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ON THE UNIQUENESS AND STABILITY OF ENDOCHRONIC PLASTICITY THEORY

B. J. Hsieh

Abstract

Several numerical and analytical analyses are described

which evaluate the uniqueness and stability of solutions of

structural models whose material behavior is governed by

the endochronic theory of placticity. The simplest form of

this theory is used in both one- and two-dimensional problems.

It has been found that this simplest form does show some

"material instability" in the sense it does not satisfy

Drucker's postulate, when subjected co a limited loading

cycle. In other words, an endochronic material creeps under

the action of applied force. However, this "instability" or

"lack of a hysteresis loop" can be circumvented by using

more complicated forms of the endochronic theory.

It is also noted that even the simplest endochronic

model yields very good results compared to those of an

elastoplastic model when the structural model is subjected

to conditions wherein loading predominates. Uniqueness and

stability of the solution are observed in all such cases

studied. The numerical efficiency and the minor effect of

unstable material behavior in the simple endochronic theory

make it attractive in safety analysis of many structures where

peak deformation is of paramount importance.
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INTRODUCTION

The endochronic theory of material behavior was purposed by K. C. Valanis

[1], and uses the principle that the history of deformation is defined in terms

of a "time scale" which is not the real time, but is in itself a property of

the material. No use of the classical yield surface concept is required in this

theory. It was used by Valanis [2] to predict the mechanical response of

aluminum and copper under conditions of complex strain histories. One consti-

tutive equation described with remarkable accuracy and ease of calculation

many phenomena, such as cross-hardening, loading md unloading loops, cyclic

hardening as well as the effect of pre-shearing on tension behavior. Z. P.

Bazant and his co-workers further developed the theory to describe the

liquefaction of aand [3] and the inelastic behavior and failure of concrete [4].

The use of a two-dimensional endochronic constitutive relation in dynamic transient

analysis of shells was first considered by H. C. Lin [5].

Basically, the endochronic theory uses an "intrinsic time" in place of real

time in the visoelastic constitutive equations. In other words, the time

convolution integrals present in viscoelasticity are replaced by the "intrinsic

time" convolution integrals. Obviously, the accuracy of an endochranic model in

describing the behavior of a real material is dependent on the form of the

"relaxation" function, G, and on the definition of intrinsic time. Important

material phenomena may be lost when either is not defined properly. In such a

case, the applicability of an endochronic model must be limited to a restricted

class of problems.

I. S. Sandier [6] recently pointed out that the use of a simple endo-

chronic model causes the material to be unstable and, hence, non-uniqueness of

problem solutions can result. In this study, we show that the stability of a
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materlal Is a natter of definition, and the stability of an endochronic model

can be improved by using a more realistic "relaxation function." Furthermore,

in a practical sense, unique and stable numerical solutions can be obtained

for a structure whose material may violate Drucker's criterion of stability.
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STABILITY OF MATERIALS

Drucker's stability criterion for materials as used in Sandier*s paper is

simply that no material is allowed to have negative material damping. The

simple endochronic models used by Sandier and Valanis, however, show negative

damping when subjected to certain strain or stress histories. In order for a

material to have positive damping, the constitutive law must be able to form

a hysteresis loop upon a complete loading and unloading cycle. To show the

inability of some endochronic models to form hysteresis loops, consider the

simplest endochronic model used by Valanis [2] which is given by

Eode • da + aadz; adz • TToe I<*e I» 8d£ • 8, d| e| (1) *,

where a and e are the stress and the strain, Eo is the initial slope of the one-

diinensional stress-strain curve, and a., S, are material properties that are

determined from a one-dimensional tension test. If we define loading and un-

loading as when de > 0 and when de < 0 respectively, then we have

. / °i&ia\ (-) loading
2S I1+ei ) ' (+)ds y° + 1+ei ) ' (+) unloading
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For a hysteresis loop to be formed as shown in Fig. 1, the unloading

and loading paths must intersect each other. Let the two points of extreme

stress value on the loop be denoted by A and B, then the slope of the line

connecting A and B is simply (0° - °n)/(&A ~
 e

R ) - The mean value theorem

of calculus then states that there exists two points, x and y,, whose coordinates

are (o , e ) and (o , e ) on either side of the line AB, and their slopes are

the same as that of line AB. By assuming the positions for x and y and using

Eq. (2) with appropriate signs, we find thefollowing condition

for the formation of a hysteresis loop for the model depicted by Eq. (1).

Since £ is a monotonically increasing positive number, Eq. (3) indicates that

a and 0 must be opposite in sign for hysteresis loop formation. When thex y

stress or strain history is such that a material always stays in either tension

or compression, the endochronic constitutive law given by Eq. (1) may behave

in an unstable manner in the sense described by Sandier,

Stress-strain curves for an endochronic model subjected to different

strain histories are shown in Figs. 2 and 3 by using Eq. (1). These results

are obtained by connecting a mass to a massless endochronic spring. The

values for Eo, a., ft. are 6.895 x 10 Pa (1 x 10 psi), 49,and 8.75; the mass
—2 ' —3

used is 4.378 x 10 Kg (3.000 x 10 slug). The unstable behavior shown in

Fig. 2 is obtained by subjecting this spring-mass system to a suddenly applied

constant force of magnitude 4.448 X 104 N (104 lbf) while the stable

hysteresis loops are obtained by subjecting the system to an initial displace-

ment that is equivalent to 12 of straining in the spring. These results confirm
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the condition derived in Eq. (3) for the formation of hysteresis loops.

It should be noted that even though the "unstable" constitutive relation

shown in Fig. 2 may not be a realistic representation of a real material be-

havior as we know it, it does not mean that such a material may never exist.

However, we'll show that such unstable behavior of an endochronic model

can be improved.

The endochronic model represented by Eq. (1) is obtained by assuming

the intrinsic relaxation function 6 to be a single exponential function, i.e.

G(z) - E.e""02 (4)

It is, therefore, reasonable to improve the accuracy of the constitutive model

by including more terms in the relaxation function, say

G(z) - Eo + E i e "' (5)

The differential constitutive equation corresponding to the above equation is

simply

(Eo + E1)dc + Eoe (adz^ » do + (adz) a (6)

where Eo> E- are material parameters and adz is defined in Eq. (3). The

equation for the slope of the stress-strain curve is,, therefore, given by
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,,_ a-g, (+) loading

g - <E0 + h ) * (E.e - a) ̂  ; (.} ̂ ^ (7)

The necessary condition for a hysteresis loop can now be derived as in the

previous case to be

E» ex" °x + Eo6y " gy (8)
1+6500 "" 1+65 (y)

From this, we see that there are possibilities for a hysteresis loop to be

formed even for the cases where o and a have the same sign. A hysteresis
x y

loop for a copper specimen subjected to unloading and reloading in tension is

excellently reproduced by using Eq. (6) in [2]. It is reasonable to assume

that other types of loading-unloading-reloading may be described by using

more general forms of the relaxation function.

It should be emphasized that no single constitutive law as yet can describe

all the material behavior observed in laboratories. That is, most constitutive

laws are accurate in describing certain materials under certain conditions

only. It is important to use appropriate constitutive laws for practical

problems. However, the inability to represent a material in some situation

by a constitutive law should not exclude its usefulness in representing the

material in other situations. It will be shown later that the simple one-term

relaxation function used in Eq. (!) can predict reasonably good results for

many practical problems-

We reiterate that a constitutive law is simply a model used to approximate

the behavior of a material. Certain models may represent some materials
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better than others in some situations and vice versa. The "unstable" behavior

of the one-term endochronic model, hence, should be treated carefully when it

occurs. It could be used to compute the upper bounds of solutions for real

problems similar to the use of the elastic-perfectly-plastic constitutive

model in limit analysis. The cause of this unstable behavior will be discussed

later.
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UNIQUENESS OF SOLUTION

The uniqueness of solution to a system of equation is defined as when one,

and only one, set of results is obtained when the system is subjected to a set

of initial and boundary conditions. Non-uniqueness of solution exists if more

than one set of results are possible when the system is subjected to the same

conditions. The question of uniqueness of an endochronic model was discussed

by Sandier [6] for both a spring-mass system and a continuum system. The

spring-mass system in [6] is formed by slowly adding weights to a one-term

endochronic spring and then subjecting this system to a small excitation; the

continuum system is a prestressed rod subjected to a stress history at one

generic point.

The response of such a spring-mass system obviously depends on the

magnitude of weight, direction of excitation, etc. The computed response for a

system (c^ - 49, ^ * 8.75 and Eo * 6.895 x 10 Pa) that is first extended to a

state of 8% strain and then subjected to an initial displacement that is

equivalent to 0.1% are shown in Figs. 4-6. The results of the same system

subjected to an initial displacement of -0.1% are shown in Figs. 7-9. The

unstable response predicted in [6] is clearly observed in these figures. The

strain histories are qualitatively represented by the displacement histories

since they differ only by multiplicative constants. In both cases, the

stresses oscillate about certain values while the strains drift as predicated
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in [6]. However, this drifting of displacements (strains) may not go unbounded

within a finite time, since the velocity histories shown in Figs. 5 and 8 clearly

indicate the vaniching of velocity of the mass.

The weight used in the above example causes the spring to be extended

to a strain of 8%. This makes the initial equilibrium position of the mass

well into the plastic range. One would hope that the unstable behavior

would be less severe if the system is pre-strained to a lesser degree by using

a smaller weight. The responses of a system whish is pre-strained to 0.1%

and then subjected to initial displacements equivalent to -0.001% and +0.001%

are shown in Figs. 10 and 11, respectively. It can be seen that no improvement

is observed by setting the initial state in the "elastic range." This surprising

result may be caused by the use of a much smaller mass, since the r?-straining

is generated by the weight of the mass. It is worth mentioning that the stress-

strain curves for these results all have forms similar to that of Fig. 2.

To circumvent the complexity generated by the use of different masses, the

mass is now set to a constant value of 4.378 x 10 Kg, then the system is

subjected to various external excitations .torn its initially undisturbed state.

The qualtitative responses are independent of the directions of the external

excitations, since no initial strain exists. Figs. 12, 13, and 14 show the

displacement histories of the system subjected to suddenly imposed initial

displacements equivalent to -1%, -0.5%, and 0.1%, respectively. The stress-strain

curves for these cases all have forms similar to that shown in Fig. 3. The dashed

lines in these figures are the equilibrium positions of residual vibrations of

the associated linearly elastic, perfect plactic systems that have the same
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initial Young's moduli and yield strrsses as-those of endochronic models.

Figure 15 is the response when the system is subjected to a very small initial

velocity which is equivalent to 0.22 strain per second. The classical linear

elastic solution is identical to the endochronic model in this case and the

endochronic stress-strain curve is a straight line.

M l these results show that the endochronic theory prodicts results

different than those of the classical theories. The final equilibrium positions

of this theory are larger than those of the linearly elastic, perfectly plastic

theory. However, no instability or non-uniqueness phenomenon is observed in

these models. It is important to note that the unstable behavior shown in

earlier examples exists only when external forces are present through the use

of weights. This unstable behavior is actually the creep phenomenon of the

endochronic model with respect to its intrinsic time instead of real time,

as can be seen by considering the similarity between endochronic and viscoelastic

theories. Whether a creeping material should be termed as unstable is a question

of definition; it does not present any difficulty in problem solving.

The possibility of non-uniqueness of solution to the spring-mass system

proposed by Sandier [6] does not exist. Sandier presented an interesting and

useful model to uncover some "undesired" behavior of a simple endochronic

model. However, the small disturbance used in his example and previous studies

should not be interpreted as an error which expresses the difference between the

numerical and analytical "exact" solutions. A computer does not know the real

problem, it see3 only a specific model and solves it with certain accuracy. There-

fore, the exact solution is meaningless to a computer. A numerical solution is

obtained in a computer by applying prescribed methods to the equilibrium equation

or equation of motion. Hence, the numerical solution always satisfies the

equilibrium equation exactly within the accuracy of the said computer.
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We reiterate that though the "erroneous" numerical solution may be different

than the "exact" solution to a real problem, it is the "exact"

solution that satisfies equilibrium within the accuracy of a computer.

The continuum model used by Sandier to study the non-uniqueness of an

endochronic model is a rod initially at rest and at equilibrium under the

pressure oo. At t • 0, a generic point of the rod is brought to a state of

(J - a2 and v - 0 where v is the "velocity. The solution obtained

by Sandier is

°»P(VUN " VLD ) V

where p is the density, V ^ and V^ are the unloading and "loading wave speeds,

and v is the velocity of the rod in the region bounded by the unloading and

loading wave fronts.

For a bi-linearly elastoplastic material, the loading and unloading wave

speeds are the same, hence a. » ao. That is, for an elastoplastic rod at rest,

no point.can be brought to another stress level and have the point still at rest

except when the stress change is trivial. For an endochronic rod, however, this

change of stress is possible as indicated by Eq. (9). A unique solution is

obtained, since ?_ is an initial condition while v is part of a solution set, '

according to the previous definition of uniqueness. In other words, Eq. (9) states

that if a point is brought to another stress state and is again at rest, a

definitive wave propagation of disturbance from this point will occur. Another

point of view is: an elastoplastic material does not know whether it has been

subjected to a complete stress cycle or not at t • 0 since the effects cancel

each other out because the speeds for loading and unloading are identical; but
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an endochronic material knows. It seems that the endochronic solution is

"more unique" than the bi-linearly elastoplastic material from this viewpoint.
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RANGE OF APPLICATION

No single constitutive law has been found to include all observed material

behavior. To see the range of applicability of the one-term endochronic

theory, one dimensional spring-mass and two dimensional continuum systems

are studied.

The spring-mass system is formed by attaching a concentrated mass m to

the spring which is either endochronic or bi-linearly elastoplastic. The

system is initially at rest without pre-straining and is suddenly subjected

to a step loading or to various initial conditions. The one-term endochronic

and bi-linearly elastoplastic constitutive equations are related by the

following equations

n - Eo/E ; B, - E /o0; a. « n-1; a - ao/(l- —) (10)

where Eo, E are the elastic and plastic moduli of the material and a is the

initial yield stress. The material parameters used are a, r- 49; ($., • 8.75;

Eo = 6.895 x 10
1 0 Pa; ay = 1.608 x 10

8 Pa and m = 4.378 x. 10~2 Kg.

Figs. 16 to 33 are the responses of the spring-mass system subjected

to step loadings of various magnitudes obtained by using the one-term

endochronic theory and the bi-linearly elastoplastic theory. The former

responses are represented by solid lines and the latter by chain-dashed lines.

The loading magnitudes vary from 4.448 N (1 lbf) in Figs. 16-18 to 4.448 x 10 N

(10 lbf) in Figs. 31-33. The responses include the displacement (strain) histories,
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the velocity histories and the stress-strain curves. For loadings smaller

than 4.448 x 10 N (10 lb_), both endochronic and elastoplastic theories

reduce to linearly elastic theory and the results are almost identical to each
2

other. For median loading that lies between 4.448 x 10 N (100 lbf) and

4.448 x 10 N (10,000 lb f), the endochronic displacements are consistently

higher than those of the elastoplastic model, the amplitudes of the endochronic

displacement oscillation, however, are damped out as time increases as Indi-

cated by the vanishing amplitudes of the velocity histories. This difference

is mainly caused by the fact that endochronic materials have different stiff-

ness properties during unloadings and reloadings as shown in Figs. 27 and 30

The elastoplastic unloading-loading curves form straight lines and the

endochronic ones form zigzag patterns. For loadings not less than

4.448 x 10 N (1 x 10 lb), the responses are very similar. Hence, only the

results for loading 4.448 x 10 N are presented in Figs. 31-33.

The free vibrational responses of the spring-mass system subjected to

initial displacements 'equivalent to from 0.1% to 100% strain are shown in

Figs. 34-45. The elastoplastic solutions (chain-dashed lines) for displace-

ments and velocities are simple harmonic motions with constant amplitudes,

while the endochronic ones are simple harmonic motions with decaying amplitudes.

Again, the equilibrium positions of residual vibrations of the endochronic

material are larger than those of the elastoplastic ones. Furthermore, the

endochronic equilibrium position is never its initial equilibrium position,

though this is so for the elastoplastic one if the initial displacement is

not greater than half of the initial yield strain (displacement) as shown in

Fig. 34. It should be noted that hysteresis loops are observed in all these

initial displacement examples.
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Figa. 46 to 6Q show the responses of the spring-mass, system subjected

to various: initial velocities. For a velocity equivalent to 200% strain per

second, almost identical responses are obtained for both the endochronic and

elastoplastic solutions as shown in Figs, 46, 47 and 48. For initial velocity

not lower than 2,000% strain per second, the solutions are very similar to the

solutions obtained for the initial displacement cases. Namely, solutions

oscillate about equilibrium positions with constant amplitudes for elasto-

plastic materials and with decaying amplitudes for endochronic ones. The

endochronic equilibrium positions are always higher than those of elastoplastic

ones, and hysteresis loops are observed for the endochronic stress-strain

curves. Note that excellent comparison between elastoplas.tic and enco-r

chronic theories is obtained for the initial velocity of 2 x 10 % strain per

second as shown in Figs. 38-60.

From the above results for a one-dimensional spring-mass system subjected

to various initial conditions or constant loadings, we find that all solutions

are unique. Hysteresis loops are observed for the spring-mass system except

when it is subjected to external loading. In the latter case, the unstable behavior

is simply the creeping of an endochronic material with respect to the intrinsic

time since it is well known that a viscoelastic material creeps under the action

of an external load. The creeping phenomenon of an endochronic model is, there-

fore, expected to cease when the external load is removed. Figs. 61 to 70

show the displacements, velocities and stress-strain curves of the spring-mass
A 4

system subjected to a constant force whose magnitude is 4.448 x 10 N (10 lb.)

and whose durations are 0.5T, 2.3T and 5T where T is the period of the asso-

ciated linearly elastic system. The value of T used is H x 10" sec. and the
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arrow marks on the time axes in these figures indicate the times the loadings

are removed. Tbe solution for the case of 0.5T is very similar to the result

obtained when the system is subjected to an initial velocity. This is ex-

pected because very short duration loadings can be treated as initial conditions.

From the stress-strain curves in Figs. 63, 66 and 69, we see that the strains

for the elastoplastic model are smaller than its initial yield strain (0.233Z) -

and the elastoplastic constitutive equations are straight lines. Hence, the

residual vibrations after the removing of loads oscillate~ab6ut their

initial equilibrium position for the elastoplastic model. It is known, from

the analytical solution [7] of an elastic spring-mass system subjected to

rectangular-pulse loading', that the amplitude of residual vibration is zero

if the load duration is not small and is an integer multiplier of the half period

of the system. The small oscillation after the removing of loading in Fig. 67

is caused by the error in representing the loading duration and the period of

the system by the finite accuracy of a computer. It is expected that the residual

vibration amplitude will be reduced if the accuracy of the computation is im-

proved. Fig. 70 shows the displacement history of the same problem using

double precision Con an IBM machine) and a numerical time integration step

that is an integer fraction of the period. Much smaller residual vibration is

observed though it still exists. This residual vibration may not be eliminated

unless the period of the model seen by the computer is exactly equal to that

of the analytical model; otherwise, a small error in the period will grow

after many cycles of vibration

This phenomenon of no residual vibratiqn when the load duration is an

integer multiplier of the half period is a particular property of a linearly elastic

material. It indicates that a system may have residual vibration when subjected
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Figs. 46 to 60 show the responses, of the spring-mass, system subjected

to various initial velocities. For a velocity equivalent to 20QZ strain per

second, almost identical responses are obtained for both the endochronic and

elastoplastic solutions as shown in Figs. 46, 47 and 48. For initial velocity

not lower than 2,0002 strain per second, the solutions are very similar to the

solutions obtained for the Initial displacement cases. Namely, solutions

oscillate about equilibrium positions with constant amplitudes for elasto-

plastic* materials and with decaying amplitudes for endochronic ones. The

endochronic equilibrium positions are always higher than those of elastoplastic

ones, and hysteresis loops are observed for the endochronic stress-strain

curves. Sote that excellent comparison between elas.toplas.tic and enco^.

chronic theories is obtained for the initial velocity of 2 x 10 Z strain per

second as shown in Figs. 58-60.

From the above results for a one-dimensional spring-mass system subjected

to various initial conditions or constant loadings, we find that all solutions

are unique. Hysteresis loops are observed for the spring-mass system except

when it is subjected to external loading. In the latter case, the unstable behavior

is simply the creeping of an endochronic material with respect to the intrinsic

time since it is well known that a viscoelastic material creeps under the action

of an external load. The creeping phenomenon of an endochronic model is, there-

fore, expected to cease when the external load is removed. Figs. 61 to 70

show the displacements, velocities and stress-strain curves of the spring-mass

4 4system subjected to a constant force whose magnitude is 4.448 x 10 N C10 lb-)

and whose durations are 0.5T, 2.3T and 5T where T is the period of the asso-

ciated linearly elastic system. The value of T used is 31 x 10~ sec. and the
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arrow marks on the time axes in these figures indicate the times the loadings

are removed. The solution for the case of O.ST ia very similar to the result

obtained when the system is subjected to an initial velocity. This is ex-

pected because very short duration loadings can be treated as initial conditions.

From the stress-strain curves in Figs. 63, 66 and 69, we see that the strains

for the elastoplastic model are smaller than its initial yield strain (0.233Z)

and the elastoplastic constitutive equations are straight lines. Hence, the

residual vibrations after the removing of loads oscillate about their

initial equilibrium position for the elastoplastic model. It is known, from

the analytical solution [7] of an elastic spring-mass system subjected to

rectangular-pulse loading', that the amplitude of residual vibration is zero

if the load duration is not small and is an integer multiplier of the half period

of the system. The small oscillation after the removing of loading in Fig. 67

is caused by the error in representing the loading duration and the period of

the system by the finite accuracy of a computer. It is expected that the residual

vibration amplitude will be reduced if the accuracy of the computation is im-

proved. Fig. 70 shows the displacement history of the same problem using

double precision Con an IBM machine) and a numerical time integration step

that is an integer fraction of the period. Much smaller residual vibration is

observed though it still exists. This residual vibration may not be eliminated

unless the period of the model seen by the computer is exactly equal to that

of the analytical model; otherwise, a small error in the period will grow

after many cycles of vibration

This phenomenon of no residual vibration when the load duration is an

integer multiplier of the half period is a particular property of a linearly elastic

material. It indicates that a system may have residual vibration when subjected
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to a loading, but it may be at rest after a certain tjaie when subjected.to 3-

"longer" loading. Figs. 71, 72 and 73 are the results of the system sub-
4

jected to a rectangular pulse whose magnitude and duration are 8.896 x 10 N

u
(2 x 10 lb.) and 6T. The times of load removal a.re indicated by arrow marks

on the time axes. As can be seen, this pulse magnitude hga clearly caused

plastic response of the elastoplastic model.

The termination of creeping phenomena of endochronic models immediately

upon removal of loads is observed in all these results. This confirms our
i

previous premonition of creeping of an endochronic material under the action
j

of external force. Hence, the endochronic material is unstable - in the sense that
|

it creeps with respect to the intrinsic time - when subjected to external

force just as a viscoelastic material does. The results also show that an

endochronic/material has permanent plastic strains when subjected to some

boundary conditions while the elastoplastic material does not. The plastic

strains of an endochronic material are always larger than those of the corres-

ponding bi-linear elastoplastic material subjected to the same conditions.

This is not surprising since the relationship as expressed by Eq. (10) shows

that the endochronic material is softer than the corresponding elastoplastic

material when they are subjected to loading (de>o)only. This is confirmed by all

the results indicating the stress-strain curves for the examples studied.

Better fitting of these curves in some range of strains for specific problems

may be obtained by adjusting the endochronic material parameters, a., B. and Eo.

Whether a real material should be represented by an endochronic or elasto-

plastic model should be decided by its stress-strain curve obtained through

laboratory tests. It is noted that some materials may be well represented by

the bi-linear elastoplastic model such as mild steel, but some materials

cannot, such as lead of copper. It should also be noted that the dividing of
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elastic and plastic ranges by the yield stress causes the transition from

elastic response to plastic response to occur abruptly while no such transi-

tion exists in an endochronic model.

For stable numerical integration of a spring-mass system, the time

integration step should be small enough. No criterion exists for defining

the smallness of time step for arbitrary material properties. It is customary

to use the elastic criterion as s. guide in choosing the time step for an

elastoplastic material. For an elastic spring-mass system, the stable time

integration step should be no more than about one tenth of its period [7].

For a bi-linear elastoplastic material, this criterion still works since the

plastic modulus is always smaller than the elastic modulus. For an endo-

chronic material, the elastic criterion should be used with care because the

slope of the constitutive equation daring the motion of the system may be

greater than the initial slope which is normally used in determining the

stability criterion. The time step used in obtaining numerical solutions in

this study is T/10H. This time step yields satisfactory results with the

only exception of Fig. 57, where two kinks are noted in the resulting endo-

chronic stress-strain curve. These kinks will disappear when a smaller time

step is used.

Before going into two dimensional continuum problems, we will point out

that the constitutive relations used in the one dimensional spring-mass

system are represented exactly by the numerical model. This is noc true for

an elastoplastic problem when more than one stress component is involved.

We present the final constitutive equations for general bi-linear elasto-

plastic and one-term endochronic materials in the following:
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For an elastoplastic material, the constitutive equations for obtaining

stress increments from strain increments are

deii " deij ; lf

e
deij " deij "

K or if .) and df < 0;

?
' if f(ffij> - < and df a 0;

where ô .̂, e^. are the stress and the strain components, f is the yield function,

li, K and K ara material properties., S.. is the Kronecker delta and dX is given by

dX (12)

and m is a work hardening parameter.

The constitutive equations for a one-term endochronic material are

a SdS

(13)

where *lt&±» U, K are material properties. Index notation is used in writing

Eqs. (11) to (13) and repeated indices indicate summation. The constitutive
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equations for particular cases such as plane strain or stress can

be derived from the above general formulations for both material models.

Equation (13) shows that the stress increment dcr is linearly related to th£

stress a .which can be written as a ° + da^. ,where a • is the stress at the

previous time step. Hence, Eq. (13) can be reformulated such that d<7.. is a

function of a ° rather than cr.. which is unknown. By doing so, the endochronic

constitutive relations yield a uniqlie~s"trTss~̂ cre¥en¥lit~any"tHie" once the strain

history, strain increment and previous stress are given. An examination of

Eqs. (11) and (12) indicates that this is not true for an elastoplastic model.

Hence, either art iterative" technique must be used or the time step must be so

small that da ' can be neglected compared to cr ° so that <!., in these equa-

tions can be replaced by o . A This implies that a time step much smaller than

needed for stability must be used for some problems. Hence, it is important

to do a convergence "test" ~on~thei effects of time step when there are no experimental

data or other solutions available for comparison.

An existing finite-element code based on the corotational coordinate finite

element method was modified to accept a constitutive formulation in terms of

endochronic plasticity theory. The accuracy of this code is well studied in [8] for

axisymmetric shell problems. The time step is taken as half of what is needed

for an elastic system. This time step is stable for an elastoplastic system

but is not necessarily stable for an endochronic model as explained before.

Since our purpose is to evaluate endochronic theory, the same time step is used

for all material models. Von Mises' yield criterion is-used in computing the

elastoplastic responses for the following continuum problems.

The first example of a two dimensional continuum problem is that of a

clamped spherical cap subjected to suddenly applied uniform pressure on its

* Elastoplastic constitutive equations for plane stress and plane strain are
available in [8]

* Endochronic constitutive equations for plane stress and plane strain are
supplied by H. C. Lin.
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convex surface. The geometrical diaensionc and material properties of the cap

are: radiue of curvature, R • 5.657 x 10 m (22.27 in); thickness, h •

1.041 x 10 m (0.41 in); half angle of cap, a « 26.67°; elastic modulus,

E o - 7.239 x 10
1 0 Pa (10.5 x 106 psi); plastic modulus, E - 1.448 x 109 Pa

(2.1 x 105 psi); yield stress, a - 1.665 x 108 Pa (2.4 x 104 psi); mass

density, p - 2.618 x 103 Kg/m3 (2.45 x 10'4 Ib--sec2/in4) and Poisson's ratio,"!
_̂_ __ o __ X _ _ _.

V - 0.3. The equivalent material parameters in the endochronic formulation are

a2 - 49 and S1 - 8.75. The magnitude of the step pressure is 4.137 x 10 Pa

(600 psi). The problem is studied by assuming either a plane stress of a

plane strain condition exists in tHe direction"normr.T to the surface of the cap.

The apex displacements of the cap obtained by using the classical elastic,

classical elastoplastic, and the endochronic constitutive laws for the plane

strain case are shown in Fig. 74. The results obtained for the plane stress

case are shown in Fig. 75. For comparison, the results of Nagarajan and Popov [9]

were also presented in both Figs. 74 and 75. From these results, we see that

noticeable differences are introduced when the endochronic theory is used. The

results using an endochronic constitutive law compare favorably with the con-

ventional elastoplastic isotropic work-hardening assumption as far as dynamic

response at the apex of the cap is concerned. In the endochronic approach, due

to the earlier deviation from the linear elastic line (as can be seen from the

uniaxial stress-strain curve), the results show more "plastic" deformation than

the classical theory. The mean value of displacement is thus higher in the

endochronic theory than in the classical theory. It can also be seen that the

amplitude of vibration is somewhat smaller in the endochronic result than in

the classical result. This is due to the greater dissipation of energy and

the resultant greater damping effect when compared to the elastoplastic and
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linear elastic cases. The creep phenomena of the endochronic model under the

action of external pressure are again observed in these results. It seems

that all the characteristics of one dimensional endochronic models are pre-

served in this cap problem.

Next, a hardening system was examined - a clamped circular plate

laterally loaded over a circular central region with sheet explosive. It is

assumed that a plane stress condition will be valid for the plate. Fig. 76

shows the resulting nondimensional apex displacement versus time for 6061-T6

aluminum. The plate geometry is: thickness, h - 1.588 x 10 m (1/16 in) and

diameter, D - 1.524 x 10~ m (6 in.). The material properties used for aluminum

are : E 0 - 7.098 x 10
1 0 Pa (1.029 x 107 psi); E - 3.754 x 108 Pa

(5.444 x 104 psi); a - 2.923 x 108 Pa (4.240 x 104 psi); ultimate stress,

o - 3.096 x 108 Pa (4.490 x 104 psi); mass density, p - 2.680 x 10 3 Kg/m3

(2.508 x 10""4 lb£-sec
2/in4) and v - 0.3. The applied impulse is 1-1.67 N»s;

it is assumed to be uniformly distributed over a central circular region

-2
of diameter 5.080 x 10 m (2 in.). The parameters used for the endochronic

model are a - 2.755 x 104 and 6 - 0.01252.*

The experimental result and another finite difference numerical result

DEPROSS were taken from [10]. It appears that all numerical results are in good

agreement with the experimental result. Fig. 77 shows the results obtained

for a similar problem where h * 3.175 x 10~ m (1/8 in) and I - 1.96 N-s.

Reasonable agreement is observed between numerical results at least for the

peak displacement. Fig. 78 shows the apex response of a 1022 steel plate
_3

whose dimensions are exactly those of Fig. 76 (h » 1.588 x 10 m)

and whose material parameters are: Eo • 1.960 x 10 Pa (2.842 x 10 pse);

E - 3.618 x 109 Pa (5.248 x 105 psi); <J - 5.585 x 108 Pa (8.1 x 104 psi);

au - 6.205 x 10
8 Pa (9 x 104 psi); Po- 7.789 x 10

3 Kg/m3 (7.288 x 10"4 lbf-sec
2/

^Values for (o ) and (B ) are supplied by H. C. Lin
1 T~ —
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in4) .v-0.3; I - 2.20 M»s; a - 2.222 x 105 and S - 2.045 x 10~3*. Very good

agreement is again noted. No creeping from endochronic model is observed in

these results since the impulses are treated as initial velocity conditions.

It is noted that the endochronic parameters a and 6 used in these im-
1 1

pulse problems are not obtained by using Eq. (10). This is done in order to

get closer resemblance between the constitutive curves near the yield point,
since Eq. (10) Best: fits the~bi-iinear curve at e + 0 and e •+• <» and.

Tits worst around the yield point. Better results are obtainable by

adjusting a and B to best fit the endochronic constitutive equations to experi-

mental data at the regions of interest.

The last example is the penetration of one short solid nickel cylinder

into another short but wider aluminum cylinder. The geometric dimensions of

the cylinders and their configuration at the instant of impact is presented in

Fig. 79. Since the problem is axisymmetric, only the shaded area needs to be

studied. The problem is represented by a finite element model composed of

236 nodes and 400 corotational triangular- elements. For this example, the

cylinders are assumed to be bonded to each other such that no slippage can

occur between the two surfaces and the materials are not allowed to fracture. '

11 9
The material properties for nickel are: Eo - 1.963 x 10 Pa; E - 2.413 x 10 Pa;

8 3 3 ' *
a^ - 6.200 x 10 ; v - 0.3; and p - 8.86 x 10 Kg/m. The material properties
j o

10 S 8
for aluminum are: Eo - 7.65 x 10 Pa; E - 8.045 x 10 Pa; a - 3.1 x 10 Pa;

3 3v > 0.3; and p * 2.785 x 10 Kg/m . The velocity of the projectile at the instant
o

of impact is 500 m/s.

Severe distortions are expected for this example. Hence, the nonlinear

Mie-Grilneisen equation of state relating the hydrostatic pressure p and density

change y is used in place of the linear equation used in the previous examples for

both the elastoplastic and endochronic models. This equation can be written

* Values, for a and B are supplied by H. C. Lin.
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as [11]

p - (K^ + K^2 + K ^ H l - |Ji ) + TCI + li)P»E

where

T - ro + An + By
2 + Cu3

and

„ - J> - 1
Po

The specific internal energy, E, is obtained from the work done by various

stress. K-, K, and K, are material dependant constants; Pe, A, B, and C are

Griineisen coefficients. The initial density and density during motion are p

and p, respectively. The following values in SI units obtained from [11] are

used for this example:

Ni - K. - 1.963 x 10 1 1, K, - 3.750 x 10 1 1, 0,

To - 1.91, A » -8.007, B - 3.528 x 10
1 and C - -5.982 x 101

Al - ^ - 7.65 x 10 1 1, K2 - 1.659 x 10
1 1, K3 - 4.28 x 10

1 0,

ro - 2.13, A - " 7.245, B « 2.471 x 10
1 and C - -3.257 x 101

The final configurations of the cyliinders" before" failure occurs" for elasto-
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plastic, endochronic and linearly elastic models using various time integration

steps are shown in Fig. 80. Failure is defined as when an element is so

severely deformed thatT.ts area changes sign during a time step. All

time steps used in Fig. 80 are much smaller than required for stability for a

linear elastic system. It can be seen that a stable time step may not guarantee

accurate results in the elastoplastic case. The material behavior is more

like plastic flow theory only when the time step is much smaller than the

stability requirement. It behaves more like a total-deformation-theory

material when the time step is large (but still well below the stability

requirement). The cause of this high sensitivity to time step for this

problem is the inability to formulate the stress increment in terms of known

quantities for an elastoplastic model as previously discussed. Since no

criterion exists for detefminihg tfie time step for accurate solution, it is

suggested that a parameter study oil the effect of time step size be performed for

this type of problem when an elastoplastic model is used.

A severely distorted strip along the 45° direction is lost in the elastoplastic

model when the time step is greater than 0.05 us. This strip is observed in

all endochronic solutions; furthermore, no appreciable difference in solution

exists over a wide range of time steps. All endochronic solutions show two

severely distorted strips - one along 45°, another one along 90°, while the

elastoplastic ones show two strips only when time steps are not greater than

0.05 vs. Fig. 81 shows the final configuration of the endochronic model before

failure. The circles indicate the position of the interface of the two cylin-

ders. It is interesting to note tLat. the severe distortion does not occur at

the interface. The endochronic parameters for this penetration problem are

computed from the elastoplastic parameters by using Eq. (10).
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CONCLUSION

Extensive numerical studies have been performed for spring-mass systems

and axisynmetric continuum systems using various constitutive models. The

following conclusions were made:

(1) Perment plastic strains are larger and occur at lower stress

levels in the endochronic model than in th° elastoplastic model

when they are connected by Eq. (10).

(2) Hysteresis loops occur for an endochronic model when the

system is subjected to initial displacement or velocity

conditions.

(3) An endochronic model creeps when subjected to an external

force. However, hysteresis loops start forming immediately

after removal of the external force.

(4) Better agreement with the elastoplastic solution can be

obtained for a particular range of interest by adjusting values

of a and 3 rather than using Eq. (10), which gives the best fit to

the bi-linear elastoplastic material only as e -»• 0 and e •*• «

and which fits worst around the yield point.

(5) The stress increment can not be formulated with reasonable

effort in terms of known quantities for a multi-dimensional

elastoplastic model. Hence, much smaller time steps are

needed for accurate solution of an elastoplastic model.

No such difficulty exists for an endochronic model.

(6) Physically reasonable qualitative solutions are obtained for

the endochronic model for all the problems studied.

(7) Numerically unique and stable solutions are obtained for

all the constitutive models.
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(8) An endochronlc model may be physically unstable in the

sense it may creep with respect to the intrinsic time.

(9) The endochronic model has higher numerical efficiency

compared to the elastoplastic model in multi-dimensional

problems.

(10) The creep phenomenon of an endochronic model can be used

as a safety factor in design problems.
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Condition for forming a hysteresis loop
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"Unstable" endochronic stress-strain curve
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to an initial displacement equivalent to +0.1% strain
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Dynamic response of an endochronic spring-mass system that
is pre-strained by adding weight to 8% strain then subjected
to an initial displacement equivalent to -0.1% strain
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x ION, Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 10 N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 102 N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading.of 4.448 x 102 N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 103 N. Solid line -:endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 103 N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 10* N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x l(r N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 105 H. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a step loading of 4.448 x 105 N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Figure 33

Dynamic responses of a spring-mass system that is suhjected
to a step loading pf 4,448 x 10^ N. Solid line - endochronic
solution; chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 0.1% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 0.1% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 36

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 0.1% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 1% strain. Solid
line - endochronic solution; chain-dashed line -elastoplastic
solution.
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Figure 38

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 1% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 39

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 1% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Dynamic responses of a spring-mass system that Is subjected
to an Initial displacement equivalent to 10% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastlc
solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 10% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 42

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 10% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 100% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 44

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 100% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution. • .
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Figure 45

Dynamic responses of a spring-mass system that is subjected
to an initial displacement equivalent to 100% strain. Solid
line - endochronic solution; chain-dashed line - elastoplastic
solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 200% strain/second.
Solid line - endochronic solution; chain-dashed line - elasto-
plastic solution.
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Figure 47

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 200% strain/second.
Solid line - endochronic solution; chain-dashed line - elasto--
plastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 200% strain/second.
Solid line - endochronic solution; chain-dashed line - elasto-
plastic solution.
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•10

Dynamic responses of a spring-mass system that is' subjected
to an initial velocity equivalent to 2 x 10^% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 103% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10^% strain/second.
Solid line - endoclironic solution; chain-dahsed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10^% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.



;2.E2v:A49;B8.75;E1.E7

-I-

100-0

0-0-

-100-0 -

-200-0
0-0 1-0 2-0 3-0 4-0 5-0

Time,sec
Figure 53

10

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10 % strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10^% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 105% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 56

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10 % strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.



c

W

in

:2.E3v;A49;B8.75;E1.E7

2 - 0 -

o-o-

- 2 - 0 -

-4-0

09

r

0-00CD-005 0-020 0-0250-010 0-015

Strain
Figure 57

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10^% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10 % strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10°% strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Figure 60

Dynamic responses of a spring-mass system that is subjected
to an initial velocity equivalent to 2 x 10 % strain/second.
Solid line - endochronic solution; chain-dashed line -
elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10 N and
whose duration is 0,5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Figure 62
Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 104 N and
whose duration is 0.5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10 N and
whose duration is 0.5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Figure 64

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10 N and
whose duration is 2.3T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude id 4.448 x lOr N and
whose duration is 2.3T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 1(P N and
whose duration is 2.3T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10 N and
whose duration is 5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Figure 68

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10 N and
whose duration is 5T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-raass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 10* N and
whose duration is 5T. Solid line - endochronic soltuion;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 4.448 x 104 N and
whose duration is 5T. Double precision is used. Time inte-
gration step used is an integer fraction of T. Solid line -
endochronic solution; chain-dashed line - elastoplastic
solution.
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Figure 71

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 8.896 x 10* N and
whose duration is 6T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.
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Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 8.896 x 10* N and
whose duration is 6T. Solid line - endochronic solution;
chain-dashed H u e - elastoplastic solution.
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Figure 73

Dynamic responses of a spring-mass system that is subjected
to a rectangular pulse whose magnitude is 8.896 x 10* N and
whose duration is 6T. Solid line - endochronic solution;
chain-dashed line - elastoplastic solution.



ixJ

0.4

- 0.3

.A
CE

__j
a.
CO

o

AP
EX

_i
<t
o

0.2

OJ

0.0
CO

LU

1 -o.i
o

-0.2

ELASTIC
E-PLASTIC
ENDOCHRONIC
N-P0P0V

0.25 L00\
TIME,ms \ \

1.25 1.50 1.75 2.00

PLANE STRAIN

Figure 74 Dynamic apex responses of a clamped spherical cap
that is subjects to a uniform step pressure loading
of 4,137 x AO6 la on its convex surface. Plane strain
condition is used.
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Dynamic apex responses of a clamped spherical cap
that is subjected to a uniform step pressure loading
of 4.137 x 10 Pa on its convex surface. Plane stress
condition is us^J.
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Figure 76

Dynamic central responses of a clamped aluminum plate (thickness
1/16 inch) that is subjected to sheet explosive applied over a
circular central region.
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Dynamic central responses of a clamped aluminum plate (thickness
1/8 inch) that is subjected to sheet explosive applied over a
circular central region.
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Dynamic central response of a clamped steel plate Cthickness
1/16 inch) that is subjected to sheet explosive applied over
a circular central region.
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Figure 79

Geometrical configuration of the projectile
and the target at the instant of impact.
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Figure 81
Final configuration of the projectile-target
system using one-term endochronic constitutive
theory. Circles indicate the interface of pro-
iectile and target.


