Correlation of mineralogy and trace element leaching behavior in modified in situ spent shales from Logan Wash, Colorado

PDF Version Also Available for Download.

Description

Oil shale retorting induces mineral and chemical reactions to occur on the macroscopic and microscopic levels in the kerogen-bearing marlstone. The nature and extent of the reactions is dependent upon process variables such as maximum temperature, time at temperature, atmosphere, and raw shale composition. This report describes the investigation of the mineral, chemical, and trace element release properties of spent shales retrieved from an experimental in situ retort at Occidental Oil Shale, Inc.'s Logan Wash site in Garfield County, Colorado. Correlation between mineralogy of the spent materials and the mobility of major, minor, and trace elements are indicated, and relationships ... continued below

Physical Description

Pages: 17

Creation Information

Peterson, E.J.; O'Rourke, J.A. & Wagner, P. January 1, 1981.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Oil shale retorting induces mineral and chemical reactions to occur on the macroscopic and microscopic levels in the kerogen-bearing marlstone. The nature and extent of the reactions is dependent upon process variables such as maximum temperature, time at temperature, atmosphere, and raw shale composition. This report describes the investigation of the mineral, chemical, and trace element release properties of spent shales retrieved from an experimental in situ retort at Occidental Oil Shale, Inc.'s Logan Wash site in Garfield County, Colorado. Correlation between mineralogy of the spent materials and the mobility of major, minor, and trace elements are indicated, and relationships with important process parameters are discussed. The progress of carbonate decomposition reactions and silication reactions is indicative of the processing conditions experienced by the shale materials and influences the mobility of major, minor, and trace elements when the solids are contacted by water. Shale minerals that are exposed to the extreme conditions reached in underground retorting form high temperature product phases including akermanite-gehlenite and diopside-augite solid solutions, kalsilite, monticellite, and forsterie. The persistence of relatively thermally stable phases, such as quartz, orthoclase, and albite provide insight into the extremes of processing conditions experienced by the spent shales. Leachate compositions suggest that several trace elements, including vanadium, boron, fluoride, and arsenic are not rendered immobile by the formation of the high-temperature silicate product phase akermanite-gehlenite.

Physical Description

Pages: 17

Notes

NTIS, PC A02/MF A01.

Source

  • 110. annual meeting of the AIME, Chicago, IL, USA, 22 Feb 1981

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-81-1196
  • Report No.: CONF-810203-11
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 6430207
  • Archival Resource Key: ark:/67531/metadc1204565

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1981

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Aug. 8, 2018, 1:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Peterson, E.J.; O'Rourke, J.A. & Wagner, P. Correlation of mineralogy and trace element leaching behavior in modified in situ spent shales from Logan Wash, Colorado, article, January 1, 1981; United States. (digital.library.unt.edu/ark:/67531/metadc1204565/: accessed January 19, 2019), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.