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ABSTRACT

A reduced set of two-fluid transport equations 1is obtained
from the conservation equations describing the time evolution of
the differential particle rumber, entropy, and magnetic fluxes in
an axisymmetric toroidal plasma with nested magnetic surfaces.
Expanding in the small ratio of perpendicular to parallel
mobilities and thermal conductivities vyields as solubility
constraints one-dimensional equations for the surface-averaged
thermodynamic variables and magnetic fluxes. Since Ohm's law
p +u - ? = B‘, where B' accounts for any nonideal effects, only
determines the particle €flow relative to the diffusing magnetic
surfaces, it 1is necessary to solve a single two-dimensicuvnal
generalized differential eguation, (3/3t)Vy. (Vp - J > B) =0 ’
to find the absolute velocity of a magnetic surface enclosing a
Eixed toroidal flux. This equation is linear but nonstandard in
that it involves flux surface averages of the unknown velocity.
Specification of R' and the cross-field ion and electron heat
fluxes provides a closed system of equations. A hime-dependent

coordinate transformation is used to describe the diffusion of

plasma quantities through magnetic surfaces of changing shape.
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I. INTRODUCTION

The importance of developing a self-consi3tent
two-dimensional description of the temporal evolution of
axisymmetric tokamak equilibria on a resistive time scale which iz
long compared to the Alfven transit time has heen preovioasly

xecognized‘1 Recent theoretical investigations of stable "hign - "

configurations have intensified interest in this subject. Inderd,
since the Shaftanov shift - (HI;)a. where a 1is the nplasns
5 b) N
tadius, ﬁp is the poloidal & , and ¢ = a/xn_ is the inver:.
-1

aspect ratio, we see that fot Pp o , the standard low

one-dimensicnal model of concentric circular flux surfaces ceanes

to be an adequate approximation.

Here, a two-dimensional (2-D) configuration i3 defined to be

one in which the flux function ¢ (x, 2) (magnetic surfaces are
defined by ¢ = constant) depends in an irreducible way on both
the vradial and vertical <cylindrical coordinates (x, z). The

concept of 2-D becomes particularly important when the surfacnes
change shape in time. There are at least four distinct reasons

for requiring a two-dimensional description of plasma transport.

First, the 2=-D (noncircular) geometry of the flux surfaces
modifies the wvalue of the plasma transport coefficients, The
resistive transport coefficients for diffusion normal to magnetic
sur faces involve surface averages of various quantities which are
sensitive to the variation of the magnitude of B along B. Thus,
for example, 1in high @ equilibria, where mod B contours tend to

align with the magnetic field, the neoclassical transport
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zoefficients, as well as anomalous coefficients driven by
wi3nevizally truanveed particles, could be substantially reduced
from their wusual 1-D values. Vertical elongation of the plasma
can also veduce the transport coefficients firom their circular

valuae.

Sccondly, knowledge of the two-dimensional configuration of
tne  plasma is  necessary to apply boundary conditions and to
compute the effects on the plasma of externally maintained heat
an-1 particle sources. Magnetic boundary conditions must be
nltimately telated to the currents in the poloidal field coils,
whose spatial distribution 1is inherently two dimensicnal. The
location of pressure surfaces, which approximately correspond with
density contours, is important to determine heating and particle

deposition profiles due to neutral beam injection.

Thirdly, a self-consistent two-dimensional transport
calculation is necessary to obtain realistic pressure and magnetic
field profiles to wuse 1in magnetohydrodynamic (MHD) stability
calculations. Once a stable initial equilibrium configuration is
specified, the time dependent transport equations determine how
that equilibrium evolves in time. In particular, the steady state
solutions of the transport eguations correspond to a unigue
prescription for the equilibrium profiles. The importance of
these resistive steady states in determining stable stationary

profiles of the otherwise arbitrary pressure and toroidal magnetic

m

field functions p(y) and g(y)
1,2

xBT has been previously

emphasized.



Finally, a self-consistent 2-D calculation includesz
potentially important inductive contributions to the flux
sur tace-averaged normal plasma flow arising from sB/5t . The
maintenance of the lowest order (in resistivity n ) pressure
balance 7p =J - B on the vresistive time scale can lead to

deformations of the plasma magnetic surfaces, with associar.i

A) (A)

self-consistent inductive E( B flows (B = =IA/0L)  whinch

may be comparable to the resistive diffusion during the fasu
transient phase of the dischaxqe.l This inductive convection of

the magnetic surfaces must be determined before the absolute

particle flux can be evaluated.

I'ne inductive convection 1is generally separable from the
resistive plasma motion {although it is itself affected
self-consistently by diffusion) and is shown 1in this paper to
satisty a linear 2-D integro-differential equation. This
decomposition is physically fundamental, for it allows the
treatment of very general forms of Ohm's law for which previous
methods are not readily adaptable. Thus, our procedure embraces

neoclassical transport,3

for which the stress anisotropy is an
important part of Ohm's law, with no additional difficulty than
that required €£or the simple collisional transport models used

pceviously.l'2'4'5'6

In addition, it is shown that only the
surface averages of the components of Ohm's law within the
magnetic surfaces are needed to close the moment eguations. This
is significant since spatially local expressions for the fluxes in

the long mean free path regimes are generally difficult to obtain.




A time dezpenisnt mwagnotic fi:x coordinate  transformation  is
1sed  to obtain coo.nled 1-D eco.ation equations for the plasma and
rne fields, and 3 singla linear 2-D eguation to determine the flux
sur face velocity. Our  particular  choice of coordinates is
motivated by the tokamix orderiog - - L and enables isolation
af physically distinct processes leading to plasma transport. For
cxanple, the wvelocity ot o fluid eloment is  shown explicitly to
consist of tnree parts: (1) tesistive diffusion relative to the
flux s3urfaces; {i1) distortion: in  whicn  flux s34t faces <change
thelr shape while conserving Lo cndatl flax; (i11) a slower motion
in which rme amount  of  toroirdal  tiux within  these surfaces

changes,

The coordinate transfarmation dJdetermining the magnetic
sur face geometry evolves simaltaneously in time with the plasma
and the fields. The  conver-isn from thevmodynamic gquantities
{ahich arve requited to evaluate the particle and heat fluxes) to
adiabatic variables (which are advanced in time by 1-D resistive
diffusion equations) 1is drtermined by the coordinate mapping
o= x(, , } where . labels a magnetic surface and 0 is a
poloidal angle coordinate (ct., Section [II). The real space
distvibution of the plasma, which is needed to apply the boundary
conditions induced by the external circuit, is also determined

once the coordinate transformation is known.

In Section II, we give the primitive Fform of the field
equations and Maxwell's equations. A time-dependent magnetic flux

coordinate transformation is introduced in Section III. This 1is



used 1in Sections IV and V to reduce the time-dependent transport
problem to the solution of five coupled one-dimensional time
svolution equations together with a single linear two-cimensional
equation. We summarize these equations in Section V and discuss
their <closure in Section VI. Closure regquires additignal results
from a kinetic treatment. Explicit closure models for collisional
(PEirsch-Schluter) and collisionless (banana-regime) plasmas aie
presented in Section VIII. Both conducting wall and "free
boundary" boundary conditions are discussed in Section VII.
Finally, in Section IX, we summarize and <ompare the presenc

approach with earlier work.




Ti. FUNDAMENTAL EQUATIONS

i

The basic eguations describing the time evolution of a
magnetically coanfined plasma are comprised of field equations

(Maxwell's eguations}:

1]

(:B/t)

43 =7 - K, (1b)

and fluid equations, which are the appropriate velocity moments of
the Vlasov-Fokker Planck equations for electrons and ions. ‘he
.'uid equations are distinguished by their parity in v (the

nicroscopic paiticle velocity). The even parity moment equations

tepresent the conservation of particles and energy:

{'n. f e , . = .
nJ/ £) + (nJgJ) Snj , (2a)
(3/2) p/at) + Ve, iq. + (5/2)p.u.l = J'E+S_+ 10 (2h)
S 3+ - p
]
(3/2)(ape/at) + V-lge + (5/2)pege] =J'E 4+ Q.+ Se * n
- Ei'Vpi + :i:Vpi . (2c)

Here, nj is the particle density, uy is the macroscopic fluid
velocity, gj is the conductive heat flux, pj is the pressure,

sy sp, S, are particle and pressure sources,




T==-3% 9e{u.,-m.} , (2d)
e, i - =]
QAe = 3(me/mi)(ne/Tei)(Ti - Te) ’ (2e)
and fj is the viscous stress tensor. The relation
pj >> (l/Z)mjnjug has been assumed for the subsonic flows of

interest.

The odd parity moments yield the force balance equation faor

each species:

E + u. =B = -R.,/{n.e.) + m.T(u.)/e. a)
E a B h_]/ 585 ]h(n])/ 3 (3a)
where
T(u) = {(Ju/3t) + B'VE R {3hL)
R. = -Vp, - Vem. + F,
Ry Py LR R (3c)
F. =./. m,vC. dv , (34)
~J i~ "3 T~
and C4y is the collision operator of species (j). R5 represents

the departure from ideal (E x B) drift motion, T is the inertial
term, and Fj is the collisional friction between electrons and

ions. Equation (3a) for electrons is the general form of Ohm's

law. Summing ejnj x EBg. (3a) and using quasineutrality,
Y. n,e, =0, yields the net force balance
e, i 3]
14
pT(u) + V-('ni + ﬂe) =-Vp+J xB , (a®

where p =% mn,
&1 33
the current density.

Y m.unu./p »and J =3 n.e.u. is
&y 173N &y i



We seek to solve Egs. (1) through (4) on the time scale

CYAT IR characterizing resistive diffusion. Here,

" is the resistivity. This time is much longer than the Alfven

transit time (p - a/(52/4ﬂo)l/2

resistive time to estimate TR yields

/2

Indeed, using the classical

; - L ~ . j1 l
IA/IR DI (b’e/d) (vll/Ql)F [ (5)

/2 -1

where e = (2Te/me)l Qe is the electron thermal gyroradius,

= e'B/mj PV is the 1ion-ion collision frequency, and
]

=
.= nTe/(Bz/B") -1 (in Lthe & expansion). We introduce the
small parameter » -~ pe/a , and note that £ - 32 for a magnetized
plasma. Here “ii/ﬂi ~ A if the squace root of the jon-electron
mass .atio is neglected in the gyroradius and collision freguency

expansion. Adopting the drift-oprdering

. . ‘UN
3 VA

° 1 N -~ < -
I/vA C T eyt pljl/pj YT (3/3¢) &, where
us e ul are the components of velocity within and notmal tn a

nagnetic surface, respectively, we find to lowest order in & :

. s

. L us = (6a)
(nju5g) =0

. S5

g w =0 |, 6b
Iip * (3/20p545, (6b)

Vp = g <« B , {6c)

wher 5.8 5 i S 5 . .
e 9] 9]0 + uyy with Hjl/BJO A Equations (6a) and
(6b) describe the inability of density and temperature
perturbations within a magnetic surface to be maintained for times
longer than 1, (cf., Section IV). On the resistive time scale,

inertial terms in Eq. (4) are negligible as & - 0 , and the

plasma evolves in time through a sequence of equilibria satisfying



the static foree halance Bg. (6c)y . Hote thavt Ly eliminatling tn
fast Alfvenic motion from K. t4), tne mathemstical strauceares of
the proablem has been altered from a “"narching® hyperoolic egaationg
for u (on the fast time 3cale) to the constraint By, (hu) wioann
satisfaction on the longrer reaistive time s3cale determines, in the
sense  to o be descoibed, the normal component of 0 oas the sol ttbion

to a global boundary value probl@m.l

To aorder -, hgns. (1) throuqgn (1) temain unaltered, witn
u? = uil in the left hand side of Egqo.  (2) and Tlu, ) =C in .
(3Ja). The inertial and viscous torms in kg, (4) detrmimine the
poloidal and toroidal plasma angular wvelocities, which  ate

- =4
indeterminate surface constantsz'J to order . . Fot classical

collisional transport, these surface functions cancel from the
expression for the normal mass Elux.l’z’s However , in
neoclassical transport for a 1long mean fiee path plasma, the
determination of the poloidal rotation is necessary and has been

calculated elsewhere.7



. MAGNETTL R LN RUINATES AND HOUILIBRIUM RELATT NS

K S UNEAE B U S A P teplies e " . b thne
CanoutanrT ey it cantoars form aested torovial sarfaces, a time
Geendent ot dlnate transformation may be cunstructed  atilizing
RS 15 2 caordinate to label magnetic flux and vressore
UL, e Oy 15 an angle variable which  increases by

thee short way atound the torus (poloidal Jdirection): and o,

e rorordad taymnictry) angle which increases by 27 the long  way
ot thee toras. The vectors and 1te both orrthogonal to
PR .+. # 4 in general.  The poloidal angle 1s chosen  so
that tne Thcobian of the transformation from x to (., , 1) .
T Y A R VAR Y2 T (7

13 everywhere finite. Then, the most general form of the magnetic

tield, consistent with Eq. {6c), Maxwell's equations; and
=aroldal symmetry, can be writtenB

B = (2“)_1 G, BV T+ g, ) . (8)
Here, 2-1R-7 is the poloidal flux density and
4 = x°BeV: , where x = !T:\—l is the distance from the toroidal

symmetry axis. The current can be written in contravariant form,

noting JYy = 0 ,

J = JI(I-90)0p % Vy + (J:V4)Vp x VOI (9)

where Jvy = VO = x2V¢ + The components of J are obtained from

Ampere's law, Eqg. (lb}:


http://uithoqon.il

~ 1o
! -J 1',"/4' , I
] N (:|;(~) )/ “ AERS
Combining this with the . S component  of  the praes:ac

balance, Eq. (6c), yirlds the Grad-Shalranov equation

* 2 2 1
S O R L I T R TR I S S B IR
where
: jﬁ'.'( R 5 TE DO S SR (11
N
aned
* 2 -2
. x e (x )
e L T O N SR £ . 110
.- 38 -2, .,
Hete, the met:ric elements h x “JUasVt can be  expressed  as

derivatives of the cylindrical spatial coordinates (x, 2):

A S EFYZ I LS i P LI (12a)
no = J_llax/nwlz = J-l(xi + zi) , (12b)
nho 2 —J_l(a¥/nw)-(ag/bn) = _J—l(xexw + zozw) . {12c)

Subscripts have been used to denote differentiation. Compating
Egs. (lla) and {(10b), we note that

J V¢ = --2-n[_(4-"x2)—lggllJ + pw:l(x')-l . {13a)

~

The parallel cuvvent, J°B = J[ZwJ-VeB;/x' + 3-V6q] where

By = x'|vel/(2m%) . is

-8 = ~(2m[B%g,/tam) + gp, I . (13b)

~ o~

Equation (11) is a two-dimensional, nonlinear differential

g gy




‘onsrpaint telating the  sarface gaantities p(. , th, g(. , t),

S, oty orootne magnetic suatface  geometry  at  all  times. The
Lmoorpar s lon oo vt s s it i st Yhe tame e bt gt ey i
Coae nemtroal o preobhiber 1nothe theory of golt-consistent two-dimensional

transpott, Numer 1cal procedures for solving Eg. {lla) have bheen

. .10
presa ity discussed, !

Hete we note that it is sufficient to
taree differentiate the  constraint,  Eg. vllay, and use the

toonalting linear  egquation to determine the velocity of the

onstant aut faces, and the velocities of the magnetic fluxes
-1 7. . .
eyl thoamn oo ED) / B+ dx {toroidal flux) relative
P—
2,5

Foo o the constant . Surfaces.

The coordinate velocity can be defined using the
transformation of time derivatives between the fixed (x, z) and

noaving (., ) coordinate frames:

(/) x = (u/nt)('” - uq-v . (14a)

iHere the coordinate (or grid} velocity is

ug = J (—)w/3t)|x Vioe T+ (-aO/at)lx Ve = Vgl . (14b)

Operating on x with Eq. (l4a) yields

= (l4c)
(Bgfat)lw'g Bg
which can be used to advance g(w, @, t)~ ~in time once ug is

known.
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Physically, it is clear that the equilibrium equatinn,
(lla), <can bhe wused tn advance the coordinates anly in tne
ditection normal to the flux sutfaces (cf., Sectinn V).
advancement of the pnloidal angle contours depends on tar b
of the Jacobian J. Note from Eq. (7] that J evalves in

flux surface frame as

JL J,-nr!
whet e Jt (sJ/zae) ! . To quarantee the rigqidity, !
"incompressibility” of the moving ., ¢ mesh far all tvines (-
15 clearly desirable for cvomputaticnal reasons), the  lacabian

chosen to have the form]]

J = xml(.ln

where m, n are integers which will be specified in Section V,
. -m
then follaws from Egs. (14a) and (15) that ¥V-(x ~ u } =0

a stream function f for the two-dimensional coordinate vela

'

exists,
ug = me S TAY SIS (3
Thus,
ug T = - (/e |, = x™7 o 0
= ) R T § I
ug'vo = -(ae/at)[}f I, -

Taking components of BEg. (l4c) and using these results ylel~-

evolution equations for the coordinate transformation:




wire 3405Ctipt t denotes time differentiation at  fixed .,

The determination of the coordinate velocity stream function from

tn=  time derivative of the eguilibrium constraint will be
caasidered in Secrion V.
Finally, note that Eq. {17b) implies a "solubilivy"

2onstraint o1 the normal component of the coordinate velocity;:

Loeo,

R (19)

Het», brackets denote tne flux surface average operator,

2" 2-
ca- 4 Ja de- J . (20)
a jz //0

Pnis consttaint allows the determination of the motioen of an
atbitrary asurface function a{ ¥, t) relative to the constant ¥
sut faces ance its absolute velocity (at fixed x} is known. For,

trom Fqs. (l4a) and (19}, we find

(oa/bt)lx = a, - a‘gg-vw , (21)

, _ _ LW
ahere a, = (aa/at)}w'o = <x

Physically, the coordinate velocity is nonvanishing only

3a/nt]x>/<x_m> and a prime denotes 3/3y.

if there is a change in the Elux sucrface geometry. Th~ relative
motion of ¢ and a(% , t) contours (measured by a, ) rresponds
to a relabeling of ¥ surfaces with different values of a without

any geometcy change. For, if aa/atlx =a, (b, t) ¢ Eq.  (21)
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indicates that gq-?& =0 . Thus, the  =coordinate 5¢YSc.m
remains unchanged whenever the magnetic flux simply moves tnrougn
space without alteration of the surface geometry. Sucn 1
coordinate system has some features of a fixed Eulerian systen,
However, the mesh is allowed to deform consistent with B/, - 0

and the maintenance of static pressure balance, Eg. (lla),
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IV. DERIVATION OF 1-D TRANSPORT EQUATIONS

Im~ zanservit:an egiations jiven in Section IT are spatially
1ncal relutinns for advancing the thermodynamic variables in time.
In 1 confined tokamak plasma, the motion of particles and heat
3.a13 3 15 rapid compared to the resistive motion across magnetic
;irtaces. Thais leads to density and temperature profiles which
st acarly aniforn on a flux surface. To show this, we write for

tne leading order suiface flows appearing in Eqgs. (6a) and (6Db)

soye

.\_,;:‘ - xj)i‘.l%-(.pj+un.'.f),’H"+ M. ./T B - {p. +(:.nj'.‘f)/B P

ol ] J PR ! )
{22a)
v S BHLT RS 3 B - :Tj/n . (22b)
Heote, D ; Tj/(mj'jl) is the parallel particle diffusion

zoefficient, where .jlis the momentum exchange frequency af species

(1) : n.. DI -
1 / J)

i vy Gy is the orthogonal diffusion

DHj
cacfficient, i pj/(mjvjz) is the parallel heat
conductivity, and vAj (5/2)-Hj (sz/:j) is the orthogonal heat
conductivity, wherc vi2 is the heat "friction" frequency.7
Equation (22a) is ohtained as the lowest order (in A ) expansian
of the momentum balance equation, Egq. (3a). Using Egs. (22a)
and (22b) in Egs. (6a) and (6b) and invoking quasineutrality to

eliminate the electrostatic potential yields

I}

pj(}fr ) Pj(w' t) + Pj (y, 9, t) , (23a)

Tyl B) = Ty B) o+ Ty, 0, b)), (23b)



where -./ .o Do /DL e 14 B
Py/py j/ IE 1 and 'IJ/Tj Ly 13
Here,
g, L p,ix, t)- 23
P] ] ) p](,, ) (23c)
Tj(w, t)y . ij(§, t) - . (23d)
Thus, in view of Eq. (23), the local conservation laws

contain more information than is necessary to advance the dominant
surface averaged part of the thermodynamic variables, fhis
extraneaus information can be annihilated by Elux surface
averaging the conservation equations. Consider, for example, the

particle continuity equation, Eq. (2a), which can be written as
-1,. . -
a I s u, V) - 5 . , t
(an/ t)|§+J (3/2) (nyu Vi) nj K]Q; )
= -B-V(njuj~VO/B-VO) . (24)
S

H u,*vVo = u’
ere, 43 93

the velocity, This is a magnetic differential equation for

1-VO is the first order surface compaonent of

njgj'VO/B-VO , whose solution requires the solubility constraint
- [Pyt e1/Beve] de =0 . (25)
0 s b

The chain rule, Eq. (14a), together with Eq. (15}, 1is used to
commute the O integration and time differentiation in performing

the @ average of K_3 in Eq. (24). This yields the desired 1-D continuity

equation for the differential particle number N; nj(lb, ey’

s pr gt
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o 27 )
anere  V'(,, t) - '{/:‘ dx) /3, = 2"-/; J a-
) "

oy oot - u e = vtes (26)

J)t J ] g , nj
Anplying this procedure to the pressure equations, Egs. (2b) and
(2c), we obtain conservation equations for the differential plasaa

and electron entropy:

(5/2)(9/")‘L = -5 , (27a)
N *
(5/2)(pe/wé)(»e)t = -s_ . (27D)

Here, the entiopy variables are

oo I)3/3 v'o, (28a)
= p3/5 v, (28b)
e e

where D = pf{., t) and Py = pe(¢, t) . The entropy soucces

are
* LI ] - .
S tugrVe) = LVIVIE Teqaeiie + (5/2)py<luy - ou ) Vel
i
_(J.E‘:- + p[b<9g-7tb> - <Sp> ’ (29a)

* ' v
S (ugrvu) = LIV eg Ty + (5/2)pg<lug = u) s>},

< IsBE> < [y R . - .
J*E> + P fu tTU> + (py) < (uy - ug) V>
“Que” < < se> + <Bi'v'§i> . (29b)

Pinally, consider the three components of Faraday's law

(magnetic flux conservation), Eg. (la)

3/3t(B+V9) = 8/8t(gx ) = -V (E x V§) (308)
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-BeUBY/3E = Ve (E £ TH) (30b)

VGsBB/at = <Y (E 7 T0) . (30c)

The last two components imply that

Ga/an) =0t = 21x’E-70 + c(t) . (31a)

The constant of integration c(t) is related to the voltage applied
at the plasma surface, Differeriiating Eq. (3la) with respect to
¥ removes this integration constant and yields a consvrvation

equation for the poloidal flux density y'

13

Xg *+Lx'<ly, - ug)verly =0 . (31b)

The toroidal component of Faraday's law, Eq. (30a), yields a
conservation relation for the toroidal flux density

¥z gax SV /(2m) = x'aly) (32)
where

Q) = av/dy = f (d6/2r) (B+V4/B~V0) (33}

is the safety factor. The result is:

‘ - . = 4
vy o+ DY <ty gg) vw>]w o , {34a)

where the toroidal flux velacity is

-1
Uy VY = 2n(-x°E V0 + <E*B>/<B+74>) (')

e Lovse ), - (34b)




i
i
!
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Nnte that at the magnetic axis where Bp =0 , u,~Vy =0 , so

tnat the toroidal flux remains zero there for all time. Finally,

the Joule heating term in Eq. (29) <can be evaluated using
Jo= B '.'p/B2 + J-B B/82 , whetre J'B is given in Egq. (13b).
Then
. - - - el = T ch T IN . — ST
TUES = rugtiyn = <3 (FEeBR/<BVIn) b opuc(uy < oug)
(35)

Equations (26), (27a), (27b), (31lb), and (34a) comprise the
one-dimensional conservation equations far the "adiabatic”
variables N', g, ag ' and y' . The adiabatic variables are
censtant in time on each flux surface during motions of the plasma
which are rapid compared to the resistive time Ty o The closure
of these equations requires transport relations for the relative
fluxes and viscous heating and also equations for the coordinate

velocity and the motion of toroidal or poloidal flux surfaces

relative to the coordinates.



V.
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DETERMINATION OF MAGNETIC FLUX AND COORDINATE VELOCITIES

The transport equations derived in Section IV can now be dsed

tu ubtaln an tquation for the magnetic flux wvelocitien
u/-?; and uy-i, , deflined in Egs. {3la) and (4b). once
these are known, Eq. 2y, with a = y or ¢ , can bhe used to

determine the coordinate velocity.

Taking the time derivative of the Grad-Shafranov Eg. (1la)
and using tne convective derivative Bgq. (14a) yields

3.2 -1 N

2, - [}
(167 7x5) 70 G ) e /) () Yiag /21
SA0 B/ = VY
2, - ) -2 -1,
+ (4wx2) l(q“ Té/f' - (V' »)t/(v‘fx »),)* + (2+) ftq--:

116}

The transport eguations (27a), (3lb), and (34k), as well as the

f do (1, x %) moments of Eq. (195),
' = (Y'~ YY) , (37a)
(Vo= (Vi sVe)
e 2oy 2 ytex 2y ey (37h)
(Viex "5) = (Vi-x Yy ] )rb '
are used to evaluate the time derivatives in Eq. (36). This

yields a linear integro-differential equation relating the two

magnetic flux velocities and the grid velocity

- * .
(16mx2) " Lyra (10, T * Lolxtuy )+ Ly (X y o)
-~ (amx®) " Mgg <(uy - u ) evrl - (2/3)8,
B ) vy ~g ] v

1

+ {2m) " g-V¢<x'(gg - gx)'Vw>w . (38)

Here, S*(ug'V¢) ig defined in Eq. (29a) and



a - . (39a)
sl (Y, A } (19b)
AR ! ro
. ‘ = IR N L w2 n? he
T nat Yooy B i and (i - ). JT,BP where
I, 13- 1s tne majgnitude of tnhe toroidal field. Thus, for a
LW toranax plasma, Ln is the dominant operator in Eq.
i, Heing o Kgs. {3la) and (34b) to express the poloidal rlux
‘i1t oin terms of the toroidal flux veleocity, Eg. (38) becomes
1near  cgquation  for the normal component of '‘he toroidal flux
elaeity, I
R s 4= 1 ' * ' {1
i ) fotua L)t ”O ‘l) S )
IRTIRNT I »(n;',/z) () /.0 - (2798, (40)
. > 0 4
Here,
*
L. = BB/ Bl , (41a)
and
*
5 S flu.r.)
' *
= _f\T- '_‘E‘ - -’S S
] P
+ (l/V‘).V' Z ~‘<‘{j-"."’l + (5/2)pj (\1] - HW').V‘J)>.]!J' (41b)
]
In deriving Eq. {40), ik was noted from Egs. (21) and (34b) that
Ty = CRve [ ot
gg , u, Vi 4+ #t/. (42a)
and the identity ([valid for an arbitrary surface function
a{b, t) 1
n 2,-1 -1, )
Ll(x u} -~ (4wx™) (ngu)w - {2m) TJ-V4(x U)w
= 3(5 (pV'w) V' - p u) (42b)
3\2 v (/R



WA bl et e Tyoe ettt othe relative portaoie foas
(”l - u?]~4, appearing L v o parely resuarive oandd o
explicitly dependent on the motion of the flux surfaces e

(efe, Bection Vi,

Equat ion  (40G; L i Linear two-dimensional olaat
determining  the  nution o torardal flux surfaces an the ol !
cvolves  In time. Mathemat voal by, iy, (41)) 15 A Vit

) . o . 9 . *
gJenecralized differential equation (GLE) . Since the Opier ot
13 elliptic, the value of u}-f, iz reguired on the plasoa
suttace. The operators Ly and Ll , which involve integrals
over the coordinate * and derivatives with respect to the

coordinate % , are essentially ordinary integro-differential
operators and thus require a boundary condition at the origin.
Fourier analysis in o of Eg. (40} leads to a standard linear
system of coupled second order ordinary differential equatiﬁnsl'

in W for the Fourier coefficients of 9w-7w . This system, of
course, still requires a single boundary condition at the oriqgin

tor the lowest order harmonic.

The numerical advantage of using the toroidal flux velocity

rather than the poloidal Elux velocity as the dependent variable
in Eq. (38) arises from the dominance of the L0 operataor. This
is a feature of conventional tokamak plasmas where the large

externally maintained toroidal field provides ‘“rigidity" to the



[P A Proe ot oropial tiaw 13 oComparatlyely less mablle than the
Stent plaswe  carrenta.

vantbe o [RESTER ) o Fag. (AU whrre b
Sadr e teermo paant crdes are adl o cumparatsle cnagnitude (tor

b.o The analodqods eguation for the poloidal flax velocity

TR inclades an additional large source term, arising  from
. o -1
N o, whicn exceeds the remaining sources by factors 1
aned BB , than otmcaring the slow dittusion of  the toroidal
tlax. More  explicitly, comparing  the  toroidal  and  poloidal

"Slhippage” celocaitien relatier to the jdeal surfaces moving  with

G [ E 11 , wee find
o ) 3 2
-~ e S{ESESHTY (L - SRS ) - e
R vl ey )
\J‘ vt “E'B/n . /BT_A

Finally, 1t remains to determine the relation between the
coordinate vrelocity stream function /Y , introduced in Eq. (17),
and the toroidal flux velocity which is computed from Eq. (40) .
From Eg. (42a) and the constraint Eq. (19}, we obtain

T TS S YR BRNLL hE T (44a)

Note that the relative velocity of ¢ and Y surfaces is

ufp, t) = <x ® \:_1‘],-\711:>/<x—m> , (44b)

where m is still to be determined. Eq. (44a) can be integrated
te obtain the coordinate stream function up to a constant of
integration on each flux surface. Physically, this constant

corresponds to an arbitrary rigid rotation of the 0 = constant



-2k, =

caortrdinagte lines on eacr conntant sarface.  Tols conttant 1o

Cnonen to o make f 3! & And tnereny remove any et o lo1 il
rotation of trse oeonntant cartaces. Thig o grniaaely cded
whitezh oan Cheeno b g rns Tl Uy te, aerrppoeses Yy e, ate Voo

formatiion in Lives,

It i apparent from Fi, {44 that, in general, uncoaplod

cqdatilong  cannot bie abtained for the relative flow ut,, b ared
the - varying detormation flow o =70, . Thiz i3 da= to  tore
poloidal  narmonic  coupling  introduced by the s Dperaton .
However, since the L” operatar i5 the largest in Eg. (40, .

is  possible to obtain a separation through  o(#) by choosing
2, n = U in #gs. (16} and (44 . With this cholice far o
Jacobian, B % . the dominant homogeneous term in Ej. {4u)

involves only u{i{, t):

Lo(g'uw-vw) = (4ux2)-l(q2/(v"x_2>){V'*x_2>u(w, 1D IR S (45)

This separation Jeads to an efficient numerical scheme13 for
solving Eq. (40). It is also clear from Egs. (40) and (45) that
the relative motion of % and ¥ surfaces is small compared tc
their deformation rate; i;g.. u/r',O - 0(Ry .+ For 1 - x .
the coordinate g -~ J( %2 ax - ¥, is proportional to the external
(E;E:' vacuum, gv-v¢ ~ x_2 ) toroidal flux enclosed by a
magnetic surface. For low B tokamak plasmas, Wv is nearly an
adiabatic invariant, which accounts for its desirability as an
independent radial coordinate. The choice J ~ x2 has also been
useful for stability calculations.14 [other choices for J

which have been used are (i) J = 1 , the Hamada system for which

i
i
)
1
1

l
l
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~d

, and i1 R , where . r 15 an effective minor

riitii. Tnese wresoriptions for 0 produce coupling of u(., t)

.t trrocriy tarnagh tne 10 term in Egq.  (40).

Finally, we conclude this section by evaluating the

snc-dimensional transport  eguations derived in Section 1V for

ERRE e Fog. (44a:
(vt (*1r - - ‘_"',) b e , ‘
R L LA . (46a)
PR N ' ; + (') = -5 R (46bh)
GO rar LI { - = -
H L \;) { [T Cl uu), SD ! (46c)
*
: 0oty T 2R ) , (46d)
:; + (') =0, (46@)
where 5 is given in Eg. (41b),
* .
SC Se(‘.{l‘;‘ J,‘)
* !
= =T T+ ) - .y
1 F“ (pl) (91 u‘) >

+ ooy, Ve, - « > - <8 >
M TAE Qpe pe

. .
+ (L/VYLV (<ge V> + (5/2)FeTE)]w ' (461)
and the normal component of the particle flux is

. = L(u, = uy,) V> . (46qg)
r <n3(~J uy) WY



T

Here, »rr/~' . ~x_2u.-,../.x_l. and ., 15 determinegd
from the solution of .tne two-dimensional Eg. (40U, . Eguation:
(l8a) and {l#bL) with o 1 are used to eyolve wtne rcoordinate
qrid.

Note that there agre three distinet contributions to  tae
changes in the actual particle density nl., ), or pressure
pld, ), apparent in kEgs. 146, in addition to the sources:

() Expansion or compression associated with tne deformation  at

constant "area,™ jr 154 J_l , of flux surtfaces: Toee.,

H‘i']) L ) Or

V' (n, V4 WAREEEEE N AVARCEY U ARV B . (a7i)
( l)r— } g

Thus, the change in magnetic surface geometry is implicit in
Eq. (46) through the use of adiabatic dependent variables
and flux surface coordinartes,

{2) Changes due to the slow motion of the toroidal flux surface
relative to the coordinate grid (based on the vacuum toroidal
flux). That is, the plasma and the magnetic fluxes are
"frozen" together in the absence of resistive processes.

{3) Resistive diffusion of the plasma relative to the toroidal
flux sur faces, driven by the normal component of
(Ej - Nw) ~n {cf., Section VI). It is somewhat
remarkable that in the absence of resistivity or anomalous
diffusion, the adiabatic variables are preserved in spite of
complex guiding center particle motlon.1
The motions (1) and (2) result from the presence of a non-

trivial uW-Vw in Eg. (40), which can arise either from nonzero




1Y or from a nonzere riaght-

Toannlos5 e Yoo USTIVe Mt por o vaianet 1o surtaces or o pressure
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Y1. CLOSURE OF MOMENT EQUATIONS

(4G) for rhe
the relative

flux (g

expressed in
forces are,
tives of ris

equations.

and will now e bricily

The 1-D conservation Egs. t4%, and the 2-D Eq.

dal  flux velocity can be Integrated only when

s of particles (. . neat (- .+ ) poloidal

the  viscous heating term ;”j':.ti have been
of rthe thermodynamia forces. The thermodynamic

from geometric  factors, simply the | deriva

atie variables which  satisfy  the counservation
i35 the goal of transport t:hr:ory-i

werdl,

elative Particle Flux

Taking the toroidal component of Eq. (3a), averaging over a

sur face, and using Egs. (34b)

xte, V. = —(~‘>-:2'.':-R.'- + e.n.E*
12 -1 33

*
E” is defined in Eq. ({(41la)

and

) +

. No

(46g9) yields

anc.x27¢-V¢>
3]

te that only

, (47)

the induced

ric field entered the flux velocity defined in Egs. (3la)

(34b) . In an axisymmetric

pl

asma (i.e.,

neglecting

try-breaking, anomalous perturbations), 7$-V¢ = 0 and the

ity <x2V¢-V-Hj> = 0 , since
form for neoclassical and

vation phenomena. Thus

<x2V¢-Rj> = «x2v¢-Fj>

Fj is the friction force

n.
)

low

defin

has the Chew,

Goldberger,

freguency, long wavelength

ed in Eg.

(49)

{3d) . This
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peeniit BuDws  thnat tne  classical relative particle flux resuits

Spreely friom s callistianal friction. Now, writing
7y
Tt LoD e s BT, the particle flux can be
miently decompoaed a3
“Ylag o - x 2 D
:rT.m\:: 4 .I-l-\. + gnum - (2"“1E[‘/’x') *BP‘/'B‘” . (4())
) 1 1 !

Hereo, tne clasnical diffusion flux is

- LB - UL e BT (50a)

. .3
see e lasatcal diffusion flux is

2 2

~i2en VY F L B0 BT 4 n L ReB /0BT ) (50b)
] 3 3

and tne anomalous flux due to symmetry breaking perturbations is

= 2w {Up. + UeL 4+ nLe . i%) ). {50c)
j by Ty T ongegie /eyt

fAn average over wavenumbers is also implied in Eg. (50c).]| Thus,

*
except  for the small term -(2nnjEII/1')vB§>/<52> in Eg.

i49), wnich represents the classical ET ¥ Bp radial pinch,

the relative particle flux in the Erame moving with the toroidal

flux is just that flux which is usually (though incorrectly)

interpreted as the particle flux in the fixed laboratory frame;
1

i.e., neglecting the magnetic surface motion. Grad and Hogan and
5,16 \
more recently, Pao, ' have established the importance of

inductive motions in a collisional plasma. The c¢lassical and
neoclassical diffusion formulae, derived for stationary £lux
surfaces,are nevertheless approximately valid for circular, 1low

R tokamaks in which the strong toroidal field makes the plasma



uvehave  like a  rigid  conductor li.¢., the toroidal flax

statliaonary as LO > oeAn Bg. 140U ).

Tne parricle flux relative Lo the peloidal magnetic surf.
contains a contributlon proportional to EL which is laryer b
factor fn2f/fﬂs~ than the last term in Byl (49).
spurious  advective flux, cartesponding to  the rapid motiog
poloidat flux (g{., £ . (44) 1, would coapletely dominatre,

theretore opscure, the resistive contributions to Eqg. (449) .

In a similar way, the conductize heat flux, which in 1
invariant and tnus independent of the {lux surface motion, can

[
'

related to resistive forces. '

B. Oh:a's Law

The parallel electric field ~-E-B- , which plays the role
a thermodynamic FElux for v! {rotational transform) in -
(46d), can be eliminated from the moment equations usiny

generalized form of Ohm's law:

-1

<E+B> = 0, (1 + L33) (<J+*B> =~ 2 L?.A?) . (51
" - b;i=1,2 °7 )
dere, n = 0.51 me(nezmei;‘l is the parallel resistivity fu:
z; = 1, ng are the bootstrap current coefficients, and TI.,

accounts for the neoclassical (trapped particle) and anomalous

conductivity reduction. The generalized forces are defined to b«

a

3lnp_/3y (52:

N W

5210
alnTa/Bw . (



sojaatlon iLdn, cuan oe ased 1n Eg. {31y to express -FkE-B- in

s a .
terms of  tne thermodynamic forces Ai and o' . Alternatively,
o cqailibriunm BEg. 0 (621 can be ased to eliminate p'  Jiving
) L2
- A R B (52¢)

Vinueous Heating

Irive pon visdeodas heating term which appears in the electron
cntropy B {4v¢) , van be evaluated through order ° as
. . . .anom
SuLs e o= oa e AR R R A R (53
Uit 43 /B B o1 i ! )
where _anaom represents any anomalous viscous heating.
1
Classically, -Reve=. - = 3u. = (n-7B) 25y, U0/B70> where
- -1 il <1 -
01 15 the neoclassical ion viscosity.7 Thus, the viscous
14

neating in  a tokamak represents the randomization of the ordered
poloidal flow due to collisions and magnetic pumping. From the

parallel component of the force balance, Eg. {(3a), it is noted

that

2 1 bp

<?'V'2i> = =<B >g-l[(2n)' x'eiri ' (54a)

where the long mean free path contribution to the particle flux,
driven by the stress anisotropy, can be expressed in terms of the

parallel component of the resistive friction force,
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Lov=1 bp 2
(2-) 'e.’3Y¥ = -g<(F, + e.,n E)*Bs/-B"- | (54} )
SRS B sy B/ ’
Phus, the net neoclassical particle flux is Y?C = F?p + ;PS anrl
] H

is comprised of :?p and a pfirsch-Schliter flux,

(2:)_1;' ejfgs = —q((Fj'H/BZ)(l - 82/’32-)9 . {54
Hers, a small flux driven by ni{x, - ’n(x): has been neglectad,

Finally, the poloidal rotation can be expressed in terms of
the long mean free path contributions to the particle and heal

fluxes as follows:

. 51 2 bp Lp
n. -/ (2n) e. "B 7w [y PN b pLg qLt ST
o R RSN S 2 | ~_~_J£.._l_._\]. . (541}
e 3ge ( -VB)2> ' 1 _ uz
g-in 31793 j2
where ujk y (k= 1-13) are the viscosity coefficients7 of

species (j).

Explicit evaluation of the resistive fluxes for a

neoclassical transport model will be given in Section VIII.
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VII.  BOUNDARY CONDITIONS

Eavn of tae fiv. one-dimensional Egs. (46a-e} reguires a
pesndary  value at o= L . The toroidal field function g 1is

Jer to its vacuum value qv(t). To obtain numerical solutions, the

zlectron and 1lon pressure and density are prescribed to be held

[}

canstant at a pedestal which is some small fraction of their
central  value (0.001 to 0.1). The actual boundary conditions
whicn apply at a physical plasma boundary are denerally not
consistent with the * - expansion introduced ta Section II. For
example, a perfectly conducting material limiter (Subsection A} is
an eqgquipotoential, but this is not compatiblel7 with the presence
nf a Pfirsch-Schluter flux driven by gp-vw . A boundary layer
analysis 1is required in a small region about the wall where
inertial terms become important.18 Irn practical applications,13

only interior solutions are computed and the results of the
boundary layer theory arc wused to justify the imposition of

pedestal pressure and density boundary conditions.

The boundary condition for ¥t can be determined
self-consistently from external currents (Subsection B) or can be
prescribed arbitrarily. It is often desirable to specity the

total plasma toroidal current,

I, = (2m "1 f 3 Ve ax

as a boundary condition. This determines the boundary value for yx'
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v _ 3 L 2,2 =1
4 (‘.}max r t) = 161 IT (V"!."J; /x ) N
where the averages are cvaluated at the surface Y and at
max
time t.
We consider two types of boundary conditions for Eq. (44

corresponding to (a) 2 conducting wall at the p..sma boiundary, and
{u) a free boundary in which the plasma is surrounded hy a vacuuwm
with dizcrete external poloidal field coils carrying currents

which vary in time.

A. Conducting Wall Boundary

The reguirement that the boundary does not change its shape
is satisfied by setting the coordinate velocity stream function

£ =0 at ¢ = Yrax The relative flow

u = <x_zgw-v¢>/<x_2> must also be given at the boundary. In

principle this may be specified arbitrarily, but three cases of

special physical significance occur:

(i) u(y , )y =0 .
max

This corresponds to no toroidal magnetic €lux crossing

the wall [SE" Eq. (46e)l.

G w08 = 2eey /X

max
In this case, no poloidal magnetic flux crosses the
wall [cf., Egq. (46d)].

(iii) u(wmax , ) = -<(9j - gw)-vw> .

i
|
!
|
!
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Tnis corresponds to no net flux of species (1) across
tne wall {cf., Eg. (46a)|.
Tne specitication of 4 and . determines u -, at

¥

the ©bpoundary from Eq. (44a) and is thus the appropriate boundary

*

condition for the elliptic operator o in Eg. (40). The
DUerators LO and Ll in Egs. (39) and (40) also require a
boundary wvalae at tne origin, ., =0 . The physical requirement

tnat no toroidal flux arise at the magnetic axis [cf., EqQ. (34b} ]

curresponds to u = U at o, = 0

3. Free @gnoandary

In the free boundary problem, the plasma is surrounded by a
vacaum rejion which extends to infinity. There are M axisymmetric
line current sources at fixed locations [(xm, zm); m=1, M] in
tne vacuum with strengths ‘Im(t)j . The time derivative of the

poloidal flux at a fixed point in space x = (x, z), i , satisfies

N S ¢ s -
(4-%x%) L= 2ux 3. I s (x ’fm) . (55)

in the vacuum region and

- X _ o - . .

(167323 I8 Tk - x0T+ Ly + L)Tx = x(0)] = Q (56a)
in the plasma region where
a . * * . R
[y = x{(0)] = 'EW'VwX' 4 zﬁ[EII_ E”(O)] . Here, x{0) and
EE {0) are the values of 3 and étl at the magnetic axis,
i = aIm/at , and Q is the source term



Hore, use was made of Egs. (39) through (42, and nof Egs. P46l

and (46e) .

We now introduce the free space toroidal Green's function,
. /2. . 2 2
ifn, g‘) = -~ (xx') / (2 - k))K(kA) - ZH(kz)f/k f {974)

2 2 . .
where K(kT) and E(k7) are complete olliptic integrals aned

2 . .
k Axx'/ (x + x')2 bz - z')zj . (574))
This satiafies
*
LGk, X') = 2nx S(x - x') . (570

By using Green's theorem, it can easily be shown that ; at

a boundary point Xy satisfies the integral eguation

M

’ 2 . f

¢ = 47 t N Io- HE 7.
’(xb) 41&L11mc(§m,§b)+J[ Br" da xC(g,gb).Q (L0 +L1)'“ SL0) Ty

where the surface integral is over the plasma cross section. This

is converted to a 1line 1integral over the plasma boundary by

introducing a function Vv (y, 0) inside the plasma which
satisfies
- * . .
(Lenx®)"hya v = 0 - (Ly + LTX - X(0)] (59)

with v = 0 on the plasma-vacuum boundary. Another application of

Green's theorem gives the identity




(6H0)

wl.iC5ofan e Zoed to wliminate the sdrface integral in Eg. (H58) .

A more  convenlent  form Sor numerical o bteration o obtained

et ey Yarctien HL, b,
it ooy -
* *
'aoto o+ E0 k- D) -V (61)
[rer tuncvions + and 4 tnen satisfy the coupled system of cquations
AR N _ N o
(16 ™) . + an + Ll) v =0 (L“ + Ll)n . (62a)
*
CH o= 0, (62b)

“(xb) =0 (63a)
M
{w = - = : . - !
i "h) 4 2;11m C(Tm' %bJ c(¥m' %O)'
+ (4872 %) o=, =) - 6(x, nna) ! v + H{xp) (63b)
R AT .xb riay AO Tn ~0 .

Here, X0 is the position of the magnetic axis, $ = 0 . Once v
and H are obtained from Egs. (62) and (63), Eq. (61) can be used

to obtain yx'u

-y

+Vy at the plasma-vazuum interface. This serves

as the boundary condition for Bg. (40).

The point ¢ = 0 is an interior point for Eg. (62b) and thus
does not take a boundary value. As discussed previously, the

operators L0 and Ll in Eg. (62a) do require a boundary c.~dition at
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thie: orlgin, Getting v - =H at . = U corresponds to nn toroidal
flux change therr. The system of  Egs. (61 tnrough {54 1
mathematically oquivalent to  Eqg. (58)  tut i3 in a form Tore

Ssaltabile far asglation by itaeration.

Finally, we consider the self-consistent determination of
At at  the plasma boundary in terms of currents in the poloidal

field colls. | O B 15 the poloidal flux function which vanlsine.

at  infinity, then application of Green's theorem to the vacuar

reqion yields for overy houndary point <, ,1L
3 : ; o (.
.(xh) = 4“24 (m(L)h{xm, xb) 4 j((d;/znx) GAx, Ah)(Jv/dn) . A
m: 1
i 3 Ba /R = »'{y I3 R
Noting that /(%b) = 'lmmay' £) s (t), 5./2n , (umax t)
and af = |vy¢! (J/x) du . we can averaje Eq. (64) over

the angle o to obtaln

max 2n

[f ao’ f (l"ll——)c(x x)] o (65)

In Eq. (65), xp(t) is obtalned by integrating Eg. (46d).

' | 3 99 Gix x|
PRNEE SB) = r_.:P(t) - 4n§; I X X
m=1
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Jill. EVALUATION JF RESISTIVE CONTRIBUTION TO FLUXES

rranspurt uvoefficients for an electraon-1on

- - ey N | |
-3
I

planma will nuw oo expliclitly evaluated for the collision
dominated regime [Pfirsch-Schluter regime} and the long mean free

patn tanana rejime.

AL Ffirschn-3chliater Regime

In the collisional regjime, parallel viscosity is
negligioie, 1o B0 . Thus, :'?" - ’]q , and the
cransport fluxes are (for 31 = 1)10
class IS .e2lass P . , m
“ b L o E b k(T (66a)

’ = -
o Mo lep L22ne(Te); ’ (66b)
E-B- = -(270,, /") (gp_+ "B >q /4n)
jig {4
2 2 . 2,2

= gt /8 T ) e S (66c)

‘qi-..v/Ti = ~Lini(Ti)w . (66d)

Eguation (52c) was used in obtaining the second form for Eq.

(66c) . The transport coefficients are:

Ly, = Lgll + 2.65 (0, /ny) q21 , (67a)
Ly, = (3/2)L,01 + 1.47 (n /n)a2] (67b)
Ly, = 4.66 L.[1 + 1.67 (n, mpal (67¢)
‘ Ly = /2 Lytm;/m) /% (/e ¥ (14 160 o) (67d)
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where
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LO ) nnr"l/‘ /“EZ/BZ ’ IREFERY
2 -1 .

hy me(nee wei) ' (L74)

g% = (2095w 2wt onTh o gl (670)

nn/nL = 0.51

As an application of this Pfirsch-Schluter model, consziii

resistive diffusion of particles, heat, and majgnetic (luxos

determined by Eq. (46). Equations {46d) and (46e) conbine o

become a diffusion equation20 for the rotational transform

r * 1/q (i.e., the poloidal magnetic field), where g 1is the

safety factor defin=d in Egq. (33)

Dy 3 . 19 23 2,2 =1, - ,

5% . = =5 (VW<%.§>) =3 57 "9 37 [(qu <Bp>g Vvl o, (68a)
where VW = av/a¥ . Here, the second form of Ohm's law, Eq.
(66c), was used to express <E+B> in terms of x . 1In the

Pfirsch-Schluter regime, the electrons and ions may be assumed to

be equilibrated, Te = T, = T . 'Phen, the particle and density

EgS.

(46a) and (46b) become, with
- C e - - . .3/5 :
ng =n, S, =8 =0, N =1V, and o, = p/° v
= RN T YY) 2 (D /) py - (') 2 (Lo /R NT, + V,<E+B>q (<B2>/<B%>) 17,
=3ty 11/ 7Py 12 y ¥ VBB p

(68b)

i
e nn g e
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vl ’ 1 at . o Won + ,,._]__A .v (v')ll
: v goo bR W =y
{68BC)
tn acriving Eg.  (68c) it was noted that L, ™" Lmn .
Tuerw are three characteristic time scales in Egs. (68a-cy:
) 2, , 2 -1 s
Gy At ta/ ) ol , the classical

svin  penetration time of the poloidal magnetic field. Here,

SEAN is the collisionless skin depth.

. e
. e

it} ) «2/ Li(-'lsT rvl(me/mi)l/2 (1 + 1.6 qf)—l Tg , the
Pfirscn-Schliter heat conduction time,

trit) (Li/LH) Ty (mi/me)l/2 T v the particle
transport time,
For low = 2 tokamak plasmas, the ordering

L e T2 seems most appropriate. Thus, ion heat

conduction balances Joule heating at the end of the most rapid
' time scale. This determines the temperature profile, but the
MHD functions p(% ) and g(¥ ), which determine the eguilibrium
confiquration, remain arbitraty. On the 1, time scale,

which was called the fast time scale in Ref, 1 (where heat
conduction was ignored), the poleoidal flux & diffuses through a
stationary density profile. Equation (68a) yields an asymptotic
constraint between p and g; i.e., v <§-§> = cl(t) : where

Yy
varies on the 1, time scale. Using Eq. (66¢c) impliesl'2

€1
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e [3 ruz-qv/4~ + ?1rt)/‘k A yo= 0y,
Parlhermore, the steady  state energy Eg. {6sc) can  nnuw
integrated  once ta yield tne temperature profile on thne A A

scale for an ohmically heated, crllisional plasma,

1 . 2
r1/4~)u1qvul- t (1/4)L1(y'> o= 0 . 161
. / H
The boundary condition h[ = =0 at the magnetic axin .
) ¥
heoen used., Finally, on the (nlow] ) time scale, the densiy

tends to a stationary value determined by the wvanisning of oo

particle flux,

Jo-1 . . WA TR 0 L
oot onge Ll ) (2n ,/Lyd HP S ) e B

where Eg. (69b} was used to eliminate 'I‘.F . Eguation (b9c; is a

second relation determining the profile of the MHD functinn

p i) . Combining Egs. (6%a) and (69c) yields a relation for

the local (in ¥ ) poloidal beta ﬁp = 8ﬂp/’B§’ in a
stationary, PEfirsch-Schluter plasma. With
vy(vru—lq'ﬂi-)]1 —p(qu-lq"Bnr)_] we obtain
g - ﬂi/B - R =0 , (70a)
p P GH
whete
By = (16w nn C(v*) 20, 37w, o0, )V, 90712

-1.1/2

[(4/ﬂ)(me/mi)l/zng(<x2B;/Bz>)—l(nl/n'|+ 2,65 qi)
(70b)




el 2 P " 2y-1
i A i B np» B¢y, + 2065 qp)
(70¢)
D tarat ceermo1n Rg. {70a) arises froam the pressare gradient
frrcens adrwar o particle flax.  the middle term arises from finite
T | ti ol irt el 1 rasion
1
+ ‘ 1 te by 1 joeal I 1 Tlrweit
e
1 limi
al T, t e Dord=lban - limit,
_— _
N 2005 q:) ! , arises  fram the balance of
i !
inward pincth and outward diffusion. However, since
, 2.1/2
A S SV ARPIL B B 1 (71)
-1 , /4 . .
tot (mj;mi) 1 , the presence of ion heat conductior leads
: ¢ frlance betweoen thethermal pinch and normal outward diffusion
. L 21 . . R
t a larjer - limit, rp = by . than previously obtained.

Steady state profiles for p and g can be obtained in terms of
'H;' and t by solving the transport constraint Egs. (69%a)
and (69c). These profiles must be inserted into the equilibrium
EQ. (1), thus yielding a nonlinear GDE9 for the
self-consistent flux surface geometry. The determination and
stability of steady state 2-D resistive profiles is considered in
Ref. 13, together with a complete analysis of the time evolution

of a collisional and collisicnless plasma.
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H. Banana Reglme

The transport coefficients for 3 panana-regime simple a0

have  bLeen  recently computed for arbitrary aspect ravtio and o o
22

sectlon shape, with thne restriction that B nhasz  onLly
single maximum an cach flux sur face, In LTed
o
. Lo -
caloalarions, thee valars of the banana transport  coeffi-ient

woere  obtained by a lincar superposition of large and small acoe

ratio bimit results. The present results ace based on o

aspect ratio fit for the nanana regime vigcosity coeffliciont .
-2, . -1 vy -1 =1 .
o R !'i“” Pt : , o
wheer o
H_l 2
€, = 1 - (3/0)-8% ‘]" c a1 - w2y Y
0

is the fraction of "trapped particles ( Bc is the maximum value f

B'" on a flux surface), Ec =1 - ft is the fraction f

circulating particles, and

y ; ) (7
.)(O) tl_lfTJOUJ/Et ¢ <
t
vt(l) 1im £ 1. . (72261}
B chp e
t
The quantity Auj z “5(0) - u%(l) is nonzero due to
like-particle collisions (i.e., Auj ~ 0 in the Lorentz limit).

Neglecting Auj leads to the approximate form uy o= ftu%(O)/Fc '

which was used to evaluate the transport fluxes:

Jbp _ bp _ _.bp bp L. _<E+B>/<B%> ,
re =Ty = -Lll[pw + yni(Ti)w] + lene(Te)w 13<E*B>/

(73a)



5 3 = oclass t -
LL, . ll s ;s _111L + lene(TP) , {73b)
o= ) PPvn (71 L0 (1) 4L .-Len-/opl
. ‘o RIS PR AL R S U LU F R
{73c)
TR I 3d
N . 5 i “i\[i). ’ (73d)
Be = eyar Cotent T (73e)
1 Co T T ey : ! '
-1 2
IEREIRE D O Rt | LLNL S G (AR B KL A
) A ' - g !
Flyypor g (Iilj L23ne(10)$ . (731)
Hoeve rin vrarsport coefficients are
LM L R B {T4a)
WD =21y - 0063 £, (74b)
Ly = (27/.")naf (1.68 - 0.68 ) , (74c)
Ly, = 1.25 (27 9naf (1 - £) (74Q)
2
Ly = Lyl + 2950, (74e)
) 2
Ly, = 3/ L0+ 2950, (741)
nc 2 )
L22 = 4.66 ‘LO(l + 2qg.) + Ly, (749g)
nc _ 5 172 m y 372 2
L;” = V2 (my/m,) (T /Ty) [Ly(l + 2qy) (74h)
+ 0.46 L, (1 - 0.54 ft)_l] ' {741)
y = =117 (1~ £)(1 - 0.54 £)71 (743)
Lgy = -1.26 £,(1 - 0.18 £) . {74%)

L, = ft(zng/x')znnl/<82> . (741)




LA, DISCOL ST ANL SUMMAKRY

Teor theary  of STER BERRE A

1nhont YW= 1 Ten iy, T
Y iprd Yealt  Leen Lrenented

P RAnnT T WnlIho L neuthhovnt oLt

and amenable to efflcient namnerical solation. The roedased s
i-bb esolation Fgs. (4ha) tnrougn (46e), togetier wirr +
PAEIVER NS N Suy, comprise o oconplete description of 0 pecis gy

ke phenomens for an arbitrary  transport aodel,

Prar

Chonare wodels haye neen o eaxplacatiy evalaated for the peocd

llisron~dominated  gnd lang mean free path ca2gimes.  Sope 0.
State nolutions have heen  dideuassed, Complete  analyti ol
nanner teeel solutions aning rthese transport madels will e a0

I

[t has lony been recognized that the MHD equilibrium s:juati

Jdoen o= Up constrains the resistive evolution of airface
. . . : B "

averaged thermadynamic and magnetic variables in a plasma. i

: 1 : .
WOT A of Grad and Hogan discussed consequences of

constraint and thereby renewed interest 1in a self-consistonr
treatment of diffusion in a deformable plasma. As a rrsult,
iterative numerical methods for solving a highly nonlinear loum of
the equilibrium (Grad-Shafranov) Eg. (lla) simultaneocusly witn 4
simple collisional diffusion model have been developed.4’24_27

A numerical method for extending this to an arbitrary transport
model has recently been described by Hogan.28 In that work, eact
numerical time step is divided (split) into two parts: one in

which plasma and field profiles are advanced with fixed geometry,

and the other in which the nonlinear equilibrium equation is



Srteelatee U ot il o4 teew  toax o sortace jeametry and Benee
sLaT 1 oCaa iy oan LeedtovACN b S ban

..... . 1o Ty T SiiATeat Grand-dnatoan oy egaation, we

i mawen tne uime drtterentisted (lanearized; torm, Mg 44y,

SLUain Y cedlcoary of 0 rorordal tiux Cartaces., I'rae

PLrterent barang o e ejal o lan aspdation wan o sajiested ty o several

S A Th o toene works the resalving cgqaation ftor o the
sl tioux Sea ety Wil 2 Joeteerad vaed drtterenrial

! -
paatioan, Slnve P lax  sartace  averdies ot tne  ansnaown J-D
A contrieate i ordinary ditterential terns o (ino ] to the

Vit rernn o idn ¥ o wrrarng from o tne 1oeal sartation  of
Senalibty. However,  no travtaile means of numerical solution wes
sJd33ented.  In addition, the eguation discussed by these authors
15} tne poloildal  flux velocity as the dependent variable. As

fovassed an Sectian V, it is preferable, for both physical and

Hireot by the toroddal fhas velocity.
e time depencent magnetic tlux coordinate transforration intro-
ticed in Section 111 cnables efficient numerical solution of the
rwrmi&able”J constraint, [, (40), since the surface intcgrals

reduce to simple averages over a single coordinate { ¥).

A reconciliation between two different interpretations of the
plasma mass flow 1in a resistive plasma has been suggested. One
viewpointl considers the mass flow as a state variable, for
which a boundary value problem must be solved. Tr.e other
interprets the cross-field plasma flow as a transport gquantity,

determined by local gradients of thermodynamic variables. The



_l]fJ_

"paradox” is resolved by noting that in the frame moving witn - -«

toroldal  magnetic  flux, the mass flow i3 indecd o rro:
jantiry, 2ssentially equal to Lhe flux computed witn B/t

{at least in the collisional regime). However, the motion of f1.x
surfaces in space i3 determined by Eqg. (40) and reguircs oo

zsolution of a global houndary valur problem for its determination,
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