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ON THE UNIQUENESS AND STABILITY OF ENDOCHRONIC PLASTICITY THEORY

B. J. Hsieh

Abstract

Several uumerical and analytical analyses are described
which evaluate the uniqueness and stability of solutions of
structural models whose material behavior is governed by
the endochronic theory of placticity. The simplest form of
this theory is used in both one~ and two-dimensional problems.
It has been found that this simplest form does show some
"material instability" in the semse it does not satisfy
Drucker's postulate when subjected co a limited loading
cycle. In other words, an endochronic material creeps under
the action of applied force. However, this "ingtability"” or
"lack of a hysteresis loop" can be circumvented by using
more complicated forms of the endochronic theory.

It is also noted that even the simplest endochronic
model yields very good results compared to those of an

elastoplastic model when the structural model is subjected

to conditions wherein loading predominates. Uniqueness and

stabiiity of the solution are observed in all such cases
studied. fhe numerical efficiency and the minor effect of
unstable material behavior in the simple endochronic theory
make it attractive in safety analysis of many structures where

peak deformation is of paramount importance.




INTRODUCTION
The endochronic theory of material behavior was purposed by K. C. Valanis

i

[1], and uses the principle that the history of deformation is defined in terms
of a "time scale" which is not the real time, but is in itself a property of

the material.  No use of the classical yield surface concept is required in this
theory. It was used by Valanis [2] to predict the mechanical response of
aluminum and copper under conditions of complex strain histories., Omne consti-
tutive equation described with remarkable accuracy and ease of calculation

many phenomena, such as cross~hardening, loading ;@d unloading loeps, cyclic
hardening as well as the effect of pre-shearing on.tension behavior. 2. P.
Bazant and his co-workers further developed the theory to describe the
liquefaction of sand [3] and the inelastic behavior and failure of comcrete [4].
The use of a two-dimensional endochronic constitutive relation in dynamic transient
analysis of shells was first considered by H. C. Lin [5].

Basically, the endochronic theory uses an "intrinsic time" in place of real
time in the visoelastic constitutive equations. In other words, the time
convolution integrals present in viscoelasticity are replaced by the "intrinsic
time" convolution integrals. Obviously, the accuracy of an endochronic model in
describing the behavior of a real material is dependent on the form of the '
"relaxation" function, G, and on the definition of intrinsic time. Important
material phenomena may be lost when either is not defined properly. In such a
case, the applicability of an endochronic model must be limited to a restricted
class of problems.

I. S. Sandler [6] recently pointed out that the use of a simple endo-
chronic model causes thé material to'bevunstable and, hence, non-uniqueness of

problem solutions can result. In this study, we show that the stability of a .



material is a matter of definition, and the stability of an endochronic model
can be improved by using a more realistic "relaxation function." Furthermore,
in a practical sense, unique and stable numerical solutions can be obtained

for a structure whose material may violate Drucker's criterion of stability.
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STABILITY OF MATERIALS

Drucker's stability criterion for materials as used.in Sandler's paper is
simply that no material is allowed to have negative ma;érial damping. The
simple endochronic models used by Sandler and Valanis,;however, show negative
damping when subjected to certain strain or stress hiétories. In order for a
material to have positive damping, the constitutive #aw must be able to form
a hysteresis loop upon a complete loading and unloading cycle. To show the
inability of some endochronic models to form hysteresis loops, consider the

simplest endochronic model used by Valanis [2] which is given by

a.B
11
Ede = do +oudz; adz = fi5F lde|; Bdg = 8,d|e] 1)«

where o and € are the stress and the strain, E, is the initial slope of the one-
dimensional stress-strain curve, and s Bl are material properties that are

determined from a one-dimensionalltension test. If we define loading and un-

loading as when de > 0 and when de < 0 respectively, then we have

do _ 3 ulslc . (-) loading .
° T 1#8E J * (+) unloading




For a hysteresis loop to be formed as shown in Fig. 1, the unloading
and loading paths must intersect each other. Let the two points of extreme
stress value on the loop be.denoted by A and B, then the slope of the line
connecting A and B is s;mply (aA - aB)/(eA - eB). The mean value theorem
of calculus then states that there exists two points, x and y, Whosé coordinates
are (ox, ax) and (oy, ey) on either side of the line AB, and their slopes a?e
the same as that of line AB. By assuming the positions for x and y and using

Eq. (2) with appropriate signs, we find the following condition”

-0 C
J

X
T+8E(x) ~ I#BE(Y)

for the formation of a hysteresis loop for the model depicted by Eq. (1).
Since § i3 a monotonicélly increasing positive number, Eq. (3) indicates that
o_ and oy must be opposite in sign for hysteresis loop formation. When the

X
stress or strain history is such that a material always stays in either tension

or compression, the endochronic constitutive law given by Eq. (1) may behave
in an unstable manner in the sense described by Sandler,

Stress-straiﬁ curves for an endochronic model subjected to different
strain histories are shown in Figs. 2 and 3 by using Eq. (1). These results
are obtained by connecting a mass to a massless endochronic spring. The-

0

values for Eo, a;, B; are 6.895 x 10'0 Pa (1 x 107 ps1), 49,and 8.75; the mass

- used 1s 4.378 x 10-2 Kg (3;b00 X 10-3 slug). The unstable behavior shown in

Fig. 2 is obtained by subjecting this spring-mass sYstem‘to a suddenly applied

4 N-(lO4 1bf) while the stable

constant force of magnitude 4.448 X 10
hysteresis loops are obtained by subjecting the system to an initial displace-

ment that is equivalent to 1% of straining in the spring. These results confirm

(3




the condition derived in Eq. (3) for the formation of hysteresis loops.
It should be noted that even though the "unstable" constitutive relation
shown in Fig. 2 mgy not be a realistic representation of a real material be-

havior as we know it, it does not mean that such a material may never exist.

However, we'll show that such unstable behavior of an endochronic model

can be improved.

The endochronic model represented by Eq. (1) is obtained by assuming

the intrinsic relaxation function G to be a single exponential function, i.e.

6(z) = E.e % )

It is, therefore, reasonable to improve the accuracy of the comstitutive model

by including more terms in the relaxation function, say

G(z) = E, + Ele-uz (5)
The differential constitutive equation corresponding to the above equation is
simply -

(B + Ej)de + Eoe (ad? = do + (adz) g (6)

where E,, E1 are material parameters and adz is defined in Eq. (3). The

equation for the slope of the stress-strain curve is, therefore, given by



do ‘ “161 (+) loading

'd_e- = (Eo + El) z (EQE - 0) 1+8E H ) unloading (7)
The necessary condition for a hysteresis loop can now be derived as in the
previous case to be

Egex "'»Ux + Eoiv - Uy (8)

THBE(x)  ~ I1HBE(Y)

From Fhis, we see that there are possibilities for a hysteresis loop to be
formed even for the cases where a. and a& have the same sign. A hysteresis
loop for a copper specimen subjected to unloading and reloading in tension is
excellently reproduced by using Eq. (6) in {2]. It is reasonable to assume
that other types of loading-unloading-relioading may be described by using
more general forms of the relaxation function.

It should be emphasized that no single constitutive law as yet can describe
all the material behavior observed in laboratories. That is, most constitutive
laws are accurate in describing certain mater!als under certain conditions
only. It is important to use appropriate constitutive laws for practical
problems. However, the inability to represent a material in some situation
by a constitutive law should not exclude its usefulness in representing the
material in other situations. It will be shown later that the simple one-term
relaxation function used in Eq. (1) can predict reasonably good results for
many practical prohlems.,

We reiterate that a comstitutive law is simply a model used to approximate

the behavior of a maﬁerial. Certain models may represent some materials



better than others in some situations and wice versa. The "unstable" behavior

of the one—term‘endochronic model, hence, should be treated carefully when it

occurs. It could be used to compute the upper bounds of solutions for real .
~ problems similar to the use of the elastiq-perfectly-plastic constitutive

model in limit analysis. The cause of this unstable behavior will be discussed

later.




UNIQUENESS OF SOLUTION

The uniqueness of solution to a system of equation is defined as when one,
and only one, set of results is obtained when the system is subjected to a set
of initial and boundary conditions. Non-uniqueness of solution exists if more
than one set of results are possible when the system is subjected to the same
conditions. The question of uniqueness of an endochronic model was discussed
by Sandler [6] for both a spring-mass system and a continuum system. The
spring-mass system in [6] is formed by slowly adding weights to a one~-term
endochronic spring and then subjecting this system to a small excitation; the
continuum 3ystem is a prestressed rod subjected to a stress history at omne
generic point.

The response of such a spring-mass system obviously depends on the
magnitude of weight, diredﬁién of excitation, etc. The computed response for a

10 Pa) that is first extended to a

system (al = 49, 81 = 8,75 and E, = 6.895 x 10
state of 8% strain and then subjected to an initial displacement that is
equivalent to 0.1% are shown in Figs. 4-6. The results of the same system
subjected to an initial displacement of -0.1%Z are shown in Figs. 7-9, The
unstable response predicted in [6] is clearly observed in these figures. The
strain histories are qualitatively represented by the displacement histories

since they differ only by multiplicative constants. In both cases, the

stresszs oscillate about certain values while the strains drift as predicated



in [6]. However, this drifting of displacements (strains) may not go unbounded
within a finite time, since the velocity histories shown in Figs. 5 and 8 clearly
indicate the vaniching of velocity of the mass.

The weight used in the above example causes the spring to be extended
to a strain of 8%. This makes the initial equilibrium position of the mass
well into the plastic range. One would hope that the unstable behavior
would be less severe if the system is pre-strained tv 2 lesser degree by using
a smaller weight. The responses of a system whish 1s pre-strained to 0.1%
and then subjected to initial displacements equivalent to -0.001Z and +0.001%
are shown in Figs. 10 and 11, respectively. It can be seen that no improvement
is observed by setting the initial state in the "elastic range."” This surprising
result may be caused by the use of a much smaller mass, since the m~ra-straining
is generated by the weight of the mass. It is worth mentioring that the stress-
strain curves for these results all have forms similar to that of Fig. 2.

To circumvent the complexity generated by the use of different masses, the
mass is now set to a constant value of 4.378 x 10-2 Kg, then the system is
subjected to various external excitations fwom its initially undisturbed state.
The qualtitative responses are independent of the directions of the external
excitations, since no initial strain exists. Figs. 12, 13, and 14 show the
displacement histories of the system subjected to suddenly imposed initial
displacements equivalent to -1%, -0.5%, and 0.1%, respectively. The stress-strain
curves for these cases all have forms similar to that shown in Fig. 3. The dashed
lines in these figures are the equilibrium positions of residual vibrations of

the associated linearly elastic, perfect plactic systems that have the same
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initial Young's moduli and yield strrsses as-those of endochronic models.
Figure 15 is the response when the system is subjected to a very small initial
velocity which is equivalent to 0.22 strain per second. The classical linear
elastic solution is identical to the endochronic model in this case and the
endochronic stress-strain curve is a straight line.

All these results show that the endochronic theory prodicts results
different than those of the classical theories. The final equilibrium positions
of this theory are larger than those of the linearly elastic, perfectly plastic
theory. However, no instability or non-uniqueness phenomenon is observed in
these models. It is important to note that the unstable behavior shown in
earlier examples exists only when exiernal forces are present through the use
of weights. This unstable behavior is actually the creep phenomenon of the
endochronic model with respect to its intrinsic time instead of real time,
as can be seen by considering the similarity between endochronic and viscoelastic
theories. Whether a creeping material should be termed as unstable is a question
of definition; it does not present any difficulty in problem solving.

The possibility of non-uniqueness of solution to the spring-mass system
proposed by Sandler (6] does not exist. Sandler presented an interesting and
useful model to uncover some "undesired" behavior of a simple endochronic
model. However, the small disturbance used in his example and previous.ﬁtudies
should not be interpreted as an error which expresses the difference between the
numerical and analytical "exact" solutions. A computer does not know the real
problem, it sees only a specific model and solves it with certain accuracy. There-
fore, the exact solution is meaningless to a computer. A numerical solution is
obtained in a computer by applying prescribed methods to the equilibrium equation
or equation of motion. Hence, the numerical solution always satisfies the

equilibrium equation exactly within the accuracy of the said computer.
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We reiterate that though the "erroneous” numerical solution may be different s

than the Mexact" solution te a real problem, it is the "exact"
solution that satisfies equilibrium within the aceuracy of a computer.

The continuum modelsosed by Sandler to study the non-uniqueness of ao
endochronic model 1s a rod initially at rest and at equilibrivm under the

pressure o,. At t = 0, a generic point of the rod is brought to a state of

o= gq and v = 0 where v is the velocity. The solution obtainad ; -

by Sandler is

o, = c.p(vUN - LD)v 9

where p 1s the demsity, V N and ViD are the unloading and loading wave speeds,

and v is the velocity of the rod in the region bounded by the unloading and v

loading wave froots.

For a bi-linearly elastoplastic material, the loadingSEnd unloading wave
speeds are the same, hence g, = Go. That 1is, for an elestoplastic rod at rest,
no point.can be brought to another stress level and haoe the point still at rest
except when the stress change is trivial. For an endochronic rod, however, this
change of stress is possible as indicated by Eq. (9)5: A unique solution is
obtained, since %, is anainitial condition while v 15 part of a solution set, ’
according to the previous‘definition of uniqueness. In other words, Eq. (9) states
that if a point is brought to another stress state and is.againNat test, a
definitive wave propagation of disturbance from this point will occur. Another
point of view 1s: an elastoplastic material does not know whether it has been

subjected to a complete stress cycle or not at t = 0 since the effects cancel

each.other out because the speeds for loading and unloading are identical' but
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an endochronic mﬁt:erial knows. It seems that the endochronic solution is

"more unique" than the bi-linearly elastoplastic material from this. viewpoint.




-

RANGE OF APPLICATION

No single comstitutive law has been found to include all observed material
behavior. To see the range of applicability of the one-term endochronic
theory, one dimensional spring-mass and two dimensional continuum systems
ére studied.

The spring-mass system is formed by attaching a concentrated mass m to
the spring which is either endochronic or bi-linearly elastoplastic. The
system is initially at rest without pre-straining and is suddenly subjected
to a step loading or to various initial conditions. The one-term endochronic
and bi-linearly elastoplastic constitutive equations are related by the

following equations

. = -1
n= E°/EP’ B, = EP/G,, @, = n-1; ay oo/ (1 n)

1

where E,, EP are the elastic and plastic moduli of the material and ay is the
initial yield stress. The material parameters used are @ - 49; B1 = 8.75;

E, = 6.895 x 10°0 Pa; oy = 1.608 x 108 Pa and m = 4.378 x 1072 ge.

Figs. 16 to 33 are the responses of the spring-mass system subjected
to step loadings of various magnitudes obtaipned by using the one-term
endochronic theory and the bi-linearly elastoplastic theory. The former
responses are represented by solid lines and the latter by chain-~dashed lines.

The loading magnitudes vary from 4.448 N (1 lbf) in Figs. 16—18 te 4.448 x 105

N

(105 lbf) in Figs. 31-33., The responses include the displacement (strain) histories,
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the velocity histories and the stress-strain curves. For loadings smaller

than 4.448 x 101 N (10 lbf), both endochronic and elastoplastic theories

reduce to linearly elastic theory and the results are almost identical to each
other. For median loading that lies between 4.448 x 102 N (100 lbf) and

4.448 x 104 N (10,000 lbf), the endochronic displacements are consistently

higher than those of the elastoplastic Wodél. The amplitudes of the emdochronic =~

displacement oscillation, however, are damped out as time increases as indi-
cated by the vanishing amplitudes of the velocity histories. This difference
is mainly caused by the fact that endochronic materials have different stiff-
ness properties during unloadings and reloadings as shown in Figs. 27 and 30

The elastoplastic unloading-loading curves form straight lines and the

endochronic ones form zigzag patterns. For loadings not less than
4.448 x 105 N (1zx 105 1b), the responses are very similar. Hence, only the
results for loading 4.448 x 105 N are presented in Figs. 31-33.

The free vibrational responses of the spring-mass system subjected to
initial displacements equivalent to from 0.1%Z to 100% strain are shown in
Figs. 34-45. The elastoplastic solutions (chain-dashed lines) for displace-
ments and velocities are simple harmonic motions with constant amplitudes,
while the endochronic ones are simple harmonic motions with decaying amplitudes.
Again, the equilibrium positions of residual vibrations of the endochronic
material are larger than those of the elastoplastic ones. Furthermore, the
endochronic equilibrium position is never its initial equilibrium position,
though this is so for the elastoplastic one if the initial displacement is
not greater than half of the initial yield strain (displacement) as shown in
Fig. 34. It should be noted that hysteresis loops are observed in all these

initial displacement examples.
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Figs. 46 to 60 show the responses of the spring-mass system subjected
to various initial velocities. For a velocity equivalent to 200X strain per
second, almost identical responses are obtained for both the endochronic and
elastoplastic solutions as ghown in Figs. 46, 47 and 48. For initial veloecity
not lower than 2,000% strain per second, the soluticns are very similar to the
solutions obtained for the initial displacement cases. Namely, solutions
osciliate about equilibrium positions with constant amplitudes for elasto-
plastic materials and with degaying amplitudes for endochronic ones. The
endochronic equilibrium positions are always higher than those of elastoplastic

ones, and hysteresis loops are observed for the endochronic stress-strain

curves. Note that excellent comparison hetween elastoplastic and enco-

chronic theories is obtained for the initial velocity of 2 x 1061 strain per
second as shown in Figs. 58-60.

From the above results for a one-dimensional spring-mass system subjected
to various initial conditions or constant loadings, we find that all solutions
are unique. Hysteresis loops are observed for the spring-mass system except
when it is subjected to external loading. In the latter case, the unstable behavior
is simply the creeping of an endochronic material with respect to the intrinsic
time since it is well known that a viscoelastic material creeps under the action
of an external load. The creeping phenomenon of an endochronic model is, there-
fore, expected to cease when the external load is removed. Figs. 61 to 70
show the displacements, velocities and stress-strain curves of the spring-mass
gystem subjected to a constant force whose magnitude is 4.448 x 104 N (104 lbf)

and whose durations are‘O.ST, 2.3T and 5T where T is the period of the asso-

ciated linearly elastic system. The value of T used is II x 10-5 sec. and the
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arrow marks on the time axes in these figures indicate the times the loadings
are removed. The solution for the case of 0.5T is very similar to the result
obtained when the system is subjected to an initial velocity. This is ex-
pected because very short duration loadings can be treated as initial conditiens.
From the stress-strain curves in Figs. 63, 66 and 69, we see that the strains
for the elastoplastic model are smaller than its initial yield strain (0.233%).
and the elastoplastic constitutive equations are straight lines. Hence, the
residual vibrations after the removing of loads oscillate about thelr
initial equilibrium position for the elastoplastic model. It is known, from
the analytical solution [7] of an elastic spring-mass system subjected to
rectangular-pulse loading, that the amplitudeé of résidiidl vibration is zero
if the load duration is not small and is an integer multiplier of the half period
of the system. The small oscillation after the removing of loading in Fig. 67
is caused by the error in representing the loasding duration and the period of
the system by the finite accuracy of a computer. It is expected that the residual
vibration amplitude will be reduced if the acduracy of the computation is im-
proved. Fig. 70 shows the displacement history of the same problem using
double precision (on an IBM machine) and a numerical time integration step
that is an integer fraction of the period. Much smaller residual vibrafion is
observed though it still exists. This residual vibration may not be eliminated
unless the period of the model seen by the computer is exactly equal to that
of the analytical model; o:herwise, a small error in the period will grow
after many cycles of vibration

This phenomenon of no residual vibration when the load duration is an
integer multiplier of the half period is a particular property of a linearly elastic

material. It indicates that a system may have residual vibration when subjected
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Figs. 46 to 60 show the responses of the spring-mass system subjected

to various initial velocities. For a velocity equivalent ta 200% strain per

second, almost identical responses are obtained for both the endochronic and
elastoplastic solutions as shown in Figs. 46, 47 and 48. For initial velacity
not lower than 2,0007 strain per second, the solutions are very similar to the
solutions obtained for the initial displacement cases. Namely, solutions
osciliate about equilibrium positions with constant amplitudes for elasto-
plastié’materials and with decaying amplitudes for endochronic ones. The
endochronic equilibrium positions are always higher than those of elastoplastic
ones, and hysteresis loops are obsgserved for the endochronic stress-strain
curves., Note that-eiéelieﬁﬁucoﬁbariﬁbn.hetWeen elastopiaétic and enco-
chronic theories is obtained for the initial velocity of 2 x 1062 étrain per
second as shown in Figs. 58-60.

From the above results for a one-dimensional spring~mass system subjected
to various initial conditions or constant loadings, we find that all solutioms
are unique. Hysteresis loops are observed for the spring-mass system except
when it is subjected to external loading. In the latter case, the unstable behavior
is simply the creeping of an endochronic material with respect to the intrinsic
time since it is well known that a viscoelastic material creeps under the action
of an external load. The creeping phenomenon of an endochronic model is, there-
fore, expected to cease when the external load is removed. Figs. 61 to 70
show the displacements, velocities and stress-strain curves of the spring-mass
system subjected to a constant force whose magnitude is 4.448 x 104 N (104 lbf)
and whose duratiqns are_O.ST, 2.3T and 5T where T iz the period of the asso-

ciated linearly elastic system. The value of T used is Il x 10-5 sec. and the
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arrow marks on the time axes in these figures indicate the times the loadings
are removed. The solution for the case of 0.5T is very similar to the result
obtained when the system is subjected tc an initial velocity. This is ex~-
pected because very short duration loadings can be treated as initial conditions.
From the stress—-strain curves in Figs. 63, 66 and 69, we see that the strains
for the elastoplastic model are smaller than its initial yield strain (9.2332)‘
and the elastoplastic constitutive equations are straight lines., Hence, the
residual vibrations after the removing of loads oscillate about theix —~— ~ 7
initial equilibrium position for the elastoplastic model. It is known, from
the analytical solution [7] of an elastic spring-mass system subjected to
if the load duration is not small and 1s an integer multiplier of the half period
of the system. The small oscillation after the removing of loading in Fig. 67
is caused by the error in representing the loading duration and the period of
the system by the finite accuracy of a computer. It is expected that the residual
vibration amplitude will be reduced if the accuracy of the computation is im-
proved. Fig. 70 shows the displacement history of the same problem using
double precision (on an IBM machine) and a numerical time integration step
that is an integer fraction of the period. Much smaller residual vibrafion is
observed though it still exists. This residual vibration may not be eliminated
unless the period of the model seen by the computer is exactly equal to that
of the analytical model; otherwise, a small error in the period will grow
after many cycles of vibration

This phenomenon of no residual vibration when the load duration is an

integer multiplier of the half period is a particular property of a linearly elastic

material. It indicates that a system may have residual vibration when subjected
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to a loading, but it may be at rest after a certain time when subjected to g
"1onger"Jloading. Figs. 71, 72 and 73 are thé results éf the systém sub-
jectedlio a rectangular pulse whose magnitude and duration are 8.896 x 104 N
(2 x 164 lbf) and 6T. The times of load remgval are indicated by arrow marks
onthe time axes. As can be seen, this pulse magnitude hasg clearly caysed
plastic response of the elastoplastic model.

The termination of cfeeping phenomena of endochronic models immediately
upon removal of loads is observed in all these results. This confirms our
previous pre&onition of creeping of an endochkronic material under the action
of external_&orce. Hence, the endochronic material is unstable - in the sense that
it creeps wfth'respect to the intrinsic time - when subjected to external
force just as a viscoelastic material does. The results also show that an
endochronic/ material has permanent plastic strains when subjected to some
boundary cénditions while the elastoplastic material does not. The plastic
strailns of an endochronic material are always larger than‘tBDSQ‘of the corrés—
ponding bi-linear elastoplastic material subjected to the same conditions.

This is not surprising since the relationship as expressed by Eq. (10) shows

that the endochronic material is softer than the corresponding elastoplastic
material when they are subjected to loading (de>o)only. This is confirmed by all
the results indicating thé stress-strain curves for the examples studied.
Better fitting of these curves in some range of strains for specific problems
may be obtained by adjusting the endochronic material parameters, e, Bl and E,.

Whether a real material should be represented by an endochronic or elasto-
plastic model should be decided by its stress-strain curve obtained through

laboratory tests. It is noted that some materials may be well represented by

the bi-linear elastoplastic model such as mild steel, but some materials

‘cannot, such as lead of copper. It should also bé notéd that the dividing of
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elastic and plastic ranges by the yleld stress causes the transition from
elastic response to plastic response to oczur abruptly while no such transi-
tion exists in an endochronic model.

For stable numerical integration of a spring-mass system, the time
integration step should be small enough. No criterion exists for defining
the smallness of time step for arbitrary material properties. It is customary
to use the elastic criterion as 2 guide in chooeing the time step for an
alastoplastic material. For an elastic spring-mass system, the stable time
integration step should be no more than about one tenth of its period [7].
For a bi-linear elastoplasticbmaterial, this criterién still works since the
plastic modulus is always smaller than the elastic modulus. For an endo-
chronic material, the elastic criterion should be used with care because the.
slope of the constitutive equation <aring the motion of the system may be
greater than the initial slope which is normally used in determining the
. stability criterion. The time step used in obtaining numerical solutions in
this study'is T/100. This time step yields satisfactory results with the
only exception of Fig. 57, where two kinks are noted in the resulting endo-
chronic stress-strain curve. These kinks will disappear when a smaller time
step is used.

Before going into two dimensional continuum problems, we will point out
that the constitutive relations used in the one dimensional spring-mass
system are represented exactly by the numerical model. This is no: true for
an elastoplastic problem when more than one stress component is involved.

We present the final constitutive equations for general bi-linear elasto-

plastic and one-term endochronic materials in the following:
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For an elastoplastic material, the constitutive equations for ohtaining
stress increments from strain increments are

e
dqij 2|.|de:|.j + K 6 de 3

ij

e . - .

deij = deij : if f(oij) < k or if f(cij) « and df < O3 ai
e f(a,,)

deij = deij - dh(oij) aaij ;s 1if f(gij) = g and df 2 03

where cij’ eij are the stress and the strain components, f is the yield functionm,

¥, K and k ar2 material properties, sij is the Kronecker delta and dA is given by

o Zugijdeij + Kgiidejj A Bf(oil) a2
2uByg8yy T KBy48yy F mloyyByy T opByy ST T By,

and m is a work hardening parameter.

The constitutive equations for a one~term endochronic material are

o BdE
13 % ~ 198, C1y My S

RN
A

BAE =8 [(de )+ (dei:l ij)]

do = 2ude

13 + = (K 2u)é

i3

where “1,31’ ¥, K are material properties. Index notation is used in writing

Eqs. (11) to (13) and repeated indices indicate summation. The constitutive )
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equations for particular cases such as plane strain or stresa can

be derived from the above general formulations for both material modela.

Equation (13) shows that the stress increment daij is linearly related to thé

%

— ° the
stress ¢ 1j which can be written as c\i j + dag 13 Jwhere c‘i 3 is the stress at

previous time step. Hence, Eq. (13) can be reformulated such that inj is a

function of cij° rather than oy 13 which is unknown. By doing so, the endochromic

constitutive relations yield @ unique stress increment at any time onmce the strain

history, strain increment and previcus stress are given. An examination of

Eqs. (11) and (12) indicates that this is not true for an elastoplastic model.
Hence, either an ‘iterative technique must be used or the time step must be so
small that dc'j can be reglected compared to oij° so that Gij_in these equa-
tions can be replaced by cij This implies that a time step much smaller than
needed for stability must be used for some problems. Hence, it is important

to do 2’ convergence tesE'Bﬁ the ‘effects of time step ‘when there are no experimental
data or other solutions available for comparison.

An existing finite-element code based on the corotational coordinate finite
element method was modified to accept a comstitutive formulation in terms of
endochronic plasticity theory. The accuracy of this code is well studied in (8] for
axisymmetric shell problems. The time step is taken as half of what is needed
for an elastic system. This time step 1is stable for en elastoplastic system
but is not necessarily stable for an endochronic model as explained before.

Since our purpose is to evaluate endochronic theory, the same-time'step is used
for all material models. Von Mises' yiela criterion is-used inbcomputing the
elastoplastic responses for the following continuum problems.

The first example of a two dimensional continuum problem is that of a

clamped sphericai cap eubjected to suddenly applied uniform pressure on its

* Elastoplastic comstitutive equations for plane stress and plane strain are
available in [8]

* Endochronic constitutive equations for plane stress and plane strain are
supplied by H. C. Lin.
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convex surface. The geometrical dimensions and material properties of the cap
. are: radiuc of curvature, R = 5,657 x 10'1 m (22.27 in); thicknesa, h =
1.041 x 1072 m (0.41 in); half angle of cap, o = 26.67%; elastic modulus,

E = 7.239 x 1010 Pa (10.5 x 106 psl); plastic modulus, Ep = 1,448 x 109 Pa
8 4

5

Pa (2.4 x 10" psi); mass

(2.1 x 10” psi); yileld stress, oy = 1,665 x 10

density, P 2,618 x 10 Kg/m (2 45 x 1074 lbf—sec /in ) and Poisson 's ratio,

-0 = 0.3. The equivalent material parameters in the endochronic formulation are
a =49 and B = 8 75:'"tﬂé—;;;££lﬁﬁémbé':he step pressure is 4 137 X 106 Pa '
(600 psi). 'The problem is studied by assnming either a plane stress of a
plane strain condition exists in theé dirféction Hofi’ to the surface of the cap.

The apex displacements of the cap obtained by using the classical elastic,
classical elastoplastic, and the endochronic constitutive laws for the plane
strain case are shown in Fig. 74. The results obtained for the plane stress

case are shown in Fig. 75. For comparison, the results of Nagarajan and Popov [9]
were also presented in both Figs. 74 and 75. From these results, we see that
noticeable differences are introduced when the endochronic theory is used. The
results using an endochronic constitutive law compare favorably with the con-
ventional elastoplastic isotropic ﬁorkrhardening assumption as far as dynamic
response at the apex of the cap is concerned. In the endochronic approach, due
to the earlier deviation from the linear elastic line (as can be seen from the
uniaxial stress-strain curve), the results show more "plastic" deformation than
the classical theory. The mean value of displacement is thus higher in the
endochronic theory than in the classical theory. It can also be seen that the
amplitude of vibration is somewhat smaller in the endochronic result than in -

the classical result. This is due to the greater dissipation of energy and

the resultant greater damping effect when compared to the elastoplastic and
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linear elastic cases. The creep phenomena of the endochronic model under the
action of external pressure are again observed in these resgulta. It seems

that all the characteristics of one dimensional endochrcnic models aré.pre-

served in this cap problem.
Next, a hardening system was examined - g clamped circular plate
laterally loaded over a circular central region with sheet explosive. It is

assumed that a plane stress condition will be valid ESE_EEE_SiQEE:Hﬂfié;_75"f—

shows the resulting nondimensional apex displacement versus time for 6061-T6
aluminum, The plate geometry is: thickness, h = 1.588 x 10-3 n (1/16 in) and

diameter, D = 1,524 x 10"1 m (6 in.). The material properties used for aluminum

0 pa (1.029 x 107 psi); E, = 3.75 x 108 ra

4

are :  E, = 7.098 x 10
(5.444 x 10° psi); o, = 2.923 x 10® Pa (4.240 x 10" psf); ultimate stress,
c, = 3.096 x 108 Pa (4.490 x 104 psi); mass demsity, p= 2.680 x 103 Kg/m3
(2.508 x 10'4 1hf-se¢2/1n4)‘and‘v = 0,3. The applied impulse is I = 1.67 N-s;
it is assumed to be uniformly distributed over a central circular region

of diameter 5.080 x 10"2 m (2 in.). The parameters used for the endochronic
model are a = 2,755 x 10* and B = o.d;zsz.*

The experimental result and another finite difference numerigal result
DEPROSS were taken from [10]. It appears that all numerical results are in good
agreement with the experimental result. Fig. 77 shows the results obtained
for a similar problem where h = 3.175 x 10-3 m (1/8 in) and T = 1,96 N-s.
Reasonable agreement is observed between numerical results at least for the
peak displacement. Fig. 78 shows the apex response of a 1022 steel plate

3

whose dimensions_are exactly those of Fig. 76 (h = 1.588 x 10~ m)

and whose materiai p;;;ééters are: E, = 1.960 x 1000

7

Pa (2.842 x 10" pse);

4

E, = 3.618 x 107 Pa (5.248 x 10° psi); o. = 5.585 x 10° Pa (8.1 x 10% psi);

y
o = 6.205 x 10° Pa (9 x 10* ps1); p=7.789 x 103

Kg/m> (7.288 x 10°% 1b -sec?/

* Values for (al) and (Brl are supplied by B. C. Lin
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3k

3 and gi-'2'045 x10 . Very .good

10*) w=0.3; T = 2.20 Nes; a=2.222 x 10
agreement is again noted. No-creeping from endochronic model is observed in
these results since the impulses are treated as initial velocity conditions.
It is noted that the endochronic parameters %'and %'used in these im-
pulse problems are not obtained by using Eq. (10). This is done in order to

get closer resemblance between the constitutive curves near the yield point,

since Eq. (10) bést fits the bi-linear curve at ¢ + 0 and € + » and.

fits worst around the yield point. Better results are obtainable by .
adjusting alénd Blto best fit the endochronic constitutive equations to experi-
mental data at the regions of interest.

The last example is the penetration of one short solid nickel cylinder
into another short but wider aluminum cylinder. The geometric dimemsions of

the cylinders and their configuration at the instant of impact is presented in

Fig. 79. Since the problem is axisymmetric, only the shaded area needs to be
studied. The problem is represented by a finite element model composed of
236 nodes and 400 corotational triangular- elements. For this example, the

cylinders are assumed to be bonded to each other such that no slippage can

»
-*

The material properties for nickel are: E, = 1.963 x 1011 Pa; Ep = 2,413 x 109 Pa;

occur'Between the two surfaces and the materials are not allowed to fracture.

Gy = 6.200 x 108; v =0,3; and o 8.86 x .103 Kg/m3. The ﬁ;terial properties
for aluminum are: E, = 7.65 x 1010 Pa; Ep = 8,045 x 108 Pa; °y = 3,1x 108 Pa;
v = 0,3; and p° = 2,785 x 103 Kg/m3. The velocity of the projectile at the instant
of impact is 500 m/s.

Severe distortions are expected for this example. Hence, the nonlinear
Mie-Griineisen quation of state relating the hydrostatic pressure p and density
change u is used in place of the linear equation used in the previous examples for

both the elastoplastic and endochronic models. This equation can be written

* Values for al and Bi are supplied by H. C. Lin.
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where

and
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1]

P o= B+ Kyu” + Kyu?)(L - TE ) + TQL + wo.E

' = T, +An + By 'l-(:].|3

The specific internal emergy, E, is obtained from the work done by various

stress. ’ and K, are material dependant constants; Ty, A, B, and C are
3

Griine
and p

used

isen coefficients. The initial density and density during motion are p°

» respectively, The following values in SI units obtained from [11l] are

for this example:

M - K =1.963 x 107, K, = 3.750 x 10', R, = 0,

To = 1.91, A = 8,007, B = 3.528 x 10" and C = -5.982 x 10%

AL - K =7.65x 10t K, = 1.659 x 1011, R, = 4.28 x 1010,

Ty = 2.13, A= - 7.245, B = 2,471 x 10" and C = -3.257 x 10"

The final configurations of the cylinders before failure occurs for elasto-
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plastic, endochronic and linearly elastic models using various . time integration

steps are shown in Fig. 80. Failure is defined as when an element is so
severely deformed fh&f-IEBwaEE'Eﬁsﬁﬁéé“éiﬁﬁ_ﬁﬁfiﬁé'émEihE“éEEp}'—Ailf"’ T
time steps used in Fig. 80 are much smaller than required for stability for a
linear elastic system. It can be seen that a stable time step may not guarantee
accurate results in the elastoplastic case. The material behavior is more
like plastic flow theory only when the‘time step is much smaller than the
stability requirement. It behaves more like a total-deformation-theory
material when the time step is large (but still well below the stability
requirement). The cause of this high sensitivity to time step for this
problem is the inability to formulate the stress increment in terms of knowm
quantities for an elastoplastic model as previously discussed. Since no
criterion exists for determining the time stép for accurate solution, it is
suggested that a parameter study on the éffect of time step size be performed for
this type of problem when an elastoplastic model is used.

A severely distorted strip along the 45° direction is lost in the elastoplastic
model when the time step is greater than 0.05 us. This strip is observed in
all endochronic solutions; furthermore, no appreciable difference in solution
exists over a wide range of time steps. All endochronic solutions show two
severely distorted strips - one along 45°, another one along 90°, while the
elastoplastic ones show two strips only when time steps are not greater than
0.05 us. TFig. 81 shows the final coﬁfiguration of the endochronic model before
failure. The circles indicate the position of the interface of the two cylin-
ders. It is interesting to note tiuct the severe distortion does not occur at
the interface. The endochronic parameters for this penetration problem are

computed from the elastoplastic parameters by using Eq. (10).
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CONCLUSION

Extensive numerical studies have been performed for spring-mass systems
and axisymmetric continuum systems using various constitutive models. The
following conclusions were made:

(1) Perment plastic strains are larger and occur at lower stress

levels in the endochronic model than in th~ elastoplastic model
when they are connected by Eq. (10).

(2) Hysteresis loops occur for an endochronic model when the
system 1s subjected to initial displacement or velocity
conditions.

(3) An endochronic model creeps when subjected to an external
force. However, hysteresis loops start forming immediately
after removal of the externmal force.

(4) Better agreement with the elastoplastic solution can be
obtained for a particular range of interest by adjusting values
of uland Blrather than using Eq. (10), which gives the best fit to
the bi-linear elastoplastic material only as € -+ 0 and € + »
and which fits worst around the yield point.

(5) The stress increment can not be formulated with reasonable
effort in terms of known quantities for a multi-dimensional
elastoplastic model. Hence, much smaller time steps are
needed for accurate solution of an elastoplastic model.

No such difficulty exists for an endochronic model.

(6) Physically reasonable qualitative solutions are obtained for
the endochronic model for all the problems studied.

(7) Numerically unique and stable solutions are obtained for

all the constitutive models.
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(8) An endochronié model may be physically unstable in the

sense it may creep with respect to the intrinsic time.

(9) The endochronic model has higher numerical efficiency

compared to the elastoplastic model in multi-dimensional

problens.,

(10) The creep phenomenon of an endochronic model can be used

as a safety factor in design problems.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 10* N. “solid line - endochronic
solution; chain-dashed 1ine - elastoplastic solution.
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Dynamic responses of a spring-mgss system that is subjected
to a step loading of 4.448 x 10° N. Solid line - endochronic
solution; chain-dashed line - elastoplastie solution.
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Dynamic responses of a spring—mass system that is subjected
to a step loading of 4.448 x 10° N. Solid line - endochronic
" solution; chain-dashed line - elastoplastic solution.
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Dynamic responses ¢f a spring-mass system that is subjected
to a step loading of 4,448 x 109 N. "Solid line - endochronic
solution; chain-dashed line - elastoplastic solution,
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Figure 36

Dynamlc responses of a spring-mass system that is subjected

to an initial displacement equivalent to 0,1% strain, Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution,
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Figure 37

Dynamic responses of a spring-mass system that is subjected

to an initial displacement equivalent to 1% strain, Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution,
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Figure 39

Dynamic responses of a spring-mass system that is subjected

to an initial displacement equivalent to 1% strain. Solid
lipe - endochronic solution; chain-dashed line - elastoplastic
solution.

-69-




Ope;1.E—1d;A49; Bs -

ooga% \‘HWA
i

AT

= (il | '
e 0096 - it A A J[ "
5 \A\(‘ \
O ) ! |
O |
o 0094 - N U ‘ ', \ |, \l | ‘v ’ )
.ﬂ , ! , ! ’ ! l
(@] \ \’ J |l ‘1' ‘ 1
0-092 - \ \: .] \’r ] l.
0-090 ! T
00 +0 20 30 40 50
Time,sec *10
FFFFFF 40
ynal ~mass Sys tha subjected
to a d valent 10% . Solid
s(i’.;.l‘elt d -dashed 1lin lasto

~0/-




QD@%A = 1d A49 B8.75:E1.E7 ‘

o L1

-1000:0 ,
0-0 1-0 20 30 40 50 \
Time,sec *10
Figure 41

Dynamicvresponses of a spring-mass system that is subjected
to an initial displacement equivalent to 10% strain. Solid

line - endochronic solution; chain-dashed line -.elastoplastic
solution.
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Figure 42

Dynamic responses of a spring-mass system that is subjected

to an initial displacement equivalent to 10% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 44

Dynamic responses of a spring-mass system that is subjected

to an initial displacement equivalent to 100% strain. Solid
line - endochronic solution; chain-dashed line ~ elastoplastic
solution. .
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Dynamic responses of a spring-mass system that is subjected

to an initial displacement equivalent to 100% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution. -
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Dynamlc responses of a spring-mass system that is subjected

to an initlal velocity equivalent to 200% strain/second.

Solid line - endochronic solution; chain-dashed line - elasto-
plastic solution.
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-Dynamic responses of a spring-mass system that is subjected

to an initial velocity equivalent to 200% strain/second.

Solid line - endochronic solution; chain-dashed line - elasto-
plastic solution.
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Flgure 48

. Dynamic responses of a spring-mass system that is subjected

" to an initial velocity equivalent to 200% strain/second.
Solid 1line - endochronic solution; chain-dashed line - elasto-
plastic solution.
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Dynamic responées of a spring-mass system that is' subjected

to an initial velocity equivalent to 2 x 1037 strain/second.

Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 50

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 107% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 51

" Dynamic responses of a spring-mass system that is subjected

to an initial velocity equivalent to 2 x 103% strain/second.

Solid line - endochronic solution; chain-dahsed line -
elastoplastic solution.
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Dynamic responses of a spring—mass ‘system that is subjected

to an initial velocity equivalent to 2 x 1042 strain/second.

Solid line ~ endochronic solution, chain—dashed line -
elastoplastic solution o :
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Dynamic responses of -a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10%% strain/second.
Solid line -~ endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system tgat is subjected
to an initial velocity equivalent to 2 x 10
Solid line - endochronic solution; chain-dashed 1line -
elastaplastic solution,

% strain/second.
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Dynamic responses of a spring~mass system that is subjected
to an initial velocity equivalent to 2 x 10’% strain/second.
Solid line - endochronic solution; chain-dashed line -

elastoplastic solution.
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Figure 57

Dynamic responses of a spring-mass system that is subjected

to an initial velocity equivalent to 2 x 10°% strain/second.

Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 58

Dynamic responses of a spring-mass system tgat is subjected
to an initial velocity equivalent to 2 x 10°% strain/second.

- Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 59

Dynamic responses of a spring-mass system that is subjected

to an initial veloecity equivalent to 2 x 10°% strain/second.

Solid 1line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 60

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10°% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is sugjected
to a rectangular pulse whose magnitude is 4.448 x 10" N and
whose duration is 0.5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Figure 63

Dynamic responses of a spring-mass system that is sugjected
to a rectangular pulse whose magnitude is 4.448 x 10" N and
whose duration is 0.5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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- Dynamic responses of a spring-mass system that is sukjected
to a rectangular pulse whose magnitude is 4,448 x 10" N and
whose duration is 2.3T. Solid line -~ endochronic solution
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is sukjected
to a rectangular pulse whose magnitude id 4.448 x 10" N and
whose duration is 2,3T. Solid line ~ endochronic solution;
chain~dashed line - elastoplastic solution.
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Figure 66

: Dynamic_reapbﬁaea of a spring-mass system that is subjected

to a rectangular pulse whose magnitude 1s 4.448 x 10% N and

_ whose duration 1s 2.3T. Solid line - endochronic solution;
" chain-dashed line ~ elastoplastic solution,
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Figure 67
Dynamic responses of a spring-mass system that is su?jected
to a rectangular pulse whose magnitude is 4.448 x 10" N and

whose duration is 5T.. Solid line ~ endochronic solution;
chain-dashed line ~ elastoplastic solution.
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Figure 68 :

Dynamic responses of a spring-mass system that is suzjected
to a rectangular pulse whose magnitude is 4.448 x 10" N and
whose duration is 5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution,.
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Figure 69
Dynamic responses of a spring-~mass system that is suzjected

to a rectangular pulse whose magnitude is 4.448 x 10" N and
whose duration is 5T, Solid line ~ endochronic soltuion;

‘chain-dashed line - elastoplastic solution,
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Figure 70

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 104 N and
whose duration is 5T. Double precision 1s used. Time inte-
gration step used is an integer fraction of T. Solid line -
endochronic solution; chain-dashed line - elastoplastic
solution. .
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Figure 71

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 8§.896 x 104 N and
whose duration is 6T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Figure 72

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 8.896 x 10" N and
whose duration is 6T. Solid line - endochronic solztion;
chain-dashed 1iae - elastoplastic solution.
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Figure 73

Dynamic responses of a spring-mass system that is suzjected
to a rectangular pulse whose magnitude is 8.896 x 10" N and

" whose duration 1s 6T. Solid line ~ endochronic sciution;
chain-dashed line - elastoplastic solution.
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PLANE STRESS

Dynamic apex responses of a clamped spherical cap

that is subjegted to a uniform step pressure loading
of 4.137 x 10 FPa on its convex surface. Plane stress
condition is uscii,
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Figure 76

Dynamic central responses of a clamped aluminum plate (thickness =
1/16 inch) that is subjected to sheet explosive applied over a

, circular central region.
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Dynamic central responses of a clamped aluminum plate (thickness ?,
1/8 inch) that is subjected to sheet explosive applied over a
circular central region.
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Figure 78

Dynamic central response of a clamped steel plate (thickness =
1/16 inch) that is subjected to sheet explosive applied over

a circular central region.
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Geometrical configuration of the projectile
and the target at the instant of impact,
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Final configuration of the projectile-target
Figure 81 system using one~term endochronic constitutive

theory. Circles indicate the interface of pro-
iectile and target. :




