$$
L A-U R--82-2351
$$

DE82 021778

title: THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE

 DEVIL'S STAIRCASE

AUTHOR(S): Serge Aubrey

SUBMITTED TO: Physics D as a Proceedings of CNLS "Order in Chaos" Conference ? held May 24-28, 1982

The Twist Map, the Extended Frenkel-Kontorova

Model and the Nevil's Staircase

Serge Aubry*
Center for Nonlinear Studies
Los Alamos National Laboratory
Los Alamus, New Mexico 87545

\%On leave of "Laboratoire léon Brillousi" Orme den Merisiers 91191-Gif-sur-ivette Cedex, France.

ABSTRACT

This paper reviews exact results which we obtained on the discrete Frenkel Kontorova (FK) model and its extensions, during the past few years. These models are associated with area preserving twist maps of the cylinder (or a part of $i t$) ontc itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. We describe the exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. We next prove that the existence of KAN tori corresponds to undefectible incommensurate ground-states and give a theorem which asserts that when the phonon spectrum of $\begin{gathered}\text { n } \\ \text { inconmensurate } \\ \text { groundestate exhibits a finite gap, then }\end{gathered}$ the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, wher applied to the initial fK model, allows one to prove the existence of the transition by "breaking of analyticity" for the incommenurate structures when the parameter which describes the discerpancy of the model to the integrable limit varies. These theorems also allows one to ohtain a series of rigotons upper hounds for the stochnsticity threptold of the stintard map wheh for the order 5, alrealy nppramenes at 25% the value which is mumerically known. Finally, we descrile n theorem proving the existence of a devil's ntaifense for the variation curve of the atomic mean distame versus a chemical potential, for certaln properties of the twat mip which are promerally matinfied.

I. Introduction. Models description

Up to now, applications of the properties of nonintegrable maps and particularly the possibility that they have to exhibit a chaotic behavior, have been mostly devoted to physical systems which are really dynamical. However, they also have interesting applications for understanding static structural properties of condensed matter. The aim of this paper is to describe some of these applications. Instead to give a detailed report of our talk (which would be too long), we mostly focus on the rigorous results which we obtained. The reader can refer to ${ }^{(16)}$ where the physical applications of this work have been focused at the expenses of a precise mathematical description which as a counterpart is given here.

We initially studied the Frenkel Kontorova model ${ }^{(2)}$ (noted hereafter FK model). However, due to difficulties in the publication of these early works, these results have only been published in parts and with incomplete proofs in journals of limited audience. We take the opportunity of this paper to recall, to clarify and to emphasize some parlicular important points which apparently have been ignored or misunderstood in the literature, but which already gave answers to certain presently rontroversed questions (for example on the existence of chaotie ground states in the FK model). The exact results which we obtained on its gromidestates and on its metastable states, also tarned out to have important applications for the standard map. We recently improved and extraded these resulte to a lager class of models corresponding to twist mips and for which we obtained interesting new theorems. In this paper, we describe them in the most recently improved form, but we do not include theis proofs which are gemerally long and complicated.

However, we detail some corollaries which have immediate applications with their pro s when they are simple. The first parts of ithe most important proofs are submitted to publication (Ref. 6 and 7). The second part (Ref. 8) is still in preparation.

This study is essentially analytical and yields only qualitative results of topological nature. However, explicit rigorous calculations can be carried out on a particular but pathological model with the form (1) where $V(x)$ is replaced by a piecewise parabola periodic potertial $(2,3,7)$. We also performed few numerical calculations mostly for the illustration of the theory (Fig. 1 and 4). Some recent numerical calculations ${ }^{(14)}$ have also been performed on the transition by breaking of analyticity in order to explicit critical quantities and critical exponents.

Le: us describe now, the Frenkel Kontorova ${ }^{(1)}$ model, in its original version. It corresponds to a chain of elastically coupled atoms submitted '0 a periodic potential

$$
\begin{equation*}
\phi\left(\left\{u_{i}\right\}\right)=\sum_{i}\left[\lambda V\left(u_{i}\right)+W\left(u_{i+1}-u_{i}\right)-\mu \cdot\left(u_{i+1}^{-u_{i}}\right)\right] \tag{1.a}
\end{equation*}
$$

the atom is at abscissa u_{j}. The coupling potential W is harmonic

$$
\begin{equation*}
W\left(u_{i+1}-u_{i}\right)=\frac{1}{2}\left(u_{i+1}^{-u_{i}}\right)^{2} \tag{1.b}
\end{equation*}
$$

(The energy unit is chosen such that the coupling constant in ($1, b$) be one). The periodic potential V with period $2 a$ is simusoidal.

$$
\begin{equation*}
V\left(u_{i}\right)=\frac{1}{2}\left(1-\cos n_{i}^{\pi u}\right) \tag{1.6}
\end{equation*}
$$

λ the amplitude of this potential is al adjustable parameter. The chain
is submicted to a tensile force μ (or a chemical potential) which allows one to change the distance between neighboring atoms in the absence of periodic potential $(\lambda=0)$. The configurations $\left\{u_{i}\right\}$ of model (1) which have the most physical interest are those which corresponds to the ground-states for various boundary conditions or with free ends and those which corresponds to metastable configurations. All these configurations are solutions of the equation

$$
\begin{equation*}
\frac{\partial \phi}{\partial u_{i}}=\left(-u_{i+1}-u_{i-1}+2 u_{i}\right)+\frac{\lambda \pi}{2 a} \sin \frac{\pi u_{i}}{a}=0 \tag{2}
\end{equation*}
$$

but this equation also exhibits many orher unphysical solutions (in our physical context) whic'l correspond to unstable configurations. (Note that the parameter μ disappears when writing equation(2)).

This equation can be recursively solved ${ }^{(2)}$ by iterating the area preserving two dimensional map $\tilde{\mathrm{T}}_{\mathrm{s}}$ which maps the point $\tilde{\mathrm{P}}_{\mathrm{i}}$ with coordinates $\left(u_{i}, u_{i-1}\right)$ onto the point \tilde{P}_{i+1} with coordinates ($\left.u_{i}, 1, u_{i}\right)$. from equation (2), we get

$$
\begin{equation*}
\tilde{P}_{i+1}=\tilde{\Gamma}_{s}\left(\tilde{P}_{i}\right)=\left(2 u_{i}+\frac{\lambda \pi}{2 a} \sin -\frac{\pi u_{i}}{a}-u_{i-1}, u_{i}\right) \tag{3}
\end{equation*}
$$

This map can be fold up onto a torus $10,2 \mathrm{a}[\mathrm{x}[0,2 \mathrm{a}$ [by defining

$$
\begin{equation*}
\theta_{i}=u_{i} \text { midulo } 2 a \tag{4}
\end{equation*}
$$

It in now well-known that such map exhibits many kinds of trajectories which are elther chaotic or not. Figures 1 shows some trajectories fur $\lambda=0.15$ (Fig. $1-\mathrm{a}$),$\lambda=0.20$ (Fig. $1-\mathrm{h}$) and $\lambda=0.25$ (Fig. 1-c). About 1000 iterated points have licen ploted from each indtial point. These figures exhibit trajectories which are cither rotating on one or several
smooth closed curves or are chaotic. The behavior of two dimensional area-preserving maps has been intensively studied particularly during the past few years and we refer for example to the important work of Greene ${ }^{(9)}$ on this subject.

By the change of variables

$$
\begin{equation*}
p_{i}=u_{i+1}-u_{i} \tag{5}
\end{equation*}
$$

this map becomes the well-known standard map which have been studied as a model for certain dynamical systems (for example the motion of an ion in a plasma)

$$
\begin{equation*}
\left(p_{i+1}, \theta_{i+1}\right)=\widetilde{T}_{s}\left(p_{i}, \theta_{i}\right)=\left(p_{i}+\frac{\lambda_{i} \tau}{2 a} \sin \frac{\pi \theta_{i}}{a}, p_{i+1}+\theta_{i}\right) \tag{6}
\end{equation*}
$$

This standard map, which maps the cylinder $[0,2 a[$ onto itself, is a prototype for the twist maps of the annulus onto itself (see Ref. 5) A twist map is a map $\tilde{\mathrm{P}}_{\mathrm{i}+1}=\tilde{\mathrm{T}}\left(\widetilde{\mathrm{P}}_{\mathrm{i}}\right)$ of the annulus onto jtself (An annclus is defined as the part of the cylinder ($p, 6$) which is limited by two circular sections $p=\rho_{0}$ and $p=\rho_{1}$) which satisfies

$$
\begin{equation*}
\binom{p_{i+1}}{\theta_{i+1}}=\tilde{T}\binom{p_{i}}{\theta_{i}}=\binom{\mathrm{T}_{1}\left(p_{i}, \theta_{i}\right)}{T_{2}\left(p_{i}, \theta_{i}\right)} \tag{7}
\end{equation*}
$$

where

1) T_{1} and T_{2} are differentiaole in p and θ with continuous derivatives. \tilde{T} is area preserving and invertible,
2) T_{1} and T_{2} have period 2π with respect to the variable θ,
3) For any fixad value of $\theta, \mathrm{T}_{2}(\mathrm{p}, \theta)$ is a strictly monotonous function of p,
4) The two boundaries of the annulus are invariant by \widetilde{T} which also preserves their orientation.
This standard map \tilde{T}_{s} in (6) allows one to represent any stationary configuration of model (1) modulo $2 a$ (which can be either physically stable or unstable) by a trajectory in the dynamical system with the discrete time i and the evolution operator \widetilde{T}_{s}. But let us emphasize again, that our specific problem is not to find the properties of arbitrary trajectories, but to find those which corresponds to physically stable configuration. Let us also emphasize that the physical stability of a configuration must not be confused with the stability in the map of the associated trajectory.

Althougn our theory was initially developed for a slightly generalized form of model (1), we recently found that the method which we used, can be extended with few changes to a wider class of one dimensional models with first neighbor interactions. The map associated with these models by extremalizing their energy, turns out to include the class of twist maps above defined in (7) but our map \widetilde{T} is not necessarily restricted to an annulus. The energy of this class of model (or variational form) which contains model (1) as a particular case is

$$
\begin{equation*}
\phi\left(\left\{u_{i}\right\}\right)=\sum_{i} L\left(u_{i+1}, u_{i}\right) \tag{8.a}
\end{equation*}
$$

where $L(x, y)$ is an arbitrary function of the two variables x and y which have the following :roperties:

1) $L(x, y)$ is continuous with a lower bound;
2) L(x, y) is diagonally periodic with period $2 a$ that is for any x anc y

$$
\begin{equation*}
L(x+2 a, y+2 a)=L(x, y) \tag{8.b}
\end{equation*}
$$

3) the crossed second derivative of $L(x, y)$ is strictly 'negative that is there exicts a positive constant C such that for any x and y

$$
\begin{equation*}
-\frac{\partial^{2} L}{\partial x \partial y}(x, y)>C>0 \tag{8.c}
\end{equation*}
$$

By setting $p_{i}=\partial L\left(u_{i}, u_{i-1}\right) / \partial u_{i}$, the conjugate variable of u_{i}, the equation $\partial \phi / \partial u_{i}=0$ generates an area preserving map $\left(p_{i+1}, \theta_{i+1}\right)=$ $\widetilde{T}\left(p_{i}, \theta_{i}\right)$ with the same properties as the twist map (7) except that it maps the cylinder (or a part of it) onto itself and not necessarily an annules onto itself.

Our theory ${ }^{(6)}$ introduces a distinction between the concept of minimuin energy configuration (m.e. configuration) and the concept of grourd-states. The reason for this distinction is that under certain boundary conditions, for example the constraint

$$
\begin{equation*}
\lim _{N-N^{\prime} \rightarrow \infty} u_{N}-u_{N}=2 a \tag{10}
\end{equation*}
$$

the configuration of model (1) which salisfies this condition and which have the minimum energy is in fact a defect (a soliton in the continuous limit) and is not hasully considered as a ground-state. The set of minimum energy configurations is defined as the set of all possible limits of ground-states of finite systems with arbitrary houndary conGition at ${ }^{4} N$ and ${ }^{N} N$, when N goes to to and N " goes to $-\infty$. This set of m.e. configurations is called Q. We keep the name ground-st te for m.e. configuations which are represented by recurent trajectories in the associated map. (A recurent trajectory returns into any neighborhood of any point of the trajectory). This definition turns out to correspond
to the usual intuition of a ground-state (see Ref. 6 for more details). This set is called \mathcal{G} and is included in Q.

We found the topological structure of the sets Q and \mathcal{G} without any explicit calculation of m. . configuration. These results are described in the following section 2. Before the description of these results let us briefly explain the general ideas which allows one to find a method which works when some topological and symmetry properties are satisfied.

1) We note that the set Q is closed $\overline{\text { ror }}$ the weak topology that is, the limit of a convergent sequences of m.e. configurations is a m.e. configuration. This property is only a consequence of the fact that the energy of the model depends continuously on the atomic positions.
2) We note the existence of a group of transformation G° which transforms a configuration into other configurations with the same energy. Particularly Q and G are invawiant by G°. This group G^{\prime} is defined by the Lransfnrmations $g_{n, p}$ wl' h transforms a configuration $\left\{u_{i}\right\}$ into:

$$
\begin{equation*}
g_{n, p}\left(\left\{u_{i}\right\}\right)=\left\{u_{i+n}-2 p a\right\} \tag{12}
\end{equation*}
$$

n and r are two arbitrary integers. This property is a consequence of the homogencity of the model (all the atoms play an identical role) and of the periodicity condition (10.b).
3) Condition (10.c) allows to prove the fundamental lemma which is:

- Fundamental lemma Let $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ be two m.e. configurations. then the sequence $\left(u_{i}-v_{i}\right)$ has at most one node for $-\infty<i<\infty$ (i.e. one change of $s i g n$). If the two configurations $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ are asymptotic for $i \rightarrow \pm \infty$, the point at infinity must be considered as a node.

Considering a m.e. configuration $\left\{u_{n}\right\}$, the group G^{*} allows one to construct an infinite number of m.e. configurations from which the limits, are also m.e. configuration. These m.e. configurations can be compared one with eacl other with the atove fundamental lemma which yields inequalities. By combining these methods in a sequence of proofs which is quite long and complicated, ${ }^{(6)}$ one finds the exact topologica structure of the set Q and \mathcal{G} now described.
2. Topological Structure of the set of m.e. configurations and of ground-state in the extended FK model (proofs in Ref. 6.b).

We first found
[Theorem 1. For any m.e. configuration in Q, the limit (11) is defined and does not depend on the way by which ($\mathrm{N}-\mathrm{N}^{\prime}$) goes to infinity.

Conversely, for any value of ℓ, there exists a m.e. configuration $\left\{u_{i}\right\}$ in Q such that the limit (11) be ℓ.

The corresponding trajectory in the twist map have the winding number $\frac{\ell}{2 a}$ which is its mean number of revolutions around the cylinder per iteration of the map. Because of this theorem, we can split the set Q (and $\dot{\xi}$) into subsets Q_{ℓ} (and ξ_{ℓ}) which are defined as the configurations in Q (and \mathscr{G}) with winding number $\frac{\ell}{2 a}$ and such that:

$$
\begin{equation*}
Q=\bigcup_{\ell} Q_{\ell} \text { and } \xi=\bigcup_{\ell} \xi_{\ell} \tag{13}
\end{equation*}
$$

wich for any $\ell \neq \ell$ ́

$$
\begin{equation*}
Q_{\ell} \cap Q_{\ell}=\emptyset \quad \text { and } \mathcal{G}_{\ell} \cap \mathscr{G}_{\ell^{-}}=\emptyset \tag{14}
\end{equation*}
$$

The two following theorems describe the structure of Q_{ℓ} and \mathcal{S}_{ℓ}, first for $\frac{\ell}{2 a}$ an irrational number and next for $\frac{\ell}{2 a}$ a rational number.

Theorem 2. Let $\frac{\ell}{2 a}$ be an irrational number then:

1) The set Q_{ℓ} of m.e. configurations of the above defined extended -K models, is non-void and is totally ordered that is if $\left\{u_{i}\right\} \neq\left\{v_{i}\right\}$ both belongs to Q_{ℓ} then for all n either

$$
\begin{equation*}
\mathrm{u}_{\mathrm{n}}<\mathrm{v}_{\mathrm{n}} \tag{15.a}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{n}>v_{n} \tag{15.b}
\end{equation*}
$$

2) The whole set \mathcal{G}_{ℓ} of ground-states configurations of model (8) $\left(\mathcal{Y}_{\ell} C_{-} Q_{\ell}\right)$ is nonvoid and can be parametrized witb one or two hull functions $f(x)$ which are strictly increasing. a) When $f(x)$ is continuous, a unique function allows one to parametrize the full set \mathcal{G}_{ℓ}. b) when $f(x)$ is ascontinuous, two determinations $f^{+}(x)$ and $f^{-}(x)$ are necessary to parametrize \mathscr{Y}_{ℓ}. $f^{+}(x)$ and $f^{-}(x)$ correspond the right continuous and the left continuous determination of the same discortinuous, strictly increasing function. In other words, we have:

$$
\begin{equation*}
\lim _{\substack{\delta \rightarrow 0 \\ \delta>0}} \mathrm{f}^{-}(\mathrm{x}+\delta)=\mathrm{f}^{+}(\mathrm{x}) \tag{16.a}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \mathrm{f}^{+}(\mathrm{x}+\delta)=\mathrm{r}^{-}(\mathrm{x}) \tag{16.b}
\end{equation*}
$$

c) When $f^{ \pm}(x)$ is discontinnous at x_{o}, it is also discontinuous at the points $x_{0}+1, \ell+2 k a$ where h and k are arbitrary integers. As a result, the set of discontimity points of $f^{ \pm}(x)$ is dense on the real axis.
d) Functions $g^{ \pm}(x)=f^{ \pm}(x)-x$ are periodic with the period 2 a of $L(x, y)$.
e) Finally, for any ground-state which belongs to \mathcal{G}_{ℓ}, there exists a phase α and a determination of $f f^{+}$or f^{-}when f is discontinuous ('he determination is unique when f is continuous) such that

$$
\begin{equation*}
u_{n}=f^{ \pm}(n \ell+\alpha)=n \ell+\alpha+g^{ \pm}(n \ell+\alpha) \tag{17}
\end{equation*}
$$

Conversely, any corfiguration $\left\{u_{n}\right\}$ defined by (17) for an arbitrary rhase and one of the two determinations f^{+}or f^{-}when f is discontinuous, is a ground state in \mathcal{G}_{ℓ}.

This hull function $f(x)$ obviously depends on $\frac{\ell}{2 a}$. A configuration $\left\{u_{n}\right\}$ as defined by (17) is called incommensurate. It describes a crystal structure of atoms at distance ℓ which is modulated by the function g with the period 2 a incommensurate with ℓ. Let us now describe the structure of \mathcal{Q}_{ℓ} and ξ_{ℓ} for $\frac{\ell}{2 a}$ rational.
Theorem 3. Let $\frac{\ell}{2 a}=\frac{r}{s}$ be a rational number. (r and s are two irreducible integers). Then

1) The set \mathcal{G}_{ℓ} is nonvoid and is Lotalyy ordered. (i.e. for $\left\{u_{j}\right\} \neq$ $\left.\left\{v_{i}\right\} \operatorname{in}\right\}_{\ell}$ then for all n we have either ($15 . a$) or ($15, b$).)
2) For any $\left\{u_{1}\right\}$ in \mathcal{G}_{ℓ}, we have ror all n

$$
\begin{equation*}
u_{n+s}=u_{n}+2 r a \tag{20}
\end{equation*}
$$

(This ground-state is called commensurate. It has a unit cell of a atoms with length 2 ra.)
3) When the set \mathcal{G}_{ℓ} is continuons, which means that it cian be parametrized by continuons functions $\left\{u_{n}(\alpha)\right\}$ where α is a continuous parameter which varies from $-\infty$ to $+\infty$ (for example u_{0}), then $u_{n}(a)$ is a
continuous strictly increasing function of α and we have

$$
\begin{equation*}
Q_{\ell}=\xi_{\ell} \tag{21}
\end{equation*}
$$

4) When \mathscr{Y}_{ℓ} is a discontinuous set, it is closed and there exists for each discontinuity a couple of ground-states $\left\{v_{n}^{-}\right\}$and $\left\{v_{n}^{+}\right\}$in \mathcal{F}_{l} such that there exists no ground-states in $\mathcal{G}_{\ell},\left\{v_{n}\right\}$ which satisfies for all n

$$
\begin{equation*}
v_{n}^{-}<v_{n}<v_{n}^{+} \tag{22}
\end{equation*}
$$

Then, there exists a me. configuration $\left\{u_{n}\right\}$ in \mathcal{Q}_{2} such that for all n

$$
\begin{equation*}
v_{n}^{-}<u_{n}<v_{n}^{+} \tag{23.a}
\end{equation*}
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow+\infty}\left(v_{n}^{+}-u_{n}\right)=0 \tag{2.j.b}\\
& \lim _{n \rightarrow-\infty}\left(u_{n}-v_{n}^{-}\right)=0 \tag{2.3.c}
\end{align*}
$$

Such a configuration $\left\{n_{n}\right\}$ is called an "advanced elementary discommonsumption". There also exists me. configurations $\left\{u_{n}\right\}$ in Q_{ℓ} called "delayed elementary disicomentanation" such that for all n

$$
\begin{equation*}
v_{n}^{-}<u_{n}<v_{n}^{+} \tag{24,a}
\end{equation*}
$$

and

$$
\begin{align*}
& \lim _{n \rightarrow-\infty}\left(v_{n}^{+}-n_{n}\right)=0 \tag{24.b}\\
& \lim _{n \rightarrow \infty}\left(n_{n}-v_{n}^{-}\right)=0 \tag{24.6}
\end{align*}
$$

5) The union of \mathcal{G}_{ℓ} and of the set of advanced elementary discommensurations in Q_{ℓ} is called Q_{ℓ}^{+}. Identically, the union of: \mathcal{G}_{ℓ} with the set of delayed elementary discommonsurations is called Q_{ℓ}^{-}. Then Q_{ℓ}^{+}and Q_{ℓ}^{-}are totally ordered sets (with the definition given in (15)) and we have

$$
\begin{align*}
& Q_{\ell}=Q_{\ell}^{+} U Q_{l}^{-} \tag{25.a}\\
& \mathcal{Q}_{l}=\mathcal{Y}_{l}^{+} \cup Y_{l}^{-} \tag{25.b}
\end{align*}
$$

This theorem proves that when the boundary condition (11) is satisfied with $\frac{\ell}{2 n}$ a rational number, then the ground-state is indeed commensurate and satisfies (20). It can be obtained by finding tho absoluie mijnimum of the energy per unjt cell with this condition (20). There generally exists sminimd (modula $2 a$) (r and s are irreducible iniegers) because oif the invariance of the energy per unit cell under the s cycitic permu$\operatorname{LaLions}\left\{u_{n}\right\} \rightarrow\left\{u_{n+p}\right\} p=1,2, \ldots s . \quad$ it may also cxist ks minimat (for ('xample $k=2$ is possible if the modrl has a symmetry by reflexion) or also a contimann of minima but these two situations are exceptional.

In this theorem, we distinguish two different situstions. The situation where \mathcal{F}_{2} is a cont imous set is found for rxample in the case of integrable maps. $1 t$ corresponds 10 tine absence of locking of the commensurate conlipuraticas by the lat tice and ran be comsidered as exceptional. The sitmaton, where \mathcal{G}_{ℓ} is discont imuous lurns out to be the most kenerai rase. 'lhen, the lattice locking does not vanish. This is a meressary and sulfieient comdilion :o have disucommensurations

similar to (10). They kiere already known as solitons in continuous models for incommensurate structures. (10) Thus, we also prọve there existence (under certain conditions) in a discrete model for any commensurability ratio r/s.

Since any twist map (7) corresponds to a variational form (8) for some choice of $L(x, y)$, these theorems predict.s the existence of certain trajectories in the twist map with particular properties as a corolary of theorems 1,2 and 3 :

Let w_{0} be the winding number of \tilde{T} (definec by (7)) on the invariant circle $p=\rho_{0}$ and w_{1}, its winding number on the invariant circle $p=\rho_{1}$. In order to fix the ideas, we assume that $\omega_{0}<w_{1}$. Then for any $w_{0} \leq w \leq$ w_{1}, there exists a trajectory with winding number w. If w is an irrational number, this trajectory is quasi-periodic (in an extended seuse berause function f in (17) is not necessisily continunus) and is dense either on a continuous closed loop or on Cantor set which is parametrized by the function $£^{ \pm}$in (17). (This result tias also been recently proved by Mather. ${ }^{(24)}$) $1 f w i s$ riticnal number r/s, it is a periodic cycle $\left\{F_{j}\right\} \quad i=1, \ldots s$ with period $:\left(\tilde{T}^{s}\left(F_{i}\right)=F_{i}\right)$. Whenthes of periodice cycles with period s of \tilde{T} does not form a clused contimous loop around the cylinder, (unlike certain integrable twist maps) there rexsts initial points h which by aplying the transformations fisn are asymptic to one of the points F_{j} of the periodic cycle for nem and to another point F_{j} oi the same periodic cycle for noto. (These pointes F_{i} and F_{j} are in consecutive order with the order relation given in (23)) Such points are called in mathematics, heloroclinic pointa. This point h belongs to the intersection of two chaves (ser fig. 3) : the dilating shert W_{f}^{+}of F_{i} which is the ret of points which enoverge to f_{i} by itratiag the
transformation \widetilde{T}^{s} and the contracting sheet W_{j}^{-}of F_{j} which is the set of points which ronverge to F_{j} by \widetilde{T}^{s}. Let us note that the point F_{i} must be linearly unstable with respect to \widetilde{T}^{s} (that is the Jacobian matrix of \tilde{T}^{5} at F_{j} has a real eigenvalue with modulus larger than one) in order to be allowed to apply a theorem which predicts the existence of a dilating sheet W_{i}^{+}(Ref. 11). It may happen, altrogh F_{i} is unstable with respect to the operator \widetilde{T}_{s}, that its Jacohian matrix has an eigenvalue with modulus one. Then, a proof for the evistence of a conlinuous dilating or contracting sheet is necessary. (We have not yet performed this proof).
3. Netistable configurations and their corresponding trajectories in the twist map

Theorems 1,2 and 3 definitely prove that although the equations $\partial \phi / \partial u_{i}=0$ exhibits many chatic solutions, the pround-state of moder (8) is never chaotic, whatever is the boundary condition (11), and janticularly it has no entropy. Nevertheless, as we alrealy pointed several years ago in Ref. 2 (for the simpler model (1)) model (8) may exhibit for certain bomdary conditions (11) metastable ronfigurations which are : anotic but have mote energy per atom than the real fround-

 lipuration, it is called mondertiblr.

In this section, we investigate some of the mecessary properties of the trajertories in the twist min whish correspond to metastahle
 juromios ill the min and show: that this romerpt of stability i: mot

although these two concepts have scmetimes been confused in the literature. Let $\left\{p_{i}, u_{i}\right\}$ be a trajectory of the twist map $\tilde{T}_{;}$The corresponding configuration $\left\{u_{i}\right\}$ is a solution of the equation $\partial \phi / \partial u_{n}=$ 0

$$
\begin{equation*}
\frac{\partial L}{\partial u_{n}}\left(u_{n+1}, u_{n}\right)+\frac{\partial L}{\partial u_{n}}\left(u_{n}, u_{n-1}\right)=0 \tag{26}
\end{equation*}
$$

By difinition, the physical stability (called metastability) of this conf guration $\left\{u_{n}\right\}$ means that the second order expansion of the energy (8) with respect to small atomic displacements $\left\{\delta_{n}\right\}$

$$
\begin{align*}
\delta \phi= & \frac{1}{2} \sum\left[\left(\frac{\partial^{2} L\left(u_{n+1}, u_{n}\right)}{\partial u_{n}^{2}}+\cdots \frac{\partial^{2} L\left(u_{n}, u_{n-1}\right)}{\partial u_{n}^{2}}\right) \delta_{n}^{2}\right. \tag{27}\\
& +2 \partial^{2}{ }^{2}\left(u_{n+1}, u_{n}\right) \\
\partial u_{n+1} \partial u_{n} & \left.\varepsilon_{n+1} \delta_{n}\right]
\end{align*}
$$

is a positive qualratic form in $\left\{\delta_{n}\right\}$. This comdition is equivalent to the positivity of the phomon frequencias squares obtaised from the time Fontier transform of the small motion cquations:

$$
\begin{align*}
& w^{2} \delta_{n}=-\frac{3 \delta \phi}{i) \delta_{n}}=i^{2} L_{1}\left(u_{n+1}, n_{n}\right) n_{n+1}^{i) u_{n}} \delta_{n+1} \tag{2.8}\\
& +i^{2} L_{\left(u_{n}, u_{n-1}\right)}^{i u_{n} i u_{n-1}} \delta_{n-1}+\left(\begin{array}{c}
i L_{1}\left(u_{n+1}, u_{n}\right) \\
i n_{n}^{2}
\end{array}+i^{2} l_{1\left(u_{n}, u_{n-1}\right)}^{i n n_{n}^{2}}\right) \delta_{n}
\end{align*}
$$

 form of $\left.\delta_{n}(t)\right)$.

For each value of w, this equation can be recursively solved from the knowledge of δ_{0} and δ_{1}. Then the vector $\left(\delta_{n+1}, \delta_{n}\right)$ is ailinear function of the vector $\left(\delta_{n}, \delta_{n-1}\right)$. It is convenient to set the new variables.

$$
\begin{equation*}
\pi_{n}=\frac{\partial^{2} l\left(u_{n}, u_{n-1}\right)}{\partial u_{n}^{2}} \delta_{n}+\frac{\partial^{2} I\left(u_{n}, u_{n-1}\right)}{\partial u_{n} \partial u_{n-1}} \delta_{n-1} \tag{29}
\end{equation*}
$$

in order to find a linear relation

$$
\begin{equation*}
\binom{\pi_{n+1}}{\delta_{n+1}}=\left(\bar{J}\left(p_{a}, u_{n}\right)-\omega^{2} \bar{R}\left(p_{n}, u_{n}\right)\right)\binom{\pi_{n}}{\delta_{n}} \tag{30.11}
\end{equation*}
$$

whore $\bar{J}\left(p_{n}, n_{n}\right)$ is the dacohiammatrix of the twist map \widetilde{T} at ($p_{n},{ }_{n}$) and
 Jacohi.all matricrs:
 the typromus expolment y of thit: thajectory by the definition

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow+\infty} \frac{1}{2 n} \ln | | \overline{\bar{M}}_{n}^{t} \cdot \overline{\bar{M}}_{n}| | \tag{32}
\end{equation*}
$$

When γ is zero, the trajectory $\left\{p_{n}, u_{n}\right\}$ is called linearly stable. Because this matrix product does not diverge (or slowly diveiges) we can prove ${ }^{(8)}$ that the zero frequency belongs to the phonon spectrum given by Eq. (28).

When γ is not zero, the trajectory $\left\{p_{n}, u_{n}\right\}$ is unstable with respect to the initial conditions. Then, the zero fiequency may not belong to the phonon spectrum, but if it does belong, the corresponding rigenstates in the neighborhood of the zero frequency are necessarily exponentially localized.

As a result. onc sees that the linear stability of the trajectory $\left\{\ln _{n},{ }_{n}\right\}$ ondy gives informations on the spectrum of the simall motion equation at the frequency zero, but no informations on the physacal stability of the co:responding configurations. lndeed, our prevjous papers cxhibit cxamples ul trajectories which are either lincarly stable or unstahle in tha twist maly and for which the corresponding configurations are cither stable or unstable or vicerversa (sec for cxample Ref. 21). However, one can use the recursive relation (30) in order to find a meressiary condition for the plyysical stability of the stationary conlipurat ions satisilying (26). Reconnce of the condition (8.c) the off diagoual terms of the Jarebi motrix (Λ Janobi matrix is a symmetric : ridiagonal matrix) defined by the líg. (28) or by the puadratic form (27), ire all nexative. 'lhern, it cill be proved (8) that
 dimensional model with first neighbonr intoritctions) corresponds to a metasiable conlipuration it amd only if, iny sirquince $\delta_{n}(-\infty<n<+\infty)$
genezated from any arbitrary initial condition (π_{0}, δ_{0}) by the product along this trajectory of the Jacobian matrices (3)), has at most one change of sign.

Note that this theorem also applies to model (8) when the periodicity condition (8.b) is dropped. The map is then on the two dimensional plane and not on the cylinder. The proof of this theorem is an application of the theory of Jacnbi matrices. (See for example Ref. 13). (A wail known corollary of this theory, asserts that the eigenenergies of a one dimensional Schröedinger equation are in the same order than the number of nodes of the corresponding eigenstates.) This theorem have straightforward applications for predicting the physical unstability of the configurations corresponding to certain trajectories. We have with the same hypothesis as in theorem 4.

Corollary of theorem 4 . The configurations corresponding

1) To a periodic cycle which is elliptic;
2) To a periodic cycle which is hyperbolic (or parabolic) with reflexion; and
3) To trajectories dense on one or severa] differentiable tori (KAM tori) which are homotopic to zero are physically unstable. (A more complicated proof of this corollary was atraty given in Ref. 21, appondix A and R. This result was also given in Ref. 2.) For ils proof, we first examine the case of a periodic cycle of the twist map with
 equal in $\overline{\mathrm{F}}_{\mathrm{s}}^{\mathrm{k}}\left(\mathrm{p}_{0}, \mathrm{u}_{0}\right)$. When the prerodic cylle is rlliptic, the matrix \bar{M}_{s} is hy deliation equivalent to a rotation (in monothogenal axis), then the vector $\left(\pi_{k s}, \delta_{k_{s}}\right)$ is rotating on an ellipse around the origin. Therefore, the soquence $\delta_{k s}$ (amd also δ_{n}) have infinilely many changes
of sign which by theorem 4 proves the first assertion of the corollary. When the periodic cycle is hyperbolic with reflexion, by definition, the matrix $\overline{\bar{M}}_{s}$. as two real negative eigentalues with produci l. If (π_{0}, δ_{0}) is chosen to be an eigenvector of \bar{M}_{s}, the signs of $\delta_{k s}$ change for each consecutive k, because the corresponding eigenvalue is negative. The sequence $\delta_{k s}$ has then infinitely many changes of sign which proves the second assertion of the corollary.

When the trajectory $\left\{p_{n}, u_{n}\right\}$ is zotating and dense on a set of s differentiab?e tori (KAM tori) which art lometopic to dero (which mean that they can be shrunk continuously on the manifold of the map), the configuration $\left\{u_{n}\right\}$ can be parametrized with s periodic differentiable functions $\mathbf{g}_{\mathbf{1}}, \mathbf{8}_{2} \cdots \mathbf{g}_{\mathbf{s}}$ with period 2π

$$
\begin{equation*}
u_{k s+p}=g_{p}(k \theta+\alpha) \tag{33}
\end{equation*}
$$

where α is arbitrary phase and θ is the average of the angle of rotation of \widetilde{T}^{s} on each torus which is incommensurate with 2π. By inserting (33) in (26) and by differchtiating with respect to the phase α, at cones out that

$$
\delta_{k s+p}=g_{p}^{\prime}(k 0+\alpha)
$$

is a solution of Eq , (28) for $\omega=0$ (This sequence (34) is also generated from δ_{0} and δ_{1} by a product of facobian batrices). Since the derivative of any periodie fanction has at most two changes of sign per period, and because $\frac{\theta}{2 n}$ is irrational, the seguence generated by (34) has infinitely many changes of sign. The ihird assertion of the corollary is thus proved by theorem 4.

There often exists KAM tori of the twist map which are not homotopic to zero (they go around the cylinder), then the parametrization of the trajectory on this torus takes a sorm different from (34), which is (as in (17))

$$
\begin{equation*}
u_{n}=n \ell+\alpha+g(n \ell+\alpha) \tag{35}
\end{equation*}
$$

where g is a differentiable function with period $2 a$. The corresponding configuration: •ally stable when

$$
\begin{equation*}
\delta_{\mathrm{n}}=1+8(1, \alpha+\alpha) \tag{36}
\end{equation*}
$$

is always positive. We will see in the following section that this condition is always satisfied for such a KAM torus.

As a resulz, the metastable configurations of model (8) are represonted by trajectories which does not satisfy the condition of the corollary of theory 4 and thus can be either

1) Ilyperholic or parabolic periodic cycles without reflexion, or
2) [ense on a KAM torus which not homotopic to zero, or
3) Imbedded in the chatic region (however, this condition does not imply that they are chatic).

We have examples for these three cases. However, these conditions are not sufficient to have metastable configurations. Using theorem 4 , it is particularly casy io chock mmerically the physical stability of the conliguration corresponding to a trajectory. It suffices to perform the dacobian matrix product (3a) along a trajecory which is obtained by iterating the map \widetilde{T}. Then we cherk the changes of sign of an athitrary sequence δ_{n}. All our mumerical experiments ${ }^{(14)}$ for a chatioc trajectory have shown tiat any sequence δ_{n} exhibit a great density of
change of sign. As a result all the observed trajectories which are chaotic in the map correspond to physically unstable configurations. This results confirms the early observation of Shilling and 'Thomas. (15) But this numerical expcriment does not prove that chaotic configuration which are physically stable, does not exist. (In fact, we can prove rigorously their existence in mudel (1) for λ large enough.) It only suggests that the chaotic metastable configurations are represented by a set of trajectories which have zero measure in the map, and thus are numerically unaccessible because of the limited accuracy of the computer. By contrast, the KAM tori which are nonhomotopic to zero, (when they exist) have a finite measure and are shown to correspond to undefectible ground-states (see the following section 4). We did not prove this conjerture but Ref. 16 gives some other physical argumente which support this assumption.

Conserquently, the mumerical calculations of the chaotic metastable configurations, are not reliable when they are simply gererated by map iterations. In crder to avoid these map problems in the chaotic region, we obtained the metastable configurations by a variational method.
lutegrating the set of equations

$$
\begin{equation*}
\frac{d u_{i}}{d s}=-\frac{\partial \phi}{\partial u_{i}} \tag{37}
\end{equation*}
$$

with respect to the variable s, yields a solution $\left\{u_{i}(s)\right\}$ which, for any initial configuration $\left\{n_{j}(0)\right\}$, converges to a $\operatorname{limit}\left\{u_{i}^{\infty}\right.$, which is necessarily a metastable configuration. A special choice of the initial conditions which is given by theorem 1 in Ref. 6-a or 4 , or theorem 2 in Kef. (6-b (but a symuetry hypothesis is also required to have this
theorem) yields a limit which is a groand-state. (The solutions shown in Fig. l of Ref. 4 were calculated ty this way). It seems that the problem of studying the physical stability of the configurations generated by map iterations, has nct been carefully considered in some of the rerent publications on this subject (see for example Ref. 18 and 19). In the second reference ${ }^{(19)}$ it is particularly obvious, in virtue of the corollary of theorem 4 that the configurations which are represented by KAM tori homotopic to zero, cannot be ground-states because they are physically unstable. (See also Ref 16 and 20 for a more detailed comment of these references).
4. Genera: theorems on the transition by breaking of analyticity and the Pejerls Nabarro barrier

We turn back to the study of the ground-states which have been done in section 2. Theorem ? considered two situations for the incommensurate giound-states of mojel (8). Th the first situation, the hull function is continuous (and generally analytical in analytical models because of the KAM theorem). In the second situation, the hull function becomes discont inuous on a dense set of points. In model (1), Lhe variation of the parameter λ allows one to get a transition from the first situation the second one. We called this transition: Lransition by braking of analyticity. (2) We noted that this transition corresponds to the occurrence of a lattice locking on the incommensurate ground-states that is in other words the occurrence of a Cinite Peierls Nabar b barrier (noted hercafter PN harrier) which must be passed through for translating continuously the incommensurate ground-state. In this section, we describe some of the exact results witich we obtained on the pN barrier and the transition by breaking of
analyticity. The application of these results to the standard map allows one to easily obtain bounds for the stochasticity threshold. Let us first examine the case for which $\frac{\ell}{2 a}$ is a rational number and \mathcal{Y}_{ℓ} is a discontinuous set (theorem 3).

It is proven that it is impossible to continuously slide the corresponding commensurate ground-states without passing energy barriers. We also recently proved ${ }^{(8)}$ that there necessarily exists another stationary commensurate configuration $\left\{v_{n}\right\}$ which just corresponds to the top in energy of the continuous paths corresponding to the translation of the conumensurate ground-state (by keeping it commensurate) which pass the lowest possible barrier for the energy per unit cell. The periodic cycles of the twist map corresponding to the commensurate ground-state $\left\{u_{n}\right\}$ (which are hyperbolic or exceptionally parabolic without reflexion) and the periodic cycle corresponding to this commensurate configuration $\left\{v_{n}\right\}$ (which are either alliptic, or hyperbolic or parabolic with reflexion in both cases) are those which have been considered by Greene ${ }^{(9)}$ for studying the stochasticity threshold of the KAM tori in the standara map. When \mathcal{G}_{ℓ} is discontinuous, we know that there exists elementary advanced and delayed discommensuraticas. Let $\left\{u_{n}\right\}$ be for example an alvanced discommensuration and $\left\{\mathrm{v}_{\mathrm{n}}^{+}\right\}$and $\left\{\mathrm{v}_{\mathrm{n}}^{-}\right\}$the tho commensurale groundstates with the properties described in (23). The configuration $\left\{v_{n+s}-2 r a\right\}$ is also an advanced discomensuration which satisfies the same conditions (23). It corresponds to the discommensuration $\left\{v_{n}\right\}$ tran:ilated by $-s$ latice spacings or equivalently by a unit cell of the comensurate ground-state. To defined the Peierls Nibarro barrier of this discommensuration, we consider a continuous path $\ell(t)=\left\{w_{n}(t)\right\}$ such that

$$
\begin{equation*}
\zeta(0)=\left\{w_{n}(0)\right\}=\left\{u_{n}\right\} \tag{38.a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{\varphi}(1)=\left\{w_{n}(1)\right\}=\left\{u_{n s}-2 r a\right\} \tag{38.b}
\end{equation*}
$$

It joins the two translated configurations the energy difference (which is proved to be finite)

$$
\begin{equation*}
E(P(t))=\operatorname{Sup}_{t} \phi\left(\left\{w_{n}(t)\right\}-\phi\left(\left\{u_{n}\right\}\right)\right. \tag{39}
\end{equation*}
$$

is the energy barrier which is passed thrugh for the translation of this discommensurition along the path $\varphi(t)$. The PN barrier of the discommensuration $\left\{v_{n}\right\}$ is defined as

$$
\begin{equation*}
\Sigma_{P N}\left(\left\{v_{n}\right\}\right)=\operatorname{Inf}_{\mathscr{C}(t)} E(\boldsymbol{C}(t)) \tag{40}
\end{equation*}
$$

winch is the lowest energy barrier which must be passed for a continuous translation of the discomenensuration.

We pointed in section 2 that an advanced discommensuration is repreatnted by the trajectory of an heteroclinic peint h which belong to the incersertion of the dilating sheet W^{+}of the point $\mathrm{F}_{\mathrm{i}}^{-}$, (which is the iatial point of the 1 rajectory corresponding $t 0\left\{v_{n}^{-}\right\}$and 20 the contracting sheet W^{-}of the point F_{j}^{+}corresponding to $\left\{v_{n}^{+}\right\}$(F_{i}^{-}and F_{j}^{4} are fixed pojnts for the twist map). Then we preve

* Theorem 5 The Peierls Nabaren barrier of an relementary discomanensuration vanisheri if and only ir the dilating shere W^{+}of F_{i}^{-}and the contracting shost W^{-}of $\mathrm{F}_{\mathrm{j}}^{+}$merge into a tuique contimusus curve which joins $\mathrm{F}_{\mathrm{i}}^{-}$co $\mathrm{F}_{\mathrm{j}}^{+}$. (The merged curve which correspond both to W^{+}and W^{-}, is called a separatrix.)

It is the sithation which occurs in integrable maps. Thus this theoren proves that if the PN barrier does not vanish, the map cannot be integrable. However, we have not yet completely ϵ lucidated the nature of the intersection of W^{+}and W^{-}when this PN barrier does not vanish. We expect that the intersection of W^{+}and W^{-}is always transverse or in other words that the curve W^{+}and W^{-}are not tangen. at their intersection.

Now, we turn back to the case of the incommensurate ground-states. We can prove several theorems. The two first ones deal with the case for which there exists in the twist map an invariant continuous and ciosed curve Γ_{ℓ} winich is nonhomotopic to zero and on which the twist map is conjugate to a rotation with winding number $\frac{\ell}{2}$ a . In other words, a trajectory $\left\{\mathrm{p}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}}\right\}$ on this curve r_{ℓ} can be parametrized by a continuous hull function $f_{k}(n)$ such that for all n

$$
\begin{equation*}
u_{i 1}=f_{k}(n \ell+\alpha) \tag{41}
\end{equation*}
$$

with $f_{k}(x)-x$ periodic with period $2 a$ (α is some arbitrary phase) then we proved the following theorem ${ }^{(4,8)}$

Thereremb het us assume the existence of an invariant continuous curve i_{ℓ} on which the twist map is conjugate to a rotation with winding mamber ${ }_{2 a}^{\ell}$, then this set r_{ℓ} is identical to the set of trajectories representing the gromedstate of \mathcal{G}_{ℓ}. (This theorem also apples when ${ }_{2}^{\ell}$ in rational).

Particularly, this cure F_{ℓ} can be a KAM torus with an irrational winding number $\frac{\ell}{2 a}$. When this Kam torus xists, it necessarily mpresent: the sed of grommestate \mathscr{Y}_{ℓ} Since we know that when kaM cori exists, they have a fintit measure on the rylinder, most of them (that is with
probability 1 can be approached by sequences of KAM tori with winding numbers $\ell_{i} / 2$ a such that ℓ_{i} goes to ℓ either with $\ell_{i}>\ell$ or $\ell_{i}<\ell$. Let us call these tori "true" KAM tori. Most KAM tori are "true". Then, we \because ve the theorem.
\because rem 7 when the set of incommensurate ground-state \mathcal{E}_{l} is repre\therefore onted by a "true" KAM torus Γ_{ℓ} : then the incommenturate ground-states of \mathcal{Y}_{ℓ} are undefectible (by definition a ground-state is called undefectible, when, apart a phase shift, it is the only metastable configuration of the systcon with the same boundary conditions (11)).

In the situations, considered by theorem 6 and 7, the PN barrier which corresponds to the translation of the incomensurate structure is zero. Then the gap in the phonoti spectrum of t'e incomensurate groundstate $\left\{u_{n}\right\}$ given by Eq. (28) is proven to va'sih. (The gap is the smallest phonon 1 reguency given by 28). Conversely a finite pN barier does not imply a finit, gap alhough penerally they are both finite (or both zero). However when the gap is finite, we obtained the following theorem which have a quite complicated proof. ${ }^{(8)}$

Theorem 8 Let $\left\{0_{n}\right\}$ be an incommensurate ground-state of model (8). Let us assump that the gap in frequency of the small motion Eq. (28) be strictly positive. Then, the hall function I Nessribing the ilaommentsarate gromad-state is discrete (sore theorem 2). In other words, $f^{ \pm}(x)$ "an be written as a sum of step functions.

$$
\begin{equation*}
f^{t}(x)=\sum_{i}^{2} i_{j} Y^{ \pm}\left(x-x_{i}\right) \tag{4,0}
\end{equation*}
$$

 definition $Y^{ \pm}(x)=0$ for $x: 0, Y^{+}(x)=1$ for $x ; 0$ amil $Y^{+}(0)=1$
$Y^{-}(0)=0$). Then, the Lyapounov exponent γ given by (32) for this incommensurate ground-state is strictly positive.

For reasonably difierentiable models 8 , we conjectured in Ref. (6-a) that the hull function f of an incomensurate ground-state should be either

1) absolutely continuous that is $f(x)$ is differentiable almost evorywhere

$$
\begin{equation*}
f\left(x_{1}\right)-f\left(x_{0}\right)=\int_{x_{0}}^{x_{1}} f^{\cdot}(\zeta) d \zeta \tag{43}
\end{equation*}
$$

or 2) singular contimuous $(f(x)$ is contimuous with a zero derivative almost everywere) or 3) discrete $(f(x)$ is discontimuous and can be written with the form (42))

We have not rigorously proven this conjecture but we have shown in Ref. 4 that model (1) exhihits sitmations for which the hull function f is rither amalytical or discrete. The following section 5 reports these proofs with more detaiis which yiclds incidently a serices ol exact upper bounds for the transilion by breakiny ol amalyticity or eynivalonty for the stochasticity threshold of the standard map.
5. Vixistrace prool and lianct bounds for the transition by horaking of amalyticity in the stimdird map

In the standard map (6) associated with model (1), the Kolmogorov
 there exists $\lambda_{2}(\ell)$ sum that for $|\lambda|$: $\lambda_{2}(\ell)$, there exists an invariant torns on which the mat is ronjugate to a rotation with windink mamer ℓ 2: Then aplying theorem b yichds that the trajectorices of this KAM torms represent the gromm-states of \mathcal{F}_{ℓ} and that their hall function is
differentiable. Conversely, when λ becomes large anough the intuitive image of the problem, suggests that the atoms locate in the bottoms of the periodic potential and thus that the function f becomes discrete.

This hull function satisfies the functional equation

$$
\begin{equation*}
F(x)=1(x+l)+f(x-l)-2 f(x)=\frac{\lambda \pi}{2 a} \sin \left(\frac{\pi}{a} f(x)\right) \tag{44}
\end{equation*}
$$

which is ohtained by inserting (17) in (21). Because of the peradicity property of this model we can restrict our study to the case $0<\ell<2 a$. Since $f(x)$ is monotonous increasing it comes out that for any x

$$
\begin{equation*}
f(x+l-2 a)<f(x)<f(x+l) \tag{45.a}
\end{equation*}
$$

These inergalities (4.5) in (44) yirlds

$$
\begin{equation*}
|F(x)|<2 a \tag{4.}
\end{equation*}
$$

As , result, when

$$
\begin{equation*}
1>\frac{4 \pi^{2}}{\pi}>\lambda_{c} \tag{46}
\end{equation*}
$$

F.g. (44) and inequality (4'). W) : :hows that the hull function $x+g(x)=$ $\mathcal{f}(x)$ ramoot lake any vallue $(2 n+1) / a$ where n is all integer. Conserumently
 Invariant ront immas comves; which are monhomotopic to arro on which the stamlardmap is conjugate lo a rotation. As n result, there exists no
 upper bound for the stochast icity thmahold $\hat{\lambda}_{\mathbf{c}}$ for the standard map which have bern (alculated by (icome(9) and which is in our unite

$$
\begin{equation*}
\widehat{\lambda}_{c} \# 0.9716 \times \frac{2 a^{2}}{\pi^{2}}=\operatorname{Sup}_{\ell} \lambda_{c}(\ell) \tag{47}
\end{equation*}
$$

In fact this bound can be improved by only consılering the positivity of the quadratic form (27)

$$
\begin{equation*}
\left.\delta \phi=\frac{1}{2} \sum_{n}\left[\left(2+\frac{\lambda \pi^{2}}{2 a^{2}} \cos \frac{\pi}{a} u_{n}\right)\right) \delta_{n}^{2}-2 \delta_{n+1} \delta_{n}\right] \tag{48}
\end{equation*}
$$

for any ground state $\left\{u_{n}\right\}$. Assuming that the hull function $f(x)$ be continuous, it is possjble to choose the phase or such that

$$
\begin{equation*}
u_{0}=f(a)=a \tag{49}
\end{equation*}
$$

(where we expect that the discontimuty of f should first appear) be on the Lop of the periodic potential. Next, we prove that in certain range of λ, all stationary confjguration $\left\{u_{n}\right\}$ with $u_{0}=a$, are such that their ghadratic form (48) is not positive. No ground-state ran exist with a cont imons hall function whateder is the atomic mean distance and consequently mo kAN torus monhomotopic to zero ran exist. For this proof we set

$$
\begin{equation*}
u_{1}=x \tag{.50.a}
\end{equation*}
$$

The stat ionary kif. (2) yields

$$
\begin{equation*}
u_{-1}-2: i-u, u_{2}=2 x-n+\frac{\lambda \pi}{2 a} \sin \binom{\pi}{a}, u_{-2}=2 a-u_{2}, \tag{50}
\end{equation*}
$$

For domvenience, we also set

$$
\begin{equation*}
\Lambda \because 2-\frac{\lambda \pi^{2}}{2 a^{2}} \tag{51.0}
\end{equation*}
$$

$$
\begin{align*}
& X=2+\frac{\lambda \pi^{2}}{2 a^{2}} \cos \frac{\pi}{a} x \tag{5l.b}\\
& Y=2-\frac{\lambda \pi^{2}}{2 a} \cos \frac{\pi}{a}\left(2 x+\frac{\lambda \pi}{2 a} \sin \frac{\pi}{a} x\right) \tag{51.c}
\end{align*}
$$

First, we consider the minor of order $1, \Delta_{1}=A$. when it is negative, the quadratic form (48) camot be positive. For

$$
\begin{equation*}
\lambda>\frac{4 a^{2}}{\pi^{2}}>\hat{\lambda}_{c} \tag{52}
\end{equation*}
$$

A is negative and there exist no KAM tori. Second, when $\lambda<4 a^{2} / \pi^{2}$ we consider the minor of order 2

$$
\Delta_{2}=\left|\begin{array}{cc}
\Lambda & -1 \tag{5:3.a}\\
-1 & X
\end{array}\right|=A X-1
$$

when $\lambda<4 \operatorname{li}^{2} / \pi^{2}$. It is smaller for any x than

$$
\binom{2-\lambda \pi^{2}}{2 a^{2}}\left(2+\begin{array}{c}
\lambda \pi^{2} \\
2 a^{2}
\end{array}\right)-1=3-\binom{\lambda \pi^{2}}{2 i^{2}}^{2}
$$

Conserpuently Δ_{2} is always nepative when

$$
\begin{equation*}
\pi_{\pi^{2}}^{4} i^{2}>\lambda>\sqrt{3} \frac{2 a^{2}}{n^{2}}>\hat{\lambda}_{c} \tag{5.3.b}
\end{equation*}
$$

When this comdition is satisfird, there also exist: no KAM tori which are nomhomotope to zero. A third orider bomad is ohtimed by considerimp the minor at order 3

$$
\Delta_{3}=\left|\begin{array}{rrr}
x & -1 & 0 \\
-1 & A & -1 \\
0 & -1 & X
\end{array}\right|=x(\wedge x-2)
$$

winch is negative for any x when

$$
\begin{equation*}
\frac{4 \mathrm{a}^{2}}{\pi^{2}}>\lambda>\sqrt{2} \frac{2 a^{2}}{\pi^{2}}>\hat{\lambda}_{c} \tag{54.b}
\end{equation*}
$$

This inequality improves the upper bounds (46), (52) and (53.a) for the stochasticity threshold $\widehat{\lambda}_{c}$. By considering higher order minors of the guadratic form, we obtinin better bounds for λ_{c}. For example, we considered the order five:

$$
\Delta_{5}=\left|\begin{array}{rrrrr}
Y & -1 & 0 & 0 & 0 \tag{55,a}\\
-1 & X & -1 & 0 & 0 \\
0 & -1 & A & -1 & 0 \\
0 & 0 & -1 & X & -1 \\
0 & 0 & 0 & -1 & Y
\end{array}\right|=(X Y-1)(A X Y-2 Y-A)
$$

In order to avoid cumbersome calculations, which in principle are possible, we only checked mumericaliy the sign of (AXY-2Y-A) for $0<x<\pi$ with A, X, Y given by (51). Then, we found that for

$$
\begin{equation*}
\sqrt{2}>\frac{\lambda \pi^{2}}{2 \mathrm{a}^{2}}>1.230 \pm 0.005>\hat{\lambda}_{c} \tag{5.5.b}
\end{equation*}
$$

 (which also is a minor of the quadratic form (48) is negative. Consefurntly when (5). 5) is satistiod, there exists mo KAN tori monhomotopic to kern which :itill improves the upper hound of λ_{f}. Note that this bomd 1.230 t 0.00 is it mow only 25% above the value (47) calculated by Greone and that this mosalt is astrict bomd obtoined with a vory short mamerical raboulation. (Note that.J Mather also whathed the homad $4 / 3$ with a melhod which is apparently ditterent. ${ }^{(24)}$) We conjecture that the

sequence of minors Δ_{n} which follows $\Delta_{1}, \Delta_{2}, \Delta_{3},\left(\Delta_{4}\right)$ and Δ_{5} converge to the exact value of λ_{c} but we have not checked numerically this assertion. Let us turn back to the study of the functional Eq. (44). We reproduce here, for the model (1) the procf of Ref. 4 (which we hope more clear) which shows that for λ large enough the hu: function f becomes discrete. When (46) is satisfied, we have

$$
\begin{equation*}
\left|\sin \frac{\pi}{a} f(x)\right| \leq \frac{4 a^{2}}{\lambda \pi} \tag{56}
\end{equation*}
$$

which implies that for any x there exists an integer n such that

$$
\begin{equation*}
-f_{0}+n a \leq f(x) \leq f_{0}+n a \tag{57.a}
\end{equation*}
$$

with

$$
f_{0}=\frac{a}{\pi} \operatorname{Arcsin} \frac{4 a^{2}}{\lambda \pi}
$$

We now write that the diagonal terms of the quadratic form (48) is positive which yields another inequality for all x

$$
-\frac{4 i^{2}}{\lambda \pi^{2}}<\cos \frac{\pi}{i} t(x)
$$

Whon

$$
\begin{equation*}
\lambda>\frac{4 a^{2}}{\pi^{2}} \sqrt{\pi^{2}+1} \tag{59.b}
\end{equation*}
$$

Inequalities (58) and (57.a) are incompaisle for n odd, thus the integer n which appears in (57.a) must be even. As a result, when (59.b) is satisfied, we obtain for all x

$$
\begin{equation*}
\cos \frac{\pi}{a} f(x)>\cos \frac{\pi}{a} i_{0}=1-\left(\frac{4 a^{2}}{\lambda \pi}\right)^{2}>0 \tag{59.c}
\end{equation*}
$$

Now, we can apply theorem (8) for proving that function f is discrete by checking that (59.c) implies that the gap of the phonon spectrum is larger or equal to $\sqrt{1-\left(4 a^{2} / \lambda\right)^{2}}$ and Lhas: strictly positive. But, a direct proof is also quite simple. For that, we prove that the conimuous part $F_{c}(x)$ of $f(x)$ in (44) is a constant by proving that it is both periodic and monotonous increasitig.
$F_{r}(x)$ is periodic becallse it is the variation hac $(x+\ell)-h_{c}(x)$ from x to $(x+\ell)$ of the contimous part of the periodic function $h(x)=f(x)-$ $f(x-\ell)=\ell+g(x)-g(x-\ell) . \quad$ Note hewerver that the cont intous part of a periodice fanction is mot meorssarily periodic).
$F_{C}(x)$ is menotonous increasins: becanse in the last member of (44), 1) $f(x)$ is monotonous incrasing 2) sin ($\pi / a f(x)$) is strictly incroasing in the viciatily of rach value laken by $i(x)$ beralls: of the inequality

The results described in this : :ertion tigolnsily preve the exislence of a braking of analytivity in the :atamat map although we have mot proved that it exactly ocemes at a well defined $\lambda_{\text {a }}$. Anyway we ob-
 driburd on the rigs. 4 which :how the liajectories romeroponding to the
ground states for $\ell / 2 a=441 / 997$ (which is practically an irrational number) and for $\lambda=0.167, \lambda=0.20$ and $\lambda=0.212$. (These ground-states have not been calculated by iterating the standard map because, as we know, it is an unstahle process for $\lambda>\lambda_{c}(\ell)$ but by using the gradient method described by Eq. (37)).
6. Final Remarks on the devil's staircase and the order without periodicity

The above theorems have an application for the theory of the devil's staircase which we briefly describe now.

Let us concider model (() to which we add a tensile force μ (or chemical potential)

$$
\begin{equation*}
\phi_{\mu}\left(\left\{u_{i}\right\}\right)=\sum_{i}\left[L\left(u_{i+1}, u_{i}\right)-\mu \cdot\left(u_{i+1}-u_{i}\right)\right] \tag{60}
\end{equation*}
$$

(As for model (1), the addition of this tensile force doc: not (hampe the twist map associated to this modelj. The ends of the chain are let free for finding the gromatstate of this model, we first consider the average energy per atom (for $\mu=0$)

$$
\begin{equation*}
\psi(\ell)=\lim _{N \rightarrow \infty}^{1} \sum_{i=1}^{N} L\left(u_{i+1}, u_{i}\right) \tag{61}
\end{equation*}
$$

for the frommestate(s) with atomic mean distance ℓ (which we proved to be a well delined function and we minimize the encrgy per atom $\psi(\ell)-\mu \ell$. Then, we prove that the atomir mean distamee ℓ varies as a devil's statrcat:e versalas μ. We have

Theorem 9 The variation curve $\ell(1)$ of the atomic mean distance ℓ of the pround-atate of model (00) with free rols versils the tomsile forer μ has the gollowing properties.

1) the curve $\ell(\mu)$ is monotonous increasing and is continuous.
2) for each rational $\frac{\ell}{2 a}=\frac{\mathbf{r}}{s}, \ell(\mu)$ is constant on a finite interval δ if and only if the corresponding set ξ_{ℓ} (described in theorem 3) is discontinuous.

In general, when the twist map is not integrable, \mathcal{G}_{ℓ} is not continuous for all rationals ℓ. As a result $\ell(\mu)$ has a constant step at each rational $\frac{\ell}{2 \mathrm{a}}$.

This curve is called a devil's staircase. (25) In this book, B. Mandelbrot also shows other physical examples which involves such pathological curves. On the basis of solid physical arguments, we coujectured $(2,3)$ that this curve $\ell(\mu)$ is a complete devil's staircase for $\ell_{1}<\ell<\ell_{2}$ when for all irrational $\frac{\ell}{2 a}$ in this interval, the set Y_{ℓ} are discontinuous. (By definition, a devil's staircase is called completc ${ }^{(2)}$ when it is entirely composed of steps, or equivalently when $\ell(\mu)$ has a zero derivative almost everywhere, or equivalently when the Sticltjes measure $\ell(\mu)$ has no absolutely continuous part). We also conjectured that it becomes incomplete (that is its derivative becomes finite on finite measure sel) when for some $\frac{\ell}{2 a}$ irrational (which have finite measure) the sets \mathcal{F}_{ℓ} are represented by KAM tori. (let us mention that our theory would become rigorous, if a uniform bound of the exponential interactions between the discomensurations could be obtained). Anyway, we can exhibit exact models (which however have some pathologies) in which a complete devil's staircase ${ }^{(7)}$ can be proved to exist and also explicitly ralculated. As we explained in Ref. 2, 3 and 16 a complete devil's stairca;e physically corresponds to an irroversible but cont imous tansformation which is a quite unusual behavior. But, indeed similar features been observed in certain experiments.

It has also been experimentally observed stric ures which are neither periodic or quasi-periodic (incommensurate). Are they chaotic? We generalized some aspects of this theory on the twist maps, to all structures in any dimensions which are obtained from the minimization of an energy (i.e. a variational form). We introduced an abstract dynamical system in which the usual time group is replaved by the translation group of the space in which the structure is imbedded. Using this representation, we proved that there always exists a "minimal invariant closed set" (by definition, it does not contain any smaller closed set n nvariant under the action of the group) which correspond to a groundstate. Translated in physical terms, this property implies the existence of ground states with a new kind of long range order which could be neither periodic nor incomensurate. we called this new kind of long range order "weak periodicity". It also coircspond physically to a "local order at all scales". In Ref. (16), we briefly describe this theory but with some more details than here. Particularly, surprising examples of "undecidable structures" obtained by tiling the plare are given, prove that such strange structures does exist in theoretical models. Moreover they have no entropy. Lel us cmphasize that our assertirns are not in contradiction with those of Ruelle ${ }^{(27)}$ on the existence of "turbulent gromal-state" althongh they seem to disagree. Indeed for ! Kuelle, "turbulent" means nonperiodic and "non-quasi-periodic". With this definition, we agree with his assertion on the existence of turbut lent ground-state. However our definitjon of turbulent is more restrictive beranse we fequire that the structure has a finite entropy.

Although, we have no proof, we believe that except in exeeptional models with accidental degeneracy, the ground-state of most models
obtained by minimizing a free energy has no entropy although it can be neither periodic nor quasi-periodic. It is necessarily "weakly feriodic" (but this property is still quite physically imprecise). Of course, we do not exclude gefectible ground-states for which there may exist many other metastable configurations. Although they have more energy than the ground-state these configurations should play an important role for the the rnodynamical properties of the structure. (16)

References

1. \quad 2. Kontorova and ́. I. Frenkel (1938) Zh. Eksp. \& Teor Fiz. 8, 89, 1340, 1349; F. C. Frank and J. M. Van der Merwe (1949) Proc. Roy. Soc (London) A198, 205; S. C. Ying (1971) Phys. Rev. B3, 4160.
2. S. Aubry (1978) in "Solitons and Condensed matter physics" Ed. A. R. Bishop and T. Schneider, Solid State Sciences 8 , 264 Springer.
3. S. Aubry (1980) Ferroelectrics 24, 53, for a detailed version of this paper eee S. Aubry (1980) "The devil's staircase transformation in incommensurate lattices," unpublished.
4. S. Aubry and G. Andre (1980; in "Colloquium on group thenretical methods in physics" Ed. L. P. Horwitz and Y. Ne'eman, Annals of the Israel Phys. Soc. 3, 133.
5. J. Moser (1973) Stable and Random motions in Dynamical Systems, Princeton University Press, Princeton, NJ.
6. S. Aubry (1978) "On modulated crystallographic structures, exact results on the classical ground-states of a one-dimensional model," umpublished; S. Aubry and P. Y. Le Daeron (1982) "The discrete Frenkel Kontorova model and its extension. J. Exact results for the ground-stites," preprint submitted to Physica D.
7. S. Aubry (1982) "Exact mode]s with a complete devil's staircase," preprint, Lo be published in J. of Phys. C.
8. S. Aubry, P. Y. Le Dacron and G. André, in preparation.
9. J. Greene (1979) J. Math. Phys. 20, 1183.
10. W. L. McMillan (1976) Phys. Rev. B14, 1496.

11 Marsden and Nckracken (1976) "'he llupf bifurcation and its application," Applied Math. Sici., Vol. 19, Springer.
12. S. Smale (1967) Bull. of AMS 73, 747.
13. N. 1. Akhiezar (965) "The classical moment problem and some redated questions in ab, ysis" 01 iver \& Boyd, Filinburgh and london.
14. M. Peyrard and S. Aubry, in proparation.
15. K. Shilling (1982) private commundation.

16 S. Aubry (1982) "Devil's : haircase and order without periodicity" Procecding of RCP Aussois, 10 appear in Journal de Physique (laris).
17. S. Aubry (1981) in "Physics of Defects," Eal. R. Balian et al., Les Houches 35, 431, North Holland.
18. P. Bak (1981) Phys. Rev. Lett. 46, 791.
19. P. Bak and V. L. Pokrovsky (1981) Phys. Rev. Lett. 47,: 958.
20. P. Y. Le Daeron and S. Aubry (1982) "Metal insulator transition in the Peitels chain," submitted to J. of Phys. C.
21. S. Aubry (1977) "On the dynamic of structural phase transition. Lattice locking and Ergodic theory," unpublished.
22. F. Nabarro (1967) Theory of Crystal dislocations, Clarendon Press, 0xford.
23. S. Aubry (1979) in "Intrinsic Stochasticity in Plasmas," Edition de Physique, Orsay Edited G. Javal and D. Gresillon.
24. J. MacKay, Lhis conference.
25. B. Mandelbrot (1977) "Fractals," W. F. Freeman and Cie San Francisco + Oxford, see also "The fractal geometry of nature," (1982) to appear same editor.
26. F. Riesz and B. Nagy, Functional analysis, Frederik Ungar Publishing Co., New York (1965).
27. D. Ruelle, this conference.

Figure Captions

Fig. 1. Map of the transformation \widetilde{T} in (6) showing the trajectories of the initial points M_{j} plotted on the figures for $\lambda=0.15$ Fig. 1.a, $\lambda=0.2$ Fig. $1 . b$ and $\lambda=0.25$ Fig. 1.c. For each initial M_{i}, about 1000 points of le trajectory $\tilde{T}_{s}^{n}\left(M_{i}\right) 0 \leq n \lesssim$ 1000 have ${ }^{\text {b }}$ been plotted. For $\lambda=6.15$, most trajectories lie on smooth closed curves (KAM tori) except the trajectory generated by $M_{\text {j }}$ which maps a chaotic cloud of points in a narrow area. For $\lambda=0.2$ this chaotic area becomes much wider while for $\lambda=0.25$ this chaotic area fills most of the map except in some isolated islands.

Fig. 2. Scheme of an advanced elementary discommensuration $\left\{u_{i}\right\}$ for $\ell / 2 a=1 / 5$. us is plotted as a function of i. The phase shift, $2 a / 5$, occurs in the region $14<i<15$. Far from this region the configuration is commensurate.

Fig. 3. Scheme showing the injtial points of the trajectories in the twist map which represent the commensurate ground-states for $\ell / 2 a=2 / 3: F_{1}=\widetilde{T}\left(F_{3}\right), F_{2}=\widetilde{T}\left(F_{1}\right), F_{3}=T\left(F_{2}\right)$. (These points form a periodic cycfe with peridd 3). The beginning of the dilating sheet of F_{1}, F_{2} and F_{3} are also represented with only onc intersection point one with each other. The arrow indicates the direction of the motion of a point of the sheet by the twist map. Thus it indicates if the sheet is dilating 95$)^{\text {con }}$ (2geting. $(3)^{\text {The trajectories gencrated by }}$ the points h_{h}, h_{p} and $h_{\text {, }}^{(3)}$ correspond to adyancedg glementary discommensuralions. Those genecated by h_{d}, h_{d}, and $h_{d}^{(5)}$ corresponds to delayed clementary discomenensuralions.

Fif. 4. From Auhry, Audre (1980) Ref. 4. Irajectories of the map (6) representing the ground-state of the fik model for $\ell / 2 a=$ $441 / 997$ (which is practically an irrational mumber)
on Fig. 4. H for $\lambda=0.167$
on Fig. 4.b for $\lambda=0.2$
on Fig. 4.c for $\lambda:=0.212$
Note the sharp change in the anpect of the trajectory which signuls the tramsition by braking of amalyticity at $\lambda_{\text {g }}^{\|} \quad 0.2$. For $\lambda<\lambda$ (Fig. 4.a) the trajectory is dense on a Kanctorus. At $\lambda \cdots \lambda^{\text {c }}$ (Fig. 4.b) the density of a point on the torus rxhihitscritical fluctuation; while for $\lambda>\lambda$ (Fig. 4.c) the trajectory is dense and glasi-periodic on as Caftor seet which survives to the KAM turus. Compare with figs. I which exhibits arbitary trajectories. In fact, all of them corresponds to unt: able configurations except those generated by the points

$$
\square
$$

$$
\square
$$

