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» ABSTRACT

Theoretical equations have been derived (or calculating heat transfer 

coefficients (or fluids flowing through concentric annuli (or the following 

two cases: (A) constant and equal heat fluxes from both walls, and (B) con

stant, but unequal, beat (luxes from the walls, with equal wall temperatures 

at a given axial position along annular channel. In the derivations, the con

ditions of fully-established flew, and Independence of physical properties 

with temperature variation a cro ss  the flow channel, were assumed.

The only geometrical parameter In this general case Is the radius 

ratio r ^ /r ^  and in the study it was varied from 1.0 to 10.0.
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INTRODUCTION

This paper is ths second in s  series of three on the subject of beet 

transfer to liquid metals flowing in concentric annuli. The t i r s t ^  dealt 

with the case of unilateral heat transfer for the conditions of constant heat 

flux and fully-established temperature and velocity profiles. This paper

( 2)presents the derivations of the various equations used in the third paper. 

These equations, although applied to liquid metals, are applicable to any 

fluid.

Two cases of b ilateral heat transfer a re  considered: (A; heat transfer 

through both walls under conditions of constant and equal heal fluxes, and 

(R) heat transfer through both walls under conditions of constant, but un

equal, beat fluxes and equal wall temperatures at a given axial position.

CASE A: EQUAL HEAT FLUXES FROM BOTH WALLS

Figure 1 shows a graphical representation of this case, where r  repre

sents radius; t, temperature; and the subscripts 1, 2, m, and t refer tc the 

inner wall, outer wall, point of maximum velocity, and point of minimum 

temperature, respectively.

We can consider the annulus as being divided into two concentric por

tions, the imaginary boundary between the two being a cylindrical surface 

of radius r .̂
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The heat transferred from the Inner wall will be picked up by the fluid 

flowing In the inner portion; and that transferred from the outer wall will 

be picked up by that flowing in the outer portion. For the inner portion, 

we can write the heat transfer equation

*1 " *S>1* (

and for the outer portion

V ^ O ' r j K W  (:

where t ^  and t ^  represent the average or bulk temperaturee In the inner 

and outer portions, respectively, of the annulus.

The objective is to develop two equations, one for evaluating h^, and 

the other for h^, where these coefficients a re  defined by the equations

1 * " i (tx -  v !3)

. ««
2 * " |(‘* - V

The plan of attack has three parte: (a) determination of r^; (b) determine- 

t t a ,  of h'j u d  h'ji u d  (c) dMormlutlon of u  ft of ^  and

u d  h , . . .  tanetlo. of h'x and h^.
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Determination of r^

A beat transfer-transport balance an the inner portion of the annulus, 

assuming physical properties independent of temperature, glees

V * - \ i ' V (r* * ri, ) * b i  1

A similar balance on the outer portion gives

( 8 >

Since the heat f Luxes on both sa ils  of the annulus are equal, 

r l

Then, substituting Eqs. (5) and (9) into (7) gives

r2 . 2  2 . ,  2 2 ,- r t )

Since
2 /  vrdr

T ,  .  Ill------* 1 , 1  a.l r t  -  J

and elmllarly for v ^ ,  Eq. (8) becomes
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—  vrdr -  J vrdr 
ri l  rt

This equation can be solved for r , as long as v Is known aa a function of r.

For the case of stream-line flow under isothermal conditions, Lamb's

equation for the linear velocity distribution In an annulus Is 

(Ap*o . * I ri ' r l .............
* •  f r i  - r  ♦ a ^ 5  ta(r/ri) 1 ( 10)

When this equation la substituted Into (9), and the resulting equation lots-

grated, we get
4 4 9 2

t  a v rt ' r i  , r t ~r i ar2 , , I  2V 't ’ 1 , 't  ’ I 2 . 2 .
~[ei(rt - r ,  ) -----i------—J-----------'t >»Vrl •» »,> 1

4 4
2 2. f 2 ~ft-«!<«•, -r t ) ------ 5—

2 2
, r2 "rt 2 .  2 . 4

'  l ( I 2 '" V
( U )

where,

Cl * r * * l n V ^ )  to rl

c„ -
r a - r *  * 1

a ‘ WryVj)
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Eq. (11) is  cumbersome and must be solved (or r( by trial. Calculated 

results (or r ^ r i trtr7lDS between 1.0 and 10.0 are  given In Table I.

For the case o( turbulent (low, the velocity profile Information Is 

not available in equation (orm; (ox that reason Eq. (0) must be solved 

graphically, ft must also be solved by trial. However, using the velocity - 

profile relationships o( Rothfos et a l . / ^  the present author (ound that the 

radius o( minimum temperature (or turbulent (low, in a given situation, 

was the sam e as that (or stream -line (low.

Determination of and h |

Equations (or calculating these coefficient* are analogous to those (or

unilateral heat trans(er to fluids (lowing in concentric annuli. The latter

(5)are found in the recent paper of Dwyer and Tu. The modified equations

1
( 12 )

and
r

vrdr ( I S )
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Table I

r t _ r lValues o f -------- (or Coodltlooa of Stream -line Floe
r 2 " r l

and Equal Heat Fluxer from Doth Walla

r a /r i
rt ~ ?l 
r2 ” r l

1.0 0.500

2.0 0.415

2.0 0.367

4.0 0.334

5.0 0.310

6.0 0.290

7.0 0.275

8.0 0.262

9.0 0.250

10.0 0.240
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Determination of hi

We shall s tart with Eq. (3) to develop a generalised equation tur cal

culating h^. The most difficult term to represent mathematically la t^, 

the bulK temperature of las fluid, » /erased  over the total annulus cross 

ruction, at some particular axial location.

If we neglect the effect of radial temperature difference# on fluid 

density, ws can write the equation

r 2 2 . . , 2 2.
*b i\Jrt - rx 1 V .a (r2 - rt 1S»------ =~T— 1r * 2,

\ l r a ' r i  l
, 2 2 ,

\ ( r j  - r 4 ]
(14)

Now, substituting t^« and t ^  from Eqs. (1) and (2), respectively, into this 

equation, gtvos

r q i  i  r q 2 i  
S> " l̂1! " 2wt̂  ! 4 {l~P) L*2 “ i s r ^  i ( 15)

wture

fl-

rt
, 2  2 £  vrdr

T» i(r> ~ ri 1 * i_____
v (r * - r  *) r  2 a 2 1 J  vrdr

, 2  2v /  vrdr
. .  W r 2 ‘ r t ) r t

— r  —
V r2 * r l 1 /  vrdr

r l
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Next, we can express In terms of by writing the equation

V 'rV ^ 'V V US'

This equation can be rewritten as

<tt r / *  C '* *
S’W a l t  T ^ dr. / » 4 vrdr

1
1 effl rt W (17)

Now, combining Eqs. (15) and (17), gives

(18)

where the missing term s inside the square brackets are the sam e as those 

inside the square brackets In Eq. (17).

Eliminating q  ̂ from Eq. (18) by making use of Eq. (7), simplifying,

and rearranging gives

lw ri h'i

(l-fliq,
2»r,h'1 2

1 (19)

where again the term s Inside the square brackets are the same a s  before. 

Next, substituting Eq. (19) in Eq. (3) gives
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hl hi S <i [ J ( » )

But,
, a a. „  dt*4 ■ *ri ^Cp5 (Sa»

Since q̂  in independent o( x, dt/dx le constant. 

Finally, combining Eqs. (20 and (5a), ylelda

2r,(l -S)
rt

r* L » » *— L — r /  _£—
h,  h; h;  , a 2,  [ k „ r1 1 2  ?ai (rt -  ) L ri eff I

r2 X rrdr ,
dr - /

r» w
drj

(an

This la the equation for calculating values of ĥ , remembering that h'̂  and 

h' muat be first calculated from Eqe. (12) and (13), respectively.

The corresponding equation (or calculating raluee of ĥ  is

i  .  ± . L £ .h'. hi /  *7aa(ra * r t ’

r r2 L »rdr rt /  *
/  -r  . /

1 rt • « /

vrdr

w

- 1 2
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CASE B: EQUAL WALL TKMPERATURE8 AT A GIVEN

AXIAL POSITION, AND CONSTANT BUT UNEQUAL 

HEAT FLUXES FROM THE WALLS 

Again, the objective la to develop equations for and h^, where 

these coefficients a r t  defined, an before, by Eqs. (9) and (4). Also, tha 

earns ganaral procedure will ba followed.

Determination at

Sine#, a t  a  ( It an axial position along tha annalua channel, tha tarn* 

paraturaa a t th a  valla  a ra  aqaal, v a  can write tha aquation

VS* VS (J J )

And tinea

ti m\ m I  -(K/*r)dr (24)

and tha rad ia l h sa t (lux, q^, at any rad iua r  la

*t

S  ■ k.R l  £ *  /  * " » * >  |  rd r (29)

(or tha Inner portion  of tha annulus, v a  can write

r‘ 4 p c p I Trdr ., * r T v ”
1 '  '  *\k^ i r

( 26)



S im ilar ly , for tho ootor portion  v «  bar*

; *  * ,  v  s
1 r

▼rdr

k r «f(2
(17)

Combining Kqa. (26) and (27) and aimpllfylnc f i r e s

rt r
/ »  / .  » • *  / I  JL »M r

/  *r---------dr ■ /  —---------- dr
rl kaffl r rt keff2r

(28)

la  tho caao of strea m -lin e  flow, thU aquation can bo solved n u m erl-  

ea lly  for  r .̂ Substituting Eq. (10) Into It, Integrating, aad rearranging, g iv e s

4 4
. rl  / 2 l v r2 ‘ ri c2 , 2 . 2 .

a l n 7 7 4Cs(r2 ' r l  ) " “ T T ~ - T (r2 t o r 2 ' rl (29)

c i  2 f t c 2 2 .  C2rtQ m — r • —■ + — r In r ——
I  t 4 2 t t 4

C •  T  •  C In f
i  l  2 l

r * - r 2 2 1
M rj/rj)

c .  - e2 " C1
8 4
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This equation, like Eq. (11) la unwieldy and must be solved (or r( by tria l. 

Calculated result* (or r^ /r^  varying from 1.0 to 10.0 are given in Table n. 

It will be noticed that (or annuli having r^/r^ ratio* lea* than 5.0, r^ agree* 

with r m to within less than 1%. For euch annuli, v ^  la approximately 

equal to v ^ ,  (or as r^/r^ approaches 1.0, r^ /r ^  approaches 1.0. V it is 

assumed that v ^  « v^» then Eq. (28), upon Integration, reduces to

2 2 r * * r t  2 2 1r * • .......... - '
t . , , v2 (30)

W fj/r ^

which is the same equation as that (or r 2 , (or both stream-line and tu rns

bulent flows.

For turbulent (low, Eq. (28) must be solved graphically and by trial, 

ft must be eotved graphically owing to the (act that the velocity distribu

tions a re  not available in equation (orm. When using the velocity distribu

tion data of Rotbfus et a l . / 4) it was found that for r^/r^ ▼aloes up to 6.0 

(the highest Investigated), r ( was, within the precision of the method of 

calculation, equal to rm. Thus, Just as In case A discussed above, values 

of rt a re  the same for both stream-line and turbulent flows.

Determination of and h^

The equations for calculating these coefficients a re  the same as those
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Table U

r t  * r i
Values ot --------(or Conditions of a) Stream 'line Flow, b) Constant

ra ' r i

but Unequal Heat Fluxes from the Annulus Walls, and c) Equal Wall 

Temperaturoat a Otren Axial Position Aloof Annulus

V r!
Ft ’ r l 

r a ' r i rt/ r m

1.0 0 500 1.000

2.0 0.467 0.997

3.0 0.447 0.994

4.0 0.433 0.992

5.0 0.420 0.989

6.0 0.412 0.986

7.0 0.406 0.988

8.0 0.401 0.981

0.0 0.896 0.978

10.0 0.892 0.975
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for case A, l . r ,  Eqs. (12) and (19).

Determination of h, and h_
_____________________ l ________ 2

We can start with Eq. (15), replacing by t^

S,"  ̂t*i- s t t  l *(1 l'i • i^ rr  l
1 1  2 2

which fives

1 *b * 2*^11^ + 2 s f jh j

Combining this equation with Eq. (3) then gives

i  i  (i-^ ari
"i ‘ hi * hiv»

, , - t o /  »pCp | r d r

q , -  I . /  r p C f  £  rdr

Finally, substituting Eq. (3b) and (5c) Into (32) and simplifying gives  

i  £  (1-* * ri

(15a)

(31)

(32)

(5b)

(5c)

(33)
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For the outer portion of an annulus, an analogous derivation gives

1 Li2:—  m  ■-  +h i
** r»

(34)

The equations, which have been derived here, have been used to cal

culate beat transfer coefficients for liquid metals for the two cases which

have been treated. The results, correlated in the form of senai-emplrlcal

(2)equatlone, will be presented in • subsequent paper.

1
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NOMENCLATURE

■ constant, defined in Eq. (11)

•  constant, defined in Eq. (11)

•  constant, defined in Eq. (29)

« specific heat, Btu/(lb-mass)(*F)
2

■ conversion factor, (lb-mass)(ft)/(lb-(orce)(hr)

•  heat transfer coefficient, defined by Eq. (3), Btu/(hr)(ft)2(°F)

•  heat transfer coefficient, defined by Eq. (4), Btu/(hr)(ft) V f )

» heat transfer coefficient, defined by Eq. (1), Btu/(hr)(ft)2(°F)

■ heat transfer coefficient, defined by Eq. (2), Btu/(hr)(ft)2(°F)

■ k ♦ » effective thermal conductivity of fluid flouring between

r1 and rt , Btu/(hr)(ft)(#F)

k •  molecular thermal conductivity, Btu/(hr)(ft)(°F) 

k ^  ■ eddy thermal conductivity of fluid flowing between r^ and r(, 

Btu/(hr)(ft)(°F)

keff2*

L

k^2 « comparable conductivities for fluid flowing between r( and r2 

■ length of annular conduit, ft

Ap ■ pressure drop across L, lb -force/ft2
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<4

r m

t

‘i

‘a
•b

S>i
S>i
*t
▼

▼a

* radial heat flow rate from inner wall, per linear toot of annulus, 

B ta/hr

« same as q^, except for outer wall, Bta/hr

* any value of the radius between and r^, ft

■ Inner radios of annulus, ft

* outer radius of annulus, ft

■ radius of maximum velocity, ft

-  radius of minimum temperature, ft

■ temperature of fluid at any radius r, °7

■ surface temperature of inner wall, °F

* surface temperature of outer wall, °F

■ average bulk temperature of fluid flowing between r^ and r^, °F 

» average bulk temperature of fluid flowing between r^ and r^, #F

■ average bulk temperature of fluid flowing between and r^, °F

■ minimum temperature in annular flow channel, °F

■ local linear velocity at radius r, ft/hr

■ average linear velocity of fluid flowing between r^ and r 2, ft/hr

■ average linear velocity of fluid flowing between r^ and r  , ft/hr
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v » average linear velocity of fluid flowing between r and r
•  J  *

x * any axial distance along annular channel, ft 

Greek Lette re

or -  quantity defined In Eq. (32), ft4 

$ ■ fraction of total flow passing between r^ and r(

u » dynamic molecular viscosity, (lb>mass)/(ft)(hr)

p ■' fluid density, (lb-mass)/ft*

, ft/h r

-21  -
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FIGURE CAPTION

Figure 1 Graphical representation (or case o( equal heat (luxes from 

both walls erf concentric annulus.
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