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1. Introduction. In 1880 Appell defined four hypergeometric eerie*
in two variables, which were generalised to n variables In a straightfor-
ward way by Laurieella in 1893 C2] ,W e On® of L«iricella*s series, idiich
includes Appall*s funcUon as the case n * 2 (and, of ccurse, Gauss’s

hypergeometric function as the C331 n s 1), 1is

a.) (« iLt, >e X, «,,
-1 | -

where (a,m) = F)(a* m)/ F)(a) . The FD function has special isg>ortance for
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applied mathematics and mathematical physics because elliptic iIntegrals
are hypergeometric functions of type FN "3/ e
In 8 2 of this paper we shall define a hypergeometric function
R(aj bl,...,bnJ| which 1s the same as FD except for we ll but
important modifications. Since R 1s homogeneous in the variables
It depends in a nontrivial way on only n-1 ratios of these variables)
indeed, every R function with n variables is expressible iIn terms of an
F function with n-1 variables, and conversely. Although R and FD ars
therefore equivalent, R turns out to be more convenient for both theory
and application. )
The choice of R was initiflly suggested by the observation that the
Euler transformations of FD would be greatly simplified by introducing

homogeneous variables. However, i1t will be seen In 8§ 6 that this simplicity

Is not superficial and that the R function i1s the natural outcome of one



procedure for generalising the Gauss hypergeometric function. Instead of
starting from tne hypergeometric series, as Appell and Lauricella did, we

can start from the remark that » .solution of the Euler-Poisson equation,

@.2)

iIfT 1t 1s also a homogeneous function of s™ ami , IS a Gauss hypergeomet-

N
fur.ction of 1p.*.ftr which satisfies an Euisr-Poisson equation iIn each
pair of variables, the answer i1s the ft function. The system of Euler-
Poisson equations admits two groups of transformations that are directly
related to the ouler transformations of F, -

Although some properties of R given iIn this paper are equivalent to
known properties of P™ , others represent substantial extensions of previous
results and some are entirely new. We mention especially (1) a set of n+3
relations between contiguous R functions of n variables, (2) a proof that
there exists s linear relation between n+ 1 associated R functions, (J) two
ways of representing an R function as the Integral of an ft function with
fewer variables, and (L) an Integral representation of the product of two

R functions.

2. Tre function R of n variables. We shall consider the properties of
a Lauricella function with parameters restricted by c m b+ eee ¢ bn

0, -1, -J",... = Let a function R of n complex variables arc



n+1 complex parameters a, b”",,.
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This series has two important properties,
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n) and by its analytic contirnation
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be defined by the following power
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symmetry and homogeneity,

which are expiossibie by functional relations and hence are valid for its

analytic continuation as well. Syimnetry is obvious*

(2,2) R(a; bif...,bnj »

subscripts 1, ..., n (1.

z's together).

Is Invariant uncer permutation of the

e., under permutation of the b*s and

To show that R Is a homogeneous function of degree -a in the varltbles

SN «.«,*n , let It designate the n-fold sunrnation in (2.1) and let the

general term of the series be u”,...,!1").

we have
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Hence R satisfies Luler's relation,

(2*3) ~iD R

=
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which Implies homogeneity:

QW 1k« r«{d x“ 1t

It 1s clear from (2.1) that a function F* of n - 1 variables, with no
relations required between the parameters, can always be expressed iIn terms

of a function R of n variables:
(2.5) O 1* A

where bR 1s defined by
2.9 cC™ 1, ;

Conversely, given a function R of n variables, we can use i1ts homogeneity
to make one variable equal to unity and thus express i1t In terms of a

function FQ of n - 1 variables:

@.7 "~ CH L) N I T | e el

where Egq* (2.6) now defines c =

Equation (2.7) 1s noteworthy. It shows first that R can be regarded as
the result of iIntroducing homogeneous variables iIn FQ < Considered as a
candidate for the defining equation of R, it makes homogeneity evident but
leaves permutation symmetry to be proven, 1in contrast to (2.1). Secondly, 1t
shows one of the advantages of working with R and one more variable rather
than with FQ ; for the symmetry of R, which is not at all apparent on the
right side of (2.7), expresses the behavior of F* under certain Euler trans-

formations* The transformations iIn question are those that leave a unchanged;



for instance, the transformation of AppelL's function f2, p. 30j

/
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Is equivalent to the statement that R(a; bt Is invariant

under transposition of the subscripts 1 and 3*
The remaining Euler transformations of F* jj2, p. 116J, in which the
value of a is changed, result from combining the synmetry property (2.2)

with a single transformation that will be derived in § 7 *

(2.8) A

where al is defined by

(2.7) c - . .

The notation of (2.9) will be used throughout this paper.

_§_:_____§__|ge__g_i_g__l__\_/alue_s__of parameters and _v_arjabltnai%i. The function R reduces
to another function of the same type with one less variable if one of its
parameters vanishes™ or if two of its variables are equal, or (with
certain qualifications) if one of its variables vanishes or becomes infinite.
We shall consider these cases in turn, with appropriate generalizations.
Because of the symioetry relation (2.2), it does not matter which parameter

or variable is taken to have a special value.

By comparing (2.1) and (2.7), we obtain a generalization of a known



reduction formula for F» p2, p. 20T *

(3-1) 7N (+ ; B0 | >*.»; ¢ o / iH ,* **.*)
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When expressed in terms of R by use of (2.5), this result takes an equivalent

but simpler form that is Immediately obvious from (2.1):

(3*2) K (*/7 [/*1 ° + j Tt j ) *

Another obvious consequence of (2.1) 1is
(3«3) *$ H#*% ; NI ]
from which it follows by homogeneity that
.W KE, S, 5 *jm\)* t
and, in particular,

(3#5) * 7?2 F . *L*)

For any number of equal arguments, we find from (2.7) the relation

K , A#] ] *)

* T e i *4 § eFe e *X /] it A )
and hence, by (2.5),

(3-6) ..*<<(S A - *’ 7 ’*A ’*)

CH(vitm T, F.®, ot *A i)



As z tends to zero in (3*6), we obtain

(3.7) 'K (*i, K ; | *4 | -

f o f i
Wr# 1MN© '*e (C* +r) m, f o | f

provided that this series converges. For brevity we have introduced

M = t oee and b 2" ¢ 14" *fbn . If R«(c - b - a) >0, then the sura

(*.»+*) (Ks)
J(M)
Jr m (*M*S) J '
exists for every nonnegative integral Mj6, p, u7, Eq. (It)"] ; further, one
can show that positive constants K and Mo exist such that

+ A (*_ C,

j(m)< KMm (M > )

By using this result, the series (3*7) is found to be absolutely convergent
iIf Re(c - b - a)>0and |1 - z~j< 1 (i il, ..., k). Thu sura on s can then
be carried out by means Df a well-known theorem ['9J for the Gauss hypergco-

raetric function with unit arguments

£ c m , i)

"3Y», («,*)

where B is the beta function. We have, finally, if Re(a* - b)>0,

G3)was)K( * . _s¥

whero a' is defined by (2.9) and

(3.9) | * + ... ¢



A logarithmic singularity nay occur if Re b : Re a'j on the other hand,

if R*(b - a')> 0, we can use (2.9) and (2.U) to obtain

r ,ym; *,y )

-k 'g * (ft>* 1)

Equations (3.8) and (2.8) then jive

Jt,~ r *"r : tr O
(3.10) T ¢
. (rt*; K) a ,Vv.. a )
*m»
from (3.8) and the himogene'tj . It is easily deduced that, If Hs(b-a)>0,
i i f #r ., )
(3-U) fri A
! PR T e ¢

Similarly, If Re(a - B)>0, it (oiivn from (J.ui) that
(3.12) [ * o*x , T*a.. > [ r<a)
in—-~
Uta 4 w ( a >. a ).
B(\*") *

These limits will be used in 5 7 to determine conditions for the convergence

of certain integrals.

U. Rolations between associated functions. The 2n-e2 functions
R(azxl) *1,...,zn) and R(aj b™,.e.,b™1I,...,bnj z1,...,zn)
(i =1, ..., n), denoted for brevity by R(a+1) and RCb~l), will be called

contiguous to R: R(a; b”™,...,bnj z~,...,zn). One should note that this
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definition of contiguity differs slightly from the one conventionally used
for FI5 s for instance, if b1 Is increased by unity on the left side of (2.7),
both bl ar'd ¢ must be increased by unity on the right side. The present
definition simplifies the form of known relations for n r 2 or 3 *nd allows
their extension without difficulty to any value of n.

Between R and any n functions contiguous to it there is a linear
relation with coefficients that are homogeneous polynomials in the *»s.
All relations can be obtained from the following n+3
linearly independent relations*

(i.) (- 1) Rbr 1) = (@*- 1) R+ a*t R@ 1), (is1, --. n),

(ii.2) CR2 g, by R™+1) 9

(1i.3) c R(a- 1) I ﬁ\f 0 si R\/ 1) o

(li.W acR@ta1l : £\ V1 (o R - R(bi+1)]
a*

where a“ and c¢ are defined by (2.9).

Although (li.l) and (i*.2) can be obtained with least effort from the
integral representations (7.2) and (7.10), respectively, it is more satis-
factory to avoid unnecessary restrictions on the parameters by starting
from the power series (2.1), the general term of Wiich we again denote by

u(*1,....mn). If M: N ., eee o , the general term of the left side of

(I*.1) becomes

(c+M-#) (1A-])



But, since ~ : 1 - (I - z”), the general term of the right side of (li.l) is
r, + («+i ,m) “9
L <*.») (<.*-¢) a.,-.) vJ
r*e-... (i- 1)

«

which completes the proof of (L.lI). Likewise, the general term of the right

side of (1».2) is

as**,...,*4 \(E it.

Equation (Xf3) can be derived in the ssjne fashion or, more simply,
from (u.l) and (U.2). Wé replace a by a - 1 and bi by bi 1in (la.1),
multiply by b , and sumi from 1 to n :

e R@-1 = (@ +1) R(@ -1, bt+ 1) + (a - x) N * R, M1)
The first term onthe right side is (a's4*1) cR(a - 1), according to (lu2),
and can be combined with the -eft side to yield (ii.3). Similarly, (li.l) with
b~ replaced by ™ m 1 becomes

a*i R@4 i,bje 1) sc R-»R”™ 41).
W multiply by b~ sum i from 1 ton, anduse (li.2) to obtain (U.It).

Two R functions with parameters a, bd, ..., and » f p, t- g™, ...,
bn 4- gn , where p and gi are integers, are called associated functions.

(We exclude functions for Which the sum of the b parameters is zero or a

negative integer.) For nc 2 it is known that any three associated functions
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are related by a linear Homogeneous equation with polynomial coefficients.
To show this, the three functions are connected by a chain of intermediate
functions, each contiguous to the next, and the intermediate functions are
then eliminated from the equations relating each set of three contiguous
links of the chain. Tc establish a similar result for n > 2 ; this procedure
must be modified because n "m1 functions, each contiguous to the next, do
not in general Include any single function to which all the rest are contiguous.

We shall begin by proving a special case* any n ¢ 1 associated functions
having the same parameters ..,fcr are connected by a linear homogeneous
relation. Here and throughout this paper, a linear relation between R func-
tions will be understood to mean a relation with coefficients that are
polynomials U the s'a . Furthermore, these polynomials may be assumed
homogeneous in the as $ if they were not, the homogeneity of the R*s could
be used to deduce from a given relation two or more relations with homogen-
eous coefficients.

It will be convenient to replace R temporarily by
(h»$) S(aj b”,,..,bn; s, *..,»n) ZB(a,a') R(*$ *3, **F4 AN *
where B is the beta function and (2.95 defines a*. Equations (I*.1) and

(1i.2) become

(U.6) 3(b"« 1) - 3 + a™ S(a r 1) si 21, n) ,
a

(1*.7) ' Ss 5 b. S(b t1l)
A* 4 * *

Of course S is not defined if a or a' is tero or a negative integer, but

even then we shall understand (iw6) and (u.7) to represent meaningful
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equations between R functions after dirision of ail terns by P(a) or

H(a'). Ms rewrite (ii.6) with b replaced by b”~+1 and obtain by iteration

U.8) SAK *0* $ - *

* N (-of of ¥« f " S(**m K*0
f o

The further replacement of a by a - 1 gives

(U_g) - «/. r r - o0 - C

2] <» *r o <<f L SA*_K*,

T

Me multiply (Ju8) by (Ji*9) by b
and use (J*.7)i

. sum i from 1 to n,

(i»i0) £ t  S(i 2 %[ S(#>> 31 %%

All * 4

¢ () $(++m) f
(i».n) a?.* * KA 5340 < f
+ c*-f) («-m) r<kji<j .

These equations, valid for any positive integral mif the sum in (u.ll) is
understo H to vanish* for ms 1 , are useful generalizations of (1*3) and
(14.14), idiich they include as the special case rms 1 . By solving n of these
equations, say (I*.11) with m2 X, ..., n , one can obtain S(b”™ 1),

S(bn*1) as linear combinations of S(a - 1), ..., S(t - n). Substitution

%i (la.7) then establishes a linear relation between 5, S(a-1), S(a-n).



Systematic
Aapplic«tion of this relation according to the chain procedure mentioned

earlier completes the proof that at most n cf the functions S, S(a = 1),
S(at 2), ee= are linearly indepenéient.

It is now easy to dead with a set of n -+ 1 associated functions which
may have different b parameters. For each value of 1 , let Bl be the largest
value of b™ occurring in the set. By successive applications of (is.6), each
function in the set can be expressed as a linear combination of the functions
S(a+ p; BL,...,Bn; , ps0, til1 =2, ...» and therafore as a
linear combination of at most n of them. By elimination of these n from the
n + 1 linear combinations, wa reach the desired results any n + 1 associ-

ated R functions are connected by a linear homogeneous relation with coef-

ficients that are homogeneous polynomials in *x*****zpn *

5. Differential relations. Returning to the derivation of Euler*s

relation, we observe from the equation preceding (2.3) that

.**) ]

t)**— ) M :

where eee *fmR and where a* and c are defined as usual by (2.9).

By comparison with

>, ) (<»3 )

N\ (|M+ *) * )
c+,tM) (i ., )
it is apparent that
($.1) a bt RCb™Il) z ¢ (*t + bt) R , (i =1, ..., n) .

Equation (is.l), with b increased by unity, combines with (5.1) to give
(5.2) abt Ra+1, b~1)z -cD R, (1 =1, ..., n



Inspection of ($*1) end (5*2) leads to the following three equations,

valid for all 1, J =1, n

(5*3) bt Dj R(btf 1) S bj ™ R(bj+ 1)

(W G 41 = ¢

(5.5) UtDl bt)pj R s (*ior+ bj) R

The last two of these are equivalent; we rewrite them iIn still a third form
below since they constitute, together with Euler®s relation (2,3)* the

fundamental system of differential equations satisfied by R *

(5*6) A Ai DN A .0 » e 1> eee* )

G.7D J »iDil i =al

A Xl
Additional integrals of this system will be discussed Iin 8§86 =

Equations of the form of (6.6) are sometimes called Euler-Poisson
equations [k, Chs. |||, iV] . They occur in Lauricella®s theory of as
useful auxiliary equations that are not sufficient to fcrm the fcundation

of the theory; all that i1s lacking for a sufficient foundation, however, 1is

the homogeneity requirement (5.7), for with i1ts help we can derive the system

of differential equations customarily associated with £2, p- 1173 . We

need only sum j from 1 to n in (6*6) for any 11l, ..., n -1 , eliminate

Dn R by means of (6*7), take ZNn Z 1 , and replace each remaining z by 1 - z

In accordance with (2.5)*

¢ BR



Although Appell £1] And Darboux [li, p. $7” observed that the homogeneous
solutions of a single Euler-Poil ason equation (. = 2) are essentially
solutions of the hyporgeometrie equation, their observation does not appear
to have been put to use i1In the theory of hypergeometrie functions. It 1is
now evident that one natural way of generalizing the Gauss function to any
nunfcer of variables is to ask for the homogeneous solutions of a system of
Euler-Poi ssor. equations. This approach leads to the R function, whereas
the historical route of generalizing the hypergeometrie power series .led
mere naturally to

Vie shall postpone farther discussion of Euler-Poiseen equations to

8 6 and consider some additional differential relations satisfied by R.

An obvious consequence of (6*7) 1s

*

A *x D @iR) = - >+ DjR .,
and substitution of Dj R or D R from (&®6) gives two equations,
each valid for 1 S 1, n i

.6 (>_+|) d_J nr * 0 |

G-9 ? A _ A

/
Equations (5*6) and (5.9) exhibit all second derivatives of R as linear
functions of its fTirst derivatives.
If a is increased by unity In (h.2), substitution of (5.j* leads to

(5.i0) 4 Hifl+l) s a D) R

A *» N
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Aside from a multiplicative function of a, the R function therefore satisfies

a natural Generalization of Troesdell's F-equation (VJ
1 3 1 17 x
(".in feS'7ru)*

*12 1 = F » FYae.)

4 I

0

The remaining functions contiguous to R can be expressed in tenns of deriv-

atives of R by substituting ($.1) in (1.3) and (5.10) in (1.1)i

(5.13) a' Ra-1) = ~ zx (zj Di+bp R
(5.11i) (1 - c) R(bi -1) = Z,3"f D, zA*3' R
Jr’

(1 =1, n)
Equations (5«1) and (5*2) art easily generalised by repeated applica-

tion. If mis any positive integer, (5*2) clearly implies

(5.15) (a,m)(bi,m) R(@errgbpj m I (-1)n(c,m) DR, (ill,
|

Repeated use of (5.1) is simplified by observing that, if Ds

(iDtbh)f = zXb D zb

(z D*-b)(z D.b.l1)— (j D+b.ra - 1) f s z1*6 Dmzb+n'l f .

Since the various differential operators in parentheses compute with each

other, we obtain

(5.16) (a'jmKb”m) R(bi+m) = (c,r.) 27\bi ¢ nt'k » g (in, ny,
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6. Euler-Potsson equations. The function R is placed in a better
perspective by considering & system tf Culer-Poisson equations without

necessarily requiring its solutions to oe homogeneous*

(6.1) - *P i Dj+b; Di "bjDil ¢c =0 »b.j : ---d

Introducing the convenient abbreviation

(6.2) . o* 1 '7j " *j> Bi Dj + bi Dj “ bj Di

r »*tv V Dj-bjVv V @

Dj Ut D1+bi) - Di <lj Dj+bj) ,

we have the operator equations

(6.3) 22 hj Dk = Eij Dk4 Ejk Di * Eki Dj

ey
(6.1.) 1 h 1$k s 0 -

*r«
(6.5) S Ej Ckekev s 0,

eye
6.6) Y - 0

(

( 2? li Di + V Ejk

er
The sunnations extend over cyclic permutations of i, J, and k, and a symbol
Da denotes an operator product such that Di |,, u s D?E” u).

Suppose that u is a solution of E., u: 0 and of u =0 . Since

(6.1) and (6.6) then snow that E~ u=0 and b. u: 0 , wt have

Ak u - 0 provided that b ~ 0 . The system (6.1) can therefore be deduced

from n - 1 differential equations; for, if any one of the b*s is nonzero,
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say bj , all the equations (6,1) follow from ul 0 fori r 1, J -
J+1j eeoyn o

There are two groups of transformations which carry any solution of
(6,1) Lr+o another solution. Cne of these is obviously the group of permuta-
tions of the subscripts 1, e«., n or, in other words, simultaneous permuta-
tions of the b*a and s's . The function obtained by applying any such permu-
tation to any solution u(bp...,bn; not only is another solution
but also is homogeneous in the x’a if u is. Solutions which belong to an
irreducifclt representation of the group may be of special interest; in par-
ticular, the R function belongs to the identical repre?entation according
to (2.7?).

The second group consists of transformations induced by homographic
transformations of the x*a . We need to extend only slightly the results of
Appell and Darboux [ji, pp. 58-60j for a single Euler-Poisson equation. If
*, %, Jt end £ ere complex numbers restricted only by « S- (if £ o vy

the transformations

for* a group of which the infinitesimal operators are

(6.8) H = 1 D.
A
(6.9) 21 D
(6.10) . q(\) .

« *»



It 1s easy to verify the operator equations
G11) He D Et |,

(6.12)

ITf u(x1,...,zn) 1s a solution of E u: 0 , 1t follows that K u , D+u

and D u also am solutions. Examples are furnished by (5.7), (5«10), and

(5.13). Moreover, since the finite transformations of the group are gener-
ated by the infinitesimal ones, i1t follows also that v(il,...fzn) as given
by (6.7) 1s a solution. If u is homogeneous in the 1*s , then Hu, D+u , and

D u will be homogeneous but v will iIn general not be; an Important excep-

tion 1s

*xo\
Equation (2.8) i1s an example of this exceptional case, which i1s thus seen
to underlie an Euler transformation of

A solution of the system (6.1) is found by separation of variables to be

(6.15) u = Q(t; z Q) = F(E) (€ + *1)’bl === U ¢ *n) bn o

where -t i1s a separation constant and f(t) i1s an arbitrary function. Inte-

grating (6.15) with respect to t gives additional solutions of the form

6.16)



The contour C may be either a closed loop or an open path; if open, its
endpoints nay be either independent of the z’s or chosen from among the
points -Zji , ¢ -z™ o That the latter values are permissible is seen by

considering A

A Cemgrwy AN @ [-(*.-ij G ":ﬂ

I; L * &]’;r«- - 0

The last step assumes b~cl >« condition that is required in any event for

a

the existence of the integral.
We now ask under what conditions the solution (6.16) will be, like R,

homogeneous of degree -a in the z’s < With the notation of (2«9) we have
*d g » (Er*|
A * q 1\ Pe I - C ) O - L ( X & )

_ - L (Xo

X»,

\Y%
if f(t)\ft* 1 . Hence, if it exists, the integral

(6.17) u(zx,...,zn) i J dt t*’-1 T T.(t +
C

iIs a solution of (6«1) that is homogeneous of degree -a if Cis either
a circuit closed on the Riemann surface of the integrand or else a simple
path with endpoints chosen from among the values 0, « , -x,i : -*n :
homogeneity being obvious in the latter case. The (n+l)(n +2)/2 integrals
along simple paths are similar to solutions obtained for the differential

equations of F1 by Picard and extended to by Appell and Kampe de Feriet
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[?, pp. 95, 120] . Integrals around certain closed loops were shown by
Erdelyi [5] to be of fundamental Importance in the theory of F~ and related
functions.

The transformation theory of the various integrals (6.17) and their
expressions in terms of the R function will not be considered in the present
paper, with the exception of a single case to be discussed in the next
section.

\Y
7. Integral representations. A particular case of (6.17) is

(7.1) B(a,a") R(aj 2 Jdtt*x A~ fp(t+iM)*™ 9
0 A* |
where a and a> must have positive real parts. For |arg *i|< TT (i : 1....... n)

the integral is a single-valued analytic function of the s'a if the integrand
iIs defined by arg t =0 and |arg(t + s™) < 7r . Provided that |l - %\< 1
(I s 1» eee# *0, the integrand can be expanded in ascending powers of

* *M)f eeeft (1 o *n) end integrated term by term; the Integral is thus
found to coincide with the left side of (7.1) as defined by the series (2.1)
and its analytic continuation.

Replacement of t by t"1 gives the representation
]
(7*2) B(a,a*) R(a; bl,...,bnj *1,...,zn) = Jdt t*71 \TT 1ttz~r1
e a°*l

again valid when a and a» have positive real parts. Comparison of (7.1)
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and (7*2) shows that

(7»J; Rvaj Ni»***>An*

4 « *

By using the relations (1.2) and (1.3) between contiguous functions, it is
easy to prove that if (7.3) holds for R functions with parameters (a,a’),
then it holds aluo for functions with pararveters (a-],a') and (a,a’'-1l).
Ilhe tuler transformation (?. 5 is therefore valid without restriction or.
a and a*. Wt have elre C n>d m\ (7.3) in connection with (2.3) anc
(6.11), and have used >» m urivn (1 0 and (3.11).

A new type of integral representation, not known previously for F- ,

gives R as the integral of another R function with one less variables

(7.1) B(c-bn,bn) R(a; b

f

0]

Convergence of the integral requires Re ¢ > Re bf >0 . By means of (2.1)

a

© ©

If x~t and x/t are taken as new variables, the integration over trie second
of these can be carried out; the remaining integral immediately reduces to

the left side of (7-ia) by virtue of (7.1) and (2*1).



In the particular case of the Gauss hypergeometric function (n * 2),

the right sides of (7.1) and (7.1*) have the same form because ¢ (3.5);

comparison of the twe integrals shows that

(7.5)  *2* R(aj arx”) s *2bl RMI* *

This equation, which appears to have no analogue for r> 2 | is equivalent

to the familiar symmetry of the Gauss function F(a,b;cjx) in the parameters

aand b -

Iteration of (7.1i) yields the more general representation

(7.6) B(bl+ “* +Dbk>bk+I1>"" *»bn) R(a? bl»** "bn"' XxI»***»*n>

) e

A k*>
R(a; b~,...,bAj 2/t tAzA,. | Az
K *i * 1
The index k can have any one of the values 1, 2, n -1 jJ convergence
requires that the quantities t ecom+bnNf PN A b n all have positive

real parts. An important special case is k : 1 i

(7.7)  B(b~,...,b~) R(a; b™,...,bn; IAf. % xn)

1 | ov " d» tVis® *

where Re bx> 0 (i =1, ..., n).

From (7.7) we can derive another representation of the same type as

(7.1*) but with a different R function in the integrand. Me interchange the
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subscripts 1 and n in (7.7) and substitute t™ s ut, t™ z (I-u)t < Since the
integral with respect to all variables but u is again of the form (7.7),

we find

(r8 B 2z ™~ , . . . , 7 ™)
[
Jdu ubl 1(l-u)b2 R(a; bi+b~b~™,...~; uzl+ (l-u)z2,z3,...,7<) ,

provided that b™ and bf have positive real parts. lIteration of (7.8) gives

(7.9) oMo o) RN bR, .«, b z™, ..., sN)

N A ol TV T IRy

EE

A 4tn
**u * £ bi'bk4.x****'pb«» * V i-"ku--'S1 "
where & denotes the Dirac delta function and where Re b, > 0 (i : 1, k).
The index k can take any one of the values 2, }, ..., n ; in particular,

for k = n, we have
(7.10) B(b™j...,b™) R™ajb-»,... ,bn; z™,...,2")
r 3 dul*Adun S(I- 2 ut) (TTuVI) (* f

valid for Re b~ >0 (ill, ..., n). If one substitutes ux =v~ | the
right sides of (7.9) and (7.10) become integrals over part of the surface
of a hypersphere. Equation (7.10), which can alternatively be obtained
from (7.7) by a change of variables, is equivalent to a known represents-

tion of Fd [2, p. 115].
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Another new type of integral representation gives the product of two

R functions as the integral of a single R function:
(7.11) B(a,a') BCx,<) R(aj b*>eee bn$ »R) R(* 5~ eee

r B(a*«c,a»**' ) Jdt t* =X
o

e R@@e<™ j b, ...,bn, eeey 7>t s eeeStr n )

The parameter << is defined by +S™ « by using the limits
given at the end of 83* one findj Ih. t ¢ nv r :once requires the real ports
of a, a', <, and ®/ to be positive. If the representation (7.1) is sub-
stituted in the integrand, the two integrations can be carried out in re-
verse order by means of (7.2) and (7.1) to yield the left side of (7.11).
Repeated application of (7.11) can be used to represent the product of
p+1 functions as a p-fold integral of a single R function.

A procedure similar to that used in proving (7.11) permits evaluation

of the integral
00

(7.12; B(a+s,a') dt t R(a+s; b”,...,bn-"bn+s; zp ,M»Jn.p 2nt t)
e

s B(s,b”) B*,a,a') R(qj X, E®*,
\V4

iIf the real parts of s, a, and are all positive. After substituting (7.1)
in the integrand, we can carry cut the two integrations in reverse order to

get the right side of (7.12).
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In view of (2*1), the R function can also be represented as a multiple

integral of the Mellin-Barnes type:
(f.13) B(bN*eee*bN H™a; bA,..

. B(a*r‘sl*«"-**i.:r,| -

It is assumed that none of a, ...# is zero or a negative integer. The
paths of integration are to be indented in such a way that the path in tne
® pl*ne separates the ooles at s =0, 1, 2, ... fron the other poles of

the integrand.

Elliptic integrals. It has been pointed out recently [3] that the
three standard kljids of elliptic integral are hypergeometric functions of

the type . They are Included as special cases of tne integral

where a+a' s ¢ s see* . Convergence of tne integral requires a and

sn U puts

the integral in the form (7.1)
In the case of complete elliptic integrals (cn u : 0) or incomplete
integrals of the first or second kinds (b : 0), the number of variables

in the R function can be reduced by using the relations given in § 3.
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