1

UNCLASSIFIED

INTERIM TECHNICAL REPORT

TNX EVAPORATOR INCIDENT JANUARY 12, 1953

by

T. J. Colven, Jr., G. M. Nichols, T. H. Siddall

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- LEGAL NOTICE -

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, appatatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any emplayee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Photostat Price 5_6.30

Microfilm Price \$ 3.00

Available from the Office of Technical Services Department of Commerce Washington 25, D. C.

E. I. du Pont de Nemours & Co. (Inc.) Explosives Department - Atomic Energy Division Savannah River Laboratory Augusta, Ga.

May 15, 1953

Contract AT(07-2)-1 with the United States Atomic Energy Commission

1-3

UNCLASSIFIED

LULM3On

ABSTRACT

CONF

The circumstances are described pertaining to an explosion in a TNX evaporator during the concentration of a uranyl nitratenitric acid solution. TBP and Amsco diluent were probably present in the evaporator charge. A laboratory program involving smallscale atmospheric and closed-vessel distillations of various mixtures of UNH, HNO3, Amsco, TBP, and water indicate that an exothermic reaction between TBP and UNH, or between TBP and HNO3, or both, was responsible for the explosion. The danger areas of temperature, TBF concentration, pressure, and heating rate are defined and recommendations are made for safe evaporator operation.

DECLASSIFIED

CONFIDENTIAL

CONFIDE! AL

TABLE OF CONTENTS

LIST OF FIGURES	AND	TAB	LES	3	•	•	•		•		•	•	•	6
INTRODUCTION .	•	•	•	•	•	•	•	•	•	•	•	•	•	7
SUMMARY	•	•	•	•	•	•		•	•	•	•	•	•	8
RECOMMENDATIONS		•	•	•	•	•			•	•	•	•	•	10
FUTURE PROGRAM	•		•	•	• .	•		•	•	•	•	•	•	10
DETAILS														
General . Experiments	at	Atm	osp	her	ic	Pre	ssu	ire	:	:	:	:	:	11 12 13
Equipment	•		•	•	•	:	•	:	:	:	•	:	:	14
UN-HNO3-TBP SYST	EM													
Spontaneous Initiation S Pressure Dev HNO2-TBP System	Rea Temp velo	era	on tur	es	:	:	:	:	:	:	:	:	•	14 15 15 16
General Disc	cuss	ion		•	•	•	•	•	•	•	•	•	•	16
APPENDIX														
Description Normal Evaport Incident Evaport	of orat apor	TNX or ati	Ev Ope on	rat	ion	or	:	:	:	:	:	:	•	18 19 19
Calculation	s s	. 16	•		·	° °		:	:	:	:	:	:	22

CONFIDENTIAL

DP-25 Page 6

LIST OF FIGURES AND TABLES

Figure	I.	TNX Evaporator
Figure	II.	Test Bomb
Figure		Heating Rate and Concentration TBP vs. Reaction Temperature Rise 25
Figure	IV.	Effect of UN Concentration in Aqueous Phase on Temperature Required to Initiate Reaction
Figure	۷.	Effect of TBP/UN Ratio on Temperature Required to Initiate Reaction
Figure	VI.	Effect of TBP/UN Ratio on Pressure Developed
Figure	VII.	Effect of UN Concentration in Aqueous Phase on Pressure Developed
Table	1.	Summary of Small Scale Test at Atmospheric Pressure
Table	II.	125 cc lests at Atmospheric Pressure on UN-HN03-TBP System
Table	III.	Atmospheric Pressure on HN03-TBP Systems
Table	IV.	Miscellaneous 125 cc Tests at Atmospheric Pressure
Table	٧.	1 Liter Bomb Tests on UN-HN03-TBP Systems

CONFIDENTIAL

INTRODUCTION

The TNX Semiworks (678-G Building, CMX Area) of the Savannah River Laboratory was built to obtain design and operating data in support of the 200 Area Separations Plant. An evaporator (similar to those to be used in the Building 221 canyon) had been installed and used since November 1951 to concentrate uranium solutions and to prepare process water. On January 12, 1953, while concentrating a uranyl nitrate-nitric acid solution, the evaporator was destroyed by an explosion.

11

COMFIDENTIAL

This report (1) describes the circumstances pertaining to the operation of the evaporator at the time of the explosion, (2) reports the results of laboratory experiments designed to establish the process conditions under which self-sustaining reactions will and will not occur, (3) offers a tentative explanation of the evaporator explosion, and (4) makes recommendations to assure safe operation of the Purex process evaporators.

The experimental program is being continued in an effort to characterize the chemistry of these reactions. The results will be reported at a later date.

CONFIDENTIAL

DENTIAL

SUMMARY

At the time of the explosion, the TNX evaporator was being used to concentrate a uranyl nitrate-nitric acid-water mixture to a point where $\sim 50\%$ of the HNO₃ would be removed as distillate. The force of the explosion ripped the evaporator pot into 6 major pieces, and damaged the bubble cap column to the extent that several of the trays were distorted. Damage to the building's steel framework was slight, but roofing and siding were extensively dislodged. Two minor injuries were sustained.

////

The fact that Amsco (a kerosene-like diluent for the tributyl phosphate extractant in the Purex process) was found in substantial quantities in the distillate was considered strong evidence that Amsco and tributyl phosphate (TBP) were present in the evaporator charge. Since these organic materials were suspected of being factors in causing the explosion, a laboratory program was initiated to determine the reactivity of these mixtures under various conditions.

Small-scale atmospheric distillations of various mixtures of UNH, HNO3, Amsco, TBP, and water indicated the following:

TBP must be present to promote a noticeable exothermic reaction.

Mixtures of TBP, UNH, HNO₃, and water will react exothermically with varying degrees of vigor, depending on the heating rate and composition, but no reaction will take place at atmospheric pressure until enough water and HNO₃ have been distilled to permit the temperature of the charge to rise above 135°C (78% UN).

The vigorousness of the reaction (observed by the extent of the sudden temperature rise) increases as the TBP/uranyl nitrate (UN) ratio is increased, but in no case was any reaction observed at a ratio below 0.12 under the conditions investigated.

Less TBP is required to promote a self-sustained reaction at a high heating rate ($1^{\circ}C/min$) than at a low heating rate ($0.1^{\circ}C/min$).

The system TBP/UNH/water will yield a self-sustained reaction, but when HNO3 is present the reaction is. more vigorous.

The system TBP/HN03/water will react with considerable violence if heated rapidly to temperature above 150°C.

DECLASSIFIED

2.

CONFIDENTIA

SUMMARY (continued)

The following information was obtained from a series of experiments made in a closed pressure vessel using the same ingredients investigated in the atmospheric experiments and using the same vessel/charge volume ratio as existed in the TNX evaporator:

Self-sustained reactions were obtained with more dilute solutions than in the atmospheric experiments, but higher temperatures (possible under pressure) were required. For instance, at 47% UN, reaction was obtained at 195° C.

1111

CONFIDENTIAL

The pressure increases developed by the reactions varied from 150 psig at 0.06 TBP/UN to 1200 psig at 0.28 TBP/UN when the UN concentration was constant at 80%.

At a constant TBP/UN ratio of 0.21, the pressure increases developed by the reactions varied from 50 psig at 45% UN to 1300 psig at 85% UN.

Rates of pressure rise, observed with a piezoelectric gage, varied from 250 psi/sec to 1020 psi/sec; the higher rates were obtained with the higher peak pressures.

Very high pressure development rates were observed with TBP and HNO3 (no UNH) in the pressure vessel tests.

Based on the information revealed by the two series of laboratory experiments, and the probable presence of TBP in the TNX evaporator, it is concluded that an exothermic reaction between TBP and UNH, or between TBP and HNO₂, or both, was responsible, either directly or indirectly, for the rupture of the evaporator.

The circumstances surrounding the evaporation of the charge in question indicate that the danger areas of temperature, TBP concentration, and heating rate defined in this report were probably attained.

/11

CONFIDENTIAL

DECLIPSSIFIED

RECOMMENDATIONS

In order to assure safe operation of the Purex process evaporators, TBP in excess of water-soluble quantities must not be permitted to enter the evaporators.

"

Any of the following additional safeguards can be employed where practical to decrease the potential hazard of the operation:

Hold temperature of the liquid in the evaporators below 125°C.

Use slow heating rates.

CONFIDENTIAL

Design concentrating equipment with pressure relief mechanisms, such as large vents or rupture disks.

Design concentrating equipment for minimum hold-up to withstand sudden pressure increases.

FUTURE PROGRAM

The hazards testing program is being continued with the following objectives:

- Evaluation of the hazards (if any) involved in evaporation of neutralized systems containing TBP.
- 2. Investigation of the actual chemistry of the reactions described in this report.

111

CONFIDENTIAL

DP-25 Page 11

DETAILS

General

The TNX Semiworks program involved testing of equipment using Purex solutions: uranyl nitrate, nitric acid, and 30/70 TBP/Amsco. The evaporator (Figure I) was used primarily for concentrating the uranyl nitrate solutions to allow their re-use in semiworks studies.

10

At the time of the incident, a special series of evaporations was in progress to remove about 50% of the nitric acid from 1800 gallons of uranyl nitrate solution. Equipment size necessitated that the deacidification be carried out in several batches of approximately 500 gallons each and three batches had been successfully processed. The fourth and final charge consisted of the 70 gallon heel of the original solution plus 160 gallons of previously evaporated material which had been diluted with water. The additional 160 gallons were required to make a minimum evaporator charge.

Because the liquid temperature recorder was broken and since the required degree of concentration was beyond the range of the specific gravity recorder, the evaporation was being carried out for a specified length of time based on past experience. Five minutes prior to the scheduled completion of this fourth evaporation, a violent reaction took place with sufficient pressure to destroy the evaporator pot and cause extensive damage to the building.

The operator present at the time stated later that he heard a rumbling noise, and then observed orange-colored fumes evolving from the top of the column with a high-pitched roar. This observation is considered evidence that a reaction vigorous enough to produce copious quantities of gas or vapor was taking place. On the basis of previous experience, it was suspected that the reaction was accompanied by considerable frothing. This suspicion was confirmed when a later examination of the column bubble-trays revealed that the lower trays were at least partially plugged with solid material. This partial plugging of the column could well have facilitated a pressure build-up in the evaporator, prior to its rupture.

Due to its use in semiworks studies, all of the aqueous uranyl nitrate fed to the evaporator had at one time been in contact with solvent (30/70 TBP/Amsco). Although none of this organic solvent was thought to have been present in the feed, it was discovered, subsequent to the explosion, that Amsco diluent was present in the distillate catch tank. From the quantity of Amsco collected, and from phosphorous analysis of the evaporator residue, it was estimated that about 30 lbs. of tributyl phosphate (TBP) had been present in the evaporator charge. It was theorized that a reaction between uranyl nitrate

and organic material could have occurred in the evaporator. This theory is supported by reports in the literature of such runaway reactions. The odor of butyric acid, present after the explosion, was additional evidence of an oxidation reaction involving TBP.

An experimental program was initiated to determine whether a violent reaction could be produced under conditions similar to those now postulated to have existed at the time of the evaporator incident. The solutions tested were taken from TNX process tanks where possible and synthesized in other cases. Atmospheric and closed bomb tests were made on the various systems as follows:

Atmospheric	Bomb
UN-HNO3-TBP	UN-HNO3-TBP
HNO3-TBP	HNO3-TBP
UN-HNO3-TBP/Amsco	
UN-TBP	

Experiments at Atmospheric Pressure

Small scale scouting tests were made in 20 mm test tubes heated in a sand bath. These tests were designed to give qualitative evidence as to whether a given system would produce a spontaneous reaction and at what temperature.

These preliminary scouting tests were run on 1-2 cc of various solutions involved in the incident. In further tests, about 10 ml of synthetic test solutions were charged to the test tubes. The systems were then heated in the sand bath and observations made of the liquid temperature, gas evolution, and foaming. In those cases where a spontaneous reaction took place, it was characterized by foaming, rapid evolution of oxides of nitrogen, and solidification of the residue. The results of these tests are shown in Table I.

The negative results in Runs 1 through 7 (Table I), can be attributed, for the most part, to the small amount of test solutions, i.e., a reaction could have taken place unnoticed. The removal of the butanol in Run 8 by distillation at ~100°C prevented any organic-HNO3 reaction. A possible slow reaction occurred in the 100-200°C range between HNO3 and TBP in Run 9.

Runs 10 through 13, in which reactions were noted at ~135°C, had 70% HNO3, TBP, and a heavy metal (U and Th) nitrate salt in common. Run 10 indicated that the Amsco had been distilled from a UN-HNO3-TBP/Amsco mixture at ~ 110°C before

the rapid reaction took place at ~ 135°C.

More quantitative tests were run in a 125 cc distilling flask heated by an oil bath. The flask was equipped with liquid and vapor thermometers, and with a reflux condenser and take-off line. Distillate was taken off continuously during heating.

The results of a series of runs made on a 40% UN-8.8% HNO3 solution with various amounts of TBP heated at two different rates are given in Table II. The data show that increasing the heating rate from 0.1 to 1.0°C/min. causes a reaction to occur in mixtures of lower TBP content. Initiation temperature of the spontaneous reaction was found to depend also on the TBP content. The temperature of initiation was found to be in the 140-160°C range (See Figure III). The reaction was typified by a rapid evolution of oxides of nitrogen, foaming, rapid rise in pot temperature, and solidification or drying out of the residue.

The results of the 125 cc-scale tests made on HNO_3 -TBP systems (no UNH) are given in Table III. The bath temperature was maintained at ~ 180°C during the runs. Distillate was collected continuously at a rate which varied with the size of the charge. Some kind of a self sustained reaction took place in all the tests at ~ 150°C.

Comparison of Runs 2, 3, and 7 indicates the trend toward more vigorous reactions with increasing TBP content at constant boilup. Runs 4 and 5 show a similar tendency. Runs 1 and 2 show that more rapid boilup increases the vigor of the reaction at constant TBP content.

Additional test results are listed in Table IV. Runs 1 and 2 indicate that a very low boilup rate or long refluxing of equal weight HN03-TBP systems reduces the reaction rate so that it is not detectable. Run 3 gave a rapid reaction at ~ 160°C between TBP and UNH crystals in a 0.21 TBP/UN weight ratio. Run 4 shows that a reaction between TBP and UN-HN03 occurs at ~ 160°C with a noticeable temperature increase. Run 5 again shows that Amsco is not a factor in the reaction since it distilled off at ~ 110°C, and no reaction occurred with the remaining UN-HN03 when heated to 186°C. Runs 6 and 7 show no detectable exothermic reaction between TBP and NaN03 or NaOH

Experiments in Test Bomb

The intent in carrying out the reaction study in a closed bomb was to permit elevating the temperature to the point where reaction is thermally initiated without change in the concentration of the reactants through distillation of water or water and nitric acid. This objective could be accomplished only in the closed system.

Equipment

The 1 liter test bomb was constructed of 4-inch diameter schedule 80 X stainless steel pipe with a 1-1/2-inch flanged cover plate (Figure II). The cover plate was fitted with 2 thermocouple wells, one for recording the vapor phase temperatures and the second extending to the bottom of the bomb for measurement of liquid phase temperatures. There were 2 pressure lines, one to a Bourdon type gage and the other to a piezo gage recording through an oscilloscope. In addition, a 1/8-inch I. D. distillate take-off line with a condenser was provided. The latter was equipped with a tee to allow pressure to be bled from the bomb without going through the distillate receivers. Finally, two terminals were located in the cover plate with a platinum wire between them to permit attempting periodic external thermal ignition of the vapor phase by a hot wire (electrically heated).

The bomb rested on a sand bath contained in a carbon steel shell. The shell was wrapped with resistance wire for heating, and was encased in magnesia insulation. A thermocouple well was provided in the shell just below the bottom of the bomb. Reaction pressures and their rate of development were measured by a piezo gage-oscillograph unit. The experimental procedure followed with this bomb is described in the Appendix.

The relative volumes of the bomb and the test charges duplicated the relative volumes pertaining to the evaporator incident.

UN-HNO3-TBP SYSTEM

Spontaneous Reaction

Uranyl nitrate solutions containing nitric acid reacted spontaneously with TBP at elevated temperatures. The reaction, once initiated, was highly exothermic and, if the system was closed or restricted, gave rapid rise to high pressures. If the system was not closed or restricted, the observed effect was considerably less violent.

No attempt was made to analyze the organic or inorganic product of the reaction. However, the odor of the reaction residues indicated that some butyric acid was obtained. In two cases with dilute solutions (Table V, Runs 2 and 3) where the reactants were heated to high temperature (150-190°C) but below the spontaneous reaction temperature (195°C) and then allowed to cool to room temperature, no reaction was observed on subsequent heating above the usual initiation temperature. In both cases, the odor of an ester, possibly butyl butyrate, was detected in the reaction mixture.

111

DP-25 Page 14 11

Initiation Temperatures

When 245 grams (150 cc) of a uranyl nitrate solution, containing 47% by weight of uranyl nitrate and 1.6% nitric acid, was heated with 24.4 grams (25 cc) of tributyl phosphate in the test bomb, a spontaneous reaction was initiated at 195°C. In subsequent experiments, predetermined quantities of water were allowed to distill off, the bomb was closed, and heating continued until reaction was initiated. The temperature of initiation was found to decrease with increase in the concentration of UN, and reached a minimum temperature of approximately 130°C, at which point the liquid temperature required for distillation was the same as the reaction initiation temperature (Figure IV). The approximate calculated concentration of UN at this point was about that of uranyl nitrate tetrahydrate (84.3% UN).

In a similar manner, the effect on the initiation temperature of varying the concentration of TBP relative to UN was studied, using approximately constant UN concentration in the aqueous phase. The runs were made by varying the quantity of TBP added to a standard charge (150 cc) of aqueous uranyl nitrate (38.5% UN-4% HNO3-Sp.Gr. 1.49) and removing the same amount of aqueous distillate to a calculated uranyl nitrate concentration of about 83-84% by weight in the aqueous phase. The variation of the initiation temperature with the concentration of TBP was found to be minor compared with the effect of UN concentration and remained in the 140 ± 10°C range (Figure V).

Pressure Developed

The pressure (AP) increased with increasing quantities of TBP, when the quantity and concentration of uranyl nitrate and nitric acid were held approximately constant, as shown in Figure VI. When the ratio of TBP/UN was held constant, the pressure change increased with increasing concentration of UN in the aqueous phase (Figure VII). It should be noted that the pressure rise is fairly low until an aqueous concentration approaching uranyl nitrate hexahydrate (78.5 wt.%) is attained. At this concentration, the pressure rise is much higher, but may not increase significantly above this concentration. For the purpose of comparison, the observed autogenous pressure in the bomb at the temperature required to initiate the exothermic oxidation reaction is shown in dotted lines in Figure VII.

Since the above $\triangle P$ Valves were obtained starting from initial pressures greater than atmospheric and in order to correlate the data with atmospheric runs, it is interesting to determine the pressure which would be obtained from these systems if the reaction could be initiated at atmospheric pressure. For example, with an observed $\triangle P$ of 1300 psig starting from 50 psig autogenous pressure (Run 7), the estimated effect at atmospheric pressure (absolute) would be 15/65 of the experimental values of approximately 300 psig. This relation was

DECMSSIFIED

DP-25 Page 15

-

DP-25 Page 16

checked in a single run (Run 32) where concentration of the aqueous phase, by distillation, was carried to the point where the liquid temperature initiated reaction in the open system (135°C). The observed **A**P was 250 psig and the maximum rate was 264 psi/sec.

HNO3-TEP System

Only a few closed bomb tests were made on HNO3-TBP mixtures (Runs 26-31, Table V).

A violent reaction under an autogenous pressure of ~ 500 psig was observed starting at $\sim 160^{\circ}$ C for a TBP/HNO₃ ratio of 0.43 (Run 31). A pressure increase of 4600 psi and a rate of 250,000 psi/sec. were observed.

General Discussion

The experimental data have shown that a vigorous reaction occurs between TBP and UN and/or HNO3 at temperatures greater than 130.°C. The severity of the reaction and the pressure developed were found to be directly affected by the amount of TBP present and the rate at which the mixture was brought to its initiation temperature.

It can be tentatively concluded that UN-HNO3-TBP is potentially a pressure producing system and reaction can be initiated if the system is heated above 130°C at atmospheric pressure. The pressure produced has been found to be a function of the pressure in the system at the time of reaction and the amount of TBP present. Thus, at a TBP/UN ratio of 0.06 (estimated to have been the incident charge), a reaction occurring against a 50 psig back pressure (plugged column plates) would produce ~ 200 psi in about 0.2 sec. The impact strength of the evaporator shell has been estimated at 120-150 psi.

The incident then appears to be the result of the following series of events:

- Presence of TBP (~80 lbs.) in the aqueous uranyl nitrate solution.
- 2. Concentration of the solution to greater than 78% UN/total aqueous at temperatures greater than 130°C.
- 3. Buildup of a 50-100 psi back pressure due to partially plugged plates.

A comparison of the incident evaporation data and a typical bomb run shows how a pressure capable of rupturing the vessel might be explained.

	Bomb*	Evaporator
Size of container Size of heel Ratio of volumes TBP/UN Temperature of Initiation, ^o C. Pressure at time of reaction, psig Pressure developed, psi Rate of pressure development, psi/sec.	1000ec 50ec 20:1 0.06 135 ~50 ~210 ~1200	1300 gals. 65 gals. 20:1 0.06 (min.) >135 50-100 (assumed) 210-420

* Table V, Run 21

DECLASSIFIE

Description of TNX Evaporator

Evaporator Shell

Diameter - 6 feet

Height - 5 feet

Dished Ends - 1/4-inch stainless steel

Wall Thickness - 3/16-inch stainless steel sheet (welded)

Evaporator Pot

Diameter - 3 feet

Height - 18'inches

Wall Thickness - 3/16-inch stainless steel

Heating Coils - 6 concentric banks of 1-inch schedule 40 stainless steel pipe

Column

Diameter - 2.5 feet

Height - 17.5 feet

Number of Plates - 8

Number Bubble Caps per Plate - 30

Total Condenser -

Wall Thickness - 3/16-inch stainless steel

Total Capacity

Shell and Pot - 1300 gallons

Column - 525 gallons

DECLASSIFIED

Description of TNX Evaporator (continued)

Instrumentation Ranges

Pot Temperature 0-150°C

Pot Sp.Gr. 1.01-2.0

Column Pressure Differential - 20 inches H20 maximum

Steam Feed Weight Rate Control - 2500 lbs/hr. maximum

Reflux and Take-Off Rotameters - 0-5.0 gpm

Column Vapor Temperature - 0-150°C

Cooling Water Outlet Temperature - 0-150°C

Normal Evaporator Operation

Such experimental studies as solvent extraction, head end, and jet testing result in dilution of the uranium solution (UN-HNO₃-H₂O). The water of dilution is removed as required by concentration in the evaporator to a specific gravity of 1.55 to 1.65 (Boiling point: about 110°C).

Normal operation of the evaporator consisted of continuous charging at 3.5 gpm by steam jet. Simultaneously, a take-off rate of 3.5 gpm, and a reflux rate of 1.0 gpm was maintained, thereby retaining about 250 gallons in the pot. The concentration was considered complete when the desired sp. gr. of the solution was attained. The heel was then pumped to a concentrate hold tank.

Incident Evaporation

It was necessary to depart from the above procedure in order to prepare a 44% UN, 1.5% HNO₃ (maximum) solution for head end studies. This requirement necessitated reduction of the acid content of the aqueous uranium solution on hand, which, at 44% UN, contained ~ 4% HNO₃.

Three methods were considered to remove the excess HNO3 (1) neutralization with sodium hydroxide, (2) addition of UO3, and (3) evaporation. The neutralization with caustic would introduce sodium ions which were undesirable. The addition of UO3 was the preferred method, but material was not available at the plant site. Therefore, evaporation to the point where sufficient HNO3 was removed in the overhead appeared to be the only available method.

Three successful acid-removal runs were made, according to the following procedure, prior to the explosion:

- 1. Pot batch was charged with \sim 500 gallons solution.
- 2. Steam input was adjusted to \sim 1000 lbs/hr.
- 3. Total take-off (no reflux) was used.
- Operation considered complete when pot temperature reached 150°C, or one hour after sp.gr. reached 1.9.
- 5. Charge was diluted with water, cooled, pumped to concentrate hold tank.
- 6. Evaporator and column were flushed with water.

The following data pertaining to the feed charged to the evaporator were obtained as indicated:

Volume: 230 gallons (liquid level recorder)

Composition: UN-44%, HNO3-2.4% (analysis of feed)

Specific Gravity: 1.56 (specific gravity recorder)

TBP Content: 80 lbs. (from phosphorous analysis of residue after incident)

Amsco Content: 10-15 gallons (found in distillate)

The data on the charge conditions at the instant of the explosion are incomplete because the temperature recorder was not in operation and the specific gravity recorder had gone off scale (greater than 2.0). From the relative volumes and analyses of the distillate and original charge, however, it is inferred that the volume had reached 65 gallons, and the UN concentration was about 80%.

The force of the explosion ripped the evaporator into 6 major pieces, most of the division taking place in the lower half. In the column, the bottom tray was bowed downward wore than 1". Other trays were bowed to a lesser extent, some upward, and some downward. Some structural damage to the building was suffered in the immediate vicinity. The sheet metal roofing and siding was extensively dislodged throughout the building.

The bottom column trays were at least partially plugged with a yellowish-green solid. Analysis showed this to be 55% uranium, 0.7% phosphorous.

Outline of Bomb Test Procedure

1. Pipette 150 cc aqueous and 25 cc organic into bomb.

DP-25 Page 21

- 2. Seal bomb, except for takeoff, and heat at 5°C/min.
- Collect desired amount distillate at 6 cc/min. Measure distillate.
- Close take-off, thus completely sealing bomb, continue heating.
- Attempt hot wire ignition every 50 psig pressure increment.
- 6. Determine pressure at beginning of spontaneous reaction.
- 7. Continuous temperature record kept by potentiometerthermocouple unit.
- 8. Cool bomb, slowly vent off pressure.
- 9. Open bomb, inspect residue, clean with absorbent paper.

DECLAXUFIED

1

DP-25 Page 22

CALCULATIONS

- 1. Maximum Rate of Temperature Rise in TNX Evaporator: Steam Input: 600 #/hour Enthalpy: 860 Etu/lbs. (145 psig - 364°F) Q = 600 x 860 = 516,000 Etu/hour t = $\frac{Q}{C_p W \neq C_{p2W_2}}$ = 2190°F/hour = 66°C/min.
- 2. Maximum Tempersture in Pot: $U = 100 \text{ Btu/hr. ft.}^2 \, {}^\circ F$ $A = 140 \text{ ft.}^2$ $t = \frac{0}{UA} = 37^\circ F$ $t = 364-37 = 327^\circ F = 164^\circ C$
- 3. TBP/UN Ratio in Evaporator: Residue Analysis: 48.8% U 0.56% P Estimated from Organic: TBP = 80# UN = 1320# TBP = 0.06 (6%)
- 4. Strength of Evaporator Shell: Tensile Strength = 60,000 psi $P = \frac{2tS}{D} = \frac{2 \times 3/16 \times 60.000}{5 \times 12}$ Impact Strength = 20,000 psi $P = \frac{2tS}{D} = \frac{2 \times 3/16 \times 20,000}{5 \times 12}$ 120 psi

BECLASSIFIED

DP - 25 Page 23

.

· • •

.

FIGIRE

=

.

+ 4

Scale - 1" = 4"

TEST BOMB

.

.....

.

.

1 1 1

.

. . . . DP-25 Page 25

1.5% Nitric Acid 1.635 Sp.Gr.

Figure IV

DP - 25 Page 27

EFFECT OF TBP/UN RATIO ON TEMPERATURE REQUIRED TO INITIATE REACTION

PARCENT

Conc. of UN in Aqueous Phase Constant (Approx. 83-84%)

Initial Uranyl Nitrate Sol'n 38.1% Uranyl Nitrate 4% Nitric Acid 1.49 Sp.Gr.

S

initial Charge

DECLASSIFIED

150cc Uranyl Nitrate Sol'n 5-30cc TBP - Varied

Figure V

Run	System	Liquid Temp. Range, °C	Rapid Reaction	Remarks
1	1 ml organic taken from top of conc. UNH sol'n (W-1: 47% UN 1.6% HNO3)	24-200	none	gummy residue
2	1 ml organic taken from top of conc. UNH sol'n. 4 0.1 ml 70% HNO3	24-200	Rone	gummy residue
3	1 ml aqueous taken from bottom of conc. UNH sol'n. (W-1)	24-200	none	
4	1 ml TBP-UNH (O).	24-200	none	gummy residue
5	1 ml TBP-UNH (0). 4 0.1 ml 70% HNO3	24-200	none	gummy residue
6	1 ml TBP-UNH (0)• 4 0.1 ml n-Butanol + 0.1 ml 70% HNO3	24-200	none	gummy residue
7	2 ml TBP-UNH (S). 4 0.1 ml 70% HNO3	24-200	nope	gummy residue
8	9.5 ml H20 / C.5 ml n-Butanol / 1 ml 70% HNO3	24-200	none	Butanol distilled off at < 100°C
9	10 ml H20 4 2 ml TBP 4 1 ml 70% HNO3	24-200	none	possible slow reaction
10	10 ml UNH (A)• / 2 ml TBP / 2 ml Amsoo / 1 ml 70% HNO3	24-200	yes	Ammoo distilled off at < 110°C. Reaction initiated at 135°C after Ammoo distilled off - Foaming
11	10 ml UNH (A)• / 2 ml TBP-UNH / 0.4 ml 70% HNO3	24-250	yes	Reaction at ~135°C
12	6.5 ml UNH (A)• 4 2 ml TBP-UNH 4 1 ml 70% HNO3	24250	yes	Foaming. Reaction at ~135°C
13	10 ml aqueous thorium nitrate, 1 ml 70% HNO3, 2 ml TBP	24-250	yes	Foaming. Reaction at ~140°C

SUMMARY OF SMALL SCALE TEST RESULTS AT ATMOSHPERIC PRESSURE

· A - aqueous

S - solid

0 - organio

DECLASSIFIED

11

TABLE II

125 co TESTS AT ATMOSPHERIC PRESSURE ON UN-HNO3-TEP SYSTEM

Test Solution: 40% UN 8.8% HNO3 x TBP 25 oc aqueous oharged/run

	STA	RTING C	G CONDITIONS		INITIATION CO	NDITIONS	REACTION				
Run	UN gms	HNO3 gms	TBP gms	TBP/UN	Heating Rate C/min	Liquid Temp. °C	Temp. Hise	Results			
1	15.6	3.45	0.58	0.037	0.1 - 0.2	> 170	0	No rapid reaction			
2	15.6	3.45	1.95	0.125	0.1 - 0.2	>170	0	No rapid reaction			
3	15.6	3.45	2.9	0.187	0.1 - 0.2	>170	0	No rapid reaction			
4	15.6	3.45	3.9	0.249	0.1 - 0.2	> 170	0	No rapid reaction			
5	15.6	3.45	4.85	0.311	0.1 - 0.2	144	44				
6	15.6	3.45	7.3	0.467	0.1 - 0.2	138	30				
7	15.6	3.45	9.7	0.62	0.1 - 0.2	140	30				
8	15.6	3.45	0.19	0.012	1.0	> 170	0	No rapid reaction			
9	15.6	3.45	0.58	0.037	1.0	> 170	0	No rapid reaction			
10	15.6	3.45	0.97	0.062	1.0	> 170	0	No rapid reaction			
11	15.6	3.45	1.95	0.125	1.0	138	49	No rapid reaction			
12	15.6	3.45	2.9	0.187	1.0	141	123				
13	15.6	3.45	2.9	0.187	1.0	160	87				
14	15.6	3.45	4.85	0.311	1.0	154	91				
15	15.6	3.45	4.85	0.311	1.0	150	131				
16	15.6	3.45	7.3	0.467	1.0	150	104				
17	15.6	3.45	9.7	0.62	1.0	141	102				

-

TABLE III

...

· . . . · ·

8

.

ATMOSPHERIC PRESSURE TESTS ON HNO2-TEP SYSTEMS

	Run		STAR	TING	CONDITI	ONS	INIT	IATION CO	NDITIONS		REACTION	REMARKS
		ENO3 gms	TBP	00/	charge	TBP/HNO3	Distillate (oc)	(min.)	Rate oo/min.	liquid,	Temp. rise,	
	1	35 (68%)	8.7	34	-	0.36	Refluxed 20.5	4 hrs. 43	0.48	~155	. 2	T > T Liquid Bath NO ₂ given off
	2	35 (68%)	8.7	34	-	0.36	23.5	34	0.69	~150	180-194	Definite Reaction NO2 given off
	3	35 (68%)	14.2	40	-	0.59	23.5	37	0.63	~150	180 to 193	Mild Reaction NOg given off
	•	35 (68%)	24.6	50	-	1.0	20.5	21	0.98	~150	180 to 206	NO2 given off
	5	35 (68%)	48	73	-	2.0	14	16	0.88	~150	181 to 210	NO2 evolved
W	6	35 (68%)	2.9	28	-	0.12	23	55	0.42	~150	0	Very slow react Copious NO2 evo
	7	35 (68%)	73	100	-	3.0	12	18	0.67	~150	180-205	NO2 evolved
	The second s					the local and it is not been a set of the surface of the local is the local i	the second se		the local division in	the second se		the state of the s

Constant HNO3 Content

. .

	12			ν.	
-	_	_	-	-	
_	_	_	_	_	

1

1.

.

1 11 1 1

.

MISCELLANEOUS 125 co TESTS AT ATMOSPHERIC PRESSURE

							40 cc Ch	urge/run			
Γ,	UN	1	ST	ARTING (CONDITION	IS	INITIATION	CONDITIONS	REACTION		
		UN gms	HNO3 gms	TBP gms	TBP/UN	TBP/HNO3	Distillate co/min.	Liquid Temp.	Liquid Temp. OC	REMARKS	
	1	-	21 (68%)	14.6	-	1.0	Refluxed 48 hours	(120)	-	No reaction NO ₂ given off	
							13/45	(200)		No reaction NO2 evolved	
	2	-	21 (68%)	14.6	-	1.0	13.2/150	(200)	-	Possible reaction NO2 evolved	
	3	17.5	-	3.6	0.21	*	4.4/21	~160	180 to 280	Large evolution of gas	
T	4	15.6	3.5	(DBP)	0.32 (DBP/UN)	1.43 (DBP/HNO3)	18.1/22	~160	180 to 190	Mild reaction NO ₂ given off	
11	5	15.6	3.5	(Amsoo)	-	-	25.5/42	(186)	-	No reaction. Amsco distilled off below 110°	
	6	-	5.7 (NaNO3)	14.5	-	2.55 (TBP/NaNC3)	22/17	178	0	No reaction No NO2	
	7		0.6 (NAOH)	14.5	-	(TBP/NaCH)	22/20	174	0	No reaction. No NO2	
-	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-	and the second	A second second	and the second second				and the second se		

1

14		STA	RTING	CONDI	TIONS		INITIATION	COND	ITIC	NS		REAC	TION	RESULTS	the second second		
Run	Sol'n	UN gma	HNO3 gms	TBP	TBP/UN	Distill. Rate gms H ₂ O min.	Total UN/Aqueous	°C	1ºC	Pipsig	Ptpsig	g pei	p psi (max)	dP psi/sec (max)	v/at °C/sec	AT 1/at °C/seo	Run Re
1	B	115	3.9	24	0.21	unknown	unknown	160	132	~75	> 300	> 300	-	-	44/40	-	Pot contents concentrates sat overnits
2	B	115	3.9	1.	0.21	none	47.1	203	175	> 300	-	-	-	-	-	-	Possible les action gase sat overnit
						~120/?	~92	190	153	40	-	-	-	-	-	-	and the second second
3	B	115	3.9	24	0.21	none	47.1	190	164	200	-	-	-	-	-	-	Temperature up high enou
						120/7	92	130	130	0	-	-	-	-	-	-	States States and
4	B	115	3.9	24	0.21	25/7	52.5	180	140	*140	~350	> 160	150	-	20/25	-	Reaction white was on.
5	B	115	3.9	24	0.21	50/8	59/5	172	148	>150	~320	+150	130	-	30/20		-
6	B	115	3.9	24	0.21	100/20	80.0	144	127	75	~750	> 225	> 260	-	80/20	-	Reaction white was on; pres
7	B	115	3.9	24	0.21	110/21	85.8	130	110	50	1350	» 300	1300	1020	>190/15	-	Pressure ust at reaction.
8	B	115	3.9	24	0.21	none	47.1	195	166	>300	> 300	-	-	-	8/35	-	-
9	B	115	3.9	24	0.21	102/16	81.0	150	116	~ 50	-1.300	300	1280	5040	190/15	-	- 100000000
10	HNO	-	4.7	24	-	125/19	-	188	168	300	-	-	-	-	-	-	
11	B	115	3.9	24	0.21	67/13	65.0	174	152	160	~335	>140	175	-	40/25	28/25	-
12	B	7.5	4.4	24	3.2	125/20	10.5	186	168	> 300	-	-	-	-	10/20	-	Found leak a
13	•	112	3.9	2	0.043		17.0	150	129	140	190	- 30	-	-	10/ 35	20/ 35	after 95cc d removed, NO. at end.
14	B	115	3.9	24	0.21	97/17	78.3	148	128	90	690	600	540	250	80/20	75/20	Temperature similar to H
15	B	115	3.9	24	0.21	87/16	73.3	153	138	150	520	370	260	-	50/15	40/15	alasia sector a -
16	E	85	9.0	24	0.28	120/18	83,5	127	118	90	21000	M200	-	-	>180/20	2170/20	-

TABLE V 1 LITER BOMB TESTS ON UN-HNO3-TEP SYSTEMS

.

.

.

Solution B: 46.7% UN 1.58% HNO3 1.635 S.G. }~175 cc charge/run Solution E: 38.1% UN 4.0% HNO3 1.49 S.G. }~175 cc charge/run

1.1.1.1

...... F

1 1 1 1

	1	S	TARTI	NG CON	DITIONS		INITIATIO	N CON	DITI	ONS		REAC	TION	RESULTS		States and the second	
Run	Sol'I	gms	HNO3 gms	TBP gms	TBP/UN	Distill. Rate gms H ₂ O	Total UN/Aqueous	TIOC	T. C	P _i psig	Pt psig	aP g psig	psi (max	dP p/dt psi/sec (max)	AT v/at °C/se	aT 1/at °C/seo	Run Remarks **
17	8	85	9.0	19.5	0.227	124/21	86.0	154	130	70	~1230	>1000	1160	790	110/23	130/23	Bomb charged, sealed, stood overnite, 90 psig at start (R.T.), dis- tilled 124 cc at 75 psig.
18		85	9.0	5	0.058	120/75	63.5	133	95	30	190	160	85	-	60/20	50/20	Heating mantle trouble at 90 co distillate, took 35 min. to repair, NO ₂ present at end.
19	E	.85	9.0		-	120/25	83.5	176	165	150	-	-	-	-	-	-	NO, present at end.
20	E	115	12.0	24	0.21	161/22	84.0	132	114	50	-1500	450	1060	944	>186/10	168/10	
21	E	85	9.0	5	0.058	117/26	81.1	143	120	50	210	160	126	1225	72/15	48/15	NO2 present at end
22	<u>R</u>	85	9.0	9.7	0.113	119/18	82.6	138	114	50	350	300	183	95	70/20	67/40	
23	E	85	9.0	14.5	0.169	115/30	79.7 .	142	123	70	570	500	336	361	127/20	66/37	
24	E	85	9.0	29.1	0,339	50/16	47.0	140	-	-	-	-	-		-	73/30	NO2 present at end
25	E	85	9.0	29.1	0.339	113/21	78.3	141	117	70	>1070	1000	1140	543	>180/15	>100/15	-
20	HNO3	Trace	105	30	-	none	-	100	150	~ 500	71500	>1000	>1000	-	>150/1	>140/1	the state of the second state
27	HNO3	Trace	53	15	-	none	-	161	150	~ 350	fitt	ings	found	leaking	No re	action	Fittings leaked at
28	HNO3	Pot	80	22	-	none		158	140	~ 500	>1500	>1000	>2200	18,500			Gasket blown, NO2 present.
29	HNO3	Pot Clean	27 (68%)	7.5	-	none	-	156	156	~160	fitt	ing 1	eakin	g, very	little	charge ft	Fitting leaking, tempera- ture falling off, very little liquid left in pot
30	HNO3" TBP	Pot Clean	53 (68%)	15	-	none	-	180	164	420	no r	eacti	on, t	emps. fa	illing of	4	Temperature falling off after max. reached. Very little liquid left in pot
31	HNO3	Pot	75	22	-	none	-	~ 160	~150	> 200	>1200	>1000	4600	250,000	>150/1	2140/1	and the second second second
-	-	115	12.0	24	0.21	167/34	87.7	135	122	0	250	250	190	264	57/25	75/25	-

CONFIDENTIAL

TABLE V (CON'T.)

1.

. . . .

s. 1.3 1

.

.....

ΔPg = rise in pressure by Bourdon gage ΔPg = rise in pressure by Piezo gage ΔPf = rise in pressure by Piezo gage ΔT1/Δt = rate of liquid temp. rise (°/seo)

. . . .

* 14 *

DP-25 Page 35

