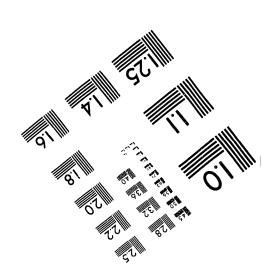


Association for Information and Image Management


1100 Wayne Avenue, Suite 1100 Silver Spring, Maryland 20910 301/587-8202

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

.

FOURTH QUARTER 1992 AND 1992 SUMMARY

F- AND H-AREA SEWAGE SLUDGE APPLICATION SITES GROUNDWATER MONITORING REPORT (U)

KEY WORDS

FSS wells HSS wells iron lead tritium

PUBLICATION DATE: APRIL 1993

Authorized Derivative Classifier:

WESTINGHOUSE SAVANNAH RIVER COMPANY SAVANNAH RIVER SITE AIKEN, SC 29808

MASTER

Abstract

Samples from the four wells at the F-Area Sewage Sludge Application Site (FSS wells) and the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076 and, as requested, for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permit. During fourth quarter 1992, the FSS wells also were analyzed for a number of other constituents not required by the permit.

Historically and currently, no permit-required analytes exceed standards at the F- and H-Area Sewage Sludge Application Sites except iron, lead, and manganese, which occur in elevated concentrations frequently in FSS wells. Lead concentrations exceeded the final Primary Drinking Water Standards during fourth quarter 1992, an event that is concurrent with a change in sampling procedures. Tritium is the primary nonpermit constituent that exceeds standards at the F-Area Sewage Sludge Application Site. Other constituents also exceed standards at this site but only sporadically.

Contents

	Page
stract	iii
st of Figures	. vii
st of Tables	. viii
ecutive Summary	1
troduction	3
Scussion Groundwater Monitoring Data Analytical Results Exceeding Standards Water Elevations and Groundwater Flow Directions	4
nclusions	7
mmary 1992	8
rata	9
pendix A-Final Primary Drinking Water Standards	. A-1
pendix B-Flagging Criteria	. B-1
pendix C-Figures	. C-1
pendix D-Groundwater Monitoring Results Tables	D-1
pendix E – Data Quality/Useability Assessment	E-1

WSRC-TR-93-061

List of Figures

		Page
1.	Location of the F- and H-Area Sewage Sludge Application Sites at the Savannah River Site	C-2
2.	Location of Groundwater Monitoring Wells at the F-Area Sewage Sludge Application Site	C-3
3.	Location of Groundwater Monitoring Wells at the H-Area Sewage Sludge Application Site	C-4
4.	Piezometric Map of the Water Table at the F-Area Sewage Sludge Application Site	C-5
5.	Piezometric Map of the Water Table at the H-Area Sewage Sludge Application Site	C-6
6.	Tritium Activities at the F-Area Sewage Sludge Application Site and the Old Burial Ground	C-7

List of Tables

		Page
1.	Constituents Exceeding the Final Primary Drinking Water Standards at the F-Area Sewage Sludge Application Site	. D-5
2.	Constituents Exceeding the Final Primary Drinking Water Standards at the H-Area Sewage Sludge Application Site	. D-5
3.	Constituents Exceeding Half the Final Primary Drinking Water Standards or Other Flag 1 or Flag 2 Criteria at the F-Area Sewage Sludge Application Site	D-6
4.	Constituents Exceeding Half the Final Primary Drinking Water Standards or Other Flag 1 or Flag 2 Criteria at the H-Area Sewage Sludge Application Site	D-6
5.	Groundwater Monitoring Results for Individual Wells at the F-Area Sewage Sludge Application Site	. D-7
6.	Groundwater Monitoring Results for Individual Wells at the H-Area Sewage Sludge Application Site	D-13

Executive Summary

During fourth quarter 1992, samples from the four monitoring wells at the F-Area Sewage Sludge Application Site (FSS series) and the three monitoring wells at the H-Area Sewage Sludge Application Site (HSS series) were analyzed for constituents required by Construction Permit 12,076 issued by the South Carolina Department of Health and Environmental Control. Samples from the F-Area site also were analyzed for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes the monitoring results that exceeded final Primary Drinking Water Standards (PDWS) or SRS flagging criteria.

Lead exceeded the final PDWS in upgradient well FSS 1D at $100~\mu g/L$ and in downgradient well FSS 3D at $154~\mu g/L$. The occurrence of elevated lead during fourth quarter 1992 is concurrent with a change in sampling procedures. Downgradient wells FSS 2D and 3D contained elevated activities of tritium, which also occurred in these wells during the three previous quarters of 1992. Iron, manganese, and lead exceeded the SRS Flag 2 criteria in one or more FSS wells, while no constituents exceeded the final PDWS or Flag 2 criteria in HSS wells.

During the fourth quarter, groundwater flow beneath the F-Area Sewage Sludge Application Site was toward the southwest, and flow beneath the H-Area Sewage Sludge Application Site was toward the west-southwest (SRS grid coordinates).

Introduction

The 11 sewage sludge application sites at the Savannah River Site (SRS) were originally the subject of a research program, begun in 1980, using domestic sewage sludge to reclaim borrow pits and to enhance forest productivity at SRS. Sludge was applied to the sites, and hardwoods and pines were then planted to quantify the wood biomass that could be produced using the sludge as a fertilizer and soil conditioner.

The F-Area Sewage Sludge Application Site covers approximately 8 acres south of Road E in the southeastern portion of F Area (Figures 1 and 2, Appendix C). The H-Area Sewage Sludge Application Site includes approximately 13 acres south of Road E in the southeastern portion of H Area (Figures 1 and 3, Appendix C). These sites were permitted to receive sludge from SRS sanitary waste water treatment plants in accordance with Construction Permit 12,076, issued by the South Carolina Department of Health and Environmental Control (SCDHEC) in April 1986. Sewage sludge was disposed of at the F-Area site from 1987 until third quarter 1990. Sludge was disposed of intermittently at the H-Area site from November 1990 through second quarter 1992.

In 1988, SRS determined that new wells were required at the F- and H-Area sites to assess the effects on groundwater of sewage sludge application to these sites. After receiving approval from SCDHEC, SRS installed four new wells at the F-Area site and three new wells at the H-Area site. These wells, designated FSS 1D, 2D, 3D, and 4D and HSS 1D, 2D, and 3D, were first sampled during fourth quarter 1988. All wells monitor the water table.

This report presents data from these wells for fourth quarter 1992 as required by Special Condition 4 of Construction Permit 12,076.

Discussion

Groundwater Monitoring Data

The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) collects quarterly groundwater samples from wells at the F- and H-Area Sewage Sludge Application Sites as part of the SRS Groundwater Monitoring Program. The EPD/EMS sampling procedure (WSRC, 1992a) requires evacuation of a minimum of two well volumes and stabilization of pH, specific conductance, and turbidity prior to sample collection. Stability is established when a minimum of three successive measurements, taken within a given time period, are within a specified tolerance range.

If a well pumps dry before two well volumes are purged or before stabilization is achieved, it must be revisited within 24 hours for the data to be considered from a single sampling event. On the second visit within 24 hours, samples are taken without purging or stability measurements; thus, these samples may not be representative of groundwater quality. Table 3 (Appendix D) lists the number of well volumes purged from each FSS and HSS well during fourth quarter. Wells FSS 1D, 2D, 3D, and 4D and HSS 1D and 3D went dry during purging. Most of these wells consistently have failed to meet the purging and stabilization criteria. At present, all FSS and HSS wells have single-speed centrifugal downhole pumps.

The quarterly samples from the monitoring wells at the F- and H-Area Sewage Sludge Application Sites are analyzed for the following parameters as required by SCDHEC Construction Permit 12,076:

- Specific conductance and pH (laboratory measurements)
- Water quality indicators: chloride, nitrate, nitrite, sodium, and total dissolved solids

Annually, these wells also are analyzed for cadmium, calcium, copper, iron, lead, magnesium, manganese, nickel, potassium, and total phosphates (as phosphorus) as required by the construction permit. During fourth quarter 1992, FSS wells received additional analyses as part of the SRS Groundwater Monitoring Program.

Monitoring results that exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or drinking water screening levels, as established by the U.S. Environmental Protection Agency (EPA) (Appendix A), the South Carolina final PDWS for lead (Appendix A), or other SRS flagging criteria (Appendix B) are described in this report. Constituent levels that exceed the final PDWS, screening levels, or the Flag 2 criteria are described as *elevated* or as *exceeding* or *above* standards.

The drinking water standard for lead used in this report was changed to the South Carolina final PDWS of 50 $\mu g/L$ effective fourth quarter 1992. Lead data for the earlier quarters of 1992 were made consistent with the 50 $\mu g/L$ standard for this annual report. The SRS flagging criteria are based on final and proposed PDWS, Secondary Drinking Water Standards, or constituent detection limits. The final PDWS for individual analytes given in Appendix A may not always match the SRS flagging criteria in Appendix B. The final PDWS are used as guidelines in this compliance report to meet regulatory requirements; the flagging criteria are used by EPD/EMS to identify relative levels of constituents in the groundwater and as guides for scheduling groundwater sampling.

Appendix C provides the locations of the monitored sites at SRS (Figure 1); the individual FSS and HSS monitoring wells (Figures 2 and 3, respectively); the flow directions of the groundwater beneath the sites (Figures 4 and 5); and the tritium activities in the FSS wells compared to the tritium activities in Old Burial Ground wells (Figure 6). Monitoring results tables as well as analyses that exceeded the holding times, final PDWS, and other flagging criteria are in Appendix D. Data quality/useability assessment information is in Appendix E.

Analytical Results Exceeding Standards

Table 1 (Appendix D) summarizes constituents that exceeded the final PDWS during fourth quarter 1992 for the F-Area Sewage Sludge Application Site. Table 2 (Appendix D) summarizes constituents in excess of the final PDWS for the H-Area Sewage Sludge Application Site for the quarter. Tritium exceeded the final PDWS in well FSS 2D at 9.8E+01 pCi/mL and in well FSS 3D at 6.2E+01 pCi/mL. Lead exceeded the final PDWS in wells FSS 1D and 3D at $100~\mu g/L$ and $154~\mu g/L$, respectively. No constituents exceeded standards in HSS wells.

Tables 3 and 4 (Appendix D) summarize constituents exceeding half the final PDWS or other Flag 1 or Flag 2 criteria during fourth quarter 1992 for the F-Area Sewage Sludge Application Site and H-Area Sewage Sludge Application Site, respectively. Iron and manganese exceeded their Flag 2 criteria in wells FSS 1D, 2D, and 3D, with concentrations in well FSS 2D up to 10,300 μ g/L and 104 μ g/L, respectively. Lead exceeded the Flag 2 criterion at 41 μ g/L in well FSS 2D. No constituents exceeded Flag 2 criteria in HSS wells during the quarter.

Fourth quarter 1992 results for all analyzed constituents for the FSS and HSS wells are presented in Tables 5 and 6, respectively (Appendix D). Results as they appear in the database are compared with the final PDWS. The database results are reported with more significant digits than the results given in these reports. Thus, constituent results in Tables 5 and 6 that appear to equal the final PDWS but are not marked in the D column are below the final PDWS in the database.

Presently, SRS sets no flagging criteria for alkalinity. In the FSS wells, alkalinity ranged up to 30 mg/L (well FSS 1D). In the HSS wells, alkalinity ranged up to 2 mg/L (well HSS 1D).

Water Elevations and Groundwater Flow Directions

Water-table elevations at the F-Area Sewage Sludge Application Site indicate that the groundwater flow direction is toward the southwest (SRS grid coordinates), discharging into Fourmile Branch. During fourth quarter 1992, groundwater from well FSS 1D, upgradient of the F-Area Sewage Sludge Application Site, contained lead in excess of the final PDWS, as did a sample from downgradient well FSS 3D. Tritium activities exceeded PDWS in downgradient wells FSS 2D and 3D.

The nearly linear orientation of the wells at the H-Area Sewage Sludge Application Site and the fact that wells HSS 1D and 2D are screened well below the water table make the determination of groundwater flow direction difficult. Available data, including water-level elevations from the three wells, indicate that groundwater flow is generally toward the west-southwest (SRS grid coordinates) (Figure 5, Appendix C). Well HSS 3D is upgradient of the H-Area Sewage Sludge Application Site, and wells HSS 1D and HSS 2D are downgradient.

Conclusions

- During fourth quarter 1992, upgradient well FSS 1D contained iron, lead, and manganese concentrations that exceeded the final PDWS or the SRS Flag 2 criteria. Downgradient wells contained elevated levels of iron, lead, manganese, and tritium.
- Elevated lead concentrations did not occur in FSS wells during the first three quarters of 1992; the occurrence of elevated lead during fourth quarter 1992 is concurrent with the change to analyses of unfiltered metals samples.
- Generally, elevated levels of constituents found in downgradient wells but not in upgradient wells at a waste management unit are considered products of that waste management unit. However, the historical records for the F- and H-Area Sewage Sludge Application Sites indicate that no radionuclides were disposed of in the immediate area. The source of the tritium in the FSS wells is believed to be the Old Burial Ground (Figure 6, Appendix C); the source of the other elevated constituents in these wells is uncertain.
- Groundwater flow beneath the F- and H-Area Sewage Sludge Application Sites is toward the southwest (SRS grid coordinates).
- In the FSS wells, alkalinity ranged up to 30 mg/L (well FSS 1D). In the HSS wells, alkalinity ranged up to 2 mg/L (well HSS 1D). These results are similar to those of previous quarters.
- The wells that pumped dry during purging, FSS 1D, 2D, 3D, and 4D and HSS 1D and 3D, may have yielded unrepresentative groundwater samples.

Summary 1992

As in 1991, tritium exceeded the final PDWS in downgradient wells FSS 2D and 3D during each quarter. Maximum tritium activity during 1992 occurred in well FSS 2D during third quarter at 1.1E+02 pCi/mL.

Elevated concentrations of mercury and lead occurred sporadically during the year in FSS wells. Mercury was elevated during third quarter 1992 in well FSS 2D; this result is considered anomalous because reanalysis of the same sample yielded a result below the detection limit and because historical data show no previous mercury result above the final PDWS. Lead was elevated in upgradient well FSS 1D and downgradient well FSS 3D during fourth quarter 1992; these results are concurrent with the change to analyses of unfiltered metals samples.

Total alpha-emitting radium activity occurred occasionally in the FSS and HSS wells during 1991; during 1992, this constituent was analyzed only during first quarter in well HSS 2D. That result did not exceed the final PDWS for total radium.

Iron and manganese concentrations exceeding their SRS Flag 2 criteria occurred sporadically in FSS wells during 1992 as well as during 1991. None of the constituents analyzed exceeded Flag 2 criteria in HSS wells during the past two years.

Groundwater flow beneath the F- and H-Area Sewage Sludge Application Sites was consistently to the southwest during 1991 and 1992.

Errata

The results of analyses performed using EPA Method 900.1 have been incorrectly referred to in the past as total radium results and have been inappropriately evaluated against the drinking water standard for combined radium-226 and radium-228. EPA Method 900.1 measures radium-223, -224, and -226 and should be considered a gross radium alpha screening procedure; it may be used to screen drinking water for the necessity of performing a specific radium-226 analysis, but it gives no indication of the presence or quantity of radium-228 in the sample. This analysis is now referred to as total alpha-emitting radium.

First through Third Quarters 1992:

• Chlordane analysis was requested as part of the Base/Neutral/Acid suite of analyses as described in the Environmental Protection Department/Environmental Monitoring Section contract with the analytical laboratory. However, Roy F. Weston, Inc., which conducted the analyses for first through third quarters 1992, does not include chlordane in its Base/Neutral/Acid suite of analyses. Chlordane analysis was conducted by General Engineering Laboratories for fourth quarter 1992.

First through Fourth Quarters 1992:

• Some results for earlier quarters of 1992 that are presented in the results tables of the fourth quarter 1992 report may differ from the results presented in the earlier reports, and reported results may not match reported sample dates. These differences arise from the following: (1) the computer program that creates the results tables was revised beginning second quarter 1992 to present the highest value for analytes with more than one result (previously, the program presented the first value encountered in the database); (2) a new computer program, which rounds numbers differently from the former computer program, was first used during third quarter 1992; and (3) some reanalyses may have been performed by the laboratories after the quarterly reports had gone to press. The sample dates in the tables are the dates when the field data were collected. These dates may differ from the dates of the laboratory analyses if the highest results were obtained for samples collected on different dates.

Appendix A - Final Primary Drinking Water Standards

Final Primary Drinking Water Standards

Analyte	<u>Unit</u>	<u>Level</u>	<u>Status</u>	Reference
Arsenic	μg/L	50	Final	CFR, 1991
Barium	μg/L	2,000	Final	CFR, 1991
Benzene	μg/L	5	Final	CFR, 1991
Bromodichloromethane	μg/L	100 ^a	Final	CFR, 1991
Bromoform	μg/L	100 ^a	Final	CFR, 1991
Cadmium	μg/L	5	Final	CFR, 1991
Carbon tetrachloride	μg/L	5	Final	CFR, 1991
Chlordane	μg/L	2	Final	CFR, 1991
Chloroethene (Vinyl chloride)	μg/L	2	Final	CFR, 1991
Chloroform	μg/L	100 ^a	Final	CFR, 1991
Chromium	μg/L	100	Final	CFR, 1991
	μg/L	1,300	Final	CFR, 1991
Copper	μg/L	100 ^a	Final	CFR, 1991
Dibromochloromethane	μg/L	0.2	Final	CFR, 1991
Dibromochloropropane	μg/L	600	Final	CFR, 1991
1,2-Dichlorobenzene	μg/L μg/L	75	Final	CFR, 1991
1,4-Dichlorobenzene	μg/L μg/L	5	Final	CFR, 1991
1,2-Dichloroethane		7	Final	CFR, 1991
1,1-Dichloroethylene	μg/L	, 70	Final	CFR, 1991
cis-1,2-Dichloroethylene	μg/L	100	Final	CFR, 1991
trans-1,2-Dichloroethylene	μg/L	70	Final	CFR, 1991
2,4-Dichlorophenoxyacetic acid	μg/L		Final	CFR, 1991
1,2-Dichloropropane	μg/L	5	Final	CFR, 1991
Endrin	μg/L	0.2		CFR, 1991
Ethylbenzene	μg/L	700	Final	CFR, 1991
Fluoride	μg/L	4,000	Final	
Gross alpha ^b	pCi/L	1.5E+01	Final	CFR, 1991
Heptachlor	µg/L	0.4	Final	CFR, 1991
Heptachlor epoxide	μg/L	0.2	Final	CFR, 1991
Lead	μg/L	50	Final	SCDHEC, 1981
Lindane	μ g/L	0.2	Final	CFR, 1991
Mercury	μg/L	2	Final	CFR, 1991
Methoxychlor	<i>μ</i> g/L	40	Final	CFR, 1991
Nitrate as nitrogen	<i>µ</i> g/L	10,000	Final	CFR, 1991
Nitrate-nitrite as nitrogen	μ g/L	10,000	Final	CFR, 1991
Nitrite as nitrogen	µg/L	1,000	Final	CFR, 1991
Nonvolatile beta ^c	pCi/L	5E + 01	Final	EPA, 1977
PCBs ^d	µg/L	0.5	Final	CFR, 1991
Pentachlorophenol	μ g/L	1	Final	CFR, 1991
Selenium	μ g/L	50	Final	CFR, 1991
Strontium-89/90 ^e	pCi/L	8E + 00	Final	CFR, 1991
Strontium-90	pCi/L	8E + 00	Final	CFR, 1991
Styrene	μg/L	100	Final	CFR, 1991
Tetrachloroethylene	μg/L	5	Final	CFR, 1991
Toluene	μg/L	1,000	Final	CFR, 1991
Total radium (Radium-226 and -228)	pCi/L	5 E + 00	Final	CFR, 1991
Total trihalomethanes	μg/L	100	Final	CFR, 1991
	μg/L	3	Final	CFR, 1991
Toxaphene 2,4,5-TP (Silvex)	μg/L	50	Final	CFR, 1991
	μg/L	200	Final	CFR, 1991
1,1,1-Trichloroethane	µg/⊾			•

<u>Analyte</u>	<u>Unit</u>	<u>Level</u>	<u>Status</u>	Reference
Trichloroethylene	μg/L	5	Final	CFR, 1991
Tritium	pCi/mL	2E + 01	Final	CFR, 1991
Xylenes	μg/L	10,000	Final	CFR, 1991

Note: The drinking water standard for lead was changed to the South Carolina Primary Drinking Water Standard of 50 μ g/L fourth quarter ¹ 192.

- ^a This value is the drinking water standard for total trihalomethanes (the sum of bromoform, bromodichloromethane, chloroform, and dibromochloromethane).
- b The standard given is for gross alpha including radium-226 but excluding radon and uranium.
- ^c This is the screening level above which providers of public drinking water should perform analyses for specific man-made radionuclides. The standard for the total dose equivalent from all such radionuclides is 4 mrem per year.
- d Analyses were conducted in 1992 for the following: PCB 1016, PCB 1221, PCB 1232, PCB 1242, PCB 1248, PCB 1254, and PCB 1260.
- ^e For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.

References

CFR (Code of Federal Regulations), 1991. *National Primary Drinking Water Regulations*, **40 CFR, Part 141**, pp. 578-715. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1977. National Interim Primary Drinking Water Regulations, EPA-570/9-76-003. Washington, DC.

SCDHEC (South Carolina Department of Health and Environmental Control), 1981. State Primary Drinking Water Regulations, R.61-58.5. Columbia, SC.

$Appendix \ B-{\tt Flagging\ Criteria}$

Flagging Criteria

Beginning in 1991, the Savannah River Site Environmental Protection Department/ Environmental Monitoring Section modified its guidelines for flagging constituents in the Groundwater Monitoring Program. These flagging criteria are as follows:

- Flag 2 criteria for constituents equal the Safe Drinking Water Act (SDWA) final Primary Drinking Water Standard (PDWS), the SDWA proposed PDWS, or the SDWA Secondary Drinking Water Standard (SDWS). If a constituent does not have a drinking water standard, the Flag 2 criterion equals 10 times the method detection limit (MDL) calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.
- Flag 1 criteria for constituents equal one-half of the final PDWS, one-half the proposed PDWS, or one-half the SDWS. If a constituent does not have an drinking water standard, the Flag 1 criterion equals 5 times the MDL calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.
- Flag 0 criteria are assigned to constituent levels below Flag 1 criteria, constituent levels below the sample detection limits, or constituents having no flagging criteria.

The following parameters are not assigned flagging criteria: alkalinity, calcium, carbonate, color, corrosivity, magnesium, odor, potassium, Eh, silica, sodium, total dissolved solids, total phosphorus, total phosphates (as P), and turbidity. In addition, common laboratory contaminants and cleaners including phthalates, methylene chloride, ketones, and toluene are not assigned flagging criteria.

<u>Analyte</u>	<u>Unit</u>	Flag 1	Flag 2	Source
A	- 4	50	100	504 Mark 1 0270
Acenaphthene	μg/L	50	100	EPA Method 8270
Acenaphthylene	µg/L	50	100	EPA Method 8270
Acetone	μ g/L	50	100	EPA Method 8240
Acetonitrile (Methyl cyanide)	μ g/L	500	1,000	EPA Method 8240
Acetophenone	μ g/L	50	100	EPA Method 8270
2-Acetylaminofluorene	µg/L	50	100	EPA Method 8270
Acrolein	μ g/L	100	200	EPA Method 8240
Acrylonitrile	μ g/L	100	200	EPA Method 8240
Aldrin	μ g/L	2.5	5	EPA Method 8080
Alkalinity (as CaCO ₃)		No flag	No flag	Set by EPD/EMS
Allyl chloride	μ g/L	250	500	EPA Method 8240
Aluminum	μ g/L	25	50	Secondary DWS (CFR, 1991b)
Americium-241	pCi/L	3.17E + 00	6.34E + 00	Proposed DWS (EPA, 1991)
Americium-243	pCi/L	3.19E + 00	6.37E + 00	Proposed DWS (EPA, 1991)
4-Aminobiphenyl	μ g/L	50	100	EPA Method 8270
Ammonia	μ g/L	500	1,000	APHA Method 417B
Ammonia nitrogen	μ g/L	50	100	EPA Method 350.1
Aniline	μ g/L	50	100	EPA Method 8270
Anthracene	µg/L	50	100	EPA Method 8270
Antimony	μ g/L	2.5	5	Proposed DWS (EPA, 1990)
Antimony-125	pCi/L	1.5E + 02	3E + 02	Final DWS (EPA, 1977)
Aramite	μ g/L	50	100	EPA Method 8270

<u>Analyte</u>	<u>Unit</u>	Flag 1	Flag 2	Source
Aragnia	μg/L	25	50	Final DWS (CFR, 1991a)
Arsenic Barium	μg/L	1,000	2,000	Final DWS (CFR, 1991a)
Barium-140	pCi/L	4.5E+01	9E+01	Final DWS (EPA, 1977)
	μg/L	2.5	5	Final DWS (CFR, 1991a)
Benzene alpha-Benzene hexachloride	μg/L	2.5	5	EPA Method 8080
beta-Benzene hexachloride	μg/L μg/L	2.5	5	EPA Method 8080
delta-Benzene hexachloride	μg/L μg/L	2.5	5	EPA Method 8080
	μg/L μg/L	250	500	EPA Method 8270
Benzidine		0.05	0.1	Proposed DWS (EPA, 1990)
Benzo[a]anthracene	μg/L μg/L	0.03	0.2	Proposed DWS (EPA, 1990)
Benzo[b]fluoranthene	μg/L	0.1	0.2	Proposed DWS (EPA, 1990)
Benzo(k)fluoranthene	μg/L μg/L	50	100	EPA Method 8270
Benzo[g,h,i]perylene		0.1	0.2	Proposed DWS (EPA, 1990)
Benzo[a]pyrene	μg/L	250	500	EPA Method 8270
Benzoic acid	μg/L		100	EPA Method 8270
1,4-Benzoquinone	μg/L	50 100	200	EPA Method 8270
Benzyl alcohol	μg/L	0.5	1	Proposed DWS (EPA, 1990)
Beryllium	μg/L	3E + 03	6E + 03	Final DWS (EPA, 1977)
Beryllium-7	pCi/L		100	EPA Method 8270
Bis(2-chloroethoxy) methane	μg/L	50	100	EPA Method 8270
Bis(2-chloroethyl) ether	µg/L	50	100	EPA Method 8270
Bis(2-chloroisopropyl) ether	μg/L	50		EPA Method 8270
Bis(chloromethyl) ether	μg/L	50	100	EPA Method 8270
Bis(chloromethyl-ethyl) ether	µg/L	50	100	Set by EPD/EMS
Bis(2-ethylhexyl) phthalate		No flag	No flag	•
Bromide	μg/L	5,000	10,000	EPA Method 300.0 Final DWS (CFR, 1991a)
Bromodichloromethane	μg/L	50	100	
Bromoform	μg/L	50	100	Final DWS (CFR, 1991a)
Bromomethane (Methyl bromide)	μ g/L	5	10	EPA Method 8240
4-Bromophenyl phenyl ether	µg/L	50	100	EPA Method 8270
2-sec-Butyl-4,6-dinitrophenol	µg/L	3.5	7	Proposed DWS (EPA, 1990)
Butylbenzyl phthalate		No flag	No flag	Set by EPD/EMS
Cadmium	µg/L	2.5	5	Final DWS (CFR, 1991a)
Calcium		No flag	No flag	Set by EPD/EMS
Carbon disulfide	µg/L	5	10	EPA Method 8240
Carbon tetrachloride	µg/L	2.5	5	Final DWS (CFR, 1991a)
Carbon-14	pCi/L	1E + 03	2E + 03	Final DWS (EPA, 1977)
Carbonate	μg/L	500	1,000	EPA Method 310.1
Cerium-141	pCi/L	1.5E + 02	3E + 02	Final DWS (EPA, 1977)
Cerium-144	pCi/L	1.31E+02	2.61E+02	Proposed DWS (EPA, 1991)
Cesium-134	pCi/L	4.07E+01	8.13E+01	Proposed DWS (EPA, 1991)
Cesium-137	pCi/L	1E + 02	2E + 02	Final DWS (EPA, 1977)
Chlordane	μ g/L	1	2	Final DWS (CFR, 1991a)
Chloride	µg/L	125,000	250,000	Secondary DWS (CFR, 1991b)
4-Chloroaniline	µg/L	50	100	EPA Method 8270
Chlorobenzene	μ g/L	5	10	EPA Method 8240
Chlorobenzilate	μ g/L	50	100	EPA Method 8270
Chloroethane	μg/L	5	10	EPA Method 8240
Chloroethene (Vinyl chloride)	μg/L	1	2	Final DWS (CFR, 1991a)
Chloroethyl vinyl ether	μg/L	5	10	EPA Method 8240
2-Chloroethyl vinyl ether	μg/L	5	10	EPA Method 8240
Chloroform	μg/L	50	100	Final DWS (CFR, 1991a)
para-Chloro-meta-cresol	μg/L	50	100	EPA Method 8270
Chloromethane (Methyl chloride)	μg/L	5	10	EPA Method 8240
2-Chloronaphthalene	μg/L	50	100	EPA Method 8240
2-Chlorophenol	μg/L	50	100	EPA Method 8270
Z-Griior opriorior	~ 3 . -			

Analyte	<u>Unit</u>	Flag 1	Flag 2	Source
4-Chlorophenyl phenyl ether	μg/L	50	100	EPA Method 8270
Chloroprene	μg/L	1,000	2,000	EPA Method 8240
Chromium	μg/L	50	100	Final DWS (CFR, 1991a)
Chromium-51	pCi/L	3E + 03	6E+03	Final DWS (EPA, 1977)
	μg/L	0.1	0.2	Proposed DWS (EPA, 1990)
Chrysene	μg/L	20	40	EPA Method 6010
Cobalt Cobalt-57	pCi/L	5E + 02	1E+03	Final DWS (EPA, 1977)
Cobalt-57	pCi/L	4.5E+03	9E + 03	Final DWS (EPA, 1977)
<u> </u>	pCi/L	5E + 01	1E+02	Final DWS (EPA, 1977)
Cobalt-60	pone	No flag	No flag	Set by EPD/EMS
Color	μg/L	650	1,30C	Final DWS (CFR, 1991a)
Copper	μg/L	No flag	No flag	Set by EPD/EMS
Corrosivity	<i>µ</i> g/L	50	100	EPA Method 8270
m-Cresol (3-Methylphenol)	μg/L μg/L	50	100	EPA Method 8270
o-Cresol (2-Methylphenol)		50	100	EPA Method 8270
p-Cresol (4-Methylphenol)	μg/L	5.65E+01	1.33E+02	Proposed DWS (EPA, 1991)
Curium-242	pCi/L		8.3E+00	Proposed DWS (EPA, 1991)
Curium-243	pCi/L	4.15E+00	9.84E+00	Proposed DWS (EPA, 1991)
Curium-244	pCi/L	4.92E + 00		Proposed DWS (EPA, 1991)
Curium-246	pCi/L	3.14E+00	6.27E+00	Proposed DWS (EPA, 1990)
Cyanide	μ g/L	100	200	EPA Method 8080
p,p'-DDD	µg/L	2.5	5	—: ·
p,p'-DDE	μg/L	2.5	5	EPA Method 8080
p,p'-DDT	μg/L	2.5	5	EPA Method 8080
Di-n-butyl phthalate		No flag	No flag	Set by EPD/EMS
Di-n-octyl phthalate		No flag	No flag	Set by EPD/EMS
Diallate	<i>μ</i> g/L	50	100	EPA Method 8270
Dibenz(a,h)anthracene	μg/L	0.15	0.3	Proposed DWS (EPA, 1990)
Dibenzofuran	μg/L	50	100	EPA Method 8270
Dibromochloromethane	∴g/L	50	100	Final DWS (CFR, 1991a)
Dibromochloropropane	μg/L	0.1	0.2	Final DWS (CFR, 1991a)
1,2-Dibromo-3-chloropropane	μg/L	250	500	EPA Method 8240
	μg/L	100	200	EPA Method 8240
1,2-Dibromoethane	μg/L			
Dibromomethane	un/l	5	10	EPA Method 8240
(Methylene bromids)	μg/L	300	600	Final DWS (CFR, 1991a)
1,2-Dichlorobenzene	μg/L	50	100	EPA Method 8270
1,3-Dichlorohenzene	μg/L	37.5	75	Final DWS (CFR, 1991a)
1,4-Dichlorobenzene	μg/L	50 50	100	EPA Method 8270
3,3'-Dichlorobenzidine	µg/L ″		300	EPA Method 8240
trans-1,4-Dichloro-2-butene	μg/L	150		EPA Method 8240
Dichlorodifluoromethane	μg/L	5	10	EPA Method 8240
1,1-Dichloroethane	μg/L	5	10	Final DWS (CFR, 1991a)
1,2-Dichloroethane	µg/L	2.5	5	
cis-1,2-Dichloroethene	µg/L	35	70	Final DWS (CFR, 1991a)
1,1-Dichloroethylene	μ g/L	3.5	7	Final DWS (CFR, 1991a)
1,2-Dichloroethylene	μg/L	25	50	EPA Method 8240
trans-1,2-Dicnloroethylene	μg/L	50	100	Final DWS (CFR, 1991a)
Dichloromethane				_
(Methylene chloride)		No flag	No flag	Set by EPD/EMS
2,4-Dichlorophenol	<i>μ</i> g/L	50	100	EPA Method 8270
2,6-Dichlorophenol	μg/L	50	100	EPA Method 8270
2,4-Dichlorophenoxyacetic acid	μg/L	35	70	Final DWS (CFR, 1991a)
1,2-Dichloropropane	μg/L	2.5	5	Final DWS (CFR, 1991a)
	μg/L	5	10	EPA Method 8240
cis-1,3-Dichloropropene	μg/L μg/L	5	10	EPA Method 8240
trans-1,3-Dichloropropene	μg/L μg/L	2.5	5	EPA Method 8080
Dieldrin	µg,∟	2.0	-	

<u>Analyte</u>	<u>Unit</u>	Flag 1	Flag 2	Source
Diethyl phthalate		No flag	No flag	Set by EPD/EMS
Dimethoate	μg/L	50	100	EPA Method 8270
p-Dimethylaminoazobenzene	μg/L	50	100	EPA Method 8270
p-(Dimethylamino)ethylbenzene	μg/L	50	100	EPA Method 8270
7,12-Dimethylbenz[a]anthracene	μg/L	50	100	EPA Method 8270
3,3'-Dimethylbenzidine	μg/L	50	100	EPA Method 8270
a,a-Dimethylphenethylamine	μg/L	50	100	EPA Method 8270
2,4-Dimethyl phenol	μg/L	50	100	EPA Method 8270
Dimethyl phthalate		No flag	No flag	Set by EPD/EMS
1,3-Dinitrobenzene	μg/L	50	100	EPA Method 8270
4,6-Dinitro-ortho-cresol	μg/L	250	500	EPA Method 8270
2,4-Dinitrophenol	μg/L	250	500	EPA Method 8270
2,4-Dinitrotoluene	μg/L	50	100	EPA Method 8270
2,6-Dinitrotoluene	μg/L	50	100	EPA Method 8270
1,4-Dioxane	μg/L	50	100	EPA Method 8270
Diphenylamine	μg/L	50	100	EPA Method 8270
1,2-Diphenylhydrazine	μg/L	50	100	EPA Method 8270
Dissolved organic carbon	μ g/L	5,000	10,000	EPA Method 9060
Disulfoton	μ g/L	50	100	EPA Method 8270
Eh		No flag	No flag	Set by EPD/EMS
alpha-Endosulfan	μ g/L	50	100	EPA Method 8270
beta-Endosulfan	μ g/L	50	100	EPA Method 8270
Endosulfan I	μg/L	2.5	5	EPA Method 8080
Endosulfan II	μ g/L	2.5	5	EPA Method 8080
Endosulfan sulfate	<i>µ</i> g/L	2.5	5	EPA Method 8080
Endrin	µg/L	0.1	0.2	Final DWS (CFR, 1991a)
Endrin aldehyde	μ g/L	2.5	5	EPA Method 8080
Endrin ketone		No flag	No flag	Set by EPD/EMS
Ethyl methacrylate	μ g/L	50	100	EPA Method 8270
Ethyl methanesulfonate	μ g/L	50	100	EPA Method 8270
Ethylbenzene	µg/L	350	700	Final DWS (CFR, 1991a)
Europium-154	pCi/L	1E+02	2E + 02	Final DWS (EPA, 1977)
Europium-155	pCi/L	3E + 02	6E + 02	Final DWS (EPA, 1977)
Famphur	µg/L	50	100	EPA Method 8270
Fluoranthene	μ g/L	50	100	EPA Method 8270
Fluorene	µg/L	50	100	EPA Method 8270
Fluoride	<i>µ</i> g/L	2,000	4,000	Final DWS (CFR, 1991a)
Gross alpha	pCi/L	7.5E + 00	1.5E + 01	Final DWS (CFR, 1991a)
Heptachlor	<i>µ</i> g/L	0.2	0.4	Final DWS (CFR, 1991a)
Heptachlor epoxide	µg/L	0.1	0.2	Final DWS (CFR, 1991a)
Heptachlorodibenzo-p-dioxin				EDA 14-15-1 0200
isomers	µg/L	0.00325	0.0065	EPA Method 8280
1,2,3,4,6,7,8-Heptachlorodibenzo-				EDA Marthard 0200
p-dioxin	μ g/L	0.00325	0.0065	EPA Method 8280
Heptachlorodibenzo-p-furan			0.0045	EDA Marthard 0200
isomers	μ g/L	0.00225	0.0045	EPA Method 8280
1,2,3,4,6,7,8-Heptachlorodibenzo-			0.0045	EPA Method 8280
p-furan	μg/L	0.00225	0.0045	
Hexachlorobenzene	μg/L	0.5	1	Proposed DWS (EPA, 1990)
Hexachlorobutadiene	μg/L	50	100	EPA Method 8270 Proposed DWS (EPA, 1990)
Hexachlorocyclopentadiene	μg/L	25	50	EPA Method 8280
Hexachlorodibenzo-p-dioxin isomers	µg/L	0.00225	0.0045	EFA WELLIOU 0200
1,2,3,4,7,8-Hexachlorodibenzo-		0.00005	0.0045	EDA Mathad 9290
p-dioxin	μg/L	0.00225	0.0045	EPA Method 8280 EPA Method 8280
Hexachlorodibenzo-p-furan isomers	µg/L	0.002	0.004	LFA METHOD 0200

Analyte	<u>Unit</u>	Flag 1	Flag 2	Source
1,2,3,4,7,8-Hexachlorodibenzo-				
p-furan	μ g/L	0.002	0.004	EPA Method 8280
Hexachloroethane	μ g/L	50	100	EPA Method 8270
Hexachlorophene	μ g/L	250	500	EPA Method 8270
Hexachloropropene	μg/L	50	100	EPA Method 8270
2-Hexanone	μg/L	100	200	EPA Method 8240
Indeno[1,2,3-c,d]pyrene	μg/L	50	100	EPA Method 8270
lodine	μ g/L	500	1,000	EPA Method 415
lodine-129	pCi/L	5E-01	1E+00	Final DWS (EPA, 1977)
lodine-131	pCi/L	1.5E+00	3E + 00	Final DWS (EPA, 1977)
Iodomethane (Methyl iodide)	μg/L	75	150	EPA Method 8240
Iron	μg/L	150	300	Secondary DWS (CFR, 1991b)
Iron-55	pCi/L	1E+03	2E + 03	Final DWS (EPA, 1977)
Iron-59	pCi/L	1E + 02	2E + 02	Final DWS (EPA, 1977)
Isobutyl alcohol	μg/L	500	1,000	EPA Method 8240
Isodrin	μg/L	50	100	EPA Method 8270
Isophorone	μg/L	50	100	EPA Method 8270
Isosafrole	μg/L	50	100	EPA Method 8270
	μg/L	50	100	EPA Method 8270
Kepone Lanthanum-140	pCi/L	3E+01	6E + 01	Final DWS (EPA, 1977)
	μg/L	7.5	15	Final DWS (CFR, 1991a)
Lead	μg/L	0.1	0.2	Final DWS (CFR, 1991a)
Lindane	μg/L	25	50	EPA Method 6010
Lithium	μg/L	No flag	No flag	Set by EPD/EMS
Magnesium	μg/L	25	50	Secondary DWS (CFR, 1991b)
Manganese	ρCi/L	1.5E + O2	3E + 02	Final DWS (EPA, 1977)
Manganese-54	μg/L	1	2	Final DWS (CFR, 1991a)
Mercury		250	500	EPA Method 8240
Methacrylonitrile	μg/L	50	100	EPA Method 8270
Methapyrilene	μg/L	20	40	Final DWS (CFR, 1991a)
Methoxychlor	μg/L	50	100	EPA Method 8270
3-Methylcholanthrene	μg/L	250	500	EPA Method 8270
2-Methyl-4,6-dinitrophenol	μg/L	No flag	No flag	Set by EPD/EMS
Methyl ethyl ketone		No flag	No flag	Set by EPD/EMS
Methyl isobutyl ketone	- 11		100	EPA Method 8270
Methyl methacrylate	μg/L	50 50	100	EPA Method 8270
Methyl methanesulfonate	μg/L	50 50	100	EPA Method 8270
2-Methylnaphthalene	μg/L	50 350	500	EPA Method 6010
Molybdenum	μg/L	250		EPA Method 8270
Naphthalene	μg/L	50 50	100 100	EPA Method 8270
1,4-Naphthoquinone	μg/L	50 50	100	EPA Method 8270
1-Naphthylamine	μg/L	50 50	100	EPA Method 8270
2-Naphthylamine	μg/L	50	7.06E + 00	
Neptunium-237	pCi/L	3.53E+00		Proposed DWS (EPA, 1990)
Nickel	μg/L	50	100	Final DWS (EPA, 1977)
Nickel-59	pCi/L	1.5E + 02	3E + 02	Final DWS (EPA, 1977)
Nickel-63	pCi/L	2.5E + 01	5E + 01	Final DWS (EPA, 1977)
Niobium-95	pCi/L	1.5E + 02	3E+02	Final DWS (CFR, 1991a)
Nitrate as nitrogen	μ g/L	5,000	10,000	Final DWS (CFR, 1991a)
Nitrate-nitrite as nitrogen	µg/L	5,000	10,000	
Nitrite as nitrogen	µg/L	500	1,000	Final DWS (CFR, 1991a)
2-Nitroaniline	μg/L	50	100	EPA Method 8270
3-Nitroaniline	μg/L	50	100	EPA Method 8270
4-Nitroaniline	<i>µ</i> g/L	50	100	EPA Method 8270
Nitrobenzene	μg/L	50	100	EPA Method 8270
Nitrogen by Kjeldahl method	μg/L	500	1,000	EPA Method 351.2

<u>Analyte</u>	<u>Unit</u>	Flag 1	Flag 2	Source
2-Nitrophenol	μg/L	50	100	EPA Method 8270
4-Nitrophenol	μg/L	50	100	EPA Method 8270
4-Nitroquinoline-1-oxide	μg/L	50	100	EPA Method 8270
N-Nitrosodi-n-butylamine	μg/L	50	100	EPA Method 8270
N-Nitrosodiethylamine	μg/L	50	100	EPA Method 8270
N-Nitrosodimethylamine	μg/L	50	100	EPA Method 8270
N-Nitrosodiphenylamine	μg/L	50	100	EPA Method 8270
N-Nitrosodi-propylamine	μg/L	50	100	EPA Method 8270
N-Nitrosomethylethylamine	μg/L	50	100	EPA Method 8270
N-Nitrosomorpholine	μ g/L	50	100	EPA Method 8270
N-Nitrosopiperidine	μg/L	50	100	EPA Method 8270
N-Nitrosopyrrolidine	μg/L	50	100	EPA Method 8270
5-Nitro-o-toluidine	μ g/L	50	100	EPA Method 8270
Nonvolatile beta	pCi/L	2.5E + 01	5E+01	Proposed DWS (EPA, 1986)
Octachlorodibenzo-p-dioxin isomers	μ g/L	0.005	0.01	EPA Method 8280
Octachlorodibenzo-p-furan isomers	μ g/L	0.005	0.01	EPA Method 8280
Odor		No flag	No flag	Set by EPD/EMS
Oil & Grease	μ g/L	5,000	10,000	EPA Method 413.1
Parathion	μg/L	2.5	5	EPA Method 8080
Parathion methyl	μg/L	2.5	5	EPA Method 8080
PCB 1016	μg/L	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1221	μg/L	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1232	μg/L	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1242	μg/L "	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1248	μg/L	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1254	μg/L "	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1260	μg/L	0.25	0.5	Final DWS (CFR, 1991a)
PCB 1262	μg/L	0.25 50	0.5 100	Final DWS (CFR, 1991a) EPA Method 8270
Pentachlorobenzene Pentachlorodibenzo-p-dioxin	µg/L	50	100	EFA Method 8270
isomers	μg/L	0.00275	0.0055	EPA Method 8280
1,2,3,7,8-Pentachlorodibenzo-	pg/L	0.00270	0.0000	El / Wiethod 5250
p-dioxin	μg/L	0.00275	0.0055	EPA Method 8280
Pentachlorodibenzo-p-furan isomers	μg/L	0.00275	0.0055	EPA Method 8230
1,2,3,7,8-Pentachlorodibenzo-	<i>r</i> 3. –			
p-furan	$\mu_{ m g}/{ m L}$	0.00275	0.0055	EPA Method 8280
Pentachloroethane	μg/L	50	100	EPA Method 8270
Pentachloronitrobenzene	μg/L	50	100	EPA Method 8270
Pentachlorophenol	μg/L	0.5	1	Final DWS (CFR, 1991a)
pΗ	рН	8	10	Set by EPD/EMS
ρH	рH	4	3	Set by EPD/EMS
Phenacetin	<i>µ</i> g/L	50	100	EPA Method 8270
Phenanthrene	<i>μ</i> g/L	50	100	EPA Method 8270
Phenol	µg/L	50	100	EPA Method 8270
Phenols	μg/L	25	50	EPA Method 420.1
p-Phenylenediamine	μg/L	50	100	EPA Method 8270
Phorate	μg/L	2.5	5	EPA Method 8080
2-Picoline	μg/L	50	100	EPA Method 8270
Plutonium-238	pCi/L	3.51E+00	7.02E + 00	Proposed DWS (EPA, 1991)
Plutonium-239	pCi/L	3.11E+01	6.21E+01	Proposed DWS (EPA, 1991)
Plutonium-239/240 ^a	pCi/L	3.11E+01	6.21E+01	Proposed DWS (EPA, 1991)
Plutonium-240	pCi/L	3.11E+01	6.22E+01	Proposed DWS (EPA, 1991)
Plutonium-241	pCi/L pCi/L	3.13E + 01 3.27E + 01	6.26E + 01 6.54E + 01	Proposed DWS (EPA, 1991) Proposed DWS (EPA, 1991)
Plutonium-242 Potassium	pCI/L	No flag	No flag	Set by EPD/EMS
1 0103310111		ivo nay	INU Hay	OCT BY LE DILIVIS

Potassium-40	Angluta	<u>Unit</u>	Flag 1	Flag 2	Source
Proname	<u>Analyte</u>				
Propinitifie μg/L 1,000 2,000 EPA Method 8240	Potassium-40	•			
Pyrene	Pronamid				
Pyridine	Propionitrile				=: ::
Radium-228 PCi/L 3.93E+00 1.87E+01 Proposed DWS (EPA, 1991) Radium-228 PCi/L 3.93E+00 7.85E+00 Proposed DWS (EPA, 1991) Proposed DWS (•				
Radium-228 PC/IL 3.93E+00 7.85E+00 Proposed DWS (EPA, 1991) Radium-222 Proposed DWS (EPA, 1991) Proposed DWS (EPA, 1991) Proposed DWS (EPA, 1991) Proposed DWS (EPA, 1991) Proposed DWS (EPA, 1997) Proposed DWS (EPA, 1991) Proposed DWS (EP	•				
Radion-222 PCI/L 1.5E+02 2E+02 Proposed DWS (EPA, 1991) Ruthenium-103 PCI/L 1.5E+01 3E+01 Final DWS (EPA, 1977) Ruthenium-106 PCI/L 1.5E+01 3E+01 Final DWS (EPA, 1977) Ruthenium-106 PCI/L 1.5E+01 3E+01 Final DWS (EPA, 1977) Ruthenium-106 PCI/L 1.5E+01 3E+01 Final DWS (EPA, 1977) Ruthenium PGI/L 25 50 Final DWS (EPA, 1991) Ruthenium PGI/L 25 50 Final DWS (EPA, 1991) Ruthenium-106 PCI/L 2.33E+02 4.66E+02 Proposed DWS (EPA, 1991) Ruthenium-22 PCI/L E+01 E+01 E+01 E+01 Proposed DWS (EPA, 1991) Ruthenium-89/90° PCI/L E+01 E+01 E+01 Proposed DWS (EPA, 1991) Ruthenium-89/90° PCI/L E+00 BE+00 Final DWS (EPA, 1991) Ruthenium-90 PCI/L E+00 BE+00 Proposed DWS (EPA, 1991) Ruthenium-90 PCI/L E+00 BE+00 Proposed DWS (EPA, 1991) Ruthenium-90 PCI/L E+00 BE+00 Proposed DWS (EPA, 1991) Ruthenium-90 PGI/L E+00 BE+00 Proposed DWS (EPA, 1990) P		*			
Ruthenium-103 pCi/L 1E+02 2E+02 Final DWS (EPA, 1977) Ruthenium-106 pCi/L 1.5E+01 3E+01 Final DWS (EPA, 1977) Ruthenium-106 pCi/L 1.5E+01 3E+01 Final DWS (EPA, 1977) FPA Method 8270 FPA Meth					
Ruthenium-106			· · · -		•
Safrole µg/L 50 100 EPA Method 8270 Selenium µg/L 25 50 Final DWS (CFR, 1991a) Silver µg/L 25 50 Final DWS (CFR, 1991a) Silver No flag No flag No flag Set by EPD/EMS Silver No flag No flag Set by EPD/EMS Sodium No flag No flag Set by EPD/EMS Selection No flag Set by EPD/EMS Selection Selection No flag Set by EPD/EMS Selection Se		•			
Satenium µg/L 25 50 Final DWS (CFR, 1991a) Silica No flag No flag Set by EPD/EMS Silver µg/L 25 50 Final DWS (CFR, 1991a) Sodium No flag No flag Set by EPD/EMS Sodium-22 pCi/L 2.33E+02 4.68E+02 Propased DWS (EPA, 1991) Specific conductance µS/cm 250 500 Set by EPD/EMS Strontium-89/90° pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Styrene µg/L 200,000 400,000 Proposed DWS (EPA, 1990) Sulfate µg/L 5,000 10,000 EPA Method 8270 Sulfatep µg/L 5,000 10,000 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS Sulfatep µg/L 0.0022 0.004 EPA Method 8270 Terachicroteph µg/L 0.0022 0.004 EPA Method 8270		•			
No flag					
Silver µg/L 25 50 Final DWS (CFR, 1991a) Sodium No flag No flag Set by EPD/EMS Sodium-22 pCi/L 2.33£+02 4.66E+02 Proposed DWS (EPA, 1991) Specific conductance µS/cm 250 500 Set by EPD/EMS Strontium-89/90° pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Strycne µg/L 5,000 10,000 PA Method 8270 Sulfate µg/L 5,000 10,000 PA Method 9030 Sulfotep µg/L 0,0022 0,0045 EPA Method 8280 Suffactants µg/L 0,0022 0,0045 EPA Method 8280 Technetium-99 pCi/L 4,5E+02 9E+02 Final DWS (EPA, 1977) Tetrachlorodibenzo-p-furan isomers		₽g/L			
No flag		un/l			
Sodium-22 Specific conductance		pg/L			
Specific conductance µS/cm 250 500 Set by EPD/EMS Strontium-89 pCi/L 1E+01 2E+01 Final DWS (EPA, 1971) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (EPA, 1991a) Strontium-90 pCi/L 4E+00 8E+00 Final DWS (CFR, 1991a) Styrene µg/L 200,000 400,000 Proposed DWS (EPA, 1990) Sulfate µg/L 5,000 10,000 EPA Method 9030 Sulfotep µg/L 5,000 10,000 EPA Method 9030 Sulfotep µg/L 0.00225 0.0045 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3,7,8-TCDF µg/L 0.0022 0.0045 EPA Method 8280 Technetium-99 pCi/L 4,5E+02 9E+02 Final DWS (EPA, 1977) 1,2,4,5-Tetrachlorobenzene µg/L 0.0022 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers µg/L 0.002 0.0045 EPA Method 8270 Tetrachloroctha		nCi/L	-	_	
Strontium-89 PCi/L 1E+01 2E+01 Final DWS (EPA, 1977)					•
Strontium-89/90° pCi/L 4E + 00 8E + 00 Final DWS (CFR, 1991a) Strontium-90 pCi/L 4E + 00 8E + 00 Final DWS (CFR, 1991a) Styrene μg/L 50 100 Final DWS (CFR, 1991a) Sulfate μg/L 5,000 10,000 Proposed DWS (EPA, 1990) Sulfide μg/L 5,000 10,000 EPA Method 9030 Sulfotepp μg/L 50 100 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3,7,8-TCDD μg/L 0.002 0.004 EPA Method 8280 2,3,7,8-TCDD μg/L 0.002 0.004 EPA Method 8280 Technetium-99 pCi/L 4,5E+02 9E+02 Final DWS (EPA, 1997) 1,2,4,5-Tetrachlorobenzene μg/L 0.00225 0.0045 EPA Method 8270 Tetrachlorodibenzo-p-dioxin isomers μg/L 0.00225 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-dioxin isomers μg/L 0.0022 0.0045 EPA Method 8280	· · · · · · · · · · · · · · · · · · ·	•			
Strontium-90 pCi/L 4E + 00 8E + 00 Final DWS (CFR, 1991a) Styrene μg/L 200,000 400,000 Final DWS (CFR, 1991a) Sulfate μg/L 200,000 400,000 Proposed DWS (EPA, 1990) Sulfate μg/L 5,000 10,000 EPA Method 9030 Sulfate μg/L 5,000 10,000 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3,7,8-TCDD μg/L 0.0022 0.004 EPA Method 8280 2,3,7,8-TCDF μg/L 0.002 0.004 EPA Method 8280 Technetium-99 pCi/L 4.5E+ 02 9E+ 02 Final DWS (EPA, 1977) Tetrachlorodibenzo-p-dioxin isomers μg/L 50 100 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers μg/L 0.0022 0.0045 EPA Method 8280 Tetrachlorodethane μg/L 5 10 EPA Method 8280 Tetrachlorodethylene μg/L 5 10 EPA Method 8240 2,3,6-Tetrachloroph				8E + 00	
Styrene μg/L 50 100 Final DWS (CFR, 1991a) Sulfate μg/L 200,000 400,000 Proposed DWS (EPA, 1990) Sulfide μg/L 5,000 10,000 EPA Method 9030 Sulfotepp μg/L 50 100 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3.7,8-TCDF μg/L 0.0022 0.004 EPA Method 8280 7 Ectrachlorodenzene μg/L 0.002 0.004 EPA Method 8280 7 Ectrachlorodibenzo-p-dioxin isomers μg/L 0.00225 0.0045 EPA Method 8280 7 Etrachlorodibenzo-p-furan isomers μg/L 0.0022 0.004 EPA Method 8280 1,1,2-Tetrachloroethane μg/L 5 10 EPA Method 8280 1,1,1,2-Tetrachloroethane μg/L 5 10 EPA Method 8240 1,1,2-Tetrachlorophenol μg/L 5 10 EPA Method 8240 1,1,2-Tetrachlorophenol μg/L 50 10 EPA Method 8270 Tetrachly dithiopyr		•		8E+00	Final DWS (CFR, 1991a)
Sulfate µg/L 200,000 400,000 Proposed DWS (EPA, 1990) Sulfide µg/L 5,000 10,000 EPA Method 9030 Sulfotepp µg/L 50 100 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3,7,8-TCDD µg/L 0.0022 0.0045 EPA Method 8280 7 Echnetium-99 pCi/L 4.5E+02 9E+02 Final DWS (EPA, 1977) 1,2,4,5-Tetrachlorobenzene µg/L 50 100 EPA Method 8280 Tetrachlorodibenzo-p-dioxin isomers µg/L 0.00225 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers µg/L 5 10 EPA Method 8280 Tetrachloroethane µg/L 5 10 EPA Method 8240 1,1,1,2-Tetrachloroethane µg/L 5 10 EPA Method 8240 Tetrachloroethylene µg/L 5 10 EPA Method 8240 Tetrachlorophenol µg/L 50 100 EPA Method 8270 Tetrachly dithiopyrophosphate<		•	50	100	Final DWS (CFR, 1991a)
Sulfide μg/L 5,000 10,000 EPA Method 9030 Sulfotepp μg/L 50 100 EPA Method 8270 Surfactants No flag No flag Set by EPD/EMS 2,3,7,8-TCDD μg/L 0.00225 0.0045 EPA Method 8280 7 echnetium-99 pCi/L 4.5E+02 9E+02 Final DWS (EPA, 1977) 1,2,4,5-Tetrachlorobenzene μg/L 50 100 EPA Method 8280 Tetrachlorodibenzo-p-dioxin isomers μg/L 0.00225 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers μg/L 5 10 EPA Method 8280 1,1,1,2-Tetrachloroethane μg/L 5 10 EPA Method 8240 1,1,2,2-Tetrachloroethane μg/L 5 10 EPA Method 8240 Tetrachloroethylene μg/L 50 100 EPA Method 8240 Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetrachlorophenol	•		200,000	400,000	Proposed DWS (EPA, 1990)
Sulfotep μg/L 50 100 EPA Method 8270 Set by EPD/EMS Set by			5,000	10,000	EPA Method 9030
Surfactants				100	EPA Method 8270
2,3,7,8-TCDD μg/L 0.00225 0.0045 EPA Method 8280 2,3,7,8-TCDF μg/L 0.002 0.004 EPA Method 8280 Technetium-99 pCi/L 4.5E+02 9E+02 Final DWS (EPA, 1977) 1,2,4,5-Tetrachlorobenzene μg/L 50 100 EPA Method 8270 Tetrachlorodibenzo-p-dioxin isomers μg/L 0.0022 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers μg/L 5 10 EPA Method 8280 1,1,1,2-Tetrachloroethane μg/L 5 10 EPA Method 8240 1,1,2,2-Tetrachloroethane μg/L 5 10 EPA Method 8240 1,1,2,2-Tetrachlorophenol μg/L 50 100 EPA Method 8240 1,1,1,2-Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetracthyl dithiopyrophosphate μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E+01 1.25E+02 Proposed DWS (E		, 5	No flag	No flag	Set by EPD/EMS
2,3,7,8-TCDF μg/L 0.002 0.004 EPA Method 8280 Technetium-99 pCi/L 4.5E+02 9E+02 Final DWS (EPA, 1977) 1,2,4,5-Tetrachlorobenzene μg/L 50 100 EPA Method 8270 Tetrachlorodibenzo-p-dioxin isomers μg/L 0.0022 0.0045 EPA Method 8280 Tetrachlorodibenzo-p-furan isomers μg/L 5 10 EPA Method 8280 1,1,1,2-Tetrachloroethane isomers μg/L 5 10 EPA Method 8240 1,1,2,2-Tetrachloroethane μg/L μg/L 5 10 EPA Method 8240 1-1,2,2-Tetrachlorophenol μg/L μg/L 5.5 Final DWS (CFR, 1991a) 2,3,4,6-Tetrachlorophenol μg/L μg/L 50 100 EPA Method 8270 Thallium μg/L μg/L 50 100 EPA Method 8270 Thionazin μg/L μg/L 6.25E+01 1.25E+02 Proposed DWS (EPA, 1990) Thorium-238 μc/τ μg/L pCi/L 3.96E+01 7.92E+01 Proposed DWS (EPA, 1991) Thorium-234 μg/L μg/L 20 <td< td=""><td></td><td>μg/L</td><td>_</td><td>0.0045</td><td>EPA Method 8280</td></td<>		μ g/L	_	0.0045	EPA Method 8280
Technetium-99			0.002	0.004	EPA Method 8280
1,2,4,5-Tetrachlorobenzene			4.5E + 02	9E + 02	Final DWS (EPA, 1977)
Tetrachlorodibenzo-p-dioxin isomers			50	100	EPA Method 8270
Tetrachlorodibenzo-p-furan isomers		, 0			
Tetrachlorodibenzo-p-furan isomers		μ g/L	0.00225	0.0045	EPA Method 8280
isomers					
1,1,2,2-Tetrachloroethane		μ g/L	0.002	0.004	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Tetrachloroethylene μg/L 2.5 5 Final DWS (CFR, 1991a) 2.3,4,6-Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetraethyl dithiopyrophosphate μg/L 50 100 EPA Method 8270 Thallium μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E+01 1.25E+02 Proposed DWS (EPA, 1991) Thorium-230 pCi/L 3.96E+01 7.92E+01 Proposed DWS (EPA, 1991) Thorium-232 pCi/L 4.4E+01 8.8E+01 Proposed DWS (EPA, 1991) Thorium-234 pCi/L 2E+02 4.01E+02 Proposed DWS (EPA, 1991) Tin-113 pCi/L 2E+02 4.01E+02 Proposed DWS (EPA, 1991) Toluene μg/L 1.00 20 EPA Method 282.2 Final DWS (EPA, 1991) 1.00 EPA Method 82.70 Total carbon μg/L 5.000 1,000 Final DWS (EPA, 1991) Total dissolved solids No flag Set by EPD/EMS Total inorganic carbon μg/L <td< td=""><td></td><td></td><td>5</td><td></td><td>EPA Method 8240</td></td<>			5		EPA Method 8240
2,3,4,6-Tetrachlorophenol μg/L 50 100 EPA Method 8270 Tetraethyl dithiopyrophosphate μg/L 50 100 EPA Method 8270 Thallium μg/L 0.5 1 Proposed DWS (EPA, 1990) Thionazin μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E+01 1.25E+02 Proposed DWS (EPA, 1991) Thorium-230 pCi/L 3.96E+01 7.92E+01 Proposed DWS (EPA, 1991) Thorium-232 pCi/L 4.4E+01 8.8E+01 Proposed DWS (EPA, 1991) Thorium-234 pCi/L 2E+02 4.01E+02 Proposed DWS (EPA, 1991) Tin μg/L 10 20 EPA Method 282.2 Tin-113 pCi/L 1.5E+02 3E+02 Final DWS (EPA, 1997) Toluene μg/L 500 1,000 Final DWS (CFR, 1991a) 0-Toluidine μg/L 5,000 10,000 EPA Method 9060 Total dissolved solids No flag Set by EPD/EMS Total inorganic carbon μg/L		<i>µ</i> g/L	2.5	5	Final DWS (CFR, 1991a)
Tetraethyl dithiopyrophosphate μg/L 50 100 EPA Method 8270 Thallium μg/L 0.5 1 Proposed DWS (EPA, 1990) Thionazin μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E + 01 1.25E + 02 Proposed DWS (EPA, 1991) Thorium-230 pCi/L 3.96E + 01 7.92E + 01 Proposed DWS (EPA, 1991) Thorium-232 pCi/L 4.4E + 01 8.8E + 01 Proposed DWS (EPA, 1991) Thorium-234 pCi/L 2E + 02 4.01E + 02 Proposed DWS (EPA, 1991) Tin μg/L 10 20 EPA Method 282.2 Tin-113 pCi/L 1.5E + 02 3E + 02 Final DWS (EPA, 1991) Toluene μg/L 500 1,000 Final DWS (EPA, 1997) Total carbon μg/L 5,000 10,000 EPA Method 8270 Total hydrocarbons μg/L 5,000 10,000 EPA Method 9060 Total organic carbon μg/L 5,000 10,000 EPA Method 9060 <tr< td=""><td></td><td>µg/L</td><td>50</td><td>100</td><td></td></tr<>		µg/L	50	100	
Thallium μg/L 0.5 1 Proposed DWS (EPA, 1990) Thionazin μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E+01 1.25E+02 Proposed DWS (EPA, 1991) Thorium-230 pCi/L 3.96E+01 7.92E+01 Proposed DWS (EPA, 1991) Thorium-232 pCi/L 4.4E+01 8.8E+01 Proposed DWS (EPA, 1991) Thorium-234 pCi/L 2E+02 4.01E+02 Proposed DWS (EPA, 1991) Tin μg/L 10 20 EPA Method 282.2 Tin-113 pCi/L 1.5E+02 3E+02 Final DWS (EPA, 1991) Toluene μg/L 500 1,000 Final DWS (EPA, 1991) o-Toluidine μg/L 500 1,000 EPA Method 8270 Total carbon μg/L 5,000 10,000 EPA Method 9060 Total hydrocarbons μg/L 5,000 10,000 EPA Method 9060 Total organic carbon μg/L 5,000 10,000 EPA Method 9060 Total organic halogens<		μ g/L	50		
Thionazin μg/L 50 100 EPA Method 8270 Thorium-228 pCi/L 6.25E+01 1.25E+02 Proposed DWS (EPA, 1991) Thorium-230 pCi/L 3.96E+01 7.92E+01 Proposed DWS (EPA, 1991) Thorium-232 pCi/L 4.4E+01 8.8E+01 Proposed DWS (EPA, 1991) Thorium-234 pCi/L 2E+02 4.01E+02 Proposed DWS (EPA, 1991) Tin μg/L 10 20 EPA Method 282.2 Tin-113 pCi/L 1.5E+02 3E+02 Final DWS (EPA, 1977) Toluene μg/L 500 1,000 Final DWS (CFR, 1991a) o-Toluidine μg/L 500 10,000 EPA Method 8270 Total carbon μg/L 5,000 10,000 EPA Method 9060 Total inorganic carbon μg/L 5,000 10,000 EPA Method 9060 Total organic carbon μg/L 5,000 10,000 EPA Method 9060 Total organic halogens μg/L 25 50 EPA Method 9020	· · · · · · · · · · · · · · · · · · ·	μ g/L	0.5		
Thorium-230 pCi/L $3.96E+01$ $7.92E+01$ Proposed DWS (EPA, 1991) Thorium-232 pCi/L $4.4E+01$ $8.8E+01$ Proposed DWS (EPA, 1991) Thorium-234 pCi/L $2E+02$ $4.01E+02$ Proposed DWS (EPA, 1991) Tin μg/L 10 20 EPA Method 282.2 Tin-113 pCi/L $1.5E+02$ $3E+02$ Final DWS (EPA, 1977) Toluene μg/L 500 $1,000$ Final DWS (CFR, 1991a) o-Toluidine μg/L 500 $10,000$ EPA Method 8270 Total carbon μg/L $5,000$ $10,000$ EPA Method 9060 Total hydrocarbons μg/L $5,000$ $10,000$ EPA Method 9060 Total organic carbon μg/L $5,000$ $10,000$ EPA Method 9060 Total organic halogens μg/L 25 50 EPA Method 9020		μ g/L			
Thorium-232 pCi/L $4.4E+01$ $8.8E+01$ Proposed DWS (EPA, 1991) Propose	Thorium-228	pCi/L			· · · · · · · · · · · · · · · · · · ·
Thorium-234 Thorium-234 Tin $\mu g/L$ Tin $\mu g/L$ Toluene $\mu g/L$ Total carbon Total dissolved solids Total inorganic carbon Total organic carbon Total organic halogens pCi/L 2E + 02 4.01E + 02 Proposed DWS (EPA, 1991)	Thorium-230				
Tin μ_g/L 10 20 EPA Method 282.2 Tin-113 pCi/L 1.5E+02 3E+02 Final DWS (EPA, 1977) Toluene μ_g/L 500 1,000 Final DWS (CFR, 1991a) o-Toluidine μ_g/L 50 100 EPA Method 8270 Total carbon μ_g/L 5,000 10,000 EPA Method 9060 Total dissolved solids No flag No flag Set by EPD/EMS Total hydrocarbons μ_g/L 5,000 10,000 EPA Method 418.1 Total inorganic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic halogens μ_g/L 25 50 EPA Method 9020	Thorium-232	pCi/L			
Tin-113 pCi/L $1.5E+02$ $3E+02$ Final DWS (EPA, 1977) Toluene μ g/L 500 $1,000$ Final DWS (CFR, 1991a) o-Toluidine μ g/L 50 100 EPA Method 8270 Total carbon μ g/L $5,000$ $10,000$ EPA Method 9060 No flag No flag Set by EPD/EMS Total hydrocarbons μ g/L $5,000$ $10,000$ EPA Method 418.1 Total inorganic carbon μ g/L $5,000$ $10,000$ EPA Method 9060 Total organic carbon μ g/L $5,000$ $10,000$ EPA Method 9060 Total organic carbon μ g/L $5,000$ $10,000$ EPA Method 9060 Total organic halogens	Thorium-234	pCi/L			·
Toluene $\mu g/L$ 500 1,000 Final DWS (CFR, 1991a) o-Toluidine $\mu g/L$ 50 100 EPA Method 8270 Total carbon $\mu g/L$ 5,000 10,000 EPA Method 9060 No flag No flag Set by EPD/EMS Total hydrocarbons $\mu g/L$ 5,000 10,000 EPA Method 418.1 Total inorganic carbon $\mu g/L$ 5,000 10,000 EPA Method 9060 Total organic carbon $\mu g/L$ 5,000 10,000 EPA Method 9060 Total organic carbon $\mu g/L$ 5,000 10,000 EPA Method 9060 Total organic halogens $\mu g/L$ 25 50 EPA Method 9020	Tin				
o-Toluidine μ_g/L 50 100 EPA Method 8270 Total carbon μ_g/L 5,000 10,000 EPA Method 9060 No flag No flag Set by EPD/EMS Total hydrocarbons μ_g/L 5,000 10,000 EPA Method 418.1 Total inorganic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic halogens μ_g/L 25 50 EPA Method 9020	Tin-113				
Total carbon μ_g/L 5,000 10,000 EPA Method 9060 Total dissolved solids No flag No flag Set by EPD/EMS Total hydrocarbons μ_g/L 5,000 10,000 EPA Method 418.1 Total inorganic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic halogens μ_g/L 25 50 EPA Method 9020	Toluene	µg/L			
Total dissolved solids Total hydrocarbons Total inorganic carbon Total organic carbon $\mu g/L$ Total organic carbon $\mu g/L$ Total organic carbon $\mu g/L$ Total organic halogens No flag No flag Set by EPD/EMS EPA Method 418.1 10,000 EPA Method 9060 EPA Method 9060 EPA Method 9060 EPA Method 9020 EPA Method 9020	o-Toluidine				
Total hydrocarbons $\mu_{\rm g/L}$ 5,000 10,000 EPA Method 418.1 Total inorganic carbon $\mu_{\rm g/L}$ 5,000 10,000 EPA Method 9060 Total organic carbon $\mu_{\rm g/L}$ 5,000 10,000 EPA Method 9060 Total organic halogens $\mu_{\rm g/L}$ 25 50 EPA Method 9020		µg/L			
Total inorganic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic halogens μ_g/L 25 50 EPA Method 9020		_	-	_	
Total organic carbon μ_g/L 5,000 10,000 EPA Method 9060 Total organic halogens μ_g/L 25 50 EPA Method 9020	*				
Total organic halogens μ_g/L 25 50 EPA Method 9020					
Total diganic halogens					
Total organic nitrogen $\mu g/L$ 500 1,000 EPA Method 420					
	Total organic nitrogen	μg/L	500	1,000	EFA WELHOU 420

<u>Analyte</u>	<u>Unit</u>	Flag 1	Flag 2	Source
Analyte Total petroleum hydrocarbons Total phosphates (as P) Total phosphorus Total radium Total silica Total trihalomethanes Toxaphene 2,4,5-TP (Silvex) Tributyl phosphate 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane Trichloroethylene Trichlorofluoromethane 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenoxyacetic acid 1,2,3-Trichlorophenoxyacetic acid 1,2,3-Triintrobenzene Tritium Turbidity Uranium Uranium alpha activity Uranium-233/234a Uranium-234 Uranium-235 Uranium-238 Vanadium Vinyl acetate	μg/L pCi/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg	5,000 No flag No flag 2.5E+00 500 50 1.5 25 50 4.5 100 2.5 2.5 50 50 2.5 50 50 1E+01 No flag 10 1.5E+01 6.9E-00 6.95E+00 7.25E+00 7.3E+00 50 50 50 50 50 50 50 50 50	10,000 No flag No flag 5E+00 1,000 100 3 50 100 9 200 5 5 10 100 100 5 10 100 100	EPA Method 418.1 Set by EPD/EMS Set by EPD/EMS Final DWS (CFR, 1991a) EPA Method 6010 Final DWS (CFR, 1991a) Final DWS (CFR, 1991a) Final DWS (CFR, 1991a) EPA Method 8270 Proposed DWS (EPA, 1990) Final DWS (CFR, 1991a) Proposed DWS (EPA, 1990) Final DWS (CFR, 1991a) EPA Method 8240 EPA Method 8270 Final DWS (CFR, 1991a) Set by EPD/EMS Proposed DWS (EPA, 1991) EPA Method 6010 EPA Method 8240
Vanadium	μg/L μg/L μg/L	50 5 5,000	100 10 10,000	EPA Method 6010 EPA Method 8240 Final DWS (CFR, 1991a)
Uranium-238 Vanadium Vinyl acetate Xylenes	pCi/L μg/L μg/L μg/L	50 5	100 10	EPA Method 6010 EPA Method 8240
Zinc Zinc-65 Zirconium-95 Zirconium/Niobium-95 ^a	μg/L pCi/L pCi/L pCi/L	1.5E + 02 1E + 02 1E + 02	3E + 02 2E + 02 2E + 02	Final DWS (EPA, 1977) Final DWS (EPA, 1977) Final DWS (EPA, 1977)

^a For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.

References

APHA (American Public Health Association, American Water Works Association, and Water Pollution Control Federation), 1985. Standard Methods for the Examination of Water and Wastewater, 16th edition. Washington, DC.

CFR (Code of Federal Regulations), 1991a. *National Primary Drinking Water Regulations*, **40** CFR, Part 141, pp. 578-715. Washington, DC.

CFR (Code of Federal Regulations), 1991b. *National Secondary Drinking Water Regulations*, **40** CFR, Part 143, pp. 758-762. Washington, DC.

- EPA (U.S. Environmental Protection Agency), 1977. National Interim Primary Drinking Water Regulations, EPA-570/9-76-003. Washington, DC.
- EPA (U.S. Environmental Protection Agency), 1986. Water Pollution Control; National Primary Drinking Water Regulations, Radionuclides (Proposed). Federal Register, September 30, 1986, pp. 34836–34862. Washington, DC.
- EPA (U.S. Environmental Protection Agency), 1990. *National Primary and Secondary Drinking Water Regulations;* Synthetic Organic Chemicals and Inorganic Chemicals (Proposed Rule). Federal Register, July 25, 1990, pp. 30369–30448. Washington, DC.
- EPA (U.S. Environmental Protection Agency), 1991. *National Primary Drinking Water Regulations; Radionuclides; Proposed Rule.* Federal Register, July 18, 1991, pp. 33052–33127. Washington, DC.

Appendix C - Figures

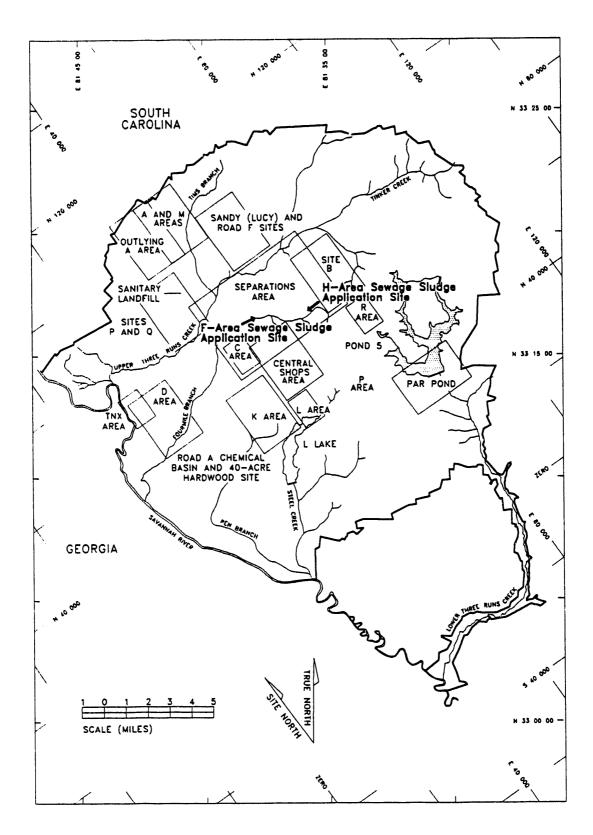


Figure 1. Location of the F- and H-Area Sewage Sludge Application Sites at the Savannah River Site

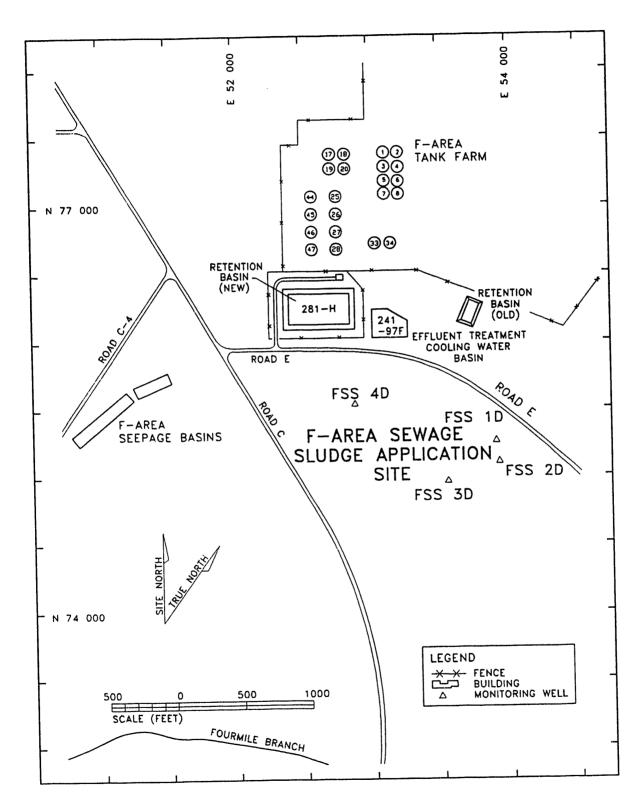
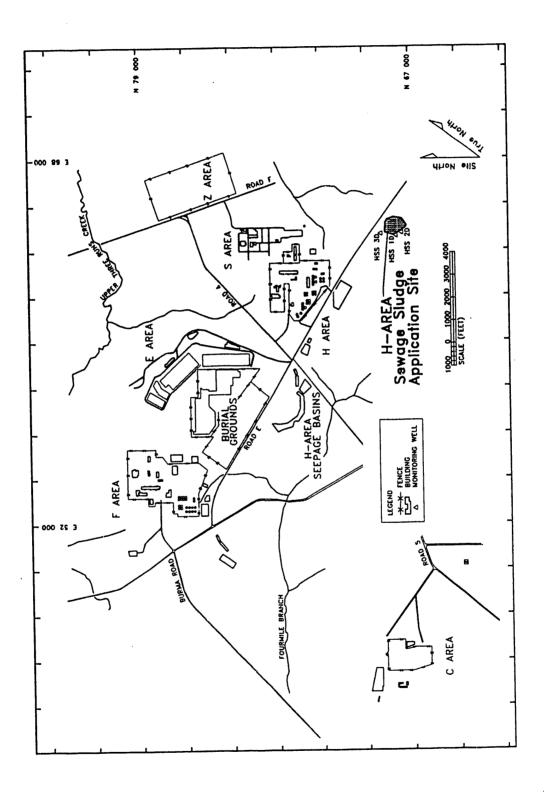



Figure 2. Location of Groundwater Monitoring Wells at the F-Area Sewage Sludge Application Site

Location of Groundwater Monitoring Wells at the H-Area Sewage Sludge Application Site Figure 3.

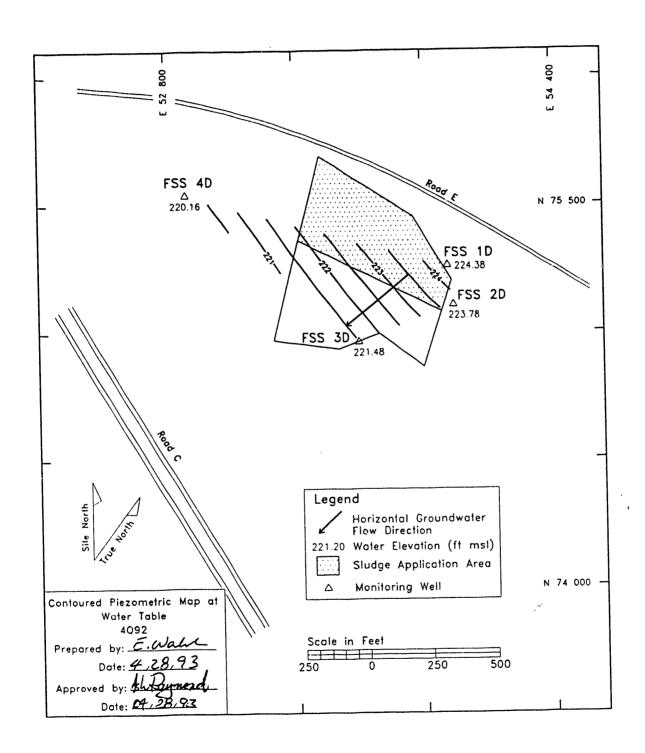


Figure 4. Piezometric Map of the Water Table at the F-Area Sewage Sludge Application Site

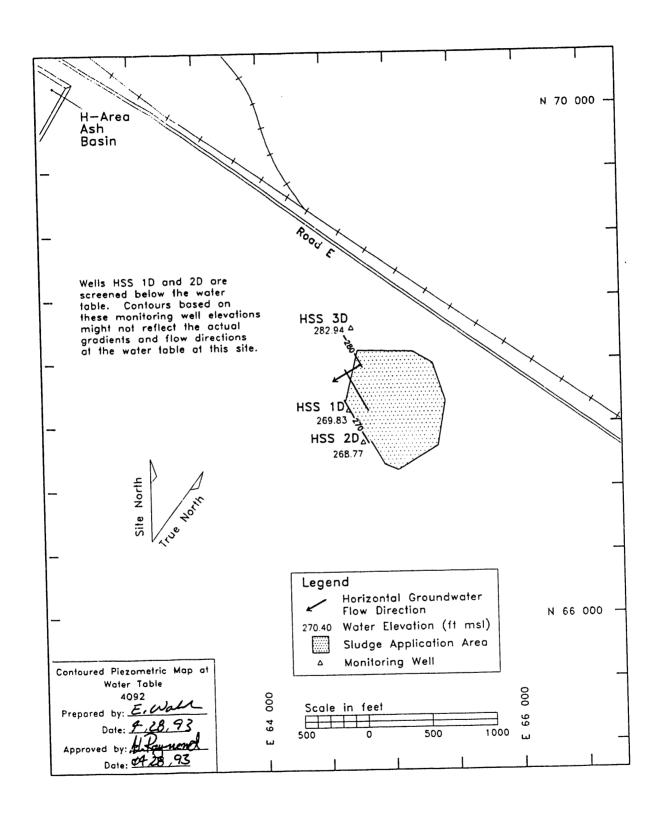
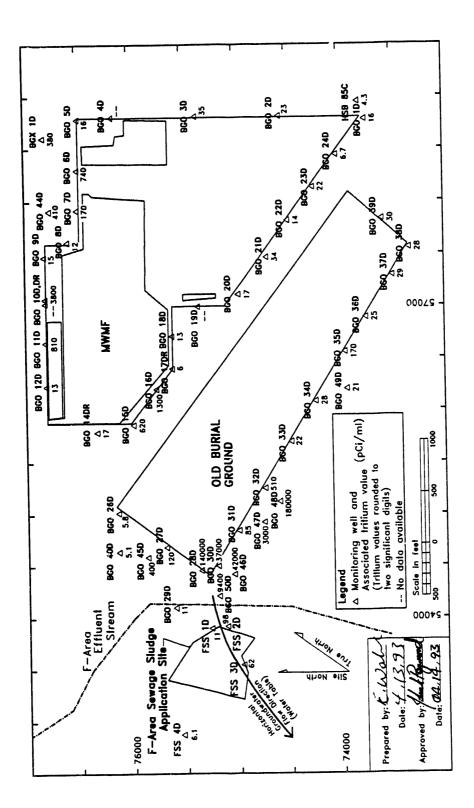



Figure 5. Piezometric Map of the Water Table at the H-Area Sewage Sludge Application Site

Tritium Activities at the F-Area Sewage Sludge Application Site and the Old Burial Ground Figure 6.

WSRC-TR-93-061

Appendix D - Groundwater Monitoring Results Tables

Key to Reading the Tables

The following abbreviations may appear in the tabular data:

```
B = sample collected from well using an open bucket bailer
BA = Barringer Laboratories, Inc.
CN = Clemson Technical Center, Inc.
CS = carbon steel
D = primary drinking water standard (PDWS)
E = \text{exponential notation (e.g., } 1.1E - 09 = 1.1 \times 10^{-9} = 0.0000000011)
EM = Environmental Protection Department/Environmental Monitoring Section (EPD/EMS)
   Laboratory
GE = General Engineering Laboratories
GP = Environmental Physics, Inc.
H = holding time
1,2,3,4,6,7,8-HPCDD = 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin
1,2,3,4,6,7,8-HPCDF = 1,2,3,4,6,7,8-heptachlorodibenzo-p-furan
1,2,3,4,7,8-HXCDD = 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin
1,2,3,4,7,8-HXCDF = 1,2,3,4,7,8-hexachlorodibenzo-p-furan
Lindane = gamma-benzene hexachloride
mg/L = milligrams per liter
Mod = modifier
msl = mean sea level
MSL = million structures per liter
NTU = turbidity unit
P = sample collected from well using a bladder pump
PCB = polychlorinated biphenyl
1,2,3,7,8-PCDD = 1,2,3,7,8-pentachlorodibenzo-p-dioxin
1,2,3,7,8-PCDF = 1,2,3,7,8-pentachlorodibenzo-p-furan
pCi/L = picocuries per liter
pCi/mL = picocuries per milliliter
PDWS = primary drinking water standard
pH = pH unit
PVC = polyvinyl chloride
S = sample collected from well using a single-speed centrifugal downhole pump
Sp. conductance = specific conductance
SP = Spencer Testing Services, Inc.
TCDD = tetrachlorodibenzo-p-dioxin
TCDF = tetrachlorodibenzo-p-furan
TM = TMA/Eberline
TOC = top of casing
V = sample collected from well using a variable-speed pump
WA = Roy F. Weston, Inc.
\mu g/L = micrograms per liter
\muS/cm = microsiemens per centimeter
```

Holding Times

Standard analytical methods include a limit, called holding time, on the maximum elapsed time between sample collection and extraction or analysis by the laboratory. In the data tables, a large dot (•) in the H (holding time) column indicates that holding time was exceeded. Analyses performed beyond holding time may not yield valid results.

The South Carolina Department of Health and Environmental Control allows only 15 minutes to elapse between sampling and analysis for pH. Thus, only field pH measurements can meet the holding time criterion; laboratory pH analyses will always exceed it.

Laboratory-initiated procedures for reducing the number of other analyses performed out of holding time include subcontracting analyses when difficulties with equipment, personnel, or work load would prevent timely analyses. Beginning fourth quarter 1991, SRS reduced the compensation to laboratories for analyses performed out of holding time.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific quality assurance/quality control information either at the same time as analytical results or in a quarterly summary. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data useability. Result modifiers designed by EPD/EMS and provided to the primary laboratories are defined below. These modifiers appear in the data tables under the column "Mod."

Result modifier	<u>Definition</u>
(Blank)	Data are not qualified. Number should be interpreted exactly as reported.
Aª	Value reported is the mean of two or more determinations.
Ja	Value is estimated because quantitation in the sample or in associated quality control samples did not meet specifications.
La	Value is off-scale high. The actual value is not known but is known to be greater than the value shown.
M ^a	Presence of the analyte is verified but not quantified.
R ^a	Result was rejected because performance requirements in the sample analysis or associated quality control analyses were not met.
Ta	Analyte was not detected; if present, it was below the criteria for detection.
Va	Analyte was detected in the associated method blank.
1	Result may be an underestimation of the true value due to analytical bias.
2	Result may be an overestimation of the true value due to analytical bias.

Result modifier	<u>Definition</u>
3	The associated result may be of poor precision (high variability) due to analytical bias.
6	The associated result is from a reanalysis performed out of holding time due to problems with an earlier analysis.

^a These codes are based on the STORET codes from EPA.

Table 1. Constituents Exceeding the Final Primary Drinking Water Standards at the F-Area Sewage Sludge Application Site

Well	Constituent	<u>Unit</u>	<u>1Q92</u>	<u> 2092</u>	<u>3Q92</u>	4092	Mod
FSS 1D	Lead	μg/L	_, a	-	-	100	
FSS 2D	Mercury Tritium	μg/L pCi/mL	- 5.7E+01	- 8.2E+01	5.8 ^b 1.1E + 02	- 9.8E+01	
FSS 3D	Lead Tritium	μg/L pCi/mL	- 4.0E+01	- 5.3E+01	- 4.9E + 01	154 6.2E + 01	

Note: The drinking water standard for lead was changed to the South Carolina Primary Drinking Water Standard of 50 μg/L fourth quarter 1992.

Table 2. Constituents Exceeding the Final Primary Drinking Water Standards at the H-Area Sewage Sludge Application Site

Well	Constituent	<u>Unit</u>	<u>1092</u>	<u>2Q92</u>	<u>3Q92</u>	<u>4092</u>	Mod
N ^a	None	N	N	N	N	N	N

a N = not applicable.

a - = result less than final PDWS.

b This value is not supported by the result (less than detection limit) of a reanalysis performed at the request of EPD/EMS or by historical results from this well.

Table 3. Constituents Exceeding Half the Final Primary Drinking Water Standards or Other Flag 1 or Flag 2 Criteria at the F-Area Sewage Sludge Application Site

Well	Constituent	<u>Unit</u>	4092	Flag	Mod
FSS 1D	Iron Manganese <i>Tritium</i>	μg/L μg/L pCi/mL	5,830 100 1.1E+01	2 2 1	V
FSS 2D	iron Lead Manganese	μg/L μg/L μg/L	10,300 41 104	2 2 2	٧
FSS 3D	lron Manganese	μg/L μg/L	1,300 83	2 2	٧
FSS 4D	Iron	μg/L	1,160	2	٧

Note: Constituents exceeding half the final PDWS appear italicized. These results do not include field data results.

Table 4. Constituents Exceeding Half the Final Primary Drinking Water Standards or Other Flag 1 or Flag 2 Criteria at the H-Area Sewage Sludge Application Site

Well	Constituent	<u>Unit</u>	4092	Flag	Mod
Na	None	N	N	N	N

^a N = not applicable.

Table 5. Groundwater Monitoring Results for Individual Wells at the F-Area Sewage Sludge Application Site

WELL FSS 1D

SRS Coord.	Lat/Longitude	Screen Zone	e Elevation	Top of Casing	Casin	g Pump	For	rmation		
N75257.6 E53897.6	33.280161 °N 81.671063 °W	229.9-209.	9 ft msi	266 ft msl	4" PV	c s	Wa	ater table		
SAMPLE DATE			03/11/92	06/16/92	07/10/92	11/18/92				
FIELD DATA										
Ana	ilyte		1092	2092	3092	4092	<u>Unit</u>			
Wat	ter elevation		224.3	223.9	224.1	224.4	ft msl			
pН			5.3	5.6	5.9	6.2	рН			
	conductance ter temperature		63 17.6	91 21.6	90 20.1	88 22.0	μS/cm °C			
	alinity as CaCO ₂		17.0	31	32	30	mg/L			
	ume purged		0.7	0.7	0.8	0.8	Well voi			
ANALYTICAL D	DATA									
H D Ana	alyte		1092	2092	3092	4092	Mod	Unit	<u>Lab</u>	Flag
Arse	enic		< 2.0	< 2.0	< 2.0	< 2.0		μg/L	WA	0
Bari			7.6	11	12	25	J3	μg/L	WA	0
	zene		< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
	modichloromethane		< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
	moform		< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	momethane (Methyl brod Imium	mide)	< 10 < 0.35	< 10 1.2	< 10 1.1	<10 1.4	V	μg/L μg/L	WA WA	0
	imium cium		18,000	19,600	18,700	15,200	V	μg/L μg/L	WA	0
	bon tetrachloride		< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	Ŏ
	oride		3,220	2,460	2,640	2,400		μg/L	WA	Ö
	orobenzene		< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	oroethane		< 10	< 10	< 10	< 10		μg/L	WA	0
	proethene (Vinyl chloride	e)	< 10	< 10	< 10	< 10		μg/L	WA	0
	hloroethyl vinyl ether		< 10	< 10	< 10	< 10		µg/L	WA	0
	oraform		< 5.0 < 10	< 5.0 < 10	<5.0 <10	<5.0 <10		μg/L	WA WA	0
	oromethane (Methyl chlo omium	orige)	< 1.1	< 1.1	2.2	18		μg/L μg/L	WA	0
Con			62	64	66	528	V	μg/L	WA	0
	romochloromethane		< 5.0	< 5.0	< 5.0	< 5.0	•	μg/L	WA	Ŏ
	-Dichloroethane		< 5.0	< 5.0	<5.0 p1926			, o	WA	0
			< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0 ♦ ichloroethane
	Dichloroethylene		< 5.0	< 5.0	< 5.0	< 5.0		μ g/L	WA	0
	s-1, 2-Dichloroethylene		< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	hioromethane (Methylen		3.8	1.2	9.3	< 5.0		μg/L	WA	0
	-Dichlorophenoxyacetic -Dichloropropane	acid	< 1.1 < 5.0	<1.1 <5.0	<1.0 <5.0	<1.1 <5.0		μg/L μg/L	WA WA	0
	1,3-Dichloropropene		< 5.0	< 5.0	< 5.0 < 5.0	<5.0 <5.0		μg/L μg/L	WA	Ö
	ns-1,3-Dichloropropene		< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	Ö
End			< 0.11	< 0.11	< 0.11	< 0.11		μg/L	WA	0
Eth	ylbenzene		< 5.0	< 5.0	< 5.0	< 5.0		$\mu g/L$	WA	0
	pride		< 100	< 100	< 100	< 100		μg/L	WA	0
	ss aipha		8.6E +00	< 3.0E + 00	< 2.0E + 00	< 2.0E + 00	.,	pCi/L	CN	0
lron ■ les			7.8 10	33 2.6	29 2.6	5,830 100	V	μg/L	WA WA	2 2
- 200	dane		< 0.053	< 0.057	< 0.056	< 0.056		μg/L μg/L	WA	0
	gnesium		514	433	491	462	V	μg/L	WA	Ŏ
	nganese		24	12	10	100	-	μg/L	WA	2
	rcury		< 0.20	< 0.20	< 0.20	< 0.20		μg/L	WA	0
	thoxychlor		< 0.53	< 0.57	< 0.56	< 0.56		μg/L	WA	0
Nicl			22	< 3.1	5.2	21		μg/L	WA	0
	ate as nitrogen		367	291	532	365		μg/L	WA	0
	rite as nitrogen		13	< 10	< 10	17		μg/L	WA	0
Nor	nvolatile beta		7.0E + 00	< 5.0E + 00	< 2.0E + 00	< 2.0E + 00		pCi/L	CN	0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

exceeded final primary drinking water standard for 4th quarter 1992.

Well FSS 1D continued

ANALYTICAL DATA

Ħ	<u>D</u>	Analyte	1092	2092	3092	4092	Mod	<u>Unit</u>	<u>Lab</u>	Flag
•		pΗ	7.0	7.6	6.2	6.4	J	рН	WA	0
		Phenois	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Potassium	379	518	401	292	V	μg/L	WA	0
		Radium-226	1.5E + 00	< 1.0E + 00	< 1.0E + 00	< 1.0E + 00		pCi/L	CN	0
		Radium-228	< 6.7E +00		< 1.0E + 00			pCi/L		
		Selenium	< 2.0	< 2.0	< 2.0	< 2.0		µg/L	WA	0
		Silica	7,740	6,880	6,980	8,280		μg/L	WA	0
		Silver	< 0.70	< 0.70	3.3	1.2	V	µg/L	WA	0
		Sodium	2,900	3,090	3,370	2,380	٧	μg/L	WA	0
•		Specific conductance	122	100	87	124	J	µS/cm	WA	0
		Sulfate		1,980	1,320	1,510		μg/L	WA	0
		1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Tetrachloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Toluene	< 5.0	<5.0	< 5.0	< 5.0		μg/L	WA	0
•		Total dissolved solids	97,000	57,000	61,000	83,000	J	μg/L	WA	0
		Total organic carbon	< 500	< 500	718	1,090		μg/L	WA	0
		Total organic halogens	9.4	< 20	< 5.0	< 5.0		μg/L	WA	0
		Total phosphates (as P)	189	122	58	374		μg/L	WA	0
		Toxaphene	< 1.1	< 1.1	< 1 1	< 1.1		μg/L	WA	0
		2,4,5-TP (Silvex)	< 0.55	< 0.56	< 0.51	< 0.56		μg/L	WA	0
		1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Trichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Trichlorofluoromethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Tritium	9.9E + 00	9.4E + 00	1.0E + 01	1.1E+01		pCi/mL	CN	1

WELL FSS 2D

SRS Coord.	Lat/Longitude 5	Screen Zone Elevation	Top of Casing	Casing	Pump	Fo	rmation		
N75103.5 E53918.9	33.279855 °N 81.670708 °W	224.4-204.4 ft msl	261.6 ft msl	4" PVC	s	w	ater table	9	
SAMPLE DA	TE	03/11/92	06/16/92	07/10/92	11/18/92				
FIELD DATA									
9	Analyte	1092	2092	<u>3Q92</u>	4092	<u>Unit</u>			
p S V	Vater elevation oH op. conductance Vater temperature Alkalinity as CaCO ₃ Volume purged	223.8 6.2 175 17.6 54 0.9	223.3 6.0 164 20.9 48 1.0	223.6 5.9 111 20.5 13	223.8 5.7 74 20.2 9 0.9	ft msl pH µS/cm °C mg/L Well vo	1 .		
ANALYTICA	L DATA								
<u>H</u> D A	Analyte	<u>1Q92</u>	2092	<u>3Q92</u>	<u>4092</u>	Mod	<u>Unit</u>	Lab	Flag
E E E C C C C C C C C C C C C C C C C C	Arsenic Barium Benzene Bromodichloromethane Bromoform Bromomethane (Methyl bror Calcium Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroethane	<0.35 24,500 <5.0 4,930 <5.0 <10	< 2.0 49 < 5.0 < 5.0 < 10 1.2 19.800 < 5.0 5.170 < 5.0 < 10	<2.0 33 <5.0 <5.0 <5.0 <10 0.65 10,900 <5.0 3.120 <5.0 <10	< 2.0 79 < 5.0 < 5.0 < 10 < 0.35 3.550 < 5.0 6.840 < 5.0 < 10	V	μα/L μα/L μα/L μα/L μα/L μα/L μα/L μα/L	WA WA WA A WA A WA A WA WA WA WA A WA	0 0 0 0 0 0 0 0 0 0 0 0 0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

^{■ =} exceeded final primary drinking water standard for 4th quarter 1992.

Well FSS 2D continued

ANALYTICAL DATA

Ħ	D	Analyte	1092	2092	3092	4092	Mod	<u>Unit</u>	<u>Lab</u>	Flag
		2-Chloroethyl vinyl ether	< 10	< 10	< 10	< 10		μg/L	WA	0
		Chloroform	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Chloromethane (Methyl chloride)	< 10	< 10	< 10	< 10		µg/L	WA	0
		Chromium	1.2	< 1.1	4.3	11		µg/L	WA	0
		Copper	< 1.1	< 1.1	< 1.1	17	٧	μg/L	WA	0
		Dibromochloromethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,1-Dichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,2-Dichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		1,1-Dichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		trans-1, 2-Dichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Dichloromethane (Methylene chloride)		< 5.0	2.1	< 5.0		μg/L	WA	0
		2,4-Dichlorophenoxyacetic acid	< 1.1	<1.1	< 1.1	< 1.1		μg/L	WA	0
		1,2-Dichloropropane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA WA	0
		trans-1,3-Dichloropropene	< 5.0 < 0.11	< 5.0	<5.0 <0.11	<5.0 <0.11		μg/L	WA	0
		Endrin Ethylbenzene	< 5.0	<0.11 <5.0	< 5.0	< 5.0		μg/L μg/L	WA	ŏ
		Fluoride	< 100	< 100	< 100	< 100		μg/L μg/L	WA	ŏ
		Gross alpha	1.3E + 01	< 3.0E + 00	2.8E +00	3.5E + 00		pCi/L	CN	ŏ
		iron	27	15	35	10.300	V	μg/L	WA	2
		Lead	< 2.0	< 2.0	2.8	41	•	μg/L	WA	2
		Lindane	< 0.057	< 0.055	< 0.055	< 0.055		μg/L	WA	ō
		Magnesium	1.090	1.010	933	682	V	μg/L	WA	ō
		Manganese	87	69	59	104	·	μg/L	WA	2
		Mercury	< 0.20	< 0.20	5.8	< 0.20		µg/L	WA	0
		Methoxychlor	< 0.57	< 0.55	< 0.55	< 0.55		μg/L	WA	0
		Nickel	3.6	< 3.1	< 3.1	9.9	J3	μg/L	WA	0
		Nitrate as nitrogen	639	712	704	4,840		μg/L	WA	0
		Nitrite as nitrogen	12	12	< 10	30		μg/L	WA	0
		Nonvolatile beta	9.3E + 00	< 5.0E + 00	2 5E + 00	4.0E +00		pCi/L	CN	0
•		pН	7.0	6.9	6.1	5.9	J	pН	WA	0
		Phenois	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Potassium	1,160	1,270	871	635	V	μg/L	WA	0
		Radium-226	1.3E + 01	< 1.0E + 00	< 1.0E + 00	< 1.0E + 00		pCi/L	CN	0
		Radium-228	< 7.9E + 00		< 1.0E +00			pCi/L		_
		Selenium	< 2.0	< 2.0	< 2.0 5.600	< 2.0 8.030		μg/L	WA	0
		Silica Silver	6,590 < 0.70	5,140 3.4	< 0.70	< 0.70	V	μg/L μg/L	WA	Ö
		Sodium	7.230	6.390	7.410	5.190	v	μg/L μg/L	WA	õ
•		Specific conductance	146	134	95	59	j	μS/cm	WA	ŏ
•		Sulfate	140	14,500	15,900	11,200	·	μg/L	WA	ŏ
		1.1.2.2-Tetrachloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	ō
		Tetrachioroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Toluene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
•		Total dissolved solids	57,000	80,000	52,000	45,000	J	μg/L	WA	0
		Total organic carbon	< 500	< 500	622	992		μg/L	WA	0
		Total organic halogens	44	13	< 5.0	< 5.0		μg/L	WA	0
		Total phosphates (as P)	235	1 25	161	541		μg/L	WA	0
		Toxaphene	< 1.1	< 1.1	< 1.1	< 1.1		µg/L	WA	0
		2.4.5-TP (Silvex)	< 0.56	< 0.56	< 0.56	< 0.55		μg/L	WA	0
		1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Trichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	_	Trichlorofluoromethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	-	Tritium	5.7E + 01	8.2E + 01	1.1E + 02	9.8E + 01		pCi/mL	CN	2

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

⁼ exceeded final primary drinking water standard for 4th quarter 1992.

WELL FSS 3D

SRS Coord.	Lat/Longitude S	Screen Zone Elevation	Top of Casin	g Casing	<u>Pump</u>	e E	ormation		
N74960.5 E53548.0	33.278933 °N 2 81.671406 °W	225.8-205.8 ft msl	258.2 ft msi	4" PV	c s	V	Vater table		
SAMPLE DAT	E	03/11/92	06/16/92	07/10/92	11/18/92				
FIELD DATA									
<u>Ar</u>	nalyte	1092	2092	<u>3Q92</u>	4092	<u>Unit</u>			
W	ater elevation	221.6 4.4	221.1 4.7	220.4 5.0	221.5 5.1	ft msl pH			
Sp	o. conductance	55	61	56	46	μS/cm			
	ater temperature	17.3	21.3	20.6	19.9	°C			
	lkalinity as CaCO ₃ plume purged	1 0.6	1 0.6	1 0.6	1 0.9	mg/L Well vi	of.		
ANALYTICAL	. DATA								
H D Ar	nalyte	1092	2092	<u>3Q92</u>	4092	Mod	<u>Unit</u>	<u>Lab</u>	Flag
	rsenic	< 2.0	< 2.0	< 2.0	< 2.0		μg/L	WA	0
	arium	16	20	17	26	J3	μg/L	WA	0
	enzene romodichloromethane	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	<5.0 <5.0		μg/L μg/L	WA WA	0
	omoform	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0		μg/L μg/L	WA	ŏ
Br	omomethane (Methyl bron	nide) < 10	< 10	< 10	< 10		μg/L	WA	ō
	admium	< 0.35	0.78	1.4	1.2	V	μ g/L	WA	0
	alcium	1,310	1,480	1,540	1,290		μg/L	WA	0
	arbon tetrachloride hloride	< 5.0 5.800	< 5.0 3.940	< 5.0 3.420	< 5.0 3.160		μg/L	WA WA	0
_	nlorobenzene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L μg/L	WA	ŏ
	hloroethane	< 10	< 10	< 10	<10		μg/L	WA	ŏ
	hioroethene (Vinyl chloride		< 10	< 10	< 10		μg/L	WA	0
	Chloroethyl vinyl ether	<10	< 10	< 10	< 10		μg/L	WA	0
	hloroform	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	hloromethane (Methyl chlo hromium	ride) < 10 1.9	<10 <1.1	< 10 1.7	< 10 6.1		μg/L	WA WA	0
	opper	6.7	20	24	109	V	μg/L μg/L	WA	Ö
	ibromochloromethane	< 5.0	< 5.0	< 5.0	< 5.0	•	μg/L	WA	ŏ
	1-Dichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	Ō
	2-Dichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	1-Dichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	ans-1,2-Dichloroethylene ichloromethane (Methylene	<5.0 chloride) <5.0	< 5.0 < 5.0	< 5.0 < 5.0	<5.0 <5.0		μg/L	WA WA	0
	4-Dichlorophenoxyacetic a		< 1.1	<1.1	<1.1		μg/L μg/L	WA	ŏ
	2-Dichloropropane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	ŏ
	s-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	ans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
	ndrin :hylbenzene	<0.11 <5.0	< 0.12 < 5.0	< 0.11	< 0.11		μg/L	WA	0
	uoride	<100	< 100	< 5.0 < 100	<5.0 <100		μg/L	WA WA	0
	ross alpha	4.3E+00	< 3.0E + 00	4.0E + 00	2.4E+00		μg/L pCi/L	CN	Ö
Iro	on	50	64	1,840	1,300	V	μg/L	WA	2
	pad	26	19	34	154		μg/L	WA	2
	ndane	< 0.057	< 0.060	< 0.056	< 0.055		µg/L	WA	0
	agnesium anganese	977 77	1,130 76	1,220 62	1,080 83	V	μg/L	WA WA	0 2
	etchta	< 0.20	< 0.20	< 0.20	< 0.20		μg/L μg/L	WA	ó
	ethoxychior	< 0.57	< 0.60	< 0.56	< 0.55		μg/L	WA	ŏ
	ickel	3.7	< 3.1	5.0	7.6	J3	μg/L	WA	0
	itrate as nitrogen	843	931	763	868		μg/L	WA	0
Ni	itrite as nitrogen	12	< 10	< 10	19		μg/L	WA	0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

⁼ exceeded final primary drinking water standard for 4th quarter 1992.

Well FSS 3D continued

ANALYTICAL DATA

Ħ	ō	Analyte	<u>1Q92</u>	<u> 2092</u>	3092	4092	Mod	<u>Unit</u>	<u>Lab</u>	Flag
		Nonvolatile beta	4.2E +00	< 5.0E + 00	3.0E + 01	2.5E +00		pCi/L	CN	0
•		pH	5.6	5.8	5.4	5.4	J	ρH	WA	0
		Phenois	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Potassium	780	1,000	675	780	V	μg/L	WA	0
		Radium-226	2.0E +00	< 1.0E + 00	< 1.0E + 00	< 1.0E + 00		pCi/L	CN	0
		Radium-228	< 7.3E + 00		< 1.0E + 00			pCi/L		
		Selenium	< 2.0	< 2.0	< 2.0	< 2.0		µg/L	WA	0
		Silica	7,680	7,600	6,610	8,550		µg/L	WA	0
		Silver	< 0.70	1.9	0.75	0.78	V	µg/L	WA	0
		Sodium	6,680	6,890	5,990	6,300	V	µg/L	WA	0
•		Specific conductance	53	52	54	53	J	µS/cm	WA	0
		Sulfate		10,500	10,800	11,200		μg/L	WA	0
		1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Tetrachloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Toluene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
•		Total dissolved solids	33,000	39,000	4,000	43,000	J	g/L	WA	0
		Total organic carbon	< 500	< 500	622	1,090		μg/L	WA	0
		Total organic halogens	46	21	38	< 5.0		μg/L	WA	0
		Total phosphates (as P)	115	223	101	309		μg/L	WA	0
		Toxaphene	< 1.1	< 1.2	< 1.1	< 1.1		μg/L	WA	0
		2,4,5-TP (Silvex)	< 0.55	< 0.57	< 0.56	< 0.56		μg/L	WA	0
		1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Trichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Trichlorofluoromethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
	•	Tritium	4.0E + 01	5.3E + 01	4.9E+01	6.2E + 01		pCi/mL	CN	2

WELL FSS 4D

SRS	Coord.	Lat/Longitude S	Screen Zone Elevation	Top of Casing	Casing	Pump	For	mation		
N755 E528	537.8 376.1	33.279114 °N 81.674297 °W	222.6-202.6 ft msl	291.8 ft msi	4" PVC	S	Wa	iter table		
SAM	PLE DATE		03/11/92	06/16/92	07/10/92	11/18/92				
FIELD	DATA									
	Ana	lyte	1092	2092	3092	4092	<u>Unit</u>			
	pH Sp. Wat Alka	er elevation conductance er temperature alinity as CaCO ₃	220.4 4.8 47 18.4 0	220.0 4.3 50 20.7 0	219.8 4.7 47 21.1 0	220.2 4.9 49 21.8 0	ft msi pH µS/cm °C mg/L Well voi			
ΔΝΔ	LYTICAL D	ime purged	1.0	1.0	1.2	1.0	Wen voi	•		
	D Ana		1092	2092	3092	4092	Mod	Unit	<u>Lab</u>	Flag
	Bron Bron		< 2.0 8.1 < 5.0 < 5.0 < 5.0 nide) < 10	< 2.0 8.7 < 5.0 < 5.0 < 10	< 2.0 6.8 < 5.0 < 5.0 < 5.0 < 10	<2.0 17 <5.0 <5.0 <5.0 <10	J3	μg/L μg/L μg/L μg/L μg/L μg/L	WA WA WA WA	0 0 0 0 0 0
	Cadi Cald Carb Chid Chid	mium sium son tetrachloride oride oroobenzene oroothane	<0.35 1.310 <5.0 5.150 <5.0 <10	1.1 1,770 < 5.0 4,410 < 5.0 < 10	0.65 1.110 <5.0 4.240 <5.0 <10	1.2 1,220 <5.0 3,830 <5.0 <10	V	μg/L μg/L μg/L μg/L μg/L μg/L	WA WA WA WA	0 0 0 0 0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

^{■ =} exceeded final primary drinking water standard for 4th quarter 1992.

Well FSS 4D continued

ANALYTICAL DATA

H	<u>D</u>	Analyte	1092	2092	3092	4092	<u>Mod</u>	<u>Unit</u>	<u>Lab</u>	Flag
		Ott	< 10	< 10	< 10	< 10		μg/L	WA	0
		Chloroethene (Vinyl chloride)	< 10	<10	< 10	< 10		μ g/L	WA	0
		2-Chloroethyl vinyl ether	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Chloroform Chloromethane (Methyl chloride)	<10	<10	< 10	< 10		μg/L	WA	0
		Chromium	2.3	<1.1	5.9	2.4	J3	μg/L	WA	0
			14	27	18	7.7	V	μg/L	WA	0
		Copper Dibromochloromethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1.1-Dichlorgethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1.2-Dichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1,1-Dichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		trans-1,2-Dichloroethylene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Dichloromethane (Methylene chloride)	3.0	3.5	8.1	< 5.0		μg/L	WA	-
		2,4-Dichlorophenoxyacetic acid	< 1.1	< 1.1	< 1.0	< 1 1		μg/L	WA	0
		1,2-Dichloropropane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA WA	0
		cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L		0
		trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA WA	0
		Endrin	< 0.11	< 0.11	< 0.11	< 0.11		μg/L	WA	0
		Ethylbenzene	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Fluoride	< 100	< 100	<100	< 100		μg/L	CN	0
		Gross alpha	2.6E + 00	< 3.0E + 00	< 2.0E + 00	< 2.0E + 00		pCi/L	WA	2
		Iron	472	826	114	1,180	V	μg/L	WA	0
		Lead	< 2.0	< 2.0	< 2.0	< 2.0		μg/L	WA	0
		Lindane	< 0.053	< 0.056	< 0.056	< 0.056	V	μg/L μg/L	WA	0
		Magnesium	758	1,760	686	844	V	μg/L μg/L	WA	0
		Manganese	15	13	11	24		μg/L μg/L	WA	0
		Mercury	< 0.20	< 0.20	< 0.20	< 0.20		μg/L μg/L	WA	ŏ
		Methoxychlor	< 0.53	< 0.56	< 0.56	< 0.56 4.7	J3	μg/L	WA	Ö
		Nickel	< 3.1	< 3.1	< 3.1	4.7 236	JS	μg/L μg/L	WA	Ŏ
		Nitrate as nitrogen	2,330	421	2,340	33	J3	μg/L	WA	ō
		Nitrite as nitrogen	11	45	< 10 < 2.0E + 00	< 2.0E + 00	33	pCi/L	CN	Ŏ
		Nonvolatile beta	3.7E +00	< 5.0E + 00	5.1	5.2	J	pH	WA	Ŏ
•)	pН	5.2	5.4 <5.0	< 5.0	< 5.0	•	μg/L	WA	0
		Phenois	< 5.0	< 5.0 546	306	692	V	μg/L	WA	Ö
		Potassium	370	< 1.0E + 00	< 1.0E + 00	< 1.0E + 00	•	pCi/L	CN	0
		Radium-226	8.7E-01 < 9.5E + 00	< 1.0E ≠ 00	< 1.0E + 00	V 1.02 . 00		pCi/L		
		Radium-228	< 2.0	< 2.0	< 2.0	< 2.0		μg/L	WA	0
		Selenium	9.480	9,260	7.660	11,200		μg/L	WA	0
		Silica	< 0.70	< 0.70	< 0.70	0.75	V	μg/L	WA	0
		Silver	4.440	4.790	4.170	4,470	V	μg/L	WA	0
		Sodium	37	41	40	48	j	μS/cm	WA	0
•	•	Specific conductance	37	501	1.420	779		μg/L	WA	0
		Sulfate 1.1.2.2-Tetrachloroethane	< 5.0	< 5.0	< 5.0	< 5.0		µg/L	WA	0
		Tetrachloroethylene	< 5.0	< 5.0	<5(1566X < 5.0)		μg/L	WA	0
		retractilotoethylene	< 5.0	< 5.0	< 5.0	< 0		μg/L	WA	041XToluene
	_	Total dissolved solids	41.000	36,000	20,000	41,000	J	μg/L	WA	0
•	•	Total organic carbon	< 500	< 500	815	788		μg/L	WA	0
		Total organic halogens	< 5.0	< 10	29	< 5.0		µg/L	WA	0
		Total phosphates (as P)	54	47	64	106		μg/L	WA	0
		Toxaphene	< 1.0	< 1.1	< 1 1	< 1.1		µg/L	WA	0
		2.4.5-TP (Silvex)	< 0.56	< 0.56	< 0.51	< 0.56		μg/L	WA	0
		1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		1.1.2-Trichloroethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L	WA	0
		Trichloroethylene	1.1	< 5.0	1.1	< 5.0		μg/L	WA	0
		Trichlorofluoromethane	< 5.0	< 5.0	< 5.0	< 5.0		μg/L - Ci/mi	WA CN	0
		Tritium	5.5E + 00	6.6E + 00	5.1E + 00	6.1E+00		pCi/mi	- CIV	J

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

⁼ exceeded final primary drinking water standard for 4th quarter 1992.

Table 6. Groundwater Monitoring Results for Individual Wells at the H-Area Sewage Sludge Application Site

WELL HSS 1D

SRS Coor	d. <u>Lat/Longitude</u>	Screen Zone Clevation	Top of Casing	Casing	Pump	For	mation		
N67610.3 E64675.6		256.5-236.5 ft mal	310.1 ft msl	4" PVC	S	Wa	iter table		
SAMPLE	DATE	03/02/92	06/02/92	07/10/92	11/18/92				
FIELD DA	TA								
	Analyte	1092	2092	3092	4092	<u>Unit</u>			
	Water elevation pH Sp. conductance Water temperature Alkalinity as CaCO ₃ Volume purged	269.6 5.7 44 19.3 8 1.0	269.0 5.3 28 19.9 2 0.9	269.6 5.5 31 20 3 4 1 0	269.8 5.5 27 16.9 2	ft mal pH µS/cm °C mg/L Well vol			
ANALYTI	CAL DATA								
Ħ Đ	Analyte	1092	2092	3092	4092	Mod	<u>Unit</u>	Lab	Flag
	Cadmium Calcium Chloride Copper Iron	< 0.35 1,860 2,400 89 9.1	2,640	1 930	1.720		μg/L μg/L μg/L μg/L μg/L	WA	0
	Lead Magnesium Manganese Nickel	6.4 55C 4.8 3.1		5 6			μg/L μg/L μg/L μg/L		
•	Nitrate as nitrogen Nitrite as nitrogen pH Potassium Radium-226 Radium-228 Silicon	1,220 <10 5.5 1,440 1.3E+00 <6.8E+00 5,120	1,250 17 6.0	1,310 < 10 5.8 < 1.0E + 00 < 1.0E + 00	1,150 16 6.0	n n	μυ/ί μg/ί pH μg/ί pCi/ί pCi/ί μg/ί	WA WA WA	0 0 0
•	Sodium Specific conductance Total dissolved solids Total phosphates (as P)	1.680 28 26,000 < 20	1,700 25 33,000	1,780 26 37,000	1,920 24 48,000)) ^	μg/L μS/cm μg/L μg/L	WA WA WA	0 0 0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

^{■ =} exceeded final primary drinking water standard for 4th quarter 1992.

WELL HSS 2D

SRS Coor	d <u>Lat/Longitude</u>	Screen Zone Elevation	Top of Casing	<u>Casing</u>	Pump	For	rmation		
N67355.9 E64785.9			304.4 't msl	4" PVC	s	Wa	iter table		
SAMPLE	DATE	02/26/92	06/02/92	07/09/92	11/18/92				
FIELD DA	TA								
	Analyte	1Q92	2092	<u>3Q92</u>	4092	<u>Unit</u>			
	Water elevation pH Sp. conductance Water temperature Alkalinity as CaCO ₃ Volume purged	268.9 5.0 29 18.6 1 4.0	268.0 4.9 26 19.1 1 4.0	268.7 5.0 29 20.2 1 4.0	268.8 5.2 26 18.6 1	ft msl pH µS/cm °C mg/L Well vol			
ANALYTI	CAL DATA								
<u>н</u> D	Analyte	<u>1092</u>	<u>2092</u>	3092	<u>4Q92</u>	Mod	<u>Unit</u>	Lab	Flag
	Cadmium Calcium Chloride Copper Iron	<0.35 1,290 2,130 1.6 3.5	2,780	2.770	2,150		μg/L μg/L μg/L μg/L μg/L	GE	0
	Lead Magnesium Manganese Nickel	< 2.0 440 5.4 < 3.1		< 2.0			μg/L μg/L μg/L μg/L		
•	Nitrate as nitrogen Nitrate-nitrite as nitro Nitrite as nitrogen pH	1,190 gen 16 6,7	1,190 10 5.6	1.120 < 10 5.5	1.140 1.140 31 5.8	J	μg/L μg/L μg/L pH	WA GE WA GE	0 0 0
	Potassium Radium-226 Radium-228 Silica Silicon	1 340 3.0E-01 7.0E-01 23.600 9,380		< 1.0E + 00 2.2E + 00			μg/L pCi/L pCi/L μg/L μg/L		
	Sodium Specific conductance Total alpha-emitting r	2,030 26	1,940 26	2.020 28	2.070 25	V	μg/L μS/cm pCi/L	WA GE	0
•	Total dissolved solids Total phosphates (as	46,000	42,000	43,000	50,000	J	μg/L μg/L	WA	0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix 8 for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

^{■ =} exceeded final primary drinking water standard for 4th quarter 1992.

WELL HSS 3D

SRS Coord	<u>d.</u>	Lat/Longitude	Screen Zone	Elevation	Top of Casing	Casing	Pump	For	mation		
N68257.5 E64709.5		33.282315 °N 81.628996 °W	282,6-262,6	6 ft msl	309.8 ft msl	4" PVC	S	Wa	iter table		
SAMPLE D	DATE			03/02/92	06/02/92	07/10/92	11/18/92				
FIELD DA	TA										
	Analyt	<u>te</u>		1Q92	2Q92	3092	4092	<u>Unit</u>			
	pH Sp. co Water Alkalir	elevation onductance temperature nity as CaCO ₃ ne purged.		281.4 3.6 29 20.1 0 4.0	281.5 4.3 28 21.3 0 1.9	282.1 4.4 29 21.4 0	282.9 4.5 27 18.2 0	ft msl pH µS/cm °C mg/L Well vol			
ANALYTIC	CAL DA	TA									
H D	Analy	<u>te</u>		<u>1Q92</u>	<u> 2092</u>	<u>3092</u>	4092	Mod	<u>Unit</u>	<u>Lab</u>	Flag
	Cadmi Calciu Chlori Coppe Iron Lead	im de		< 0.35 356 3,610 34 37 39	3.890	3,290	2,930		μg/L μg/L μg/L μg/L μg/L μg/L	WA	0
	Magne Mang Nickel	anese I		282 6.8 < 3.1	1.100	1.090	956		μg/L μg/L μg/L	WA	0
•	Nitrite pH Potas: Radiu Radiu	m-226 m-228		1,130 <10 5.0 407 3.0E + 00 < 6.0E + 00 2,430	1,120 17 5.1	<1.0E + 00 <1.0E + 00	23 4.9	J J	μg/L μg/L pH μg/L pCi/L pCi/L	WA WA	0
•	Total			2,430 2,360 24 9.0E + 06 58	2,710 24 21,000	2,810 24 19,000	2,280 24 23,000)) ^	μg/L μg/L μS/cm μg/L μg/L	WA WA WA	0 0 0

Note: Flagging levels, modifiers, and laboratories are for 4th quarter 1992 data only. See Appendix B for flagging criteria.

^{• =} exceeded holding time for 4th quarter 1992.

exceeded final primary drinking water standard for 4th quarter 1992.

$Appendix \ E \ - \ {\tt Data\ Quality/Useability\ Assessment}$

Data Quality/Useability Assessment

Quality assurance/quality control (QA/QC) procedures relating to accuracy and precision of analyses performed on groundwater samples are followed in the field and laboratory and are reviewed prior to publication of results. The Environmental Protection Department/ Environmental Monitoring Section's (EPD/EMS) review of the volume of analytical data acquired each quarter and presented in various reports is an ongoing process; its review of the QA/QC data cannot be completed in time to meet the deadlines for the reports required by the Resource Conservation and Recovery Act and associated regulations. Other site and regulatory personnel can obtain further information on the data quality and useability in a variety of ways, including those described below.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific QA/QC information either at the same time as analytical results or in a quarterly summary. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data useability. Result modifiers designed by EPD/EMS and provided to the primary laboratories are presented in Appendix D.

Assessment of Accuracy of the Data

Accuracy, or the nearness of the reported result to the true concentration of a constituent in a sample, can be assessed in several ways.

A laboratory's general accuracy can be judged by analysis of results obtained from known samples. The non-radionuclide contract laboratories analyze commercial reference samples every quarter at EPD/EMS' request. The results of these analyses are presented in the EPD/EMS quarterly report, *The Savannah River Site's Groundwater Monitoring Program*. The primary laboratories also seek or maintain state certification by participating periodically in performance studies; reference samples and analysis of results are provided by EPA. Results of these studies also are published in the EPD/EMS quarterly reports.

Analysis of blanks provides a tool for assessing the accuracy of both sampling and laboratory analysis. Results for all field blanks for the quarter can be found in the EPD/EMS quarterly reports. Any field or laboratory blanks that exceeded established minimums are identified in the same reports, in tables associating them with groundwater samples analyzed in the same batches.

Surrogates, organic compounds similar in chemical behavior to the compounds of interest but not normally found in environmental samples, are used to monitor the effect of the matrix on the accuracy of analyses for organic parameters. For example, for analyses of volatile organics by EPA Method 8240, three surrogate compounds are added to all samples

and blanks in each analytical batch. In analyses of semivolatile organics, three to four acid compounds and three to four base/neutral compounds are used. Other surrogates are used in pesticides analyses. Percent recoveries for surrogate analyses are calculated by laboratory personnel, reported to EPD/EMS, reviewed, and entered into the database, but they are not published. If recoveries are not within specified limits, the laboratory is expected to re-run the samples or attach result qualifiers to the data identifying the anomalous results.

Sample-specific accuracy for both organic and inorganic parameters can be assessed by examination of matrix spike/matrix spike duplicate results. A sample is analyzed unspiked to determine a baseline set of values. A second portion of sample is spiked with known concentrations of compounds appropriate to the analyses being performed, typically 5 volatile organic compounds for volatile organics analyses, 11 semivolatile compounds for semivolatiles, 6 pesticide compounds for pesticides, all metals for metals analyses, and a known quantity of cyanide for cyanide analysis. The percentage of the spike compound that is recovered (i.e., measured in excess of the value obtained for the unspiked sample) is a direct measure of analytical accuracy. EPA requires matrix spike/matrix spike duplicates to be run at least once per 20 samples of similar matrix.

Matrix spike/matrix spike duplicate results are reported to EPD/EMS but are not published. For organic compounds, according to EPA guidelines, no action is taken on the basis of matrix spike/matrix spike duplicate data alone (i.e., no result modifiers are assigned solely on the basis of matrix spike results); however, the results can indicate if a lab is having a systematic problem in the analysis of one or more analytes.

In the case of inorganic compounds, such as metals, the matrix spike sample analysis provides information about the effect of each sample matrix on the digestion and measurement methodology. Data qualifiers can be assigned on the basis of the percentage of spike recovery and are reported in the published results tables.

Assessment of Precision

Precision of the analyses, or agreement of a set of replicate results among themselves, is assessed through the use of duplicates (laboratory-initiated) and blind replicates (provided by EPD/EMS). The results of duplicate and replicate analyses are presented in the results tables of the first, second, and third quarter reports as multiple entries for an analyte under a single well heading. The results of replicate analyses are presented in the results tables in first, second, and third quarter reports as two separate sets of results for the same well. Duplicate and replicate results are not presented in fourth quarter reports; the results tables present instead only the highest result for each analyte for each quarter of the year.

The laboratories assess precision by calculating the relative percent difference, or RPD, for each pair of laboratory-initiated duplicate results. During 1992, at least one of the contract laboratories used a data qualifier (J3) to modify metals analyses when the RPD for laboratory duplicates was greater than 20%.

Additional statistical comparisons of laboratory duplicate and blind replicate results, both intra- and interlaboratory, are presented in the EPD/EMS quarterly reports. The calculation used for these reports is the MRD, or mean relative difference, which is similar to EPA's RPD except that the MRD provides a single value for all of the analyses of a particular compound, either inter- or intralaboratory, during one quarter. Because detection limits may vary among samples, the MRD requires calculation of a reference detection limit, which is the detection limit at the 90th percentile of the array of limits in the population of all replicate and duplicate analyses for a given analyte during a particular quarter. The MRD is not method-specific.

Method-Specific Accuracy and Precision

The contract laboratories' EPA-approved laboratory procedures include QA/QC requirements as an integral part of the methods. Thus, knowledge of the method used in obtaining data is an important component of determining data useability. EPA has conducted extensive research and development on the methods approved for the analysis of water and waste water; information on the accuracy and precision of the method is available from EPA publications, as is full information on required QA/QC procedures. A listing of the methods used by the primary laboratories during first quarter 1992 is given below along with the source for the method description. Many, if not all, of these sources include presentations of representative accuracy and precision results.

<u>Method</u>	Used to Analyze	<u>Source</u>
EPA120.1	Specific conductance	EPA EMSL 1983
EPA150.1	pH	EPA EMSL 1983
EPA160.1	Filterable residue (total dissolved solids)	EPA EMSL 1983
EPA160.2	Nonfilterable residue	EPA EMSL 1983
EPA180.1	Turbidity	EPA EMSL 1983
EPA200.7	Trace elements	EPA EMSL 1983
EPA206.2	Arsenic	EPA EMSL 1983
EPA208.2	Barium	EPA EMSL 1983
EPA239.2	Lead	EPA EMSL 1983
EPA245.1	Mercury	EPA EMSL 1983
EPA270.2	Selenium	EPA EMSL 1983
EPA279.2	Thallium	EPA EMSL 1983
EPA300.0	Inorganics, non-metallics	EPA EMSL 1991
EPA310.1	Alkalinity	EPA EMSL 1983
EPA325.2	Chloride ,	EPA EMSL 1983
EPA335.3	Cyanide	EPA EMSL 1983
EPA340.2	Fluoride	EPA EMSL 1983
EPA353.1	Nitrogen, nitrate-nitrite	EPA EMSL 1983
EPA353.2	Nitrogen, nitrate, nitrite, or combined	EPA EMSL 1983
EPA353.3	Nitrogen, nitrate-nitrite, or nitrite only	EPA EMSL 1983
EPA354.1	Nitrogen, nitrite	EPA EMSL 1983
EPA365.1	Phosphorus, all forms (reported as total phosphates)	EPA EMSL 1983
EPA365.2	Phosphorus, all forms (reported as total phosphates)	EPA EMSL 1983
EPA375.4	Sulfate, turbidimetric	EPA EMSL 1983
EPA376.2	Sulfide	EPA EMSL 1983
APHA403	Alkalinity	APHA 1985
EPA413.1	Oil & grease	EPA EMSL 1983
APHA415A	lodine	APHA 1985

<u>Method</u>	Used to Analyze	Source
EPA415.1	Total organic carbon	EPA EMSL 1983
EPA418.1	Petroleum hydrocarbons	EPA EMSL 1983
EPA420.1	Phenolics	EPA EMSL 1983
EPA420.2	Phenolics	EPA EMSL 1983
APHA705	Total alpha-emitting radium	APHA 1985
ASTMD3869C	lodide	ASTM 1992
APHA5320	Dissolved organic halogen	APHA 1989
EPA6010	Metals	EPA 1986
EPA7041	Antimony	EPA 1986
EPA7060	Arsenic	EPA 1986
EPA7421	Lead	EPA 1986
EPA7470	Mercury	EPA 1986
EPA7740	Selenium	EPA 1986
EPA7841	Thallium	EPA 1986
EPA8010	Halogenated volatile organics	EPA 1986
EPA8020	Aromatic volatile organics	EPA 1986
EPA8080	Organochlorine pesticides and PCBs	EPA 1986
EPA8140	Organophosphorus pesticides	EPA 1986
EPA8150	Chlorinated herbicides	EPA 1986
EPA8240	GCMS VOA	EPA 1986
EPA8270	GCMS semivolatiles	EPA 1986
5PA8280	Dioxins and furans	EPA 1986
EPA9012	Total cyanide	EPA 1986
EPA9020	Total organic halides	EPA 1986
EPA9030	Sulfides	EPA 1986

An example of the available method-specific QA/QC information is that for the analysis of metals by EPA Method 6010/200.7 (EPA, 1986/EPA EMSL, 1983). The primary laboratories, General Engineering Laboratories (GE) and Roy F. Weston, Inc. (Weston), use this inductively coupled plasma (ICP) atomic emission spectrometric method.

The following precision and accuracy data are based on the experience of seven laboratories that applied the ICP technique to acid-distilled water matrices that had been dosed with various metal concentrates. (Note: not all seven laboratories analyzed all 14 elements.) The references give results for samples having three concentration ranges; the results here are for samples having the lowest values, similar to actual groundwater results for SRS.

ICP Precision and Accuracy Data

Element	True value (µg/L)	Mean reported value (µg/L)	Mean percent <u>RSD</u> ^a
Beryllium	20	20	9.8
Manganese	15	15	6.7
Vanadium	70	69	2.9
Arsenic	22	19	23
Chromium	10	10	18
Copper	11	1 1	40
Iron	20	19	15
Aluminum	60	62	33

<u>Element</u>	True value (µg/L)	Mean reported value (µg/L)	Mean percent RSD ^a
Cadmium	2.5	2.9	16
Cobalt	20	20	4.1
Nickel	30	28	11
Lead	24	30	32
Zinc	16	19	45
Selenium	6	8.5	42

Note: In EPA (1986), the column heading is Mean Standard Deviation (%).

As another example, EPA Method 601/8010 (CFR, 1991/EPA, 1986) is used by both GE and Weston for analyses of halogenated volatile organics. In the presentation of the method in both references, the following table gives method-specific accuracy and precision as functions of concentration. Contract laboratories are expected to achieve or at least approach these limits.

Accuracy and Precision as Functions of Concentration for EPA Method 601/8010

<u>Parameter</u>	Accuracy as recovery, X' ^a (µg/L)	Single analyst precision (µg/L) ^b	Overall precision (µg/L) ^c
Bromodichloromethane	1.12 <i>C</i> – 1.02 ^d	$0.11\overline{X} + 0.04^{e}$	$0.20\overline{X} + 1.00$
Bromoform	0.96 <i>C</i> – 2.05	$0.12\overline{X} + 0.58$	$0.21\overline{X} + 2.41$
Bromomethane	0.76℃ – 1.27	$0.28\overline{X} + 0.27$	$0.36\overline{X} + 0.94$
Carbon tetrachloride	0.98 <i>C</i> – 1.04	$0.15\overline{X} + 0.38$	$0.20\overline{X} + 0.39$
Chlorobenzene	1.00 <i>C</i> – 1.23	$0.15\overline{X} - 0.02$	$0.18\overline{X} + 1.21$
Chloroethane	0.99 <i>C</i> – 1.53	$0.14\overline{X} - 0.13$	$0.17\overline{X} + 0.63$
2-Chloroethyl vinyl ether ^f	1.00 <i>C</i>	$0.20\overline{X}$	0.35 \overline{X}
Chloroform	0.93 <i>C</i> - 0.39	$0.13\overline{X} + 0.15$	0.19 X – 0.02
Chloromethane	0.77 <i>C</i> + 0.18	$0.28\overline{X} - 0.31$	$0.52\overline{X} + 1.31$
Dibromochloromethane	0.94C + 2.72	$0.11\overline{X} + 1.10$	$0.24\overline{X} + 1.68$
1,2-Dichlorobenzene	0.93 <i>C</i> + 1.70	$0.20\overline{X} + 0.97$	$0.13\overline{X} + 6.13$
1,3-Dichlorobenzene	0.95 <i>C</i> + 0.43	$0.14\overline{X} + 2.33$	$0.26\overline{X} + 2.34$
1,4-Dichlorobenzene	0.93 <i>C</i> - 0.09	$0.15\overline{X} + 0.29$	$0.20\overline{X} + 0.41$
1,1-Dichloroethane	0.95 <i>C</i> - 1.08	$0.09\overline{X} + 0.17$	$0.14\overline{X} + 0.94$
1,2-Dichloroethane	1.04 <i>C</i> - 1.06	$0.11\overline{X} + 0.70$	$0.15\overline{X} + 0.94$
1,1-Dichloroethene	0.98 <i>C</i> - 0.87	$0.21\overline{X} - 0.23$	$0.29\overline{X} - 0.40$
trans-1,2-Dichloroethene	0.97 <i>C</i> - 0.16	$0.11\overline{X} + 1.46$	$0.17\overline{X} + 1.46$
1,2-Dichloropropane ^f	1.00 <i>C</i>	0.13 <i>X</i>	0.23 X
cis-1,3-Dichloropropene ^f	1.00 <i>C</i>	0.18 \overline{X}	$0.32\overline{X}$
trans-1,3-Dichloropropene ^f	1.00C	0.18 X	$0.32\overline{X}$
Methylene chloride	0.91 <i>C</i> - 0.93	$0.11\overline{X} + 0.33$	$0.21\overline{X} + 1.43$
1,1,2,2-Tetrachlorethane	0.95 <i>C</i> + 0.19	$0.14\overline{X} + 2.41$	$0.23\overline{X} + 2.79$
Tetrachloroethylene	0.94 <i>C</i> + 0.06	$0.14\overline{X} + 0.38$	$0.18\overline{X} + 2.21$
1,1,1-Trichloroethane	0.90 <i>C</i> - 0.16	$0.15\overline{X} + 0.04$	$0.20\overline{X} + 0.37$
1,1,2-Trichloroethane	0.86C + 0.30	$0.13\overline{X} - 0.14$	$0.19\overline{X} + 0.67$
Trichloroethylene	0.87 <i>C</i> + 0.48	$0.13\overline{X} - 0.03$	$0.23\overline{X} + 0.30$

a Relative standard deviation.

Parameter	Accuracy as recovery, X' ^a (µg/L)	Single analyst precision (µg/L)b	Overall precision (µg/L) c
Trichlorofluoromethane	0.89 <i>C</i> - 0.07	$0.15\overline{X} + 0.67$	0.26 X + 0.91
Vinyl chloride	0.97 <i>C</i> - 0.36	$0.13\overline{X} + 0.65$	0.27 X + 0.40

^a X' = expected recovery for one or more measurements of a sample containing a concentration of C, in μ g/L.

References

APHA (American Public Health Association), 1985. Standard Methods for the Examination of Water and Wastewater, 16th edition. Washington, DC.

APHA (American Public Health Association), 1989. Standard Methods for the Examination of Water and Wastewater, 17th edition. Washington, DC.

ASTM (American Society for Testing and Materials), 1992. 1992 Annual Book of ASTM Standards, Volume 11.02, Water (II). Philadelphia, PA.

CFR (Code of Federal Regulations), 1991. Guidelines Establishing Test Procedures for the Analysis of Groundwater, **Title 40**, **Part 136**, Appendix A. Revised July 1, 1991. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1986. Test Methods for Evaluating Solid Waste (SW-846), Volumes IA-IC. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1987. **Data Quality Objectives for Remedial Response Activities**. PB88-131870; EPA/540/G-87/003. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1988a. Contract Laboratory Program Statement of Work for Inorganics Analysis, Multi-Media, Multi-Concentration. SOW No. 788. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1988b. Contract Laboratory Program Statement of Work for Organics Analysis Multi-Media, Multi-Concentration. SOW No. 288. Washington, DC.

EPA (U.S. Environmental Protection Agency), 1990. Guidance for Data Useability in Risk Assessment. Interim Final. EPA/540/G-90/008. Washington, DC.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1979. Handbook for Analytical Quality Control in Water Wastewater Laboratories. PB-297 451; EPA-600/4-79-019. Cincinnati, OH.

b Expected single analyst standard deviation of measurements.

^c Expected interlaboratory standard deviation of measurements.

^d C = true value for the concentration, in μ g/L.

e \overline{X} = average recovery found for measurements of samples containing a concentration of C_i in $\mu g/L$.

f Estimates based on performance in a single laboratory.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1983. **Methods for Chemical Analysis of Water and Wastes**. Revised March 1983. Cincinnati, OH.

EPA EMSL (U.S. Environmental Protection Agency, Environmental Monitoring and Systems Laboratory), 1991. Test Method, The Determination of Inorganic Anions in Water by Ion Chromatography—Method 300.0. Revised August 1991. Cincinnati, OH.

DATE FILMED 8/20/93

	•	