ANL-78-103 ANL-78-103

ANALYSIS OF NONLINEAR FLUID STRUCTURE
INTERACTION TRANSIENT IN FAST REACTORS

by

C. Y. Wang

BASE TECHNOLOGY

A

A
L U of G-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of En-
ergy, Argonne Universities Association and The University of Chicago, the University employs
the staff and operates the Laboratory in accordance with policies and programs formulated, ap-
proved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The Universily of Texas at Austin
Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Department of Energy, nor any of their
employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the ac-
curacy, completeness or usefulness of any information, ap-
paratus, product or process disclosed, or represents that its
use would not infringe privately-owned rights. Mention of
commercial products, their manufacturers, or their suppli-
ers inthis publication does notimply or connote approval or
disapproval of the product by Argonne National Laboratory
or the U. S. Department of Energy.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: Printed Copy $5.25; Microfiche $3.00

»



Distribution Category:
LMFBR Safety (UC-79p)

ANL-78-103

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois. 60439

ANALYSIS OF NONLINEAR FLUID STRUCTURE
INTERACTION TRANSIENT IN FAST REACTORS"

by

C. Y. Wang

Reactor Analysis and Safety Division

November 1978

NOTICE

This report was prepared as an account of work {
sponsored by the United States Govemment. Neither the |
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

ontrac b , or their employees, makes
any warranty, express or implied, or assumes any legal
lizbility or responsibility for the pl
or of any infi i product or
process disclosed, or represents that its use would not |
infringe privately owned rights. !

[ISTPARVELON GF ZEIS ROCUMENT I8 UNMMEDQ%\



THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



ABSTRACT . . . . .. .. oo i ies e e e e e e e
I. INTRODUCTION. . . . . . ittt e e e e e e e e e e
II. THE NUMERICAL TECHNIQUE . ... .. e L e e e

A. Basic Hydrodynamics. . . . . .. .. e e e e e e e . .A ....... .
1. The Computing Region. . . . . ... ... ... ... ........
2. The Partial Differential Equations . . . . .. ... ... .....
3. The Finite-difference Equations . .. ... ... .. .......
4. Particle Movement . . . . . . .. .. .. .. ... ... e
5. Rigid Obstacle and Rigid Thin Membrane . . .. .. ... ...

1.

TABLE OF CONTENTS

B. Flexible Vessel and Arbitrarily Shaped Boundary . . . ......

1. Moving External Boundary and Cell Flég .............
2. Fluid-vessel Interaction . ... ... ... ............ .
3. Velocity and Pressure Calculations near Boundary. ... ..
C. Deformable Internal Structure. . . . . . o,
1. General Considerations . . . . . « v v v v v v m
2. Source-term Modification near Structure . ... ... ... ..
3. Interaction of Fluid with Internals and Perforated
Structure. . .. ... e e e e e e e e e e e e e e e e e e e e
4. Calculation of Multivalued Field Variables . ... .. ... R

5. Particle Movement near COrner . . . . . . . . v v v v v v v v o

- D. Moving Cover and Coolant Spillage. . . . .. e e e e

E. Simultaneous Iteration . . . . . b e e e e e e e e e e e e e e :
F. Structural Dynamics . . . .. .. . v i i i v e e e
1. Finite-element Structural /Program ................
2. Finite-difference Shell Program . . . ... ... .. .......
G. Numerical Stability . . .. . ... ... e e e e e e e .
SAMPLE PROBLEMS . . . . .. ........... [
A. Bubble-coolant Interaction . . . . ... ... ... ... ...
B. Wave Propagation in a Straight Pipe. . . . . . . . ... . ... ... '
"C. Response of the Primary Containment. . . . .. ... ... ... ..

10
10
10

11
12

16
17

20

20
21
23

24
24
25
27
29
31
32
33
34

34
36

37
39

39
40
41

e



D. Simulation of the Excursion Model

E. Responses of Structural Components
IV. CONCLUSIONS

APPENDIX: Formulation of Explicit Boundary Conditions

ACKNOWLEDGMENTS

REFERENGCES

TABLE OF CONTENTS

...................

..................

...................................

................................

......................................

Page

43
46

50

52 -

56

57



11.

12.

13.

14.

15.

16.

17.
18.
19,
vZO.
21.

LIST OF FIGURES

Title

Configuration Showing Eulerian Computational Mesh and

Lagrangian Structure Boundary. . . . . . ... .. ... ...... L

The Locations of the Cell Variables in a Eulerian

Computational Cell. . . . . .. e e e e e e e e e e e e e e e e e e e e e e

Linear Interpolation for uk and vy with Position of

kth Particle as Shown . . . ..
Velocity Arrangement in the Vicinity of the Rigid Obstacle . . . .

Velocity Arrangement in the Vicinity of a Rigid Thin Membrane . .

Velocity Components of Marker Particle near Rigid Obstacle

and Thin Membrane . . . . . .. . .. . ... oo oo ‘
Configuration of a Mdving External Boundary . ... ... ......
Different Types of Eulerian Cell Flags. . . . .. ... ... ......

Calculations of Vessel Pressure and Boundary-cell Velocity . . . .

Example Illustrating the Need for the Multivalued Field.

Variables . . . . . . o 0 e e e e e e e e e e e e e e e e e e e

Velocities Needed for Rj; (/2), Calculation near the

Deformable Internal Structure . . . . . . . . . . . oo

Velocities Need for Rj ('1/2> . Calculation in the Internal

J

Boundary Cell (3,3). .. ... ... ..

Irregular Cell (k,1) Containing Deformable Structure with

Perforated Openings-. . . . . . . . . ... . o

Eulerian Finite-difference Mesh with Multivalued Field

Variables Adjacent to the Thick Internal Structlure. . . . .. . . ..

Eulerian Finite-difference Mesh with Multivalued Field

Variables Adjacent to the Thin Internal Structure. . . . . . .. B
Particle Velocities near the Corner. . . . . .. ... ... ... e
Quasi-Eulerian Cell and Penetration Openings. . . .. ... ... ..
Flow Chart Representing the Computational Procedure. . . .. ..

Shell of Revolution and Free-body Diagram. . .. .. e e e e e e e

Bubble Motion and Coolant Configuration at Different Times

Mathematical Model and Configuration of Elastic-Plastic

Pipe Used in the ICECO Analysis . . . ... ... ... ...,

12

17
18
19

19
21
21
23

25

26

28

30

31
32
32
35
37
39

.40



22.
23.

24.

25.
26.
27.
28.
29.
30.
- 31.

32.

33,
34,
Al.

AZ.

. LIST OF FIGURES

Title

Calculated Pressure Histories at Locations A, B, and C. . . .-

Radial Deformations as a Function of Time at

Locations D1, D2, and D3 . . . . . e e e

Initial Configﬁration of the Primary Containment Used

"in the Analysis . . . . . . ... ... ... e e e e e e e e

Reactor Configurations at Three Different Times . ... ... ...

Model Test Configuration for the Containment Studies .

Vessel Deformation atz = 36 cm. . . ... .. e e e e e e .
Vessel Deformation at z = 4 CcIm. . . . . . .« v v v v v v v v v i

Final Deformation of the Thin Vessel . . . .. ... ... e e e e

The Mathematical Model Used for the Comporieht-response

Analysis. . . . . .. e e e e e e e e e e e e e e e e e e e e e e e e e

Configurations of Primary Containment and Components

at Three Different Times . . .. ... ... ... ... ......... .

Calculated Axial Displacements as a Function of Time. . . . . .

Calculated Radial Displacements as a Function ‘of Time

Vessel with Almost Vertical Orientation for the
Derivation of the Explicit Boundary Condition

Vessel with Almost Horizontal Orientation for the
Derivation of the Explicit Boundary Condition

TABLE

Title

Source Characteiistics for the Thin-vessel Model

42

42
43
43
44
46
46.
47

47

48
48
49

53

55



ANALYSIS OF NONLINEAR FLUID STRUCTURE
INTERACTION TRANSIENT IN FAST REACTORS

by
C. Y. Wang
ABSTRACT

A generalized Eulerian methodis described for analyz-
ing the fluid transients and the structural response in nuclear
reactors under the postulated accident conditions. The phe-
nomena to be considered are the wave propagation, slug impact,
sodium spillage, bubble migration, and the fluid-structure
interaction.

The implicit, iterative finite-difference scheme is em-
ployed in the numerical analysis together with implicit treat-
ment of the density variation in the equation of state of the
media. Many options are provided to model the complicated
structural components in a typical reactor configuration, in-
cluding the rigid obstacle, rigid thin membrane, arbitrarily
shaped boundary, flexible moving vessel, deformable internals,
perforated core-support structure, and the movable cover with
penetrations.

The method uses Poisson equations to determine the
hydrodynamic pressures in the fluid region as well as under-
neath the head, while utilizing the relaxation equations to com-
pute the pressures adjacent to the vessel and internals. A
generalized coupling scheme is developed for treating the
sliding-boundary conditions at the fluid-structure interfaces.
This scheme enables the Eulerian hydrodynamic technique to be
linked with any Lagrangian structural dynamics program.

In this report, the basic equations and numerical for-
mulation are presented indetail. Sample calculations are given
toillustrate the analysis. It is shown from the results that this
implicit, iterative method is unconditionally stable and ie
especially suitable for problems involving large material
distortions.



. INTRODUCTION

In the design of Liquid Metal Fast Breeder Reactor (LMFBR) it is
necessary to assure that the containment system can withstand all the conse-
quences during a Hypothetical Core Disruptive Accident (HDCA). The destruc-
tive phenomena to be considered are the wave propagation, slug impact,
sodium spillage, and the expanding gas bubble.! The primary containment is
designed to sustain the pressure waves emanating from the reactor core. The
secondary containment is to confine the radioactive materials from being
released to the surrounding environs. To achieve this objective, an analysis
of the structure response generated by the fluid-structure interaction is of .
primary importance.

Analysis of the coupled fluid-structure problem is a complex subject
since it involves calculations of fluid transient, fluid-structure interaction,
and the resulting structure response. For a structural component enclosing
or submerged within a fluid, the motion of the structure depends on the pres-
sure loading transmitted from the fluid region, whereas the motion of the fluid
depends on the movement of the structure boundary. Thus fluid and structure
are coupled together. In fast-reactor safety analysis the problem of fluid-
structure interaction is further complicated by the facts that (1) the structural
components usually have both geometrical and material nonlinearities, (2) the
fluid is almost inviscid and tends to slide along the interface, (3) geometrical
discontinuities like sharp corners and irregularities may exist in the fluid
region, and (4) large material distortion, such as bubble contraction and so-
dium spillage, may occur during an HCDA. Since there are numerous finite-
element structural-dynamics programs available for solving complicated
structures with material nonlinearities, the trend of current research concen-
trates on the development of an effective method to treat the fluid transient
and fluid-structure interaction.

In attempts to solve the coupled fluid-structure problem, substantial
research effort has been devoted in the application of existing hydrodynamic
techniques for performing the numerical analysis of the fluid-structure inter-
action. Among these techniques, the Lagrangian finite-difference methods?®?
have been widely used by many investigators. These methods provide great
resolution at the early stage of excursion, but cannot handle large material
distortion such as bubble contraction and sodium spillage. Also, it is difficult
to treat the sliding-boundary condition at interfaces between fluids and reactor
internals, as well as to handle the fluid motion at geometrical discontinuities,
such as sharp corners and other irregularities.

On the other hand, the Eulerian hydrodynamic methods*® are excellent
in treating distortions. However, these methods lack the capability to treat
the time-dependent irregular cells created by the movement of the structure
with respect to the fixed Eulerian coordinates. Thus, engineering applications
have been limited by the requirement that the external boundary and internal
structure must be placed on the Eulerian grid lines.



To overcome the difficulties of both the Lagrangian and Eulerian
methods, this report describes a generalized Eulerian method for analyzing
the fluid-structure interaction in reactor containments and components. The
emphasis is on the development of a generalized hydrodynamic scheme for
treating the irregular cells and providing sliding capabilities-at the interface,
as well as analysis of the fluid motion at the geometrical discontinuities.
Thus, the developed scheme enables us to model reactor configurations real-
istically, using options such as the rigid obstacle, rigid thin membrane, curved
"vessel boundary, perforated core-support structure, and movable head with:
penetrations. It also enables the implicit continuous-fluid Eulerian (ICE) -
technique to be coupled with any Lagrangian structural dynamic program.
Recently, the Eulerian hydrodynamic code ICECO® has been successively
linked together with both finite-difference and finite-element Lagrangian pro-
grams. The new version of the ICECO code, which has capabilities of investi-
gating the structure response, is called ICECO-STR (or ICECO-II).

In the analysis, the Eulerian description is used in the hydrodynamic
calculation while the Lagrangian representation is employed for the structure
analysis. These two calculations are coupled together at the interface where.
the boundary conditions are satisfied. Thus, the ICECO-STR has essentially:
features similar to coupled Euler-Lagrangian pr/ograms such as the PISCES-
_ 2DELK’ and CEL® codes. The major difference is that the present technique
uses implicit integration in the hydrodynamics, while the two techniques men-
tioned above employ an explicit integration scheme. As will be demonstrated
later, the implicit scheme provides remé.rkably stable solutions. However,
the explicit technique usually leads to numerical instabilities and needs to
introduce artificial viscosities to eliminate the spurious oscillations.

In this report, the basic equations are given in Sect. 1I, together with
the mathematical treatment of the rigid obstacle, rigid thin membrane, curved
vessel boundary, deformable internals, etc. Sample problems are presented
in Sect. III.
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II. TIIE NUMERICAL TECHNIQUE

A. Basic Hydrodynamics

1. The Computing Region

To facilitate the numerical calculations, the fluid regions are
represented by the marker particles similar to the Marker and Cell (MAC)
method.? The structural component
¢ PENETRATIONS canbe discretized into number of node
/\ / R points described by the Lagrangian

14 N o coordinates as shown in Fig. 1.
—-_— 1 Ly g\
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LAGRANGIAN Y, sponding governing equations can
LINE 2 F~T—]_]_ LAcRanciaN be assigned. Here, a few important
BOUNDARY . .
L Y cells should be mentioned and their
numerical treatments will be pre-
V . . . .
LAGRANGIAN NODES sented in the following sections:
F:FULL CELL A: ADJACENT CELL :
8: BOUNDARY CELL 1B: INTERNAL BOUNDARY N (1) A full (F) Cell contains
Q: QUASI- EULERIAN CELL CELL fluid only.
Fig. 1. Configuration Showing Eulerian Computational (2) A boundary (B) cell con-

Mesh and Lagrangian Structure Boundary. ANL

Neg. No. 900-77-191 Rev. 1. tains segment of vessel boundary.

(3) An internal boundary (IB) cell has a boundary segment of the
internal structure which may have perforated openings.

(4) An adjacent (A) cell is full with fluid, but is located next to
the internal boundary cell.

(5) A Quasi-Eulerian (Q) cell is underneath the reactor cover
where sodium spillage may occur.
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2. The Partial Differe.ntial Equatidéns

The partial differential equations used in the method are the con-
servation equations of continuum mechanics. These equations are written in
cylindrical coordinates with axial symmetry. For problems involving plane
coordinates, the equations are modified by maintaining r = 1.0 throughout.
Only nonturbulent flow is considered, and no external energy source is as-.
sumed to exist inside the flow region. Thus, the mass, momentum, and
energy equations are: ‘

ER l_ dpru dpv -

Jt ¥ r Or * dz 0, (1)
dpu 1 dpur dpuv _ 3 _ 3 (Bu av)

ot l T  or * dz -5-13(9‘!' a) + |J)B_Z 3z  or, " (2)
dpv 1 dpuvr dpv: 3 TR (au | av)

ot * T or * dz ~_B—z(p tq) - T or|"\3z ~ Br/| (3)

3 3 '
_Q_E + l puEr + apVE - .]; i {r[_pu - (___
r r or

ot ar dz A+ 24 r
and

2 S Y I I av) ~ '

+ B {—pv - ()\ T Zp‘)qv + > az(u + 2v2%) + pu 3o [ (4)
where

_ 1 our av)
a= -0+t B,

r and z are the radial and axial coordinates, respectively, u and v are the
corresponding radial and axial velocity components, p is the density, t is the
time, p is the pressure, E is the specific total energy, and A and uk are,
respectively, the first and second viscosity coefficients. These coefficients
can be used as "artificial viscosities" to eliminate the shock discontinuity
and numerical instability. The fluid is considered to be nonheat-conducting,
and no external energy source is assumed to exist inside the fluid region.
The pressure p is related to ¢ and I by an equation of state:
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o= fp,D), | (5)
in which
' 1‘= E - [(u?+ &é)/z] , (6)

is the specific internal energy.

3. The Finite-difference Equations

A Eulerian finite-difference mesh is shown in Fig. 2, which illus-
trates the centering of the physical variables relative to a typical cell. The
center of the cell is labeled with the indices i and j, which increase in the
radial and axial directions, respectively. The velocities are defined at cell
boundaries with u at i + (1/2) and v at j # (1/2). Other field variables such
as p, P, E, and I are all defined at the cell center.

CELL (i, j)
- __._]
Yiivizz
jt1/2--- Fig. 2
PR Piy p‘l’ Eij . gz  The Locations of the Cell Variables
i-1/2, ] i+1/72,i in a Eulerian Computational Cell:
' ANL Neg. No. 900-78-140.
j-r2-—-— -
Yii-12
| | :
: i | |
b i-1/2 i i+1/2
o r

Thus, the viscous pressure q expressed in the difference form
becomes

. _ 1
di,j < -( + z“‘)[_ri{)r(rH(1/z)ui+(1/z),j - ri-(l/z)ui-(l/z),j)

—
)
N

1
+ 'f,_z("i,j+<x/2) - Vi,j—(l/:))]’
where 6r is the dimension of a cell in the r direction.

To approximate the momentum equations in the finite-difference
equations, the momentum-flux term can be expressed in either the ZIP or
complete donor-cell form. Thus, using the ZIP difference scheme, we have,
for example in the one-dimensional case, ‘



2 :
<pu>i = Pivi-a/zyY%ita/zy (8a)
In complete donor-cell expressions we obtain
2 ' ~ ‘
PiVi_(1/2y for (ui—u/z) + ui+(1/z)) >0 _
(pwf = . (8b)

2
Piuitas for (Wi_q/m ¥ Wit/ <0

Each of these two types of flux expressions has certain advantages.

The ZIP form allows the conservation of momentum in the immediate vicinity
of a rigid wall, and can eliminate certain nonlinear contributions to instability
and diffusion-like truncation errors.!® Thus, as recommended by Harlow and
Amsden in the ICE technique, the ZIP form is used in most occasions. How-
ever, the complete donor-cell expressions have an advantage in the case of
violent fluid motion and can assist in giving an automatic mitigation of
truncation-error effect. Such donor-cell form is therefore preferred in the
sodium spillage analysis.

By use of the ZIP form the finite-difference expressions of the
two momentum equations are:

n+l

(004 1oy, - (p“)iu/-’-) j .
i i 2] _ 9D/ nh1 _ .ntl
6t ] 61. pi,j pi+l;j
1 9fn _ .o Y4y ; '
and
n+1 u
(p")i,j+.(1/2) } (pv)i:j+(1/2) = i( P et )
5t 6z pi-!J i’j+1
+1-®on _on Vig . (10)
5z (PLj - Phin) ¥ Sigtany
where
- ——-———l ' l
CRirap,j = r-+u/z)6r[“i+<|/z),j,(°i,jri“i-u/z),j ) °i+1r1+.“i+<3/z).j)]+ E[(puv)mlm'j-“m - (puV)H“/Z)'J‘M/Z)]
1 ' |

L p [Qitarz,iv - Yita/a,j  Vit,jtasze T Vijtase)
* 6_r(qi,j- B qi+1,j) + 8rfitarar,jt é_z[ ™ - e

Ui+1/2y,j - Bi+(1/2),j-1 Viti,j-(1/2) - Vi.j-(l/z)r
- 62 * &r (11)

13



and

1
Si,jta/ = r.lg,r[(Puvr)i-u/z>,j+(1/z> - (puvr) b/, j+a /2]

+

1
5—z[Vi,j+(1/z)(pi,jvi,j-(l/z) - Pi,j+1"1,j+(3/z)]‘

1 . ‘ |
+ E(qid' B qi,j+1) B2Pi,j+1/2)

W Uita/zy,j+r - Bita/2),j Viti,j+a/zy - Vi, j+a/2)
T Tita/2) 5z 51

: Yi_a/2),j+ - Vi-a/2),j Vi,jta/z) T Vi-1,j+a/2) :
- ri—(l/&)( ‘ T S8z B . Sr )] (12)
In the above equations, the superscripts n+1 and n denote the

(n+1)-th and nth time cycles. Variables lacking the time index are evaluated
at the nth time cycle. R and S are the source terms of the momentum equa-
tions that contains the nth cycle values of nonlinear convective flux and viscous
dissipation terms. Also, a weighting constant ¢ appearing in the pressure
gradients of Eqs. 9 and 10 is used in the numerical treatment, as suggested

in the ICE technique. This constant @, with a magnitude between 0.0 and 1.0,
represents the relative level of time centering of the pressure-gradient term.
For @ = 1.0, that term is expressed at the advanced time and the technique

is purely implicit. For ¢ = 0.5, the pressure gradient term is time-centered.
This feature is used to eliminate certain truncation errors.

The equation of state can be put in the finite-difference form

ntl1 _ .n + o ntl _ .n
iy = PLit iy T PLy) ‘ (13)

where

oo (92)“
i,j op i

is related to the speed of sound.

Physically, Eq. 13 implies that the unknown advanced-time pres-
sure depends implicitly on the density variation, but can remain purely explicit
for the internal energy, as in the conventional explicit techniques. '



. . ) n
For a condensed material such as sodium or water, i, can be
written as® -

n p N\p |
- 2 0 ‘
ci,j = | ag <l,+ > >—p , 4 ) (14)

agPy i,j

‘where a; and p, are the sound speed and density at standard condition, re-
spectively. The constant 17 is the 1sentrop1c exponent (or the pressure
derivative of the bulk modulus).

Similar to the development of momentum equations, the mass
equation can also be expressed in the time-centered form by introducing a
weighting constant 6 (0.0 < 6 2 1.0):

pn+1 - pn .
i L _ogpntt, (g . 1
5t 1.3 +(1-8)Df i,j’ : (15)

where

n+i nt+i n+i1
Di,j T or, [(p )1 (l/Z)J i-a/zy (pu)i.|- (1/2),J'r1+(1/z)]

. [(
alPY
represents the convection of mass flux of cell (i, j) at the advanced-time

cycle, and D?- has exactly the same form as phtl
evaluated at the nth cycle.

)n+1 _ (pv)n+1 ]
i _]—(1/2) i,jtas/

except that all terms are

Ellminating the advauced-time quantitico pn'*J'l (pu)ll"_:’(ll/z) and

(pv)1-;+(1/z) in Eq. 15 by means of Eqgs. 9, 10, and 13, we obtain a Poxsson

equation which has the form

p?ﬂjl —L + 26pbt? —}— + -l—z- = Gij
i, c?j 6r2 bz ’
P! nt+1 + . pn-f-l ' pn-i:l + pn-ltl
+ Bbt? Ti-(1/2yPi-1, i-a/2)Fit+1,j 4 b i,j+1 (16)

rlér §z2 ’

15
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where
, : -1
Gi,i = G(Rixa/m,i Sijtaje BV PsPsc™, )

is the source term of the pressure equation. It is a function of momentum
source terms Rj+()/5y,j and Sj j+(/z) 28 well as nth-cycle velocities, densities,
pressure, and sound speed. This source term must be modified in the region
near the structure.

Note that Eq. 16 is the governing difference equation for the
advanced-time pressure in a cell completely filled with the fluid. In other
words, this equation is applied for a full cell (F) shown in Fig. 1. It consists
of five unknowns and is solved by the iteration technique.

In the ileralion process, a much improved formula is used by
h+i

irln
' ) and (pl,j‘l
while sweeping the direction of increasing i and j. For a purely implicit
scheme (i.e., 8 = ¢ = 1), this yields

h h
replacing (pi‘ll1 j) and (p?,[jl_l) with the latest iterates (p*""1

h+,
1.=1,J )

n+1 h+l l 2 1 l .
ral — + 26t + —}| ='G; .
(Pl,J) . C?J (61- 822 i,j

nt1 )h‘“

n+1 h+‘ oL h
Ti- (1/2)(p1 -1,j 1) -]

h
+ ri+(1/z)(P?J:r11,j) : (pi,j- Pj 3+1

riér2 ' 5z2

+ 6¢2

(17)

where h and h + 1 denote the previous and latest iterations, respectively,

If the fluid is bounded by the rigid walls and the wall boundaries
coincide with the Eulerian grid lines, Eq. 17 is sufficient to determine the
advanced-time pressure field. After new pressures have been calculated in
all the Eulerian cells, the new densities can be found from Eq. 13. Next, the
new values of velocities can be computed from Egs. 9 and 10.

To check the numerical accuracy, one can proceed to find the new
energies for every cell, using the f1n1te difference approximation to Egs. 4
and 6 given in Refs. 4 and 6.

4. Particle Movement

After solving for the advanced—\}elocity field and other field vari-
ables, a new configuration of the flow field is generated by moving the marker
particles to their new positions:
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= . nt+: - ,n 8
K rk + ukét, ) zk + vy Ot,
where ﬁk and vy denote the velocity components for the kth particle. The
values of uyx and vk are obtained by averaging from the u and v fields, re-
spectively. For example, if particle k is located within the cell where u,,
u,, u;, and u, are defined at the nearby locations (see Fig. 3), ux can be cal-

culated by the area-weighting method:

Au; + Ayu, + Ajuy + Aguy

= 19
Uk drbdz (19)
similarly, vk is calculated by
Yk T 6rbdz ’ (20)
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Fig. 3. Linear Interpolation for uy and vk with Position of
kth Particle as Shown. ANL Neg: No. 900-78-913.

5. Rigid Obstacle and Rigid 1'hin Membrane

In the basic hydrodynamic technique rigid obstacles can be intro-
duced in the computing region to model relatively thick structures such as
the radial shield and the core-support structure. The restriction is that each
obstacle must occupy one full Eulerian cell with its tour boundaries localed
on the cell edges. Likewise, a rigid thin membrane, whether it is a shell or
a plate, can also be used to simulate a thin structure like the core barrel.
But the thin membrane must also be placed on the cell boundary with its
dimension exactly equal to the width of the Eulerian cell. These two options
could be very useful in analyzing the flow-blockage phenomena in other
LMFBR components. In general, by modeling the internals as rigid materials
the analysis would give a large impact on the vessel head and large vessel

deformation at the upper containment wall; hence, the results are conservative.

Conservatism is essential in the design of the head compartment.

Flow around the corners of obstacles presents numerous problems
that must be considered consistently throughout the numerical analysis, as
mentioned in the MAC’? method. First, when applying the Poisson equation to
a full cell (F) adjacent to an obstacle cell, the pressure in the obstacle cell is

17
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not uniquely defined, but depends upon which full cell is being considered.
During each iteration sweep, when applying the boundary conditions for

cell (i, j) (see Fig. 4) the boundary pressure Pj4, j is different from that in
the case of cell (i+1,j+1). This causes no problem but must be kept in mind
duting the pressure iteration. S

(i, j+1 ' (i+1,j+1)
[ ] u [ ]
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T 77T 77 Fig. 4
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g
%
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Second, consideration must be given in calculating source terms
Ri+a/2),j» Si,j+a/2), and Gi j, since thesé source terms involve the velocities
and densities in the neighboring obstacle cell. For the case shown in Fig. 4,
Ui+ (1/2),j must be set equal to zero all the time. However, in making uj+(;/;),j
equal to zero, which means if we actually calculate this velocity component
from the radial momentum equation, we would indeed get zero. Therefore,
a careful examination of the equation shows that in order to have zero radial
velocity for cell (i, j) the source term Ri+(1/2),j must be set equal to zero.

For a general fluid with nonzero viscosities the vanishing of Rj+(;/;),j suggests

that
iv1i~|~(1/zA),j~|~'1 = 0;
Vit it/ T Vi,jrase)s
{"i+1,j-(1/z)b = Vi,j-a/2)y

ri+1(1'u)i-(1/z),j

ﬁ‘+ 3/2y,]
1+3/2),] TiTi+(3/2)

In the above equations, the tilde quantities are the dummy values which are
different from those computed by the conservation equations.



Cells diagonal to a corner or next to a rigid thin membrane also
need special treatment. In calculating Rjt+(/z),j+1 for cell (i,j+ 1) shown in

Figs. 4 and 5, the stored value of uj+/2),j (zero) should not be used, but ac-

cording to the inviscid boundary condition this velocity is set in such a way
that

Yita/2),j T Bita/a),j+r

(i+1, j+1)
L] u L
G, j+ 1 i+1/2, j+l
Fig. 5
Velocity Arrangement in the Vi-
cinity of a Rigid Thin Membrane.
(i+l, j) ANL Neg. No. 900-78-912,
[ ] °
G,j) Yivir2,j
\\

RIGID THIN MEMBRANE

Third, considerations also need to be given for the movement of
a particle near rigid obstacle or thin membrane. Again, let us consider the

calculation of the radial velocity component for the two cases shown in Fig. 6.

According to the inviecid boundary conditian, a particle below Line A must
be moved with a radial velocity which assumes that the wall extends upward

(i.e., u; = 0). On the other hand, a particle above Line A must be moved in
the radial direction as if the obstacle or thin membrane did not exist (i.e.,
u; = u;). Similar considerations can be applied to the axial particle-velocity

cutntpulalion and to other oricntatione of obstacle nr thin memhrane.

Ue s Ye 9Ys
(3] L% A ey
AN
D7 77777 /
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RIGID THIN
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(a) OBSTACLE (b) THIN BOUNDARY SHELL

Fig. 6. Velacity Components of Marker Particle near Rigid Ob-
' stacle and Thin Membrane. ANL Neg, No. 900-78-916.
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B. Flexible Vessel and Arbitrarily Shaped Boundary

1. Moving External Boundary and Cell Flag

As mentioned before, the Poisson equation is applicable only to a
cell completely filled with the fluid. If the cell contains a boundary of the
solid structure, the governing equation derived must satisfy the boundary con-
dition at the fluid- structure interface. Since in each full cell the advanced-
time pressure is the prime variable, it is advantageous to derive the equation
for the boundary cell in terms of the advanced-time pressure so that all the
equations can be solved together.

The scheme for treating the flexible containment vessel is similar
to that used by Viecelli''’!'? in the calculation of incompressible flows bounded
by moving walls. In the case of inviscid boundary conditions the motion of an
interface between the coolant and the arbitrarily shaped boundary (deformable
containment vessel or curved rigid wall) is equivalent to that of a free surface
with an applied pressure distribution. Given any interfacial shape or motion,
one can produce that shape or motion with some unique pressure distribution
applied to a free surface. Since the ICE technique.and MAC method already
have a technique for treating free surface, it is only necessary to find a way
of relating the required pressure distribution to the motion and shape of the
boundary.

A moving wall can be specified by a locus of node points described
by the Lagrangian coordinates. These nodes are normally placed along the
Eulerian grid lines as shown in Fig. 7a. The vessel boundary is therefore de-
fined by a polygonal Lagrangian line, which is made up of straight line seg-
ments connecting the node points. A moving polygonal line intersecting the
fixed Eulerian mesh will create numerous time-dependent irregular cells.
Our approach is to match the boundary condition at the midpoint of each
segment. :

To simplify the analysis, we assume that (1) the vessel boundary
is fairly smooth, and that there are no situations in which the boundary wanders
in and out of a single cell, creating irregularity, and (2) each boundary cell
contains one and only one midpoint of the vessel segment, and thus avoids
overdetermination of the pressure field. Having decomposed the boundary into
a set of straight-line segments, each associated with a unique Eulerian cell,
one can specify the position of each segment by a unit vector normal to the
boundary with base positioned at the midpoint of the segment. Fig. 7b shows
the convention used in the analysis with the normal pointing into the coolant
and to the left as one advances from the i-th to (i + 1)~-th boundary point.
Since the boundary may be moving, it is also necessary to calculate a boundary
velocity vector at the midpoint of each segment. This can be done simply by
linear interpolation from the velocities obtained at the associated two node
points through the structural dynamics calculation. -
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The next stepis to determine

the boundary cell flag. A boundary flag
identifies the Eulerian cell that contains
the solid materials and providés geo-

metrical information of how the vessel
segment is oriented with respect to the

.. Eulerian cell. At present, 15 flags
‘have been considered for all possible
intersections of the Lagrangian bound-

ary with the fixed Eulerian grids.
These flags are given in Fig. 8, where

the boundaries of the structure are

indicated by crosshatch lines. If

K=14

additional flags are needed, they can
easily be incorporated into the com-
puter program.

2. Fluid-Vessel Interaction

The viscous effect is

neglected at the fluid-vesselinterface.
The method treats the moving vesselin

such a way that the fluid slides along

Fig. 8. Different Types of Eulerian Cell Flags.

ANL Neg. No.

900-78-914.

the wall, but in the direction normal
to the wall boundary, the fluid and
the vessel wall being forced to move

21



22

together. Thus, for each ccll that contains the moving boundary, the inviscid
boundary condition yields

(v;‘“-vb)-ﬁ:o.l @

In this equation v%'*'l is the velocity vector of a virtual particle located at the
midpoint of the structure segment and can be computed by an area-weighting
formula; n is the unit normal vector pointing into the fluid region; vy is the
velocity vector of the structure segment obtained from the lLagrangian
structural-mechanics calculation; at the present time, Vi, is evaluated at the
previous time step, which is one cycle behind the particle velocity calculation.
As can be seen from the later comparison between the analytical and experi-
mental results, the approach used here provides very good results. Of course,
the evaluation of vh at the advanced-time cycle 1s also feasible. However,
this would bring v}, in the iteration process, which is very time-consuming
and will be done only if justified by the future need.

A convenient procedure to solve Eq. 21 in the boundary cell is to
express that equation in terms of the advanced-pressure field; then Eqs. 21
and 17 can be solved together. One way of doing this, according to Viecelli,!?
is by introducing the relaxation parameter AT into the iteration process. Thus,
denoting by h and h+: the previous and latest iteration, respectively, the
advanced-pressure field is ‘

h

) - @) - (O{E) -, e
in which &6 = min (6r, 6z) and AT < pk’&62/26t.

In Eq. 22 the subscripts k and ¢ refer to thc boundary cell (k,4)
having the vessel segment, (vg"'l)h is a new iterate that must be recomputed
each time the pressures and velocities are adjusted. Note that by a continued
iteration process, Eq. 22 is just the asymptotic solution of Eq. 21. Also, during
the pressure iteration one can see that if the fluid attempts to cross the bound-
ary, the pressure in the boundary cell will be increased, forcing fluid to flow
away from the boundary. On the other hand, if the fluid tends to separate from

the boundary, the pressure will decrease until the fluid flows tangent to the
boundary.

A real advantage of the implicit simultaneous iteration of Eq. 22
and the regular Poisson equation is that it gives a simple automatic way of
including complicated boundary conditions. Thus, Eq. 22 is the principal
formula used at the fluid-vessel interface and has been used in all the sample
problems concerning the response of the containment vessel. Of course, one
could iterate the advanced-time pressure field only by using the Poisson equa-
tion without computing the new densities and velocities as required by the
relaxation equation. However, to do this, as discussed in Appendix A, one



would have to derive explicit boundary conditions such that the flow would
move tangential to the boundary. Although this can be done, it appears to be
a formidable task to accomplish with generality because there are so many
cases depending on the shape and orientation of the boundary.

3. Velocity and Pressure Calculations near Boundary

At each cycle of calculation, the hydrodynamic analysis supplies
‘the structural-dynamic analysis with the hydrodynamic pressure, which is
used to calculate the vessel response. In return, the structural-dynamic
analysis feeds back the position and velocity of the structural member to the
hydrodynamic analysis. Since in the fictitious boundary cell the hydrodynamic
pressure must satisfy the interfacial boundary condition and could vary dras-
tically from cycle to cycle, the fluctuating pressure sometimes will lead to
unstable structural-dynamic analysis. Thus the pressure in the boundary cell
should not be used for calculating the structural response. Instead, the pres-
sure in the fluid cell immediately adjacent to the boundary cell will be con-
sidered as the pressure acting on the structural segment. Based on this
approach, good results are.obtained when comparisons of analytical and ex-
perimental solutions are made.

In the generalized method, the pressure transmitted to the struc-
tural member is easily determined if the vessel segments are oriented nearly
vertical or horizontal. However, for the inclined vessel segment, the applied
pressure can be interpolated either from the radial or axial direction, depend-
ing on which direction has the shortest distance from the cell center to the

vessel segment. For the vessel segment shown in Fig. 9, the pressure applied .

to the structure is

Pi 41 if d, < d,
Ps =
pi-l,j if d1>d2e

EXTERNAL STRUCTURE
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. Velocities at exterior sides of the boundary cells and other ex-
terior points are necessary in computing (Vg‘“)h given in Eq. 22 and must be
recomputed during each iteration sweep. These velocity components are de-

termined in the same way as those on the open sides of free surface cells in

the MAC method except for neglect of the effect of compressibility. The rea-

.son for the incompressibility assumption is also because a drastic change of

the pressure in the fictitious cell could cause a significant change in density,
which, in turn, will slow down the iteration process. Thus, for the case shown
in Fig. 9, the velocity components on the exterior sides are:

Viij-a/y T Vit ase)
and
u, T,
. _i-G/2). 5 1-G/2)
u. . - .
It (/2),j i+ tr2)

C. Deformable Internal Structure

1. General Considerations

Analysis of the fluid-structure interaction involving the reactor
internals is very complicated due to the fact that the internal components may
create discontinuities of fluid motion across the solid material, and that per-
forated structure and components with sharp corners may be present in the
computing region. To analyze this problem rigorously a generalized coupling
scheme is developed which includes the following considerations: (1) creating
multivalued dummy variables near the structure, (2) generating a cell flag to
indicate the relative position of the fluid with respect to the structure, (3) modi-
fying the source terms in the momentum equations, (4) treating the structure
components which may possess perforated openings, (5) calculating the multi-
valued field variables for different structures, and (6) moving particles near
the sharp corner or irregularity. Here, we briefly discuss the first two items
and leave others in the subsequent sections.

First, multivalued dummy field variables must be introduced in
the vicinity of the structure, which is not necessary for the case of a moving
external wall. This is because in the case of a moving external boundary,
fluid is located only at one side of the structure. Thus, the field variable at
the exterior side of the boundary cell can be extrapolated from the interior
(fluid) side and has a single value throughout each cycle of calculation.
However, this is not the case for the internal structure, which may have more
than one side contacting the fluid. Here, the fluid variable defined at one lo-
cation can be either computed from the conservation equation or extrapolated
from different fluid sides, depending on which portion of the structure is being



considered. For instance, let us consider just one radial velocity component u,
near a structure submerged in the fluid shown in Fig. 10. In cell (i, j) the fluid
is located at the bottom of the struc-

INTERNAL STRUCTURE ture, and the particle velocity vector

l . (Vp)i,j' according to the area-
4 - - : weighting formula, is a function of
(i-1, j*1) u (i) unknown u;. This unknown velocity
— ///: o ,//: N component is extrapolated from the
~ Vi |2 Vo bottom side of the structure as if
VAPV I/l LYy the structure occupied the entire
8 . A region above AB. Likewise, in cell
G, ) (i, j + 1) the particle velocity vector
41L — (Vp)i, j+1 is also a function of u,.

But this time u, is directly com-
puted from the momentum equation
applied to cell (i-1,j+1). Obviously,
this radial velocity has two distinct
. ] values, and the value used for cell
Fig. 10. Example.Illustraur.xg the N.eed for (i, j+ 1) will override the first value
the Multivalued Field Variables. .o .. . .
ANL Neg. No. 900-78-928. utilized for cell (i,j). This velo‘c1ty
will also be used at other occasions,
such as for the source-term calculation and the particle movement. The two
different values should be saved. One way to remedy this situation is to intro-
duce multivalued variables; the variable obtained from the conservation equation
is designed in the normal manner, whereas the value extrapolated from the fluid

side is denoted by a superscript which indicates the relative position of the fluid
with respect to the structure. :

Second, having introduced multivalued variables, a criterion
(or a flag) must be established to indicate the position of the fluid relative to
the structure. Here, we refer to Fig. 8 and assume that the fluid is at the
left when the flag KF equals to 1, 9, 11, 59, 69, or 79; the fluid is at top when
KF equals to 8, 12, or 13; at right when KF equals to 4, 6, or 14; and at bottom
when KF equals to 2, 3, or 7.

Since we have introduced multivalued field variables near the struc-
ture, source terms of the momentum equations and the Poisson equation in
the fluid cell adjacent to the structure and in the cell containing the boundary
need certain modification. Thus, we should identify both adjacent and boundary
cells before doing the modification. The boundary cell is already identified
hy the boundary-cell flag. The adjacent cell also can be easily identified
simply by searching its eight surrounding cells.

2. Source-term Modification near Structure:

If a cell is an adjacent (A) cell, special consideration must be
given in calculating its source terms Rit /2), 5i,jl ¢/, and Gj ;. because
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these source terms involve the velocities in the neighboring boundary cells,
which cannot be computed directly from the momentum equations. To illustrate
the necessary modification of the source term, we consider some velocity
treatment of Ri+ a/2),j for an adjacent cell (i, j) shown in Fig. 11. For conve-
nience, we neglect the viscous-diffusion and body-force terms, and express

R,y (W/2)s] explicitly as
1
R A S (0. Tsu:~ 0. iy .
1+(1/z),_] ri+(1/2)5r[u1+(1/2),J(pl,Jr1u1 (1/2),j p1+1,_]1'1+(3/2),J)]
1 :
+ E—Z[(Puv)if(uz),j-(l/z) - (puv?i+(1/2),j+ (1/2)]~ (23)

With an ex (x) indicating the u velocities and a dot () the v velocities needed
for computing Rj+ (/5) ,j @s shown i1n Fig. 11, one can see that there are three
velocities (Vi‘l'l,_]’ Vi) e and ufi , , denoted by two dots and one ex) located .

at positions occupied bvy the structllli"é Since cell (i + 1, j) is a partial cell these
three velocities cannot be obtained from the hydrodynamic equations, but are
-extrapolated from the fluid region at the left-hand side in accordance with the
sliding-boundary condition at the interface. If the superscript 4 is used to
denote the position of cell (i, j) relative to the structure, the unknown axial
velocities are calculated from

L . = , L . =
Vit T Vi, Vikni-r T O Vig-r. 4 (24)
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The unknown radial velocity uf+ (3/2),j €@R be calculated from the
mass equation by neglecting the variation of density and has the form



. . ri_hér 1 A
Uit3/z,) = Tits/s \Fip 0T Uit /2),j it 1/2)

L

1, (25)
* ,6z[vi+1:j'(1/z) - vi+1,j+ (1/2)]}'

Similar considerations must be given to the calculations of S; i+ G/2)
and of other orientations of structure components relative to the cell (i, j).

If a cell is an internal boundary (IB) cell, attention also should be
given in computing Rjt(/,),j OF Si,j+ /), since these terms may be needed to
calculate the source téerm of the Poisson equation for its adjacent full (F) cell.
One typical example is shown in Fig. 12, where Rit+(/2),j is utilized for clpm-
puting Gjt,,j- Again, in this case the four unknown velocities u{_ a/2),j Vi,jtG/2)
Vi ioarey and uf, (W/2)j-1 (represented by two dots and two exes) can be obtained
from an inviscid boundary condition and the mass-conservation equation, sim-
ilar to the scheme used in an adjacent (A) cell.
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3. Interaction of Fluid with Internals and Perforated Structure

Although the internal solid structure can be modeled by rigid ob-
stacles and thin membranes as mentioned in Sect. III.A.5, the solutions obtained
usually overestimate the pressure loadings and vessel deformations near the
upper containment vessel. Another difficulty is to model the core-support-
structure openings correctly. If we assume the opening is a full cell, the"
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results would overestimate the pressure loadings in the reactor lower plenum.
Also, the limitation on the locations of rigid obstacle and thin membrane is
found to be too restrictive. Therefore, a general method for treating deform-
able internals as well as perforated structure must be developed to analyze
the response of the primary containment systems realistically.

In order to accommodate the deformable internal and the perfo-
rated structures, we provide a scheme which still uses the relaxation equation
to obtain the pressure adjacent to the structure but modifies that equation to
account for the sodium flow through the openings. The basic idea is to homoge-
nize the perforated structure member so that the total mass flux through the
openings is uniformly distributed throughout the entire member. In other
words, for those members containing openings, such as AB and CD in Fig. 13,
we allow fluid penetration and separation at the boundaries. To simplify the
analysis, we further propose that:

(a) Fluids inside the coolant passage move one dimensionally.

| (b) Sodium flows perpendicularly to the boundary at the entrance
or exit. '

(c) The density variation inside the coolant passage is negligible,'.
so that the amount of mass flowing into the passage is equal to the mass flow-
ing out of the passage. .

¢
3 / _Fluld Reglon
= .
e o o/ ~\>Fhod
| .« e . Eulerian
- - Grids
'b\ n/ ] pd
Irregular \F"—t g Fig. 13
Cen ¢ 7 / T Lrregular Cell (k, 1) Containing Deformable
/ @:1/ / 8z Structure with Perforated Openings. ANL
g;v'f':o'gd\ /// “ //% l Neg. No. 900-77-241A.
n
' V / T Structure
72
B b tu A
z | F.Iuld R.oqlon.




Thus, for a structure with or without coolant passage openings,
the inviscid condition implies that the mass flux across the boundary must be
equal to the total mass passing through the openings:

.p(vgﬂ -‘vl‘)) ‘| = 8, | - (26)

where 0O is the amount of mass flux through the openings.

Note that with 8 equal to zero, the above equation is just the non-
penetration condition applied at the boundary of the deformable structure.
Also note that a superscript t indicating the position of the fluid relative to
the structure has been omitted.

Similar to the development of the relaxation equation at the coolant-
vessel interface, the ht+l iteration value of the advanced-pressure field is

htt = oh 8T ch 5 ). 5 -
Phg = Pre ™% p(vl:> vb) n e}k£. (27)

For the perforated structure (see Fig. 13), the amount of mass
flux, O 4, through the structure openings can be calculated from .

i

Or,4 = (Pyu)y ¢, a } - (28)

where ¢ is the perforation ratio, defined as the rat1o of the flow area to the
total area covered by the structural member. The change: of the fluid velocity
u 1in the coolant-pasSsage Openings can be calculated fram

du  Pr4 - Pre-r TOP
dat pL a . A (29)

where Py 4.1 and py 4 are the pressures on both sides of the structure, L is
the mean’length of the coolant passage associated with the corresponding struc-
tural member, and Ap is the pressure loss due to friction, which in certain

circumstances can be d1rect1y related to |u|'"® (see Ref. 13).

4. Calculation qf Multivalued Field Variables

Since fluids have different motions on both sides of the internal
structure, the field variables in a cell containing structure are assumed to
have different values.  In particular, the velocity field is used to compute the
source terms in the momentum and Poisson's equations, and also to move the

marker particles. It is also utilized in handling the fluid motion at the geo- ’

metrical discontinuities. Thus, for a structure submerged in the fluid, as
shown in Fig. 14, the two sets of velocity field: uf, vf', vf and uf, vlr, vy, are
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calculated from the inviscid boundary conditions and the mass equations
corresponding to the fluid located at the left-hand and right-hand sides, re-
spectively. Upon neglecting the density variations, these velocities can be

expressed as
= v, . ;
1 i,jtas2)

2 Vi,j-(uz);

1 ri6r 1 1
= . —1lv. . - V. . ) 30
Yo {r 5T ti-G/2),j Ti-are) ¥ éz[vl,J-(llz) v1,J+(1/.z)]} (30)

. .
it/ Vi
and
r - .
Vi T Vida, itz
r _ .
Vo T Vitz,j-aszy
T. 6r . 1
ulr - = {r Sroitaz,jlitaz ~ _51— [v§ - Vlr]}: (31)
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Although at the present timne the method still cannot treat the thin
structure surrounded by fluid, it can be easily generalized to handle the thin
component based on the scheme outlined above. For instance, if the cell (i, j)



contains the core barrel as shown in Fig. 15, then the fluid variables should
have two sets of value. The variables pt, ot, ut, and v¥ are calculated in
such a way that the fluid on the left-hand side of the core barrel slides tan-
gentially. Likewise, pT, pT, uf, and vI are obtained so that the fluid on the
right-hand side also moves tangentially.

SHELL SHELL
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N | - |
FLUID | 1 | ' FLUID
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T AR
2 E |
P 2 | | r P
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Fig. 15. Eulerian Finite-difference Mesh with Multivalued Field Variables Adjacent
to the Thin Internal Structure. ANL Neg. No. 900~78-921. ‘

Similar to the cases mentioned above, field variables can be ob-
tained for the fluid located at the top or bottom of the structure. Thus, a cell
can have up to four sets of field variables. Also, it should be mentioned that
we have to extrapolate the velocities far enough so that velocities needed for,
moving the particles around the structure are available.

. In generai, the multivalued pressure field_s' are determined by the
sliding conditions; the density fields are calculated from the equation of state;
the velocity fields are obtained from the mass equation as well as the inviscid
~ conditions outlined above. For those variables (such as the densities 1f one
wishes to use the complete mass equation) at the exterior side of the Eulerian
cell which cannot be computed by the conservation equations, extrapolation
of their values from the interior region is necessary.

5. Particle Movement near Corner

After solving for the advanced-velocity field and other field vari-

ables, a new configuration of the flow field is generated by moving the particles

to their new pos_itidns. Since particle-velocity components is obtained by
averaging from the velocities at the nearest four locations, care should be
taken for the particle movement near the corner and other irregularities. -
Figure 16 shows an internal structure submerged in the fluid together with
the velocity field required for moving particles around the corner. Thus, for
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a particle located above the struc-
v .y ture, such as particle x, we use
i ! L7 t t n+i1,
t t U, Uz, u;, and ug to compute uy' ;
2 we use v,, v3, v§, and v; to calcu-
U e 2:1=u2 late V?{-H'. Similarly, for a particle
o~ PARTICLE x located at the left-hand side of the
[ 7717 7 T1 structure, say particle y, we use
v?f ;v;_f vy uy, ug’, uz, and uf to calculate the
nt+1; we use V?ff, v{, v4, and v; for
the calculation of VI)}'“.’
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D. Moving Cover and Coolant
Spillage
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The Eulerian hydrodynamics
is ideal for long duration calcula
tions for problems involving large
material distortions. The basic

Fig. 16. Particle Velocities near the Corner. ICE technique has an option for
ANL Neg. No. 900-77~1852.
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treating inflow and outflow boundary
conditions. However, the size of
the wall opening in the basic ICE method is limited to multiples of the cell
size. In other words, if the wall opening is small, the Eulerian cell dimension
must also be made small. In addition, the size of the opening in the basic

ICE technique must remain constant. Thus, the opening does not vary with
time, which is different from a gap generated by the slug-impact force on the
reactor head cover at the head-vessel junction. Therefore, the basic ICE
technique must be expanded in order to treat the coolant spillage problem
more realistically. .

To. accomplish this objective, a Movable

quasi-Eulerianmethod has been devel- | AN Cover Head penetition Operigs
oped!? and recently been incorporated

into the ICECO-STR for treating the “fer—t"“"c" >y L
coolant spillages. Inthis scheme when "/" ___________ ]

the vessel head moves upward a set of Ficitious ! ' ~ Opening between
. . . . Zone Regulor Cells Cover Head and
irregular cells, whose size varies in : Reaclor Wall
the axial direction according to the

head displacement, is introduced on the '
top of the full-zone regular cell, as ,_)\JJ,._}\_J
shownin Fig. 17. Sincein these irreg-
ular cells only the axial dimension of
the cell varies, but the shape remains Fig.17. Quasi-Eulerian Cell and Penetration Openings.
rectangular, itis possible to derive the ANL Neg. No. 900-77-1806 Rev. 1.
governing difference equations with re-

spect to these irregular cells. Here, the control-volume technique similar

to the ICE technique is used, in which the conservation equations are general-
ized to take into account the penetration holes and the side opening. The tops
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of the quasi-Eulerian cells are considered as an inviscid boundary, moving
with the same velocity as the cover head. Thus, separation of the entire cool-
ant free surface with the reactor cover is not permitted after the slug impact.

For simplicity, it is further assumed that (1) the penetration opening
is located on the top center of the quasi-Eulerian cell; (2) only one penetration
is allowed for each'cell; (3) the penetration is considered to become open when
the impulse on this penetration area exceeds a certain input value. With these
assumptions, a modified Poisson equation is obtained which has the form

. ,
plt | ——+ Zecpétz(—l+ —1-)

LI e érz  by2
i,j ,
2 B n+y
it eese| it w2Pioni T TivarPin
n+l n+1 ) n+1 -
p,. +Tp.. +(-MN)p.. |
R 1" 01,j+1 1 1"],+1 , 62)

6y2

where Tjis the ratio of the opening area to the cell area at the quasi-Eulerian
cell (i, ) Poi,j+1 is the pressure outside the opening, H i,] is the source term
of the Poisson equation, which is a function of the momentum source terms,

opening ratio Tj, and the opening velocity v,, as well as the cover velocity at

the rth cycle.

E. Simultaneous Iteration

We have presented the equations governing the advanced-pressure
field for the entire computing domain. In summary, the governing difference
equations used in different cells for a typical Eulerian mesh shown in Fig. 1
are

(1) Poisson equation (i.e., Eq. 17) for the full cell (F),

(2) Relaxation equation (Eq. 22) for the external boundary cell (B);

(3) Generalized relaxation equation (Eq. 27) for the internal boundary
cell (IB);

(4) Modified Poisson equation (i.e., Eq. 32) with modified source terms
of the momentum equations and pressure equatlon for the quasi-
Eulerian cell (Q).

‘ In the analysis, Eqs. 17, 22, 27, and 32 are solved together by the
regular iterative technique, which sweeps through all the regular and ir- .
regular cells in the directions of increasing i and j. During each iteration
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h+1 is obtained either

sweep, say at iteration cycle htl, the new value of (pn+l) itk
) 1,

from Eq. 17, 22, 27, or 32 and is used to replace the 'bold value of (pn“’l
The iteration is terminated when the new values do not differ much from the
old values. In other words, the convergence is achieved when

n+i pn+1|

new Fold

I:,n+1 + pn+1 =€ (33)
l new old

has been satisfied for all cells. Here € is usually of the order 5 x 10™% or
equal to some other suitable small number.

Because the source term of the relaxation equation at the fluid-structure
interface is proportional to the mass flux, the pressure, density, and velocity
fields must be iterated simultaneously Thus after each iterate giving the
the equation of state and the momentum equations, respectively. Based upon
the new density and velocity, the mass flux at the interface is appropriately
adjusted, which results in a new pressure in the boundary cell. This proce-
dure is repeated until the boundary conditions at all interfaces are rigorously
satisfied.

For problems.involving a movable head or coolant spillage we first
calculate the cover velocity, using the iterated pressure force exerted on the
cover head. Then the pressure above the quasi-Eulerian cell is computed,
using the axial momentum equation in which the penetration opening 1); is
assumed to be zero. Finally, the new iterated pressure p?,-l is calculated.
This procedure is repeated until Eq. 33 is also satisfied for every quasi-
FEulerian cell.

Figure 18 is a flow chart representing the computational procedure.

F. Structural Dynarmics

Lagrangian coordinate systems are employed in the structural-dynamic
analysis. Because of complicated structure components involved in a typical
reactor configuration, several separate programs. are employed for analyzing
the structural response. In the analysis of the plug-jump and sodium-spillage
problem, the motion of the reactor head, which is assumed to have only rigid-
body motion under the constraint of the holddown bolts, is calculated by a
finite-difference program. Two other programs, one using a finite-element
formulation and the other using a finite-difference approach, are discussed
briefly in the following.

1. Finite-element Structural Program

The responses of cantainment structures snuch as the radial shield,
the core barrel, the core support structure, and the primary vessel can be
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Fig. 18. Flow Chart Representing the Computational Procedure, ANL Neg. No. 900-78-919.
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analyzed by a modified version of finite-element program.ls’”’ This program
used a Lagrangian (or convective) coordinate scheme in the numerical analysis
and is best suited for large-displacement, small strain, elastic-plastic dy-
namic problems.

In this scheme Lagrangian coordinates of the element rotate but
do not deform with the elements. The strain is linearly related to the displace-
ment of the element relative to the Lagrangian coordinates. Similarly, the
nodal forces are linearly related to the element stresses. The original pro-
gram, WHAM, has the conical-shell element and axisymmetric triangle ele-
ment which can be used to model the complicated structural components.

. The displacement field of the shell element consists of cubic trans-
verse displacements and linear axial displacements. Resultant forces are
computed by five-point numerical integrations across the depth of the element.
The triangle continuum element uses linear displacement fields. It can be
used to simulate fluid or elastic-plastic solid. Recently, a quadrilateral fluid
element and a quadrilateral elastic-plastic element have been added to the
program.

2. Finite-difference Shell Program

A finite-difference thin-shell program has been used previously
in analyzing the response of the primary vessel. This program is now avail-
able as an option to the WHAM program to another version of ICECO. The
differential equations of dynamic equilibrium of a shell of revolution (see
Fig. 19) undergoing large deflections are!”1®

e} ‘ .
aa_s[Ncpr cos @] - —B_s[QCPr sin @] - Ng+ pr sin ¢ - mrr = 0;

aés [Nyr sin @] + ais[Q(Pr cos @) - pr cos ¢ - mrz = 0;

K%

s[M(Pr] - Mg cos ¢ - Qpr = 0, (34)

(o2

where s is the length of the shell along the meridian, measured from the ver-
tex of the shell, m is the mass of the shell per unit area, ¢ is the angle of
inclination of the element with respect to the r directibn, p is the pressure,
N(p and Ng are two tangential stress resultants, and Q. is the transverse
stress. The shell is idealized by layers of subshells that can carry only nor-
mal stresses in the planes parallel to the tangential plane of the shell structure.
These subshells are connected by the material that carries only shears. The
vessel material is considered to be elastic-plastic and strain-hardening. The
strain-hardening shell is represented by a model in which the thickness of

the subshell is further decomposed into subregions of elastic-perfectly-plastic

materials having different yield stresses, but common strains. The von Mises
yield condition is used.



Z4
' de
0-.——.
ds \4,\
r
" rde
S
, =T y
X
(a)
N¢,+Z_:fds
Q¢
Q.+
¢t ——ds oM
S Mo+ — ¥
/(;_ ¢t =g ds
Ng —0w ———Ng

Me},/) SéMe

/o

N
¢ (b

Fig. 19

Shell of Revolution and Free-body Diagram.
ANL Neg. No, 900~75-523.

G. Numerical Stability

For the consideration of numerical
stability, the time step 6t chosen for the
hydrodynamic analysis must satisfy the mod-
ified "Courant Condition.” The restriction
is that fluid must not be permitted to flow
across more than one computational cell in
one time step, that is, '

(35)

ey . [ ér 5z
6t, < min, , .
n < (T o)

Since in the plug-jump (movable-head)
problem the axial dimension of the quasi-
Eulerian cell varies with the head displace-
ment and is much smaller than the axial
dimension of the regular cell, the time step
used at the inception of slug impact is further
restricted by

6
6t < I‘X_’
~h |Vy max

where 6, is the axial dimension of the quasi-
Eulerian cell and v, is the axial velocity
component in the quasi-Eulerian cell.

(36)

For the coupled fluid-structure analysis, the time step 6tg employed
for the structural dynamic program must satisfy the following requirements:

(37)

(38)

Equation 37 applies to all elements, Eq. 38 only to flexural shell ele-

'
6ts = Bp—
c
£
and
£
6ts = Bg&—b
ments.

Here B is a reduction factor usually between 0.5 and 0.8; 4 is the
distance between two nodes; cyp and Cp

are longitudinal and flexural wave veloc-

ities, respectively, and are defined in Ref. 16.

Because the hydrodynamic program uses an implicit integration scheme

while the structural dynamic program utilizes an explicit integration procedure,

37
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6th is larger than 6tg. 'T'hus, within each time step several structural dynamic
calculations must be performed in order to match one hydrodynamic calcula-
tion. The number of structural calculations (or subcycles) N can determined

by
N = I(6ty/stg) + 1, (39)
where I denotes the integral part of the ratio.

In certain circumsfances, the \}iscbsity coefficients A and p should
be used to damp out the pressure oscillation, particularly in a high-energy
excursion. Thus, similar to the treatment of the ICE technique, the coefficients

A and p should be large enough so that

A, owz3/2p|vIFot + pray(V - v)(81%, 82%) a0 (40)
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III. SAMPLE PROBLEMS

A. Bubble-Coolant Interaction

Although the Eulerian hydrodynamic method has been coupled together
with the Lagrangian structural-mechanics technique for analyzing the problem
of the fluid-structure interaction, the program still is very flexible. It can be
used for purely hydrodynamic analysis in which the structural-dynamic calcu-
lation is completely bypassed. To illustrate the capability of the basic hydro-
dynamic code, a problem concerning bubble-coolant interaction is presented.
Figure 20 depicts the initial configuration with initial core pressure equal to
9.8 MPa. In this configuration the bottom part of reactor containment is re-
moved to simplify the analysis. All solid structures are assumed to be rigid
with their boundaries coinciding with the fixed Eulenan grids. The radial
shield is simulated by the rigid obstacles. :

¢
RIGID COVER
Y, 4

€8.53cm |

d=—[SODIUM |

1105156 cm|;

|
o]
3
@ RIGID
vl CORE
eF BARREL

TEEEVEEN

- 302.26cm-—QF\;}§R

TIME, msec= O 23.08 42.34 52.34

{0) (b)

Fig. 20. Bubble Motion and Coolant Configuration at Dif-
ferent Times. ANL Neg. No. 900-3452 Rev. 2.

Figure 20 presents the bubble motion and coolant configuration at
three different times. Before the slug impact, the bubble shape was not
spherical, but rather toroidal. After the slug impact, an intense pressure
wave traveled back into the coolant, which greatly distorted the interface and
generated a spike near the top surface of the bubble. The formation of this

_spike can be inferred by the mechanism of the Taylor instability. The con-
tinuing growth of this spike may cause bubble collapsing and turbulent mixing.
The peak force exerted on the vessel cover is approximately 1.85 GN (185 x
104 dynes).
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Several calculations have been performed by varying the excursion
magnitude and configuration. Results reveal that, in all cases studied, if the
initial bubble position is not too high relative to the initial position of the free
surface, the bubble will not surface upward, but collapse. The reason for the
‘bubble collapse is that it cannot sustain the reflected pressure loading in the
surrounding coolant.

B. Wave Propagation in a Straight Pipe

This work deals with the response of a straight pipe in which the pipe
wall is treated as elastic-plastic material. The effect of pipe-wall deforma-
tion on pressure-wave attenuation is also studied.

'The mathematical model used in the analysis is a 3-ft (91.44-cm)-long
pipe made of stainless steel (see Fig. 21). A constant pressure of 4.2 MPa
was imposed at one eind uf the pipe, the
| other end being assumed to be a free
surface. To understand further the
effect of wall deformation upon the pres-
. sure attenuation, a rigid-wall calculation
was also made.

1’ Free Surface

)

| 0.1016-cm Pipe Wal Figure 22 shows calculated
/ (Stainless Steel) -~ Pressure histories at locations A, B, and
C indicated in Fig. 21 for both rigid and
elastic -plastic pipes. In the rigid-wall
- 03 analysis, the peak pressures are about
¢ 4.2 MPa; this corresponds to the peak
value of the input pulse. However, in
the elastic-plastic-wall analysis, the
peak pressures change significantly. At
positions close to the source, such as
A and B, the computed peak pressures
are lower than the input pressure, but
higher than the yield pressure (about
3.4 MPa) of the pipe wall. At positions
away from the source, the peak pressures
are attenuated, and their values are less
than the yield pressure, as indicated for
location C. The wall deformation also
has an effect of delaying the loading time
3.8l cm of the pressure pulse. The pressure
histories obtained in the elastic -plastic-~
Fig. 21. Mathematical Model and Configuration wall Calcu.latlo'n are fairly s.mooth. The
of Elastic-Plastic Pipe Used in the ICECO ~ Small oscillation observed is probably
Analysis. ANL Neg. No. 900-78-922. due to the response of the pipe wall.
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T — Elastic- Plostic Pipe Tl?is.type of os.cillatior} can probably be
s L ----- Rigid Pipe _ eliminated by introducing the structural
R Location A damping in the shell subroutine.
4 — it \\\ —
Figure 23 shows the radial defor-
3 —

\ ]

‘\\ H mations as a function of time at the three
\ locations D1, D2, and D3 indicated in Fig. 21.

Plastic deformations resulting from the

\ transient pressure loading take place near

\ o the source region. At downstream positions,

A only elastic deformations are noticed, as
shown in Fig. 23. This is because the pres-
sure loading at downstream positions are

. below the yield pressure.

C. Response of the Primary Containment

Pressure, MPa

Figure 24 is the configuration of

the primary containment used in the analy-
sis. Features included are: (1) core, '
(2) core-support structure, (3) coolant pas-
sage holes in the core-support structure,

-(4) core barrel, (5) reactor vessel with
curved bottom, (6) cover gas above the

- coolant, and (7) rigid vessel head. The
reactor-vessel material is elastic-plastic
and strain-hardening. The core barrel and
core-support structure are assumed to be
rigid. The energy release in the core was
characterized by a pressure-volume re-
lationship, which has an initial pressure of
20.4 MPa and decays exponentially.

00 02 04 06 08 10 12 I4
Time, msec

Fig. 22. Calculated Pressure Histories _
at Locations A'QB’ a;d C. The reactor configurations at three

ANL Neg. No. 900-78-918. different times are shown in Fig. 25. The
expansion of the gas bubble, the movement

of the coolant, as well as the deformation of the reactor vessel can be clearly
seen. These configurations reveal strong disturbances at the upper edge of the
core barrel, which will cause severe zone distortions in the Lagrangian anal-
ysis. They also show different fluid motion at two sides of the core barrel.

At the left-hand side the fluids slide along the core barrel; at the right-hand
side the fluids remain relatively undisturbed. It is also noted that a sufficiently
large amount of coolant has been pushed downward through the coolant passage
holes into the lower region of the reactor vessel to cause the coolant pressure
below the core-support structure to increase considerably. The phenomena of
wave transmission and mass transfer between the upper and lower reactor
plena are very difficult to analyze by the conventional Lagrangian method.
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128.3 ms 12173 ms 1:26.3 ms

Fig. 25. Reactor Configurations at Three Differ-
ent Times. ANL Neg. No. 800-76~-54, i

D. Simulation of the Excursion Model

In order to validate the analysis of the two-dimensional fluid-structure
interaction, a comparison of code prediction with experimental data was made.
The configuration of the reactor containment vessel is shown in Fig. 26, which

o } |

Explosive Charge; | Fig. 26
140-mm dio;. SN
16 kg , P, Model Test Configuration for

the Containment Studies. ANL
Neg. No. 900-78-926.

693

L \PI 14 U
12 bolts
35-mm dio
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was a scaled test model of the German Demonstration Plant SNR -300. The
basic test configuration consists of a spherical pressure-volume source im-
mersed within a pool of water, which in turn is held by a cylindrical container;
the space is occupied by air. The cylindrical walls of the container are pre-
compressed by the rigid end plates with holddown bolts. Rubber seals separate
the cylindrical walls from the end plates.

In the analytical model shown in Fig. 27(a) a spherical-shaped sourceis
used to represent the explosive charge. The position of the outside cylindrical
boundary corresponds to the mean radii of the vessel. Other assumptions con-
sidered in the analytical models which pertain to both test configurations are
outlined below: -

(+) The top and bottom boundaries are assumed to be stationary,

(b) The cylindrical vessel boundary at the bottam is constrained
axially and is free to move radially,

(¢c) The top vessel boundary is assumed to be free of any constraints,

(d) The equation of state for air is
p = (VO/V)1-3’

where p is in atm, v is the volume, and vy is the initial volume.

(e) Sodium spillage is neglected so that the results can also be
compared with REXCO-code predictions.

TIME =0 ms 1.457 3.657 5.056

{a) (b) {c) {d)

Fig. 27. Configurations of Thin-vessel Test. ANL Neg. No. 900~77~275.



The stress-strain curve assumed for the thin vessel was confined to
a bilinear representation. The elastic portion with modulus E = 20,000 kg /mm?
extends to the stress of 44 kg/mm?; beyond the yield stress, a plastic modulus
Ep = 40.96 kg/mm? was assumed.

The pressure-volume source characteristics used with the model are
taken from Ref. 19 and given in Table I.

TABLE I. Source Characteristics for the Thin-vessel Model

Pressure, Volume Ratio, Pregsure, Vouluie Ratio,
MPa v/V, MPa v/V,
42.6 1 . 2.2 8
38.0 1.18 1.2 T2
27.8 1.60 - 0.7 18
19.9 _ 2.12 0.3 28
11.1 » 2.75 0.1 45

7.1 3.47 0.1 68.5
4.2 5

Figurc 27(b) to (d) shows the reactor configurations at several dif-
ferent times, illustrating the displacement of the cylindrical wall and the
motion of the fluid. As can be seen, the cylindrical wall has undergone large
displacements. As it moves across the Eulerian cells, it intersects the fixed
Eulerian grid lines in many different ways. Complex procedures would be
needed if the control-volume method were used in the solution of the problem.

The displacements of the thin vessel are characterized by plastic re-
sponse. This deformation consists of a rapid increase to a maximum and then
settling to a final value. We observed from the analytical solution that defor-
mation first takes place at the location opposite the source, where the distance
from the source is the closest. While this deformation is still increasing, the
bottom of the vessel begins to deformm. When the displacement opposite the
source deforms to its maximum, the vessel bottom still keeps deforming and
then subsides, and eventually supersedes in magnitude the first deformation.
It may be observed that at about 2.5 ms the bottom part of the vessel has de-
formed to its final value.

The range of the deformed region at the initial part of the excursion is
limited. For example, the vessel at the fluid level deforms little, because of
the comparatively low pressure being developed there. In fact, as the fluid
begins to rise, the radial deformation at the top part of the vessel is minimal
until slug impact takes place. '

During impact of the slug, the top of the vessel begins to deform rather
abruptly. This deformation continues and reaches an equilibrium value at about
5 ms, The yield limit of the vessel is reached early, and the major response of
the vessel continues in the plastic regime.
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i

The experimental displacement histories at two points of the vessel,
taken from Ref. 19, are plotted in Figs. 28 and 29. Figure 28 shows the test
and the ahalytical displacements of the vessel at the initial height of the source.
The agreement of the results up to the failure of the gage is quite good. The
permanent set of the point is slightly overestimated by the analysis. Figure 29
shows the vessel deformation at 4 cm from the bottom of the vessel, and the
agreement between analysis and experiment appears to be quite good.
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The permanent deformation of the thin vessel, also given in Ref. 19,
is reproduced in Fig. 30, together with the corresponding analytical results.
In general, the shapes of the experimental and analytical configurations are in
good agreement. The displacement at the bottom of the vessel is overestimated

in the analysis more than anywhere else along the vessel.

This discrepancy

may be attributed to the constraint of the boundary conditions of the model.

E. Responses of Structural Components’

The response of a typical LMFBR primary containment to an HCDA
was studied. The mathematical model, shown in Fig. 31, consists of the reac-
tor core, coolant, radial shield, core barrel, core-support structure, and the

primary vessel.

Since the shield material does not have tensile strength in

the circumferential direction, it was considered as a compressible fluid with

the same mass and compressibility as the actual material.

The core-support

structure was modeled as a composite structure made of plates and shells as

in the actual structure.

To simplify the analysis, the openings in the core-

support structure were not included in the model. Thus, the transmission of
pressure pulses into the lower plenum depends solely on the downward motion
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of the core-support structure. The energy release in the reactor core was
characterized by a pressure-volume relationship with an initial pressure of
20.4 MPa and was assumed to decay exponentially.
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Figure 32 presents the reactor configuration at three different times.
These configurations show the expansion of the core-gas bubble, the motion
of the coolant, and the response of the core barrel, the core-support structure,

" and the primary vessel. They also show that the fluids slide along all the

internal interfaces during the course of the motion. Note that fluids on both
sides of the core barrel exhibit different motion. At the left-hand side, the
fluid moves upwards along the radial shield; at the right-hand side, the fluid
remains relatively undisturbed. Moreover, certain strong disturbances of
the fluid motion occur at the upper end of the core barrel during the later stage
of the excursion, which is believed to be induced by the vibration of the core
barrel.

To illustrate the response of the containment structure, the axial dis-
placements at the center of the core-support structure and the center of the
primary vessel are given in Fig. 33, Due to the large pressure gradient be-
tween the upper and lower plena at the initial stage of the excursion, these
structures are displaced downward and gradually attain their maximum dis-
placement. However, at a later stage of the excursion, the pressure in the
upper plenum becomes small, which in turn causes the structures to be dis-

placed upward.
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The radial displacements of the shield material and core barrel
(nodes A and B in Fig. 31) at the core midplane are shown in Fig. 34. Due to
the strong outward pressure gradient the peak displacements are found at 6ms.
Thereafter, the pressure between the barrel and the primary vessel gradually
builds up and thus causes the displacements to decrease. The peak displace-
ment of the shield material is greater than that of the core barrel. This is
because the radial shield is treated as compressible fluid which has less
rigidity than the core barrel.
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IV. CONCLUSIONS

A generalized coupling scheme has been incorporated into the second
version of ICECO (ICECO-STR) which links together the Eulerian hydrody-
namics and Lagrangian structural-mechanics programs for the fluid-structure
interaction analysis in nuclear reactors subjected to an HCDA. The physical
phenomena considered by the technique and the resulting program, ICECO-STR,
include the wave propagation, sodium-slug impact, coolant spillage, gas-bubble
migration, as well as the structural response. The numerical algorithm has
many special features:

(1) It employs the implicit temporal integration scheme in both the
hydrodynamics and fluid-structure interaction analyses. The solution is un-
conditionally stable. We have found that except in the problem involving shock
discontinuities, the effects of viscosities on the numerical results are
insignificant. '

"(2) It uses the Eulerian coordinate system in treating the fluid motion
in which the material may undergo large distortion. Hence, no mesh stabili-
zation, mesh regularization, or rezoning are needed in the analysis.

(3) The technique treats complex boundary conditions at the fluid-
structure interface and yet still maintains the computational efficiency. The
computing time for problems involving a typical reactor configuration is
found to be comparable to the conventional Lagrangian technique.

(4) The hydrodynamic analysis can be readily coupled with any
structural-dynamic program whenever a more advanced one becomes avail-
able. The presently used structural program is based on a well-developed
finite-element method which can account for both material and geometrical
nonlinearities, ‘

(5) It has capabilities of treating sodium flow through the openings
of the core-support structure as well as through the penetration openings of
the reactor cover and the ruptured seal at the vessel-cover junction. This
is not only important to the integrity of the primary containment, but also

essential to the analysis of transport of radiological material to the secondary
containment.

In developing the ICECO code, one ultimate objective is to assist the
REXCO code in the safety analysis of LMFBRs, particularly in excursions
involving large material distortions. It is believed that this objective is sat-
isfactorily achieved. Thus, these two codes can be used in conjunction with
each other, with REXCO being more appropriate for the early stage of an
excursion to determine the wave propagation and structural response, and
ICECO being more adequate for the later stages to investigate the bubble
motion and coolant spillage. In fact, such REXCO-ICECO combjnation anal-

ysis has been successively applied to the double-vessel reactor configuration
of the SNR-300 Experiment.?°
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. As demonstrated by the results of the sample problems, the ICECO
is capable of analyzing two dimensionally the fluid-structure interaction and
the resulting containment response during an HCDA. The code provides nu-
merous options for modeling the complicated structure components, including
the rigid obstacles, rigid thin membranes, curved reactor vessel, deformable
internals, and perforated core-support structure, as well as the movable head
with penetrations. The basic coupling scheme has been validated by comparing
the code solution with the REXCO-code prediction and experimental data of
SNR-300 breeder reactor. The good agreement obtained in this comparison
further lends credibility that ICECO can be used for analyzing the fluid tran-
sient and the fluid-structure interaction.

The coolant flows through penetration openings on the vessel head and
the perforated openings of the core-support structure are two options recently
incorporated into the program. These two options have not yet been subjected
to rigorous test against the experimental data. However, the analysis is to be
compared with the available test results in the near future so that any needed
improvement can be immediately made.

The ICECO code has wide range of applicability. In a forthcoming re-
port?! numerous sample problems will be given, together with input instruction
to the computer program. These examples reflect the studies of (1) bubble
expansion and migration, (2) wave transients in the piping components, (3) re-
sponse of the primary containment, (4) the effect of openings of the core-
support structure on the wave propagations, (5) sodium spillage through pene-
tration openings on the reactor cover, and (6) heat transfer.

Future development worle should concentrate in two key areas: bubble
migration and interaction of fluid with the upper core structure. The inclusion
of bubble inertia is necessary since it could have significant effects in the
later stage of bubble motion and in the bubble interaction with the surrounding
coolant and structure. The upper core structure also should be included in
the numerical analysis so that the containment response can be accurately
predicted. Also, the code should be further extended to treat the deformable
inner vessel. This is of great importance to model exactly the skirt connecting
the core-support structure and the primary vessel, as well as to study the in-
teraction of fluid with internal baffle plates in the piping components, such as
valve and heat exchanger. Thus, with the ongoing effort of extending the code
versatility, the ICECO promises to be a valuable tool in the safety studies of
fast breeder reactors.
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APPENDIX

Formulation of Explicit Boundary Conditions

The explicit forms of the inviscid boundary conditions can be formu-
lated by computing the midpoint velocity components at the advanced time
through an interpolating formula used in the MAC method. The unknown ve-
locities at the exterior sides of the Eulerian cells and other exterior points
are calculated from the mass equation with respect to the boundary cell or
simply from the condition of inviscidness. From the difference expressions
of the momentum equations one can obtain

w

o _ [ 5 ( nt_ podi ) n+i _
Yitas),j T 1+(1/z) jt Pi,j P1+1,1 Pitc2), i

+1 . n+i1 n+1 n+1 )
‘1?—(1/2),3 = R1 72y, j + 61.(P1 1,j - Pi, 1)@]/91-(1/2),1,

w0t _ T 6t/ n+ n+1 n+l
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are the modified source terms containing the source term of the momentum
equation, densities, velocities, and pressure gradients at the nth cycle.

R -1/2)) and gl j-(12y €an be evaluated from R1+(1/2) j and S1 j+1/2) by re-
placing indexes i with i-1 and j with j-1, respectively. 7 is the tentative
advanced-time densities which can be approximately evaluated from the
values of two previous cycles:

2 n n n+l1 n n  ,n-1
pi = el +(pD - e )R - R/ (ER - 7Y,

Thus, for the case of containment vessel with almost vertical orien-
tation shown in Fig. Al, the particle velocity components at the midpoint of
the segment are
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For fluids with small viscosities, the inviscid boundary condition yields
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At the fluid-structure interface, the inviscid (free slip) boundary con-
dition yields : ‘

(VBY' - V) -5 = 0. (A5)

Substitution of exterior velocities expressed in Eqs. A3 and A4 into
the interpolating formulas for the midpoint velocities shown in Eq. A2, and
in turn using Eqs. Al and A5, yields the explicit condition for the example
given in Fig. Al:
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Similarly, for the vessel with almost horizontal orientation shown in Fig. A2

we have
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Equations A5 and A7 represent the explicit boundary conditions at the fluid-
vessel interfaces corresponding to the vessel orientations shown in Figs. Al
and A2, respectively. In these equations nonlinear convective flux terms are
computed only at the interior sides of the boundary cells. Because of variable
cocfficients 1nulliplying the pressures and the variable number of cells asso-
ciated with different orientations of the boundary segments, the iteration pro-
cess is generally slowed. Also, for the reactor containment or a component
having a curved boundary there are numerous special cases, so that the deri-
vation of explicit boundary conditions appears to be an insurmountable task,
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