APAE-35 Supplement 2 Copy No. AEC Research and Development Report UC-81, Reactors, Power (Special Distribution)

SHIELDING MEASUREMENTS AT THE SM-1 REACTOR (JUNE 1961)

By: F. G. Moote C. H. Obrist

Approved by: M. H. Dixon, Project Engineer

Issued: March 16, 1962

Contract No. AT(30-1)-2639 with U. S. Atomic Energy Commission New York Operations Office

ALCO PRODUCTS, INC. Nuclear Power Engineering Department Post Office Box 414 Schenectady 1, N. Y.

ABSTRACT

Neutron flux and gamma radiation measurements through the SM-1 primary shield were made at the startup of Core II in June 1961. They extend previous measurements (APAE-35) both vertically and horizontally in the primary shield and in the rod drive pit. Dose rate measurements on spent fuel elements under water are also reported.

TABLE OF CONTENTS

		Page
ABS	TRACT	vii
1.0	SUMMARY	1
2.0	INTRODUCTION	3
	2.1 Test Description	3
3.0	NEUTRON FLUX MEASUREMENTS	7
	3.1 Neutron Flux in Instrument Well A - Test A403	8
	3.2 Neutron Flux in Primary Shield - Test A401	8
	3.3 Fast-Flux Measurements	10
4. 0	GAMMA RADIATION MEASUREMENTS	25
	4.1 Gamma Flux in Instrument Well A - Test A404	25
	4.2 Gamma Flux in Primary Shield - Test A402	25
	4.3 Dose Rate at Vapor Container Shield Wall	29
	4.4 Radiation Surveys in Rod Drive Pit - Test A407	29
5.0	SPENT FUEL ELEMENT RADIATION MEASUREMENTS - TEST A408	41
6.0	CONCLUSIONS	43
7.0	RECOMMENDATIONS	45
	7.1 Additional Shielding Tests	45
	7.2 Analysis of Shielding Data	45
8.0	REFERENCES	47

ix

LIST OF FIGURES

Figure	Title	Page
3.1	Gold Foil Activation - Instrument Well A	6
3.2	Thermal Neutron Flux in SM-1 Primary Shield	13
3.3	Thermal Neutron Flux in SM-1 Primary Shield	15
3.4	Thermal Neutron Flux - Inner Shield Tank Axis SM-1	17
3.5	Thermal Neutron Flux in Rod Drive Pit and Outside Shield Tank	20
3.6	Thermal Neutron Flux Distribution in SM-1 Primary Shield	21
3.7	Fast Neutron Flux - SM-1 Primary Shield	23
3.8	Fast Neutron Flux - SM-1 Primary Shield	24
4.1	Gamma Radiation - Instrument Well A	. 28
4.2	Gamma Radiation Dose Rate in Reactor Channels and Well A	33
4.3	Gamma Radiation Dose Rate in Reactor Shield Channels and Well A	34
4.4	Gamma Radiation Dose Rate in Inner Shield Tank Axis	36
4.5	Gamma Radiation Distribution in SM-1 Primary Shield	37
4.6	Gamma Radiation Dose Rate In Vapor Container Shield	38
4.7	Gamma Radiation Dose Rate From Spent Fuel Elements	39

xi

LIST OF TABLES

*

Table	Title	Page
3.1	Cadmium Ratios, Epithermal Fraction and Effective Gold Cross Section	9
3.2	Thermal Neutron Flux Through Shield Rings	11
3.3	Thermal Neutron Flux Through Inner Shield Tank Axis	16
3.4	Thermal Neutron Flux Outside Shield Tank	18
3.5	Thermal Neutron Flux in Rod Drive Pit	19
3.6	Fast Neutron Flux In Shield Rings	22
4.1	Gamma Background In Instrument Well A	26
4.2	Gamma Radiation in Instrument Well A	27
4.3	Gamma Radiation in Shield Rings	31
4.4	Gamma Radiation in Inner Shield Tank Axis	35

1.0 SUMMARY

Neutron flux and gamma radiation measurements in the SM-1 reactor primary shield have been made to show leakage and attenuation patterns in vertical as well as horizontal directions. These measurements are shown as contour maps of neutron flux and gamma dose rates.

Thermal neutron flux mapping was done by irradiating bare and cadmium covered gold foils in the water channels of the shield tanks and in the rod drive pit. Fast neutron flux in the outer shield tank was measured by irradiation of sulfur pellets.

Gamma radiation dose rates were measured by irradiation of film badge packs in the shield tanks. Dose rate surveys were made in the rod drive pit. High gamma radiation levels observed in the rod drive pit are attributed to high neutron flux in this area. The radiation from spent fuel elements during handling operations was measured above the water surface in the rod drive pit and agreed well with caclulated values.

These measurements generally confirmed previous results reported in APAE-35 in respect to the shape of the flux distributions. In magnitude, however, the recent measurements were generally higher by a factor of three then were those shown by the previous results.

Recommendations are made for further studies of neutron flux and gamma dose rates in the rod drive pit and for additional fast flux measurements. Also, analysis of the shielding data in this report should be made to insure continuing adequacy of the shielding.

2.0 INTRODUCTION

A series of shielding measurements made at the SM-1 Army Package Power Reactor has been performed under the Program Plan for Engineering Support and Development of Army Pressurized Water Reactors. * The purpose of these measurements was to supplement and extend previous measurements reported in APAE-35 to assure safety of operation with optimum shielding design and to verify design methods.

The previous measurements were limited to radial traverses through the primary shield at a vertical level of the core midplane. However, additional data were required in the vertical as well as the radial direction in order that specifications could be accurately made for the heights above the core to which the shield has to be built at the various increasing radial distances from the core.

Since high levels of shutdown gamma dose rate in the rod drive pit interfere with maintenance on the drive components, it is important to know the distribution of gamma radiation. It was desirable to determine whether the source of activity in the SM-1 rod drive area was neutron induced or resulted from core shutdown gammas.

2.1 TEST DESCRIPTION

The measurements for this program were carried out as far as possible in accordance with the following test procedures:

TP-A401	Primary Shielding, Neutron Flux
TP-A402	Primary Shielding, Gamma Flux
TP-A403	Instrument Wells, Neutron Flux
TP-A404	Instrument Wells, Gamma Flux
TP-A406	Rod Drive Pit, Neutron Flux
TP-A407	Rod Drive Pit, Gamma Flux
TP-A408	Spent Fuel Element Transfer Dose Rate

* AP Note-286, Item 4.4 (FY-61 Program), October 10, 1960, and AP Note-378, Subtask 5.3 (FY-62 Program), September 6, 1961.

The neutron flux measurements were made by activating gold foils mounted on aluminum strips. These strips were inserted in the water channels of the primary shield, in the inner shield tank above the vessel cover, on the outside of the shield tank, in instrument well A, and in the rod drive pit. At each location, some of the gold foils were cadmium covered to make corrections for the epithermal neutron flux. Sulfur pellets also were inserted in the primary shield channels to measure the fast flux by the S (n, p) reaction. (E 2.9 Mev)

Gamma radiation measurements were made by irradiating film badges in polyethylene bags mounted on aluminum strips. These strips were inserted in the water channels of the primary shield, in the inner shield tank, and in instrument well A. A portable survey meter was used for radiation measurements in the rod drive pit. Dose rate measurements were made just above the water surface in the spent fuel pit during handling and transfer of fuel elements under water, with various depths of water shielding.

Four reactor power runs were used for these tests, plus a gamma background run before Core II startup. They were planned to obtain continuity and overlap for film-badge and foil activation and are identified as follows:

Run 0 - Before startup for 8.0 hr on June 7, 1961. Film badges were placed in instrument well A to obtain background measurement.

Run 1 - Average power 11.1 kw for 20 min June 10, 1961. Film badges were placed in shield slots 1, 2, 3 and 4, and in instrument well A. (2.75 hr total exposure)

Run 2 - Average power 26.6 kw for 8.0 hr June 10, 1961. (12.5 hr in reactor shield) Film badges were placed in shield slots 1, 2, 3 and 4, and in instrument well A. (12.5 hr total exposure)

Run 3 - Average power 237 kw for 60 hr June 10-14, 1961. Film badges were placed in the inner shield tank. Foils were placed in shield slots 4, 5, 6 and 7, and in the inner shield tank. (93 hr total exposure)

Run 4 - Average power 10.8 Mw for 64 hr June 14-24, 1961. Foils were left in place from Run 3, above in shield slots 4, 5, 6 and 7, and in inner shield tank. In addition, foils were placed outside the shield tank and in the rod drive pit. Sulfur pellets and foils were placed in shield slots 1, 3 and 6. (10 days total exposure)

There was difficulty in determining the power level of runs 1, 2 and 3 because the nuclear instruments, particularly the Log N channel, had not been properly repositioned and recalibrated at startup of SM-1 Core II. During the early part of Run 4, the Log N ion chamber was raised on six different days by a total of 17 in.; and after the full power run, it was again raised 1 in. for

its final adjustment. The Log N power-level correction was determined by three methods. At the end of Run 3, the generator was operated briefly at a load of 400 kw, and the Log N reading was about 200 percent, which was too high by about a factor of 5. The ΔT integrator was recalibrated during Run 3 and was started up at the beginning of Run 4 for Core II operation.

The integrator reading was used as the correct energy output for Run 4. The thermal energy output for each day was compared with the value obtained by integrating the Log N chart readings to obtain a correction factor for the initial position of the ion chamber (Runs 1, 2 and 3) and for each of the six positions during Run 4. Finally, the flux distribution curve in instrument well A, Fig. 3.1, was used to determine an improved Log N correction factor for each of the seven positions. The final correction factor to the Log N readings for Runs 1, 2 and 3 was 0.222. This gives a power level believed to be within 50 percent of the correct value.

3.0 NEUTRON FLUX MEASUREMENTS

The earlier gold foil activations reported in APAE- $35^{(1)}$ were done at only one elevation, the core centerline. They were not reduced to absolute flux measurements, but the relative activities were normalized to agree with flux calculations using the VALPROD computer code.

In the present measurements, bare and cadmium covered gold foils were inserted at several elevations in the shield sections, as well as along the inner shield tank axis, outside the shield tank, and in the rod drive pit, in order to explore the flux pattern more completely. An attempt was made to reduce the activation measurements to absolute flux measurements, although many uncertain factors were involved.

The activated gold foils were removed and counted on the single channel analyzer at the SM-1 reactor; then they were shipped to the Alco Criticality Facility at Schenectady where those from Run 2 were counted again. The latter counter efficiency was known to be 2.39 percent from previous measurements with a standard foil. The SM-1 counting data for Run 4 was normalized to agree with the critical facility counting data for Run 2. The SM-1 counter efficiency and background were widely different for each run, so that no standard values could be used.

The usual relationship for thermal flux and foil activity was used:

 $\frac{\sigma_{No\phi}}{\Lambda}$ (1-e- λT_{1e} - λt Activity (cps) mass (gm) x efficiency =

where:

- \hat{O} = effective activation cross section for gold foil No = Avogadro's number = . 6023 x 10²⁴ gm-mole
- A = atomic weight of Au197 = 197 gm-mole
- = thermal neutron flux at 2200 m/sec
- ŝ = decay constant for $Au198 = .0107 hr^{-1}$
- = time of irradiation for run T
- = time of decay from shutdown to counting t

The use of an effective cross section is described in ANL-5800. (2) Corrections are made for a Maxwellian flux distribution, neutron temperature as affected by flux hardening, an epithermal flux index, and an effective resonance integral. Additional corrections were made for self-shielding in the gold foil: for both thermal and resonance energies and for epithermal shielding by the cadmium covers, as described in Section 8 of ANL-5800. (2)

The effective cross section can be written as:

 $\partial = \sigma_{o} (g + rs)$

or with self-shielding factors

$$\mathcal{O} = \mathcal{O}_{0} (g F_{0} + rs F_{res})$$

where:

To	=	cross section for 2200 m/sec neutrons	
g	=	correction for Maxwellian flux at temp. T	
F	=	thermal self-shielding factor = 0.93	
r	=	epithermal neutron density fraction	
S	=	a form of effective resonance integral, at temp.	T
Fres	=	resonance self-shielding factor = 0.56	

The epithermal fraction r is determined from the cadmium ratio (bare-foil activity/cadmium covered foil activity). Table 3.1 shows the cadmium ratio; epithermal fraction, and effective cross section at various positions in the shielding. The effective cross section was first calculated for instrument well A, where it was found to be 98.3 x 2.56 barns. This value was used to calculate all the thermal flux values tabulated and plotted in this report. Correction factors at various positions in the shield can be determined from Table 3.1.

3.1 NEUTRON FLUX IN INSTRUMENT WELL A - TEST A403

Gold foils, both bare and cadmium covered, were mounted on a 3 in. wide aluminum strip, which fitted loosely across the diameter of an instrument well, and were lowered into well A for Run 2. The strip was oriented perpendicular to the radius from the core centerline, so that all foils were close to the same radial distance of 36.37 in. from the core center. Bare and cadmium covered foils at the same elevation were spaced 3 in. apart (the width of the strip) to avoid interference by flux depression.

The positions and relative activities in counts per minute are shown in Table 3.2 and Fig. 3.1. The cadmium ratio (bare foil activity/cadmium covered foil activity) averaged 1.46. The activities have been converted to thermal flux at 10 Mw, and are included with the flux measurements of the following section.

3.2 NEUTRON FLUX IN PRIMARY SHIELD - TEST A401

Gold foils were mounted on aluminum strips and inserted into the 1 in. water channels between the 2 in. steel shield rings in the outer shield tank. A strip was inserted in each of channels 1, 2, 3 and 4 for Run 2, and in channels 4, 5, 6 and 7 as well as the inner shield tank axis for Runs 3 and 4. For Run 4 another strip of foils was mounted outside the shield tank at a position behind

CADMIUM RATIOS, EPITHERMAL FRACTION AND EFFECTIVE GOLD CROSS SECTION

Position	Rod	r	C
Instrument Well A	1.46 to 1.5	0. 154	98. 3 x 2. 56
Shield Channel 1	1.8 to 2.0	9. 103	2.03
Shield Channel 2	1.85 to 2.5		
Shield Channel 3	2.0 to 2.3	0. 080	1.79
Shield Channel 4	1.85 to 2.5	0. 054	1.51
Shield Channel 4	2.3 to 2.8		
Shield Channel 5	3.0 to 3.2	0. 041	1.37
Shield Channel 6	3.5 to 3.0		
Shield Channel 7	1.8 to 1.8		

the steam generator and near the corner of the rod drive pit. Several other foils were mounted in the rod drive pit in positions previously used for gamma radiation measurements on the 4 in. by 4 in. wood shield and on the water box face.

The positions of the foils, their activity, and the calculated thermal neutron flux at 10 Mw are shown in Tables 3.2 to 3.5 and Fig. 3.2 to 3.6. Figure 3.2 shows that the peak flux is about 4 in. below the core centerline and that the slope of the vertical attenuation curves is steeper above the core than below it. There was evidently a positioning error for the strip of foils in channel 2, so that all points in this channel were adjusted by 8 in. to fit the other curves. Figure 3.3 shows the radial attenuation through the shield at each elevation. These flux values differ in magnitude from the results in APAE-35, (1) Fig. 1.3 and are generally higher by a factor of 3 to 5 than the previous measurements, as normalized on the inner shield tank axis are shown in Table 3.3 and Fig. 3.4. Only the three lower foils had activities significantly above background; hence, the flux distribution is not very well defined.

The flux measurements on the outside of the shield tank and in the rod drive pit are shown in Tables 3. 4 and 3.5 and in Fig. 3.5. The neutron flux in the rod drive pit was much higher than expected and could account for some activation of components and the observed gamma radiation levels. Previous measurements reported in APAE Memo-237(3) are approximately a factor of 10 lower and those in APAE-18(4) are a factor of 100 lower. The foils outside the shield tank were located close to one corner of the rod drive pit, and the shape of the vertical flux distribution curve indicates a neutron source from below, i. e. in the rod drive pit rather than from the reactor core.

All the flux measurements are shown in Fig. 3.6 as flux contours in the primary shield structure.

3.3 FAST FLUX MEASUREMENTS

Sulfur pellets were mounted on aluminum strips and inserted in shield channels 1, 3 and 6 for Run 4. The pellets were sent to the Alco Criticality Facility laboratory at Schenectady for measurement of activity and calculation of the fast flux ($E_n > 2.9$ Mev) from the S³² (n, p) P³² reaction. The results are shown in Table 3.6 and in Fig. 3.7 and 3.8.

Some gold foils were also mounted on the strips in channels 3 and 6, as shown in Table 3.2, but the activities were inconsistent with each other and with the other runs.

TABLE 3. 2 THERMAL NEUTRON FLUX THROUGH SHIELD RINGS

Run 2 - 8. 0 Hr at 26. 6 Kw

Pos Fron Center	tical sition n Core cline, In.	Activity,	Background, Cpm	Act. Net, Cpm	Decay Time, <u>Hr</u>	$e^{\lambda t}$	Foil Mass, Gm	Neutron Flux at 10 Mw, N/cm ² sec
				INSTRUME	NT WELL A			
-1	8	9882	163	9719	111 2	3.28	.0314	4 22 x 10 ⁹
-1	2	12790	163	12627	111.1	3.28	. 0314	5. 48 x 10 ⁹
-6	3	14244	163	14081	111.0	3.28	. 0314	6.12 x 10 ⁹
()	13660	163	13497	111.1	3.28	. 0314	5.87 x 169
+6		10967	163	10804	111.0	3.28	. 0314	4. 69 x 10 ⁹
+1	2	6717	163	6554	111.0	3.28	. 0314	2.85 x 10^9
+1	8	4127	163	3964	111.2	3.28	. 0314	1. 73 x 10 ⁹
+3	30	1249	163	1086	111.3	3.28	. 0314	4.72 x 108
+ 5	54	225	163	62	111.0	3.28	. 0314	2. 69 x 10 ⁷
+1	12	184	163	21	111.0	3.28	. 0314	9.12 x 10 ⁶
				SHIELD C	HANNEL #1			
- 2	99	6134	163	5971	110 033	3 25	0311	2 58 × 10 ⁹
-1	2	26716	163	26553	110 083	3 25	0311	1 15 x 1010
	0	39731	163	39568	110.05	3. 25	0311	1 72 x 1010
+1	2	21299	163	21136	110, 017	3.25	. 0311	9.18 x 109
+3	30	3738	163	3575	110, 117	3.25	. 0311	1.55 x 109
+5	54	512	163	349	110.15	3.25	. 0311	1.51 x 108
+1	72	184	163	21	109. 982	3.25	. 0311	9.12 x 10 ⁶
co	orr			SHIELD C	HANNEL #2			*
-29	-21	5560	163	5397	109.8	3.24	0317	2 29 × 109
-12	-12	14868	163	14705	109.6	3.24	. 0317	6.25 x 109
0	+8	10711	163	10548	109.7	3.24	. 0317	4. 48 x 10 ⁹
+12	+20	3482	163	3319	109.7	3.24	. 0317	1. 41 x 10 ⁹
+30	+38	502	163	339	109.7	3.24	. 0317	1.44 x 10 ⁸
				SHIELD CI	HANNEL #3			
-2	9	645	163	482	109.4	3.22	. 0310	2, 08 x 10^8
-1	2	5468	163	5305	109.1	3. 22	. 0310	2.29 x 109
. ()	6492 .	163	6329	109.1	3.22	. 0310	2. 72 x 109
+1	12	2847	163	2684	109.1	3. 22	. 0310	1.16 x 109
+3	80	369	163	206	109.3	3.22	. 0310	8.87 x 107
+5	54	184	163	21	109.2	3.22	. 0310	9.10 x 10 ⁶
				SHIELD CH	ANNEL #4			
-2	9	287	163	124	110. 7	3.26	. 0316	5.33 x 10 ⁷
-1	2	922	163	759	110.5	3.26	. 0316	3.26 x 108
. ()	1413	163	1250	110.6	3.26	. 0316	5.37 x 10 ⁸
+1	2	983	163	820	110.4	3.26	. 0316	3.52 x 108
+3	10	276	163	113	110.4	3.26	. 0316	4. 84 x 10 ⁷
+5	4	Damaged						
+7	2	195	163	32	110.5	3.26	. 9316	1.37×10^{7}

TABLE 3.2 (CONT'D)

Run 3 - 60 Hr at 237 Kw Run 4 - 64 Hr at 10.8 Mw (Normalized to Run 2, Channel 4)

Vertical Position From Core Centerline, In.	Activity, Cpm	Background,	Act. Net, Cpm	Decay Time, Hr	<u>e lt</u>	Foil Mass, Gm	Neutron Flux at 10 Mw, N/cm ² sec
			SHIELD C	MANNEL #4			
-29	59479	504	58975	89.5	2.55	· . 0316	3.65 x 107
-12	837515	504	837011	89.5	2.55	. 0316	5.12 x 10 ⁸
0	670293	504	869789	89.5	2.55	. 0316	5.37 x 100*Norm.
+12	20287	504	28783	89.5	2.00	. 0316	3.61 x 10 ⁵
+54	953	504	449	89.5	2.55	. 0316	2. 78 x 10 ⁵
+72	699	504	195	89. 5	2.55	. 0316	1.20 x 10 ⁵
	4		SHIELD C	HANNEL #5			
-29	16173	541	15632	86.0	2. 505	. 0311	9.5 x 10 ⁶
-12	187035	541	186494	86. 0	2.505	. 0311	1.13 x 10 ⁸
0	256846	541	256305	86.0	2.505	. 0311	1.56 x 10°
+12	107540	541	106999	86.0	2.505	. 0311	6.51 x 10 ⁴
+50	611	541	70	86.0	2.505	0311	4 24 x 104
+72	nil	541				. 0311	
			SHIELD C	HANNEL #6			
-29	4438	541	3897	86. 75	2. 513	. 0317	2. 37 x 10 ⁶
-12	23718	541	23177	86. 75	2.513	. 0317	1.41 x 107
0	38754	541	38213	86. 75	2. 513	. 0317	2.33×10^{7}
+12	18788	541	18237	86.75	2. 513	. 0317	1.11 x 107
+30	1800	541	1205	8,0. 75	2. 513	. 0317	7. 11 x 105
+72	ŏ	541					
			SHIELDC	HANNEL #7			
-29	1639	504	1135	90.0	2.558	. 0310	7.05 x 10 ⁵
-12	5345	504	4841	90.0	2.558	. 0310	3.00 x 10 ⁶
0	7147	504	6643	90.0	2.558	. 0310	4. 11 x 10 ⁶
+12	4120	504	3616	90.0	2.558	. 0310	2. 24 x 10 ⁵
+50	000	504	399	90.0	2. 336	. 0310	2. 13 X 10-
+72	ŏ	504					
	Ru	4 - 64 Hr at	10.8 Mw (N	ormalized to R	tun 2 Ch	annel 4)*	
			SHIELD C	HANNEL #3			
-12	452533	504	452029	89.0	2. 546	. 0311	2. 79 x 10 ⁸
+12	501451	504	600947	89.0	2. 546	. 0311	3. 71 x 10 ⁸
+54 +72	3332 0	504	2828	89.0	2. 546	. 0311	1.75 x 10 ⁶
			SHIELD CH	ANNEL #6			
-12	54161	504	53657	89.0	2.546	. 0311	3. 30 x 10 ⁷
+12	36650	504	36146	89.0	2. 546	. 0311	2. 23 x 10 ⁷
+54	nil	504					
+72	nil	504					

 These gold foil measurements were intended for comparison with fast flux measurements (sulfur pellets), but data was inconsistent with each other and with other runs.

Figure 3.2. Thermal Neutron Flux in SM-1 Primary Shield Test A401 June 10, 1961 Gold Foil Activation Corrected to 10 MW Power 1010 Instrument Well & Allan -9 Channels 1,2,3,4 D Run 2 5 3.00 D Runs CHANNEL Channels 4, 5, 6, 7 0 THERMAL_NEUTRON FLUX (n/cm2 sec) 2 3 0 0 0 a ۵ 107 . 6 7 106 VERTICAL DISTANCE FROM CORE 80 -40 40 60 (inches) Ø

TABLE 3.3 THERMAL NEUTRON FLUX THROUGH INNER SHIELD TANK AXIS

.

Run 3 - 60 Hr at 237 Kw Run 4 - 64 Hr at 10.8 Mw (Normalized to Run 2, Channel 4)

Vertical Position From Core Centerline, In.	Activity, Cpm	Background, Cpm	Act. Net, Cpm	Decay Time, Hr	e λt	Foil Mass, Gm	Neutron Flu N/cm
72	3690	504	3186	89. 5	2.550	0. 0310	. 1. 97 2
83	598	504	94	89. 5	2.550	0. 0310	5. 82 2
95	589	504	85	· · ·			5. 23 2
107	•	504					
119		504			·	•	•
143		504					
155		504					

16

n² sec x 10⁶ $x 10^4$ x 10⁴

TABLE 3.4 THERMAL NEUTRON FLUX OUTSIDE SHIELD TANK

Vertical Position	Activity	Background	Act Net	Decay Time		Foil Mass	Neutron Flux at
Centerline, In.	Cpm	Cpm	Cpm	Hr	ext	Gm	N/cm ² sec
-29	1792	541	1251	86. 75	2. 513	0. 0311	7.63 x 10 ⁵
-12	1279	541	738	86. 75	2. 513	0. 0311	4.50 x 10 ⁵
J 0 .	1047	541	506	86. 75	2. 513	0. 0311	3.09 x 10 ⁵
+12	804	541	263	86. 75	2. 513	0. 0311	1.60 x 10^5
+30	697	541	156	86. 75	2.513	0. 0311	9.5 x 10 ⁴
+54	552	541	11	86. 75	2. 513	0. 0311	6. 78 x 10 ³
+72	561	541	20	86. 75	2. 513	0. 0311	1. 21 x 10 ⁴

Run 4 - 64 Hr at 10.8 Mw (Normalized to Run 2, Channel 4)

18

x 10⁵ x 10⁴ x 10³ x 10⁴

x 10⁵

lux at 10 Mw, m² sec x 10⁵

	`					·	
			•			* *	
							•
		TABL	E 3.5				
	THERMAL N	EUTRON F	LUX IN ROD I	DRIVE	PIT		
Run	4 - 64 Hr at 10). 8 Mw (No	rmalized to Ru	n 2, C	hannel 4)		
Activity, Cpm	Background, Cpm	Act, Net, Cpm	Decay Time, Hr	$e^{\lambda t}$	Foil Mass, Gm	Neutron Flux at 10 Mw, N/cm ² sec	
4 In. x 4 In	1.					· · · · · · · · · · · ·	
396954	541	396413	86.50	2.51	. 0317	2. 41 x 10°	
234553	541	234012	86.50	2.51	. 0317	1.42×10^8	
73534	541	72993	86.50	2.51	. 0317	4.44 x 10 ⁷	
76925	541	76384	86.50	2.51	. 0317	4.63 x 10^7	
65118	541	64577	86.50	2.51	. 0317	3.92 x 10^7	
HIELD FAC	E						
390936	541	390395	86.50	2.51	. 0317	2.37 x 10 ⁸	
180746	541	180205	86.50	2.51	. 0317	1.09 x 10 ⁸	
115185	541	114644	86, 50	2.51	. 0317	6.96 x 10 ⁷	
95811	541	95270	86.50	2.51	. 0317	5.78 x 10 [?]	•
	•						
	Run Activity, Cpm 4 In. x 4 Ir 396954 234553 73534 76925 65118 HIELD FAC 390936 180746 115185 95811	THERMAL N Run 4 - 64 Hr at 10 Activity, Cpm Background, Cpm 4 In. x 4 In. 396954 541 234553 541 73534 541 76925 541 65118 541 76925 541 65118 541 115185 541 115185 541 95811 541	TABLE THERMAL NEUTRON F Run 4 - 64 Hr at 10. 8 Mw (No Activity, Background, Cpm Act, Net, Cpm 4 In. x 4 In. 396954 541 396413 234553 541 234012 73534 541 234012 73534 541 72993 76925 541 76384 65118 541 64577 HIELD FACE 390336 541 180205 180746 541 180205 115185 541 114644 95811 541 95270	TABLE 3. 5 THERMAL NEUTRON FLUX IN ROD I Run 4 - 64 Hr at 10. 8 Mw (Normalized to Fata Activity Background Act, Net Decay Time, Irr Man A - 64 Hr at 10. 8 Mw (Normalized to Fata Act, Net Decay Time, Irr Activity Background Act, Net Decay Time, Irr Man X - 64 Hr 396413 66. 50 Activity Background Act, Net Decay Time, Irr Man X - 64 Hr 396413 66. 50 396954 541 396413 66. 50 73534 541 72993 86. 50 76925 541 76384 86. 50 65118 541 64577 86. 50 180746 541 180205 86. 50 180746 541 114644 86. 50 95811 541 95270 86. 50	FAFERAL NEUTRON FLUX NEOD DRIVE THERMAL NEUTRON FLUX NEOD DRIVE Take 4 Hr at 10.8 Mw (Normalized to Run 2, 0 C Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orgen Orge	First Free free free free free free free free	FAFA F FIREMAL NEUTROP FUE X DED DRIVE PET Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3" Colspan= 3

.

.

TABLE 3.6								
FAST	NEUTRON	FLUX	IN	SHIELD	RINGS			

Run	4 -	64	Hr	at	10	8	Mw
Tuni .	-	UT.	111	au	LU.	•	141 14

Vertical Position From Core Centerline, In.	Activity, Cpm	Background, Cpm	Sulfur Mass, Gm	Neutron Flux at 10.8 N/cm ² sec
		SHIELD CHAN	INEL #1	
-29	56731/2	17	2.8689	3.77 x 10 ⁸
-12	395976/2	17	2. 8689	2.64 x 10 ⁹
0	453925/2	17	2.8689	3.46 x 10 ⁹
+12	312455/2	17	2. 8732	2.08 x 10 ⁹
+30	24605/2	17	2.8732	1.63 x 10 ⁸
		SHIELD CHAN	NEL #3	
-29	5049/2	17	2.8739	3.27 x 10 ⁷
0	62966/2	17	2.8739	4.19 x 10 ⁸
+30	6925/5	17	2.8750	1.84 x 10 ⁷
		SHIELD CHAN	NEL #6	
-29	1303/10	17	2.8750	1.71 x 10 ⁶
0	9234/10	17	2.8656	1.23 x 10 ⁷
+30	917/15	17	2.8656	8. 01 x 10 ⁵

22

.

.

. 8

4.0 GAMMA RADIATION MEASUREMENTS

Previous measurements of the gamma radiation in the reactor shield were taken only at the elevation of the reactor core centerline, as reported in APAE-35. (1) In the present series of tests, film badges were mounted on aluminum strips at seven different elevations and inserted in the channels of the outer shield tank and axially above the reactor vessel in the inner-shield tank, in order to obtain a better indication of the dose rate distribution throughout the primary shield structure.

Radiation surveys were made in the rod drive pit on several occasions before, during and after the removal of SM-1 Core I. The dose rates showed no significant change, indicating that the core was not the source of this radiation.

Dose rate measurements were made 6 in. above the surface of the water in the spent fuel pit during handling and transfer of fuel elements.

4.1 GAMMA FLUX IN INSTRUMENT WELL A - TEST A404

Before beginning reactor operations on SM-1 Core II, a set of film badges mounted on an aluminum strip was inserted in instrument well A and irradiated for 8 hr with the reactor shut down (Run 0). The position of the films and the measured dose rate are shown in Table 4.1 and Fig. 4.1. Using the radial attenuation of dose rate from previous measurements reported in APAE-35, (1) background dose rates were determined out to shield channel 4, where they became negligible. This background correction, as shown in Table 4.1,was applied for the total exposure time in the reactor for succeeding runs; and it accounted for as much as 20% of the total dose for a few points.

For Run 1 at 11.1 kw for 20 min, another strip of films was exposed in well A. The dose rates are shown in Table 4.2 and Fig. 4.1. These were converted to a power level of 10 Mw and included with measurements in the shield channels, as reported in the following section.

4.2 GAMMA FLUX IN PRIMARY SHIELD - TEST A402

Film badge packets sealed in polyethylene bags were mounted on aluminum strips and inserted in the water channels between the shield rings in the outer shield tank. They were placed at seven elevations with respect to the core centerline: at -29 in., -12 in., 0 in., 12 in., 30 in., 54 in. and 72 in.

	TABI	LE	4.1	
GAMMA	BACKGROUND	IN	INSTRUMENT	WELL A
GAMMA	BACKGROUND	IN	INSTRUMENT	WELL A

Run 0 - 8 Hr Exposure Before Core Startup

					Calculated	Shield Rir	ng Dose Ra	ate, R/Hr
Vertical P or From Core Centerline,	sition In.	Total Dose, R	Exposure Time, Hr	Dose Rate, R/Hr	#1	#2	#3	#4
-29		•		-	3.4	0. 85	0. 23	0. 062
-12		130. 0	8.0	16.3	22.1	5.57	1.49	0. 407
0		150. 0	8.0	18.8	25.5	6. 42	1. 71	0. 470
+12		71.0	8.0	8.9	12.0	3.04	0. 81	0. 222
+30		11.0	8.0	1.4	1.9	0. 48	0. 13	0. 035
+54		1.35	8.0	0.17	0.23	0. 058	0. 015	0. 0042
+72		0. 075	8.0	0.009	0. 012	0. 003	0. 008	0. 00002

.

GAMMA RADIATION IN INSTRUMENT WELL A

Run 1 - 20 Min at 11. 1 Kw									
Vertical Position From Core Centerline, In.	Total Dose, R	Background Exposure Time, Hr	Total Background Dose, R	Total Operating Dose, R	Exposure Time At Power, Hr	Operating Dose Rate, R/Hr	Average Power Level, Kw	D 10	
-12	940. 0	2. 75	45.0	895.0	. 333	2700	11.1	2,	
. 0	340. 0	2.35	52.0	288. 0	. 333	865	11.1		
+12	125.0	2.75	24.5	100. 5	. 333	300	11.1		
+30 .	17.0	2.75	3.8	13.2	. 333	40	11.1		
+54	1.30	2. 75	0. 47	0. 83	. 333	2.5	11.1		
+72	0. 08	0 2.75	0. 025	0. 055	. 333	0. 165	11.1		

27

00se Rate at 0 Mw, R/Hr , 420, 000 780, 000 271, 000 35, 700 2, 240

Strips of film were inserted in shield channels 1, 2, 3 and 4 and irradiated at 11.1 kw (or 20 min, Run 1. The dose rates, converted to 10 Mw power level, are shown in Table 4.3 and Figs. 4.2 and 4.3.

For Run #2 at 26.6 kw average for 8 hr, strips were inserted in shield channels 4, 5, 6 and 7. The results are shown in Table 4.3 and Figs. 4.2 and 4.3.

For Run #3 at 237 kw average for 60 hr, one strip of films was inserted close to the axis of the inner-shield tank above the reactor vessel cover. The positions and dose rates are shown in Table 4. 4 and Fig. 4. 4. Unfortunately, all of the films except two were damaged by water penetrating the polyethylene bags and were not readable.

These gamma radiation dose rates were all combined in Fig. 4.5 which shows contours of equal dose rate values through the primary shield structure.

The present gamma radiation values are higher than those previously shown in APAE-35, Fig. 2.4 by about a factor of three. The attenuation slope is similar to that obtained previously. The dose rates from this set of tests are higher than those shown in the calculated curve reported in APAE-35 by a factor of 1.5. This discrepancy is considered to be within the limits of error of both measurements and calculation.

4.3 DOSE RATE AT VAPOR-CONTAINER SHIELD WALL

Two film packs were mounted inside the vapor-container wall; and two others, outside at points near the electrical penetrations, about 15 ft above the reactor core centerline. They were exposed for 10 days during which time the reactor operated for Run 4 at 10.8 Mw for 64 hr.

The operating dose rate inside the vapor container wall was measured as 0 54 and 0 56 R/hr. Outside the wall the dose rate was not detectable by the film badges there. These results are in reasonable agreement with those reported in APAE-18(4) and APAE-35. (1) Figure 4.6 shows the measured dose rate and a calculated attenuation curve.

4.4 RADIATION SURVEYS IN ROD DRIVE PIT - TEST A407

The dose rate in the rod drive pit was measured on several occasions with portable radiation survey meter. Three surveys were made in April 1961 after the final shutdown of SM-1 Core I but before the core was removed. After the core was unloaded, the survey was repeated on May 4, and again on May 16, 1961 after the flushing and cleanup of crud in the bottom of the reactor vessel. Another survey was made on June 24, 1961 after completion of a two-day run at full power on Core II. This survey was repeated on October 20, 1961, four days after shutdown from four months of routine training operations on Core II. There were no significant differences between any of these radiation surveys. Small variations could be attributed to location of the probe of the survey instrument. The measurements were also in reasonable agreement with previous surveys made from July to September 1959 and reported in APAE Memo 237. ⁽³⁾ These checks indicate there is no evidence of any serious increase in the radiation problem.

The highest readings were obtained at the water box shield face adjacent to the rod drive penetrations; and were made in the range of 10 to 20 R/hr. The leakage slots at the left side and bottom of the water box showed dose rates ranging from 1 to 3 R/hr. Two test points established at the upper left and lower right corners of the rod drive mounting plate usually read about 0.8 and 1.5 R/hr. The background in the accessible working space near the rod drive cables was 0.2 to 0.3 R/hr.

As mentioned in Section 3. 2, the neutron flux in the rod drive pit was unexpectedly high. Activation of the steel face plate of the water box and the rod drive components may account for much of the radiation source. The reactor core is evidently not the source of this radiation. The water box is assumed to be empty, as the attempts to keep it full were discontinued a year or two before these tests.

TABLE 4.3 GAMMA RADIATION IN SHIELD RINGS

Run 1 - 20 Min at 11.1 Kw

Vertical Position From Core Centerline, In.	Total Dose, R	Background Exposure <u>Time, Hr</u>	Total Background <u>Dose, R</u>	Total Operating Dose, R	Exposure Time at Power, Hr	Operating Dose Rate, <u>R/Hr</u>	Average Power Level, Kw	Dose Rate 10 Mw, R, Hr
			SHIELD CH	ANNEL #1				•.
-29	25.5	2.75	9.35	16.15	0.333	48.5	11.1	43,700
-12	290.0	2.75	60.7	229.30	0.333	688.0	11.1	619,000
0	460.0	2.75	70.0	390. 0	0.333	1170.0	11.1	1,054,000
+12	230. 0	2.75	33.0	197.0	0.333	590.0	11.1	532,000
+30	Damaged	2.75		1				the state of the state of the
+54	2.15	2.75	0.630	1.520	0.333	4.56	11.1	4,100
+72	0. 11	2.75	0. 033	0.077	0.333	0. 23	11.1	207
			SHIELD CH	HANNEL #2				
-29	22. 0	2.75	2.34	19.66	0.333	59.0	11.1	53,200
-12	86.5	2.75	15.30	71.2	0.333	213.5	11.1	193,000
0	115.0	2.75	17.7	97.3	0.333	292.0	11.1	263,000
+12	66.5	2.75	8.36	58.14	0.333	175.0	11.1	157,800
+30	7.2	2.75	1.32	5.88	0. 333	17.7	11.1	15,950
+54	0.56	2.75	0.160	0.40	0.333	1.20	11.1	1,080
+72	0. 015	2.75	0.008	0. 007	0. 333	0. 021	11.1	19
•			SHIELD CH	IANNEL #3				
-29	5. 45	2. 75	0. 630	4.82	0. 333	14.45	11.1	13,050
-12	22.0	2.75	4.10	17.9	0.333	53.7	11.1	48,400
0	31. 0	2.75	4.70	26.3	0.333	79.0	11.1	71,200
+12	Damaged	2.75	-	-	0.333	-	11.1	-
+30	2. 475	2.75	0.355	2.120	0.333	6.36	11.1	5,730
+54	0.115	2.75	0.041	0.074	0. 333	0. 222	11.1	200
+72	0. 015	2.75	0.002	0.013	0. 333	0. 039	11.1	35
			SHIELD CH	IANNEL #4				
-29	Damaged	2.75	-	-	0.333	-	11.1	
-12	Damaged	2.75		-	0. 333	-	11.1	
0	8.5	2.75	1.3	7.2	0. 333	21.6	11.1	19,500
+12	5.6	2.75	0. 61	5.0	0.333	15.0	11.1	13,500
+30 .	0. 640	2.75	0.096	0. 544	0. 333	1.63	11.1	1,470
+54	0. 075	2.75	0.011	0.064	0. 333	0.190	11.1	171
+72	0. 020	2.75	-	0. 020	0. 333	0.060	11.1	54

TABLE 4.3 (CONT'D)

Run 2 - 8 Hr at 26. 6 Kw Average Power

Vertical								
Position		Background	Total	Total	Exposure	Operating	Average	Dose Rate
From Core	Total	Exposure	Background	Operating	Time at	Dose Rate,	Power	at 10 Mw,
Centerline, In.	Dose, R	Time, Hr	Dose, R	Dose, R	Power,Hr	R/Hr	Level, Kw	R/Hr
			SHIELD CH	ANNEL #4				
-20	84 25	12 5	0.78	83 47	8.0	10.4	96 6	3 010
- 20	200 00	12.5	5 10	204 0	9.0	26 0	20.0	12 000
-16	410.00	12.5	5.00	404.1	0.0	50.9	20.0	10,100
.12	240.00	12.0	2 80	104.1	9.0	30.0	20.0	11, 200
+12	240.00	12.0	2.00	201.2	0.0	29.1	20.0	1,200
+30	20.15	14. 0	0. 440	20.31	0.0	3. 34	20.0	1,330
+04	1. 30	12.0	0.002	1.35	0.0	0.109	20.0	04
+72	0.045	12. 5	0. 00025	0. 045	8.0	0. 0056	26.6	2.1
4.			SHIELD CHA	ANNEL #5				
-29	23, 25	12.5	Negl.	23, 25	8.0	2, 91	26.6	1.090
-12	112.50	12.5	Negl.	112.50	8.0	14.10	26.6	5 300
. 0	112 50	12.5 '	Negl	112.50	8.0	14 10	26.6	5 300
+12	50.00	12.5	Negl	50.00	8.0	6 25	26.6	2 350
+30	6 15	12.5	Negl	6.15	8.0	0 77	26 6	290
+54	0 23	12 5	Negl	0.23	8.0	0 0288	26 8	11
+72	0.06	12.5	Negl.	0.06	8.0	0. 0075	26.6	3
			SHIELD CHA	ANNEL #6				
-29	19.0	125	Negl	19.0	8.0	2 38	26.6	. 895
-12	30 6	125	Nogl	30.0	8.0	3 75	26 6	1 410
0	34 25	125	Negl	34 25	8.0	4 28	26 6	1 610
+12	Damaged	125	Negl	-	8.0	-	26 8	1,010
+30	2 90	125	Negl	2 90	8.0	0 363	26 6	136
154	0 130	125	Negl	0 130	80	0 0163	26 6	6 1
+72	-	125	Negl.	-	8.0	-	26.6	-
			OUTSIDE OUT	ER SHIELD	L .			
- 20	2 050	195	New	2 050		0.956	20 0	00
-29	2.050	125	Negi.	2.050	0.0	0. 200	20.0	110
-12	2.350	125	Negi.	2.350	0.0	0.294	20.0	100
. 12	2. 550	125	Negl.	2. 350	0.0	0. 319	20.0	120
+12	1.200	120	Negi	1.200	6.0	0. 150	20.0	30
+30	0.160	125	Negl.	0.100	8.0	0. 020	20.0	7.5
+34	0.030	125	Negl.	0.030	8.0	0.0037	20.0	1.4
+12	0. 025	. 125	Negl.	0.025	3.0	9.0031	20.0	1.2

32

.

ISIANCE FROM C

.

GAMMA RADIATION IN INNER SHIELD TANK AXIS

Vertical Position From Core Centerline, In.	Total Dose, R	Background Exposure Time, Hr	Total Background Dose, R	Total Operating Dose, R	Exposure Time at Power, Hr	Operating Dose Rate, R/Hr	Average Power Level, Kw	Dose Ra at 10 M R/Hr
72	Damaged	93. 0	Negl.	-	60. 0	-	237. 0	-
83	Damaged	93.0	Negl.	-	60. 0		237.0	•
95	1475.0	93.0	Negl.	1475.0	60. 0	24.6	237. 0	1,040
107	Damaged	93.0	Negl.	-	60. 0	- 4	237.0	-
119	Damaged	93. 0	Negl.	-	60. 0		237. 0	-
131	Damaged	93.0	Negl.	-	60. 0	-	237.0	-
155	32.0	93. 0	Negl.	32.0	60. 0	0.534	237.0	22.5

Run 3 - 60 Hr at 237 Kw Average Power

GAMMA RADIATION DOSP RATE (BAWA)

5.0 SPENT FUEL ELEMENT RADIATION MEASUREMENTS - TEST A408

The radiation level from spent fuel elements has been measured on several occasions. The element was suspended vertically from the handling tool and raised slowly toward the surface of the water in the spent fuel pit. The dose rate 6 in. above the water surface was measured for two or more readings in the range 0.1 to 2 R/hr; and the water depth was measured by scale markings on the handling tool.

The following elements were monitored:

Date	Element	Position	Years in Reactor	MWYR Irradiation	Cooling Time
3-15-61	79	43	3	16.4	320
4-27-61	48	52,61	4	18.0	16.5
6-21-61	CR-1-S	42,44	2	7.5	72.0
5-4-59	CR-13	64	2	10.5	58.0

The data for CR-13 was taken from APAE- $55^{(5)}$, and is included in AP Memo-206.⁽⁶⁾ The higher dose rates from this element may be attributed to the Co⁶⁰ in the flux suppressor comb at the top of the element. There was no cobalt in the flux suppressor on element CR-1-S.

The dose rates and attenuation curves are shown in Fig. 4.7. They are in reasonable agreement with calculated values. At water depth of approximately 4 ft, the fuel element is effectively a point source and the only significant gamma energies are in the range of 1.0 to 2.0 Mev. These are tabulated as fission product groups III, IV and V in a number of references, and their activity and attenuation can easily be calculated.

6.0 CONCLUSIONS

1.

2.

3.

This series of tests complemented earlier measurements and extended knowledge of neutron flux and gamma radiation dose rate throughout the primary shield, shown by the contour plots in Fig. 3.6 and 4.5.

Neutron flux and gamma dose rates in the outer shield tank were higher than previously reported by a factor of 3 or more. The previous neutron activations were not converted to absolute flux values. Discrepancy between these and previous measurements is attributed either to systematic errors in power level, activity measurements, or data reduction. It is possible the present measurements were high by 50 percent, or a factor of 1.5 to 2, and the previous were low by 50 percent, or a factor of 2, which would account for the difference, but this is not fully explainable.

At the BF₃ counter position in the bottom of the instrument well, the neutron flux is $5.5 \times 10^9 \text{ n/cm}^2$ sec and the gamma radiation level is $8 \times 10^5 \text{ R/hr}$ at a power level of 10 Mw. Raising the startup chamber 24 in. will reduce these levels to $3 \times 10^9 \text{ n/cm}^2$ sec and $9 \times 10^4 \text{ R/hr}$, considering the sensitive area for neutrons to be 6 in. from the bottom and for gamma radiation to be the cable connector at the top of the chamber. Raising the chamber 72 in. (the total travel of the lifting mechanism) will reduce the levels to $1.5 \times 10^7 \text{ n/cm}^2$ sec and $1.7 \times 10^2 \text{ R/hr}$. This information will provide understanding of the operation of the BF₃ counter and provide evidence for malfunction analysis.

The high gamma radiation levels observed in the rod drive pit can be attributed to activation induced by the high neutron flux in this area.

Gamma dose rates measured at 6 in. above the water surface of the spent fuel pit during handling of spent fuel elements agreed reasonably well with calculations.

7.0 RECOMMENDATIONS

7.1 ADDITIONAL SHIELDING TESTS

- 1. Further studies of the neuron flux and gamma dose rates in the rod drive pit would be of value to compare with past data and thus establish the relative change in these levels. Tests A406 and A407 could be usefully repeated at annual intervals, and the high flux area should be more completely mapped.
- Additional flast flux measurements using sulfur pellets should be obtained and used to extend this data closer to the reactor vessel and above the vessel head. These data would improve the fast flux mapping for radiation damage studies.

7.2 ANALYSIS OF SHIELDING DATA

- Analysis of the data contained in this report should be performed. These analyses will aid in insuring the continued adequacy of the SM-1 shielding. Furthermore, the adequacy of the SM-1 shielding should be predicted with regard to future power levels and core loadings which may exceed present design values.
- 2. Effort should be directed toward identifying radiation sources in the rod drive pit area. Knowledge of these sources is prerequisite to optimum placement of additional shielding if a reduction of radiation levels in the rod drive area is desired.
- 3. Analysis of the spent fuel shielding data should establish minimum allowable water depths in the spent fuel tank. Minimum water shield-ing requirements during spent fuel transfer should be determined
- 4. Analytical methods for predicting the neutron flux and gamma dose rates at "off-midplane" locations within the primary shield should be developed. The data from tests A401 and A402 should be used to determine the accuracy of the analytical model.

8.0 REFERENCES

- Rosen, S. S., et al, "APPR-1 Research and Development Program, Shielding Experiments and Analyses, Task No. VI," APAE-35 and Supplement 1, October 15, 1958.
- 2. "Reactor Physics Constants," ANL-5800.
- 3. Obrist, C.H., et al, "SM-1 Research and Development Quarterly Report, July 1, 1959 to September 30, 1959," APAE Memo-237, January 15, 1960.
- 4. Meem, J. L., et al, "Initial Operation and Testing of the Army Package Power Reactor APPR-1," APAE-18, August 9, 1957.
- 5. Obrist, C. H., et al, "SM-1 Reactor Core Inspection at 2/3 Core Life," APAE-55, January 13, 1960.
- MacKay, S. D., Tubbs, D. C., "SM-1 Research and Development Program Interim Report No. 2 on Core Measurements, Task No. VII," APAE Memo-206, June 30, 1959.

