MASSACHUSETTS INSTITUTE OFTECANOLOCY * HANVABDUNIVEABITY

CAMBRIDGE ELECTRON ACCELERATOR

HARVARD UNIVERSITY CAMBRTDCE 38, MASS.
-
$C E A(H / T-M A n V A R D)-Y 3$
6Pk-ty
J. Delczeva
K. W. Robinson

January 3. 2958

ANALYSIS OF SPURIOUS MODES IN MAGNET POWER SUPPLY

Abstract

The resonant frequencies of the magnet power supply are Investigated. It is found that there are eleven resonant modes In addition to the dealred mode of operation with ais additional resonant frequencies. From measurements of the choice model, It appears that the frequencies of some of the spurious anodes any 11 in the ane range as the desired mode of operation.

The basie earcult of the magnet power supply 18 shown below.

- In the desired node of operation, the voltage or each complete unit is were $\left(v_{n}=0\right)$. The current y in each unit are identical ($1_{n=1} n^{2}$).

Then $i_{0}\left[i \omega L_{M}+\frac{1}{i \omega C}\right]-i_{n} \frac{1}{i \sin }=0$
and

$$
i_{0} \cdot i \omega L_{m}+i_{n} \cdot i \omega L_{c}\left[1+\sum_{n \neq 0}^{N} K_{m}\right]=0
$$

K_{m} in the coupling coeflieiont between current I_{m} and roztage in choice intro*
(ts number of complete unite*

The resonant frequency of the fundamental mode 1 g given by a

$$
\omega L_{n}\left[\omega L_{c}-\frac{1}{\omega C}+\omega L_{c} \sum_{m=0}^{N} K_{m}\right]-\frac{L_{c}}{C}\left[1+\sum_{m=0}^{N} K_{m}\right]=0
$$

$$
\omega_{c_{0}}^{2}=\frac{1}{L_{c} c}\left[\frac{1}{1+\sum_{m=0}^{N} k_{m}}+\frac{L_{c}}{L_{m}}\right]
$$

Tor a spurious mode the voltages of each unit will be related In phase so as to make the total ring voltage zero. In the spurious modes there will be no current in the magnet.

$$
\begin{gathered}
i_{m+2 n}=i_{n} e^{i m \theta_{p}} \\
\theta_{p}=\frac{2 \pi \rho}{N} \\
-3 n
\end{gathered} \quad v_{m+m}=v_{n} e^{i m \theta_{\rho}}
$$

Then

$$
\begin{gathered}
i_{n}\left[i \omega L_{c}+\frac{1}{i \omega C}\right]+i \omega L_{c} \sum_{m=0}^{N} i_{m=1} K_{m}=0 \\
i_{n}\left\{\omega L_{c}-\frac{1}{\omega C}+\omega L_{c} \sum_{m=0}^{N} K_{m} e^{i m \theta_{p}}\right\}=0 \\
\text { sinee } K_{m}=K_{N=m+1} \quad \text { by symetry } \\
\omega L_{c}-\frac{1}{\omega C}+\omega L_{c} \sum_{m=0}^{N} K_{m} \cos m \theta_{p}=0 \\
\omega_{p}^{2}=\frac{1}{L_{c} C} \frac{1+\sum_{m=0}^{N} K_{m} \cos m \theta_{p}}{1}
\end{gathered}
$$

By inapection it ia eeen that a poselbility wxiate of having $\omega_{p}=\alpha_{w}$ for some values of I_{m} and I_{m}.

Por the mumerical interpretation of the annlyasa, wo dasume the values fired by the present power aupply deasgn : $C=313.5 \mu F$, $L_{H}=140 m H$ and $L_{c}^{\prime}=L_{c}\left(1+\sum_{n=0}^{N} V_{m}\right)=250 m_{m} H ;$ and farthermore wo wee the rollowing moasured eoupling coefriasentas $K_{0}=1, K_{i, 4}=.66, K_{2, *}=.5 K_{4,0}=.42, K_{i,}=3,3, K_{47}=33, K_{c}=.32$.
valid for our 12 -unit thole model with reduced gap width ($=+34 \mathrm{~m}$ instead of $1^{\text {m }}$)

It is obvious that vo on n perform the frequency mapping of the spurious modes. Therefore, we, ealeulate the ratio

$$
\frac{\omega_{n}}{\omega_{0}}=\frac{1}{\left(1+\sum_{m=0}^{x} x_{n} \operatorname{coss} m_{n}\right)^{3 / 2}}
$$

where $\left(\frac{k}{2 n}\right)=\frac{1}{2 \pi}\left(L_{C} C\right)^{-\frac{1}{2}}$ represents the resonant frequency for one oholce unit with L_{e}, an arbitrary G_{0} and where all the other cole are open oireuste. This 1 o only useful for the present choke mede where wo do not need to insert L_{m} in order to investigate the spurious mode rregueneles. For the final design, the ratio of the spurious mode frequencies 4ρ to the fundamental frequency Wee io needed, and we have the equation

$$
\frac{\omega_{p}}{\omega_{\omega}}-\frac{\omega_{n}}{\omega_{c}} \frac{1}{\left(\frac{L_{n}}{L_{n}}+\frac{1}{1+\frac{\Sigma_{n}}{U_{n}}}\right)^{\frac{2}{2}}}
$$

Using both equations and the above values, we get the followIng tablet

p	1,11	2,10	3,9	4,8	5,7	6
$\frac{4}{4}$.85	1.28	1.57	1.8	1.99	2.13
$\frac{4}{4}$	1.23	1.85	2.28	2.61	2.88	3.09

estimate the nev coupling coefriesent. In order to do this, we
assume that for our ring shaped choke the leakage flux ϕ varies Like $\frac{d \phi}{d s} \sim(A N)$ (AW is a magnetomotive fore) around the esraupference, and we know that $\frac{d(A W)}{d s} \sim R_{m}$ of. So we rand the expreasion $K=\cosh \alpha / m^{\prime}$ for the coupling oeerriesent as a function of position m^{\prime} around the ring. fad α is a constant proportional to magnetic reluctance or gap width. We find fairly good agreement with the measured kwaluen. The nev gap 10 3 times bigger, to we multiply of by a factor of three, and the new set of K-values $10: K_{4}=1, K_{k, n}=.515, K_{2, *}=.27$ $K_{3,7}=.14, K_{4, i}=.076, K_{s, 7}=.047 \quad K_{c}=.038$.

Using the nev K-values and the above values for alrault elements, we have again

p	1,11	2,10	3,9	4,8	5,7	6	
ω_{00}	-755	1.07	1.4	1.36	1.95	188	

If the $\mathrm{I}^{\prime \prime}$ gap hoke model was waled from full wee choke, we note the elope cosmesdence of the $p=2$ or 10 modes with the fundamental one.

If a aperioua mode te degenerate with the fundamental mode, appreciable power may be produced in the epurious mode by relatively mali imperfections in the mater.

The effect of a variation in the eapaesty 0 may bo onieulated as a frat order effect. A variation of opacity ΔC in equivalent to adding a eurrent generator $i=V_{0} \omega \Delta C$ at that point. V_{e} sa the voltage aerose the espacsty due to the fundmental mode. By \& Fourier analysis, the opponent of the current generator in each mode is $i_{p}=\frac{i}{N}=\frac{H a \Delta C}{Y}$. The voltage produced in a degenerate mode ie then

$$
V_{p}=\frac{i_{p} Q_{e}}{\omega C}=V_{0} \frac{Q_{p}}{H} \frac{\Delta C}{C}
$$

Q_{p} is the Q of the opurione mode.
The ratio of pourer in the spurious mode to power in fundsmental mode ie given by

$$
\frac{P_{p}}{P_{0}}-\left(\frac{U_{p}}{U_{0}}\right)^{2} \frac{Q_{0}}{Q_{p}}=\frac{1}{N^{2}}\left(\frac{\Delta C}{C}\right)^{2} \theta_{0} Q_{p}
$$

If all eondeneers are changed by $a \operatorname{remes}$. value ΔC in a random manner, the pourer in the spurious mode will be increased by a factor Hf . 42 oo there will probably be two eprariowe nodes degencrate with the fundamental mode, which will increase the additional power required by a factor of 2 .

Then

$$
\frac{\Delta P}{P}=2 \frac{Q_{0} Q_{0}}{N}\left(\frac{\Delta C}{C}\right)^{2}
$$

It in wewn that if the Q whiues are high, amall ohanges in

