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1. Introduction. In 1880 Appell defined four hypergeometric eerie*

in two variables, which were generalised to n variables in a straightfor

ward way by Laurieella in 1893 C2] , W  • 0n® of L«iricella*s series, idiich 

includes Appall*s funcUon as the case n * 2 (and, of ccurse, Gauss’s 

hypergeometric function as the C33i n s 1), is 

(1.1) (« i ,t„ > e ,*, , «„)

= i I .... ........... ........ -....... - ................. ?  • • *

(*, " s ♦  ** ♦  * * )  ? * * • *

where (a,m) = P (a* m)/ P (a) . The FD function has special isg>ortance for 
applied mathematics and mathematical physics because elliptic integrals 

are hypergeometric functions of type F^ ^3^ •

In § 2 of this paper we shall define a hypergeometric function 

R(aj b1,...,bn| which is the same as FD except for w e ll but

important modifications. Since R is homogeneous in the variables ,

it depends in a nontrivial way on only n-1 ratios of these variables) 

indeed, every R function with n variables is expressible in terms of an 

F function with n-1 variables, and conversely. Although R and FD ars 

therefore equivalent, R turns out to be more convenient for both theory
a

and application.

The choice of R was initiflly suggested by the observation that the 

Euler transformations of FD would be greatly simplified by introducing 

homogeneous variables. However, it will be seen in § 6 that this simplicity 

is not superficial and that the R function is the natural outcome of one



procedure for generalising the Gauss hypergeometric function. Instead of 

starting from tne hypergeometric series, as Appell and Lauricella did, we

can start from the remark that » .solution of the Euler-Poisson equation,

if it is also a homogeneous function of s^ ami , is a Gauss hypergeomet-

fur.ction of ip.*.ftr which satisfies an Euisr-Poisson equation in each 

pair of variables, the answer is the ft function. The system of Euier- 

Poisson equations admits two groups of transformations that are directly 

related to the ouler transformations of F„, •

Although some properties of R given in this paper are equivalent to 

known properties of P^ , others represent substantial extensions of previous 

results and some are entirely new. We mention especially (1) a set of n + 3 

relations between contiguous R functions of n variables, (2) a proof that 

there exists s linear relation between n+ 1 associated R functions, (J) two 

ways of representing an R function as the Integral of an ft function with 

fewer variables, and (L) an Integral representation of the product of two 

R functions.

2. Tre function R of n variables. We shall consider the properties of 

a Lauricella function with parameters restricted by c ■ b^+ ••• ♦ bn 

0, -1, -J',... • Let a function R of n complex variables arc

(1.2)

N



n + 1  complex param eters a , b ^ , , . . ,  

s e r ie s  I f  | l  -  *i | < 1 ( i  n)

i f  |a rg  z t  TT *

( 2 a )  » *• » / ) *

be defined  by the follow ing power 

and by i t s  a n a ly tic  c o n tirn a tio n

u  »

__ — <• "  A *•»„ )  ( ^  . H», ) '  ** ^  at ) /** t , I-LJ-J_____ " f _ » *-.? i ___ Ll ^l . . ( »~*J  0 - * n )
**. *  O

* . ( 4̂  . + K  - • • * * )  *,! ** !

T his s e r ie s  has two im portant p ro p e r t ie s ,  symmetry and homogeneity, 

which are  ex p io ss ib ie  by fu n c tio n a l r e la t io n s  and hence are  v a lid  fo r  i t s  

a n a ly tic  co n tin u a tio n  as w e ll. Syimnetry i s  obvious*

(2 ,2 ) R(a; bi f . . . , b n j » I s  In v a r ia n t uncer perm utation of the

su b sc rip ts  1, . . . ,  n (1 . e . ,  under perm utation  of the b*s and 

z 's  to g e th e r ) .

To show th a t  R Is  a homogeneous fu n c tio n  of degree -a  in  the  v a r l tb le s  

s ^ ,« .« ,* n , l e t  It d esignate  the n -fo ld  sunrnation in  (2 .1 )  and l e t  the 

general term o f the s e r ie s  be u ^ , . . . , ! ^ ) .  Then, i f  stands fo r 3 /  }  ,
we have

a  *  = ^  r « ~ o -

= ^  Cm. ~(m-> / -

) j  ■** ^

«  )  ~  C I -  )  ( i n -*
+ 9 a )  A* ( - 1, M  +  ♦

I > *

* * •*, -* . ■ + m H

i  4 •** 4 • *• * A 4» i % * n.

Hence R s a t i s f i e s  L u le r 's  r e la t io n ,

(2*3) ~i_ D  -R
A 4
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which Implies homogeneity:

(2.W

.

1U« r«(J x“ ft .
I

It is clear from (2.1) that a function F^ of n - 1 variables, with no 

relations required between the parameters, can always be expressed in terms 

of a function R of n variables:

(2.5) o 1 * A i •)

where bR is defined by

(2.6) c * i, .

Conversely, given a function R of n variables, we can use its homogeneity 

to make one variable equal to unity and thus express it in terms of a 
function FQ of n - 1 variables:

(2.7) ^  (*# ,* , **,̂ ** ) - A ^  i ’* K - *  * c * if ,**•,*"

where Eq* (2.6) now defines c •

Equation (2.7) is noteworthy. It shows first that R can be regarded as 

the result of introducing homogeneous variables in FQ • Considered as a 

candidate for the defining equation of R, it makes homogeneity evident but 

leaves permutation symmetry to be proven, in contrast to (2.1). Secondly, it 

shows one of the advantages of working with R and one more variable rather 

than with FQ ; for the symmetry of R, which is not at all apparent on the 

right side of (2.7), expresses the behavior of F^ under certain Euler trans

formations* The transformations in question are those that leave a unchanged;
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fo r  in s ta n ce

^  ( * >  * ,*

9

/

V

the  tran sfo rm atio n  of AppelL 's fu n c tio n  f 2, p. 30 j

* i *> 3 ) * 0 -  F, («, «- * , «■ / — ( L -_ l
Jr- i ;

i s  e q u iv a le n t to  th e  statem ent th a t  R(a; b-t i s  in v a r ia n t

under tra n s p o s it io n  of th e  su b sc r ip ts  1 and 3*

The remaining E u ler tran sfo rm atio n s of F^ jj2, p . 116J , in  which the 

value o f a i s  changed, r e s u l t  from combining the  synmetry p ro p erty  (2 .2 ) 

w ith a s in g le  tran sfo rm a tio n  th a t  w ill  be d eriv ed  in  §  7 *

(2.8) A

where a 1 i s  defined  by

(2. 7) c -  • •
0

The n o ta tio n  o f (2 .9 )  w ill  be used throughout t h i s  paper.
*

3. Special va lues of param eters and v a r ia b le s .  The function  R reduces
-*■--------------- ----- ------  - -   -  -  —  -i    -------------—    -   - —  1_    y n i u i

to  ano ther fu n c tio n  of the same type with one le s s  v a r ia b le  i f  one of i t s  

param eters vanishes^ or i f  two of i t s  v a r ia b le s  are eq u a l, or (w ith 

c e r ta in  q u a l i f ic a t io n s )  i f  one of i t s  v a r ia b le s  van ishes or becomes i n f i n i t e .  

We s h a l l  consider th ese  cases in  tu rn , w ith ap p ro p ria te  g e n e ra liz a tio n s . 

Because of the symioetry r e la t io n  (2 .2 ) ,  i t  does not m a tte r which param eter 

o r v a ria b le  i s  taken  to  have a sp e c ia l v a lu e .

By comparing (2 .1 )  and (2 .7 ) ,  we ob ta in  a g e n e ra liz a tio n  of a known



reduction formula for F^ p2, p. 2lTj *

(3.1) 7 ^  (+ ; *»! >*•»; ♦ *•» / i#

• (♦-**) (*; *»*••***-• > * » * ’

, * * *•*)
♦ l * *,

" > 7 -  * .
> ” * *«., - *• 

i - u

When expressed in terms of R by use of (2.5), this result takes an equivalent 

but simpler form that is Immediately obvious from (2.1):

(3*2) K  (* / / * i ° + j t' " j ) *

Another obvious consequence of (2.1) is

(3«3) (* $ # * *• ; ^  * *' , 1 ) * t J

from which it follows by homogeneity that

(3.W 'K (*, *,, • ; * j ■■■, \ ) * t

and, in particular,

(3#5) * * 7? f . * ;. * ) .

For any number of equal arguments, we find from (2.7) the relation

K  , 4# | j * )

i ' ' J* * ' •» i **’ » *4 i ♦ * *• ♦ ** / 1

and hence, by (2.5),

(3.6) " * < « S  A .  *, , ,*A ,*)

- H  ( •  i *, ,■ . . *4,,* ••■ ♦ 6, ; t, *A , i )

fA )



As z tends to  ze ro  in  (3 * 6 ) ,  we o b ta in

(3.7) 'K ( * i  , K ; * i ,,*4 , <5, , o )  = H (*. *,,•••/ t  ; *..,•»

.  f  . . f  i
%(r# 1 ^ ,©  ! * •  ( c *  + r )  m,  f •* i f  J

p ro v id e d  th a t  t h is  s e r ie s  converges. For b r e v i t y  we have in tro d u c e d  

M = t  • • •  and b 2 ^ ♦ l 4 " * ’f bn . I f  R«(c -  b -  a) > 0 , then  the  sura

J ( M )
J r  m

( * , » + * )  (  K  s )

( * , M * S )  J  '

e x is ts  f o r  every  nonnegative  in te g r a l  M j6 ,  p , u7, Eq. ( It) ”] ; f u r t h e r ,  one 

can show th a t  p o s it iv e  co n s ta n ts  K and Mo e x is t  such th a t

m  + ^  ( * -  c ;j  ( m )  <  K M (M  > ) .

By u s in g  t h is  r e s u l t ,  the  se rie s  (3 *7 )  i s  found to  be a b s o lu te ly  convergen t 

i f  Re(c -  b -  a ) > 0 and | 1 -  z ^ j < 1 ( i  i l ,  . . . ,  k ) .  Thu sura on s can then 

be c a r r ie d  o u t by means Df a w e ll-know n  theorem  ["9 J f o r  th e  Gauss hype rgco - 

ra e tr ic  fu n c t io n  w ith  u n i t  arguments

£  c m , i )

"3Y», («,*)

where B i s  the  b e ta  fu n c t io n .  We have, f i n a l l y ,  i f  Re(a* -  b ) > 0 ,

(3.3) w a s ) K ( * , -.>*4

whero a ' i s  d e fin e d  by ( 2 . 9 )  and

(3.9) i  * + ... ♦
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A logarith m ic  s in g u la r ity  nay occur i f  Re b :  Re a 'j  on the other hand, 

i f  R*(b -  a ' ) >  0 , we can use (2 .9 )  and (2 .U ) to  ob ta in

r ,ym ; *, y )

- * * ' ■ *  ( f t * : 1 ' )

E quations ( 3 .8 )  and ( 2 .8 )  then j iv e

Jt,~ r * " r , t r O( 3. 10) 7T-* c

;  ( r t * ; K ) a , v . .  a ) .
* ■ »

from ( 3 .8 )  and the h im ogene'tj . I t i s  e a s i ly  deduced th a t , I f  H s (b -a )> 0 ,

( 3 - U ) i  f  # r . „ )
/ r  i ^

•  ‘ * •' < . * ,  ,  #  ia  -------  • j  . * , . C. t: J

S im ila r ly , I f  Re(a -  B ) > 0 ,  i t  ( o i i v n  from ( J .u i )  th a t

(3 .1 2 )  / '“  *  * , T * a . .  > / r < a )
i n —  ~  

Ufa 4. w  ( a >*. .  a ) .
B(\*') *"

These l im it s  w i l l  be used in  5 7 to  determ ine c o n d it io n s  fo r  th e  convergence  

o f  c e r ta in  in te g r a ls .

U. R o la tion s between a sso c ia te d  f u n c tio n s . The 2n-e2 fu n ction s  

R ( a ± l )  *1 , . . . , z n ) and R(aj b ^ ,.•.,b^± l , . . . , b n j z 1 , . . . , z n)

( i  = 1 ,  . . . ,  n ) ,  denoted fo r  b r e v ity  by R(a + 1) and R C b ^ l ) ,  w i l l  be c a lle d  

contiguous to  R :  R(a; b ^ , . . . , b nj z ^ , . . . , z n) .  One should note th a t t h is
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defin ition  of contiguity d iffers s lig h tly  from the one conventionally used

for FL s for instance, i f  b is  increased by unity on the le f t  side of (2 .7)
D 1

both bl  ar*d c must be increased by unity on the right side. The present 

defin ition  sim plifies the form of known relations for n r 2 or 3 *nd allows 

their extension without d iff icu lty  to any value of n.

Between R and any n functions contiguous to i t  there i s  a linear 

relation with coeffic ien ts that are homogeneous polynomials in  the *»s.

A ll relations can be obtained from the following n+3

linearly independent relations*

( li .l) (c -  1) R(br  1) = (a*-  1) R + a *t R(a^ 1), ( i  s  1, . * * 9  n),

(ii.2) c R 2 i> b R ^ + l )A « * * 9

(li.3) c R(a - 1) I £  bi si R(VA  ̂f 1) 9

(li.W a c R(a t  1) : £  \  V1 ( •* a *
R -  R(bi + 1 ) ]  ,

9

where a‘ and c are defined by (2 .9 ).

Although ( li.l)  and (i*.2) can be obtained with least e ffo rt from the 

integral representations (7.2) and (7 .10), respectively, i t  is  more sa t is 

factory to avoid unnecessary restriction s on the parameters by starting  

from the power series (2 .1 ), the general term of Wiich we again denote by 

u(*1, . . . ,m n) . I f  M :  ^  4  ••• ♦  , the general term of the le f t  side of

(l*.l) becomes

( c - f )  M ( m > /  i  )

( c + M -  # ) ( i A -  |)

*
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But, s in ce ^  :  1 -  ( l  -  z^ ), the general term of the r igh t side of ( l i . l )  i s

r , + («+i , m ) “i
L <*.»)  ( < . * - • )  a . , - . )  J

r **c-... (i- *"!_,) ,
« f

which completes the proof of ( L . l ) . Likewise, the general term of the r igh t 

side o f  (1».2) i s

as * * , . . . , * 4  J0i£L£ it.

*  c .  ; J .
Equation (JU*3) can be derived in the ssjne fashion or, more simply, 

from ( u . l )  and (U .2 ). We replace a by a -  1 and bi by bi 1 in  (I4. I ) ,  

m ultip ly by b  ̂ , and sum i  from 1 to n : 

e  R(a -  1) = (a* +  1) R(a -  1, bt +  1) +  (a -  x) ^  *, R(b,  ̂1)

The f i r s t  term on the right side i s  (a' 4* 1) c R(a -  1 ) , according to  ( lu 2 ),

and can be combined with the - e f t  side to  y ie ld  ( i i .3 ) . S im ilarly , ( l i . l )  with 

b  ̂ replaced by bĵ  +■ 1 becomes

a *i  R(a 4  i ,  b j  ♦  1) s  c R -  »• R ^  -4 1 ) .

We m ultip ly by b  ̂ sum i  from 1 to n, and use (li.2 ) to  obtain (U .lt).

Two R functions with parameters a, bJL, . . . ,  and » f  p, t- q^, . . . ,  

bn 4- qn , where p and qi  are in teg ers, are ca lled  associated  fu n ction s.

(We exclude functions for Which the sum of the b parameters i s  zero or a 

negative in teg er .)  For n c 2 i t  i s  known that any three associated  functions
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are  r e la te d  by a l i n e a r  Homogeneous eq uation  w ith polynom ial c o e f f ic ie n ts .

To show th i s ,  the th re e  fu n ctio n s are connected by a chain  of in te rm ed ia te  

fu n c tio n s , each contiguous to  the nex t, and the  in te rm ed ia te  fu n c tio n s  are 

then  e lim in a ted  from the equations r e la t in g  each s e t  o f th ree  contiguous 

l in k s  o f the ch a in . Tc e s ta b l is h  a s im ila r  r e s u l t  fo r  n > 2 ; th i s  procedure 

must be modified because n *■ 1 fu n c tio n s , each contiguous to  the n ex t, do 

not in  general Include any s in g le  function  to  which a l l  the  r e s t  a re  con tiguous.

We sh a ll begin  by proving a sp ec ia l case* any n ♦ 1 a s so c ia te d  functions 

having the same param eters . . ,fcr are  connected by a l in e a r  homogeneous 

r e la t io n .  Here and throughout th is  p aper, a l in e a r  r e la t io n  between R func

t io n s  w ill  be understood to  mean a r e la t io n  with c o e f f ic ie n ts  th a t  are 

polynom ials U  the s ' a . Furtherm ore, th ese  polynom ials may be assumed 

homogeneous in  the a s  $ i f  they were n o t, the  homogeneity o f the R*s could 

be used to  deduce from a given r e la t io n  two or more r e la t io n s  w ith homogen

eous c o e f f ic ie n ts .

I t  w ill  be convenient to  rep lace  R tem p o rarily  by

(h»$) S(aj b ^ , , . . , b n ; s ^ ,* . . , » n ) Z B (a ,a ')  R(*$ *3, **# ,*Sl̂  *

where B i s  the b e ta  fu n c tio n  and ( 2.95 d efin es  a* . Equations (l* .l)  and 

(li.2 ) become

( U.6) 3(b^« 1) -  3 + a ̂  S(a -r 1) , si  2 1 , n) ,

a
(1*.7) • '  S s  5  b. S(b t 1) .

A *. 4 *  *

Of course S i s  not d efin ed  i f  a or a ' i s  te ro  or a negative  in te g e r ,  bu t 

even then we s h a l l  understand  (iw6) and (u .7 ) to  re p re se n t meaningful

*



-  13 -

equations between R functions a fter  d ir is io n  of a i l  terns by P ( a )  or 

H ( a ' ) .  Vis rewrite (ii.6 ) with b  ̂ replaced by b ^+1 and obtain by ite r a tio n

U .8 ) S ^ K  * 0* $  -  * .

* ^  (-•/ • /  * «-.f «" S ( * * m, K * 0  .
f * •I

The further replacement o f a by a -  1 gives

=  « / '  r r - o  -  C( U . 9 )

2] <-»/ *. r ♦ <-<f t,“  S^ * - k. *').
T* '

Vte m ultiply (Ju8) by (Ji*9) by b̂  , sum i  from 1 to  n,

and use (J*.7)i

T -
(i».io) £  t, S(i 2 **'/ -S’(’»♦>> 3l *. *.

A l l  * 4 A * ,

♦ ( -  * )* ( * * * ' )  $  (+ + m)  f

(i».n) ?  * *“ 5 a  ♦a • * 4 < f  i  ** A4 **

+  c*-f)  ( « - m )  r <'*-•*« j .
These equations, va lid  for any p o sitiv e  in tegra l m i f  the sum in  ( u . l l )  i s  

understo hI to  vanish* for m s 1 , are usefu l gen eralization s of (!*• 3) and 

(I4.I4), idiich they include as the sp ecia l case ra s 1 . By solving n o f these  

equations, say ( l* .l l)  with m 2 X, . . . ,  n , one can obtain S ( b ^  1 ) ,

S(bn * l )  as lin ear  combinations of S(a -  1 ), . . . ,  S( t  -  n) .  Substitution  

•’ji (la.7) then esta b lish es  a lin ea r  re la tion  between 5, S ( a - l ) ,  S (a-n ).



Systematic
Aapplic«tion of th is relation according to the chain procedure mentioned

earlier  completes the proof that at most n c f the functions S, S(a ± 1 ),
•*

S(a t  2), ••• are linearly  independent.

I t i s  now easy to dead with a set of n -+ 1 associated functions which 

may have d ifferent b parameters. For each value of 1 , le t  B1 be the largest 

value of b̂  occurring in the s e t . By successive applications of (is.6 ), each 

function in the set can be expressed as a linear combination of the functions 

S(a + p; B1, . . . , B n; , p s 0, t  1, ± 2 , . . .»  and therafore as a

linear combination of at most n of them. By elimination of these n from the 

n + 1 linear combinations, wa reach the desired results any n + 1 associ

ated R functions are connected by a linear homogeneous relation with coef

fic ien ts  that are homogeneous polynomials in *x*****zn *

5. D ifferential relations. Returning to the derivation of Euler*s

relation , we observe from the equation preceding (2.3) that

M  , •**) Jt)** — ' 2

where ••• *fmR and where a* and c are defined as usual by (2 .9 ) .

By comparison with

( * ,  ) (<.» >, )

(c + , t M)  ( i  . ,  )

i t  is  apparent that

($.1) a* b ± R C b^l) Z c (*t + bt ) R , ( i  = 1, . . . ,  n) .

Equation ( is .l) , with b  ̂ increased by unity, combines with (5 .1) to give 

(5.2) a bt R(a + 1, b ^  1) z -  c Di  R , ( i  = 1, . . . ,  n) .

^  ( iM + *)  * )
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Inspection of ($*1) end (5*2) leads to the following three equations, 

valid for all i, J = 1, n :

(5*3) bt Dj R(bt f 1) s bj ^  R(bj + 1) ,

(S.W (» 4- b̂ ) I = Tj(*̂  ♦ Bi) R ,
(5.5) U t D1 bt) Dj R s (*i 0^ + bj) R .

The last two of these are equivalent; we rewrite them in still a third form 

below since they constitute, together with Euler's relation (2,3)* the 

fundamental system of differential equations satisfied by R *

(5*6) ^i ^i D̂ ~j ^ • 0 » • 1> • ••* n) ,

($.7) J  »i Di 1 i • a 1
A  X |

Additional integrals of this system will be discussed in § 6 •

Equations of the form of (5.6) are sometimes called Euler-Poisson 

equations [k, Chs. Ill, iv] . They occur in Lauricella's theory of as 

useful auxiliary equations that are not sufficient to fcrm the fcundation 

of the theory; all that is lacking for a sufficient foundation, however, is 

the homogeneity requirement (5.7), for with its help we can derive the system 

of differential equations customarily associated with £~2, p. 117J . We 

need only sum j from 1 to n in (5*6) for any i l l ,  ..., n - 1 , eliminate 

Dn R by means of (5*7), take zn z 1 , and replace each remaining z by 1 - z 

in accordance with (2.5)*
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#

Although Appell £l] And Darboux [li, p. $7^ observed that the homogeneous 

solutions of a single Euler-Poi as on equation (r. = 2) are essentially 

solutions of the hyporgeometrie equation, their observation does not appear 

to have been put to use in the theory of hypergeometrie functions. It is 

now evident that one natural way of generalizing the Gauss function to any 

nunfcer of variables is to ask for the homogeneous solutions of a system of 

Euler-Poi ssor. equations. This approach leads to the R function, whereas 

the historical route of generalizing the hypergeometrie power series .led 

mere naturally to .

Vte shall postpone farther discussion of Euler-Poiseen equations to 

§ 6 and consider some additional differential relations satisfied by R.

An obvious consequence of (5*7) is

*
^  * D (Di R) = - (» +  l) Dj R ,

and substitution of Dj R or Dj R from (5«6) gives two equations,
each valid for i S 1, n i

(5.6) ( > - + ' ) d. J  "r  * °  ,
(5.9) ? 71 * .— A—

* A i "

/
Equations (5*6) and (5.9) exhibit all second derivatives of R as linear 

functions of its first derivatives.

If a is increased by unity In (h.2), substitution of (5.j^ leads to 

4 Hifl+l) s «■ Dj R .
A, *» ^

(5.io)
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Aside from a m u lt ip lic a t iv e  fu n ctio n  o f a , the R fu n ctio n  the re fo re  s a t i s f i e s  

a n atural G en era liza tio n  o f T r o e s d e ll 's  F -equation  (VJ :

('.in f •  S ' ” r u )  * ,
($.12) i T>. F » FYae.) .

4  *  I

0.
The rem aining fu n ctio n s  contiguous to  R can be expressed  in  tenns o f d e r iv 

a t iv e s  o f  R by s u b s t itu t in g  ($ .1 )  in  (1 .3 )  and (5 .1 0 ) in  ( 1 .1 ) i

*v

(5 .13) a' R(a -  1) = ^  z x (z j Di + b p  R .

(5.11i) (1  -  c) R(bi  -  1) = Z ,3 ' f  D, z ^ * 3 ' R , ( 1  = 1 ,  n) .
J r '

Equations (5«1) and (5*2) a r t e a s ily  g en e ra lised  by repeated  a p p lic a 

t io n .  I f  m i s  any p o s it iv e  in te g e r , (5*2) c le a r ly  im plies

(5 .15)  (a ,m )(b i ,m) R(a ♦ rrqbj m) I ( - l ) n(c ,m ) D ^4 R , ( i l l ,  n) .
I

Repeated use o f (5 .1 )  i s  s im p lified  by observing th a t ,  i f  D s  ,

( i D t b ) f  = z X*b D z b ,

(z D *-b)(z D . b . l ) — ( j  D + b . r a  - 1) f  s z1*6 Dm zb + m"1 f  .

Since the various d i f f e r e n t i a l  o p e ra to rs  in  paren theses compute with each

o th er , we ob ta in

(5 .16) ( a ' j mKb ^ m)  R(bi +m) = (c ,r.) 2^bi ♦  m“-k » g ( i n ,  n ),
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6 . E u le r -P o ts so n  e q u a tio n s .  The fu n c tio n  R i s  p lace d  in  a b e t t e r  

p e r s p e c t iv e  by c o n s id e r in g  & system  t f  C u le r-P o is so n  e q u a tio n s  w ith o u t 

n e c e s s a r i ly  r e q u ir in g  i t s  s o lu t io n s  to  oe homogeneous*

(6.1) p-  *P i  D,j + b ; Di " bj Di l  c = 0 » b . j  : •••i

In tro d u c in g  th e  co n v e n ie n t a b b re v ia t io n

(6 .2 )  :  * 1 ' 7j " * j>  Bi  Dj  + b i  Dj  “ b j  Di

r (»t V V  Dj -  b j V V  ®1

: Dj U t D1 + b i ) -  Di  <lj  D j + b j )  ,

we have the operator equations

(6 .3 ) 2? h j  Dk = Ei j  Dk 4
e y t

Ejk Di  * Eki Dj

(6.1,) 1 h l $ k  s  0  -
*r«

(6 .5 ) S Ei j  (*k °k ♦  v  seye
0 ,

(6 .6 ) 2? ( l i  Di  + V  Ejk -e rt
0 .

The su n n a tio n s  ex tend  over c y c l ic  permutations o f  i ,  J ,  and k , and a symbol 

Da denotes an operator product such t h a t  Di  | „ u  s  D ^ E ^  u) .

Suppose t h a t  u i s  a s o lu t io n  o f E . ,  u :  0 and o f  u = 0 . S ince 

(6 .1 )  and (6 .6 )  th en  snow th a t  E ^  u = 0 and b .  u :  0  , wt have 

^ ik  u -  0 p rov ided  t h a t  b^ ^  0 . The system  (6 .1 )  can  th e r e fo re  be deduced

from n -  1 d i f f e r e n t i a l  e q u a tio n s ;  f o r ,  i f  any one o f  th e  b*s i s  nonzero ,
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say b j , a l l  the  equations (6 ,1 )  fo llow  from u I  0 fo r  i  r  1 , j  -  1,

J + l j  • • • y n •

There are  two groups of tran sfo rm atio n s  which carry  any so lu tio n  of 

(6 ,1 ) Lr+o another so lu tio n . Cne of these  i s  obviously the group of permuta

tio n s  of th e  su b sc r ip ts  1, • « . ,  n o r, in  o th e r words, sim ultaneous permuta

tio n s  o f the b*a and s ' s  . The fu n c tio n  ob ta ined  by applying any such permu

ta t io n  to  any so lu tio n  u ( b p . . . , b n ; no t only i s  another so lu tio n

bu t a lso  i s  homogeneous in  the x’a i f  u i s .  S o lu tions which belong to  an 

irre d u c ifc lt re p re se n ta tio n  of the  group may be o f sp e c ia l in t e r e s t ;  in  p ar

t i c u l a r ,  the R fu n c tio n  belongs to the id e n t ic a l  re p re ? e n ta tio n  according 

to  ( 2 .? ) .

The second group c o n s is ts  of tran sfo rm atio n s induced by homographic 

tran sfo rm atio n s of the x*a . We need to  extend only s l ig h t ly  the r e s u l t s  o f 

A ppell and Darboux [ji, pp. 58-6oj fo r  a s in g le  E u ler-P o isson  eq u a tio n . I f  

* ,  $ , JTt end £ ere complex numbers r e s t r ic te d  only by «. S -  (i f  £  o y

the tran sfo rm atio n s

fo r*  a group of which the in f in i te s im a l o p e ra to rs  are

(6.8) H = 1  D.

(6.9)

(6. 10)

A * I 

A
21 D.
A * I

I  «  <k \  ) •
« * »



It is easy to verify the operator equations

(6.11) (H ♦  1) Etj ,

(6.12)

If u(x1,...,zn) is a solution of E u : 0 , it follows that K u , D+u , 

and D_ u also a m  solutions. Examples are furnished by (5.7), (5«10), and 

(5.13). Moreover, since the finite transformations of the group are gener

ated by the infinitesimal ones, it follows also that v(i1,...fzn) as given 

by (6.7) is a solution. If u is homogeneous in the i's , then H u ,  D+ u , and 

D_ u will be homogeneous but v will in general not be; an important excep

tion is

Equation (2.8) is an example of this exceptional case, which is thus seen 

to underlie an Euler transformation of .
A solution of the system (6.1) is found by separation of variables to be

where -t is a separation constant and f(t) is an arbitrary function. Inte

grating (6.15) with respect to t gives additional solutions of the form

* *  \

(6.15) u = Q(t; z zQ) = f(t) (t + *1)”bl ••• U  ♦ *n) bn 9

c
(6.16)



The contour C may be e i th e r  a closed loop or an open path ; i f  open, i t s  

endpoints nay be e i th e r  independent of th e  z ’ s or chosen from among the

p o in ts  -Zjl , ♦ -z^  • That the l a t t e r  values are perm issib le  i s  seen by

considering  ^

JLT̂  «r^ ,  • * * t *  *  ) [-(*.-yV j Gr ♦*,$]
* * *a

. i &1 - o .
;  L *+ -*r« -

The l a s t  s tep  assumes b ^ c l  > « condition  th a t  is  requ ired  in  any event for 

the ex istence  of the in te g ra l .

We now ask under what cond itions the so lu tio n  (6.16) w ill be, l ik e  R, 

homogeneous of degree -a  in  the z ’s • With the n o ta tion  of (2«9) we have

i * d q » ( £ r * l
A * V  ̂ J r

+ r -  c
x ».

V

—

i It

- JL (X Q )

)  Or -  L ( X & )

i f  f ( t ) \ f t *  1 . Hence, i f  i t  e x is ts , the in te g ra l

(6 .17) u (zx , . . . , z n ) i  J  d t t * ’ - 1 T T ( t  +
C A * I

i s  a so lu tio n  of (6«1) th a t  i s  homogeneous of degree -a  i f  C i s  e i th e r

a c i r c u i t  closed on the Riemann surface of the  in tegrand or e ls e  a simple

path w ith endpoints chosen from among the values 0, «o , -x, , -* ,i  n
homogeneity being obvious in  the l a t t e r  case . The ( n + l ) ( n  + 2 )/2  in te g ra ls  

along simple paths are s im ila r to  so lu tio n s  obtained fo r  the d i f f e r e n t ia l

equations of F1 by P icard and extended to  by Appell and Kampe de F e rie t
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%

[ ? ,  pp. 55, 120] . In te g ra ls  around c e r ta in  closed loops were shown by 

E rdely i [5] to  be o f fundamental Importance in  the theory of F  ̂ and re la te d  

fu n c tio n s .

The transfo rm ation  theory  o f the various in te g ra ls  (6 .17) and th e ir  

expressions in terms of the R function  w ill not be considered in  the p resen t 

paper, with the exception o f a s in g le  case to  be d iscussed  in the next 

sec tio n .

v
7. In te g ra l re p re se n ta tio n s . A p a r t ic u la r  case of (6 .17) i s  

(7 .1 ) B (a ,a ')  R(aj 2 J  d t  t*  ^ f j~ ( t  + i ^ ) * ^  9
o  A* I

where a and a > must have p o s itiv e  re a l p a r ts .  For |a rg  *i |< TT ( i  :  1 ........... n)

the in te g ra l i s  a sing le -va lued  a n a ly tic  function  of the s 'a  i f  the in tegrand  

i s  defined by arg t  = 0 and |a r g ( t  + s ^ )  < 7r  . Provided th a t  | l  -  %±\ < 1 

( l  s  1» •••#  *0, the in teg rand  can be expanded in  ascending powers of 

* *^)f • • • # (1 •  *n ) end in teg ra ted  term by term; the In te g ra l  i s  thus 

found to  coincide with the l e f t  side o f (7 .1 ) as defined by the se r ie s  (2 .1 ) 

and i t s  an a ly tic  co n tin u a tio n .

Replacement o f t  by t " 1 gives the rep re sen ta tio n

f  j a
(7*2) B (a,a*) R(a; b1, . . . , b n j *1, . . . , z n ) = J d t t* ”1 JT  (1 t  t z ^ 1

e a •  1

again v a lid  when a and a» have p o s itiv e  re a l p a r ts .  Comparison of (7 .1 )

f
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and (7*2) shows th a t

(7»J; Rvaj ^i»***>^n*

4  « *

By using  the r e la t io n s  (1 .2 )  and (1 .3 )  between con tiguous fu n c tio n s ,  i t  i s  

easy to  prove th a t i f  (7 .3 )  holds for R functions with parameters ( a ,a ’ ) ,  

then i t  holds a l uo for fu n c tio n s  with par ar-veters ( a - ] ,a ' )  and ( a , a ' - l ) .

Ihe tu le r  transform ation  (? . 5) i s  th erefore v a lid  w ithout r e s t r ic t io n  or. 

a and a*. We have e l re c n >-d m\ (7 .3 )  in  co n n ec tio n  with (2 .3 )  anc 

( 6 .1 1 ) ,  and have used »♦ m u r i v n  ( 1. 0  and ( 3 .1 1 ) .

A new type o f in te g r a l r e p re s e n ta t io n ,  no t known p re v io u s ly  for F- , 

g iv es  R as the in te g r a l o f another R function  with one l e s s  v a r ia b le s

Convergence o f th e in te g r a l requ ires Re c > Re bf > 0 . By means o f (2 .1 )

a

I f  x ^ t  and x / t  are taken as new v a r ia b le s , the in teg ra tio n  over trie second

o f these can be carried  out; the remaining in te g r a l immediately reduces to  

the l e f t  side o f ( 7 - ia) by v ir tu e  o f (7 .1 )  and (2 * 1 ).

(7 .1 )  B(c-bn,b n ) R(a; b

f
o

© ©
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In the p a rticu la r  case o f the Gauss hypergeom etric fu n ction  (n * 2 ), 

the r ig h t  s id e s  o f  (7 .1 )  and (7.1*) have the same form because c (3 .5 ) ;  

comparison o f the twe in te g r a ls  shows th at

(7 .5 )  *2* R(aj a ^ x ^ ) s *2b l R b̂l* *

This equation , which appears to  have no analogue fo r  r* > 2 , i s  eq u iva len t 

to  the fa m ilia r  symmetry of the Gauss fu n ction  F (a ,b ;c jx )  in  the parameters 

a and b •

I te r a tio n  o f  (7.1i) y ie ld s  the more general rep resen ta tion

(7.6) B(b1 + ‘ *' + bk>bk +l>” *»bn) R(a? bl»*“ 'bn' xl»***»*n>

= J J 5 v"'
'I Z. k * >  A t  4o o

J- *\
R(a; b ^ , . . . , b ^ j  2 ^ t  t ^z ^, . . t ^z^)

k * i * 1

The index k can have any one o f  th e va lu es 1 , 2 , n - 1  j convergence 

req u ires that the q u a n tit ie s  t •••■+b^f b  ̂ ^ b n a l l  have p o s it iv e  

r e a l p a r ts . An important sp ec ia l case i s  k :  1 i

( 7 . 7 )  B ( b ^ , . . . , b ^ )  R(a; b ^ , . . . , b n; l ^ f . * . , x ^ )

1 l i dV "dt» t  Vi>“  *
where Re b± > 0 ( i  = 1 , . . . ,  n) .

From (7 .7 )  we can d e riv e  an o th e r r e p re s e n ta t io n  of  the  same type as 

(7.1*) b u t w ith a d i f f e r e n t  R fu n c tio n  in  the in te g ra n d . Vfe in te rch an g e  the
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su b scr ip ts  1 and n in  (7 .7 )  and su b s t itu te  t^ s u t , t^ z  ( l - u ) t  • Since the 

in te g r a l with re sp e c t to  a l l  v a r ia b les  but u i s  again o f  the form ( 7 .7 ) ,

we fin d

(7.8) B z ^ , . . . , z ^ )
i

:  J d u  ub l 1 ( l - u ) b2 R(a; bi + b ^ b ^ , . . . ^ ;  uz1 + ( l - u ) z 2, z 3, . . . , 7 <n) , 

provided th a t b  ̂ and b£ have p o s it iv e  re a l p a r ts . I te r a t io n  o f ( 7 . 8 )  g ives

(7.9) Ĥb- ,̂. •  • »b )̂ R̂ aj b^,..«,b^; z^, . . . , s^)
i i  A A

* J * * J  du^*** du  ̂ $ (1 -  z f  u^) (  T T * * 1  ̂ j
9 o *  * * ** *

A 4t^

/ ~  * * u * £ bi ' bk 4 .x**** 'b«» *  V i - ' k u - - ' S 1 '

where & denotes the Dirac d e lta  fu n ction  and where Re b, > 0 ( i  :  1 , k ) .

The index k can take any one o f  the va lu es 2 , },  . . . ,  n ; in  p a r tic u la r ,

fo r  k = n, we have

(7 .1 0 ) B ( b ^ j . . . , b ^ )  R^ajb-^,. . .  ,b n; z ^ , . . . , z ^ )

r  J  du1**^dun S ( l -  2 u t ) ( T T u V l )  ( ^  f

v a lid  for  Re b^ > 0 ( i l l ,  . . . ,  n) .  I f  one su b s t itu te s  u x = v ^  , the 

r ig h t  s id es  o f ( 7 . 9 )  and (7 .1 0 )  become in te g r a ls  over part o f the surface  

o f a hypersphere. Equation ( 7 . 1 0 ) ,  which can a lte r n a t iv e ly  be obtained  

from ( 7 . 7 )  by a change o f v a r ia b le s , i s  eq u iva len t to  a known rep resen ts-  

t io n  o f  Fd [ 2 , p . 1 1 5 ]  .
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Another new type of in te g ra l  rep resen ta tio n  gives the product of two 

R functions as the  in te g ra l of a sing le R function :

(7.11) B ( a ,a ') BC'sc , •< ) R(a j b̂  >••• ,bn$ »*R) R( * 5 ^  • • • * )

r  B (a*«c,a»** ' ) J d t  t *  ~X
o

• R(a-e«̂  j b^,...,bn, • • • »zn>t £  • • • >t f  ̂  ) •

The parameter < i s  defined by +,Ŝ • by using the lim its

given a t  the end of §3* one f in d j lh. t  c nv r  :once req u ire s  the r e a l  po rts  

of a , a ' ,  < , and ®c/ to  be p o s it iv e . I f  the re p re se n ta tio n  (7 .1 ) i s  sub

s t i tu te d  in  the in teg rand , the two in te g ra tio n s  can be c a rr ie d  out in  r e 

verse order by means of (7 .2 ) and (7 .1 ) to  y ie ld  the l e f t  side of (7 .1 1 ). 

Repeated ap p lic a tio n  of (7 .11) can be used to  rep resen t the product of 

p + 1 functions as a p -fo ld  in te g ra l of a sing le  R fun ctio n .

A procedure s im ila r to  th a t  used in  proving (7 .11) perm its evaluation  

of the in te g ra l
oo

(7 .12 ; B(a + s , a ' ) d t t  R (a + s ; b ^ , . . . , b n-^ ,b n + s ; zp ,M »Jn. p 2nt  t )
e

s B(s,b^) B *,a,a ') R(aj *x,# *, , *n^
V

i f  the r e a l  p a r ts  of s , a , and are a l l  p o s itiv e . A fter su b s titu tin g  (7 .1 ) 

in  the in teg rand , we can carry  cu t the two in te g ra tio n s  in  reverse  order to  

g e t the r ig h t  side of (7 .1 2 ).
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In view of (2*1), the R function can also be represented  as a m ultip le

integral of the Me11in-Barnes type:

It is  assumed that none of a, . . . #b is  zero or a negative integer. The 

paths of integration are to be indented in such a way that the path in tne 

®i pl*ne separates the ooles at s = 0 , 1, 2, . . .  fron the other poles of 

the integrand.

E llip tic  integrals. It has been pointed out recently [3] that the 

three standard kljids of e ll ip t ic  integral are hypergeometric functions of 

the type . They are Included as special cases of tne integral

where a+ a' s c s • • • * . Convergence of tne integral requires a and

the integral in the form (7.1)

In the case of complete e llip tic  integrals (cn u :  0) or incomplete 

integrals of the f ir s t  or second kinds (b  ̂ :  0 ) , the number of variables 

in the R function can be reduced by using the relations given in § 3.

( f.13) B(b  ̂* • • • *b^.H^a; b^,. .

• B(a*rs. *«••-**£. -  1 n

sn u puts
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