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» ABSTRACT

Theoretical equations have been derived (or calculating heat transfer 

coefficients (or fluids flowing through concentric annuli (or the following 

two cases: (A) constant and equal heat fluxes from both walls, and (B) con­

stant, but unequal, beat (luxes from the walls, with equal wall temperatures 

at a given axial position along annular channel. In the derivations, the con­

ditions of fully-established flew, and Independence of physical properties 

with temperature variation a cro ss  the flow channel, were assumed.

The only geometrical parameter In this general case Is the radius 

ratio r ^ /r ^  and in the study it was varied from 1.0 to 10.0.
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INTRODUCTION

This paper is ths second in s  series of three on the subject of beet 

transfer to liquid metals flowing in concentric annuli. The t i r s t ^  dealt 

with the case of unilateral heat transfer for the conditions of constant heat 

flux and fully-established temperature and velocity profiles. This paper

( 2)presents the derivations of the various equations used in the third paper. 

These equations, although applied to liquid metals, are applicable to any 

fluid.

Two cases of b ilateral heat transfer a re  considered: (A; heat transfer 

through both walls under conditions of constant and equal heal fluxes, and 

(R) heat transfer through both walls under conditions of constant, but un­

equal, beat fluxes and equal wall temperatures at a given axial position.

CASE A: EQUAL HEAT FLUXES FROM BOTH WALLS

Figure 1 shows a graphical representation of this case, where r  repre­

sents radius; t, temperature; and the subscripts 1, 2, m, and t refer tc the 

inner wall, outer wall, point of maximum velocity, and point of minimum 

temperature, respectively.

We can consider the annulus as being divided into two concentric por­

tions, the imaginary boundary between the two being a cylindrical surface 

of radius r .̂
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The heat transferred from the Inner wall will be picked up by the fluid 

flowing In the inner portion; and that transferred from the outer wall will 

be picked up by that flowing in the outer portion. For the inner portion, 

we can write the heat transfer equation

*1 " *S>1* (

and for the outer portion

V ^ O ' r j K W  (:

where t ^  and t ^  represent the average or bulk temperaturee In the inner 

and outer portions, respectively, of the annulus.

The objective is to develop two equations, one for evaluating h^, and 

the other for h^, where these coefficients a re  defined by the equations

1 * " i (tx -  v !3)

. ««
2 * " |(‘* - V

The plan of attack has three parte: (a) determination of r^; (b) determine- 

t t a ,  of h'j u d  h'ji u d  (c) dMormlutlon of u  ft of ^  and

u d  h , . . .  tanetlo. of h'x and h^.
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Determination of r^

A beat transfer-transport balance an the inner portion of the annulus, 

assuming physical properties independent of temperature, glees

V * - \ i ' V (r* * ri, ) * b i  1

A similar balance on the outer portion gives

( 8 >

Since the heat f Luxes on both sa ils  of the annulus are equal, 

r l

Then, substituting Eqs. (5) and (9) into (7) gives

r2 . 2  2 . ,  2 2 ,- r t )

Since
2 /  vrdr

T ,  .  Ill------* 1 , 1  a.l r t  -  J

and elmllarly for v ^ ,  Eq. (8) becomes

- 6 -

£



—  vrdr -  J vrdr 
ri l  rt

This equation can be solved for r , as long as v Is known aa a function of r.

For the case of stream-line flow under isothermal conditions, Lamb's

equation for the linear velocity distribution In an annulus Is 

(Ap*o . * I ri ' r l .............
* •  f r i  - r  ♦ a ^ 5  ta(r/ri) 1 ( 10)

When this equation la substituted Into (9), and the resulting equation lots-

grated, we get
4 4 9 2

t  a v rt ' r i  , r t ~r i ar2 , , I  2V 't ’ 1 , 't  ’ I 2 . 2 .
~[ei(rt - r ,  ) -----i------—J-----------'t >»Vrl •» »,> 1

4 4
2 2. f 2 ~ft-«!<«•, -r t ) ------ 5—

2 2
, r2 "rt 2 .  2 . 4

'  l ( I 2 '" V
( U )

where,

Cl * r * * l n V ^ )  to rl

c„ -
r a - r *  * 1

a ‘ WryVj)
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Eq. (11) is  cumbersome and must be solved (or r( by trial. Calculated 

results (or r ^ r i trtr7lDS between 1.0 and 10.0 are  given In Table I.

For the case o( turbulent (low, the velocity profile Information Is 

not available in equation (orm; (ox that reason Eq. (0) must be solved 

graphically, ft must also be solved by trial. However, using the velocity - 

profile relationships o( Rothfos et a l . / ^  the present author (ound that the 

radius o( minimum temperature (or turbulent (low, in a given situation, 

was the sam e as that (or stream -line (low.

Determination of and h |

Equations (or calculating these coefficient* are analogous to those (or

unilateral heat trans(er to fluids (lowing in concentric annuli. The latter

(5)are found in the recent paper of Dwyer and Tu. The modified equations

1
( 12 )

and
r

vrdr ( I S )
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Table I

r t _ r lValues o f -------- (or Coodltlooa of Stream -line Floe
r 2 " r l

and Equal Heat Fluxer from Doth Walla

r a /r i
rt ~ ?l 
r2 ” r l

1.0 0.500

2.0 0.415

2.0 0.367

4.0 0.334

5.0 0.310

6.0 0.290

7.0 0.275

8.0 0.262

9.0 0.250

10.0 0.240
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Determination of hi

We shall s tart with Eq. (3) to develop a generalised equation tur cal­

culating h^. The most difficult term to represent mathematically la t^, 

the bulK temperature of las fluid, » /erased  over the total annulus cross 

ruction, at some particular axial location.

If we neglect the effect of radial temperature difference# on fluid 

density, ws can write the equation

r 2 2 . . , 2 2.
*b i\Jrt - rx 1 V .a (r2 - rt 1S»------ =~T— 1r * 2,

\ l r a ' r i  l
, 2 2 ,

\ ( r j  - r 4 ]
(14)

Now, substituting t^« and t ^  from Eqs. (1) and (2), respectively, into this 

equation, gtvos

r q i  i  r q 2 i  
S> " l̂1! " 2wt̂  ! 4 {l~P) L*2 “ i s r ^  i ( 15)

wture

fl-

rt
, 2  2 £  vrdr

T» i(r> ~ ri 1 * i_____
v (r * - r  *) r  2 a 2 1 J  vrdr

, 2  2v /  vrdr
. .  W r 2 ‘ r t ) r t

— r  —
V r2 * r l 1 /  vrdr

r l
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Next, we can express In terms of by writing the equation

V 'rV ^ 'V V US'

This equation can be rewritten as

<tt r / *  C '* *
S’W a l t  T ^ dr. / » 4 vrdr

1
1 effl rt W (17)

Now, combining Eqs. (15) and (17), gives

(18)

where the missing term s inside the square brackets are the sam e as those 

inside the square brackets In Eq. (17).

Eliminating q  ̂ from Eq. (18) by making use of Eq. (7), simplifying,

and rearranging gives

lw ri h'i

(l-fliq,
2»r,h'1 2

1 (19)

where again the term s Inside the square brackets are the same a s  before. 

Next, substituting Eq. (19) in Eq. (3) gives
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hl hi S <i [ J ( » )

But,
, a a. „  dt*4 ■ *ri ^Cp5 (Sa»

Since q̂  in independent o( x, dt/dx le constant. 

Finally, combining Eqs. (20 and (5a), ylelda

2r,(l -S)
rt

r* L » » *— L — r /  _£—
h,  h; h;  , a 2,  [ k „ r1 1 2  ?ai (rt -  ) L ri eff I

r2 X rrdr ,
dr - /

r» w
drj

(an

This la the equation for calculating values of ĥ , remembering that h'̂  and 

h' muat be first calculated from Eqe. (12) and (13), respectively.

The corresponding equation (or calculating raluee of ĥ  is

i  .  ± . L £ .h'. hi /  *7aa(ra * r t ’

r r2 L »rdr rt /  *
/  -r  . /

1 rt • « /

vrdr

w

- 1 2
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CASE B: EQUAL WALL TKMPERATURE8 AT A GIVEN

AXIAL POSITION, AND CONSTANT BUT UNEQUAL 

HEAT FLUXES FROM THE WALLS 

Again, the objective la to develop equations for and h^, where 

these coefficients a r t  defined, an before, by Eqs. (9) and (4). Also, tha 

earns ganaral procedure will ba followed.

Determination at

Sine#, a t  a  ( It an axial position along tha annalua channel, tha tarn* 

paraturaa a t th a  valla  a ra  aqaal, v a  can write tha aquation

VS* VS (J J )

And tinea

ti m\ m I  -(K/*r)dr (24)

and tha rad ia l h sa t (lux, q^, at any rad iua r  la

*t

S  ■ k.R l  £ *  /  * " » * >  |  rd r (29)

(or tha Inner portion  of tha annulus, v a  can write

r‘ 4 p c p I Trdr ., * r T v ”
1 '  '  *\k^ i r

( 26)



S im ilar ly , for tho ootor portion  v «  bar*

; *  * ,  v  s
1 r

▼rdr

k r «f(2
(17)

Combining Kqa. (26) and (27) and aimpllfylnc f i r e s

rt r
/ »  / .  » • *  / I  JL »M r

/  *r---------dr ■ /  —---------- dr
rl kaffl r rt keff2r

(28)

la  tho caao of strea m -lin e  flow, thU aquation can bo solved n u m erl-  

ea lly  for  r .̂ Substituting Eq. (10) Into It, Integrating, aad rearranging, g iv e s

4 4
. rl  / 2 l v r2 ‘ ri c2 , 2 . 2 .

a l n 7 7 4Cs(r2 ' r l  ) " “ T T ~ - T (r2 t o r 2 ' rl (29)

c i  2 f t c 2 2 .  C2rtQ m — r • —■ + — r In r ——
I  t 4 2 t t 4

C •  T  •  C In f
i  l  2 l

r * - r 2 2 1
M rj/rj)

c .  - e2 " C1
8 4
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This equation, like Eq. (11) la unwieldy and must be solved (or r( by tria l. 

Calculated result* (or r^ /r^  varying from 1.0 to 10.0 are given in Table n. 

It will be noticed that (or annuli having r^/r^ ratio* lea* than 5.0, r^ agree* 

with r m to within less than 1%. For euch annuli, v ^  la approximately 

equal to v ^ ,  (or as r^/r^ approaches 1.0, r^ /r ^  approaches 1.0. V it is 

assumed that v ^  « v^» then Eq. (28), upon Integration, reduces to

2 2 r * * r t  2 2 1r * • .......... - '
t . , , v2 (30)

W fj/r ^

which is the same equation as that (or r 2 , (or both stream-line and tu r­ns

bulent flows.

For turbulent (low, Eq. (28) must be solved graphically and by trial, 

ft must be eotved graphically owing to the (act that the velocity distribu­

tions a re  not available in equation (orm. When using the velocity distribu­

tion data of Rotbfus et a l . / 4) it was found that for r^/r^ ▼aloes up to 6.0 

(the highest Investigated), r ( was, within the precision of the method of 

calculation, equal to rm. Thus, Just as In case A discussed above, values 

of rt a re  the same for both stream-line and turbulent flows.

Determination of and h^

The equations for calculating these coefficients a re  the same as those
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Table U

r t  * r i
Values ot --------(or Conditions of a) Stream 'line Flow, b) Constant

ra ' r i

but Unequal Heat Fluxes from the Annulus Walls, and c) Equal Wall 

Temperaturoat a Otren Axial Position Aloof Annulus

V r!
Ft ’ r l 

r a ' r i rt/ r m

1.0 0 500 1.000

2.0 0.467 0.997

3.0 0.447 0.994

4.0 0.433 0.992

5.0 0.420 0.989

6.0 0.412 0.986

7.0 0.406 0.988

8.0 0.401 0.981

0.0 0.896 0.978

10.0 0.892 0.975
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for case A, l . r ,  Eqs. (12) and (19).

Determination of h, and h_
_____________________ l ________ 2

We can start with Eq. (15), replacing by t^

S,"  ̂t*i- s t t  l *(1 l'i • i^ rr  l
1 1  2 2

which fives

1 *b * 2*^11^ + 2 s f jh j

Combining this equation with Eq. (3) then gives

i  i  (i-^ ari
"i ‘ hi * hiv»

, , - t o /  »pCp | r d r

q , -  I . /  r p C f  £  rdr

Finally, substituting Eq. (3b) and (5c) Into (32) and simplifying gives  

i  £  (1-* * ri

(15a)

(31)

(32)

(5b)

(5c)

(33)
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For the outer portion of an annulus, an analogous derivation gives

1 Li2:—  m  ■-  +h i
** r»

(34)

The equations, which have been derived here, have been used to cal­

culate beat transfer coefficients for liquid metals for the two cases which

have been treated. The results, correlated in the form of senai-emplrlcal

(2)equatlone, will be presented in • subsequent paper.

1
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NOMENCLATURE

■ constant, defined in Eq. (11)

•  constant, defined in Eq. (11)

•  constant, defined in Eq. (29)

« specific heat, Btu/(lb-mass)(*F)
2

■ conversion factor, (lb-mass)(ft)/(lb-(orce)(hr)

•  heat transfer coefficient, defined by Eq. (3), Btu/(hr)(ft)2(°F)

•  heat transfer coefficient, defined by Eq. (4), Btu/(hr)(ft) V f )

» heat transfer coefficient, defined by Eq. (1), Btu/(hr)(ft)2(°F)

■ heat transfer coefficient, defined by Eq. (2), Btu/(hr)(ft)2(°F)

■ k ♦ » effective thermal conductivity of fluid flouring between

r1 and rt , Btu/(hr)(ft)(#F)

k •  molecular thermal conductivity, Btu/(hr)(ft)(°F) 

k ^  ■ eddy thermal conductivity of fluid flowing between r^ and r(, 

Btu/(hr)(ft)(°F)

keff2*

L

k^2 « comparable conductivities for fluid flowing between r( and r2 

■ length of annular conduit, ft

Ap ■ pressure drop across L, lb -force/ft2
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<4

r m

t

‘i

‘a
•b

S>i
S>i
*t
▼

▼a

* radial heat flow rate from inner wall, per linear toot of annulus, 

B ta/hr

« same as q^, except for outer wall, Bta/hr

* any value of the radius between and r^, ft

■ Inner radios of annulus, ft

* outer radius of annulus, ft

■ radius of maximum velocity, ft

-  radius of minimum temperature, ft

■ temperature of fluid at any radius r, °7

■ surface temperature of inner wall, °F

* surface temperature of outer wall, °F

■ average bulk temperature of fluid flowing between r^ and r^, °F 

» average bulk temperature of fluid flowing between r^ and r^, #F

■ average bulk temperature of fluid flowing between and r^, °F

■ minimum temperature in annular flow channel, °F

■ local linear velocity at radius r, ft/hr

■ average linear velocity of fluid flowing between r^ and r 2, ft/hr

■ average linear velocity of fluid flowing between r^ and r  , ft/hr
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v » average linear velocity of fluid flowing between r and r
•  J  *

x * any axial distance along annular channel, ft 

Greek Lette re

or -  quantity defined In Eq. (32), ft4 

$ ■ fraction of total flow passing between r^ and r(

u » dynamic molecular viscosity, (lb>mass)/(ft)(hr)

p ■' fluid density, (lb-mass)/ft*

, ft/h r
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FIGURE CAPTION

Figure 1 Graphical representation (or case o( equal heat (luxes from 

both walls erf concentric annulus.
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