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ABSTRACT

Theoretical equations have been derived (or calculating heat transfer
coefficients (or fluids flowing through concentric annuli (or the following
two cases: (A) constant and equal heat fluxes from both walls, and (B) con-
stant, but unequal, beat (luxes from the walls, with equal wall temperatures
at a given axial position along annular channel. In the derivations, the con-
ditions of fully-established flew, and Independence of physical properties
with temperature variation across the flow channel, were assumed.

The only geometrical parameter Inthis general case Is the radius

ratio r~/r” and in the study it was varied from 1.0 to 10.0.



INTRODUCTION

This paper is ths second ins series of three on the subject of beet
transfer to liquid metals flowing in concentric annuli. The tirst® dealt
with the case of unilateral heat transfer for the conditions of constant heat
flux and fully-established temperature and velocity profiles. This paper
presents the derivations of the various equations used in the third paper.(z)
These equations, although applied to liquid metals, are applicable to any
fluid.

Two cases of bilateral heat transfer are considered: (A; heat transfer
through both walls under conditions of constant and equal heal fluxes, and

(R) heat transfer through both walls under conditions of constant, but un-

equal, beat fluxes and equal wall temperatures at a given axial position.

CASE A: EQUAL HEAT FLUXES FROM BOTH WALLS
Figure 1shows a graphical representation of this case, where r repre-
sents radius; t, temperature; and the subscripts 1, 2, m, and t refer tc the
inner wall, outer wall, point of maximum velocity, and point of minimum
temperature, respectively.
We can consider the annulus as being divided into two concentric por-
tions, the imaginary boundary between the two being a cylindrical surface

of radius .



The heat transferred from the Inner wall will be picked up by the fluid
flowing In the inner portion; and that transferred from the outer wall will
be picked up by that flowing in the outer portion. For the inner portion,

we can write the heat transfer equation

*1 " *S>l* (

and for the outer portion

VAO'rjK W (
where t* and t” represent the average or bulk temperaturee In the inner
and outer portions, respectively, of the annulus.

The objective is to develop two equations, one for evaluating h”, and

the other for h”, where these coefficients are defined by the equations
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The plan of attack has three parte: (a) determination of r*; (b) determine-
tta, of hjud hjiud (c) dMormlutlon of u ft of A and

ud h, ... tanetlo. of h'’xand h”.



Determination of M

A beat transfer-transport balance an the inner portion of the annulus,

assuming physical properties independent of temperature, glees

V *-\i'"V (r**ri,)*bi 1
A similar balance on the outer portion gives

(8>

Since the heat fLuxes on both sails of the annulus are equal,

ri

Then, substituting Egs. (5) and (9) into (7) gives

r2 .2 2. .2 _rtz)
Since
2/ der
T*,l.
\ d.
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and elmllarly for v~ , Eq. (8) becomes



— vrdr - J vrdr
ri I rt

This equation can be solved for r, as long as v Is known aa a function of r.
For the case of stream-line flow under isothermal conditions, Lamb's

equation for the linear velocity distribution Inan annulus Is

Ao. * I ri | rh .
- fri -« .a’\é ta(r/ri) 1 (10

*

When this equation la substituted Into (9), and the resulting equation lots-

grated, we get

4 4 9 2

av rt 'ri ,th ~r 2.
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Eqg. (11) is cumbersome and must be solved (or r( by trial. Calculated
results (or r ri trtr7IDS between 1.0and 10.0 are given In Table I.

For the case o( turbulent (low, the velocity profile Information Is
not available in equation (orm; (ox that reason Eg. (0) must be solved
graphically, ft mustalso be solved by trial. However, using the velocity -
profile relationships o( Rothfos et al./” the present author (ound that the
radius o( minimum temperature (or turbulent (low, in a given situation,
was the same as that (or stream-line (low.

Determination of and h|

Equations (or calculating these coefficient* are analogous to those (or
unilateral heat trans(er to fluids (lowing in concentric annuli. The latter

are found in the recent paper of Dwyer and Tu.(s) The modified equations

(12

and

vrdr (1S)



Table |

Values of[-t--=-[-I (or Coodltlooa of Stream -line Floe

r2"rl
and Equal Heat Fluxer from Doth Walla

re~ 2l

ralri 9y
1.0 0.500
2.0 0.415
2.0 0.367
4.0 0.334
5.0 0.310
6.0 0.290
7.0 0.275
8.0 0.262
9.0 0.250
10.0 0.240



Determination of hi

We shall start with Eqg. (3) to develop a generalised equation tur cal-
culating ™. The most difficult term to represent mathematically la t*,
the bulk temperature of las fluid, »/erased over the total annulus cross
ruction, at some particular axial location.

If we neglect the effect of radial temperature difference# on fluid

density, ws can write the equation

*bi\Itt X 1,V .a(2 -1t 1
N
\lra "ril \(rj -rd]

Now, substituting t"« and t™ from Eqs. (1) and (2), respectively, into this
equation, gtvos
" r 1" ql l r (13 q2 i' 15
S"ANI "2 14{-PL2“isTA i (15
rt

2 2 £ vrdr
_Bi(r>~ri 1 *i

wture

fl
Va(rz* i rl*) T 2vrdr

, 2 & [ vrdr
W r2 ‘rt) rt
R r R
V r2 *rl 1 [ vrdr
ri
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Next, we can express Interms of by writing the equation
| | !
VrvNr'VV Us

This equation can be rewritten as
<tt r /* %'** /» 4 1
’ N\ . 17)
S'W a’l't L N W
Now, combining Egs. (15) and (17), gives

(18)

where the missing terms inside the square brackets are the same as those
inside the square brackets In Eq. (17).

Eliminating g™ from Eqg. (18) by making use of Eq. (7), simplifying,
and rearranging gives

(I-flig, 1

wrihi 22

(19)

where again the terms Inside the square brackets are the same as before.

Next, substituting Eq. (19) in Eqg. (3) gives

11-



HH S 4 [ J
But,
Am ’a*ria"\’Cpq:I; (Se»

Since "™ in independent o( x, dt/dx le constant.

Finally, combining Egs. (20 and (5a), ylelda

rt
2r,(l -S) r* lp »»* r2 Xrrdr
h hoh; _La_zr/ o Ao/ drj
1 q 2 ?ai(rt - ’)Lri eff 1 r» w
(an

This la the equation for calculating values of Y, remembering that H™and
h' muat be first calculated from Eqe. (12) and (13), respectively.

The corresponding equation (or calculating raluee of " is

r r2 L »rdr rt / *vrdr

i .+.Lh£. / r .

Fafra ¥ttt sl w
(22)

-12



CASE B: EQUAL WALL TKMPERATURES8 AT A GIVEN
AXIAL POSITION, AND CONSTANT BUT UNEQUAL
HEAT FLUXES FROM THE WALLS
Again, the objective la to develop equations for and h”, where
these coefficients art defined, an before, by Eqgs. (9) and (4). Also, tha
earns ganaral procedure will ba followed.

Determination at

Sine#, at a (ltan axial position along tha annalua channel, tha tarn*

paraturaa at tha valla ara agaal, va can write tha aquation

VS*VS

And tinea

tim ml  -(K/*r)dr

and tha radial hsat (lux, g®, at any radiua r la

*t
S = kKRI E£* [ *"»*> | rdr

(or tha Inner portion of tha annulus, va can write

4oyl T

1+ RN ir

(3J)

(24)

(29)

(26)



Similarly, for tho ootor portion v« bar*

e vrdr
; : vk S i (17)
1or «f(2
Combining Kga. (26) and (27) and aimpllfylnc fires

rt r
[» [, »oe* [1JL »Mr
I O dr m / —emeee- dr (28)
rl kaffl r rr keff2r

la tho caao of stream-line flow, thU aquation can bo solved numerl-

eally for r™ Substituting Eqg. (10) Into It, Integrating, aad rearranging, gives

4 4
.orl [ 2 lv r2 “ri c2, 2. 2.
aln774Cs(r2 "rl )" “ T T ~-T (r2 tor2 'rl (29)
Qmirzoft—-+g r2'lnr gt
|t 4 2t t 4
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This equation, like Eq. (11) la unwieldy and must be solved (or r( by trial.
Calculated result* (or rA/r™ varying from 1.0 to 10.0 are given in Table n.
It will be noticed that (or annuli having r*/r™ ratio* lea* than 5.0, r* agree*
with rm to within less than 1% For euch annuli, v~ la approximately
equal to v”, (or as r™/r™ approaches 1.0, r*/r™ approaches 1.0. Vit is

assumed that v* «v”» then Eq. (28), upon Integration, reduces to

2,002 1 (30)

which is the same equation as that (or rrEZ , (or both stream-line and tur-
bulent flows.

For turbulent (low, Eq. (28) must be solved graphically and by trial,
ft must be eotved graphically owing to the (act that the velocity distribu-
tions are not available in equation (orm. When using the velocity distribu-
tion data of Rotbfus et al./4) it was found that for r~/r™ wvaloes up to 6.0
(the highest Investigated), r( was, within the precision of the method of
calculation, equal to rm. Thus, Justas Incase A discussed above, values
of rt are the same for both stream-line and turbulent flows.

Determination of and h"
The equations for calculating these coefficients are the same as those

- 15.



Table U

Values ot [E---I-'-(or Conditions of a) Stream'line Flow, b) Constant

ra'ri
but Unequal Heat Fluxes from the Annulus Walls, and c) Equal Wall

Temperaturoat a Otren Axial Position Aloof Annulus

Rl
Vrl o o3 rt/rm

1.0 0500 1.000
2.0 0.467  0.997
3.0 0.447  0.994
4.0 0.433 0.992
5.0 0420 0.989
6.0 0412  0.986
7.0 0.406  0.988
8.0 0401 0.981
0.0 0896 0.978

10.0 0.892 0.975

. 16.



for case A, I.r, Eqgs. (12) and (19).

Determination of i] and hJ2

We can start with Eqg. (15), replacing by t*

S"M*I-stt I*A ['ieirrr | (152)
11 2 2

which fives

1 * 2%A11n 4+ 25fjh] (31)

Combining this equation with Eq. (3) then gives

i i (i-"ai -
"T“h* hv»
,-to/ »pCplrdr (5b)
g,- 1./ rpCf £ rdr (5¢)
Finally, substituting Eg. (3b) and (5¢) Into (32) and simplifying gives
I £ (1-**ri
(33)

S17.



For the outer portion of an annulus, an analogous derivation gives

1, L2, T
=" Thi (34)

The equations, which have been derived here, have been used to cal-
culate beat transfer coefficients for liquid metals for the two cases which
have been treated. The results, correlated in the form of senai-emplrlcal

equatlone, will be presented in ¢ subsequent paper.(z)

18 -



NOMENCLATURE

m constant, defined in Eq. (11)
» constant, defined in Eq. (11)
» constant, defined in Eq. (29)
« specific heat, Btu/(Ib-mass)(*F)
m conversion factor, (Ib-mass)(ft)/(lb-(orce)(hr)2
* heat transfer coefficient, defined by Eq. (3), Btu/(hr)(ft)2(°F)
* heat transfer coefficient, defined by Eqg. (4), Btu/(hr)(ft) V f)
» heat transfer coefficient, defined by Eqg. (1), Btu/(hr)(ft)2(°F)
m heat transfer coefficient, defined by Eq. (2), Btu/(hr)(ft)2(°F)
mke » effective thermal conductivity of fluid flouring between
rland rt, Btu/(hr)(ft)(#F)
k * molecular thermal conductivity, Btu/(hr)(ft)(°F)
k”~  meddy thermal conductivity of fluid flowing between r™ and r(,
Btu/(hr)(ft)(°F)
Keffo* k"2 « comparable conductivities for fluid flowing between r( and r2

L m length of annular conduit, ft

Ap mpressure drop across L, Ib-force/ft2

- 19.



* radial heat flow rate from inner wall, per linear toot of annulus,
Bta/hr

« same as g, except for outer wall, Bta/hr

*any value of the radius between and r®, ft

m Inner radios of annulus, ft

* outer radius of annulus, ft

m radius of maximum velocity, ft

- radius of minimum temperature, ft

mtemperature of fluid at any radius r, °7

m surface temperature of inner wall, °F

*surface temperature of outer wall, °F

maverage bulk temperature of fluid flowing between r* and r*, °F

» average bulk temperature of fluid flowing between r* and ", #F

maverage bulk temperature of fluid flowing between and r*, °F

® minimum temperature in annular flow channel, °F

m local linear velocity at radius r, ft/hr

maverage linear velocity of fluid flowing between r* and r2, ft/hr

maverage linear velocity of fluid flowing between r™ and r , ft/hr

- 20-



% » average linear velocity of fluid flowing between r and r , ft/hr

e J

X *any axial distance along annular channel, ft

Greek Lettere

ar - quantity defined In Eq. (32), ft4

$ m fraction of total flow passing between r™ and r(
u » dynamic molecular viscosity, (Ib>mass)/(ft)(hr)

P m fluid density, (Ib-mass)/ft*

-21 .
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FIGURE CAPTION

Figure 1  Graphical representation (or case o( equal heat (luxes from

both walls af concentric annulus.

-23 .
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