Estimating the Cost of Product Water Conveyance from Desalination Plants

S. A. Reed
M. L. Marsh

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

```
Printed in tho United Statos of Amcrica. Available from
        National Technical Information Service
            U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
    Price: Printed Copy $4.5%-Microfiche $3.00
```

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

Engineering Technology Division

ESTIMATING THE COST OF PRODUCT WATER CONVEYANCE FROM DESALINATION PLANTS

S. A. Reed
M. L. Marsh

Date Published - August 1978

NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Prepared by the

- NOtice

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of theiz employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal trablity or responsibility ior the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CONTENTS

Page
ACKNOWLEDGMENT v
ABSTRACT 1

1. INTRODUCTION 1
2. GROUND RULES 2
3. METHOD OF CALCULATION 2
APPENDIX 7

THIS PAGE

WAS INTENTIONALLY

 LEFT BLANK
ACKNOWLEDGMENT

Base case optimization and development of costing methodology were under the direction of K. D. Cook, Estimating Engineering Department, UCND Engineering Division.

ESTIMATING THE COST OF PRODUCT WATER CONVEYANCE FROM DESALINATION PLANTS

S. A. Reed
M. L. Marsh ${ }^{*}$

ABSTRACT

Methods are presented for estimating the costs of transporting, by pipeline, product water from desalination plants. Cost curves are presented for conveying from 19 to 380×10^{3} $\mathrm{m}^{3} /$ day (5 to 100 Mgd) to distances to 80 km (50 mile). Sand is used as the reference soil, and adjustment.factors are given for earth, shale, hard rock, and swampland.

Costs are given as a function of distance and include pipeline construction, pumping stations, power lines, and electrical switchgear.

1. INTRODUCTION

There are many arid areas in the world where desalted seawater or brackish waters provide all or most of the municipal and industrial water supply. The installed desalting capacity worldwide is increasing rapidly; for example, the industrial capacity alone increased nearly 946×10^{3} $\mathrm{m}^{3} /$ day $[250 \mathrm{million}$ gallons per day (Mgd)] during the period 1974-1976. \dagger Much of this new capacity was in the Middle East.

The cost of transporting the desalted water can be a significant cost factor depending upon the amount of water, distance, and terrain and must be considered in the overall cost of water in the early stages of planning new or additional capacity. This report was prepared to provide water planners a means of estimating conveyance costs. The economic data used to prepare the estimating curves are included in an appendix so that the individual costs can be escalated appropriately at some future date. In this report all costs are presented in first quarter 1978 dollars.
*Estimating Engineering Department, UCND Engineering Diviision.
†Desalting Plant Inventory Report No. 6, Office of Water Research and Technology, U.S. Department of the Interior (October 1977).

2. GROUND RULES

In order to obtain general criteria for such a wide scope study, a system is conceived which is as simple in form as possible. This is a multiplex of a standard pipeline. However, to facilitate the desired simplicity, a number of conditions are applied.

First, the minimum economical discharge rate of a desalination plant is taken to be $19 \times 10^{3} \mathrm{~m}^{3} /$ day (5 Mgd). Therefore, this unit of flow is the basis of the multiplex, surh that all other capacities are multipleo of this $1.9 \times 10^{3} \mathrm{~m}^{3} /$ day unit.

Secondly, the pumping stations are capable of producing 91 m (300 ft) of head. This amount of head is lost every 8 km (7.5 miles) of linear. level pipe. Hence, a pumping station is required every 8 km .

The third condition is generalized earth work. Sand is used as a reference soil, since it is the easiest to work with and, therefore, the least expensive. From this base, multipliers are used to adjust cost to compensate for earth, shale, hard rock, and swamp terrains.

Next, the pipeline is buried in a $1.5-\mathrm{m}$ (5-ft) deep trench and is not supported by any means other than the soil on which it rests. Also, this pipeline is of nonseismic quality, since a rupture will not harm the environment.

Furthermore, elevation gains are.considered only up to 304.8 m (1000 ft). Anything above 304.8 m is assumed uneconomical and therefore will require tunneling to reduce the gain to less than 1000 ft . Neither tunneling nor any other natural barriers are considered in this study.

Finally, water purity and ambient temperature are not considered, since these have negligible effects on the performance of the system.

3. METHOD OF CALĊULÁl'IUN

A. Classify conditions:

1. Quantity to be transported $-\mathrm{m}^{3} /$ day (Mgd)
2. Distance to be transported - kilometers (miles)
3. Elevation gain - meters (feet)
4. Terrain
a. Sand
b. Earth
c. Shale
d. Hard rock
e. Swamp
B. Convert elevation gain in meters (or feet) to a linear distance of level pipe. The friction head loss of this distance of pipe corresponds to the head loss due to vertical gain. Make this conversion using the data of Fig. 1. Add this to transport distance to determine the effective distance.
C. Using the effective distance and Figs. 2 or 3, find cost for the appropriate quantity.
D. To find final cost. Adjust above cost for proper terrain using the data of Table 1.

Table 1. Terrain multipliers

	Plant size $\times 10^{3} \mathrm{~m}^{3} /$ day				
Categories	19 $(5 \mathrm{Mgd})$	38 $(10 \mathrm{Mgd})$	95 $(25 \mathrm{Mgd})$	190 $(50 \mathrm{Mgd})$	380
Sand	1	1	1	1	1
Earth	1.04	1.04	1.04	1.05	1.05
Shale	1.05	1.05	1.05	1.06	1.06
Hard rock	1.10	1.10	1.10	1.13	1.13
Swamp	1.12	1.12	1.12	1.16	1.16

Terrain multipliers are based solely on percent differences in excavation and backfill cooto for different soil consistencies.

Fig. 1. Pipeline cost as a function of distance.

Fig. 2. Pipeline cost as a function of distance (insert from Fig. 1).

Fig. 3. Head vs distance.

PAGES 7 to 8

WERE INTENTIONALLY LEFT BLANK

Table Al. Pipeline cost ($\$ \times 10^{3} / \mathrm{mile}$)

Kilometers	(Miles)	Pump station	Piping	Electrical transmission line	Total
		Plant size, $19 \times 10^{3} \mathrm{~m}^{3} /$ day (5 Mgd)			
0.8	(0.5)	145	158	38.2	341
1.6	(1)	145	316	76.4	537
8.0	(5)	145	1,580	382.0	211
16.0	(10)	290	3,160	764.0	421
40.0	(25)	580	7,900	1,910.0	10,400
80.0	(50)	1,015	15,800	3,820.0 ${ }^{\text {a }}$	20,600
120.0	(75)	1,450	15,800	3,820.0	21,100
		Plant size, $38 \times 10^{3} \mathrm{~m}^{3} /$ day (10 Mgd)			
0.8	(0.5)	209	316	38.2	563
1.6	(1)	209	632	76.4	917
8.0	(5)	209	3,160	382.0	3,750
16.0	(10)	418	6,320	764.0	7,500
40.0	(25)	836	15,800	1,910.0	18,500
80.0	(50)	1,436	31,600	3,820.0 ${ }_{\text {a }}$	36,900
120.0	(75)	2,090	31,600	3,820.0 ${ }^{\text {a }}$	37,500
		Plant size, $95 \times 10^{3} \mathrm{~m}^{3} /$ day (25 Mgd)			
0.8	(0.5)	401	790	38.2	1,230
1.6	(1)	401	1,580	76.4	2,060
8.0	(5)	401	7,900	382.0	8,680
16.0	(10)	802	15,800	764.0	17,400
40.0	(25)	1,604	39,500	1,910.0	43,000
80.0	(50)	2,807	79,000	3,820.0 ${ }^{\text {a }}$	85,600
120.0	(75)	4,010	79,000	3,820.0 ${ }^{\text {a }}$	86,800
		Plant size, $190 \times 10^{3} \mathrm{~m}^{3} /$ day (50 Mgd)			
0.8	(0.5)	741	1,580	38.2	2,360
1.6	(1)	741	3,160	76.4	3,980
8.0	(5)	741	15,800	382.0	16,900
16.0	(10)	1,482	31,600	764.0	33,800
40.0	(25)	2,964	79,000	1,910.0	83,900
80.0	(50)	5,187	15,800	3,820.0 ${ }^{\text {a }}$	167,000
120.0	(75)	7,410	158,000	3,820.0 ${ }^{\text {a }}$	169,000

Plant size, $380 \times 10^{3} \mathrm{~m}^{3} /$ day (100 Mgd)

0.8	(0.5)	1,407	3,160	38.2	4,610
1.6	(1)	1,407	6,320	76.4	7,800
8.0	(5)	1,407	31,600	382.0	33,400
16.0	(10)	2,814	63,200	764.0	66,800
40.0	(75)	5,628	158,000	$-1,910.0$	166,000
80.0	(50)	9,849	316,000	$3,820.0$	330,000
120.0	(75)	14,070	316,000	$3,820.0$	334,000

$a_{80} \mathrm{~km}$ (50 miles), extra 45 km (2b miles) same - maximum distance run is allowance for elevation head.

Table A ?. Pumping station costs ($\$ \times 10^{3} /$ mile $)$

$\stackrel{\square}{\circ}$

Component	Material	Labor	
Reducer [45.8-30.5 mm (18-12 in.)]	180	120	
Gate valve [30.5 mm (12 in.)]	1900	57	
Check valve [30.5 mm (12 in.)]	1200	170	
Tee [30.5 mm (12 in.)]	150	140	
Vertical [910 $\mathrm{m}^{3} / \mathrm{sec}(4000 \mathrm{gpm})$] Turbine pump Motor [298 kW (400 hp)]	$\begin{aligned} & 4300 \\ & 7900 \end{aligned}$	$\left.\begin{array}{l} 540 \\ 680 \end{array}\right\}$	Pump set

Table A4. Excavation and concrete required
for each complete reservoir
$1 \times 10^{3} \mathrm{~m}^{3} /$ day (Mgd) $\quad \mathrm{m}^{3}\left(\mathrm{yd}^{3}\right) \quad \$ / \mathrm{m}^{3}\left(\$ / \mathrm{yd}^{3}\right) \quad \$$

Excavation

[^0]Table A5. Power supply equipment costs

Category		Quantity	Type	Cost, \$	
$1 \times 10^{3} \mathrm{~m}^{3} /$ day	(Mgd)			Material	Labor
Transformers					
19	5	1	750 kVa	12,700	500
38	-10	1	1000 kVa	15,000	600
95	25	1	2000 kVa	21,000	700
190	50	2	2000 kVa	42,000	1400
380	100	3	3500 lVa	75,000	2400
Starters					
19	5			15,900	300
38	10			23,600	500
95	25			47,100	1000
190	50			86,600	1800
380	100			165,000	3400

Table A6. Pipeline costs
S/lin m \$/lin ft $\$ / \mathrm{km} \quad \$ / \mathrm{mile}$

Earthwork

Fxcavation ($0.56 \mathrm{yd}^{3} / 1 \mathrm{in} \mathrm{f} t$) -
$\$ 1.40 \mathrm{~m} / 1$ in $\mathrm{m}^{3}(\$ 1.24 / 1 \mathrm{in} \mathrm{ft})$
Pipeline
Pipe

84.80	25.85
8.20	2.50
93.00	29.59

93,000 156,000
35% Indirects
$34,125 \quad 51,600$
20\% Enginecring
26,313 42,100
30\% Contingency
$\frac{39,500}{192,938} \quad \frac{63,200}{315,900}$
Total

Table A7. Transmission line cost
Transmission lines are 13.2 kV , and are comprised of $15-\mathrm{m}$ ($50-\mathrm{ft}$) wooden poies on $61-\mathrm{m}$ ($200-\mathrm{ft}$) centers strung with three No. 4/0 stranded, hard drawn copper wires

	\$/km	\$/mile
Poles		
Material \$255 each Labor . $\$ 173$ each		
Subtotal	7,250	11,600
Wire		
Subtotal	16,333	26,100
Total cost	23,583	37,700
35\%. Indirects	8,250	13,200
20\% Engineering	6,375	10,200
30\% Contingency	9,563	15,300
Total cost	$\overline{47,771}$	$\overline{76,400}$

$38 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}(10 \mathrm{Mgd})$
4-45.8-30.5 mm (18-12 in.) REDUCER $5-30.5 \mathrm{~mm}$ (12 in.) GATE VALVE 3-30.5 mm (12 in.) CHECK VALVE 3-PUMP SETS 5-30.5 mm (12 in.) TEE

$380 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}(100 \mathrm{Mgd})$

$40-45.8-30.5 \mathrm{~mm}(18-12 \mathrm{in}$.$) REDUCER$
$41-30.5 \mathrm{~mm}(12 \mathrm{in}$.$) GATE VALVE$
$21-30.5 \mathrm{~mm}(12 \mathrm{in}$.$) CHECK VALVE$
$21-$ PUMP SETS
$41-30.5 \mathrm{~mm}(12 \mathrm{in}$.$) TEE$

Fig. Al. Pump station piping schematic and material list.

COMPLETE RESERVOIR IS BUILT UP OF MULTIPLE SECTIONS like the one shown above. the number OF SECTIONS CORRESPOND ONE TO ONE WITH THE PUMP SETS. ALSO, EACH RESERVOIR HAS TWO END WALL SECTIONS'

Fig. A2. Reservoir

EXAMPLE ASSENBLY: $20 \mathrm{~m}^{3}$ day (5 Mgd) RESERVOIR

Fig. A3. Construction ō̄̃ reservoir.

THE PIPEIINE IS A $457 \mathrm{~mm}(18 \mathrm{in}$.) DIAM, CARBON STEEL, SCHED 40. TARREC AND WRAPPED PIPE, AND IS COMPRISED OF $6096 \mathrm{~mm}=20 \mathrm{ft}$ WELDED SECTIONS.

THE EXCAVATIDN IS A 1524 mm (5 ft DEEP BY 914 mm $(3$ it) AVG WIDTH TRENEH. A HYDRAULIC EXCAVATOR PERFORMS ALL MATERIAL REMOVAL. HARD ROCK, HOW. ever, also fequires a drilling rig. the swamp excavation reouirej a barge mounted dragline WITH A CLAMラ̈HELL BUCKET.

THE BACFFFILL OFERATION USES THE EXTRACTED material in all tierrains. The material needs no PROCESSING W TH THE EXCEPTION OF HARD ROCK WHICH MUST BE CRUSHED TO A 20 MESH CONSISTENCY.

Fig. A4. Merhod of pipeline construction.

1. T. D. Anderson
2. S. Baron
3. D. C. Cope
4. W. B. Cottrell
5. H. L. Falkenberry
6. J. F. Harvey
7. R. F. Hibbs
8. J. S. Johnson
9. J. E. Jones
10. M. Levenson
11. R. F.. MacPhersnn
12. J. W. Michel
13. H. Postma

14-79. S. A. Reed
80. M. W. Rosenthal
81. M. R. Sheldon
82. M. J. Skinner
83. I. Spiewak
84. H. E. Trammell
85. D. B. Trauger
86. J. V. Wilson

87-88. Central Research Library
89. Document Reference Section

90-91. Laboratory Records Department
92. Laboratory Records, RC

External Distribution

93. Director, Research and Technical Support Division, DOE, ORO
94. Director, Reactor Division, DOE, ORO
95. H. W. Behrman, DOE, ORO
96-100. Acting Chief, Advanced Systems Evaluation Branch, Advanced Systems and Materials Production Division, Nuclear Energy Programs, DOE, Washington, DC 20545
101-127. Technical Information Center, DOE, ORO

[^0]: ${ }^{\alpha}$ Includes rebar and forming.

