Equations for Bilataral Heat Transfer

to Flutis Flowing in Concentric Annuli*
O. E. Dwyer

Brookhaven National Laboratory
Upton, New York

April 10, 1962

Focsimile Prices 2.60
Mierofilm Price s 92
Available from the
Office of Technical Services
Department of Commerce
Woshington 25, D. C.

Number of copies submitted: 5
Number of manuscript pages: 23

This paper was submitted for pubicicaion: in the open literature at least 6 months prior to the issuance date of this Microcard. Since the U.S.A.E.C. has no evidence that it has been published, the paper is being distributed in Microcard form as a preprint.
privaiki, amest ngbis. ar

Number of tigures: 1
Number of tables: 2

This work was performed under the ausplees of the U. S. Atomic Energy Commission.

Bilateral Heat Transter in Annull

Send prools to:	Dr. O. E. Dwyer
	Building 815
	Nuclear Engineering Dept.
	Brookhaven National Laboratory
	Upton, New York

Abstract

Theoretical equations have been derived for calculating heat transfer coefficients for fluids flowing through concentric annuli for the following two cases: (A) constant and equal heat fluxes from both walls, and (B) constant, but unequal, heat fluxes from the walls, with equal wall temperatures at a given axial position along annular channel. In the derivations, the conditions of fully-established flow, and independence of physical properties with temperature variation across the flow channel, were assumed.

The only geometrical parameter in this general case ts the radius retio $\mathbf{r}_{\mathbf{2}} / \mathrm{r}_{\mathbf{1}}$, and in the study it was varied from 1.0 to $\mathbf{1 0 . 0}$.

INTRODUCTION

This paper is the second in a series of three on the subject of heat transfer to liquid metals flowing in concentric annuli. The tirst ${ }^{(1)}$ dealt with the case of unilateral heat transfer for the conditions of constant heat fluz and fully-established temperature and velocity profiles. This paper presents the derivations of the various equations ussed in the third paper. ${ }^{(2)}$ These equations, although applied to liquid metals, are applicable to any tluid.

Two cases of bilateral heat transfer are considered: (A) heat transfer through both walls under conditions of constant and aqual hoat fiuzes, and (R) heat transfer through both walls under conditions of constant, but unequal, heat Iluxes and equal wall temperatures at a given exial position.

CASE A: EQUAL HEAT FLUXES FROM BOTH WALLS

Figure 1 shows a graphical representation of this case, where r represents radius; t, temperature; and the subscripts $1,2, m$, and t refer to the inner wall, outer wall, point of maximum velocity, and point of minimum temperature, respectively.

We can consider the annulus as being divided into two concentric portions, the imaginary boundary between the two being a cylindrical surface of radius r_{t}.

The heat transferred from the inner wall will be picked up by the fluid flowing in the taner portion; and that transferred from the outer wall will be pleked up by that flowing in the outer portion. For the inner portion, we can write the heat transfor equation

$$
\begin{equation*}
a_{1}=h_{1}^{\prime}\left(2 \pi r_{1}\right)\left(t_{1}-t_{b 1}\right) \tag{1}
\end{equation*}
$$

and for the outer portion

$$
\begin{equation*}
q_{2}=h_{2}^{\prime}\left(2 r r_{2}\right)\left(t_{2}-t_{b 2}\right) \tag{2}
\end{equation*}
$$

where $t_{b 1}$ and $\mathrm{t}_{\mathrm{b} 2}$ represent the average or bulk temperatures in the inner and outer portions, respectively, of the annulus.

The objective is to develop two equations, one for evaluating h_{1}, and the other for h_{2}, where these coefficients are defined by the equationa

$$
\begin{equation*}
h_{1}=\frac{q_{1}}{2 \pi r_{1}\left(t_{1}-t_{b}\right)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}=\frac{q_{2}}{2 \pi r_{2}\left(t_{2}-t_{b}\right)} \tag{4}
\end{equation*}
$$

The plan of attack has three parte: (a) determination of r_{t}; (b) determination of h_{1}^{\prime} and h_{2}^{\prime}; and (c) determination of h_{1} as a functios of h_{1}^{\prime} and h_{2}^{\prime}, and h_{2} as a tunction of h_{1}^{\prime} and h_{2}^{\prime}.

Dotermination of $\mathbf{r}_{\mathbf{t}}$

A heat transfer-transport balance on the inner portion of the annulus, assaming physical properties independent of temperature, gives

$$
\begin{equation*}
a_{1} d x=\nabla_{a 1} \rho C_{p} r\left(r_{t}^{2}-r_{1}^{2}\right) d t_{b 1} \tag{5}
\end{equation*}
$$

A similar balance on the outer portion gives

$$
\begin{equation*}
a_{2} d x=\nabla_{a e^{2}} C_{p} z\left(r_{g}^{2}-r_{t}^{2}\right) d t t_{b 2} \tag{6}
\end{equation*}
$$

Stnee the heat fluzes on both walls of the annulus are equal,

$$
\begin{equation*}
q_{1}=\frac{r_{1}}{r_{2}} q_{3} \tag{7}
\end{equation*}
$$

Then, aubatituting Eqs. (5) and (8) into (7) gives

$$
\begin{equation*}
\frac{r_{2}}{r_{1}} \nabla_{21}\left(r_{t}^{2}-r_{1}^{2}\right)=\nabla_{22}\left(r_{2}^{2}-r_{t}^{2}\right) \tag{8}
\end{equation*}
$$

Since

$$
v_{a 1}=\frac{2 \int_{r_{1}}^{r_{t}} r r_{t}}{\left[r_{t}^{2}-r_{1}^{2}\right]}
$$

and eimilarly for $\boldsymbol{v}_{\text {ait }}$ Eq. (8) becomes

$$
\begin{equation*}
\frac{r_{2}}{r_{1}} \cdot G_{1}^{r_{t}} v r d r=\int_{r_{t}}^{r_{2}} v r d r \tag{9}
\end{equation*}
$$

This equation can be solved for r_{t}, as long as v is known as a function of r .
For the case of atream-line flow under feothermal conditions, Lamb's ${ }^{(3)}$ equation for the itnear veloetity distribution in an annulus is

$$
\begin{equation*}
V=\frac{(\Delta p) g_{0}}{4 \mu \Sigma}\left[r_{1}^{2}-r^{2}+\frac{r_{2}^{2}-r_{1}^{2}}{\ln \left(r_{2} / r_{1}\right)} \ln \left(r / r_{1}\right)\right] \tag{10}
\end{equation*}
$$

When this equation is subattiated into (9), and the resulting equation integrated, we get

$$
\begin{align*}
& \frac{r_{2}}{r_{1}}\left[c_{1}\left(r_{t}^{2}-r_{1}^{2}\right)-\frac{r_{t}^{4}-r_{1}^{4}}{2}-c_{2}\left(\frac{r_{t}^{2}-r_{1}^{2}}{2}-r_{t}^{2} \ln r_{t}+r_{1}^{2} \ln r_{1}\right)\right] \\
& =c_{1}\left(r_{2}^{2}-r_{t}^{2}\right)-\frac{r_{2}^{4}-r_{t}^{4}}{2}-c_{2}\left(\frac{r_{2}^{2}-r_{t}^{2}}{2}-r_{2}^{2} \ln r_{2}+r_{t}^{2} \ln r_{t}\right) \tag{11}
\end{align*}
$$

where,

$$
c_{1}=r_{1}^{2}-\frac{r_{2}^{2}-r_{1}^{2}}{\ln \left(r_{2} / r_{1}\right)} \ln r_{1}
$$

and

$$
c_{2}=\frac{r_{2}^{2}-r_{1}^{2}}{\ln \left(r_{2} / r_{1}\right)}
$$

Eq. (11) is cumbersome and must be solved for r_{t} by trial. Calculated remulte for r_{2} / r_{1} varying between 1.0 and 10.0 are given in Table I.

For the case of turbulant tlow, the velocity profile information is not avallable in equation form; for that reason Eq. (9) must be solved graphically. It must also be solved by trial. However, using the veloeityprofile relationships of Rothfus et al., (\$) the present author found that the sadius of minimum temperature for turbulent flow, in a given situation, was the eame as that for stream-line flow.

Determination of h_{1}^{\prime} and h_{2}^{\prime}

Equations for calculating these coeffieiente are analogous to those for unilateral heat transfer to fluids flowing in concentric annull. The latter are found in the recent paper of Dwyer and Tu . ${ }^{(5)}$ The modified equations are

$$
\begin{equation*}
\frac{1}{h_{1}^{\prime}}=\frac{4 r_{1}}{\left(r_{t}^{2}-r_{1}^{2}\right)^{2} v_{a 1}^{2}} \int_{r_{1}}^{r_{t}}\left[\int_{r_{1}}^{r} \frac{\int_{r}^{r_{t}} v r d r}{r k_{e l f 1}}\right] v r d r \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{h_{2}^{\prime}}=\frac{4 r_{2}}{\left(r_{2}^{2}-r_{t}^{2}\right)^{2} v_{22}^{2}} \int_{r_{t}}^{r_{2}}\left[\int_{r}^{r_{2}} \frac{\int_{r_{i}}^{r} v r d r}{r k_{e f f 2}}\right] v r d r \tag{13}
\end{equation*}
$$

Table I

Values of $\frac{r_{t}-r_{1}}{r_{2}-r_{1}}$ for Conditions of Stream-line Flow
and Equal Heat Fluxer from Eoth Walls

$\frac{r_{2} / r_{1}}{1.0}$		$\frac{r_{t}-r_{1}}{r_{2}-r_{1}}$
0.500		
2.0	0.415	
3.0	0.367	
4.0	0.334	
5.0	0.310	
6.0	0.290	
7.0	0.275	
8.0	0.262	
9.0	0.250	
10.0	0.240	

Determination of $\mathbf{h}_{\mathbf{1}}$

We shall start with Eq. (3) to develop a generalized equation tor calculating h_{1}. The most difficult term to represent mathematically is t_{b}, the bulk temperature of the fluid, s veraged over the total annulus cross vaction, at some particular arial location.

If we neglect the effect of radial temperature differences on fluid density, we can write the equation

$$
\begin{equation*}
t_{b}=\frac{t_{1} \nabla_{a 1}\left[r_{t}^{2}-r_{1}^{2}\right]}{\nabla_{a}\left[r_{2}^{2}-r_{1}^{2}\right]}+\frac{t_{b 2} v_{a a^{[}}\left[r_{2}^{2}-r_{t}^{2}\right]}{v_{a}\left[r_{2}^{2}-r_{1}^{2}\right]} \tag{14}
\end{equation*}
$$

Now, substituting $t_{b 1}$ and $t_{b 2}$ from Eqs. (1) and (2), respectively, into this equation, gives

$$
\begin{equation*}
t_{b}=\beta\left[t_{1}-\frac{q_{1}}{2 \pi r_{1} h_{1}^{\prime}}\right]+(1-\beta)\left[t_{2}-\frac{q_{2}}{2 \pi r_{2} h_{2}^{\prime}}\right] \tag{15}
\end{equation*}
$$

wbere

$$
\begin{aligned}
& \beta=\frac{\nabla_{21}\left(r_{t}^{2}-r_{1}^{2}\right)}{\nabla_{2}\left(r_{2}^{2}-r_{1}^{2}\right)}=\frac{\int_{r_{t}}^{r_{t}} \nabla r d r}{\int_{r_{1}}^{2} v r d r} \\
& 1-\beta=\frac{v_{22}\left(r_{2}^{2}-r_{t}^{2}\right)}{v_{2}\left(r_{2}^{2}-r_{1}^{2}\right)}=\frac{\int_{r_{t}}^{r_{2}} v r d r}{\int_{r_{1}}^{r_{2}} v r d r}
\end{aligned}
$$

Next, we can express t_{2} in terms of t_{1} by writing the equation

$$
\begin{equation*}
t_{2}=t_{1}-\left(t_{1}-t_{t}\right)+\left(t_{2}-t_{t}\right) \tag{16}
\end{equation*}
$$

This equation can be rewritten as

$$
\begin{equation*}
t_{2}=t_{1}-C_{p} \rho \frac{d t}{d x}\left[\int_{r_{1}}^{r_{t}} \frac{\int_{r}^{r_{t}} v r d r}{k_{e f f 1} r} d r-\int_{r_{t}}^{r_{2}} \frac{\int_{r_{t}}^{r} v r d r}{k_{e f f 2^{r}}} d r\right] \tag{17}
\end{equation*}
$$

Now, combining Eqs. (15) and (17), gives

$$
\begin{equation*}
t_{b}=B\left(t_{1}-\frac{q_{1}}{2 \pi r_{1} h_{1}^{\prime}}\right)+(1-\beta)\left\{t_{1}-\frac{q_{2}}{2 \pi r_{2} h_{2}^{\prime}}-C_{p} p \frac{d t}{d x}[]\right\} \tag{18}
\end{equation*}
$$

where the missing terms inside the square brackets are the sa me as those inside the square brackets in Eq. (17).

Eliminating q_{2} from Eq. (18) by making use of Eq. (7), simplifying, and rearranging gives

$$
\begin{equation*}
t_{1}-t_{b}=\frac{\beta q_{1}}{2 \pi r_{1} h_{1}^{\prime}}+\frac{(1-\beta) q_{1}}{2 \pi r_{1} h_{z}^{\prime}}+C_{p} \rho \frac{d t}{d x}(1-\beta)[] \tag{19}
\end{equation*}
$$

where again the terms inside the square brackets are the same as before.
Next, substituting Eq. (19) in Eq. (3) gives

$$
\begin{equation*}
\frac{1}{h_{1}}=\frac{\beta}{h_{1}^{\prime}}+\frac{1-\beta}{h_{2}^{\prime}}+\frac{2 \pi r_{1} C_{p} p \frac{d t}{d x}(1-\beta)}{a_{1}}[] \tag{20}
\end{equation*}
$$

But,

$$
\begin{equation*}
q_{1}=\pi v_{a 1}\left(r_{t}^{2}-r_{1}^{2}\right)_{p} C_{p} \frac{d t}{d x} \tag{5a}
\end{equation*}
$$

Since q_{1} is independent of $x, d t / d x$ is constant.
Finally, combining Eqs. (20) and (5a), ytelds

$$
\begin{equation*}
\frac{1}{h_{1}}=\frac{\beta}{h_{1}^{\prime}}+\frac{1-\beta}{h_{2}^{\prime}}+\frac{2 r_{1}(1-\beta)}{v_{21}\left(r_{t}^{2}-r_{1}^{2}\right)}\left[\int_{r_{1}}^{r_{t}} \frac{\int_{r}^{r_{t}} v r d r}{k_{e f f 1}^{r}} d r-\int_{r_{t}}^{r_{2}} \frac{\int_{r_{f}}^{r} v r d r}{k_{e f f 2^{r}}^{r} d r}\right] \tag{21}
\end{equation*}
$$

This is the equation for calculating values of h_{1}, remembering that h_{1}^{\prime} and h_{2}^{\prime} must be first calculated from Eqs. (12) and (13), respectively.

The corresponding equation for calculating values of h_{2} is

CASE B: EQUAL WALL TEMPERATURES AT A GIVEN

AXIAL POSTTION, AND CONSTANT BUT UNEQUAL

heat fluxes from the walls

Agein, the objective is to develop equations for h_{1} and h_{8}, where these coefficients are defined, as before, by Egs. (3) and (4). Also, the same general procedure will be followed.

Determination of $\mathbf{r}_{\mathbf{t}}$

Since, at a given ardal position along the annulus channel, the temperatures at the walls are equal, we can write the equation

$$
\begin{equation*}
t_{1}-t_{t}=t_{2}-t_{t} \tag{23}
\end{equation*}
$$

And since

$$
\begin{equation*}
t_{1}-t_{t}=\int_{r_{1}}^{r_{t}}-(\Delta t / \partial r) d r \tag{24}
\end{equation*}
$$

and the radial heat Ilux, q_{r}, at any radius r is

$$
\begin{equation*}
q_{r}=-2 \pi r k_{e t f 1} \frac{\partial t}{\partial r}=\int_{r}^{r_{t}} 2 \pi v \rho C_{p} \frac{d t}{d x} r d r \tag{25}
\end{equation*}
$$

for the imner portion of the annulus, we can write

$$
\begin{equation*}
t_{1}-t_{t}=\int_{r_{1}}^{r_{t}} \frac{\int_{r}^{r_{t}} \rho C_{p} \frac{d t}{d x} v r d r}{k_{\text {off1 }}^{r}} d r \tag{26}
\end{equation*}
$$

Similarly, for the outer portion we have

$$
\begin{equation*}
t_{2}-t_{t}=\int_{r_{t}}^{x_{2}} \frac{f_{t}^{r} c_{p} \rho \frac{d t}{d x} v d r}{k_{d f t 2^{r}}^{r}} d r \tag{27}
\end{equation*}
$$

Comblning Éqg. (26) and (27) and simplifying gives

$$
\begin{equation*}
\int_{r_{1}}^{r_{t}} \frac{\int_{r}^{r_{t}} v r d r}{r_{e f f 1} r} d r=\int_{r_{t}}^{r_{2}} \frac{\int_{r_{t}}^{r} v r d r}{k_{e f t 2}^{r}} d r \tag{28}
\end{equation*}
$$

In the case of stream-line flow, this equation can be solved numerieally for r_{t}. Substituting Eq. (10) into it, Integrating, and rearranging, gives

$$
\begin{equation*}
a \ln \frac{r_{2}}{r_{1}}+c_{3}\left(r_{2}^{2}-r_{1}^{2}\right)+\frac{r_{2}^{4}-r_{1}^{4}}{16}=\frac{c_{2}}{4}\left(r_{2}^{2} \ln r_{2}-r_{1}^{2} \ln r_{1}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=\frac{c_{1}}{2} r_{t}^{2}-\frac{r_{t}^{4}}{4}+\frac{c_{2}}{2} r_{t}^{2} \ln r_{t}-\frac{c_{2} r_{t}^{2}}{4} \\
& c_{1}=r_{1}^{2}-c_{2} \ln r_{1} \\
& c_{2}=\frac{r_{2}^{2}-r_{1}^{2}}{\ln \left(r_{2} / r_{1}\right)} \\
& c_{3}=\frac{c_{2}-c_{1}}{4}
\end{aligned}
$$

This equation, like Eq. (11) is unwieldy and must be soived for r_{t} by trial. Coleulated results for $\mathbf{r}_{2} / \mathbf{r}_{1}$ varying from 1.0 to 10.0 are given in Table II. It will be noticed that for annull having r_{2} / r_{1} ratios less than $5.0, r_{t}$ agrees with \mathbf{r}_{m} to within less than 1%. For euch annuli, \mathbf{v}_{al} is approximately equal to $v_{a 2}$, for as r_{2} / r_{1} approaches $1.0, r_{t} / r_{m}$ approaches 1.0. If it is assumed that $\mathrm{v}_{\mathrm{al}}=\mathrm{v}_{\mathrm{a} 2}$, then Eq. (28), upon integration, reduces to

$$
\begin{equation*}
r_{t}^{2}=\frac{r_{2}^{2}-r_{1}^{2}}{\ln \left(r_{2} / r_{1}\right)^{2}} \tag{30}
\end{equation*}
$$

which is the same equation as that for $\mathrm{r}_{\mathrm{m}}{ }^{2}$, for both streate-line and turbulent flows.

For turbulent tlow, Eq. (28) must be solved graphically and by trial. It must be soived graphically owing to the fact that the velocity distributions are not avallable in equation form. When using the velocity distribution data of Rotbfus et al., ${ }^{(4)}$ it was found that for r_{2} / r_{1} values up to 6.0 (the higheat investigated), r_{t} was, within the precision of the method of calculation, equal to r_{m}. Thus, just as in case A discussed above, values of r_{t} are the same for both stream-line and turbulent flows.

Determination of h_{1}^{\prime} and h_{2}^{\prime}
The equations for calculating these coefficients are the same as those

Values of $\frac{r_{t}-r_{1}}{r_{2}-r_{1}}$ for Conditions of a) Stream-line Flow, b) Constant but Unequal Heat Fluxes from the Annulus Walls, and c) Equal Wall Temperaturesat a Qiven Axial Position Along Annulus

$\xrightarrow{r_{2} / r_{1}}$	$\frac{r_{t}-r_{1}}{r_{2}-r_{1}}$	$\mathrm{r}_{\mathrm{t}} / \mathrm{r} \mathrm{m}$
1.0	0.500	1.000
2.0	0.467	0.997
3.0	0.447	0.994
4.0	0.432	0.992
5.0	0.480	0.989
6.0	0.412	0.986
7.0	0.406	0.983
8.0	0.401	0.981
9.0	0.396	0.978
10.0	0.392	0.975

for case A, i.e., Eqs. (12) and (13).

Determination of h_{1} and h_{2}

We can start with Eq. (15), replacing t_{2} by t_{1}

$$
\begin{equation*}
t_{b}=\beta\left[t_{1}-\frac{q_{1}}{2 \pi r_{1} h_{1}}\right]+(1-\beta)\left[t_{1}-\frac{q_{2}}{2 \pi r_{2} h_{2}^{\prime}}\right] \tag{15a}
\end{equation*}
$$

which gives

$$
\begin{equation*}
t_{1}-t_{b}=\frac{\beta q_{1}}{2 \pi r_{1} h_{1}}+\frac{(1-\beta) q_{2}}{2 \pi r_{2} h_{2}^{\prime}} \tag{31}
\end{equation*}
$$

Combining this equation with Eq. (3) then gives

$$
\begin{equation*}
\frac{1}{h_{1}}=\frac{\beta}{h_{1}^{\prime}}+\frac{(1-\beta) a_{2} r_{1}}{h_{2}^{\prime} q_{1} r_{2}} \tag{32}
\end{equation*}
$$

But

$$
\begin{equation*}
q_{1}=2 \pi \int_{r_{1}}^{r_{t}} v \rho C_{p} \frac{d t}{d x} r d r \tag{5b}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{2}=2 r \int_{r_{i}}^{r_{2}} v \rho C_{p} \frac{d t}{d x} r d r \tag{5c}
\end{equation*}
$$

Finally, substituting Eq. (5b) and (5c) into (32) and simplifying gives

$$
\begin{equation*}
\frac{1}{h_{1}}=\frac{\beta}{h_{1}^{\prime}}+\frac{(1-\beta)^{2} r_{1}}{\beta h_{2}^{\prime} r_{2}} \tag{33}
\end{equation*}
$$

For the outer portion of an annulus, an analogous derivation gives

$$
\begin{equation*}
\frac{1}{h_{2}}=\frac{1-\beta}{h_{2}^{\prime}}+\frac{\beta^{2} r_{2}}{(1-\beta) h_{1}^{\prime} r_{1}} \tag{34}
\end{equation*}
$$

The equations, which have been cierived here, have been used to calculate heat transfer coefficients for liquid metals for the two cases which have been treated. The results, correlated in the form of semi-empirical equations, will be presented in a subsequent paper. ${ }^{\text {(2) }}$

NOMENCLATURE

$c_{1}=$ constant, defined in Eq. (11)
$c_{2}=$ constant, defined in Eq. (11)
$c_{3}=$ constant, defined in Eq. (28)
$C_{p}=$ specific heat, $B t u /(\mathrm{lb}-$ mass $)\left({ }^{\circ} \mathrm{F}\right)$
$s_{0}=$ conversion factor, ($\mathrm{lb}-$ mass $)(\mathrm{ft}) /(\mathrm{lb}-$ force $)(\mathrm{hr})^{2}$
$h_{1}=$ heat transfer coefficient, defined by Eq. (3), Btu/(hr) $(\mathrm{ft})^{2}\left({ }^{\circ} \mathrm{F}\right)$
$h_{2}=$ heat transfer coeffictent, defined by Eq. (4), Btu/(hr) $(t)^{2}{ }^{2}(\rho)$
$h_{1}^{\prime}=$ heat transfer coefficient, delined by Eq. (1), Btu/(hr) $(\mathrm{ft})^{2}\left({ }^{\circ} \mathrm{E}\right)$
$\mathrm{h}_{2}^{\prime}=$ heat transfer coeffictent, defined by Eq. (2), Btu/(hr) $(\mathrm{ft})^{2}\left({ }^{\circ} \mathrm{F}\right)$
$k_{e f f 1}=k+k_{e 1}=$ effective thermal conductivity of fluid flowing between r_{1} and $r_{t}, B t u /(h r)(f t)\left({ }^{\circ} F\right)$
E. - molecular thermal conductivity, $\mathrm{Btu} /(\mathrm{hr})(\mathrm{ft})\left({ }^{\circ} \mathrm{F}\right)$
$\mathbf{k}_{\text {el }}=$ eddy thermal conductivity of fluid flowing between \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{t}^{\prime}}$ $\left.\mathrm{Bta} /(\mathrm{hr})(\mathrm{ft}) \mathrm{P}^{\circ} \mathrm{s}\right)$
$\mathbf{k}_{\text {eff2 }}{ }^{\prime} \mathbf{k}_{e 2}=$ comparable conductivities for flutd flowing between \mathbf{r}_{t} and \mathbf{r}_{2}
L. = length of annular conduit, ft
$\Delta \mathrm{p}=$ pressure drop across L, lb-force $/ / \mathrm{t}^{2}$
$q_{1}=$ radial heat flow rate from inner wall, per linear foot of annulus, $\mathrm{Bta} / \mathrm{hr}$
$q_{2}=$ same as q_{1}, except for cuter wall, Btu/hr
$r \quad=$ any value of the radius between r_{1} and r_{2}, it
$r_{1}=$ inner radius of annulus, ft
$r_{2}=$ outer radius of annulus, ft
$r_{m}=$ radius of maximum velocity, it
$r_{t}=$ radius of minimum teraperature, it
t = temperature of fluid at any radius $\mathrm{r},{ }^{\circ} \mathrm{F}$
t_{1} = surface temperature of inner wall, ${ }^{\circ} \mathrm{F}$
$t_{2}=$ surface temperature of outer wall, ${ }^{\circ} \mathrm{F}$ $=$ average bult temperature of flutd flowing between \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}{ }^{0} \mathbf{F}$
$t_{b 1}=$ average bulk temperature of fluld flowing between r_{1} and $r_{t}{ }^{0} \boldsymbol{F}$
t_{b} = average bulk temperature of fluid flowing between r_{t} and $\mathbf{r}_{2}{ }^{0} \mathbf{F}$
t $=$ minimum temperature in annular flow channel, ${ }^{\circ} \mathrm{F}$
v = local tinear veloctty at radius $r, f t h r$
$\nabla_{a} \quad=$ average linear velocity of fluld flowing between r_{1} and $r_{2}, \mathrm{t} / \mathrm{hr}$
$\nabla_{\mathrm{al}}=$ average linear velocity of fluid flowing between r_{1} and $\mathrm{r}_{\mathrm{t}}, \mathrm{ft} / \mathrm{hr}$
$v_{\text {a3 }}=$ average linear velocity of flutd flowing between r_{t} and $r_{2}, f / h r$
x any axial distance along annular channel, ft

Greek Letters

$\alpha \quad=$ quantity defined in Eq. (32), ft^{4}
$\beta \quad=$ fraction of total flow passing between r_{1} and r_{t}
$\mu=$ dynamic molecular viscosity, (lb-mass)/(tt)(hr)
$\rho \quad=$ fluid density, ($(\mathrm{lb}-$ mass $) / \mathrm{it}^{3}$

REFERENCES

1. O. E. Dwyer and 'P. S. Tu, "Unilateral hect transfer to liquid metals flowing in concemtric annuil." Submitted to Nuclear Sci. and Eng. for publication.
2. O. E. Dwyer and P.S. Tu, "Bilateral heat transfer to liquid metals flowing in concentric annuli." In preparation.
3. H. Lamb, "Hydrodynamics," 5th ed., p. 555, London, Cambridge Uni" versity Press, 1924.
4. R. R. Rothfus, J. E. Walker, and G. A. Whan, "Correlation of local velocities in tubes, annuli, and parallel plates." A.I.Ch.E. Journal 4, 240-245 (1958).
5. O. E. Dwyer and P. S. Tu, "Analytical study of heat transfer rates for parallel flow of liquid metais through tube bundles, Part I." Chem. Eng. Prog. Symposium Ser. 56, No. 30, 183-193 (1960).

FIGURE CAPTION

Figure 1 Graphical representation for case of equal heat fluxes from both walls of concentric annulas.

ND

