  
compressed by the rigid end plates with holddown bolts. Rubber seals  separate 
the cylindrical walls from the end plates. 

In the analytical model shown in Fig. 27(a) a spherical-shaped source i s  
used to represent  the explosive charge. The position of the outside cylindrical 
boundary corresponds to the mean radii of the vessel .  Other assumptions con- 
sidered in the analytical models which pertain to both tes t  configurations a r e  
outlined below: 

(a) The top and bottom boundaries a r e  assumed to be stationary, 

(b) The cylindrical vessel boundary a t  the bottom. i s  con,strained 
axially and i s  f ree  to move radially, 

(c) The top vessel  boundary i s  assumed to be f ree  of any constraints, 

(d) The equation of state for a i r  i s  

p = (VOIV)~.~,  

where p i s  in atm, v i s  the volume, and vo i s  the initial volume. 

(e)  Sodium spillage i s  neglected so that the results can also be 
compared with REXCO-code predictions. 

TIME = 0 ms 1.457 3.657 5.056 

(01  [ b )  [ c )  Id)  

P'ig. 2'1. Configurations of Thin-vessel Test. ANL Neg. No. 900-77-275. 



The s t ress-s t ra in  curve assumed for the thin vessel  was confined to 
a bilinear representation. The elastic portion with modulus E = 20,000 kg/mm2 
extends to the s t r e s s  of 44 kg/mm2; beyond the yield s t ress ,  a plastic modulus 
Ep  = 40.96 kg/mm2 was assumed. 

The pressure-volume source characteristics used with the model a r e  
taken from Ref. 19 and given in Table I. 

TABLE I. Source Charac te r i s t ics  for  the Thin-vessel Model 

Figurc 27(b) to (d) shows the reactor configura;tions at  several dif - 
ferent times, illustrating the displacement of the cylindrical wall and the 
motion of the fluid. As can be seen, the cylindrical wall has undergone large . 

displacements. As i t  moves ac ross  the Eulerian cells,  i t  inter'sects the fixed 
Eulerian grid lines in'many different ways. ,  Complex procedures would be 
neeilcrl i f  t h ~  cnntrel-volume method were used in the solution of the problem. 

P r e s s u r e ,  Volume Ratio, 
MPa v /VO 

The displacements of the thin vessel  a r e  characterized by plastic r e -  
sponse. This deformation consists of a rapid increase to a maximum'and then 
settling to a final value. We observed from the analytical solution that defor- 
mation fi . ret  t.nk.es pla'ce at the location opposite the source, where the distance 
from the source i s  the closest. While this deformation i s  still increasing, the 
bottom of the vessel  begins to deform. When the displacement opposite the 
source deforms to i t s  maximum, the vessel  bottom still keeps deforming and 
then subsides, and eventually supersedes in magnitude the f i rs t  deformation. 
It may be observed that at  about 2.5 m s  the bottom part of the vessel  has de- 
formed to i t s  final value. 

Pressure, Vulu~l i t  Ratio, 
MPa v /VO 

Thc range of the de fo rmed  region a t  the initial part of the excursion i s  
limited. For example, the vessel  a t  the fluid level deforms little, because of 
the comparatively low pressure being developed there. In fact, a s  the fluid 
begins to r ise,  the radial deformation a t  the top part of the vessel  i s  minimal 
until slug impact takes place. 

During impact of the slug, the top of the vessel  begins to deform rather 
abruptly. This deformation continues and reaches an equilibrium value at  about 
5 ms, The yield limit of the vessel  i s  reached early, and the major response of 
the vessel  continues in the plastic regime. 



The experimental d i ~ p ~ a c e m e n t  histories a t  two points of the vessel,  
taken from Ref. 19, a r e  plotted in Figs. 28 and 29. Figure 28 shows the test 
and the analytical displacements of the vessel  a t  the initial height of the source. 
The agreement of the results  up to the failure of the gage i s  quite good. The 

permanent set of the point i s  &lightly overestimated by the analysis. Figure 29 
shows the vessel  deformation a t  4 ' cm from the bottom of the vessel,  and the 
agreement between analysis and experiment appears to be quite good. 

- Permanent Eap Set 

- 

- / 

Permorent Exp Set 
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Fig. 28. Vessel Deformation at z = 36 cm. Fig. 29. Vessel Deformation at z = 4 cm. 
ANL Neg. No. 900-78-923. A N L  Neg. No. 900-78-925. 

The permanent deformation of the thin vessel,  also given in Ref. 19, 
i s  reproduced in Fig. 30, together with the corresponding analytical results.  
In general, the shapes of the experimental and analytical configurations a r e  in 
good agreement. The displacement a t  the bottom of the vessel  i s  overestimated 
in the analysis more  than anywhere else'  along the vessel.  This discrepancy 
may be attributed to the constraint of the boundary conditions of the: model.. 

E. R e s ~ o n s e s  of Structural Com~onents  

The response of a typical LMFBR primary containment to an HCDA 
was studied. The mathematical model, shown in Fig. 31, consists of the reac-  
tor  core, coolant, radial shield, core barre l ,  core-support structure, and thc 
primary vessel.  Since the shield material does not have tensile strength in 
the circumferential direction, it  was considered a s  a compressible fluid with 
the same mass  and compressibility a s  the actual material.  The core -support 
structure was modeled a s  a composite structure made of plates and shells a s  
in. the actual structure. To simplify the analysis, the openings in the core-  
support structure were not included in the model. Thus, the transmission of 
pressure  pulses into the lower plenum depends solely on the downward mnti.o.n. 



of the core-support structure. The energy release in the reactor core was 
characterized by a pressure -volume relationship with an initial pressure  of 
20.4 MPa and was assumed to decay exponentially. 

Strain, 'Ye 
0 5 10 15 20 

0 I 2 3 4 
Displacement, cm 

Fig. 30. Final Deformation of the Thin Fig. 31. The Mathematical Model Used for 
Vessel. ANL Neg. No. 900-78-917. the Component-response Analysis. 
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Figure 32 presents the reactor configuration a t  three different times. 
These configurations show the expansion of the core-gas bubble, the motion 
of the coolant, and the response of the core barre l ,  the core-support structure, 
and the primary vessel.  They also show that the fluids slide along al l  the 
internal interfaces during the course of the motion. Note that fluids on both 
sides of the core barre l  exhibit different motion. At the left-hand side, the 
fluid moves upwards along the radial shield; a t  the right-hand side, the fluid 
remains relatively undisturbed. Moreover, certain strong disturbances of 
the fluid motion occur a t  the upper end of the core bar re l  during the later  stage 
of the excursion, whidh i s  believed to be induced by the vibration of the core 
barrel .  

To illustrate the response of the containment structure, the axial dis - 
placements a t  the center of the core -support structure and the center of the 
primary vessel  a r e  given in Fig. 33 .  Due to the large pressure gradient be - 
tween the upper and lower plena a t  the initial stage of the excursion, these 
structures a r e  displaced downward and gradually attain their maximum dis - 
placement. However, a t  a la ter  stage of the excursion, the pressure in the 
upper plenum becomes small, which in turn causes the structures to be dis-  
placed upward. 



Fig. 32 

Configurations of Primary Containment 
and Components at Three Different 
Times. ANL Neg. No. 900-77-712. 

Fig. 33 

Calculated Axial Displacements as a Func- 
tion of Time. ANL Neg. No. 900-77-341. 



The radial  displacements of the shield m a t e r i a l  and co re  b a r r e l  
(nodes A and B in Fig. 31) a t  the co re  midplane a r e  shown in  Fig. 34. Due to 

the strong outward p r e s s u r e  gradient the peak displacements a r e  found a t  6 m s .  
Thereafter ,  the p res su re  between the b a r r e l  and the p r imary  vesse l  gradually - 

builds up and thus causes  the displacements to  decrease .  The peak displace- 
men t  of the shield m a t e r i a l  i s  g rea te r  than that-  of the c o r e  b a r r e l .  This  i s  
because the radial  shield i s  t reated a s  compressible  fluid which has  l e s s  
rigidity than the c o r e  ba r re l .  

Fig. 34 

Calculated Radial Displacements as a Func- 
tion of Time. ANL Neg. No. 900-77-340. 

"0 4 8 12 16 20 24 
Time, ms 



IV. CONCLUSIONS 

A general ized coupling s c h e m e  has  been incorporated into the  second 
v e r s i o n  of ICECO (ICECO-STR) which l inks toge ther  the  Eule r ian  hydrody- 
namics  and Lagrangian st ruc tura l -mechanics  p r o g r a m s  fo r  the  fluid- s t r u c t u r e  
in te rac t ion  ana lys i s  in  nuc lear  r e a c t o r s  subjected t o  an HCDA. The  physical  
phenomena considered by the  technique and the  resul t ing p r o g r a m ,  ICECO-STR, 
include t he  wave propagation,  sodium- s lug impact ,  coolant spi l lage,  gas  -bubble 
mig ra t i on ,  a s  wel l  a s  the  s t r u c t u r a l  response.  The  numer ica l  a lgor i thm has  
m a n y  spec i a l  fea tures :  

(1) I t  employs the  impl ic i t  t empora l  in tegrat ion s c h e m e  in  both the  
hydrodynamics  and fluid - s t  r uc tu re  interact ion analys e s  . The  solution i s  un- 
condit ionally s table .  We have  found that  except in  the  prob lem involving shock 
discont inui t ies ,  the  effects  of v i scos i t i es  on the  numer ica l  r e su l t s  a r e  
insignificant.  

' (2) It u s e s  the  Eu le r i an  coordinate s y s t e m  in t rea t ing  the  fluid motion 
i n  which t he  m a t e r i a l  m a y  undergo l a r g e  dis tor t ion.  Hence,  no m e s h  s tab i l i -  
zat ion,  m e s h  regula r iza t ion ,  o r  rezoning a r e  needed in  t he  ana lys i s .  

( 3 )  The technique t r e a t s  complex boundary conditions a t  t he  fluid- 
s t r u c t u r e  in te r face  and yet  s t i l l  mainta ins  the  computational efficiency.  The  
computing t i m e  f o r  p rob lems  involving a typical  r eac to r  configuration i s  
found to  b e  comparab le  to  t he  conventional Lagrangian technique. 

(4) The hydrodynamic analysis  can be  readily coupled with any 
s t ruc tu ra l -dynamic  p r o g r a m  whenever a m o r e  advanced one becomes  avai l -  
ab le .  The  presen t ly  used  s t r u c t u r a l  p r o g r a m  i s  based  on a well-developed 
f ini te-e lement  method which can  account fo r  both m a t e r i a l  and geomet r ica l  
nonl inear i t ies  . 

(5) It ha s  capabi l i t ies  of t rea t ing  sodium flow through the  openings 
of the  core-suppor t  s t r u c t u r e  a s  well  a s  through the penetra t ion openings of 
t he  r e a c t o r  cover  and the  ruptured s e a l  a t  the  ves se l - cove r  junction. This  
is not only important  t o  the integr i ty  of the  p r i m a r y  containment,  but a l so  
e s sen t i a l  t o  the ana lys i s  of t r a n s p o r t  of radiological  m a t e r i a l  t o  the  secondary 
containment.  

In  developing the  ICECO code,  one ul t imate  objective i s  to  a s s i s t  t he  
REXCO code in  the  sa fe ty  ana lys i s  of LMFBRs,  par t i cu la r ly  in  excurs ions  
involving l a r g e  m a t e r i a l  d i s to r t ions .  It i s  believed that  th is  objective is s a t -  
i s fac tor i ly  achieved. Thus ,  t he se  two codes can  b e  used in conjunction with 
each  o the r ,  with REXCO being m o r e  appropr ia te  fo r  the e a r l y  s t age  of an  
excu r s ion  t o  de t e rmine  the  wave propagation and s t r u c t u r a l  response ,  and 
ICECO being m o r e  adequate fo r  the l a t e r  s t ages  t o  invest igate  t he  bubble 
mot ion  and coolant spil lage.  In fact ,  such  REXCO-ICECO comb,ination anal-  
y s i s  h a s  been success ive ly  applied t o  the  double-vessel  r e a c t o r  configuration 

,. . 
of the SNR-300 Expe r imen t  ." 



, As demons t ra ted  by the  r e su l t s  of the  s ample  prob lems ,  t he  ICECO 
i s  capable  of analyzing two dimensionally t he  f lu id-s t ruc ture  interact ion and 
the resul t ing containment response  dur ing a n  HCDA. The  code provides  nu- 
m e r o u s  options for  modeling t he  complicated s t r u c t u r e  components,  including 
the  rigid obs tac les ,  rigid thin m e m b r a n e s ,  curved r eac to r  v e s s e l ,  deformable  
in te rna l s ,  and per fora ted  c o r e -  support  s t r u c t u r e ,  a s  wel l  a s  the movable  head 
with penetra t ions .  The  bas i c  coupling s c h e m e  has  been validated by compar ing  
the  code solution with t he  REXCO-code prediction and exper imenta l  da ta  of 
SNR-300 b r e e d e r  r e a c t o r .  The  good agreement  obtained in  th is  compar i son  
fur ther  lends credibi l i ty  that  ICECO can  b e  used fo r  analyzing the  fluid t r a n -  
s ien t  and the  fluid- s t r u c t u r e  interact ion.  

The  coolant flows through penetra t ion openings on the  v e s s e l  head and 
the  per fora ted  openings of the  core-suppor t  s t r u c t u r e  a r e  two options recent ly  
incorporated into the  p rog ram.  These  two options have not yet  been subjected 
t o  r igorous  t e s t  against  the  exper imenta l  data .  However ,  the  ana lys i s  i s  to b e  
compared  with the  avai lable  t e s t  r e su l t s  in  t he  nea r  future  s o  that  any needed 
improvement  can be  immediate ly  made .  

The ICECO code has  wide range of applicability. In a forthcoming r e -  
port2' numerous s ample  prob lems  will  be  given, together  with input ins t ruct ion 
to  the  computer  p rog ram.  These  examples  re f lec t  t he  s tud ies  of (1)  bubble 
expansion and migra t ion ,  ( 2 )  wave t r ans i en t s  in  the  piping components,  (3) r e -  
sponse  of the  p r i m a r y  containment,  (4) the  effect of openings of the  co re -  
support  s t r u c t u r e  on t he  wave propagat ions ,  (5) sodium spi l lage through pene- 
t r a t i on  openings on the r e a c t o r  cove r ,  and (6) heat  t ran ' s fe r .  

Future develop~rlent  work ahould concentrate i.n. two key a r e a s :  bubble 
migra t ion  and interact ion of fluid with the  upper  c o r e  s t r u c t u r e .  The  inclusion 
of bubble i ne r t i a  i s  neces sa ry  s ince  i t  could have significant e f fec t s  in  t he  
l a t e r  s tage  of bubble motion and in  the  bubble interact ion with the  sur rounding  
coolant and s t ruc tu re .  The  upper  c o r e  s t r u c t u r e  a l so  should be  included in 
the  numer ica l  analysis  so that t he  containment r e sponse  can h e  accura te ly  
predicted.  Also,  the  code should b e  fu r the r  extended to  t r e a t  the  deformable  
inner  vesse l .  This  i s  of g r ea t  impor tance  to  model  exactly the  s k i r t  connecting 
t hc  core-suppor t  s t r u c t u r e  and the  p r i m a r y  ves se l ,  a s  wel l  a s  to study the  in -  
t e rac t ion  of fluid with in te rna l  baffle pla tes  in  t he  piping components ,  such  a s  
valve and hea t  exchanger.  Thus ,  with t he  ongoing effort  of extending the code 
versa t i l i ty ,  the  ICECO p r o m i s e s  t o  b e  a valuable tool i n  the  sa fe ty  s tudies  of 
fas t  b r e e d e r  r e a c t o r s .  



APPENDIX 

Formula t ion  of Explici t  Boundary Conditions 

T h e  explici t  f o r m s  of the  inviscid boundary conditions can b e  formu-  
la ted  by computing t h e  midpoint  velocity components a t  t he  advanced t i m e  
th rough  a n  interpolat ing fo rmula  used in  the  MAC method. The  unknown ve-  
loc i t i es  a t  t he  e x t e r i o r  s i de s  of the  Eu le r i an  ce l l s  and o ther  ex t e r io r  points 
a r e  calculated f r o m  the m a s s  equation with r e spec t  to  the  boundary ce l l  o r  
s imply  f r o m  the condition of invis c idness .  F r o m  the dif ference express ions  
of the  momen tum equations one  can obtain 

P+I 1 - 1 2 ,  j = [ ~ i - ( l l z l ,  j K ( ~ i - i ,  6 t  n t i  - ~ r , ~ { ) ' ~ ] / ~ ? - - + ( l - + ; ' / z ) ,  i* 

n t i  6 t  n t i  n t i  ) 
Vi,  jt(l12, = [si, jt(1/2) + G ( ~ i ,  - Pi, j t l  I, J + ( I / I ) ~  

and 

w h e r e  

a r e  the  modified sou rce  t e r m s  containing the  s o u r c e  t e r m  of the  n ~ o m e n t u m  
equation, dens i t i es ,  ve loc i t i es ,  and p r e s s u r e  gradients  a t  t he  nth cycle.  - 
Ri- (I /z) ,  j and 'i, j- (112)  can  be  evaluated f r o m  Ei+(l12), j and sip j+(l /z)  by r e -  
placing indexes i with i-1 and j with j-1, respect ively .  7 i s  the  tentative 
advanced- t ime  dens i t i es  which can be  approximately  evaluated f r o m  the  
va lues  of two previous  cycles :  

Thus ,  for  the  c a s e  of containment v e s s e l  with a lmos t  ver t i ca l  o r ien-  
ta t ion shown in F ig .  A l ,  the  pa r t i c l e  velocity components a t  t he  midpoint  of 
t he  segment  a r e  



and 
I 

F o r  fluids with s m a l l  v i scos i t i es ,  the  inviscid boundary condition yields 
' 

n t i  - - ,ntl n t i  - ,n+l 
and vi, j-(i/2) - vi, jt(112) i - 1 ,  jt(112) i-1, j-(1/2)' (A3 

F r o m  the m a s s  -conservation equation we obtain 

r i6  r 8 n t i  
,n+l - + - ( P V ) ~ ,  j - ( 1 / 2 )  
1-1 ( 1 1 2 ) ~  j - - { 2 ,  - 2  6, 

e r i + ( l I 2 ) P  i+(l /z) ,  j 

whe re  

t 
3 Pi, j = (ifi, j - py, j y 6 t .  
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Fig. A1 

Vessel with Almost Vertical Orientation 
for the Derivation of the Explicit Boundary 
Condition. ANL Neg. No. 900-78-924. 
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' At the  f lu id-s t ruc ture  in te r face ,  the  inviscid ( f r e e  s l ip )  boundary con- 
dit ion yields  

Substi tution of ex t e r io r  velocit ies expressed  in Eqs .  A3 and A4 into 
the interpolating fo rmulas  f o r  the midpoint velocit ies shown in Eq. A2, and 
in t u r n  using Eqs .  A1 and A5, yields the  explicit condition f o r  the  example 
given in  F ig .  A1 : 

n+1 c2 '3 - C4 n+l 
= V't{- Pi, j  t( - b z  )pi-1, j   pi-1, '3 n-1-1 j t i  - ~ p i - 1 ,  '4 n t i  j-i}* 

i n  which 

S imi la r ly ,  f o r  the v e s s e l  with a lmos t  hor izontal  orientation shown in Fig.  A2 
we have 

,nti ,= ,n+l 
+ ,  j  and ~!'-':1,2), j-i = UP++'  

i t (1/2),  j-1 1 - ( 1 / 2 ) ,  j s  



The  inviscid boundary condition-inlplies 

in which 

t D, + D, - P i ,  j; 

m r i - ( i ~ z )  6 z . 
cz = -+ (++ &)- 

2 p i - ( ~ / z ) ,  j  i  j - I  r.6 1 r' . . 

1 1 

c4 = (t + 3 p i ,  j -  p i ,  jt(11z) 

Equations A5 and A7 r ep re sen t  the  explicit boundary conditions a t  the  fluid- 
ves se l  in terfaces  corresponding to  the  ves se l  orientations shown in F igs .  A1 
and A2, respectively.  In t hese  equations nonlinear convective flux t e r m s  a r e  
computed only a t  the  . in ter ior  sides.  of the  boundary ce l l s .  Because of var iab le  
cocfficientj: lllulLiplying the p r e s s u r e s  and the  var iab le  number  of cel ls  a s  so -  
ciated with different orientations of the  boundary segments ,  the i terat ion p ro -  
c e s s  i s  general ly  slowed. Also, for  the r eac to r  containment o r  a component 
having a curved boundary t h e r e  a r e  numerous spec ia l  c a s e s ,  s o  .that the  d e r i -  
vation of explicit boundary conditions appears  to  be  an insurmountable task ,  

Fig. A2 
' "i-~/z.j 

d )ii 
1 x / a * 4 1 1 x 1 1 1 / 1 1 1 1 1 1  - Vessel with Almost Horizontal Orientation , . . . -  ] I  for the Derivation of the Explicit Boundary 

condition. ANL Neg. No. 900-78-920. 
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Pres iden t ,  Argonne Univers i t i es  Associat ion 
Reac tor  Analysis and Safety Division Review Commit tee:  

6. Bai-on, Burno and Roe, Inc. 
J. R. Diet r i ch ,  Combustion Engineer ing,  Inc. 
W. K e r r .  U. Michigan 
M, Levenson, E l e c t r i c  P o w e r  R e s e a r c h  Inst .  

. S. Levy,  S. Levy,  Inc. 
D. Okrent ,  U. Cal i fornia ,  Los  Angeles 
N. C. Rasmuss  en,  Massachuse t t s  Ins t .  Technology 




