UMCLASSIFIED

OAK RIDGE MATIONUL LABORATORY
Opereted By
UNION CARBDE NUCLEAR COMPANY
एटए
post oppice mox ${ }^{\text {p }}$ OAK RIDOE, TENONESSE

DATE, April 30, 1957

supuscri, Oporation of the Diatiliation Method for the Doternination of Sodiun oxide in max during the Calibration of a plus Inalicator TO. Listed Distribution
prown
R. D. Peak

MASTER

57-4-115

COPY NO. 10

The ivformation lo mot to be alatrsetel,
reb... Inl er atheraise pivee welcis dieveminaties Fihnat the ayphorat of the Oiasth peinet tranek.
Legal sed Infermation Centrol Depertenest.
motice

 et che oil mide Wetient Leverys is Ig anthest
 roprosent e firnel repert.

UMCLASSITID

- 2 -

ABgTRMCT

The Aistiviation method (Arponine Sarpier) for the annlyyis of soditu oxide in mar was uned to onlibraty a plisg indiontor. The ceseription of the equippont, procedure, and experiemces with the Argonne Samplere are prosented in great detail to ald future users of this mothod. Although thin mathod is not very precise, it hase been thoroughly checked out and is rocornended as a standard means for sempling and analyale for oxdle in iiquid matinl aystens.

thor Assipim

$$
-3-
$$

Imax

Page
AelmorAedgenents 4
Introduction 5

Table $2 \ldots \ldots 35$

Appenatix

1. Procelture 39
2. Gardiner ${ }^{2}$ s Statistien Annigais 42

UHCLASSIFIR

- 4 -

Acionoumpananers

The vriteor vishes to thank the Itve technicians who participated in rumning the calibration test. The assistance of these men was invaluable: F. Aravine, R. Foust, J. R. Love, D. E. T1dvel1, and B. C. M1111ems.

The statisties of Don A. Cardiner contributed greatiy to the annlyale of the experimental inta. Wille aclonowiedging this masistance, the writer mat claim full reaponaibility for the conclusions dravm from the statiatica. If the conclusions are in error, it is only the writers's fault.

Finally, the help of the Analytion Chemiatry Diviaion who set the vriter "up in the businesg" mast be ackonowledged. The thenics 60 to J. C. White, A. S. Neger, Jr., and O. Doldberg.

पЕलLABSIPIT

- 5 -

Iffaopucriol

Farious methode for the sempling of ilquid matale and chemioni annlysis of aodium oxide have bown tewted over a period of yoars in a oontiaring attenpt te perfect an securate and meliable "standard method." One of the rirat methodn tested was used cluring a piug indicator calibration test, so deseribed In Beference 1. Thise mithod piped the hot Hak sample from the puith purpp boul into a hydrogen firod nickel bottie and allowed the Jlar to ocol before taking several aliguote frow the bottle uaing the three-bulb glase thiter tube. The Inir in the glase tubes vas amnlyzed for sodiun oxide content by using the butylbromide method. The results of this test ahoved that, although the plug indicator eave good qualitative agrvemant with the chenical analyses, these analyses vore manilly umaccountably high, probably tue to the dirficulty of preventing contamination of the Malk by mere truces of air or water.

In late 1955, Humplareys of AIL presented a madicnily dirferent method for sumpling and snalysis for sodium oxide uaing the Argoune Smprier. As described in Reference 2, this method kept the Flal aanple in only one container, the nifekelufoll ifned cup inaide the Sempler, until the Flak wed dietivied ofr leaving only an inert residue vhich inelufied the oxide. This mesidue ves then amalysed by standard chemicni methode. This Argonno Slampler method, aleo called the Diatilietion Mothod, was teated, modiried alightiy, and melaesed by the Aralytical Chemistry Division with a detafled procediare, Reference 3. In all, aeven technicians have been trained in this method and have participuted in colibration testes on various piug indicators. Since thie experience vese favorable, the teat roported partialiy herein wae run to calibrate another piug indicator.

The Analytien Chemietry Division han aleo relanged a seoond seappiling mothod using a modiried jean smmpler, Referemoe 4. Attempta to wee thie method in the onlibration teats on the plug indicators have been wnouccessanul. The difriculty experienced ves in attaining the dogree of veinum tightnese nequired to prevent viaible oontamination of the Hal aniple.

The description of the equipnont, procedure, and experiences with the Argoune Sumplers will be presented with a great amount, perhape excensivo, detail in thile ruport. The reapon is thise althoueh this method is not very preciae, it hay been thoroughly checkad out and 10 recompended as a standard mans for seappling and anniysia for oocide in liguid metal aysters. Thene detaile them ase to ald future operntore of this equipment.

unctassiritip

- 6 -

Athough the Argome Sempler equignent deseribed in Beference 3 vas Adequate to rum ennlyaes, a mumber of modiflentions were made to facilitente asecminy and operation. These modiriontions involved the deelen of the enmplerr and flat valves; tue of quicle-connect coaplinge on Far tranafer ifnes; portable serpiler atandes and inotrumentation.

The basie sempler unit is shovm in the schenntic, Figure 1 . A briet deseription of its use facilitates the discusaion of the equipraent. While sempling, Tow (or sodium) flovs froe the tranafer line (anipilng line) and valve into the unit where a fixped volume of the ifquid metal is retained on a memovable cup. The excess Flat, used to clean the line-valve-cup, falla into the overflour receiver mapk. With the valve ahut, the Ilat retained in the cup is distilled off under vecum at Bo0 ${ }^{\circ} \%$ leaving a mesidue of inert soditu oactile. The cup onn then be memoved from the unit, the oxide dispolved in vater and titrated vith atmadnad solutions of mydrochiorie acid to deternine the initial concentration of orcide in the fixed volume of Iolk. A complete annlyrals requires 7 hours.

Four sempler units vere used during the test. Tvo of the semplern, Fo"e. 1 and 2, were ouppiled by the Anniytioni Cheniatry Division. Another anapler unit, Ilo. 3, whes made according to the dravinge listed in Reference 5. The only important aifference among these sarplers was in the construction of the vent part on the drain line, as ahovm in Figure 2. The lagt enmpler, Fo. 5, made using the dravings given in Reference 6, was a special desien which provided a wíndov for obeerving the semple cup during sempling and vacunu diatillation operations. This vindov vorlaed very astiafactorily.

The somple cup used in the sampler unite is ahovm in Figure 3 along with an insert, insert hester, and vell type thernocouple. These semple cupe vere pressed ourt of soft micicel sheet, 0.010 inches thick. The foids in the cup tended to retain minute amounts of Hak even after a long diatilintion time. Severnl perfectily mooth cupa had been mode by piating nickel onto aluminum cups which were then enten awny by caustic. Fowever, these plated cupa weas very brittie and brolce in use. If the plated cups were made thicker (they vere only 0.010 inches thick) and annenied, they would be better then the preseed cupe.

The Innerts were not interchangeable between senpiler unite and vere farlaed corresponding to the lating unita. The mark, the mumber of the unit, served to inder the ingert as there was a tendency for the Hax to leak dovm along the aide of the ingert and socumalate in the outp at the botton if the ingert was not elamped otraight into and on the inder mark of the unit. The flasevare used on the sempler units was custon inde, se shovm on Figure 4 .

The Halk valve on the tranafer line operated under severe conditions. While sarpling, the valve controlled the Mlow of $1200^{\circ} \%$ Illar into the anapler unit. Daring the vacuum distilistion, the valve had to be lenk tight because drip lenle vould reault in either hish or ruined anniysees, depending on whether the drip Hax evaporated off before or remained in the cup when the cup was remowed from the unft. the valves uped vere modifled Bolse bellows valves, No. 1197.

पूCHSSTPT:

These Folke valves were mide of 316 atainless ateel except for the seamless bellovs which were of 3107 atainiess ateel. The body wes provided with integral $1 / 4$ inch Singeloik oonnections and the sent diampter vas $5 / 32$ inch. The modirication, ahown in Heferunce 7, provided a mach longer bonnet and poaitive opening-cloaing of the valve. Thls modiricetion opernted satiafactory aithouph the set serevs
 ande so that a patr of atamiard olen ahell heaters ($2-3 / 8$ imeh inside diamoter, 4 Inches leng, 290 vett, 57 volt) eould be elemped around the body of the volve for heating. The sumgeiok oumpections on the valve tended to develop leaks, $s 0$ etandand praetioe was to vold the $1 / 4$ inch diameter tranafer line to the Ivegelok auta which in turn were welled to the valve body.

This modiried Iloke vilve had a lintted lifej arter a mumber of samples, a Arip leak through the valve developed. Standard preetice vas to provide two vaives in serites and to use first one and then the other until both wers leaking. As it wha a dirficult chore to ropiace valves on a contaninated iine (the services of a welder, inspector, mochmite, electrician, ingulator, and inetrument man vere roguired), the acrpler umits and valves vere asambled into portable atands vhich coculd be commected into the tranefer line and roplaced as necessary. A pair of anfety valvee wore placed in the trangfer ifne betwesm the oomnection and the gump of the Cold Frap Feat stand so that the teat stand could renilin in operation as angior unite vere ropleoed.

Although another molification of the Iloke 1197 valve vas available, Reference 8 , it ves not uned furing the test. Provilous experience with a aimilar modirication of the Maiton Sylphon Hodel 515 bellowe valve, ferference 9, ahoved that this valve ves conpletely unantiafectory because of bellove fallures.

A quick connect ooupling vas used to connect the various anpler unita to the IIak tranafer linee. This coupling, ahoum on Figure 5, worked very well as long as the coupling was hept at the tepperature of the garpled Hak. A pair of atandara clan ahell heaters ($2-3 / 8$ inch inaide dierneter, 4 inches long, 290 watt, 57 volt) wore olenped around the ooupling for hoating. The coupling ves inguiated with a atrip of Thernoriex blambet.

After ualing a amppler unit for a seguence of annlypea, the oxide formad each time the untt was opensi to atmonghere to remove the eniple cup vould buila up and plag the ingide of the unit and the drain line. Nloo the tranarer valves vould develop drip leak as explatned above. The use of porteble sampler aseenblies attigented the dirficulties involved in removing, cleaning, replacing the senpler unit and valves by providing duplicate, roplaceable, plig-in seapler stands. The tite neoeseary to replece a sempler otand ves only an hour and the craft help roquired were a mechanic, electrician, and an inatrument man.

The portable asapler atand vas asaenbled aconating to the dravinge in Reference 10. Figures 6 and 7 ahov two vievs of an asecmbled atand. The male ond of the quicls comnect coupiting on the tranefer itine is clenarly mhom on Figure 6. The ens panel controlled the helium preasure, and the afr flow to the two air oooling colls on the acirpler untt. Plugging in a portable stand involved connecting 12 themocouples, 5 heaters, and 3 ges 11 nes (helifin, air, vacum). Figure 8 ahovs two sempler etands connected to Cold Fray Stand i. The handles of the aafoty velves are visible to the right of the two transfer vilves on the ridit hand anmpler atand. Valve tage were uned to indicate the poaition of the

UnCLASSIPIm

$$
-8-
$$

valves. On the left hand atand, the upper valve is tagged openg the lover valve is being used to talce samples. On the right kund atand, the lover transrer valve is tagsed open, it leales the upper tranafer valve is being uned to talke earpies. Hot ahovm are the vacum purper which vere removed for the photograph. The stand on the left is in Benpler I position vinile the stand on the alght is In Sarpler II position. The difference in the positions ves the ingtrument controls atteched to the sempler.

The instrument onbinets for the Argonie Smaplear are shovm in Figare 9. Sempler I position hnd only the rudimentary controls deacribed in Refereace 3. Nthough these sontrols (largely manunly operatee) vere satiafactory, their operation was time conguring as the technideisn had to check the progress of the sampler unit Ireguentiy and meke the indicated chnnges in the control. settings. A different set of controls for Seurpler II poaition vas evalunted during the test. These controis, mostiy autcentic, vere mounted in a alngle portable cabinet which vith the replaceable-portable asupler stands vere to form an assembly that could be transported around the laboratory to semple fax or modium from any test stend for oxide annlysis. This cabinet vas assembled uning the dravinge IIated in Reference 11. These automatic controls functioned very satiafactorily during the test. The temperature controllers malntained the inportant temperntures at the deaired values for sampling and Alatiliation vithout the variability moted in the operation of Sempler I. Although the Foxthoro controller on the insert heater tended to raise the terperature of the Fak in the cup too rapialy and overshoot at the beginning of the distillation period (vthich afftht reanit in $20 w$ oxide annlyses because the flak would burp out of the cup), this minor difriculty vas solved by raising the set point of the oomtrolier in periodic steps inmtend of a single large step.

Besic in elther aymten of controls was the 12 -point temperature recorder which made a contimuoas record of the thernoeouples, ahovm in Figare 10, mounted on the sempler unite. A typical rocord of a sampler aun is ahown in Figure 11.

The preseure in a sampler unit furing the vacuus distiliation period vas menaured by a thernocouple Ege mounted on the manifold of the vacuum prupp. These eages were the Dodel $\sigma V-3$ Iade by the Bnatinge Instrument Conpany. The two vacum pumpe uned for the senpler untte were the Dao-Seni paip made by the M. W. Welch Jonufecturing Conpany; Serini Thabers: Bo7-97 and 811-97. These purps were run with $3 / 4 \mathrm{hp}$ eleetrie motors made by Cenernl Electrie Conpminy.

The control point values, temperature and prossure, are tabrasted in Table I along with a conparinon of the control operators and devices for the two sempler positions.

The procedure follownd in operating the Argonne Sexplers Airfered in some respecte from that given in Reference 3. A minjor ififferemee vas in maintaining the anfety valves, transfer valves, and fransfer line at 1000% Imetend of hentIng and cooling these parts for ench sarple. As a previous test (unpubliahed) Indicated that the life of the valves vas not apparently ahortemed by maintaining them at the high temperature, this change in procedure ves made to reduce

Unct Assmexim

the technicians* control tesks during the preheating period. The detailed procedure used for the teet is quoted from Referemee 12 in the Appendix.

Five technifelans and the veiter gartielpated in manning the teat on a alhour besis. The riret letter of the aurname will be uned to dilatinguigh the annigrais man by these six operators. Theee letter designations erer A, F, I, P, T, and W. Daring the firat part of the teet, each operator whe respongibie for talding and titrating ocmplete setrpies on his abift. In the seoond part of the test, one man, P, masumed the respensibility of titrating the marples as they onse out of the units. The other operators took the semples and ran then through the diatiliation step. slifthtiy more semples wore rum each iny in this latter
 was cleared of the unit ingtend of valting for the technician on the next ahift to begin it.

A total of Be sempies vore telken for oxdide annigais. A 11 ating of the semples taicen, semples rum through the titration step, and roseons for repineing ench sempier in the seguence tued, is eiven in Table II belowr

Table II
Serpler Position I

Banpler Position II

5	13	7	oth transfer valves leabed
1	2	1	Fop enirod barnt oat
5	1	0	Onit oxided up (Inndegrately elenned froe previous use)
2	2	0	Top celrod burnt out
1	22	20	Wot memoved, test terminated

The inta mecordeal in the log book ald not detail the Ifre hiatories of the Individual tranafer valves. However, it is apparent that the pair of transfer valves on esch senpler untt lagted frcin 13 to 28 sarples. The celrods on top of two anrpiers burnt out becmme of operation errors on the part of Alrferent techniciens.

The mafor difficulty encountered with the anapiling unite before the snippling etep was in enguring that the various linee on the sempler unit vere open. The check atep detailed in the procedure wes, fith reference to Figure 10 , to clope

UnCLASSIFTED

the vecurm valve, open the hellum and vent valves, and to check that hellum could Now through the clasavare, sampler body, drain line, and out the vent valve. This check atep vas cone twice, once berore the preheat step and once before the sampling atep. Failure to do these check ntepo could result in flooding the glassvare with Mox if the drain ilne wes plugged when the transfer valve was opened. This mistake occurred once during the test. When the check step is unsuccessrul, the procedure calle for rodiling the lines. The horizontal linie connected to the glasevnare vas seldom plugged. The drain ifine was somotimes piluged and was rodded only by renoving the glase receiver rlask. The vent valve was frequentily plugged and vas usually replaced with a new valve. About 25 of the Hoke Company's M482 valves were used as vent valves during the test. The bottom portion of the drain plpes was frequently plugged. This aroe is shown in Figure 2. Although the new dealgn on unite 3 and 5 featured a trap to prevent the Flax fron backing up and floving out the vent line, the reature didn't work. Instead, the trap prevented erfective rodAlug of the vent hole as compared to the old dealgn. When this area vas plugged with oxdde, the effective recourse was to remove the glasa receiver rlack and the elase-pipe Joint and wash the aceumiated Mak and oxide out of the rlanged area of the drain line with vater. The area vas dried vith a propane burner and allowed to cool before the joint and flask vere replaced. A constant flow of helium down the drain pipe ves maintained during this operation. Although this recourse vas relatively hasardous, the only alternative vas to change out the portable sarpler unit.

The major dirriculty encountered during the sampling and distillation ateps was in preventing the hak from briping out of the sample cup and thereby losing part of the semple. Mak could be buriped out by the vibration of the mechanicel vacuum pxip, eceldental Jars of the sampling stand, flashing of the hot Mok then the vecuum ves first applied, heating to distilination tefpernture too rapialy, and by other unlonovm reasons. Care was maintained throughout the test to laolate and prevent the vibration of the vacumm puip from being tranamitted to the aampler stand. The possibility of aceidentally Jarring the sampler atands vas aggravated by the close quarters about the two stands as shown in Figure 8; there was barely enough roon to move between the two stands for the work required. Flagh'ag of the hot Nak when the vacuum vas applied never occurred wen observations vere made of anaples through the vindow of sampler unit Ilo. 5. The procedure called for the cup to be heated to the diatiliation temperature in 30 to 45 minutea and the etrip chart records of each sample showed that this step was almont univeranily followed to prevent the Mak from burping out by too rapid heating. Some flaahing =any oocur during the distillation period, after vacuum has been applied and the cup heated to $800^{\circ} \%$, if the observation of imite, Reference 13, is correct.

Several special experisents on the Argonne Samplers vere run during the last part of the teat to demongtrate that bumping or flashing of the Max may have occurred almost conslatently throughout the latter part of the teat. These experiments included the taling of cup samples as a means of deternining the amount of Hal rotained in the cup after the sampling step. A pair of cup samples vere taken on $12-1$, uning the procedture of Reference 3 which follows the normel stepe of prebeating and sampling. However, once the vecuum is applied, the heat is turned off and the unit is allowed to cool instead of heating to the distillation conditions. The cup and insert are removed after the HilK has been frozea with a jet of carbon tioxide from a fire extinguisher. The amount of llax retained in the cup is deternined using otandand wet analysis technigues. A second

yocnssirye

- 11 -
pair of cup samples wase talions on $12-14$ with the vecum step ondtted. Iwo cermies wore also sum 202 arile on 12-14 ($0555-0557 \mathrm{hrs}$) by allovitigg the cup to cool to 300% berore the vacum vag applied, thereas the ununl yrocedrue syplied the vecuns with the cup at 400 to 600 \%. Fie water nelutions of the four cup senpies verv sent to the Anniytical Cheniotry Division for the following anniguis:

The cup terporature (ingert teprosnture) vhen vecum was appiled dopended
 serpiling, the eup tempesnture rumged fron 260° to $200^{\circ} \%$ the to yrohesting the top of the untt to boturen 400% and 500%. Upon genpling, the hot firk ralling Sxin the tyengifer 11 mo heated the cup. The zoeulting cup teprozatuaves rangod from $320^{\circ} \%$ to $790^{\circ} \%$. Hoxn 117 the vecuma sma apited very soon after the trangfor vilve san dhut before the cup could cool apyeneciebly eapiept in the experiment deacribed above. The procedure, fleference 3, called for about 200 mi of Int to RNou through the untt. The procecture used here cenled for flouriag 2 inches of llok into tho recelver fluok uaing the 2 inch ringe zarloed on the fladk as a guide. These zinge, ahowm in Figure 8 , vore oguivalent to about 250 ml of 式佔 per zing. The variebility in eup terperatures reaulted from different RNow xates (higher Nours afdn't hent as meh) and dirrerent guantition of Flok used by the severmil techinicians. As larger quantities of Illik probably helped mise cleaner surpien, the technicians temded to klow more than the guantity called for in the procedare. When the glase recelver flagke wore filled with Hok, they wore removed and stored under berosene in a large G.I. can to avnat
 not be cleaned economically.

In contraet to the burping vhich losea part of the sample, three erfecta werv observed which tem to inerease the alse of the sarple. Owe auch offeet is a surrece temsion phenomenon which pernitted the cup to hold move flok than voula be the case if tho suarface of the Hok lay flat acrose the cup edges. This vas observed flrut msing the vindow of unit Mo. 5, but one of the cup serples talsen on 12-14 aleo demongtrated this effect. A11 the cup aenplee had Holk in the copression of the insert under the cup. phis Hak had Ieaked up under the eaves of the cup eage ahom in Figure 3. When tho oxide of this Flar adherod to the cup, it ves titruted in the anaiysie in adaition to the oxide inasce tho cup. Ingtily, the trenaser 11 ne tended to drip Mak arter a tranafer valve vae shut, particularily when the lover vilve wes left open and the upper valve vee used. When this dripping continued very long, the dripe fell into partily diptilied cugs of Ilat and would, of course, bad moxe oxdde for the titrution.

Due to all the alfrerent effecto noted, there vas considernble variability in the oanct quantitios of Ilok in the anmples. Fhis varimbility minifosted itself in the cup samples whtch ugunily axe rogerded as the prifary atanfard for moneuring the amount of Hak sampled. In lien of the cup samples, a secondary stamiarad the erplogea mhich involved titirating viter into individuni oupe until they were full. Care was talon so that the murface of the water aid not rise above the elge of the cups the to the same eanct aurface tenaion efrect noted above with Ilak.

पHCHMSIETED

- 12 -

Varicus other dirriculties wow experionced during the dintilintion period. With one sample, the inpert heater burnt out and had to be repiaced midumy throwgh the 3-hour period. With another anmple, the techatefan fergot to open the vecuncin vaive until the Alstiliation temperature was zweched. Another ample vas distivied at $900^{\circ} \%$ ingtend of $800^{\circ} \%$ becnange of a thermpoouple error. This type of thermpocuple error wins tup to A Atrrexenoe butwees the two thernoeouples in the imsort weil ahovm in Figare 3. These thermocouple cesmbiles wero epecially zade and wore not anlibrated until the latter part of the teat. The error ves not ansy to plek wp on the imetrumente beenme one of the thernpoouplea indicated on a controuler vilile the other indicated on the recorder. An the contrallers had ifrferent calibrations than the recorders, the error ves mot observed miniess it vas large. Some of the arrors detected aro ahovi in thable III below:

Teble III

One Fthernocounle	Other Ther ooourle	Ditrenemee
$600^{\circ} \mathrm{F}$	$100 \%^{\circ} \%$	400%
775	920	135
680	805	120
740	815	75
790	8 80	50
705	7ho	35

As the individuni errors were Cetected, the velle were removed and broken to keep from uaing then again. Tie 12 eqpipies which were not ooppletely diatilled were partiy due to this thernooouple error. Once the calibration procedure wes ingtituted, thise error vas elifinated.

Arter the diatillation whe ocnplis. he unit had oooled, the ingert ins renoved and the cup piaced in the beetber of dietililed veter. One cup was drapped at this atep rutning the semple. An aggravating trouble wes the tendimey for Inax to leak coum the aide of the impert and aocumalate in the well at the botton. Gloves were required to protect the hands in oase the Fak in
 thich to not hart the aenple, wore maunily provented by clapping the ingert etrad ght into and on the index Inyt of the sampling unit. A blank insert weo clemped into the unit to prevent the emtrance of air finto the helium rivied unit while the mulberod tingert vas being dratnod and cleaned of Far.

The ititration atop was atraifht formard exoept in the intergretintion of the methyd oxange end point. Referemee 3 deserilies the end point as the change from a clear yeilow polution to a pernment red although it appears to the vriter as a change from a clear yollow to orange to a light pink. The wee of the blank eitigeted the dirfermee in interprotations by various technicians. N1so a full sise colored ghotograph of the titration color ehminges in almilar benhers, Reference 2h, whe used an a atentard.

For the firat 45 manples, the techntcian tho took the amaple was mosponasible for zumnins the titration. Bix of theoe 45 margiee wore diecurded berone the eorrvintiton bocense the techntelans uned too mach acid in the beck titrmation etep (valumo of aeld conoted by F_{3} in 2nble 22). Finse beck titration is mide arter the rirat titration and arter the molution has been voiled and
 methya orange and point wieh vas lont ivy boiling ofr the eartion dioxide in the molution. The une of too mach acid in the beck titration atep reanite trom an uncertainty ebourt the end joint color. Due to this and other apparent firferonoes emong the IIve tectinicians in foing the tismation wteps, the last 37
 ning the angiplea through the aietillation step as before.

Three different atrengthe of atandand hydrochioric acid colution were used in titirating the various napplee. The A1rrerent atrergths, $0.01 \mathrm{~F}, 0.005 \mathrm{H}$, and 0.002 IH , were made up involuetrile flapks from a prinary aolution of 0.1 I acid wupplied by the Anniytioni Chemiatry piviaion. This prifnary eolution veas Checked by the writer aginnt a standardised acid aolution wiso auppliad by the A.C.D. and foum to be corroet within a $\%$ maxthinin error. Throe dirreremt Burvete wore used, one for each wolution. Phepe burwtia wore in the utandind almes, 0 to 25 ml or 0 to 50 ml vith a lenat diviaion of 0.2 mi . The buretto vere rend to an eceurney of omil 0.05 ml . The utrength of solution uged wne selected to male the reading exror less than for the titration and was beed on the arount of seld nsed for the provious anipile. One pair of anmpies was ruined by the writer by mixteg 0.1 II acid aolution into the 0.01 II nela burvtt solution before the titrations were nele.

One detail in the asesebly of the portable ampleler etande is ixportinnt In wesuring full coup of Har arter mempiting. 2mis detail is the powition of the end of the trunafter iine above the cup. The corroet poaition is ahown in Figure 12 fron Iloferwnee 20 . When the end of the ifve is ineide the Svegelolk mit, the Ilak tends to flow aloag the top of the sempler fantend of folling into the cup. Fach portable sampler asemilly wee chechnel before inntallation for thise detar1.

The Airricultien of ruminteg the Argoane Slempler annigree through the titration step have been clesoribed. The guantity of oxide in the eampled nax is colemiated froe the rmount of titrated hytrochlorie meld using a converaion factor. This conversion factor whe based the the secontary etandingt pavilousiy deseribed. The minounta of minter mesaured 1 into the cupe are 11 ated below. As
 kopt relating the cupe to the eamples, the water mesourumante woxp lumped in deternining the comveration factor.

- 14 -

Tribe IV

Volumes of Serpler Cupe Deternimed by Mater Menourenent

Cup 胃mer
1
1
2
3
4

Volune Cerpelty, me

$$
4.85
$$

4.90

$$
4.65
$$

4.50
4.75

Average $\quad 4.75 \mathrm{with} \approx$ atandard deviation of 0.1605
The 95 gonflidence 11 nite on this volume are: 4.39 mi to 5.07 ml or a range of $\pm 7.2 \%$. The weight of Jlak at $500^{\circ} \mathrm{T}$ represented by 4.75 mi 18 k .0 e . The conversion factor enleulated ualng the eqpation of Feference 3 is:

Or:

$$
\begin{aligned}
c F= & 1000 H_{1}(8.00) \\
& \text { (Werent or har exiple, हin) }
\end{aligned}
$$

$$
c=\frac{1000(0,02 m)(8,00)}{(4.0 \pi}=20
$$

Where: CF , $\mathrm{yp} \mathrm{O}_{2} / \mathrm{mal}$ Acid, is the conversion factor H_{1}, 8 or Aldi in 1000 min solution, is the Mormality of acid (0.01 M) 8.00, is the equivelent veight of oxcyen

Thus: (Oxyeen, pr) $=20$ (Anount of 0.01 II Meld titrated, menet)
The converaion factors for the three strengths of acld used are tablatated belowz

Thble V

Conversion Fectors for Various Hydrochloric Aeld Solutione

Acla Etrangth mornality	Converaion Factor pre $0_{2} / \mathrm{mil}$ Ald
0.02	20
0.005	10
0.008	20

The 99 confldenoe lintte for thene oonversion factors, being directly derived from the mengured volumes of vater, ase aleo $\pm 7.2 \%$.

- 25 -

There appeare to be a deelded ctirrexence between the aenpler untts in adAltion to a fuping or flaphing effect then vacum is applied. onis is further borne out in the apeetal teat then the InT was allowed to cool after anipiling before applying the wocum as ahove in the follooting teble:

Date	$\begin{aligned} & \text { Pive, } \\ & \text { Pourn } \end{aligned}$	Sempler PoalticnUntt	Sempling Sefperature	Tenpernture on Applicntion of Vecmurn?	Volure of 0.01 II Aeld Attrated, met mi	Equivalent Oxide concentration, pp O_{2}
12-13-56	$\frac{1411}{2 k 15}$	$\begin{aligned} & \mathrm{I}-2 \\ & \mathrm{II}-1 \end{aligned}$	$\begin{aligned} & 500 \\ & 5 \end{aligned}$	$\begin{aligned} & 520 \\ & 500 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 2.05 \end{aligned}$	110
12-14-56	$\begin{aligned} & 0555 \\ & 0557 \end{aligned}$	$\frac{\mathrm{I}-2}{\mathrm{II}-1}$	$\begin{array}{r} 520 \\ 470 \end{array}$	$\begin{array}{r} 300 \\ 300 \end{array}$	12.65 2.75	235 55

The cup anrpies tahen on $12-13$ end $12-1 h$ also shousd vide variation. These semples are tabtilated belov along with their corresponating conversion factors:

Teble VII
Hak Oup Senplea Folien Dirwetly Froe Argonne Sempler Units

The oup with 6.68 en . Far we over thil, demongtrating the tendency for aur
 vith only 3.65 e . Thar whe observed to bo not guite fall.

An atterpt ves mate to assess the algnificence of the vecurm-irup effect on the Argpine Sarpler annlyais. A model was hypotheaised which proeumed that lov oxide annlyais reanit from applying the vecunm at hifh cup temperatures. As abovn on F1gare 13, this molel does not fit mach of the clata amennle to plotting, 30 of the poesible 41 semples, as चany of the constant break tenperature 11 nes do not ahow lovor anniywis at hifher vecum appiliontion tepporatures. A statiatical correlation for this modol wes inoonciusive. The reliability of the model was checioed by an annlysis of variance on the elght natural ciagenes of data, seven of vhich had duplionte or repented oride amalysio at eertain vacurum

$$
926 \quad 015
$$

twcraggyeri

application temperatures and providied opportiuntities to estilnte the preelaion of the lata. Fins oheck augensted that the model was antimfaotery with mapect
 the aleo very poor.

In adiltion to the vecum appilcation tempernture-bunp, nawy other aifflculties have been deperibod. These Alfriculties introduee varishles which
 Fale on the date to mesems the ifpact and ixportence of these other variabies. The major end obvious variables ars listed belour
2. Benpier Pouitions, there were two, I and II involving instrumentetion alfferemoes.
2. Bnppier Unite, there vere four, 1, 2, 3, and 5, involving the Interchmengelble unita.
 plete anniysis incluiling titrationg and $A-P, T-P, Z-P, T-P$, and $V-P$ whero the techmiciams took the armple and a compon man, P, did the titrationa.

Dnfortumately, this exnminntion whe inatitured after the date had been enthered so the experifantal deaien was very poor for atterpting to appraise these variables. The earaination wes made by Mr. D. A. Gerdifner, Itathenatice Panel, and the repulte which follov are tentom from Refeavince 15.

The dita vere Alvided into IIve croupe depeniting an the range of piug Indichtor brenk terperatures tolsen in ocnjumetion with the Argonne Benpler minigrais. The method of eaminination was to fors mets of orthogonni congarisonst (Individuni degrees of freedon) vhich would reflect as miny as poesible the ditferances between the variables emmrerated above in eech eroup. Btandand annigais of variance techmigues veare then nued to asopse the sipmifleance of these differemces.

A surnary of the conclustons from these grougs for the variables of aempler position and unit is civen in wable VIII belown

Teble VITI

Burntr, Anniymis of Vartence Tests on Argoune Bempler Position and Untt Variables

Grour	$\begin{aligned} & \text { ampler Position } \\ & \text { I } \\ & \text { Tntit 渞 } \end{aligned}$
I	3
II	3
ITI	$2 \tan 3$
ITI	2 and 3
IV	2
v	2

Bampler Poaltion II
 Unit Ilnmber

2

Conclunions

Wo teet posesble
Wo teat poasible
Ho alentricant Atriference
A Alfference may be conJectured
Fo aienificent Airference
Fo alenificant Affrerence
 ferences in ingtrununtation of the ponitions or differvinces anong the intereliangmible matis.
 the following tabien

Fande IT

The details of this exmmination are etven in the Appentix.
Fhus, except for the one technitetan, A, all the technietans apparently rum the
 hift amalyais. There io mo dirmot oomparison poselble to test if the titrations made by P helped to mive the anniyuie more consietant.

The atandarat deviations eniculated in the analyais of variance teste are ocrgared to the ariple averages on Figure it and in the following table.

Thale X

Averages and Btandand Deviations of Argonne Sample Analysia
(ilsted in incroasing magnitude of marple average)

Tntrie X - conts.

(Itsted in incrunsing angent tuile of anmple averape)

(* Demptes nemples that were sooled for severnl setimates of standinat devintion)
 a fimpetion of the sive of the sumple means. Shere is apporentily very iittie
 avernge. This is ahovin on Tigare ils where the jointe with 2 or moke degheve
 of points with only one degroe of fruedion (only 2 pimples in the awernge). The ratio of the ataminind deviation to the anmple avernger manges from 0.035 te

 thowe simples that are pooled (denoted by 0 in wable X) are not mend ase they are zepromented by the pooled result. Hiso, welh antio ves wificed by the diegroes of sroeden avosinible after onleulating the ataminad devintions to tend to give more wulgtht to the antion that moula be more procteer the remulte of this onleulation swe shove in crable xi.

- 19 -

While theme ratiog io not dimpetiy indicate contidemee 11 mita of earror in the asmple avurnges, they do inditate that these copiridemee limite will be vide.

Bunvart AMP conctusuoms

The detailed descrigetion of the mary Alifleukries encounternt in neing

 not alvayr yreciae. The future wee of the Bamplers, in pairs vhere posaible

Wach of the mitertwl powering the dewerightos that operwtion of the Argome
 Ing the Bnapilers. Thene thume wections onn bo munnmized by maying, "treat the Senplera live a baby."

 of coraree, be oolor hlind to red tha gallow, the ank points of the methyl ormper

There whe so spparumt Aspfermmees anong the anppler unite or controle in the net reaulte of the annlywis. The autenatic controls uped on position II
 the unit with the vintiov, is the wopt interuoting owe to mun veconev of the opjortunity to obperve the efrect of wany of the opeaveting variables. Indend, this sult powld be unel to provide the angwure to the efreet of ameh varinbles
 then Boo ${ }^{6}$.

Hifty per cent of the semples talben darins the cusiswation teat weare lowt for osie rimeon or another. This moxtality zate con be reduced ly atariet mit
 noupler stanis increses the molinhlility of the anapiler nethod furfing an eartentied mequenee of samples loy andetng it way te ehninge out a sampler gritelay.
 swernge of the mandyatis. The gp/ cuniflamoe limite on the poprintion of ptempinit fovintion ratios experinmend during the tent are 0.245 to 0.348 . Theme nungisis avernge

$$
326 \quad 019
$$

पnctassmpied

References

1. R. D. Pank and II. V. Sntth, SoAitu Oxtde Hietory of IE Stand 1, Interofrice mano to E. R. Dytiko, Jaly 1, 1955.
2. J. 2. Finplarege, Jr., Bempling and Annigwie for Thparitiee in Lipuid Soditu Dywten, proprint 67, Maclear Ingineering and Sclence Congrese, A.I.Ch.E., Decefber 12, 1955.
3. J.C. Matte, A. S. Nager, Jr., G. Colaberg, Procediare For the Deternination of Oxgree in Solif end Hor by the Diatiliation Wothod, Onili-CF-50-4-31, April 5, 1956.
4. G. Colaberg, A. S. Meger, Jr., J. C. Matte, the Benpling of Alknil Metal

5. Asaemly-Sodium Seppler Type "A", Dvg- D-2-02-05h-479N, parter C-4795, C-4796, B-4797, B-4796, B-4799, B-4000, B-4801.
 B-4797, B-4796, B-4799, B-4800, B-4801, D-4803, B-480 ${ }^{2}$, B-4605, B-4806, B-4807, B-4808:
6. Aesebly - Ioke 1197 Valve Moatirication II, Dvg. D-2-0e-05k-488h-A, parte: B-4885, B-4886, B-4887, B-4889.
B. Asembly - Hoke 1197 Velve Modirication, Dvg. D-44ho, pertes B-h4ky, B-4442, B-4445, B-4444, B-4445, B-4446.
7. Assembly - Tuiton Sylphon Model 575 Valve Moalirication, Dver- D-5205, parte: B-5206, B-5207, B-5200, B-4209.
 Sin-Jik-865.
8. Controi Cablinet Panel Ingut for Arponne Sempler, Dve. D-2-00-054-5ie6, parta: D-5in01, D-5i02, D-5h27, D-5hab.
9. Col4 Trap Btand 1, Operations Mmanal, 9-21-56, R. D. Ponk.
10. Personal Con mintention with J. C. White, 22-5-56.
11. Colored Fhotograph, $\mathrm{Y}-12,26274$.
12. Fersonal Cominication, D. A. Capdimer, February 7, 1957.

-21-

Figure 1
Supler Thiter 1 axal 2 suy it out by the Inxiytioct
Qienéntry Siviutoa

Dhe Desicn io Xech that it io Furt Dury to Sef sut ont Naplug the Zent Tuit

 tie Centign sa wach tiont it is vert Cicisouzt to vor $\cdots 303020$

$$
2 a \quad \text { क6 } \quad \frac{3-0.05}{3-1.0-57} 1393
$$

Figure 3 Parts for Argonne Sampler Units

```
926-023
```

-24-

Figure 4 Glass Ware Used on Argonne Sempler Units

-26-

Figure 6 Portable Argonne Sampler Stand
-27-

Figure 7 Portable Argonne Sampler Stand

Figure 8 Installation of Portable Argonne Sempler Stands on Cold Trap Stand 1

$$
326 \quad C 24
$$

Figure 9 Instrumentation for Argonne Sampler Units Cold Trap Stand 1

1

20 20 $\frac{31}{3}$ $\frac{3}{20}$

3/0 troub

Cooling Rate

Control Polate

Controlied rumetice

hequirel fumettion velwoe Variable eontrolled

Typlemal vartable values
stent I
Contral operstor
Contral device

Stand II
Contral operator
Control 1 int
Contral device

Dratn Line
$(3 / \mathrm{c} 10)$
Tempersture $80^{\circ} \%, 300^{\circ}$
Blectrie power to meater coma off, 125 ㅊ

Nenual
 Vartae

tenp. ecantroller
variee

Proagure in Pempler (Prongurg at pul) preseare <5 aflerons 1enko
 1. 25 miterons
 Benentially $=0$
 Enocatially mo eontral

$$
926 \cdot 036
$$

UHCMSSTIIT

- 39 -

AㅏㅏㄴDIE
 Procedure Uned for Arroune Bempler Amelrale: (Guoted Iron Nefenence 12.)
 "Follow the instruetions elven in this minual.
 Rempmber that the technileiang running the atand are reaponaible for the correct installation and repenir of the senpiling equipment.
 Renseber that the anppler parts are not interchnngeable. The ingerts are masited correoponating to the aurpler they IIt in.

Use the different atrength of acid soiutions according to the rollowingr for convenience, wee the acid atrungth which will use less than one buret fill of acid; for accursey, wse the seld strangth which will wae moxe than 5 milliliters for titrating the ample. Beee your decision on wheh atrangth to use on the provious reaulte given in the log book.

Use only one tranafer valve at a time, leaving the other open and labeled as open. When the tranafer valve leake under vacuum, as ahoun by that belas left in the eup after the alsti3lations zark that vaive as leaky and leave it open and labeled ae open. Then use the other trumefor valve. ihen both tranafer valves leak under vecuum, then clope the earety valve next to the sampler and change out the sarpier stand. Don't use the anfety valve exoept when changing out the sanplers.

Procedure
A. Prohenting Perioa

1. Asaume that the ampler was left set up by the provious technicien and that the cup and ingert are in place, ingert heater and thexmocouple are neroved in, and that tho sampier id all set to go.
2. Prior to turning on the preheat, eluut the vecum atopoock and open the helium atopeock (set at about 2 to 3 pai).
3. Open the pressure selief valve and check that there is heliun ventIng through the valve. If there is no helium venting, talse the valve off. If helitu vente out the connectican, xeplece the waive. If helitu doesn't vent out the connection, then rod lines are nocesaary, based on phat experience, until there is heliun venting out the pressure reliter veive.
4. Close the helium stopeock and open the vecuma stopeock.
5. While the anfpler is being evecuated, adjunt the varisee to heat the top of the enipler to $400-500 \%$, and the diseharge itne to 300°. It is ansumed that the variace controuling the transfer valves, aafety vilves, and tranafer line are set to hold these at 1000°.
6. While the atrpler ia being heated to three operating temperatures, rlush the apipler aiternately with helium and ovecunte it to the beet vacum attainable at least three times.

 - 40 -

The zate of heating ahould be swelh that the preheating poriod taibes an hatr or lese.
B. Ennmater of Bamio

1. Frior to transtroxrtisg the anigle, whut the vecum atopoonk and opan the helitim atopoock aloviy.
2. Open the prenguro melief vilu alovay and ehpelt that there io belitm vanting out the melief valve. Ir there io mo holium venting, turpiug the anfuler betore yroceeding fiurther.
3. Open the tranater veive and allow about 2 inches of Thak to fhow throaph the aempler inte the capes overfiov mecel wer.
4. Close the trunafer valve alovhy and ifnaliately cloee the proweure zelief velve.
C. Diatiluation of Slemple
5. Open the alr valve ror the contenating, 0011 ($900^{\circ} \% \operatorname{cos1}$), ant the air valve for 0 ring eoll ($150^{\circ} \mathrm{F}$ ootil).
6. Cloee the belfum atopoock and aloviz opwn the vecuman stopeock.
7. Aajuat the varine heating the top of the angiler to antntate a tempernture of $2000^{\circ} \%$ turing the diatiliation period.
8. Aljuat the varine heating the inpert heater oo that the alotiliation temperature of 800° in mencheid withith 30 to 45 mimutee. Set the controller for the ingert heater and majuet the varise so that the $800^{\circ} 7$ is beld within $20^{\circ} 7$ or lees.
9. Aajust the air valve for the condenaing coll to matntain a temperature of $300^{\circ} \%$ within 20° ?
S. Majnat the alr valve for the o ring coll to malntain se low a temperature as posalble at the ninges.
10. Continue the atatiliation at Boo"\% for at least 2.5 hours, prefombly for 3 hours, counting the start of diatiliation as that tim the ineert sirwt menched 800%.
11. At the end of the Alatiyiation portod, alhut ofr the warises to the ingest henter and the celrod at the top of the templer.
D. Pitretion of Bomile
12. When the insert temperature is leas than 200%, shat the vecume atopcock and aloway open the helisum atopoock.
13. Shut off the variac on the discharge 11 me heater.
14. Clowe the air velves on the oomdeneling ooil and on the 0 aring coil.
15. Place an eatimated 25 m of itutilined vater into oach of two 150 m bronkers and add one drop of methyi orenge indicator to emeh breaker.

- 42 -

5. Denove the Inpert frow the angpler and tranafer the oup froe the ingert into ane of the brinherw.
6. Mace a clene oup lack en the facert and ropitioe the inpert in the anpler.
 owp unts1 the ooler of the enlution beosmes pink. This volume of En $10\left(\mathrm{~F}_{2}\right)$.
B. Brpaet atep 7 with the pecond beelmar containing only the weter. ente volume of
7. Phace both benkers on a hot plate, lient the solutions to a boll and then renove and allow the beaisers to oool to about roon tempereture.
8. Ma satitionel ign to both solutiong untsi the ptaly oolor of the
 beniver as $\left(\mathrm{F}_{3}\right)$ and the volum adied to the water beaker as $\left(\mathrm{F}_{4}\right)$.
9. Becord the intornation regneated in the 3 og book and ooppate the oride content of the fink as ahom and wastig the factor given in the log book.
10. Leave the exngler under vecume with everything hooked wo noedy for the noxt techinician.

D. A. Oontiner's Fertrasion of the Arpone Berpier Date, Deferenge 15 .

The Anta there itvilied into five groups deponiting on the renge of giug inAlcator breals tengerntures teloen in oonjumetion with the Arponne Barpier annlyate.

These croupe will be canatined in the seguenee that they occurred. The met mount of hortrochlorite seld titrated for ench saruple wes uned in this eammination
 rosponding oxide content onn be colculated for any enmple with the oomveralon fentor of $20 \mathrm{prn} 0_{2} /$ met mal s.

The firmt eroup, in the brenk tempernture range of $660^{\circ} \%$ to 690%, consiate of 10 enplies talien between $11-23-56$ (ogas hoars) ana $12-1-56$ (1635 hours). Bnch titration wes perfurmad by the ense technteten who had talven the semple. The data and annlyois of varinnce are as follourat

2mble 13
Oroup I, Argonne Berpier Analysia In Broak Fenperaturo Range $660^{\circ} \%$ to $690^{\circ} \%$

Techntelan	Smpier Poaltion, I Sampler Untt, 3 Hot mi. Aeld Fitimet	$\begin{aligned} & \text { Break } \\ & \text { Tenperature } \end{aligned}$	Bempler Poatetion, IT Berpler Unit, 5 Hot m. Aeld Titrated
A	12.7	685	-
F	4.1	660	6.5
7	9.5	680	12.6
1	-	690	8.9
T	-	660	12.6
\%	-	680	9.60
\%	-	690	12.1
P	5.30	680	-

2able 24
Oroup I, Analyeis of Variance of Date in Break Fenperature Mange $660^{\circ} \mathrm{F}$ to $690^{\circ} \mathrm{F}$ Source
Withtin Poattion I
Fechmician 7
$660^{\circ} \mathrm{T}$ ve $680^{\circ} 1121$ 1h.58000
Anong Technitcians

4 ve	1	27.38000
A and P Te F	2	4.84000
Cenbined eatimate	2	16.21000

660° ve $680^{\circ} \quad 1$
15.00500

Technteten 5

660°		
660°	ve 690°	
vi	600°	$\frac{1}{2}$
$\frac{2}{2}$	$\frac{.12500}{2.25000}$	

Combinea
Degrees of Freedon
Nean Squaros

Within Poeition II
Tochnician F

```
    A ve F
    A and P ve F
    Combined eatimate
```

 II
 \(660^{\circ}\) ve \(680^{\circ}\)

U. पम Mss.ero

- 43 -
seble it - conta.

Source
Among Feohnt cinns

Degrees of Freedia

Hean Bquares
.01500
9.51500
4.69000
$13.25 h 00$

The pertinent features of this eroup are:

1. Technician Y performed eo conelatently on position I, unit 3 (2h.6) en on ponition II, unit 5 (13.0).
2. The two mane equares zeneeting the alrrerences between three angles ($0.23,4.3$) for technician 5 onn se poolei because they are not outalde the ramge of ranion fixatuntion vith a mypothesis of no rual aigrorence among annlypes in a tenperature range of $30^{\circ} \%$. The standand ceviation for \bar{F} on position II, unit 5 , 10 1.49.
3. Ho eatimate of the vartablitty for all techniteiang can be made so it is fipposibie, Entherationily, to assese the sienificance of the obeerved atrrerences among the technicians. However, thene dirtermees are not belleved to be oientricont.
4. The reminting copperteon between senpler poatitions is cellea "Junk" because it has the dirrerences enong technictens hopelesely atum wip with it. It reveale mothing of value.
The second group, in the breek tenpernture ronpo of $600^{\circ} \%$ to 690%, consiste ne 17 semplies talken between $12-2-56$ (0900 hours) and $12-7-56$ (0005 hours). As with the rirst group, each titawtion was performed by the seme technician sho took the ansple. The data and analyais of variance ape ae follove:

Fable 15
Oroup II, Argonne Senpler Amalyais in Break Fenperature Range $600^{\circ} \mathrm{F}$ to 630%

Teeluntelan	Snmpler Poattion, \boldsymbol{I} Sarpler Unit, 3 Hot mil. Aeld Fitrmet	$\begin{aligned} & \text { Brenk } \\ & \text { Temperature } \end{aligned}$	Seppler Ponition, II Sompler Unit, 1 Ilot mi. Acid Fitmeted
A	11.8	600	-
A	10.6	610	-
A	21.7	610	-
${ }^{\text {a }}$	7.8	610	2.3
\%	6.4	610	3.7
5			
7	2.85	630	-
1	$5 \cdot \frac{1}{5}$	610	-
$\frac{1}{2}$	3.6	620	-
5	10:9	885	7.9
			7.9 3:6

 - 44 -

2nble 16
Oroup II, Analyeis of Variance of Data in Mrenk Fenperature Innge $600^{\circ} \%$ to 630%

Source

Degrees of Frweden

600° ve 610° Within A at Gno	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & \text { 2. 3hos3 } \\ & 4.04033 \end{aligned}$
be or A	5	5.47583
Technteten 7		
630° ve 615° (everege)	1	2.29688
$610^{\circ}, 615^{\circ}, 600^{\circ}$ - 11near	1	1.20125
$610^{\circ}, 65^{\circ}, 620^{\circ}$ - guadratie	1	6.30 .3715
variability	3	3.26729
Techntetan 5		
$610^{\circ}, 615^{\circ}$, 680° - 11 near	1	1.12500
	1	$.48167$
variabillty	2	.80334
Techntetan 7		
Among Fechnicians		
A ve 5	1	79.69531
1 ve?	1	13.73633
4 and Y ve L and ${ }^{\text {\% }}$	2	11.09308
Combined entimate		31.8.8157
Within Pooltion II		
A at 610° ve F at 625°	1	15.68000
F at 610° ve F at 615°	2	15.32000
A and 9 va	1	3.24000
Combined		6.41333
Betveen Sempler Poaltions (Jank) 1		17.4lyge
Total		

A more detailed exmination is possible because of the greater musber of sorpples. The pertinent features of this second group are:

1. The four aerplee for technicien A, poaition I , ean be pooled becnuse the poan aquare which reflecte the dirferences among the three $610^{\circ} \%$ senples (4.04) is larger than the man equage which conpares the average of the three $60^{\circ} \mathrm{F}$ saples with the $600^{\circ} \mathrm{F}$ semple (2.34). The roaulting eatimate of the variability for technician A is 5.48 (3 degrees of freedon). The atiandand deviation for A on position $I_{\text {, }}$ unit 3, is 1.86 .
2. The four angples for technicien F, poaition I, oan be pooled because the mean squares renlecting the various differences $(2.30,1.20,6.30)$ are not

- 45 -
outaide the range of mandien inwetuation with an kypothesis of mo meel difreanoce anong anniyoes is a teporature mange of $20^{\circ} \%$. The pooled eatifate of the varicilitity for technicimin 7 is 3.27 (3 Aegroes of frvedon). The

 veriebility of i of 0.80 (2 fogroes of froeden). The atandart doviation for I on poestion I, untt 3, is 0.90 .

4. Fot mach rellamee onn be placed on the eatimate of the variebility for techmician 5 , poaition I, of 13.01 (1 degree of freedom). The atamiard coviation for 2 on poosition I, unit 3 , is 3.62 .
5. These four eatimateg of the atandard deviations of the technicians, 1.86 (A), 1.81 (V), $0.90(\mathrm{~L})$, and $3.61(\mathrm{y})$, cannot be phoum to be significantiy dirferent. Therefore, the technicians perform about the same ofth I being moot ocmsiatent, and $₹$ the leagt consigtent. The oombinod eptimate of variability for a11 four technictans is 3.869 (9 degrves of frepten). The oteminga deviation for pooltion I, untt 3 , is 1.967 .
6. Wth respect to the aise, not variability, of the eanples, the oonparisons noted are a convonitence for position I. The menn square for the comparison A ve 7 (79.70) is certainly not a muntion fluctuntion of the other

 hi aher than thoee of the other technicians and apparontly are aignificantily ๑0.
7. Hot mach reliance can be placed on the estimate of the variability for techmicien F^{\prime}, position II, of 0.32 (1 degree of freedom). The standard doviation, 0.57 , io not alenificantiy different from that obtained for F on position I, 1.82.
B. The three comparieons ahown within position II do not test significantiy Alfferent one from another $(0.32,3.24,15.7)$.
8. The renining conyarisons between sempleas is onlied "Junk" for the anme seanoon as for the flywt croup.

The thina group, in the break tempernture zange of $460^{\circ} \%$ to $570^{\circ} \%$, comalste of 12 anrplea talion between 12-7-56 (1625 hours) and 12-10-56 (0325 houra). 隹th this eroup, the four technicians took the mamples while a common man , P, did all titrations. The late and annlywis of variance are as follown:

Machassmerid

$$
326 \quad \mathrm{C} 5
$$

tinctisswerio

- 46 -

2nhe 17

Table 18
Group III, Analyais of Variance of Date in Break Fenperature Hange $460^{\circ} \%$ to $570^{\circ} \mathrm{F}$
Source Degrees of Freedon Jomen Squaren

Poaltion I

Rg 2
Between Fecimicetens
Re 3
Anong Fechnicians
2 2.95813
Betveen Units
2 .00305
Ponition IT
gechnician A variebility 2 .001te
Technician L variability 1
Anong Techinicians
Betweet Bempler Ponitions 1
.14015
3 .26495

Totel
11
Although the broak temperature range for this group is excensive, $110{ }^{\circ} \%$, no eanaination is poseible uniose it is asauned that the sise of this range ting no effect on the annlyaes of veriance. The pertinent features of this grous are:

1. Whthin poaltion I, there appoars to be no difference between unita 2 and 3 (0.0038).
2. The source of eroatest variability in poaition I is the difference among the technicians (2.9h), particulariy with A's tendency to eample hifh as noted before in group two.
 techntetems $(0,16)$. There io ingurficient date to tent vhether thie variability
 (0.0014, 0.14).
 and would uppear to bo aleniflenntiy 00 , hovever, this ean only be enajocture.

The fourth group, in the bronk terpurntare zange of $385^{\circ} \%$ to $395^{\circ} \%$, oon-
 (0630 hours). The roliability of the emplers (wes menarkible beownee no somples were loot in thise croup. The two techintcian took the samples with
 are tes follove:

Thble 12

Techutetan	Sumpler Poostion I Beppler tintt 2 Mot mi. aeld titrated	Break Temperwiare	Benpler Poaltion II Bempler Unit 1 Hot mil. acld titirated
$\underset{\mathrm{P}-\mathrm{P}}{ }$	$\begin{aligned} & 1.0 \\ & 1 . \mu_{7} \end{aligned}$	$\begin{aligned} & 385 \\ & 305 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.40 \end{aligned}$
$\underset{W-P}{ }$	$\begin{aligned} & 0.66 \\ & 1.56 \end{aligned}$	390	$\begin{aligned} & 0.82 \\ & 0.66 \end{aligned}$

2nble 20
Orouy VI, Amalymie of Variance of Data in Break Tenperature Range $385^{\circ} \mathrm{F}$ to $395^{\circ} \mathrm{F}$
Aource Degrees of Frweedice

Nean Squares

Between Sempler Poaltions	1	-600625
Between Daplifentep Internetion	2	.030625 .087025
Pooled tatimate of 7 variablitity	2	.0sbaes
Teehntetan y		
Botween Aumpler Jooitions	1	. 122500
Between Temperatures	1	. 336900
Treeraction	1	. 280900
Pooled entimete of v variability	3	*180100
Between \%echiniciame	1.	. Oognt25
Total	7	.2676875

The pertinent feataures for thie fourth eroup are:

1. The Atrferunce betveen avirpler poaitiore within technictans $\%(0.60)$ and w (0.19) is not alguifiennt.

\#ictassmem
 - 48 -

2. For tephatetan 7 , the phan mpanares $(0.60,0.072,0.007)$ enm bew gooled se

 pooled te atve a vartelyility of 0,18 (3 degones of triphden). The mtandand de-

 sroup.
 siste of 11 enmples talmen between $22-12-56$ (2n00 hours) and 12-14-56 (0557

等ble 24

F-P
$7-P$
10.0
5.5
\%-9
3.75

W-P
8.5

W-P
11.650
(8.21) es

Anenk
Thepenttune

Bempler Foeltion II
Smepler Jatt 2

W-P .
(\% 2his zelir of numplee worn coolet to 300*\% betore the vecunm whe agr mited.)
(we 2mis mimber wne muplied to fuesilinte the annignie. It in mo way blewes the rumalte.)

victMESTFTEB

- 49 =

twale 22

 Tret the speumpition will te mede that thie range will mot ofreet the remalte

 (T2.09) is darie, it is mot larger then woula be expeeted rras gmenton
 (7.45) is alae large.
 hatis.
3. Tor techatetinn $F_{\text {, }}$, the minn spuares of the two oomparteong (5.76, 4.41) wre enowh wilke toe that they onin be pooled to cive nin entimate of variability
 I and IX, wite 1 ant 2 , of 2.26 .
 6.13) cen be pooled te ctwe a warteblility of 2.95 (3 degreve of froedce). The

5. If there in a atrrexenee anong the thrve techmiejame, F, F, W, thie dirfervice (5.9n) is manked by the olve of the varlaluility for the techinteleme? (5.09) and $\begin{array}{r}(2.95) \text {. } \\ (2)\end{array}$

HMCRASSTPIE

- 50 -
 ferwnt, wo they onm be combined to give a pooled entimate of technictem veriabilitity of 3.80 (5 degreve of freedcm). This eorremponde to a atamiand deviation of 1.95.
 not arrect the eanimination of this erowap.

पhchesamytion

*

