Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105)

PDF Version Also Available for Download.

Description

The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute {sup 260}Lr and 35-second {sup 262}Ha. The crystal ionic radius of Lr{sup 3+} was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am{sup 3+} through Es{sup 3+}, obtained by x-ray diffraction methods, and to Md{sup 3+} and Fm{sup 3+} which were determined in the same manner as Lr{sup 3+}. The hydration enthalpy of {minus}3622 kJ/mol was calculated from the crystal ionic radius using ... continued below

Physical Description

Pages: (88 p)

Creation Information

Henderson, R.A. September 10, 1990.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times , with 10 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute {sup 260}Lr and 35-second {sup 262}Ha. The crystal ionic radius of Lr{sup 3+} was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am{sup 3+} through Es{sup 3+}, obtained by x-ray diffraction methods, and to Md{sup 3+} and Fm{sup 3+} which were determined in the same manner as Lr{sup 3+}. The hydration enthalpy of {minus}3622 kJ/mol was calculated from the crystal ionic radius using an empirical form of the Born equation. Comparisons to the spacings between the ionic radii of the heaviest members of the lanthanide series show that the 2Z spacing between Lr{sup 3+} and Md{sup 3+} is anomalously small, as the ionic radius of Lr{sup 3+} of 0.0886 nm is significantly smaller than had been expected. The chemical properties of Ha were determined relative to the lighter homologs in group 5, Nb and Ta. Group 4 and group 5 tracer activities, as well as Ha, were absorbed onto glass surfaces as a first step toward the determination of the chemical properties of Ha. Ha was found to adsorb on surfaces, a chemical property unique to the group 5 elements, and as such demonstrates that Ha has the chemical properties of a group 5 element. A solvent extraction procedure was adapted for use as a micro-scale chemical procedure to examine whether or not Ha displays eka-Ta-like chemical under conditions where Ta will be extracted into the organic phase and Nb will not. Under the conditions of this experiment Ha did not extract, and does not show eka-Ta-like chemical properties.

Physical Description

Pages: (88 p)

Notes

NTIS, PC A05/MF A01; OSTI; INIS; GPO Dep.

Source

  • Other Information: Thesis (Ph.D.)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE91004323
  • Report No.: LBL-29568
  • Grant Number: AC03-76SF00098
  • DOI: 10.2172/6362919 | External Link
  • Office of Scientific & Technical Information Report Number: 6362919
  • Archival Resource Key: ark:/67531/metadc1204105

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 10, 1990

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Oct. 30, 2018, 12:58 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 10
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Henderson, R.A. Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105), report, September 10, 1990; California. (digital.library.unt.edu/ark:/67531/metadc1204105/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.