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The Resistive Wall Instability in a Uniform Beam:

Simulation vs. Analytical Results

A. Sternlieb

Lawrence Berkeley Laboratory
University of California
Berkeley, Ca]ifornia 94720

ABSTRACT

The time-dependent behavior of the resistive wall instability in a uniform
charged beam is investigated by means of computer simulation. Results are
compared with linear analytical results for a range of cases in which two
parameters are varied: the resistive wall term and the initial thermal spread
of the beam. In general we find good agreement between simulation and
theoretical results. The main conclusion is that the growth rate of any mode
increases with the resistive term and decreases as a function of the thermal
spread. There is always a maximum marginally unstable wavenumber k for any
nonzero thermal spread. The linear growth rate is roughly the same for the
thermal spread and for the electric field amplitude. An "overshoot"
phenomenon is present, in the sense that the thermal spread continues to grow
after the electric field has reached saturation.

I. INTRODUCTION

A cold uniform beam with space-charge is unstable against perturbations if
a resistive wall force is present. However, a non-zero thermal spread in the
beam has a stabilizing effect, quenching the growth of all wavelengths shorter
than a certain limiting value. This Timiting wavelength (or correspondingly,
wavenumber) is a function of: (a) R'-wall resistance per unit length, (b)
vth—thermal spread, (c) other physical parameters like: vB—the beam
velocity, n-number of particles per unit length, g-charge per particle, m-mass
of partﬁc]e,'g—geometric factor related to pipe and beam radii.

It is the purpose of this report to study the above phenomena by means of
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computer simulation and to compare to known anlytical resu]ts(]). The
theoretical analysis used is linear, providing a dispersion relation for the
complex frequency as function of the system parameters. The simulation
code(z) follows the motion of thousands of particles under the influence of
self-consistent space-charge and external forces. In the simulations, the
complex frequency is found from the time dependence of the fourier components
of the electric field. The advantages of the computer simulation is that it
shows clearly both the linear and the non-1inear saturation regime. In the
uniform beam case the focusing force is turned off. The initial velocity
distribution is either cold or gaussian. The density distribution is randomly
uniform.

The purpose of this report is to provide a preliminary basis for the study
of bunched beams, where coasting beam results will be used as first estimates
for initial guidance in interpreting simulation results..

In section II we present a short summary of the linear theory, including
thermal spread. In section III we present simulation results for various

cases and compare with analytical results. In section IV we draw some general

conc lusions.

II. LINEAR THEORY OF RESISTIVE INSTABILITY IN UNIFORM BEAMS

We assume complete decoupling between the longitudinal and transverse
dimensions. Then, by using the Tong wavelength formula for the electric field
and linearizing the 1-d Vlasov equation for the longitudinal dimension, we

~ obtain:

"
|,
BI.Q

2. , (afO/av)dv |
(kg + iR)/_u)'T , (1)

where q is the ion charge, m is the ion mass, k is the wavenumber, g is a
geometric factor, R = R'vB where R' is the resistance per unit Tength and
Vg is beam velocity; fo(x,v) is the stationary distribution function and o

is the complex frequency: w = w_, + iYk .
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Let us take for fo(x,v) in eq. (1) a gaussian distribution:

n 2,52
-v-[/2v
f (x,v) = -—-—%77——— eV / th
0 (2%) Vth

where o is the number density and Vin is the thermal spread. Then we

obtain:
2 P
kv -v-f2v
1=——]}L2——(k+13-)/e—-—t2dv | (3)
(2n) ' ey 9 (v - kv) ’

th

-0

where vp is a characteristic phase velocity in the system defined by:

(4)

Eq. (8) is the accurate linear dispersion relation for a uniform beam with
a gaussian velocity distribution, giving wp andyk as functions of k, for

a given set of physical parameters: R, Vins vp.

For a cold beam Vip 0, fo(x,v) in eq. (2) becomes a s-function, and
eq. (3) becomes:

Wl = sz K2 (1 + 1-‘;—9) (5)

Eq. (5) has as a solution two opposedly propagating waves, the forward one
damping and the backward one growing. In the case of a small resistive term,

+g 5] | | (6)

and we obtain:

wp = * vp- k
(7)
URRE SN
which is valid within less than 10% error for g = 1. The length of our system
is 128 units, which gives a lowest wavenumber kmin of 0.049 (kmin = —tfigzag

Therefore in our cases eq. (7) is valid within less than 10% error for R ¢ 0.1,
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except for the first wave number n = (k/k =1 in the R = 0.1 case.

min)
Exact solutions of eq. (5) (cold beam case) for R = 0.01, 0.1 and 1., and
for the first 13 modes are presented in Table 1. Soiutions of eq. (3) (warm
beam case) are presented in Table 2 for vp =13, R = 0.1 and Vin ranging

from 1 to 15. For convenience, these values are also displayed graphically in
Figs. 1(a) and 1(b). Taking T = 0, one obtains the values of the maximum
unstable wavenumber kmax, as function of the thermal spread Vin (Fig.
1(c)). It is clear that the growth rates Y, are only slightly affected for

Vth‘< 4, but strongly diminished for Vip > 4. Practically all the modes

are stabilized for Vip = vp.

III. SIMULATION RESULTS

In this section we present simulation results for several values of the
resistive term R and thermal spread Vip® These results are to be compared
with the analytical results, egs. (5) and (7) (cold:beam case, Table 1) and
eq. (3) (warm beam case, Table 2). The linear charge density is uniformly
random, and the velocity distribution is gaussian. The phase velocity vp is
13. The simulation system is fixed in the beam frame of reference. The space
charge field is given by -ap/3x and the resistive force by -qR(p - po).

A. Cold Beam Case (Vth = 0)

Several values of R are considered. In Fig. 2(a) we present the evolution
in time of the thermal spread. For R < 0.01 the growth rates are quite
small. For R = 0.1 we have Ty ~ 0.6, and for R = 1, A\ 4. A case
with R = 0.1 but with only thetyeventh mode active startstglow1y and
eventually attains a growth rate thh;e 0.5. Thige values should be
compared with those in Fig. 2(b) where EXEE%;‘Ek ] (Ek is the k-component
of the electric field) is plotted as function of time for the various cases,
giving "effective" growth rates which are similar to the corresponding values
of ?Vth in Figj 2(§),‘as expected.

An important feafure to notice'inlcompaking Figs. 2(a) and 2(b) is that

the thermal spread continues to grow after the electric field has reached
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saturation ("overshooting"). In Fig. 3 we have plotted the time evolution of
the first four modes for R = 0.001. It is clear that the real frequency

wn is proportional to k, wp = ak, with a = 12.8. This compares well with

the expected analytical results (eq. 7).

OQur reference case is R = 0.1, which corresponds to a realistic set of
physical parameters relevant to Heavy Ion Fusion. Simulation results are
presehted 1nyF1g. 4. For most modes T ® 0.6, and y]‘s 0.5. As a special
case, we ran a simulation with the resistive term R = 0.1 acting only on the
seventh mode (Fig. 5). As it can be seen, this is a nice way to determine
accurately the Tinear growth rate of a specific mode, because it delays
considerably the onset of the noniinear saturation regime.

B. Warm Beam Case (vth #0)

We investigate several cases, all with the same resistive term R = 0.1,
but with different initial thermal spreads. Because the initial electric
field is determined solely by the initial charge distribution, it it the same
as in the cold beam case with R = 0.1, and thus we are able to see the
differential influence of an initial thermal spread on the subsequent
evolution of the resistive instability. As a rule, we find that any nonzero
initial thermal spread decreases the growth rates of the entire k-spectrum as
compared to the cold beam case, with the suppression of all modes above a
certain limiting value. A saturation of the thermal spread and electric field
is attained in all cases, when particles and fields coexist in a steady
state. In the final stages of the instabilities, only low wavenumbers still
persist in the system. -

As can be seen from Figs. 6 and 7, if Vip < 4 the growth rates are not
significantly different from the cold case. It seems that a marked change in
the stability properties occurs between Vip = 4 and 5. Cases with Vin > 5
are quite stable. This compares qualitatively well with the analytical
results . The "overshoot" phenomenon is apparent here too, in the snese that
the thermal spread continues to grow after the electric field has reached
saturation. The behavior of the actual growth rate can be interpreted as a
result of two opposing factors: (1) the growth because of the resistive term




w s
and (2) the Landau damping because of the resonant interaction of 'T? waves

with the tail of the velocity distribution function f(v = fﬂi ).
k

Because of the difficulty in determining accurately growth rates, several
warm beam cases will be discussed only qualitatively. In Fig. 8 it is
apparent that for Vip = 2 the time evolution of the several modes displayed
is very much similar to the cold beam case (with R = 0.1). 1In the cases with
Vip = 4 and 5 (Figs. 9 and 10) growth rates for the lowest wavenumbers are

not affected significantly, while growth rates of high modes are reduced

considerably by the presence of the thermal spread. This is because the phase

velocity (mR/k) > V_, and decreases toward vp with increasing k (if
Vin # 0), which affects correspondingly the Landau damping. Finally, for

Vip = 10 (Fig. 11) most modes stay at constant level, on the average.

IV. CONCLUSIONS

We have performed particle computer simulations of the resistive wall
instability in a nonnuetral continuous uniform beam. The agreement with the

known analytical results, expecially in the cold beam case, is good,
indicating that the simulation cdde can indeed provide an independent means
for dinvestigating this type of instability. A1l systems relax by
thermalization towards a dynamic steady state in which the thermal spread and
electric field eventually reach saturation (at different times).
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Table 1: 'k and Wolk for vip =
(the upper values are Wp/k; k= 0.05n)

0

R 0.01 0.1 1
n
1 12,970  16.49 42.20
0. 064 0.50 1.97
2 12.920  14.22 . 30.60
: 0.064 ~ 0.59 ©2.72
3 12,910  13.56 25.58
0.064 0.61 3.25
4 12.900  13.29 22.70
0.064 0.63 3.67
5 12.900  13.16 20.80
0.064 0.63 4.00
6 12.900  13.08 19.40
0.065 0.64 4.30
7 12.900  13.04 18.43
0.065 0.64 4.52
8 12.900  13.01 17.64
0.065 0.64 4,72
9 12.900  12.99 17.00
0.065 0.64 4.90
10 12.900  12.97 16.50
0.065 0.64 5.05
11 12.900 ' 12.96 16.07
0.065 0.64 .5.18
12 12.900  12.95 15.70
0.065 0.64 5,29
13 12.900  12.94 15.43
0.065 0.64 5.39

T



Table 2: Y| for vij = 1-15, n = 1-13 (k=0.05n)

(vp = 13, R = 0.1)

Yth | a | | . |
~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 49 .49 .48 .48 .47 46 460 45 .40 .38 .32 .18 .09 .03
2 .55 .51 .48 .44 .41 .37 .30 .22 .11

3 .58 .54 .51 .47 .44 .32 .14 .07

4 .61 .58 .55 .52 .38 .23 .04

5 .61 .58 .55 .52 .35 .18

6 .62 .60 .58 .49 .30 .04 LINEARLY

7 .61 .59 .56 .48 .27 STABLE

8 .61 .58 .55 .46 .24 REGION

9 .61 .58 .53 .45 .20 : (yk < 0)

10 .61 .58 .55 .43 .15

1 .61 .58 .55 .42 .10
12 .61 .58 .56 .40 .05.
13 .61 .58 .56 .40 .01

:’lra R T
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Fjgure Captions

Fig. 1: (a) \ aslfunction Qf Vin for several k's; vp =13, R = 0.1

!

(b) Y, as function of k for several values of Vih (t =0); ’ v
Vp =13, R =;O.l,;

(c) Marginal stability: kMaX ys. Vip

Fig. 2: (a)’_vth as function of time, for vp

.and R =0, 0.001, 0.01, 0.1 and 1. Do

T L 2 .
(b)v E?";i%ElEkl as function of time; for--vp =13,

“X
Vip (8 =0) =0, and several R - values:
Fig. 3: EZ(t) for R = 0.001 and vy, (t=0) = 0.
Fig. 4: ES(t) for R = 0.1 and vy (t=0) =0
Fig. 5: EE(t) for R = 0.1 and Vin (t =0) =0
only the 7th mode is active.
Fig. 6: Ei(t) for R = 0.1 and several values of Vin (t =0); -
2 2
EX=4\E|EkI ) v

Fig. 7: Vih (t) for R = 0.1 and several values of Vin (t =0).

Fig. 8: EE (t) for R = 0.1 and Vip (t=0) = 2.
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Fig. 9: Ek (t) for R = 0.1 and Vin (t =0) = 4,
Fig. 10: Eﬁ (t) for R = 0.1 and Vih (t =0) =5,

Fig. 11: Eﬁ (t) for R

0.1 and Vih {t =0) = 10.
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