ORNL/TM-6290

Estimating the Cost of Product Water Conveyance from Desalination Plants

MASTER

S. A. Reed M. L. Marsh

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION · FOR THE DEPARTMENT OF ENERGY

DISTRIBUTION OF TRIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy \$4.50; Microfiche \$3.00

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

Contract No. W-7405-eng-26

Engineering Technology Division

ESTIMATING THE COST OF PRODUCT WATER CONVEYANCE FROM DESALINATION PLANTS

S. A. Reed M. L. Marsh

Date Published - August 1978

NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

> Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal lability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

د ک

9

è

i

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CONTENTS

ACKNOWLEDGMENTvABSTRACT11. INTRODUCTION12. GROUND RULES23. METHOD OF CALCULATION2APPENDIX7

Page

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENT

Base case optimization and development of costing methodology were under the direction of K. D. Cook, Estimating Engineering Department, UCND Engineering Division.

4

ESTIMATING THE COST OF PRODUCT WATER CONVEYANCE FROM DESALINATION PLANTS

S. A. Reed M. L. Marsh*

ABSTRACT

Methods are presented for estimating the costs of transporting, by pipeline, product water from desalination plants. Cost curves are presented for conveying from 19 to 380×10^3 m³/day (5 to 100 Mgd) to distances to 80 km (50 mile). Sand is used as the reference soil, and adjustment factors are given for earth, shale, hard rock, and swampland.

Costs are given as a function of distance and include pipeline construction, pumping stations, power lines, and electrical switchgear.

1. INTRODUCTION

There are many arid areas in the world where desalted seawater or brackish waters provide all or most of the municipal and industrial water supply. The installed desalting capacity worldwide is increasing rapidly; for example, the industrial capacity alone increased nearly 946 $\times 10^3$ m³/day [250 million gallons per day (Mgd)] during the period 1974-1976.[†] Much of this new capacity was in the Middle East.

The cost of transporting the desalted water can be a significant cost factor depending upon the amount of water, distance, and terrain and must be considered in the overall cost of water in the early stages of planning new or additional capacity. This report was prepared to provide water planners a means of estimating conveyance costs. The economic data used to prepare the estimating curves are included in an appendix so that the individual costs can be escalated appropriately at some future date. In this report all costs are presented in first quarter 1978 dollars.

*Estimating Engineering Department, UCND Engineering Division.

[†]Desalting Plant Inventory Report No. 6, Office of Water Research and Technology, U.S. Department of the Interior (October 1977).

2. GROUND RULES

In order to obtain general criteria for such a wide scope study, a system is conceived which is as simple in form as possible. This is a multiplex of a standard pipeline. However, to facilitate the desired simplicity, a number of conditions are applied.

First, the minimum economical discharge rate of a desalination plant is taken to be $19 \times 10^3 \text{ m}^3/\text{day}$ (5 Mgd). Therefore, this unit of flow is the basis of the multiplex, such that all other capacities are multiples of this $19 \times 10^3 \text{ m}^3/\text{day}$ unit.

Secondly, the pumping stations are capable of producing 91 m (300 ft) of head. This amount of head is lost every 8 km (7.5 miles) of linear. level pipe. Hence, a pumping station is required every 8 km.

The third condition is generalized earth work. Sand is used as a reference soil, since it is the easiest to work with and, therefore, the least expensive. From this base, multipliers are used to adjust cost to compensate for earth, shale, hard rock, and swamp terrains.

Next, the pipeline is buried in a 1.5-m (5-ft) deep trench and is not supported by any means other than the soil on which it rests. Also, this pipeline is of nonseismic quality, since a rupture will not harm the environment.

Furthermore, elevation gains are considered only up to 304.8 m (1000 ft). Anything above 304.8 m is assumed uneconomical and therefore will require tunneling to reduce the gain to less than 1000 ft. Neither tunneling nor any other natural barriers are considered in this study.

Finally, water purity and ambient temperature are not considered, since these have negligible effects on the performance of the system.

3. METHOD OF CALCULATION

A. Classify conditions:

1. Quantity to be transported - m^3/day (Mgd)

2. Distance to be transported - kilometers (miles)

3. Elevation gain - meters (feet)

2

- 4. Terrain
 - a. Sand
 - b. Earth
 - c. Shale
 - d. Hard rock
 - e. Swamp
- B. Convert elevation gain in meters (or feet) to a linear distance of level pipe. The friction head loss of this distance of pipe corresponds to the head loss due to vertical gain. Make this conversion using the data of Fig. 1. Add this to transport distance to determine the effective distance.
- C. Using the effective distance and Figs. 2 or 3, find cost for the appropriate quantity.
- D. To find final cost. Adjust above cost for proper terrain using the data of Table 1.

	-	Plan	t size × 10	³ m ³ /day	
Categories	19 (5 Mgd)	38 (10 Mgd)	95 (25 Mgd)	190 (50 Mgd)	380 (100 Mgd)
Sand	1	1	1	1	1
Earth	1.04	1.04	1.04	1.05	1.05
Shale	1.05	1.05	1.05	1.06	1.06
Hard rock	1.10	1.10	1.10	1.13	1.13
Swamp	1.12	1.12	1.12	1.16	1.16

Table 1. Terrain multipliers

Terrain multipliers are based solely on percent differences in excavation and backfill costs for different soil consistencies.

Fig. 1. Pipeline cost as a function of distance.

Fig. 2. Pipeline cost as a function of distance (insert from Fig. 1).

۳.

ŝ,

Fig. 3. Head vs distance.

5

S

APPENDIX

.

PAGES 7 to 8 WERE INTENTIONALLY LEFT BLANK

Kilometers	(Miles)	Pump station	Piping	Electrical transmission line	Total
	<u> </u>	Plant siz	e, 19 × 10	³ m ³ /day (5 Mgd)	
0.8	(0.5)	145	158	38.2	341
1.6	(1)	145	316	76,4	537
8.0	(5)	145	1,580	382.0	211
16.0	(10)	290	3,160	764.0	421
40.0	(25)	580	7,900	1,910.0	10,400
80.0	(50)	1,015	15,800	$3.820.0^{a}$	20,600
120.0	(75)	1,450	15,800	3,820.0 ^a	21,100
		Plant siz	$e, 38 \times 10$	³ m ³ /day (10 Mgd)
0.8	(0.5)	209	316	38.2	563
1.6	(1)	209	632	76.4	917
8.0	(5)	209	3,160	382.0	3,750
16.0	(10)	418	6,320	764.0	7,500
40.0	(25)	836	15,800	1,910.0	18,500
80.0	(50)	1,436	31,600	$3,820.0_{a}$	36,900
120.0	(75)	2,090	31,600	3,820.0	37,500
·		Plant siz	$xe, 95 \times 10$	³ m ³ /day (25 Mgd)
0.8	(0.5)	401	790	38.2	1,230
1.6	(1)	401	1,580	76.4	2,060
8.0	(5)	401	7,900	382.0	8,680
16.0	(10)	802	15,800	764.0	17,400
40.0	(25)	1,604	39,500	$1,910.0_{a}$	43,000
80.0	(50)	2,807	79,000	$3,820.0^{-1}$	85,600
120.0	(75)	4,010	79,000	3,820.0	86,800
		Plant siz	e, 190 × 1	$0^3 \text{ m}^3/\text{day}$ (50 Mg	d)
0.8	(0.5)	741	1,580	38.2	2,360
1.6	(1)	741	3,160	76.4	3,980
8.0	(5)	741	15,800	382.0	16,900
16.0	(10)	1,482	31,600	764.0	33,800
40.0	(25)	2,964	79,000	1,910.0 ₀	83,900
80.Ò	(50)	5,187	15,800	3,820.0	167,000
120.0	(75)	7,410	158,000	3,820.0	169,000
		Plant siz	e, 380 × 1	$0^3 \text{ m}^3/\text{day}$ (100 M	gd)
0.8	(0.5)	1,407	3,160	38.2	4,610
1.6	(1)	1,407	6,320	76.4	7,800
8.0	(5)	1,407	31,600	382.0	33,400
16.0	(10)	2,814	63,200	764.0	66,800
4 0 .0	(25)	5,628	158.000	1,910.0	166,000
80.0	(50)	9,849	316,000	3,820.0~	330,000
120.0	(75)	14,070	316,000	3,820.0	334,000

Table Al. Pipeline cost ($\$ \times 10^3$ /mile)

 $a_{80 \text{ km}}$ (50 miles), extra 45 km (25 miles) same — maximum distance run is allowance for elevation head.

Y.

Л

Plant size 1 x 10 ³ m ³ /day (Mgd)	Piping	Reservoir	Power	Subtotal (directs)	35% Indirects	20% Engineering	30% Contingency	Totals
19 (5)	37	. 5	30	72	25	19	29	145
38 (10)	57	6	40	103	36.	28	. 42	209
95 (25)	113	11	70 .	199	69	53	80	401
190 (50)	215	<u> </u>	132	367	128	99	148	742
380 (100)	415	34	246	695	243	183	281	1407
	·	• • •				······	· · · · · · · · · · · · · · · · · · ·	

Table A2. Pumping station costs ($\$ \times 10^3$ /mile)

10

Table A3. Piping equipment costs

Component	Material	Labor
Reducer [45.8-30.5 mm (18-12 in.)]	180	120
Gate valve [30.5 mm (12 in.)]	1900	57
Check valve [30.5 mm (12 in.)]	1200	170
Tee [30.5 mm (12 in.)]	150	140
Vertical [910 m ³ /sec (4000 gpm)] Turbine pump Motor [298 kW (400 hp)]	4300 7900	540 { 680 { Pump set

1 x 1	10 ³ m ³ ,	/day (Mgd)	m ³	(yd ³)	\$/m ³	(\$/yd ³)	\$
			Excava	ation		· ·	
•	19 38 95 190 380	(5) (10) (25) (50) (100)	51 73 138 252 474	(66) (95) (180) (330) (620)	1.65	(1.25)	80 120 230 400 800
•		· ·	Conci	rete	•		
	19 38 95 190 380	(5) (10) (25) (50) (100)	23 31 48 95 183	(30) (41) (63) (129) (239)	183 ^{<i>a</i>}	(140)	4,200 5,700 8,800 18,000 33,000

Table A4. Excavation and concrete required for each complete reservoir

^aIncludes rebar and forming.

	Category		Quantity	Type	,	Cost,	\$
1 x	$10^3 \text{ m}^3/\text{day}$	(Mgd)				Material	Labor
			Transformer	S			
	19	5	1	750 k	:Va	12,700	500
	38	⁻ 10	1	1000 k	Va	15,000	600
	95 ·	25	1	2000 k	:Va	21,000	700
	190	50	2	2000 k	:Va	42,000	1400
	380	100	3	2500 k	Va	75,000	2400
			Starters				
	19	· 5				15,900	· 300
	38	10				23,600	500
	95	25				47,100	1000
	190	50				86,600	1800
	380	100				165,000	3400

Table A5. Power supply equipment costs

٤.

Table A6. Pipeline costs

	\$/lin m	\$/lin ft	\$/km	\$/mile
Earthwork				
Excavation (0.56 yd ³ /lin ft) - \$1.40 m /lin m ³ (\$1.24/lin ft)		•		
Pipeline				
Pipe	84.80	25.85		
Coating and wrapping	8.20	2.50	•	
Subtotal	93.00	29.59	93,000	156,000
35% Indirects	•	,	34,125	54,600
20% Engineering		1	26,313	42,100
30% Contingency			39,500	63,200
Total		ı	192,938	315,900

..

Table A7. Transmission line cost

Transmission lines are 13.2 kV, and are comprised of 15-m (50-ft) wooden poles on 61-m (200-ft) centers strung with three No. 4/0 stranded, hard drawn copper wires

	\$/km	\$/mile
Poles		
Material \$255 each Labor \$173 each		
Subtotal	7,250	11,600
Wire		· .
Subtotal	16,333	26,100
Total cost	23,583	37,700
35% Indirects	8,250	13,200
20% Engineering	6,375	10,200
30% Contingency	9,563	15,300
Total cost	47,771	76,400

ORNL-DWG 78-8579

COMPLETE RESERVOIR IS BUILT UP OF MULTIPLE SECTIONS LIKE THE ONE SHOWN ABOVE. THE NUMBER OF SECTIONS CORRESPOND ONE TO ONE WITH THE PUMP SETS. ALSO, EACH RESERVOIR HAS TWO END WALL SECTIONS'

Fig. A2. Reservoir

THE PIPELINE IS A 457 mm (18 in.) DIAM, CARBON STEEL, SCHED 40, TARREE AND WRAPPED PIPE, AND IS COMPRISED OF 6096 mm ¹20 ft) WELDED SECTIONS.

THE EXCAVATION IS A 1524 mm (5 ft) DEEP BY 914 mm (3 ft) AVG WIDTH TRENCH. A HYDRAULIC EXCAVATOR PERFORMS ALL MATERIAL REMOVAL. HARD ROCK, HOW-EVER, ALSO REQUIRES A DRILLING RIG. THE SWAMP EXCAVATION REQUIRES A BARGE MOUNTED DRAGLINE WITH A CLAMSHELL BUCKET.

THE BACKFILL OFERATION USES THE EXTRACTED MATERIAL IN ALL TERRAINS. THE MATERIAL NEEDS NO PROCESSING W TH THE EXCEPTION OF HARD ROCK WHICH MUST BE CRUSHED TO A 20 MESH CONSISTENCY.

Fig. A4. Method of pipeline construction.

ORNL/TM-6290

Internal Distribution

1.	T. D. Anderson	13.	H. Postma
2.	S. Baron	14-79.	S. A. Reed
3.	D. C. Cope	80.	M. W. Rosenthal
4.	W. B. Cottrell	81.	M. R. Sheldon
5.	H. L. Falkenberry	82.	M. J. Skinner
6.	J. F. Harvey	83.	I. Spiewak
7.	R. F. Hibbs	84.	H. E. Trammell
8.	J. S. Johnson	85.	D. B. Trauger
9.	J. E. Jones	86.	J. V. Wilson
10.	M. Levenson	87—88.	Central Research Library
11.	<u>R. F. MacPherson</u>	89.	Document Reference Section
12.	J. W. Michel	90—91.	Laboratory Records Department
		92.	Laboratory Records, RC

External Distribution

93. Director, Research and Technical Support Division, DOE, ORO

- 94. Director, Reactor Division, DOE, ORO
- 95. H. W. Behrman, DOE, ORO

96-100. Acting Chief, Advanced Systems Evaluation Branch, Advanced Systems and Materials Production Division, Nuclear Energy Programs, DOE, Washington, DC 20545

101-127. Technical Information Center, DOE, ORO