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THE DYNAMIC THEORY: A NEW VIEW OF SPACE, TIME, AND MATTER

by

Pharis E. Williams

ABSTRACT

The theory presented represents a different
approach toward unification of the various branches
of physics. The foundation of the theory rests
upon generalizations of the classical laws of thermo-
dynamics, particularly Caratheodory's abstract
statement of the second law. These adopted laws
are shown to produce, as special cases, current
theories such as: Einstein's General and Special
Relativity, Maxwell's electromagnetism, classical
thermodynamics, and quantum principles.

In addition to this unification, the theory
provides predictions that may be experimentally
investigated. Some of the predictions are: a
limiting rate of mass conversion, reduced pressures
in electromagnetically contained plasmas, increased
viscous effects in shocked materials, a finite self
energy for a charged particle, and the possible
creation of particles with velocities greater than
the speed of light.

I. INTRODUCTION
The objective of this report is to present as complete a picture as possible

of the development and current status of the proposed physical theory hereafter
referred to as the Dynamic Theory. The presentation will include philosophical
foundations, logic development, and some of the unanswered questions considered.
Such a presentation runs the risk of being lengthy and appearing to lack logical
order, particularly if strict chronological order is used. This risk will be
taken in order to make the presentation as complete as possible though chrono-
logical order will not be followed.



During any theorization the philosophy of the theorist plays such an impor-
tant role that an attempt to understand the theory is aided by a knowledge of
this philosophy. Therefore this report includes not only the philosophical basis
upon which the theory is based and the mathematical development but also ideas
and beliefs which played a part in the various decisions. Because of the
individualistic nature of philosophy this report will deviate occasionally from
a strict third person presentation, risking a loss of professional appearance,
to the clearly personal first person.

Though I had often asked "Why?" when confronted with some new assumption or
adopted postulate, the first really puzzling facet of current physics I encoun-
tered was the concept of relativistic kinetic energy from Einstein's Special
Theory of Relativity. The puzzling part was that it depended upon the speed of
light independent of the mechanism by which this energy might be transferred. To
better illustrate what puzzled me, consider the transfer of energy between two
charged particles on collision courses. If the particles have near-miss trajec-
tories, then the energy is primarily transferred by the electrical forces between
the charges. From the view of retarded potentials, or the concept of a limiting
speed of electromagnetic signal transmission, it is rather easy to accept the
energy transferred being dependent upon this limiting velocity. But suppose the
particles are uncharged and che interaction is strictly a gravitational one.
Again the concept of a limiting signal speed would imply that the energy ex-
changed between the particles depend upon this limiting velocity. But is it the
same as the limiting signal velocity for the electromagnetic case? Do gravita-
tional waves travel at the same speed as electromagnetic waves?

Einstein, in the Special Theory of Relativity, adopted the position that the
constancy of the speed of light forces a modification of Newton's dynamic law.
This modification implies that all forces have the same limiting velocity,
namely, the speed of light. There exists an abundance of theoretical and experi-
mental evidence that the speed of light becomes the limiting velocity whenever
electromagnetic forces are involved. The point that bothered me was whether
other forces, such as gravitational, should also have the same limiting velocity.
Though we have had reports of the detection of gravitational waves, we have no
experimental determination of the speed of a gravitational wave. Therefore, I
object to the viewpoint that the modification to Newton's law should be applied
to all forces without some additional justification.



Let me describe an analogy which may not hold in the strictest sense yet
will serve to illustrate my point of view. A river, flowing toward the sea, car-
ries energy with it. The speed with which this energy can move from one point to
another is the velocity of the river's current. The river produces a force on a
boat tied up to a pier on the river. When the boat is set adrift, this force
accelerates the boat. However, the maximum velocity to which the river can
accelerate the boat is the current velocity; this is the velocity with which the
energy of the river can propagate.

From this point of view the speed of light, being the propagation velocity
of electromagnetic energy must be the limiting velocity associated with electro-
magnetic forces. Certainly nature would be much simpler if all forces have the
same limiting velocity. Yet v.'ithout some experimental evidence of the propaga-
tion of gravitational energy, I find it difficult to feel comfortable with
Einstein's modification of Newton's law justified by electromagnetic experimental
evidence and arguments of simplicity.

The fundamental philosophical viewpoint that the force depends upon velocity
and vanishes as the velocity approaches the limiting velocity raises another
question concerning Einstein's modification of classical mechanics. Under
Einstein's modification Hamilton's principle is written with a relativistic mass
which depends upon the velocity and a velocity independent force. Does this
represent a different philosophy or are both views equivalent? More specifi-
cally, are the "real" concepts to be taken as a mass independent of velocity
together with a velocity dependent force or should we associate the velocity
dependent relativistic mass and velocity independent forces with "real" world?
Or does it make any difference which we chose?

At this point I faced the first major decision. If I adopted Einstein's
postulates, then it appeared that I would be required to change my intuitive
beliefs concerning certain physical phenomena. I found this extremely difficult
to do. On the other hand, if I did not embrace these postulates, I would have to
replace them with something that would say essentially the same thing in all
cases where the Special Theory of Relativity has been found to be very accurate.
Not only this but if a new point of view were adopted, then virtually the
entire sphere of physics may need to be reviewed in order to ensure that the new
point of view did not conflict with currently used theories. This seemed an
imposing, if not impossible task, particularly since my educational experience
was in electrical engineering rather than physics.



History records the advancements in physics which came from the efforts of
people new to the field. Therefore my lack of training in physics might be
turned into an advantage if I sought to determine a philosophical basis unhamper-
ed by the directed philosophy that comes from a study of physics as currently
taught. This is in contradistinction with current practices and procedures of
academicism where mastery of current theories generally precedes the development
of a new one. To deliberately choose this deviation risks accusations of
arrogance and naivete". On the other hand such a choice seemed the best way of
avoiding the danger of becoming so familiar with current ways of thinking as to
make it impiobable of giving due attention to other ways. Whether or not I
succeeded in determining an alternate set of postulates consistent with reality,
the search would demand a deeper study of physics than I would likely achieve
otherwise.

Having decided to look for a new foundation for physics I was faced with the
question of how to begin. I recalled some Ozark hill philosophy I overheard as
a youngster. A native Ozarkian was giving directions to a stranger who was try-
ing to find a certain fishing hole. The directions went something like this:
"See yonder road going down that holler? Well, go down thar 'bout five mile and
you'll come to a fork in the road. Take the right hand fork. Now that's the
wrong one but you take it anyways. After you've gone a piece, you'll come to a
log across the road. Now you know you're on the wrong road. So go back and take
the left hand fork. You can't miss it."

A quick review of physics reveals that there are different branches with
different sets of fundamental laws or postulates. Though it is easy to see how
the distinction between these branches came about, it was difficult for me to
believe that nature shared the same divisions. I felt that all natural phenomena
should be explained by a single set of fundamental laws. This belief is somewhat
like a grove of redwood trees or bamboo forest. Above the ground each tree
appears as a distinct plant. Yet we know that below the ground they may be found
to grov̂  from the same root system. Thus I felt that a more fundamental approach
might display the unity in nature and that prior attempts at unification in the
search for a unified field theory could be likened to attempts to tie the trees
together at the tree top level rather than down at the root level.

Is nature symmetrical in time? Does everything run backward in time as well
as forward? Obviously, not every process in nature will run backwards, yet the
equations of motion in Newtonian and relativistic mechanics are time symmetrical.



I believe in an asymmetrical nature and this belief played a role in the
eventual selection of fundamental laws.

How then did I use this philosophy to determine a set of generalized laws on
which to base an attempt to construct a new approach to physics?

Newtonian mechanics fails to describe events involving high velocities,
relativistic mechanics fails to describe the atom, and gravitational effects
have resisted quantization. If these are viewed as logs and the Ozarkian's
directions are followed, then we must retrace our steps and seek another approach
rather than attempting to chop up the log and continue to push forward up one of
these roads.

The branch of thermodynamics, however, does not appear to have a log some-
where along the way. Here the classical thermodynamic laws are very general,
particularly Caratheodory's statement of the second law. Thus the thermodynamic
laws appeared to be the fork in the road where a new route might be chosen.

However, in mechanics we talk of equations of motion, field equations, and
geometry while in thermodynamics we speak of equations of state and equilibrium.
If a generalization of the classical thermodynamic laws is adopted, how might we
obtain the equations with which we are familiar in mechanics? More particularly,
how could this type of general law yield geometry and a variational principle?
The second law of thermodynamics can produce a variational principle through
principles such as increasing entropy and minimizing free energy, but can it also
produce a geometry?

This seemed to be a crucial point. If the laws could not produce a geom-
etry, then a geometry would have to be assumed, thus necessitating an additional
assumption. The belief that a simple fundamental set of laws should lead to the
fundamental principles of the different branches of physics made the thought of
additional assumptions abhorrent. The notion that the adopted laws should
specify the type of geometry that must be used seemed very satisfying. Newton
found that the absolute nature of Euclidean geometry brought undesirable fea-
tures. Einstein, in his General Theory, displayed the benefits that might be
gained by going to a more general geometry. He showed that physical phenomena
might be displayed as elements determined by certain physical laws. This is
essentially the question here. Can a set of laws, which are generalizations of
the classical thermodynamic laws, determine the metric elements and hence the
geometry?



By appealing to the mathematics of functions of more than one variable we
find that a quadratic form becomes involved when a maximum or minimum is sought.
Further, this quadratic form generates a natural geometry for that function. In
thermodynamics the stability conditions provide a similar quadratic form and
therefore the quadratic form which specifies the stability conditions should form
a natural geometry for a physical system governed by laws such as the thermo-
dynamic laws.

Thus the foundations of the theory have been outlined, namely the belief
that all physical phenomena should be derivable from a single set of physical
laws which are generalizations of the classical thermodynamic laws. Such a
theory should be capable of describing all the dynamic events in nature. There-
fore it seems appropriate to call it the "Dynamic Theory." Obviously, for such
a theory to be tenable it must reproduce, or be consistent with, the various
fundamental postulates and/or laws currently used in the various branches of
physics. Indeed it should do even more. It should also reduce the number of
necessary assumptions and provide an unprecedented unification of physics.
Further, there is the possibility that the theory might produce an experimentally
verifiable prediction.

The first requirement that should be placed upon the Dynamic Theory is that
it reproduce, or be consistent with, current theories. In order to show that
the Dynamic Theory satisfies this requirement, Section II of this report states
the adopted laws and then shows how appropriate restrictions upon the system do
yield the fundamental principles for the various theories.

Though a theory which has the capability of displaying a unification of
physical theories might have significant value based solely upon this capability,
it would become more attractive if it could explain phenomena for which no
explanation exists or make some new prediction which might lead to an experimen-
tal test of the theory. Since restrictions were placed upon the system in order
to show how current theories may be obtained, the easiest way to see the expanded
coverage of the theory is to relax one or more of the restrictions and consider
a more general system. In Section III one of the previously imposed restrictions
is relaxed and the results are worked out for several types of systems.

A theory, such as the Dynamic Theory, immediately poses several problems
which are not associated with validity or applicability. First, there is a new
point of view to be dealt with. Initially it would appear to be inconsistent



with all past concepts of system energy or relativistic concepts. Yet in the end
it is completely consistent with current theories and sheds an entirely new light
upon physical phenomena.

Another imposing difficulty with the Dynamic Theory stems from its general-
ity. The scope of the theory includes all physical phenomena while in the past
half century the vast amount of scientific knowledge that has been accumulated
has demanded specialists. Increasing expansion of mankind's knowledge demands
further specialization. Such a progression produces no demand for a generalist.
The result is that the greater portion of this theory will be outside the field
of many readers.

Closely associated with this problem is another. Throughout science symbols
and words are used to denote concepts and quantities. The limited number of
available symbols and words together with the expanded scope of scientific
knowledge requires duplication. For the specialists this duplication can be
somewhat minimized. However, in the case of a general theory touching virtually
all areas of specialization the problem becomes very significant. In particular,
if a certain symbol or set of words is used, a certain notion or concept may be
associated with them by the reader. This association will likely depend upon
the reader's specialty and therefore will vary with the reader. Any attempt to
choose symbology or word usage aimed at a particular speciality risks increased
confusion for readers in other fields. Therefore the reader is cautioned to keep
in mind that conceptualizations and symbology familiar because of its use in one
branch of physics may now take on an entirely new meaning.

II. UNIFYING EFFECT OF THE DYNAMIC THEORY
The Dynamic Theory uses a different viewpoint, or approach, to present a

description of physical phenomena. Therefore the first criterion that it must
meet is that it must not be in conflict with existing theories in a field of
physics where the existing theory gives an adequate and accurate description. To
show that the Dynamic Theory meets this criterion, this section will present the
adopted laws and then proceed to show how the fundamental principles of existing
theories may be obtained from these laws. This is in essence displaying the
unifying effect of the theory.



A. General Laws
In the following development physical concepts are necessary, as are symbols

for these concepts. Because this development will merge certain thermodynamic
conceptualizations into mechanics, a notational dilemma must be faced. On the
one hand, it is desired to preserve the thermodynamic conceptualization by
using familiar symbols from that theory. On the other hand, descriptions of
mechanical systems are also sought. The formulism then looks either like thermo-
dynamics with familiar thermodynamic quantities replaced by mechanical quanti-
ties, or it looks like mechanics into which thermodynamic quantities intruded.
In either case there is danger of confusion. One could avoid the dilemma by
choosing entirely different symbols for the variables of the theory. But then
the whole takes an artificially abstract character. Since the purpose of this
formulation is to bring out the power of the thermodynamic conceptualization, it
was decided to use the suggest!veness of the thermodynamic or mechanical symbols
whenever convenient; the reader is asked to keep an open mind and not make
premature associations with the symbols used.

1. First Law. The concept of conservation of energy is fundamental to all
branches of physics and therefore represents a logical beginning for a general-
ized theory. Therefore, in terms of generalized coordinates or independent
variables, the notion of work, or mechanical energy, is considered linear forms
of the type

dW= F.iq1, ,.., qn, q1, .... qn) dg1 (i = 1, 2, ..., n) ,

where the forces F. may be functions of the velocities (dqVdt = q1) as well
as the coordinates q and the summation convention is used. The inclusion of
velocities in forces reflects the belief that forces should depend upon the
velocities. This will become clearer when these work terms are included in the
first law.

The line integral J F. dq7 then represents the work done along the path C
by the generalized forces.

A system may acquire energy by other means in addition to the work terms;
such energy acquisition is denoted dE.

The system energy, which represents the enerny possessed by the system, is
considered to be

8



1, ..., qn, q1, ..., qn) .

du will be assumed to be a perfect differential.

With these concepts, then the generalized law of conservation of energy,

which is adopted as the first law of the Dynamic Theory, has the form

dE = du - dV

= du - F,{ dq
1' (i = 1 n) . (1)

Positive cfe is taken as energy added to the system by means other than

through the work terms and F. is taken as the component of the generalized force

acting on the system which caused a displacement dq .

In the first law the dimensionality is n+1 and is determined by the system

considered. There is no limitation on the quantity or type of variables that

may be used. However, in this presentation and in practice, it will be benefi-

cial to place restrictions upon the type and number of allowed work terms. A

system with only one work term which is the p dv expansion work of classical

thermodynamics will be called a "thermodynamic" system and the dimensionality

will be two. A system with three or less mechanical f dx work terms will be

called a "mechanical" system with the appropriate dimensionality. Obviously, if

there are three mechanical work terms, the dimensionality will be four. A system

with a combination of thermodynamic and mechanical work terms will be considered

later.

In an infinitesimal transformation, the first law is equivalent to the

statement that the differential

du ~ dE + £\j dq1

is exact. That is, there exists a function u whose differential is dU; or the

integral / du is independent of the path of the integration and depends only on

the limits of integration. This condition is not shared by rife or d>. The path

dependence of / dV is another reason that the generalized forces are assumed to

be functions of velocity as well as position. In Newtonian mechanics forces are

usually assumed to be dependent on position only so that the simplicity of path

independence may be used. Though even in Newtonian mechanics certain forces are

9



taken as velocity dependent. Friction forces are an example.
This statement of the generalized first law is consistent with the first law

of thermodynamics in that if there is only one generalized force, which is taken
to be the pressure, and one generalized coordinate, the volume, then Eq. (1)
comes

dQ = cfe = du + P dv

where F = -P with the convention that work of expansion is work done by the sys-
4jm on its surroundings. Here the system energy, U, is the thermodynamical
internal energy. There should then be no confusion when Caratheodory's statement
of the second law is applied to this thermodynamic system. However, when con-
sidering the application of generalizations of the classical thermodynamic laws
to mechanical systems some confusion may be expected. During the initial portion
of this development, it is desired to demonstrate the applicability of the
generalized laws to mechanical systems. Therefore, it may help to avoid confu-
sion to think of the generalized coordinates of a mechanical system as the space
coordinates of a mass point. Obviously, there exist systems in nature that may
be considered to consist of a continuous distribution of mass points. Such a
system may be thought of as a composite system of an infinite number of subsys-
tems and therefore involve an infinite number of "generalized coordinates," or
"degrees of freedom." However, just as in classical mechanics, we may later make
the transition from mass points to matter in bulk; then the generalized coordi-
nates, q1, used here may better be termed independent variables.

To explore some of the consequences of the exactness of dtf, consider a
system whose variables are F, q and q. The existence of the state function u, or
an equation of state, means that any pair of these three parameters may be chosen
to be the independent variables that completely specify the system. For example
consider U = U(F,q), then

dU = (§) dF + (f) dq .
F q q F

The requirement that du be exact immediately leads to the result

3 r/M.\ i - -JL r(ML\ i
an I-Van/ •* ~ as1 •-V'j/iJ J3q 3F q p dF dq p q

10



The "energy capacity" of a system at the position q with dq = 0 may be
defined as

and the "energy capacity" of a system under a constant force is defined as

2. Second Law. There are processes that satisfy the first law but are not
observed in nature. The purpose of the dynamic second law is to incorporate such
experimental facts into the model of dynamics.

The statement of the second law is made using the axiomatic statement pro-
vided by the Greek mathematician Caratheodory, who presented an axiomatic devel-
opment of the second law of thermodynamics that may be applied to a system of any
number of variables. The second law may then be stated as follows:

In the neighborhood (however close) of any equilibrium
state of a system of any number of dynamic coordinates,
there exist states_that cannot be reached by reversible
E - conservative (dff = 0) processes.

When the variables are thermodynamic variables, the ^-conservative processes
are known as adiabatic processes.

A reversible process is one that is performed in such a way that, at the
conclusion of the process, both the system and the local surroundings may be
restored to their initial states without producing any change in the rest of the
universe.

Consider a system whose independent coordinates are a generalized displace-
ment denoted q, a generalized velocity q (with q = dq/dt), and a generalized
force F. It can be shown that the ^-conservative curve comprising all equilib-
rium states accessible from the initial state, i, may be expressed by

a(q,q) = constant ,

11



where a represents some as yet undetermined function. Curves corresponding to
other initial states would be represented by different values of the constant.

Reversible ^-conservative curves cannot intersect, for if they did, it would
be possible, as shown in Fig. 1, to proceed from an initial equilibrium state i,
at the point of intersection, to two different final states f, and f2, having the
same q, along reversible ^-conservative paths, which is not allowed by the second
law.

Fig. 1
If two reversible ^-conservative curves could intersect, it would be possible to
violate the second law by performing the cycle i, f p f2, i.

When the system can be described with only two independent variables, such
as on the ^-conservative curve, then if these variables are q and q, and F is a
generalized force,

~dE = du - .Fdq .

Regarding U = tf(q,q), then

12



where (|x) , F, and (~) are functions of q and q.
dq q dq q

An ^-conservative process for this system is

^ q 3q q

Solving for dq/dq yields

dq = 0 . (2)

dq

The right hand member is a function of q and q, and therefore the derivative
dq/dq, representing the slope of a ^-conservative curve on a (q,q) diagram, is
known at all points. Equation (2) has therefore a solution consisting of a
family of curves, see Fig. 2, and the curve through any one point may be written

a(q,q) = constant

y

Fig. 2.
The first law, through Eq. (2) fills the (q,q) space with slopes specified at
each point. The a curves represent the solution curves whose tangents are the
required slopes. The second law requires that these curves do not intersect.

A set of curves is obtained when different values are assigned to the constant.
The existence of the family of curves a(q,q) = constant, generated by Eq. (2),
representing reversible ^-conservative processes, follows from the fact that
there are only two independent variables and not from any law of physics. Thus

13



it can be seen that the first law may be satisfied by any of these a = constant
curves. The axiom requires that these curves do not intersect. Therefore the
axiom, together with the first law, leads to the conclusion that through any
arbitrary initial-state point, all reversible ^-conservative processes lie on a
curve, and ^-conservative curves through other initial states determine a family
of non-intersecting curves.

To see the results of this conclusion consider a system whose coordinates
are the generalized velocity q, the generalized displacement q and the general-
ized force F. The first law is

dz? = du - Fdq

where U and F are functions of q and q. Since the (q,q) surface is subdivided
into a family of non-intersecting ^-conservative curves

a(q,q) = constant

where the constant can take on various values a,, a^ any point on the
surface may be determined by specifying the value of a along with q so that U,
as well as F, may be regarded as functions of a and q. Then

and

dE - (|)q da + [ ( f ^ - Fl dq .

Since a and q are independent variables this equation must be true for all
values of da and dq.

Suppose da = 0 and dq f 0. The provision that da = 0 is the provision for
an ^-conservative process in which di? = 0. Therefore, the coefficient of dq
must vanish. Then, in order for a and q to be independent and for ~3E to be zero
when da is zero, the equation for Hz? must reduce to

14



with

^ a

Defining a function A by

then

cfe = A do ,

where

A = A(a,q) .

Now, in general, an infinitesimal of the type

Pdx + Qdy + Rdz + ... ,

known as a linear differential form, or a Pfaffian expression, when it involves
three or more independent variables, does not admit of an integrating factor. It
is only becaure of the existence of the axiom that the differential form for cfe
referring to a physical system of any number of independent coordinates possess
an integrating factor.

Two infinitesimally neighboring reversible ^-conservative curves are shown
in Fig. 3. One curve is characterized by a constant value of the function o.,
and the other by a slightly different value a. + da = aR. In any process repre-
sented by a displacement along either of the two ^-conservative curves cfe = 0.
When a reversible process connects the two ^-conservative curves, energy d£ =
A da is transferred.

The various infinitesimal processes that may be chosen to connect the two
neighboring reversible ^-conservative curves, shown in Fig. 3, involve the same
change of a but take place at different A. In general A is a function of q and
q. However, it is obvious that A may be expressed as a function of a and q. To

15



6E = 0

oA + da = aB

Fig. 3.
Two reversible ^-conservative curves, infinitesimally close. When the process is
represented by a curve connecting the ^-conservative curves, energy dff = y da is
transferred.

find the velocity dependence of X consider two systems, one and two, such that

in the first system there are two independent coordinates q and q and the E-

conservative curves are specified by different values of the function a of q and

q. When energy cfe is transferred, a changes by da and ~3E - A da where X is a

function of a and q.

The second system has two independent coordinates q, and q and the B-

conservative curves are specified by different values of the function 8 of q and

q. When dtf is transferred, a changes by da and HE = X da where X is a function

of a and q.

The two systems are related through the coordinate q in that both systems

make up a composite system in which there are three independent coordinates q,

q, and q and the ^-conservative curves are specified by different values of the

function aQ of these independent variables.

Since a = a(q.q) and a = a(q,q), using the equations for a and a, a may be

regarded as a function of q, o and a.

For an infinitesimal process between two neighboring ^-conservative sur-

faces specified by a_ and ar + dar, the energy transferred is dSL = X dcL where

A is also a function of q, a and a. Thenc

16



3o 3a 3a

Now suppose that in a process there is a transfer of energy dE between the

composite system and an external reservoir with energies dl? and di? being trans-

ferred, respectively, to the first and second systems, then

dE = cfjF + dE

and

A da = A da + A da ,c c

or

da = ̂  da + ̂  da . (4)
c Ac Ac

Comparing Eqs. (3) and (4) for dac then

9ac

Therefore a does not depend on q, but only on a and a. That is

ac = 0

Again comparing the two expressions for da

Ac 3a 3nd Ac ^ a '

therefore the two ratios A/A and %/X are also independent of q, q and q. These

two ratios depend only on the a's, but each separate A must depend on the velocity

as well (for example, if A depended only on a and on nothing else, the cfo = A da

would equal f(a) da which is an exact differential). In order for each A to

depend on the velocity and at the same time for the ratios of the A's to depend
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only on the a's, the A's must have the following structure:

A = <j>(q) f(a) ,

A = *(q) ?(5) , (5)

and

(The quantity A cannot contain q, nor can X contain q, since A/A and A/A must
c c

be functions of the a's only.)
Referring now only to the first system as representative of any system of

any number of independent coordinates, the transferred energy is, from Eq. (5),

cfe = <j>(q) f(a) da .

Since f(a) da is an exact differential, the quantity l/4>(q) is an integrating
factor for cfe. It is an extraordinary circumstance that not only does an inte-
grating factor exist for the cfe of any system, but this integrating factor is a
function of velocity only and is the same function for all systems.

The fact that a system of two independent variables has a cfe that always
admits an integrating factor regardless of the axiom is interesting, but its
importance in physics is not established until it is shown that the integrating
factor is a function of velocity only and that it is the same function for all
systems.

3. The Absolute Velocity. The universal character of <f>(q) makes it pos-
sible to define an absolute velocity. Consider a system of two independent
variables q and q, for which two constant velocity curves and ^-conservative
curves are shown in Fig. 4. Suppose there is a constant velocity transfer of
energy E between the system and an external reservoir at the velocity q, from a
state b, on a ^-conservative curve characterized by the value Oj, to another
state c, on another ^-conservative curve specified by o^. Then since

cfe = 4>(q) f(o) da ,

18



it is seen that

• ,2

q) J *(o) da at constant q

°2

q = constant

\
q = = constant

•*- q

Fig. 4. .
Two constant velocity energy transfers, E at q from b to c and E-, at q3 from a to
d, between the same two conservative curves a, and a2-

For any constant velocity process between two other points a to d, at a
velocity cu between the same ^-conservative curves the energy transferred is

g) = M , = ^(q^) / f(a) do at constant cu .
°1

Taking the ratio of

A£ _ ^(q) _ a function of the velocity at which Ag is transferred
£3 ~ <j)(q3) ~ same function of velocity at which A£3 is transferred

Then the ratio of these two functions is defined by

,/-\ isE (between o, and Og at q)
(})(q)2 ~ Ai?3 (between oj and a^ at
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or

By choosing some appropriate velocity <L it follows that the energy transferred
at constant velocity between two given ^-conservative curves decreases as <j>(q)
decreases, or the smaller the value of E the lower the corresponding value of
<|>(q). When &E is zero <j>(q) is also zero. The corresponding velocity qQ such
that <Hq0) is zero is the "absolute velocity." Therefore, if a system undergoes
a constant velocity process between two E-conservative curves without an exchange
of energy, the velocity at which this takes place is called the absolute veloc-
ity.

4. The Concept of Entropy. In a system of two independent variables, all
states accessible from a given initial state by reversible ^-conservative
processes lie on a a(q,q) curve. The entire (q,q) space may be conceived as
being filled by many nonintersecting curves of this kind, each corresponding to
a different value of a. In a reversible non-tf-conservative process involving a
transfer of energy dff, a system in a state represented by a point lying on a
surface a will change until its state point lies on another surface a + da. Then

dff = A da ,

where I/A, the integrating factor of dff, is given by

A = <fr(q) Ho) ,

and therefore

d> = <J>(q) f(a) da

or

*?!rf(a)da •

20
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Since a is an actual function of q and q, the right-hand member is an exact
differential, which may be denoted by d£; and

<J>(q

where S is the mechanical entropy of the system and the process is a reversible
one.

The dynamic second law may be used to prove the equivalent of Clausius's
theorem, which is stated here without proof.

Theorem: In any cyclic transformation throughout which the velocity is
defined, the following inequality holds:

where the integral extends over one cycle of the transformation. The pquality
holds if the cyclic transformation is reversible. Then for an arbitrary trans-
formation

with the equality holding if the transformation is reversible. The proof of this
statement may be seen by letting R and I denote respectively any reversible and
any irreversible path joining A to B, as shown in Fig. 5.

A *

Fig. 5.

For path R the assertion holds by definition of s. Now consider the cyclic trans-
formation made up of I plus the reverse of R. From Clausius1 theorem



r M. . r dff< o
I * R *"

or

I * ~ J R *

Another result of the dynamic second law is that the mechanical entropy of
an isolated (cfe = 0) system never decreases. This can be seen since an isolated
system cannot exchange energy with the external world since dE = 0 for any
transformation. Then by the previous property of the entropy,

S(B) - s(A) >. 0

where the equality holds if the transformation is reversible.
One consequence of the second law is that of all the possible transforma-

tions from one state A to another state B the one defined as the change in the
entropy is the one for which the integral

is a maximum. Thus

B , 3-
^(B) - S'(A) = maximum I = max / (-j-) dr ,

A ^

where T is a parameter that indicates position along the path from A to B, or

If
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where q1 = dqVdx, then the change in the entropy is given by the integral

._ f
B /I du F dqx .

The q and q which maximize hS will be denoted as x and x then, with

U = tf(x,x)

F = F(X,X)

* = *(X)

the x and x are given by the solution of the system of equations

d / 9G\ 9G _
T l3x'; " 9x

where

G=(l)[f-ff] «d «•-£ and i-.f .

Thus the dynamic second law provides an answer to the question that is not con-

tained within the scope of the first law: In what direction does a process take

place? The answer is that a process always takes place in such a direction as

to cause an increase of the mechanical entropy in the universe. In the case of

an isolated system, it is the entropy of the system that tends to increase. To

find out, therefore, the equilibrium state of an isolated one-dimensional system,

it is necessary merely to express the entropy as a function of q and q and to

apply the usual rules of calculus to render the function a maximum. When ihe

system is not isolated, there are other entropy changes to be taken into account.

5. Third Law. The dynamic second law enables the mechanical entropy of a

system to be defined up to an arbitrary additive constant. The definition
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depends on the existence of a reversible transformation connecting an arbi-
trarily chosen reference state 0 to the state under consideration. Such a
reversible transformation always exists if both 0 and A lie on one sheet of the
state surface. If two different systems are considered, the equation of the
state surface may consist of several disjoint sheets. In such cases the kind of
reversible path previously mentioned may not exist. Therefore the second law
does not uniquely determine the difference in entropy of two states A and B, if
A defines a state of one system and B the state of another. For this determina-
tion a dynamic third law is needed. The dynamic third law may be stated, "The
mechanical entropy of a system at the absolute velocity is a universal constant,
which may be taken to zero." In the case of a purely thermodynamic system the
absolute quantity is the absolute zero temperature, while for a mechanical system
the absolute quantity is the absolute velocity.

The dynamic third law implies that any energy capacity of a system must
vanish at the absolute velocity. To see this, let R be any reversible path con-
necting a state of the system at the absolute velocity qn to the state A, whose
entropy is to be found. Let CD(q) be the energy capacity of the system along
the path R. Then, by the second law,

But according to the third law,

5(A) -*• 0

as

Hence it follows that

CR(q) - 0
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In particular, CD may be C, or C_.
The statement of the third law above reflects the restriction to mechanical

work terms. A general statement of the third law that is independent of the
number or type of variables is "The generalized entropy of the system, when the
integrating factor vanishes, is a universal constant, which may be taken to be
zero."

B. General Maxwell and Energy Relations
In thermodynamics a discussion of equilibrium and stability conditions is

best dorie if the enthalpy, Helmholtz's, and Gibb's functions are defined first.
Therefore, the mechanical analogues of these functions are defined here.

Each branch of physics such as thermodynamics and particle dynamics has its
own developed procedures. If both branches can be described by the same basic
dynamic laws, then the procedures developed in thermodynamics may prove to be
useful in particle dynamics and vice versa. Once the mechanical enthalpy,
mechanical Helmholtz's and mechanical Gibes' functions are defined, it is then
easy to write down the resulting mechanical Maxwell and mechanical energy capac-
ity relations.

To begin the development of the Maxwell relations, the mechanical entropy
was defined as

._ _ HE

Then, since cfe = du - Fdq,,

where

dy = <|>(q) dS + Fdq . (7)

Define the mechanical enthalpy as

B =- V - Fq ;
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then

dff = cj>(q) dS - qdF . (8)

Therefore

( f ) =<0(q) and ( § ) =-q .
F S

The mechanical Helmholtz's function can be defined as

K E U - <f>(q)£ ,

and

dK = dU - ̂ J i ^ 5dq - cf>(q) dS ,

or, with

dii = -5<J»'(q) dq - Fdc\ . (9)

This leads to

(||) = _^.(q) and (II). -
M q M q

The mechanical Gibb's function may be defined as

ff = H - <J)(q)5 ;

then

dG = -<t>'{q)S dq + qdF , (10)
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so that

(If) = -*'(q)5 and (|f). = q .
HF q

From the differential Eqs. (7), (8), (9), and (10) the Maxwell relations for
a mechanical system may be written:

(f) -

f 0p
The energy capacity at the position q can be defined as

S S 'l'q • •«> 'If', •

Define the energy capacity with a constant force as

then

"^ F ^ q

and

\>F _ iS"
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C. Equilibrium and Stability Conditions
The three generalized laws have been formulated and a few ~lts of these

laws have been seen. The next step is to derive the stability conditions to
obtain the quadratic forms necessary for a metric. In the process of deriving
the equilibrium conditions and in turn the stability conditions other state func
tions are used. These functions may be defined briefly here as:

Mechanical enthalpy (ff): H = U - Fq

Mechanical Helmholtz function {K): K = U - <J>(q)s »

and

Mechanical Gibbs function (G): G = H -

The derivation of the equilibrium and stability conditions is identical to
the derivation of the thermodynamic equilibrium and stability conditions with
the variables changed to represent the mechanical variables q, q, S and F instead
of the thermodynamic variables T, V, S and P.

1. Equilibrium Conditions. To establish the criteria for equilibrium,
consider Clausius's theorem

AJI * AJR * - ° '

or

For an ^-conservative system cfe = 0, then

AS >. 0 ,

or
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Therefore the mechanical entropy tends toward a maximum so that spontaneous
changes in an ^-conservative system will always be in the direction of increasing
mechanical entropy.

Now by the first law

AE = AU - FAq .

Therefore

> AU - FAq ,

which is analogous to the Clausius inequality in thermodynamics.
Now consider a virtual displacement (U,q) •*• {U + 8U, q + 6q), which implies

a variation S •*• S + 6s away from equilibrium. The restoration of equilibrium
from the varied state (U + SU, q + <5q) •> (U,q) will then certainly be a spontane-
ous process, and by the Clausius inequality

4>(-6S) > - {6U - FSq) .

Hence, for variations away from equipoise, the general inequality

&U - FSq - <&SS > 0 (12)

must hold. The inequality sign is reversed from the sign in Clausius1 inequality
because hypothetical variations 6 away from equilibrium are considered rather
than real changes toward equilibrium.

In a spontaneous process,

(pAS >. A# r e v
 = AU + work done by the system.

The "work" consists of two parts. One part is the work done by the negative of
the force F. It may be positive or negative, but it is inevitable. Only the
rest is free energy, which is available for some useful work. This latter part
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may be written as

A = A£ r e v - &U + FAq

The maximum of A is

which is obtained when the process is conducted reversibly.
The least work, SA . , required for a displacement from equilibrium must be

exactly equal to the maximum work in the converse process whereby the system
proceeds spontaneously from the "displaced" state to equilibrium (otherwise a
perpetual motion machine may be constructed). Corresponding to Eq. (13) then,

in = 6U - F8q -

The equilibrium criteria may then be expressed as

In words: At equilibrium the mechanical free energy is a minimum. Any displace-
ment from this state requires work.

2. Stability Conditions. To decide whether or not an equilibrium is
stable, the inequality sign in Eq. (12) must be ensured. The conditions tor
stability may take different forms depending upon which variables are taken as
the independent variables.

To derive the stability conditions when q and S are taken as the independent
variables consider the terms of second order in small displacements beginning
with the general condition

SU - Foq - <j)<SS > 0 .

Choose U = U(q,s), which, because of the i d e n t i t y
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or

<J>dS = dy - Fdq ,

is a natural choice of the independent variables, and expand 6U in powers of <5q

and &S

&U = <p&S + F6q + -5- (-—) Sq" + 2
2 8q2

+ terms of third order ... (14)

The inequality (12) then shows that in (14),

second order terms + third order terms + ... > 0 .

Retaining only the second order terms, the criterion of stability is that a qua-

dratic differential form be positive definite;

, 9 V ?J2.

I f this is to hold true for arbitrary variations in 6q and 65, the coefficients

must satisfy the following:

2 ? ? ? ?

±3L > n • r i t l (JJL\ > n
3q 2 9.S2 9q 2 *qdS

When q and q are considered to be the independent variables, a quadratic

form in <5q and 6q may be found by using

K = U - $S

so that

6K = 6y - <|>6S - -g| 56q - -g| &S6q •
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The terms SSSq cannot be neglected because in Clausius's inequality, which is the

actual stability condition, the variations are finite, and therefore, from Eq.

(12) the following is obtained:

&K + <()65 + ̂ j£ (5 + &S) 6q - F6q - $6S > 0 ,

dK
3q ~

Therefore

32K
3q3q

F .

_ 3F
~ 3$

and

5 -

32

^| 3 6q - F6q > 0

Expanding in powers of 6q and &q,

6K - F6q - g 56q + \ 0 oq2 + ̂  6q6q + I 0 6q
2

and

65*60 = — —r- 6C| + — ( — I?)

But

3q 3q 3q (J> 3q dq

and



Then

and the quadratic form in Sq and 6q is

32,K . »• . 1 32# / *»
6q6q + 2 ^ 2 (6q)

or

2 2
U + 2 4 * <?) (Sq)2 > 0

3q 3q

Since (|J). = F, then
9q

Other quadratic forms may be derived by using different independent

variables; however, these two quadratic forms will suffice for this development.

D. Geometry and Field Equations

There is nothing that specifies which of the quadratic forms coming from the

stability conditions should be adopted as the metric. Thus the choice may be

based upon simplicity and/or applicability. However, it becomes obvious that if

we choose one of the forms using the velocity as our metric and then obtain

equations of motion, then the equations of motion will become third order dif-

ferential equations since the velocity is itself first order and the equations

of motion are second order differential equations.
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The fact that these equations of motion will become third order differen-
tial equations in time displays a time asymmetry that appears to correspond to
nature. However, third order equations are difficult or impossible to solve.

1. Geometry. To avoid the difficulty of third order equations of motion,
suppose we adopt the quadratic form of Eq. (IE) as the metric for our system.
Thus we are adopting a manifold with coordinates of space-mechanical entropy.

It now becomes desirable to extend our system beyond the dimensionality
used thus far. Such an extension brings up a question concerning the integrating
factor. With one work term the differential of the entropy was written as

ds = 4 | - f (o) do .

Then if for each dimension the exchange of energy is denoted by <fe., then

AE.
d 5 = ^ 7 = f d o

where there is no summation intended for f. da.. Since each dS- is a perfect
differential, then the total change in mechanical entropy may be written as

dff.
ds = ? d5i = f -^7 = f fi dai •

However, the question which arises is whether there exists a single integrating
factor <|> such that

dS = ̂ f = 2 -ri = I f. da.
• 1 4-i i i i

To see this consider the element of work considered before as

dV = L F. dq1 ; i = 1, ..., n .

Since each du^ is in itself a perfect differential, then dU = Z dU- so that

cfe = Z dU. - Z F. dq1 = Z {dU- - F, dq 1)
. 1 . 1 1 l i
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or

dfe = I d~E. .

If the system is total ^-conservative in the sense that

~d~E = I ~dE. = 0 ,

then cfe = 0 is a Pfaffian differential equation. This equation is integrable and

has an integrating factor <j>. The integrability is guaranteed by the dynamic

second law since it is impossible to go from one initial state to any neighboring

state. Then, just as in the one-dimensional case, the perfect differential fol-

lows:

Z dE.

But since

. = Q. fi doi ,

then

<f>- f i d a ,
d5 = z _I_J 1

Now following the same argument presented in Section II.A.2 concerning the

composite system,

dE = X do

where a is a function of all the a. and the q1. Therefore since

d~E. = X. daj ,
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then

8*.
dE = E X. {-gi da + dai}

Now

so that

or

E dE.

A da = £ A. da.

and

da = £ — da. .

It follows that the do/dq1 = 0 and that the ratios A../A are also indepen-
dent of the q1. Therefore the A's have the form

\ =

and also

-i- A. A. do.
5f = F da = E F -4 da. = E - L-~ = E f. da.<t> i A l i <j) i 1 1
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The right hand side is a perfect differential and therefore so is the left.

Since A./f. is an integrating factor and A/F is also an integrating factor,
• 1 I o .n

it follows that <f>(q , q q ) is an integrating factor for the 6B^ as well

as for dE -< Z cfe.. Therefore
1

The importance of this question may be seen in terms of the difficulty that

would be created if a universal integrating factor could not be found. For then

each additional work term would require its own integrating factor determined

individually.

Thus assured that an overall integrating factor exists, then the existence

of an overall entropy function is guaranteed so that

for any i and the quadratic form may be extended to include three spatial work

terms and thus becomes

(dqa) + -|-\ (dqa) > 0 ; a,0 = 1, 2, 3 .
35 9£9qa 8q 9q

Adopting this quadratic form as the metric of a general system whose thermody-

namic variables are held fixed, we may then write this metric as

(ds)2 = h.d do
1 dqj ; (i, j = 0, 1, 2, 3) , (16)

where the summation convention is used and

h.. = r!
1 9qJ

with q = S/Fn, the scaled mechanical entropy for dimensional correctness.
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Thus, the stability conditions provide a metric in the four-dimensional

manifold of space-mechanical entropy. However, the existing relativistic

theories are theories in a space-time manifold. Therefore, if these theories

are to be contained within the dynamic theory, then the space-time manifold must

be found within the dynamic theory.

The arc length s in the space-mechanical entropy manifold may be parameter-

ized by choosing

ds = qQ dt = cdt ,

where q0 = c is the unique velocity appearing in the integrating factor of the

second postulate. The metric may now be written as

C2(dt)2 = h , dq1 dqj ; (i, j = 0, 1, 2, 3) . (17)

Now suppose the systems considered are restricted to only ^-conservative

systems. Then the principle of increasing mechanical entropy may be imposed in

the form cf the variational principle

In order to use this variation principle, Eq. (17) may be expanded, solved

for (dq ) and squared to arrive at the quadratic form

(dq0)2 = {^-) {c2(dt)2 + 2hQa A dt dq
a - h ^ d q W ) . (18)

with qY E dqY/dt.

By defining x° = ct, x a = qa ; a = 1, 2, 3, then Eq. (18) may be written as

(dq0)2 = (£) g1d dx
1 dxj ; (1, j = 0, 1, 2, 3) (19)
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where f = h00. This metric obviously reduces, in the Euclidean limit of constant
coefficients, to the metric of Minkowski's space-time manifold of special rela-
tivity.

In his General Theory of Relativity, Einstein assumed the space-time mani-
fold to be Riemannian. However, this assumption involves the a priori assumption
that the scalar product be invariant. This assumption was later questioned by
Weyl in his generalization of geometry. From the viewpoint that the adopted

postulates should contain the other theories it then becomes desirable to deter-
0 ?

mine whether or not these postulates specify the geometry of the (dq ) space-
time manifold. More particularly do the adopted postulates lead to a geometry
that includes the geometry of current theories? To arrive at a more general
geometry would not be a limitation for it would certainly include the others.

Recalling Eq. (19), we can define

(dq°)2 = (±) g^ dx1 dxj = (£) (da)2 = g... dx1 dxj . (20)

Now the second postulate guarantees the existence of the function mechanical
entropy and that dq be a perfect differential; therefore

dq° = q? dx1 , (21)

where q. = Sq /9X1. Then the exactness of dq is stated by

q1/J " qJ/1 " ° • (22)

By defining the parallel displacement of a vector to be

d?i - T v.s d x % (23)

and using Eqs. (21) and (22) it may be seen that the connections must be sym-
metrical , or
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This result should not be taken to mean that only symmetric connections

need to be_considered. Rather it means that given the g- -'s that maximize
0 ? dP 2

(dq ) = (-F—r) , then the connections are symmetrical. However, since a
Ox

variational principle must be used to determine the 9-jj's, then both symmetric

and antisymmetric connections will have to be considered.

In Weyl's generalization of geometry he found it necessary to assume th2

symmetry of the connections. He proved a theorem showing that the symmetry of

the connections guaranteed the existence of a local Euclidean limiting manifold

and used this theorem in support of the symmetry assumption. Here we find that

the second law requires that the connections formed by the solution coefficients

must be symmetrical thus guaranteeing, through Weyl's theorem, the existence of

a local Euclidean geometry within the Dynamic Theory.

Suppose now we consider whether the order of differentiating the change in

entropy makes any difference. This means that we must use symmetric connections

since the actual change in entropy will be determined by the metric coefficients

that generate a maximum. Therefore, consider the difference

2 - 92(dq°)2
g [t •

3X 9X 8X 9X

Since (dq0)2 = q? q? dx1 dxj from Eq. (21), using Eq. (20) we find

0 0 -
" q = 9

Then

Thus

° • ,?«

3 2 ( d q ° ) 2 _ r O 0 0 0 0 0

9X j|k|£ qi + qj|k

\ + 2qkV qk
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Likewise

3x

Therefore the difference must be

Mdq°) 2 - «,°|k|), - ,J|t|k) ,« •

Using the definition Eq. (23) we see that

and

0 _ 0 ̂  r
qi|k " \ T ik

also

Now

J° •

n0 - n0 P r

qk|i " qr r ki

qi|k|£ = Z I [ q r r ik3 = qr|£ r ik + q r ~ j ~

Similarly
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0 0 .A p j j
(»1|£|k" <«r f rek rU 9xr

Therefore

= q i qr
0 r

9r ik i
3x si [ ik x sk

Then defining the vector curvature as

r
1>£k

ijk

9x£ " 9x
ik

r f s (25)

the difference may be written as

However, recall that q? q. = g..; then
I J IJ

jr R V .r R J^} dx

But

"n
r

R jk£

so that

dx

So the difference will vanish if

= " Rij£k '
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Now since

(dq°)2 - qj q° dx1 dx* - g. . dx1 dx^ ,

differentiation will result in

d(dq0)2 = d(qf q? dx1 dxj) = d(g. . dx1 dxj)

or

dq° q° dx1 dxj + qj dq°, dx1 dxj + qj q° d(dxi dxj)

= dg.. dx1 dxJ + g.. dCdx1 dxJ) ,

which can be written as

f J dxs q° qj dx1 dxj + q° f r dxs q° dx1" dxj + q° q° d(dx1

= dg., dx1 dxj + g,. d(dx7 dxj) .

But

Therefore

Je dx 9rj + F ja dx V

or

8q.

is + 9ri T j s = ^
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and

+ r =
jia Fij

9gi:

Now interchange jis to sij to get

f + Y =
sij jsi (27)

Then interchange jis to isj so that

r . . + r . . =
1SJ

9g .3sl (28)

Add Eqs. (27) and (28) and subtract Eq. (26).

y\ /v

r . . + r . . + r . . + r . . - r . . - r . . = — 2 4 . + — i f . L L
ISJ sij sij jsi jis ijs 3xJ 3xi 3 xs

or

•\ «^

sij Bx̂ 9x"
(29)

and

3gi

Now by using the symmetry of g . . i t can be shown that

Rji£k
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and therefore

A(dq 0) 2 = 0 .

This is the necessary and sufficient condition that the differential entropy
change may be transferred from an initial point to all points of the space in the
manner that is independent of the path.

The distinguishing features of Riemannian geometry is the invariance of the
scalar product under a vector transplantation. Therefore to determine whether
the (dq^) space is a Riemannian space, consider the vector %. and f.. Now
since

and

I dx*
r.s dx - I I 5J dx

s
 + g..

then

5ij d^J " f i. dxS
3XS

dxs .

Or, since

and

then
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(rkjs c
k - (r3.s •

Thus the change in the covariant and the contravariant vectors is given by

U dx

and

= - r J dx

Now consider the change in the scalar product £. n1. Then

VN /S.T **-1

Renaming the indices in the second term yields

n1) - ( r ^ ^ n 1 - rfs ?r n
1) dxs .

n 2Thus the geometry of the (dqu) manifold is Riemannian.

The next question is what is the geometry of the (da)^ space? Equation (20)
2 0 2

shows that we may write (da) = f(dq ) , which is reminiscent of Weyl's
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generalized geometry. Further we have

Then in the sigma space an arbitrary vector C1 would have a length £ given by the

self-scalar product

where I is the length of the vector in the entropy space.

If we differentiate Eq. (30), we have

25, d £, = JT -21 dx1 + 2f £ d % .
1

However, in the entropy space the length of the vector £ is unchanged under

parallel displacement so that

j? _ 1 df . i % 1 9£nf . i « ,.,, i
d£ = -x- — - dx -f = -o- dx £ . (31;

9X1 ^ 9x

Comparing Eq. (31) with the definition of the parallel displacement of a
vector, Eq. (23), we find that $. = ̂ t plays a role similar to that of the

i ^ 3x

connections r.. in the definition of parallel displacement of a vector.

Therefore we shall define the change in the length of a vector under displacement

to be

da = (4>. dx1) I . (32)

This is the same definition Weyl made in his generalization of geometry.

However, there is a difference in the way it was obtained. Weyl chose this

definition in analogy with the connections r and the definition then led to the

second more general metric. In this theory the fundamental laws lead us to two

metrics and Eq. (31) for the change in the length of a vector under displacement.
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Thus within the Dynamic Theory Eq. (31) is a derived equation and Eq. (32) only
renames the logarithmic derivative.

Using Eq. (32) we may obtain, in general,

d£2 = 2£2 (̂  dx1) = d(9ij s V )

= g1j|k e V dx
k
 + 9iJ 4 € V dx

k
 + 9fj rjk ? V dxk .

Renaming the various summation indices, rearranging terms, and using the length
of a vector, we obtain

i kSince this must hold for arbitrary choice of E, and dx , we conclude that

This is the same system of linear equations for the connections r.. as Eq. (26)
except that the inhomogeneous term g.... has now to be replaced by g..• . -
2g..j <h,. Therefore the same linear algebra as before leads to

1 \f 0 *i

1 • • — — i . i r x Q Q , m . T O • ( D . — Q . i (D I
J I* J »\ A/J l \ AflX J J l\ A*

where {.̂ } is the usual Christoffel symbol of the second kind.
Now, since the entropy space is Riemannian, then in the entropy space we

have

•i ~= ° and

and the length a of a vector is unchanged under parallel displacement. However,

the same
relation
the same displacement law in the sigma space, with metric g.., leads to the
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= ± d /g^. eV = ± d / f

= ± £ ̂ 4 dxk

ixK I . (34)
L 3x"

Thus ± (-|)(3£nf/3xk) plays the role of <j>k in Eq. (32). It follows then that the
ordinary connections -i-l^ constructed from g. . are equal to the more general
connections r.. constructed according to Eq. (33) from g.. and <j>. = (-̂ )(9£nf/3x ):

JK 1J K c.

This can also be see;i by direct computation from Eq. (32) and

We may interpret the change of metric from g.. to g.. by Eq. (36) as a
change of scale for the length at every point of the Riemannian manifold by the
variable gauge factor f. This transformation is called a gauge transformation,
and <|>. is called a gauge vector field.

The generalized geometry thus separates the problem of measurement of angles
from that of measurement of length. For instance, the angle between the two
vectors 51 and n1 at a given point of the space is measured by the ratio

M\ llnl

This ratio does not change under the gauge transformation Eq. (36). The gauge
transformation is therefore an angle-preserving, or conformal, change of metric.
On the other hand, the length of vectors will change under Eq. (36) according to
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Eq. (31). Thus the metric tensor g.• determines angles, while one needs also the

gauge vector <(>. to measure length.

Considering the sigma space, which is characterized by the tensor field g..

and gauge vector $.. The same argument as before shows that we may, without

changing the intrinsic geometric properties of vector fields, replace the geo-

metric quantities by use of a scalar field f as follows:

(37)

That is, in the new metric, vectors will have the same law of affine transplanta-

tion and the angle between different vectors at the same point of the manifold

will be preserved, but the local lengths of a vector will be changed according to

ir = f t- .

Thus the general Weyl geometry of the sigma space admits also a conformal gauge

transformation.

2. Field Equations. With the foregoing, it is apparent that the sigma

manifold must have the more general Weyl geometry. Given the vector field 4>t in

Eq. (37) we can follow Weyl's interpretations and study the tensor field

Weyl showed that from a study of this tensor field we are led to the variational
principle

i- i A F.. F1J - X(4 - 6 $. J1)] /^ d x = 0 , (39)

£• 1 J t 1

where

<)>• = >^A ([>• a n d F . j = vX F . .
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From this variational principle Weyl showed that Einstein's General Rela-
tivistic Theory and Maxwell's Electromagnetism may be obtained. The only remain-
ing question here is whether the fector field <j>. , which gives rise to the
non-vanishing tensor field F.., is required by the three fundamental laws adopted
by the Dynamic Theory or must be assumed to exist as Weyl did.

If we recall the statement of the first law

cfe = dU - F dq01 ,

we find that even for an isolated system there exists the vector field F .
Indeed, in Section II.C.I it was shown that this vector field is inevitable.
Further recall that the geometry given by the stability conditions is based upon
the second partial derivatives of the system's energy function, u, and does not
include the forces F . It seems only logical to suspect that there exists a
link between the vector field <£. and the forces F , especially since the work
terms are path dependent and the nonvanishing of the curl components of <f>. is
equivalent to the statement that the potential function <|> is path dependent.

The connection between the potential vector field <j>. and the forces F
comes from Maxwell's electromagnetic theory where the forces F are the Lorentz
forces made up of the components A.. However, we shall not show the connection
here since any tertt on Weyl's theory, or electromagnetism, displays the connec-
tion. We shall, however, present it during the development of the more general
five-dimensional system. For the present though, if we adopt Weyl's interpreta-
tion plus taking the forces F to be the forces resulting from the <|>., we then
may see that the Dynamic Theory leads us, through Weyl's unified theory, to
Einstein's General Relativistic and Maxwell's Electromagnetic theories and
further, as special cases, the Special Relativistic Theory and Newtonian mech-
anics.

E. Mechanical Systems Near Equilibrium
We have shown how, for an isolated system subjected to only three spatial

forces, the Dynamic Theory includes Einstein's relativistic and Maxwell's elec-
tromagnetic theories. However the approach has been abstract and does not
readily display the effect of the new point of view upon classical physical con-
cepts. It then seems beneficial to pause in the development and take a different
look at what the Dynamic Theory says about mechanics.
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1. Classical Mechanics. Classical mechanics describes the motion of a

system, which could be a particle, for which the energy of the system is a con-

stant. The equations of motion may be obtained using Hamilton's principle.

These equations of motion yield trajectories resulting from the action of forces;

they may also be obtained from the principle of least action. When the action

integral is treated as a variational problem with variable end points, the method

of Lagrangian multipliers yields the same equations as does Hamilton's principle.

However, if the variational problem is transformed to a new space in which the

new variational problem has fixed end points, then the metric for this space is

displayed, and the equations of motion are geodesies in this space.

In classical mechanics the principle of least action as formulated by

Lagrange has the integral form

P2 _
A = / mv • ds . (40)

Pl

In curvilinear coordinates the integral assumes the form

where a,

Defining

T -
1 —

P2

Pl

3 =

m a
2 g

1, 2

dxa

a6 dt

xa 3
dt

, 3.

dxp

dt

t(P2)

t(Pl)
 m9a

a 3

,3 dt dt

the integral becomes

t(p2)
A = / 2Tdt

t(P2)
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Then the principle of least action may be stated as:

Of all curves C passing through Pj and P in the neighborhood
of the trajectory C, which are traversed at a rate such that,
for each C , for every value of t, T + V = F, that one for
which the action integral A is stationary is the trajectory
of the particle.

The transformation of variables may be carried out to display the metric

(ds)2 = h a g d x W (41)

where

ha3 = 2m (£0 " V) gag •

Here different particles in the same field and with different energies e would
appear to have different geometries, a situation which has been previously taken
to be impossible and therefore precluded the geometrization of dynamics (see page
6 of reference 1). However, in view of Weyl's generalization of geometry, treat-
ing the variational problem in the principle of least action as transformed to a
new space in which the variational problem has fixed end points, in effect, is a
transformation into a space with Weyl geometry where the gauge function is
2m (eQ - v) g g. Thus changing the energies eg does not change the geometry
since it will still be a Weyl space.

Suppose now that the concepts of classical mechanics are compared with the
concepts from the point of view of the Dynamic Theory. The energy of the system
in classical mechanics is a constant of the motion and therefore the change in
kinetic energy is the negative of the change in potential energy, which may be
written as

dH = dT + dV = 0 .

However, for classically conservative forces dH is a perfect differential.
Therefore for this system with only one work term the force is a function of
position only.
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This suggests the association of the classical energy of the system, H, with
the system energy, U, which is also a perfect differential. Now if the system is
isolated, or ^-conservative, then

0 = ~dE = du - Fdq .

Bet if du = dff = 0 then F must be zero. This points out an important difference
between classical physics and the Dynamic Theory. A classically conservative
system is one for which the system's energy is a constant of the motion. How-
ever, the ^-conservative system, within the Dynamic Theory, is one for which
dE = 0. Thus an ^-conservative system which is also conservative in the clas-
sical sense must have no forces F which may depend upon velocity as well as posi-

tion but may have forces which arise from - —̂ = F and must be functions of posi-
dq

tions only.
2. Relativistic Mechanics. Suppose we now turn our attention to the

mechanics of special relativity. In the special theory of relativity Einstein
sought to put Newtonian mechanics into a form which would leave the speed of
light invariant. The resulting dynamics exhibits the notion of a unique velocity
in a similar sense to the previously defined absolute velocity. The modification
required the motion to be such that

J ( ^ q —-t-Ffig) dt = 0

where F is a force which is a function of position only.
The factor A - q /c displays the qualities required of the integrating

factor $(q). Therefore consider a modification of Hamilton's principle in terms
of the system energy U, the force F, and the integrating factor <|>. The modified
statement then would be that the motion be such that

/2 («2 + J fiq, d t - 0 .
1

It can be seen that if <j>(q) = 1, then F must be a function of only q and classi-
cal mechanics results. It will be shown that if <j>(q) = A - q /c relativistic
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mechanics is obtained.
Now for an isentropic system

^c _ cfe n _ du F .

or

This would be the classical work-energy theorem if <)> = 1. For any <}>

If the system energy u is taken to be the kinetic energy and defined as

U = \ mq2 , (42)

then

mq = F ,

or Newton's second law.
This tends to indicate that a modification of Hamilton's principle would

apply to a system for which ds = 0. This modification would be to assume that
for an isentropic system the motion is given by the principle:

If a particle is at the point Pi at the time tj and at the
point Pp at the time t£, then the motion of the particle
takes place in such a way that

SU • f -^ it E S / L dt = 0 ,

h
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where q = q(t) is the generalized coordinate of the particle
along the trajectory and q + Sq is the coordinate along a
varied path beginning at P, at the time t, and ending at P9
at time V

The hypothesis of the fundamental lemma of calculus of variations is that L

be a real continuous function, therefore, the mixed second partial derivatives

of L must be equal, or

2 2
3 L _ 3 £

3q3q 3q3q

Now

so that

3q <j> 3q " 3q <J) L3q

Then

"3q~3q" (j) 3q3q ()> l3q3q 3q"; " .2 L3q

This requires that

3q cj) 3q

However, ds is a perfect differential so that

2 2
O 0 tJ

3q3q ~ 3q3q
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Since

and

ZU _ 1 ( 92£/ 3£x ^ /jW i
9q9dj " (J) ^3q8q 8q ; ((> ^9q " h) *

or

9q <j> ( 3 q F) •

In order that ds and dL both be perfect differentials at the same time then

9q "

Therefore

and

9q

or

Il£ - 11
F 9 q " <J>
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which is a function of q only. Then

or

which implies that

f =F(q)

which is a function of q only, and

F = 4>(q) F(q) . (45)

Suppose that the momentum is defined as

and the mass is defined as

m = -Mr . (47)

Then

dS = p dq - F(q) dq ,

and
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dL = p dq + F(q) dq .

The equations of motion would be

(48)

or

If m = constant, then p = mq/<|> and

dL = 0& dq + F(q) dq

while

dS = -| dq - F(q) dq .

Then for ds = 0,

S = i(q)+ V{q) and L = x(q) ~ v(q)

where

How then may <t>{q) be determined? The precedence set by thermodynamics is to
determine cf>(q) experimentally. Experiments with a charged particle in a magnetic
field, such as a mass spectrometer, show that

<j>(q) = A - q2/c2 . (49)
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In special relativity this factor conies from the metric of Minkowski's space-

time manifold. The Dynamic Theory gives us the same factor for systems which are

very near an equilibrium state since for such a system the coefficients of the

metric become constants, which are the second partial derivatives of the system

energy function evaluated at the equilibrium state. Therefore the Dynamic

Theory produces Einstein's Special Theory of Relativity for an isolated system

very near an equilibrium state.

Notice that the integrating factor in Eq. (45) satisfies the requirements

for the integrating factor with c as the absolute velocity.

If this integrating factor is substituted into the equations of motion, the

resulting equation is

A r _.
dt L ,

mq = F(q)

Then

mqdq F(q) dq

and

L(q,q) - L(qo,qo) = J " ^ + / F(q) dq

= mc? A - q2/c2 V(qQ)

If £(qo.qo) = i(0.») = 0, then

L(q,q) = mc2[l - (50)
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With the exception of the additive term me2 this is the form of the relativistic

Lagrangian when m is intprpreted as the rest mass, and since additive constants

in the Lagrangian do not affect the equations of motion, this Lagrangian yields

equations of motion consistent with the special theory of relativity.

The first integral of the equations of motion may be written as

df fc " < f1 - dT I* ' to ' ° •

therefore

L - qp = constant .

Then define this constant of the motion, which may be called a "Hamiltonian," by

H a qp - L (51)

Since the Lagrangian is given by

L = f pdq - V(q) ,

the Hamiltonian becomes

H = qp - / pdq + V(q) = / qdp + V{q)

Then the Hamiltonian equations of motion may be written as

For the particular Lagrangian

L = me2 [1 - A - q2/c2 ] -
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the Hamiltonian is

H = "^ - me2 [1 - v/f^TVc2] + V(q)

= me2 ( l — - 1) + F(q)

or

H = mc2(Y - 1) + V(q) , (53)

where

Y =

2
Then defining E(q) - EQ s me (y - 1) implies that

E 2 = E 2 + (pc)2 . (54)

In the special theory of relativity the Hamiltonian, which is interpreted

as the energy of the system when m is the rest mass and c is the speed of light,

has the same form as Eq. (53). However, in the Dynamic Theory the Hamiltonian

is not the energy of the system since it is the system energy u and is here

given by u = j mq since -~— was taken to be zero.

Thus interrelationships between mechanical concepts of classical mechanics,

relativistic mechanics, and the Dynamic Theory may be displayed. This approach

does not show the rigorous development which could have been achieved by begin-

ning with the metric, restricting the system to be very near an equilibrium

state in order to obtain constant coefficients, and then applying the principle

of increasing mechanical entropy. Such a procedure only duplicates Einstein's

development of the special theory from Minkowski's space-time continuum and is

also presented in a generalized version later in this report. Therefore the

rigorous development will not be done here.
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Suppose we now return to the question of whether the force is really a func-

tion of position only or is also a function of velocity as taken to be the case

in the introduction. To view this consider the differential expression of the

first law

~5E = dU - Fdq .

But U = \ mq2 and F = <S>F(q) = A - q2/c2 F(q), so that

dE = mqdq - A - q2/c2 F(q) dq

If the first law is taken to be the "real" expression of conservation of energy,

as is the case in the Dynamic Theory, then the "real force," F, displays the

velocity dependence believed to be the case. On the other hand the mass appear-

ing in the first law is the "rest" mass and does not depend upon the velocity.

However, the first law is a path dependent function and as such may not be

integrated until the path is known; therefore its utility is limited.

The second law provides a path independent function whose differential is

given by

or, since U = A mq2, F = A - q2/c2 F{q), and $ = A - q2/c2,

dS = — — " dq - F(q) dq

In this differential we see the appearance of the relativistic, or "effective,"

mass and an "effective" force which is a function of position only. Thus it is

obvious that we cannot interchangeably use the concept of rest mass and velocity

dependent forces as compared to relativistic mass end velocity independent

forces. This is because, in the Dynamic Theory, there are two differential

expressions which may not be used interchangeably since one is the result of the
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first fundamental law and is not an exact differential while the other comes as

the result of the second fundamental law and is exact.

3. Non-Isolated System. Thus far we have consistently required the system

to be isolated. Obviously there are a large number of physical phenomena for

which this restriction may not be used, even as an approximation. Therefore,

relaxation of this restriction should provide description of a large and impor-

tant class of systems.

One of the benefits of the Dynamic Theory is the capability of using proce-

dures currently used in one branch of physics in another where prior to the

unification displayed here would have been thought impossible. A system in which

this, procedure should produce significant results is a nonequilibrium thermo-

dynamic system. Thermodynamics tells us that we must minimize the free energy,

but the ability to use this as a variational principle to obtain equations of

motion is a procedure which the Dynamic Theory now makes possible for this

thermodynamic system.

This research has not yet considered nonisolated systems though some dis-

cussion of this class of systems is contained in reference (9); they remain a

possible subject for future research.

F. Quantum Effects

Before displaying the quantum effects of the Dynamic Theory it seems impor-

tant to briefly discuss philosophy with regard to current quantum theory. The

quantum theoretical structure has swept aside virtually every attack upon it.

Indeed its successes have mounted so rapidly and stand so firmly that to express

disagreement is taken as sacrilegious. Yet it seems difficult to subscribe to

all the teachings of current quantum physics. However, this skepticism concerns

only the implication that Heisenberg's uncertainty principle applies to all

physical phenomena.

On the other hand it does not seem possible either to embrace completely

Einstein's celebrated quote "God does not play with dice." Rather, it should be

modified to read "God does not play with dice all the time." Should not quantum

effects depend upon the constraints placed upon a given system? This is akin to

a vibrating string that is anchored at both ends and vibrates, ideally, in cer-

tain allowed modes or a string that vibrates at one end with the other end free.

How then can the limits of applicability of the uncertainty principle be

obtained if indeed there are any limits to be placed upon it? Suppose we
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consider the Poisson brackets, which are fundamental in classical mechanics, and

form the link between classical physics and quantum physics through the corre-

spondence principle.

The classical Poisson brackets represent the Euler equations resulting

from a variational problem minimizing a functional subject to a constraint.

Therefore consider the definition, in tensor formalism,

where the canonical momenta p. is defined in the classical fashion. Let f = x1

and g = H, where H is the Hamiltom'an, then

ryj ul - **? 3H 8XJ dti
LX ,HJ T" T S -7T~ T-

dx1 8pi 3pi 3X1

3H + 3x
j dpi8j3. Spij. d t '

since the equations of motion yield

1 dX

Therefore

[xj,H] = xJ (55)

if xJ is independent of the p.'s so that

ri

Consider
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[p HJ = -4 M - -JL -M
3 9X1 3 pi 3pi 9X1

3P dp.
= — 1 x1 + 6.. —rr .

9X1 1J dt

dp.
Then [p^.H] = -gl (56)

•i °vi
if p. is independent of the x 's so that — 4 - = 0.

J 9X1

Thus if the p.'s and the x^s are independent, then Eqs. (55) and (56) are the

Poisson bracket equations of motion.

Now consider the fundamental Poisson brackets

i>\xj] , [Pi»Pj] > and lV >Pj] •

First

1
1

which

[x\xj;

is

i 9X1 3x
J - y,

3xK 3P

„ 3x
6ik 3 p

2 9X1

k 3pk

j

" 6jk
k

9xJ

ax1

3pk

£*1LA 'A J " 9p, " 3p.
I J

or [x^x^] = 0 if (1) the xlfs are independent of the pL's or (2) if |^ = 1 ^
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The next fundamental bracket is

1 J 3x K d p k 9P|< 9x
K

. 9p. 3p,
or [p.,p.] = 0 if (1) the P.'s are independent of the x 's or (2) if-5-7-=-54

i j i 9XJ 3xi

The third bracket is

9Pj
k

Then

if the p.'s and x7|s are independent.
Thus it can be seen that if the coordinates and canonical momenta are

independent, then the classical Poisson brackets are given by

[x\x j] = 0 ,

[P rPj] = 0 , and

(57)

Indeed this is the condition used in developing the Lagrange and Poisson brack-
ets. However, the tensor formalism may be used to investigate the requirements
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placed upon the metric coefficients for this condition of independence of momenta

and coordinates to hold.

pConsider [x ,p.] if the condition
dp. 3p.

4r =
xJ x

- holds. For this condition

• i 3p\- 9x'[x'.Pj] = ̂ - p - - i = 6id - £
pk 9x

or

= & ^ - • s ± r B S . . - & , .

= 0

Therefore if
3p. 9p,

9X
f , then x commutes with p.. What conditions must the

g..'s in the metric for the space satisfy in order to achieve this condition?

The canonical momenta are given by

p i = m g i j x

'where in general the g-.'s are functions of the x 's.Hence tha condition

required for the momenta to be independent of the coordinates is that the g..'s

be constants. For this condition to be met it is necessary and sufficient for

the Riemann curvature tensor formed from the g..'s to be identically zero. This

requires that the Gaussian and Einstein curvatures to be zero also since the

Riemann tensor is

^
9x6

[SY.a] [36,

}

[a6,A]
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the Einstein curvature is

R _ ayvR = AaR -9 V 9 9

and the Gaussian curvature is

K — — *o" K •

The vanishing of the curvature is necessary and sufficient for the existence
of a transformation to a coordinate system where the metric coefficients are con-
stants and therefore guarantees that the canonical transformation in classical
mechanics can be made. Then the conditions for

is the vanishing of the space curvature.
The equation R.. = pg.. is Einstein's gravitational equation at points where

matter is present. Therefore, when the Riemann curvature tensor vanishes, the
rectilinear geodesies of the manifolds corresponds to the trajectories of parti-
cles in the absence of a gravitational field. Consequently, if the manifold
with the quadratic form

(ds)2 = g - . d x W

is to account for nonrectilinear trajectories, the Riemann curvature tensor must
not vanish. Then the p. and the x1 will not be independent and the fundamental
Poisson brackets cannot be written as given by Eq. (57).

3Pi

In particular, the existence of a function p in R.. = pg.. such that -jr-4- =
„ . is possible and in that event [x\p.] = 0. Now the quantum Poisson x

xbrackets are required, through the correspondence principle, to correspond to the
classical Poisson brackets. Obviously in the event of a curved space it is pos-
sible that the xn's and p.'s commute thus removing support for the applicability
of Heisenberg's uncertainty principle. This, of course, cannot be taken as proof
that the uncertainty principle is applicable only in Euclidean spaces since the
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correspondence principle is a correspondence only. However, it does represent a

possible limit of applicability which we shall see again from a different point

of view.

In 1927 F. London derived quantum principles from Weyl's geometry. 'However,

the results of his work made it difficult to define length as a real number and

because of this Weyl later interpreted the mathematical formalism of his unified

theory as connected with transplanting a state vector of a quantum-theoretical

system.

Suppose that we consider an isolated, or ̂ -conservative, system so that dE z

0. Then, because of the second law dq >: 0 which is the principle of increasing

mechanical entropy. Then certainly (dq ) >. 0 and also, since

(dq0)2 = f (da)2 ,

then

f (da)2 > 0 .

However, if f < 0, then (da) < 0 since it is the product that must remain

greater than, or equal to, zero. In this case

dq° = AT / ( d a ) 2 .

But

d(da) = <J>kdxk(da)

and

which implies that the element of arc (da) is given by

(da) = (da)0 e k
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where (da)n is some initial vlaue of the element of arc.
n

Now suppose an equilibrium, or reversible, state is desired so that dq = 0.
0 2Thus the desired condition is a null trajectory of the (dq ) manifold. Then, if

f f 0, the desired condition is also a null trajectory of the (da) manifold.
This implies that

d(do) = 0

or

(da) = (da)Q ,

so that

e k = 1 ,

which is satisf ied only i f

/ <}>kdxk = 2^i n ,

where n is an integer. This is the quantum condition London introduced.
To illustrate how this condition arises from the dynamic approach, suppose

a description of a hydrogen atom is desired. A hydrogen atom is in a stable
condition and, if isolated, satisfies the conditions d£ = 0 and dq = 0. These
conditions along with f f 0 establish the quantization of the integral / 4>kdx .

To show how the Dynamic Theory removes from London's work the difficulty of
defining length as a real number, consider an elementary presentation of
London's. Suppose the field of a proton to be given by

1
* = °L_ . A. = 0 ; i f 0 .

Equality of forces for the simple case of circular motion requires that
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mv _ e

Thus the period is given by T = —— and the velocity by

v . - § -
/mr

/ <J>kdx = / <j)Qcdt = <1)QCT = 2-jn'n ,

so t h a t

Solving for the radius shows that the allowed radii are

a12mc2 '

By choosing

where h is Planck's constant, then the possible radii become

2 2 '
4TT e m

which are the Bohr radii
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The imaginary a presented the difficulty, in London's work, of defining

length as a real number. In the dynamic approach real distance, or length, may

be defined, and properly should

definition of the potentials is

be defined, and properly should be, in the (dq ) manifold. Recalling that the

.

it may easily be seen that if f < 0, then <j>. becomes imaginary as does the lenqth
2of arc in the (da) manifold since the length of arc is given by

a = / /(da)d .

However, the arc length in the (dq ) manifold is real since dq >. 0 by the

second law.

It should be noted that the conditions for quantization are not restricted

to dfi1 = 0, dq = 0 , and f < 0 as used here. Any set of conditions which results

in the final element of arc (do) being equal to the initial element of arc (do),,

results in quantum conditions. It is particularly significant to note that the

quantization involves only forces which may be described in terms of the "dis-

tance curvatuve" and does not involve forces describable by a vector curvature.

Thus interpreting the gauge potentials $. to be electromagnetic potentials pro-

vides quantum effects for electromagnetic forces. Interpreting the forces

describable by the vector curvature to be gravitational removes the possibility

of achieving quantum effects involving gravitational forces alone.

Here, again, is a distinction between curved and Euclidean manifolds,

though here it appears slightly different. The Dynamic Theory requires a quanti-

zation. However, this quantization oepends upon the existence of a gauge func-

tion and appropriate restrictive conditions. Thus a curved space may exhibit

quantum effects but only if the curvature is accompanied by a gauge function or

a distance curvature.

Thus the Dynamic Theory, through London's quantization, not only supports

the contention that "God does not play with dice all the time" but, further, may

supply the answers to two questions concerning quantum physics. The first
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question is, "What is waving in the wave function?" London showed that the wave
function is directly related to the element of the arc length in the sigma mani-
fold. Therefore the "waving" is the tendency of this element of arc length to
increase and decrease around a closed path. Using the calculus of complex varia-
bles, the quantum number becomes the order, or multiplicity of the zero of (da).

The second question is how gravitational effects may be quantized? Here
the answer becomes, "It can not." If we assume the validity of Einstein's
General Theory of Relativity, which is included within the scope of the Dynamic
Theory, in equating gravitational effects with the curvature of the space-time
manifold, then gravitational effects alone may not be quantized. However,
electromagnetic effects within a gravitational field may still be quantized.
However, the quantization will be affected by the vector curvature.

G. Summary
When this investigation was initiated, it was concluded that Einstein's

postulate of the constancy of the velocity of light could not be adopted since it
was felt that experimental evidence in electromagnetism alone did not justify
applying it as a limiting velocity to all types of forces. However, we find that
this is required by the Dynamic Theory which approaches physical phenomena from
a different way. The new viewpoint indeed supports Einstein's every contention
including his uneasiness concerning quantization and it does it in such a way
that it seems only the early successes of his theories kept Einstein himself from
coming to the same realization.

This is, of course, speculation, but it was Einstein who returned to very
fundamental concepts in order to establish a basis for his relativity theory.
He was also known to be aware of the tremendous strength of classical thermo-
dynamics since he wrote, "A theory is the more impressive the greater the sim-
plicity of its premises are, the more different kinds of things it relates, and
the more extended is its area of applicability. Therefore the deep impression
that classical thermodynamics made upon me. It is the only physical theory of
universal content concerning which I am convinced that, within the framework of
applicability of its basic concepts, it will never be overthrown." Thus it seems
only the fact that Caratheodory's statement of the second law, which is the key
to the development of the Dynamic Theory, did not make its appearance before the
relativistic theory had achieved such stupendous successes kept Einstein from
eventually investigating its possible extended application.
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The key points in the development of the Dynamic Theory seem to be the
recognition of the generality of the thermodynamic laws and their independence
upon the number or type of variables considered and the recognition that the
quadratic forms associated with the stability conditions form natural metrics
leading to a geometrical description of the dynamics of the system independent
of the variables used in the description.

There are numerous conclusions and implications that could be reiterated
here; however, only a few of the seemingly more significant ones will be dis-
cussed. The first one is the existence of an integrating factor for any system
describable by the first law, particularly an integrating factor independent of
the type of force considered. It is this fact which ultimately leads to a unique
limiting velocity for all forces. However, in speaking of the absolute velocity
for mechanical systems, care must be taken to point out that, as far as the three
laws are concerned, it does not represent an absolute barrier. Rather the laws
only state that, for a mechanical system with only three work terms representing
the work done by three spatial forces the absolute velocity represents an upper
and lower limit. Thus solutions with velocities greater than the speed of light
are also allowed. However, so long as the system is subjected to only these
three forces, then its velocity may never cross this barrier. This absolute bar-
rier effect may be expected to change if another force term representing an
additional dimension is found necessary.

The reduction in the number of fundamental laws or postulates is signifi-
cant. This together with the unifying effect of the three laws promises to
simplify the study of physical phenomena by founding the entire realm of physics
upon a common set of conceptualizations.

Perhaps the best way to summarize the unifying effect of the Dynamic Theory
is to consider a Venn diagram that depicts not only the overall realm of applica-
bility of the theorem, but indicates also the effects of different restrictions.
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Classical
Thermodynamics

E-Conservative

Oynaafc Theory

Einstein's
General Theory

Maxwell's

Electromagnetism

Quantum Effects

III. FIVE-DIMENSIONAL SYSTEMS
During the preceding development displaying the unifying effect of the

Dynamic Theory, there did not appear to be anything that approached a description
of nuclear effects. Of course quantum theorists may respond that the nuclear
effects lie within the realm of quantum theory. This, however, does not seem to
be a strong argument since current nuclear theory appears to depend upon a number

of ad hoc postulates.

If it is supposed that nuclear theory cannot be extracted from some aspect
of the preceding four-dimensional world view, then how might the Dynamic Theory
produce a foundation for nuclear theory? At this point there may appear to be
no obvious way. Therefore let us proceed on a different tack.
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Thus far we have constantly adhered to the policy of dividing systems into

two types: thermodynamic systems with only a work term of the p dV type and

mechanical systems with three mechanical, or spatial, work terms. Now the gen-

erality of the adopted laws places no restrictions upon the number or type of

variables used. Particularly there is no restriction coining from the laws them-

selves which says we cannot use four work terms, one the thermodynamic p dV term

and three mechanical F dq terms. Obviously p dV itself is just another F dq

type term with the pressure as the generalized force and the volume as the gen-

eralized displacement.

The rub comes in attempting to visualize a world description in five dimen-

sions. Many arguments may be envisioned which tend to imply only a four-

dimensional manifold is needed. The kinetic theory of gases relates the pressure

to the average velocities of the particles contained. Does that not imply that

thermodynamics ultimately rests on a four-dimensional manifold? Recall that the

system in the kinetic theory is basically in equilibrium.

Statistical thermodynamists may claim that thermodynamics is basically sta-

tistical in nature and is fundamentally tied to order and disorder and hence to

the four-dimensional world of quantum theory. But remember that the overall

system, to which the statistical approach is applicable, is a composite system

made up of many subsystems each in an equilibrium state.

Still there seems to be no substantial support for a five-dimensional world

from the point of view of current theories. This is to be expected though in

view of the difficulties experienced in the transition from the classical three-

dimensional world to the four-dimensional space-time of Einstein's theories.

Obviously had the extension of the universe been restricted on a priori grounds

to three-dimensional Euclidean space, Einstein's theory would have been rejected

on first principles. On the other hand as soon as we recognize that the funda-

mental continuum of the universe and its geometry cannot be posted a priori and

can only be disclosed to us from place to place by experiment and measurement, a

vast number of possibilities are thrown open. Among these the four-dimensional

space-time of relativity, with its varying degrees of non-Euclideanism, has found

a place. So also may the five-dimensional view of the Dynamic Theory be found

within the possibilities. Ultimate judgment upon its necessity, or applicabil-

ity, should rest upon a comparison of the theory's predictions with reality.
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A. Systems Near an Equilibrium State

The metric coefficients are made up of the second partial derivatives of the

system energy function and therefore if the system remains near an equilibrium

state, then the value of these derivatives evaluated at the equilibrium state may

be used as a first approximation for the metric coefficients. In this case the

geometry will be Euclidean and, from the preceding four-dimensional development,

the Euclidean manifold produced by applying the ̂ -conservative restriction was

Minkowski's space-time continuum of special relativity.

Therefore suppose we begin an investigation of the five-dimensional world

by staying very near an equilibrium state so as to simplify the description to a

five-dimensional generalization of Minkowski's space-time manifold.

1. Equations of Motion. Suppose that we consider some sort of system

requiring four work terms and for the moment not concern ourselves as to exactly

what this system might be. Thus for our system we will have thermodynamic as

well as mechanical variables and the first law becomes

6E = dU + Pdv - F dqa ; a = 1, 2, 3 .

Where the E, U, v and F are considered as specific quantities. That is, these

quantities are related to a unit of mass such as is customary in thermodynamics.

The specific volume is the reciprocal of the mass density y» using the mass

density instead of the specific volume the first law becomes

dE = dy - (P/Y2)dY - ̂  dqa ; a = 1, 2, 3

This law now requires that the system's specific energy u be a function of five

independent variables so that

V = U (5, q1, q2, q3, y) •

Thus the first law requires a five-dimensional manifold of specific entropy,

space, and mass density for a general system. Since the system under considera-

tion needs both thermodynamic and mechanical variables, we can no longer refer
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to the entropy as mechanical or thermodynamic; however, the limiting case where

the mass is held fixed must produce the mechanical entropy.

The procedure established by the Dynamic Theory is to take the stability

condition quadratic form as the metric for a stable system. Thus the coeffi-

cients of the metric become the second partial derivatives of the energy func-

tion. In order to simplify the metric, suppose for the present that we restrict

our system to be very near an equilibrium state so that we may consider the

second partial derivatives to be constants. This is in essence considering a

local Euclidean manifold; the symmetry of the geometric connections guarantees

that we may do this.

Since the metric coefficients are constants, a transformation may be found

such that the cross terms are zero. Then in this coordinate system and when

q°=-/ and q 4 ^ ,
'0 a0

the metric becomes

C2(dt)2 = (dq0)2 + dqadqa + (dq 4) 2 with a = 1, 2, 3 . (58)

If we again consider the restriction d# = 0 so that we are talking of an

^-conservative system for which the principle of increasing entropy holds, then

we have the variational principle given by

6 / /((is)2 = 0 . (59)

Solving Eq. (58) for dq and squaring we get

(dq0)2 = C2(dt)2 - dqadqa - (dq4)2 (60)

or

,0 2
; a'8 = U 2> 3' 4
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The entropy manifold given by Eq. (60) is a five-dimensional Minkowski-type

manifold with coordinates of space-time-mass. We may therefore follow the pro-

cedure Minkowski and Einstein used in the Special Theory of Relativity.

First, to avoid confusion, let us rename the coordinates as

x° s ct ; x1 = q1 , x2
 E q2 , x3

 E q3 , and x4 = q4 .

Then define the five-dimensional velocity vector as

u1 - ^ T T ; i = 0, 1, 2, 3, 4
dqJ

and define the five-dimensional acceleration vector as

kdxk

dc,°

Now the specific entropy is the arc length and the variational principle is

based upon the entropy. Therefore if we multiply the specific entropy by the

mass density, we have the entropy denrlty. The variational problem becomes

6 / v ^ W ) 2 = 6 / Y W ? = 0 . (61)

The Euler equations for this problem are

or
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3g

I. .ir
1k uV

,,,uVJ /CuV
= 0

Using the fact that g. .u7uJ = 1, the Euler equations become

(62)

where the F are force densities.
4

Obviously if we hold the mass density fixed, u = 0, then the volume inte-

gral of this equation becomes the force-mass-acceleration relationship of special

relativity. . Q

Now since f1 = -̂ 77 and A - ) = c2 - u V ; a = 1, 2, 3, 4 ,

then

6U1 6U1 dt

where v2 = uaua ; a = 1, 2, 33 4

Then

Y

2 \ /2 2
/c~ - v x-/cc - v^

- c
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where 6 = v/c with v the four-dimensional speed.

The force density equation may now be written as

2 fit' dt2
- 3

Consider

, ? dt "fit M / =• dt St , j dt

L/i . f J L/i _ ĝ  J t/x _ ĝ  J

but g-̂  = aQv , so that the force density equations may now be written as

a 1 6f y dx^l a0 u f 1
2 fit / 5- dt I 2 / dt

We may define y/(A - 3 ) = y as the effective mass density or "relativ-

istic" mass density; then

>\ - Fa _ 1 _£ f 1 dx^lF " "7 st [Y dt J
•/»"

by defining f1 = c 2A -^ (Fa) so that

F " fit dt

a/v"

a -
(63)

We see that this force density becomes Einstein's special relativistic force

density when v = 0, or for constant "rest mass." Thus the equations of motion,

Eq. (63), reduce to Einstein's special relativistic equations of motion when ̂ 0 .
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2. Energy Equation. Now for our system the restriction that

6E = 0 = du - -^ ay - Fa dx
a , a = 1, 2, 3 ,

Y

requires that

xadU = -J- dy + F dxa , a = 1, 2, 3 ,

Y a

or if —S- is considered as another generalized force density, then

dU = F dxa , a = 1, 2, 3, 4 .

Thus by integrating the expression for the system's specific energy change,

we should arrive at the Einstein energy equation if we hold u = 0. Therefore

we shall perform the integration using the force densities given by Eq. (63) to

get the system's energy, or

P0 ^0

iAI -
dt

But c232 = u V and c23B = ua ̂ ; therefore,

- 3
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Now 3 depends upon u a and not upon x or y; therefore

2

0 (i-e2)1'2

or

1/2
constant .

If the internal energy is considered as the system's energy when the spatial
velocities ua; a = 1, 2, 3 are taken as zero, then the internal energy density
given by

2
U = ^ + constant .

V 4 2

A

At the equilibrium condition where u is also zero the internal energy density is
then

2U = yc + constant .

By taking the constant of integration to be zero, this internal energy density
then corresponds to Einstein's "rest energy" where here the "rest energy" is in
terms of a four-dimensional "at rest" state.

If we make the usual approximation of allowing g « 1, then the system's
energy density is approximately given by

u = ycc + j y ^ + f —^ (Y) >
()

where here u = -£- is used. This displays the classical limit system energy
density for an ^-conservative system very near equilibrium.
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B. Systems With Non-Euclidean Manifold
Suppose now we relax the assumption that the system is very near an equili-

brium point so that the second partial derivatives are no longer constants but
are functions. This is essentially the same transition as Einstein made going
from his special to general theory; however, the logic of the transition is much
simpler here. The only change in the logic appears in the relaxation of the
assumption of nearness. There is, of course, a drastic increase in mathematical
difficulty since the metric components are no longer constants.

1. General Variational Principle. We shall consider a system, which may
be a charged plasma, that must be described by both thermodynamic and mechanical
variables. When written in terms of the mass density, the first law for this
system may be written as

6E = du - -|- dy - Fn dq
a , a = 1, 2. 3 ,

where the tilde denotes specific quantities.
Following the prescribed procedures of the Dynamic Theory we shall take the

stability condition quadratic form as the metric for our system. Thus the metric
coefficients will be given by the second partial derivatives

-, =—f^-r , i,j = 0, 1, 2, 3, 4 ,
1J 8q 9qJ

4 Ywhere q = -r1- . The metric may then be written as
a0

C2(dt)2 = h n n(dq
0) 2 + 2hn dq°dq

a + h fidq
adqP ,

"00

where a,3 = 1, 2, 3, 4.
Imposing the restriction that the system be ^-conservative, cfe = 0, results

in the principle of increasing entropy, so that

6 / Adgf = 0 .
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Thus in terms of the specific entropy the variational principle may be written as

6 / /fydq0)2 = 6 / Y = 0 .

Solving the metric given by Eq. (61) and squaring yields the expression

(dq0)2 = { T T M (C2(dt)2 + 2hQ [*] dt dq
a - h a 3 dq

adbB} , a,3 = 1, 2, 3, 4 ,
00

with

h00 00
'W

This metric in a five-dimensional manifold of space-time-mass may be rewritten as

(dq°)2 =
"00

(da)2 ,

where

(dq0)2 = q dx idx j , i ,j = 0, 1, 2, 3 , 4 ,

and

(da)2 E q dxn'dxj , i , j = 0, 1 , 2, 3, 4 ,

0 1 1 2 2 3 3 4
with x = c t , x E q x , x = q , x = q , and x = Y/a0- Thus we may write

(dq0)2 = q
..

= (£) (da)2 = (1) g^ dxfdxj (64)
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Having established the metrics in Eq. (64) in the manner prescribed by the
Dynamic Theory, the geometry must be Weyl geometry; defining the potential five-
vector as

. _ . alnf1/2 , „ ,
(j) = ± , — (65i

1 3x'

and the field tensor as

F. . E A. . - <f>. . (66)

then we may follow Weyl's procedure in his unified field theory to arrive at the
variational principle

6 / [R + \ A F.jF1"3' - \{\ - 12 $i$
1')] /-g dx5 = 0 , (67)

I ~ 1
where F.. = A F . . and S. = A" <)>..

1 J 1 J I 1 /̂

Varying the metric coefficients g.. in the variational principle (67) will
yield field equations of the Dynamic Theory which are extensions of Einstein's
General Theory of Relativity.

2. Gauge Function Field Equations. In order to isolate the field equa-
tions resulting from a gauge function from the field equations produced by a
vector curvature, let us consider a local Euclidean manifold for (da) .

Now the field tensor given by Eq. (66) has 25 components. We would like to
deterr.^ne the field equations for these components. The quickest, though not the
only, way is to consider the five dimensions to be

x° = 1 c t ; x a = x a , a = 1, 2, 3, 4 .

The field tensor is then defined to be
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0

i E l

i E 2

i E 3

1 V0

1 E1

0

"B3

h

i E2

B3

0

"Bl

~h

1 E3

h
0

"V3

i V 0

V l

V2

V3

0

Using Bianchi's identities

3 F. . 3 F.. 3 Fk-

3x ax1" 3xJ

and the various combinations of the indices 0, 1, 2, 3, 4 we obtain the field

equations

V - B = 0 , V x r + ̂ | | = 0 ,

The definition of the five-vector current density

^ E ^ J . (69)
3x 1

yields the equations

3V
and T. T ti-^.-fej 4 . (70)
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Equations (68) and (70) form a set of seven Maxwell-type equations which
obviously reduce to Maxwell's four equations if the mass density is held fixed.

The wave equations for the new field quantities may be derived using stan-

dard assumptions.

and

Therefore,

V0 " 2 ..2 " 2
C ol. C

For the vector field we have:

and

therefore

_ 4TT ^ , . a0 l 2 ^ . a «• y 3B>
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9VQ
But V • E = 4-rrp - aQ — - , so that

4 , 3 J 4 a 3 . fl
 3 V 0

a 4 i T p av
vo -TT2"T

C d t C

a n . d V x B - i f = ^ j - a o f . so that

c2 3 t 2 " ~ "̂ 4 ° SY C
3V

" ° 9Y

Now the wave equations for the usual vector and scalar potentials are

4TT
c
c

and

We may differentiate these with respect to the mass density and substitute them

into our wave equations and get

Jl w 1 32
 T/ % 8 J4 . 2 3 V0
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and

' "2" a. 2 " ~c"
 V J4 + aO 97 L2 3t " 30 37 J '

C dt

where rQ = VQ + aQ f ± and 7 - V - aQ f £ .

3. Interpretation of the Current Densities. For our system the conserva-

tion of charge becomes

3J.

3X1

so that

T = 0 , i = 0, 1, 2, 3, 4 ,

(72)

Thus we see that defining the current densities by Eq. (69) leads us to consider

the new component of current density J» which alters the conservation of charge

equation, Eq. (72).

Since Eq. (69) defining the current densities involves an interpretation

linking these equations to reality there seems to be no a priori reason for this

defining relationship. Defining the current density in this manner introduces

also the necessity of interpreting the new term J., which in turn requires chang-

ing our concept of conservation of charge to that of Eq. (72). While the exten-

sion to five dimensions may well require changing our concept of conservation of

charge, just as the step from three to four dimensions required a change in the

conservation of mass, it should be possible to appeal to experimentation to

determine this requirement.

Suppose we look at the defining relations

(73)
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Then Eq. (68) becomes

V • I - a -^ f X B - i I = - a $L0 3y ' c 3t 0 3y
and

, 3Vn
(74)

so that we may define the charge density as

an 3Vn

4?T7 <75»

and the current density as

I = -

Substituting Eqs. (75) and (76) into the remaining Eq. (74), we obtain

V • 1 + |£ = 0 , (77)

which is the classical conservation of charge equation.
Thus if we use the defining Eq. (69), we are faced with interpreting the new

term J^, which has its origin in the thermodynamic variables of our system. If,
however, we choose the defining relations (73), (75), and (76), we may keep our
concept of conservation of charge but this requires us, by Eqs. (75) and (76) to
consider current densities to have their origin in the thermodynamics of our
system.

4. Additional Developments of the Five-Dimensional Field
a. Energy-Momentum Tensor

If we follow the approach of relativistic electrodynamics, we may define the
tensor {T} in terms of the field tensor {F} according to
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Tjk = 4

Recall that the five-dimensional field tensor is given by

{F} =,

0

"B3

B2

-V,

B,

0

-B

-V,

1

1 E,

-B,

-V-,

Using the field tensor to calculate the components of the energy-momentum

tensor we find that the components are given by

T0a " £ B ) o + VQVa] . a - 1, 2. 3 .

4a 4TT

and

Ta3 = 47 {EaE3 ' VaVg " J V0 "

where a,B = 1, 2, 3.
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The field energy density may be defined by

c = .gi [£ . f + B • B + V • V + V*] ,

and the electrical Poynting vector may be defined by

Now the electrical Poynting vector represents the outward flow of the elec-
tromagnetic field energy through a surface. Thus if we take the total vector,
whose components are TQ , to be the total flow of energy, then the vector with
components -^- VQV must be the outward flow of energy due to changes of the
mass density within the surface. Therefore let us designate the mass energy
vector as

so that the total energy vector is

• v

whose components are

The Dynamic stress tensor may be defined as the three-dimensional tensor
whose elements are
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The Maxwell stress tensor is defined in electrodynamics as the three-dimensional
tensor with elements

T = T T f£ E + B B -4-6 TE2 + B27)
ap 4IT a 3 a 3 2 ap

Thus, in terms of the Maxwell stress tensor, the Dynamic stress tensor may be
written as

D M 1 1 0 0

i = T - —- {V V - — 6 [V - V ]}

Then in terms of the above defined quantities

m =/ - j: S {TD} ^ [V0E + (V x B)]

^ [V0E + (V x B)] gi [V2 + B
2 - E 2 - V 2],

Suppose we calculate the trace of the energy-momentum tensor:

t -TT) = T = T ^ + f + — TV^ + B^ - E^ - V^l

= 4^ [B2 + V2] + T ^

= 4^ [B2 + V2] + -± [E2 + B2 - V2 - | (E2 + B 2 + V2 - V2)]

= 4T [2" B • 2 E + 2 V " 2 V
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b. Force Density Vector

The force density vector may be defined in terms of the divergence of the

energy-momentum tensor. Therefore suppose we calculate the five-dimensional

divergence of the tensor {T}, or

ik 1 3 1
3xk = ^ 9 ? CFJ*Fjlk + T 6J*FfltFet] '

Because of the antisymmetry of F.k> the first term may be written as

3xk

By interchanging the indices k and l

k ^ Qk = S 9k ?
3XK ZK 'd>C lK d 3X

Using the Bianchi identity

. 3F.. 3F
f + —=}• + —

1 3 F ^ 3Fk
= ~? * k + ?'d 3XK 3X*

3x 3xJ

the terms contained within the parentheses may be written as

_3iiJLF - . i f i k
3xk £k 2 3XJ3xk £k 2 3XJ ^k 4 3X1

Substituting this back into the expression for the divergence, the last term

will be cancelled because &, k, st and t are dummy indices. Then the divergence

becomes

3X
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By interchanging the indices k and I on the right-hand side we obtain

1

TT Fi

The Dynamic force density five-vector may now be defined as

K = Div5 {T} .

Therefore the components of K are given by

v - -1

But the five-vector current density is given by

9Fk£ _ -4TT ,

Thus the components of the five-vector force density become

Now, since X = ( i c p , 1, JA), then

P[E + | ( u x B)]

and
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where J = pu. These then are the components of the force density five-vector
resulting from a gauge field in the Dynamic Theory. These components reduce to
the four components of the Lorentz force density should VQ = 7 = 0.

With the interpretation that the four force density components with sub-
script 1 through 4 are the force density vectors which appear in the first law
as F , then the force density vector provides the connection between the first
law and the geometry of the sigma manifold discussed in section II.D.2. Thus the
existence of the vector field <j>.j is also demanded by the Dynamic Theory and need
not exist as a separate assumption.

c. Equation of Energy Flow
Consider the zeroth component of the Dynamic force density five-vector

0
 9x

k 3x° 9x
a ax4

Then

i t< -i _ dc, 1 Ot , 1 a\c. • V)

or

J4«0J 3TktT " c 3xa T VH T4

or, since x 4 = Y/aQ,

a ao c a(E - v)
-

Rearranging the terms
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and separating out the electrical Poynting vector leads to

This then is the five-dimensional energy flow equation.

d. Momentum Conservation
The expression for the conservation of momentum may be obtained from the

space portion of the force density five-vector

3T . 3T n 3T _ 3T ,< * a 0 M j)£+ _ M + _j)£ f O . l i 2 . 3 .
3x 9xu 3xp 3x

9T
But —-| is the three-dimensional divergence of the Dynamic stress tensor {T },

3xp

therefore

an a - - -

If we consider a volume in which all the material is contained and outside
of which the field vanishes, then integrating over this volume yields

/ {K + - i | f - 7 ? - ^ [V0E + (V x B)]} dv = / div {T
D} dv .

v c y v

The integral of 1< gives the total force (i.e.. the time derivative of the mech-
anical momentum p~ less the vector (yva/A - 3 ).

Now define the vector
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Then define

/ 9 da H G ,
v

so that

^ (p + G) = J div {TD} dv .

Using the divergence theorem the volume integral may be converted to a sur-
face integral so that

Hf (P + G) = / {TD} • n da .

If the field vanishes outside of V, it must do so also on the boundary sur-
face s, hence

-£ (p + G) = 0 .

Therefore it is not the mechanical momentum f> but the quantity F + £• which
is conserved. Therefore we must interpret G as the momentum of the field and

- _ _S °0 t r 3
c

9 = 4 " 2f / {9? tV ' E + (V x B)] + ̂ = } dt
c A2

as the momentum density of the field.

e. Gauge Field Pressure
The Dynamic stress tensor is given by

B« Be" V e - 7 6«3 E' + B2 + vo
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Now separate the three-dimensional Dynamic stress tensor into a traceless
and an isotropic tensor.

TSa = 4? <EaE3 + BaB3 " VaV3 " \ 6a3 ^ + B* + V0 " V^}

* i£ {EaE3 + BaB3 ' V a V " £ 6«B ̂ + ̂  + V0 " ^

' if tEaE3 + BaB3 " VaV3] " <!><sfo* ̂  + B' " ^

where

{EaE3 + BaB3 " VaV3 " ^

and

3 Vo -

Now

V2 - (E2 + B2 - V2)] = 0

and

3 V0 -
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Consider the definition

i t f i » £ T ' »- (o3-)6 o [E
2 + B2 + 3V2 - V2]3 ct$ a3 X24ir a3 0 J

Then

t = - (^) [E2 + B2 + 3V2 - V2]

and

0 0

t 0

0 t

The isotropic part of the stress tensor is usually called the "pressure."

Therefore define

3p = t

in accordance with customary notation, so that

1 \ 2 2 2 2-\

With the exception of the factor of 3 this reduces to the "radiation pres-

sure" for an electromagnetic field when Y - VQ = 0.

Note that this pressure may be zero since it is the sum and difference of

squares, or p = 0, when

V2 = E 2 + B 2 + 3VQ .

This may prove to be an important point when considering boundary conditions

in cosmology or the study of elementary particles.
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f. Self Energy of a Charged Particle
In classical electromagnetic theory the self energy of a charged particle is

discussed but its value has not been established. This is because the expression
for the self energy is a function of the radius associated with the physical
extent of the charge distribution. Thus the radius of the charged particle must
be known before the self energy can be determined.

Currently the self energy of a charged particle is equated with the energy
associated with its inertia! mass by

E = me2 .

Then the radius associated with this energy is taken as the "radius" of the par-
ticle. There is no intention that this radius be the physical radius of the
particle though it compares favorably with experimental values.

The question arises here of whether or not the Dynamic Theory, with the
five-dimensional viewpoint, can theoretically predict the self energy and/or the
radius of the physical extent of the mass or charge distribution of the particle.

One of the beneficial aspects of the generalization of physical theory as
done in the Dynamic Theory is the possibility of using conceptualizations and
procedures developed in one branch of physics in another branch. This aspect of
the theory appears applicable here. The self energy of a charged particle is the
notion that a certain amount of energy be associated with the existence of the
particle and its charge. This notion may be associated with the notion of free
energy used in thermodynamics, for, if the self energy of the charged particle
is its free energy, then it represents the energy which may be "freed" upon con-
verting the particle into energy. Conversely this would represent the energy
required tc assemble the charged particle.

With the conceptualization of free energy the second law provides the condi-
tion for a stable equilibrium state, namely that a charged particle in an equi-
librium state must exist at a minimum of its free energy. Thus if the self
energy, or free energy, of a charged particle is sought, then minimizing its free
energy will yield the desired result.

Before applying the principle of minimum free energy to a charged particle
in a five-dimensional space, suppose that the principle is applied in a four-
dimensional manifold first. This procedure will hopefully provide some validity
to the method or may point out some difficulty with it.
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The free energy was defined, in analogy with the thermodynamic case, as

G = U - $S - xaFa , (79)

where a depends upon the applicable work terms which here will be taken as the
three spatial dimensions, so that a = 1, 2, 3. The first law is given by

cfe = du - Fadx
a (80)

while the second law yields

<j>ds = du - F dxa (81)

for a quasi-static, reversible process. Therefore the differential change in the
system energy is

du - <j>ds + F dxa . (82)

Differentiating Eq. (79) gives the differential change in the free energy as

dG = du - <f>ds - Sdty - F dxa - xadF . (83)

Substituting (82) into (83) yields

dG = -5d<(> - xadFa . (84)

The force in Eq. (84) is considered to be the Lorentz force

Fa - q [I + (v x B)] a

so that Eq. (84) becomes
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dG = -Sd<t> - xad {q(f + (v x B))a} . (85)

If we wish to consider the change in free energy with respect to a change in
the charge at a constant velocity, we find that, since <{> is a function of
velocity only, d(j> = 0. The specification of constant velocity stems from the
desire to obtain the self energy of a charged particle; therefore the particle
should be considered as sitting still, so that it will have no kinetic energy.
The differential change of free energy for a stationary particle is then

dG = -Sd<J> - xad {q[I + (7 x

- xa {dq [I + (v x B)]a + qd [E + (v x B ) y ,

so that for <j> = constant

(f(̂  = -»'[I^>Wa-.' ,(* I *\ - (86)

But E + (7 x IT) is independent of the charge q and therefore

{^\ = " x a [I + (7 x B)] a . (87)

If the charge is not in motion, then

<!!>• = - * a E « (88)

since 7 = 0 . Further, if the field f is due to the charged particle, then radial
symmetry yields

E - -^^ (89)
4
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for points external to the negative charge distribution. Substituting (89) into
(88) results in

re e . (90)

Thus we may integrate over the charge q at the radius R to get

so that the free energy is given by

Here the use of the (-e) in the limits of integration corresponds to the notion
of free energy as the energy required to bring the charge to the radius R.

Thjs the free energy given by Eq. (91), and hence the adopted method,
differs from the classical expression for the self energy of a charged particle
by the constant 6Q only. From Eq. (91) it may be seen that the value for the
free energy depends upon the physical radius R by an inverse relation. This
functional relationship obviously will not yield a finite value of R that mini-
mizes the free energy. Therefore we are no better off than we were by using
the classical theory.

The question of interest though is whether or not the five-dimensional view-
point will shed a new light on the self energy. By the preceding development's
arriving at an expression consistent with the classical self energy of a charged
particle, a measure of validity has been obtained for using the method.

Suppose now we apply the preceding procedure from a five-dimensional point
of view. In a five-dimensional system the forces are given by

+ (v x B)] a + -f Va , a = 1, 2, 3 ,
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and

Thus

xa d{q[I + (7 x B)] a + ^ } + x
4 d{q[vQ - *-±a + ^ } + x d{q[vQ - *-±

d(J.V )
xa dq[¥ + (7 x B)] a + x

a — 5 _ S _ (93)

+ xa qd[f + (7 x B)]a+ x* dq[VQ - *-£± ] + x

Then for a stationary particle and charge so that 7 = 0 ,

4
Again suppose that the electric field is due to a spherically symmetric charge
distribution so that

u - -

which is independent of q. Thus Eq. (94) becomes

It is not obvious whether or not J4, Y and VQ are independent of q when the
seven Maxwell equations are first considered. However, with the tentative inter-
pretation that these quantities are related with nuclear forces we can suppose
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that they are independent of the charge q and

,3(5, _ e 4 v

Since x = y/a^ Eq. (96) becomes

(97)

where y is the mass density of the particle. Integrating Eq. (97) at the radius
R

G -e -e yvn

or

(98)

since VQ was assumed to be independent of q.
The charge q is external to the charged particle and therefore should be

independent of the mass dt "ity so that the free energy becomes

For a charged particle the mass density will depend upon the physical extent
of the particle and hence upon R. The field quantity VQ is supposed to be re-
lated to nuclear field properties and may also depend upon R. Thus there should
be a finite radius of physical extent R which will minimize the free energy given
by Eq. (99).
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If the functional dependence of VQ and y upon the radius R were known, then
a minimum of the free energy would be given by determining the radius RQ for
which

Before Eq. (100) may be used to find the radius RQ which minimizes the free
energy, an appeal to the seven Maxwell equations and/or a model of the particle
must be made so that the dependence of the product YVQ upon R can be determined.

Suppose a simple model of the particle is made in order to further investi-
gate the existence of a finite radius R« which will minimize the free energy.
If a uniform mass distribution in a spherical shape is considered, then

and Eq. (99) becomes

3emVn
(101)

If it is also supposed that VQ has a (1/R) dependence, then

(102)

Differentiating Eq. (102) with respect to R yields

(f) =0=7^-7^ (103)
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or

e _ 12mk
e° aoRo

Then RQ = 3/(12mkeo)/(eao) is the radius which would minimize the free energy
for this model.

The minimum value of the free energy would then be given by

min
3mkeQ

e aO RO

G0

ea
G0

<- V + Go

or

Gmin = G0 " 0̂ 0
(104)

Though the self energy given by Eq. (104) is based upon an unverified model,
it does represent a demonstration that the Dynamic Theory can produce a predicted
value of self energy for a charged particle. It remains then to determine a
realistic model of the particle or another method of determining the functional
dependence of yVQ upon the radius R plus determining the value of the universal
constant aQ. Once this has been done, then the self energy, or free energy, may
be specified.
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C. Quantization in Five Dimensions

The preceding development provides a tremendous wealth of mathematical

abstractions. However, there seems within it no readily apparent method of

interpreting the new fields- If there appears to be no physical entity which may

be associated with the new field quantities, then the development will have gone

for naught. On the other hand, with the notion of nuclear fields in mind it

seems that if the new field quantities are included in a quantized picture, then

perhaps the relation to nuclear fields may be made.

In the following the requirement for quantization is provided by appropriate

restrictions upon a system whose description is taken from the Dynamic Theory.

However, the use of the five-dimensional Dirac equation has not yet been shown to

result from the Dynamic Theory. Schrodinger's quantum mechanics may be obtained

using London's work, but I am not aware of a procedure to arrive logically at

Dirac's equation even though I feel that the method exists. As it now stands,

the use of the generalized Dirac equation must be accepted as an independent

fundamental assumption.

1. Quantization. The system under consideration now is a five-dimensional

system with arc element

(dq0)2 = f(da)2

Now since our system is an ̂ -conservative, di? = 0, system the principle of

increasing entropy requires that (

quantization conditions results in

0 2 2
increasing entropy requires that (dq ) > 0 so that f(da) >. 0. Introducing the

/ <j>. dx J = 2irin , j = 0 , 1 , 2 , 3 , 4 ,
J

I/O

where * E ± i M J L and x° = ct , x1 E q1, x2 E q2, x3 E q3, x4 E - 1 .
J 9xJ a0

o
If we restrict ourselves to a (do) space which is the local Euclidean

2
space, then (da) is the five-dimensional Minkowski-type manifold; using London's
work we would produce a five-dimensional quantum dynamical system.
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2. Five-Dimensional Hamiitonian. We previously showed that the principle
of increasing entropy resulted in

as the variational principle for a local Euclidean manifold. Since multiplica-
tion by a constant does not change the problem we may take our variational
problem to be

6 / Y c2 4dq°)2 « 0 .

• J — " ADefining the velocity vector as uJ = ̂ ^ and the momentum as p. = -Zj = Y giku ,
dq J 8u J

i kwhere we have used the fact that g.oiJii = 1, then we may form the contravariant
momentum as

P j - g j kPk - g j k Y g k £ u* ,

so that

j P
j - (Y gJtuJ) (g j k Y gk£ A - Y2

u a j k «

• Y (Y g i k " Ju k )

= Y2C2 , (105)

since YC = Y 9i k
u u • Equation (105) is the five-dimensional "momentum-energy"

equation.
We may now follow London's procedure to obtain our wave function for the

five-dimensional system. However, a quicker way to investigate the effect of
the Dynamic Theory upon quantum mechanics would seem to be that of adopting

112



Dirac's equation in a five-dimensional form and following a development analogous
to standard four-dimensional relativistic quantum mechanics. With this in mind,
then we shall adopt the form

h = i (5, -Xr + 6L -\ + a, - K + a. - K ) - g (106)
1 3X1 C 3x^ J 3xJ * 3x*

to be the five-dimensional specific Hamiltonian operator. The partial derivative
operators are specific operators and hence are dimeisionless 5n natural units.
In Eq. (106) the S's and 3 do not involve derivatives and must be Hermitian in
order that h be Hermitian.

By taking the four partial derivatives in Eq. (106) as the four-vector
specific momentum operator we may write

h = - (5 • p" + g) • (107)

3. Five-Dimensional Dirac Equation. If we take p |> = h| > and require
that the 2's and B are chosen such that solutions of this equation are also solu-
tions of Eq. (107), we find the restrictions imposed upon the choice of the 3's
and 3 to be:

(5 • p) 2 - p2 ,

and

of + 6a • 0 , (108)

where natural units, c = 1, are used.

A set of 8 x 8 matrices satisfying the requirements of Eq. (108) is

„ /B 0\ /0 a.\ . /A 0\
3 - ( ).«,•=( 1 ] i = 1, 2, 3 , a. = ( J , (109)

\Q 3' n Va, 0/ 4 \0 A/
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where

rl 0 \ #0 a
3=1 I , a- = / ' l i = 1, 2, 3 , and A =

/ I 0 \ #0 a. \
= ( J , a =1 Ml = 1,

\0 - 1 / 1 \a. 0/
U 0/

and

\o i / l \\ o/ 2 Vi o' 3 Vo - i /

Then the five-dimensional Dirac equation may be taken to be

i gf * (x) = (i 5 • V - g) y (x) , (110)

where the V i s a four-dimensional operator. By de f in ing

Y° = 6 ; = 1, 2, 3, 4) , (111)

then Eq. (110) may be writ ten as

(i 9-YJ + 1) ¥ (x) « 0 . (112)

By virtue of the properties of the S's and 3 plus the fact that

1 for j = k = 0
-1 for j = k = 1, 2, 3, 4 ,
0 for j f k

the anticommutator of the y-matrices must satisfy
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4. "Lorentz" Covariance. Under a five-dimensional Lorentz transformation

x J ' = Ljj x k

we shall suppose each component of the wave function ¥ (x) transforms into a
linear combination of all four components:

v (x) If r (x'j = s ¥ (x) , (ii3)

where s is a Dirac spinor satisfying

S'1 Y
J 5 = LJ yk • (114)

By using an infinitesimal Lorentz transformation given by

ii - 4 + deek

where ej! are a set of 16 numbers, then s (e) may be shown to be given by

e
s (9) = exp (T / de) , (115)

where the matrix T is given by

Equations (113), (114), and (115) suffice to guarantee the Lorentz covari-
ance of the five-dimensional Dirac equation.

Following standard quantum mechanical procedure we shall adopt the proba-
bility current density to be

jk (x) = ? (x) yk ¥ (x)
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with the requirements that

1/
j transforms as a contravariant vector, and

j must be real .

5. Spin. In the three-dimensional space the angular momentum is given by
the vector L as the cross product of the coordinates and momenta. We shall then
define the angular four-momentum to be the four-dimensional cross product

L =

4
where x is the mass density and

Eijk

0 if any two indices are alike
1 for even permutation to align indices in
ascending order

-1 for odd permutation to align indices in
ascending order .

Then the commutator of the components of the angular four-momentum with the
specific Hamiltonian is not zero; for instance

[£3,h] = iy y P - iy Y P + iy Y P - i y V p + iy y P - iy Y P •

Now suppose there exists a four-spin vector £ such that the sum of the
angular four-momentum and the four-spin vector commutes with the specific
Hamiltonian; then i f we define a new three-spin vector XT given by the components

1 4 1 1 4 2 1 4 3 —
u. E i iy y , u9 = 4 iy Y » and u, H -5- iy y , and take the usual spin vector s

1 2 3 1 3 1 1 1 2
given by S i = -y iy y , s9 = •§• iy Y » and s, = 4 iy y , the components of the
four-spin vector may be shown to be
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Sl = sl - U2 - U3

S 3 =

and

**4 = si " S2 + S3

In analogy with standard relativistic quantum mechanics the eigenvalues of
the four-spin components can be shown to be ± /3/4 . It may also be shown that
the set of observables ?, h, and "S • f, where P" is the four-momentum and "S is
the four-spin, form a complete set of corimuting observables.

6. Dirac Equation with Fields. In analogy with relativistic quantum
mechanics we take the five-dimensional Dirac equation to be

C(i3j - <frd) Y
J + 1] Y = 0 , (116)

where <b. is five-vector potential. By operating on the left with [(i"3- - §.)y*
^ i k J J

- 1] and separating y Y into symmetric and antisymmetric parts as

Y V = f {y\Yk> + | [Y j .Y k ] = g^ + cr111 , (117)

then Eq. (116) becomes

J' jk » 0. (118)

Separating 3.$t into symmetric and antisymmetric parts as

3* = 1
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and defining the field tensor as

F jk = 9j*k " V j

Eq. (118) becomes

[ (13J - 0>j - •*) - 1 - \ TFjko
J'k] = 0 (119)

Now since

-X

-X

-X

- X

j
where a = nJ for j =

0

" E l

h

0

2is3

- 2 i S
2

- n 1

1, 2, 3, and

-2is

0

2is

-n 2

"B2

-V,

-B,

2ia2

-Zie1

-n

"B3

n

0

plus recal l ing the seven Maxwell-type equations

V • B = 0 , " a

V x I1 M
c 3 t " C

9V
9Y '
U . V x V + an If- - 0,
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8V

then Eq. (119) may be written as

C(19i - *,)(13
k - 4>k) - 1 + 2B • 7 - iE~ • x - iVnx

4 - in • V] ? = 0 (121)

and thus becomes the Dirac equation with fields I", B~, VQ, and Y.
Suppose we consider a system without an electric charge so that p = 7 = 0,

then by Eq. (120) we still have

•̂r = - a o ^ ? and * x F - £ ! f = - a o f (122)

and therefore there will still be a magnetic moment.
This then sets up an argument which may provide an interpretation of the new

field quantities. Suppose that an electron, because of its small amount of mass
when compared to a proton or neutron, does not involve sufficient mass density
change to warrant using the fifth dimension. Then the magnetic moment of the
electron should be given accurately by the relativistic Dirac equation.

But suppose that nucleons (i.e., protons and neutrons) have sufficient mass
density change to warrant using the fifth dimension provided by the dynamic
theory. Then the nucleons involve the new field components and we should expect
a different value for the magnetic moment of a proton. For the neutron, which
has no electric charge, we find a magnetic moment due to these new field com-
ponents.

Now if we assume that the difference between the observed values of the
magnetic moments of the proton and the neutron and the predicted values of
relativistic quantum theory are due to the strong interaction, or nuclear forces,
then we must connect the new field quantities with the nuclear field quantities.

7. Allowed Fundamental Spin States. In the five-dimensional quantization
of the space-time-mass manifold three spin vectors appear. One of these is the
familiar three-component spin vector of relativistic quantum mechanics. The
second of the three is a new three-component spin vector while the remaining one
is a four-component spin vector.
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Using the theorem:

2 2
If a satisfies a = a where a is a number, then the eigen-
values of a are ±a.

Then it is not difficult to show that the component eigenvalues are

sa = ± \ , ua = ± \ , Sj = | , a = 1, 2, 3 and j = 1, 2, 3, 4 .

If, in analogy with the eigenvalues for the total angular momentum, we write

then the possible eigenvalues becomes

_ + 1 „ _ + 1 c _ 1 3
sa " ~ 2 ' Ua " - 2 ' j " 1 » " 2 '

However, the following relations restrict the number of possible combina-
tions of these eigenvalues.

Sl - sl " U2 " U3 '

S3 = S3 + ul + U2 »

and

S 4 = sx - s 2 + s3 .

The question asked now is, how many combinations of the above eigenvalues
are allowed?
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For S. = i the combination s, B - \ and u9 = i is impossible.

For Sj = 4 the combination s 2 = - j and Uj = - -g- is impossible.

For So = j the combination s, - - A and u^ = - -̂  is impossible.

For S. = A the combination s, = - A and s<i~ -^ 1S impossible.

For Sj = - 4 only one combination is possible: s, = - A, u2 = -p, and

For Sp = - -| only one combination is possible: ep = ~ T 5 ul = " 2' and

3 1 1
For S3 = - f only one combination is possible: s3 = - j, Uj = - |, and

U2 a - 2'

3 1 1
For S. = - j only one combination is possible: s. - - -p-, a« = -o. and

S3 = " f
Now because S4 is a combination of the first terms of each of the components

S,, S9» and S,» not all of the above listed 16 combinations are possible,it JJ

For S. = -s- the following combinations of (s,, s9, s,; u,, u9, u-,) are
possible.

UJ \£* Y' ~2 ' " 2"' "2' " V 1 ~ 2 ~ 3 ~ "2"

[21 ( I I I . ! II) for S = S - S - I

(31 (i .1 .1.1 i .1) f0r S = S = S - I
\3j \n9 O9 o » 9* 9> 0' 'ur ^1 ^9 ^ 9

(4) (- i, - i, 4- ; i, - i, - i) for S. = S9 = S, = i
b C . C . C c . c . l c . O c . *
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The remaining combinations are:

(5) (- j, j* " 1 ' " 2' ' j' " "2") for S4 = S3 s " 2"' Sl = S? = 2"

(6) (~ 2"> •£» ~ 2" » 2"* ̂ » 2"' ^or ^4 = *̂l a ~ 2f' **2 = **3 = If

(/) v̂ s " 2"» ~ 2" ' ~ 2"* " ~2* ~2' 2 = 3 = ~ 2T' 1 = 4 ~ ~2.

{") \~ 2"> ~ p*» ~2 ' ~ "7* ~Z* ~T) 1 ~ 3 = ~ 2"' 2 ~ 4 = ~2. '

Thus there is an octet of possible combinations. There are also some
obvious symmetries in these combinations. An aid in seeing these symmetries is
the vector defined as T where

tj = -(u2 + u3) ; t2 = Uj ~ u3 ; t3 E u2 + u3

Then for each of the eight combinations above we find (t,, t2> t3) given by

(1) t = (0, 0, 0) (5) t = (1. 0, -1)

(2) t = (0, 0, 0) (6) t = (-1, 0, 1)

(3) t = (0, 1, 1) (7) T= (0, -1, -1)

(4) 1 = (1, 1, 0) (8) t = (-1, -1, 0)

Thus the eight combinations correspond to four distinct T vectors which
carry a ± sign. Or

tj = (0, 0, 0) ; t2 = (0, 1, 1) ; t3 = (1, 1, 0) ; T 4 * (1, 0, -1)

For + t we have:

tj => (e;u) s (p p 2 ' " 1* 7' " 2^
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t2 => (s;u) = (|, - \, - \ ; \, \, - \)

t => /T. 77) = / i _ I I . I . I . I)
^2 \s»u) \ o* 2' 2 ' 2' 2' 2

r.TJi = f_ I I 1 . .1 .1 h>>u; \~ 2» 2' 2 ' 2' 2" 2

For - t we have:

- t => G-u) = ( l l l - L I h

i _1 1 1 1 ,
r. - 2» " 2 ; " 2 ' " 2' 2J

1 1 1 1 1 1>

-t => G-u) - | i i I . I I I)

Now by defining the vectors:

- _ ,1 1 K T - _ , 1 1 U
~ 2*' ~2' ~2 ' = 2"' 2"' ~ ?

. 7T _ /I 1 IN

* = *'2~» 2"' ~ 2"

We may wr i t e

t j => (s{U) = (i";F) -tj => (7;U) = (?;-F)

t 2 => (siti) = (c";d") - t 2 => (s;u) = (c";-d")

- t 3 =>

=> (7;if) = (F;-F) - t 4 =>
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The octet is then made up of the combinations:

(i";±F) ; (c;±d) ; (b;±?) ; (-d;±cf) .

The appearance of octets for basic quantum numbers is reminiscent of elemen-
tary particle theory. Thus the Dynamic Theory seems to give promise to the hope
of tying elementary particle to fundamental principles in a new way.

D. Mass Conservation Hydrodynamic Systems
The equation of motion for the fifth dimension, mass density, appears as a

generalization of the principle of the conservation of mass. Further in classi-
cal hydrodynamic systems five equations in five unknowns are used. It seems
logical then to expect the five equations of motion appearing in the five-
dimensional dynamic theory to be generalizations of the classical equations. An
added incentive to investigate the possibilities of this generalization is gained
when electromagnetically contained ionized plasmas with mass conversion are con-
sidered. For if the five equations are generalizations of the classical hydro-
dynamic equations, then the use of the five-dimensional fields allowing mass
conversion should provide an entirely new viewpoint of a controlled fusion reac-
tor.

Since it is suspected that the five equations of motion resulting from the
application of the principle of increasing entropy to a thermo-mechanical system
are generalizations of the classical equations, it then becomes necessary to show
that this is indeed the case. This seems possible by restricting the system so
that it corresponds to the usual system considered.

First, from the dynamic approach, the manifold required for a description of
the system is the five-dimensional manifold of space, time, and mass density.
Within this manifold the continuity equation no longer holds for the general
system. We can,however, restrict our system by first requiring that the system
remain on a hypersurface within the five-dimensional manifold. For a system so
restricted, any of the five dimensions may be considered as functions of the
other four. In particular, since by custom in hydrodynamics the mass density is
considered to be a function of space and time, we may consider the mass density
to be the variable chosen to be function of the others or

Y = y(x°. x1, x2, x3)
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so that

dy = dxa

9x

Such a system will be constrained to be on a hypersurface embedded within
the five-dimensional manifold of space, time, and mass density as shown and upon
this hypersurface will be described in a four-dimensional manifold of space and
time.

1. Surface Geometry

Y

If we further restrict our system by requiring that the total derivative of
the mass density to be zero or

dy = 0 = - & dx
dxa

a

then

ax
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or

+ grad

which is the usual continuity equation. Thus by restricting the system to this
particular hypersurface we have constrained the system to obey the continuity
equation as does a usual hydrodynamic system.

Not only does this restriction place our system within the space-time mani-
fold where we may compare the resulting four equations of motion with the
equations of motion in relativistic theories but, since the seven gauge field
equations must hold in the five-dimensional manifold they must also hold on the
hypersurface. This allows the new field quantities to be expressed as functions
of the r, B fields and the partial derivatives of the mass densities. Further,
it appears that the additional B field equations may be used to determine a
dependence of the F and H fields upon the mass density and/or its changes.

Then by comparing the equations of motion obtained here for the system
restricted to the mass conservation hypersurface with the relativistic Navier-
Stokes equations it should be possible to identify the viscous coefficients with
the field quantities and perhaps see how the viscosity depends upon these fields
as I feel it does.

Since we have restricted the system to a hypersurface where the mass density
is a function of space and time, then the surface is defined by five equations
of the type

x1 = x1 (u°, u1, u2, u3) . (123)

Further, since x = y/aQ and x = x (x , x , x , x ), then Eq. (123) becomes

x° = u° , x1 = u1 , x2 = u2 , x3 = u3 (124)

and

x4 = f(u°, u1. u2, u3)
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0 1 ? 3
Since u , u , u , and u are independent variables, the locus defined by

Eq. (123) is four-dimensional, and these equations give the coordinates x1 of a

point on the hypersurface when u , u , u and u are assigned particular values.

This point of view leads one to consider the surface as a four-dimensional mani-

fold S embedded in a five-dimensional enveloping space. We can also study sur-

faces without reference to the surrounding space, and consider parameters u , u ,
2 3u , and u as coordinates of points in the surface.

If we assign to u in (123) some fixed value u = UQ, we obtain a three-

dimensional manifold

x1 = x^uj, u1, u2, u3) , (i = 0, 1, 2, 3, 4)

which is a three-dimensional manifold lying on the hypersurface S defined by Eq.

(123). By assigning fixed values for any three of the four hypersurface vari-

ables we obtain a net of curves, on the hypersurface, which may be called coordi-

nate curves.

Obviously the parametric representation of a hypersurface in the form of

(123) is not unique, and there are infinitely many curvilinear coordinate systems

which can be used to locate points on a given hypersurface S. Thus, if one

introduces a transformation

u° = u°(u°, u1. u2, u3) ,

u1 = u W , IT1, IT2, u3) ,

u2 = u2(u°, IF1, U2, IF3) ,

and

u3 = u3(u°, u1, u2, u3) (125)

n Q i n q 1

where the u (u , u , u , u ) are of class C and are such that the Jacobian
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J = a(u°, u1. IT2, if3)

does not vanish in some region of the variables u0, then one can insert the
values from (125) in (123) and obtain a different set of parametric equations

x1 = ^'(u0, U 1, uZ, ZF3) (126)

defining the hypersurface S. Equation (125) can be looked upon as representing
a transformation of coordinates in the hypersurface.

a. First Fundamental Quadratic Form
The properties of hypersurfaces that can be described without reference to

the space in which the hypersurface is embedded are termed "intrinsic" proper-
ties. A study of intrinsic properties is made to depend on a certain quadratic
differential form describing the metric character of the hypersurface. We pro-
ceed to derive this quadratic form for our restricted system.

It will be convenient to adopt certain conventions concerning the meaning of
the indices to be used. We will be dealing with two distinct sets of variables:
those referring to the five-dimensional space in which the hypersurface is

0 1 2 3embedded (these are five in number) and with four coordinates u , u , u , and u
referring to the four-dimensional manifold S. In order not to confuse these
sets of variables we shall use Latin letters for the indices referring to the
space variables and Greek letters for the hypersurface variables. Thus Latin
indices will assume values 0, 1, 2, 3, 4 and Greek indices will have the range
of values 0, 1, 2, 3. A transformation T of space coordinates from one system
JK to another X will be written as

T - x ' - x V . x1, x2, x3, x4) ;

a transformation of Gaussian hypersurface coordinates, such as described by Eq.

(125) will be denoted by

u a = u a ( u ° , u1. u2, u3) .
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A repeated Greek index in any term denotes the summation from 0 to 3; a repeated
Latin index represents the sum from 0 to 4. Unless a statement to the contrary
is made, we shall suppose that all functions appearing in the discussion are of
class C in the regions of their definitions.

Consider the hypersurface S defined by

x1 = x V , u1, u2, u3) , (127)

where the x1 are coordinates covering the five-dimensional space in which the
hypersurface Sis embedded, and a curve C on S defined by

u a = ua(x) , ij < T < x2 (128)

where the ua's are the Gaussian coordinates covering S. Viewed from the sur-
rounding space, the curve defined by (128) is a curve in a five-dimensional mani-
fold, which we shall assume, for the present, is Riemannian entropy manifold of
the Dynamic Theory, and its element of arc is given by the formula

(dq0)2 = gi;j d x W . (129)

From (127) we have

dx1 = -̂ _ dua (130)
3ua

where, as is clear from (128),

Substituting from (129) and (130), we get

3ua 3UP
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= A 0 du
adu3 ,

a3

where

(131)

0 2The expression for (dq ) , namely

(dq°)2 = (132)

is the square of the linear element of C lying on the hypersurface S, and the

right hand member of (131) can be called the First Fundamental quadratic form

of the hypersurface. The length of arc of the curve is given by

4-

where ua = Q- and q is the specific entropy. The total change in the entropy

along the curve C would then be

Y(q° " q?) = / Y /Aag u
aue dx . (133)

Tl

Consider a transformation of surface coordinates

ua = ua(U°, IT1, u2, u3) (134)

with a non-vanishing Jacobian

J =
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It follows from (134) that

and hence (132) yields

a6 ^
P 8uY 3U

If we set

A _

we see that the set of quantities A „ represents a symmetric covariant tensor of

rank two with respect to the admissible transformations (134) of hypersurface

coordinates. The fact that the A Q are components of a tensor is also evident
0 2from (132), since (dq ) is an invariant and the quantities A _ are symmetric.

The tensor A o is called the covariant metric tensor of the hypersurface.
Otp

Since the form (132) is positive definite, the determinant

A - |«J > 0
and we can define the reciprocal tensor Aa^ by the formula A a P Ag = 6a .

The properties of surfaces concerning the study of the first fundamental

quadratic form

(dq0)2 = A a & du
a duB

constitute a body of what is known as the "intrinsic geometry of surfaces." They

take no account of the distinguishing characteristics of surfaces as they might

appear to an observer located in the surrounding space. Two surfaces, a cylinder

131



and a cone, for example, appear to be entirely different when viewed from the

enveloping space, and yet their intrinsic geometries are completely indistin-

guishable since the metric properties of cylinders and cones can be described

by the identical expressions for square of the element of arc. If a coordinate

system exists on each of the two surfaces such that the linear elements on them

are characterized by the same metric coefficients A „, the surfaces are called
ap

"isometric."

Thus if our description of the restricted system is done only in terms of

the intrinsic geometry of the hypersurface we may lose sight of features which

may characterize our system when viewed from the enveloping space. Therefore,

in order to characterize the shape of the surface we must develop a view which

involves the enveloping space.

b. Second Fundamental Quadratic Form

An entity that provides a characteristic of the shape of the surface as

it appears from the enveloping space is the normal line to the surface. The

behavior of the normal line as its foot is displaced along the surface depends

on the shape of the surface, and it occurred to Gauss to describe certain proper-

ties of surfaces with the aid of a quadratic form that depends in a fundamental

way on the behavior of the normal line. Before we introduce this new quadratic

form let us recall the definition (131),

Aa6 = 9ii ̂ 4 ^ 4 C-t.J - 0, 1, 2, 3, 4) (a,B = 0, 1, 2, 3) . (131)
aP 1J 3ua 3U3

We note that the foregoing formulas depend on both the Latin and Greek

indices, and we recall that the Latin indices run from 0 to 4 and refer to the

surrounding space, whereas the Greek indices assume values 0, 1, 2, and 3 and
i *are associated with the embedded hypersurface. Furthermore, the dx and g^'s

are tensors with respect to the transformations induced on the space variables

x1, whereas such quantities dua and A a g are tensors with respect to the trans-

formation of Gaussian surface coordinates ua. Equation (131) is a curious one

ax1
since it contains partial derivatives •2— depending on both Latin and Greek

3uu

indices. Since both b^ and g\. in (131) are tensors, this formula suggests
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8x^that can be regarded either as a contravariant space vector or as a covariant
3ua

surface vector. Let us investigate this set of quantities more closely.

Let us take a small displacement on the hypersurface S, specified by the

surface vector dua. The same displacement, as is clear from (130), is described

by the space vector with components

dx1 = &- dua . (135)
a

The left-hand member of this expression is independent of the Greek indices,

and hence it is invariant relative to a change of the surface coordinates ua.

Since dua is an arbitrary surface vector, we conclude that

~ (136)
a

is a covariant surface vector. On the other hand, if we change the space coordi-

nates, the dua, being a surface vector, is invariant relative to this change,

so the (136) must be a contravariant space vector. Hence we can write (136)

as

(137)

where the indices properly describe the tensor character of this set of quanti-

ties.

Let ft and B be a pair of surface vectors drawn from one point P of S.
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Then using (137) they can be represented in the form

A1 = x V and B1 = xV* • (138)

The five-dimensional vector product, defined by

Nk = + ekij' A.Bj , (139)

is the vector normal to the tangent plane determined by the vectors A and B,
and the unit vector n perpendicular to the tangent plane, so oriented that A,
B, and n form a right-handed system, is

A-B.
?J (140)

ae A B
a

We call the vector n the unit normal vector to the hypersurface S at P.
0 1 2 3

Clearly, n is a function of coordinates (u , u , u , u }, and as the point P
(u , u , u , u ) is displaced to a new position P(u + du , u1 + du1, u2 + du2,
u + du ), the vector n undergoes a change

dn = -in. dU
a

9ua

whereas the position vector F is changed by the amount

Let us form the scalar product

dn • dr = -^ • -^| dua du6 . (142)
3ua 8up
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If we define

00 - 2 ^oc * 3 U3 9 U3

so that (142) reads

dn • dr = - b dua du8 , (143)

the left-hand member of (143), being the scalar product of two vectors in a

Riemannian space by being in the entropy manifold, is an invariant; moreover,

from symmetry with respect to a and 3, it is clear that the coefficients

dua du^ in the right-hand member of (143) define a covariant tensor of rank two.

The quadratic form

B H b _ dua du8 , (144)

called the second fundamental quadratic form of the hypersurface, will be shown

to play an essential part in the study of hypersurfaces when they are viewed

from the surrounding space, just as the first fundamental quadratic form A =

dr • dr , or

A * A a g du
a du6 ,

did in the study of intrinsic properties of a hypersurface.

We can rewrite the formula (140) in terms of the components x1 of the base

vectors a". We denote the covariant components of h~ by n1 and observe that its
ot

covariant components n.. are given by

n =_Jik (145)
1 sin e
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and

A B sin 9 = e a g A
a A6 . (146)

Substituting in (145) from (138) and (146), we get

<n e S < x> Aa B' = °

and, since this relation is valid for all surface vectors, we conclude that

ni Ea3 = eijk Xa Xg •

Multiplying (147) through e a g, and noting that eaBe g = 2, we get the desired
result

ni = l eC

It is clear from the structure of this formula that n. is a space vector

which does not depend on the choice of surface coordinates. This fact is also

obvious from purely geometric considerations.

c. Tensor Derivatives

We wish to reduce the second fundamental quadratic form (144) analytically

by the operation of tensor differentiation of tensor fields which are functions

of both surface and space coordinates. To do this we shall first present the

concept of tensor differentiation introduced by A. J. McConnell*.

Let us consider a curve C lying on a given hypersurface S and a vector A1

defined along C. If T is a parameter along C, we can compute the intrinsic
fiA1' i

derivative - ^ of A , namely,

*A. J. McConnell, Absolute Differential Calculus, London, 1931, Chapters XIV-XVI.
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dt
(149)

In formula (149) the Christoffel symbols zi^l} refer to the space coordinates
x and are formed from the metric coefficients g... This is indicated by the
prefix g on the symbol. On the other hand, if we consider a surface vector A a

defined along the same curve C, we can form the intrinsic derivative with respect
to the surface variables, namely,

(150)

In this expression the Christoffel symbols {o
a} are formed from the metric

coefficients a „ associated with the Gaussian hypersurface coordinates u . A
geometric interpretation of these formulas is at hand when the fields A1 and A a

are such that - 4 - = 0 and ^=- = 0. In the first equation the vectors A form

a parallel field with respect to C, considered as a space curve, whereas the
<SAa

equation •=?- = 0 defines a parallel field with respect to C regarded as a sur-
face curve. The corresponding formulas for the intrinsic derivatives of the
covariant vectors A. and A are

<5A- dA. k d j
17 = -£ ~ g{ij} Ak %

and

a _ a _ r y, ^ uu

6T dr a a|3 y dx

Consider next a tensor field T1, which is a contravariant vector with res-
a •

pect to a transformation of space coordinate x and a covariant vector relative
to a transformation of surface coordinates ua. An example of a field of this

i
type is the tensor x1 = ̂ - introduced earlier. If T1 is defined over a surface

a 9 na a
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curve C, and the parameter along C is x, then T^ is a function of x. We intro-
duce a parallel vector field A. along C, regarded as a space curve, and a par-
allel vector field B a along C, viewed as a surface curve, and form an invariant

*(T) = T ^ B 0 1 .

The derivative of $(x) with respect to the parameter x is given by the expression

(153)dx dx i a dx a i dx

which is obviously an invariant relative to both the space and surface coordi-
nates. But, since the fields A ^ x ) and Ba(x) are parallel,

ki A dxJ ™ A <JBa _ r a-,
ij} Ak ~dT and T? " a V

A ™A R du

k ~dT and T? " a V B ~d7

and (153) becomes

, i , T j dx^ , 6y T i d u ^ l . Ra
dT L dT 9

Since this is invariant for an arbitrary choice of parallel fields A. and Ba,
the quotient law guarantees that the expression in the brackets of (154) is a
tensor of the same character as T1. We call this tensor the intrinsic tensor

. a
derivative of T with respect to the parameter x, and write

dxk _ , 6, T i duY

6t ~ dx gxjkJ 'a dx a\*y

If the field T1 is defined over the entire hypersurface S, we can argue
that, since
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g\Jk' Vy a V Sj dx

Y

is a tensor field and -H- is an arbitrary surface vector (for C is arbitrary),

the expression in the bracket is a tensor of the type T1 . We write

5

and call T1 the tensor derivative of T1 with respect to uY.
a , y ot

The extension of this definition to more complicated tensors is obvious

from the structure of (156). Thus the tensor derivative of T1^ with respect to

uY is given by

9T1
T1' - ag , .1 U TJ xk ( 6i Ti _ i 5i Ti
'a6,Y 9 uY 9 Jk aB Y a W <SS a^y a6 •

If the surface coordinates at any point P or S are geodesic, and the space

coordinates are orthogonal Cartesian, we see that at that point the tensor deriv-

atives reduce to the ordinary derivatives. This leads us to conclude that the

operations of tensor differentiations of products and sums follow the usual rules

and that the tensor derivatives of §.., A D, £.= .,,, E Q and their associated
ij otp ijK ap

tensors vanish. Accordingly, they behave as constants in the tensor differentia-

tion.

The apparatus developed in the preceding section permits us to obtain easily

and in the most general form an important set of formulas due to Gauss. We will

also deduce with its aid the second fundamental quadratic form of a surface

already encountered.

We begin by calculating the tensor derivative of the tensor x1, representing

the components of the surface base vectors a"a. We have
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U ¥J¥k

from which we deduce that

xl R = xj * • (158)

Since the tensor derivative of a o vanishes, we obtain, upon differentiating
the relation

A = 9 V

+ 'ii <*ty * 0 • . < 1 5 9»

Interchanging a,6,y cyclically leads to two formulas:

and

If we add (160) and (161), subtract (159), and take into account the sym-
metry relation (158), we obtain

=

This is the orthogonality relation which states that x̂ , _ is a space vector
normal to the surface, and hence it is directed along the unit normal n . Con-
sequently, there exists a set of functions bag such that
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The quantities b g are the components of a symmetric surface tensor, and the
differential quadratic form

B = b Q du
a du6

ap

is the desired second fundamental form.
Now since n.n1 = fi1., and n. = cj..nJ, then

J J ' ' J

but since n1 = \ e
a 3 e ^ x^ x* , then

" I

We now have, in Eqs. (131) and (162), the formulas necessary to determine
the first and second fundamental quadratic forms for our system constrained to
a four-dimensional hypersurface. Our objective is to show that by appropriately
constraining our system we arrive at the Navier-Stokes equations. Let us deter-
mine the first fundamental quadratic form.

First recall that our system was restricted so that x = x (x , x » x , x )
or the mass density is a function of space and time; then we have the relations

and
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x 4 = f(x°, x1, x2, x3) = f(u°, u1, u2, u3)

Since Eq. (131) is

x1 xj

then

A00 = ko = 2%4 fO

where

f -
0 ~

In a similar fashion we may determine the remaining coefficients so that

°aB
9Q2 * "^04^2 + "44*0^2 ^12 + ^14^2 + ^44^1^2 '22 + 2^24^2 * '44* 2' ^23

(163)

Obviously from this determination we may write the metric coefficients of the
first fundamental quadratic form as the sum of two tensors, or

' a'3 = °> 1> 2> 3 '
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where the h „ are functions of the partial derivatives of the mass density with
respect to space and time in addition to space and time from the g.^ where i =
0, 1, 2, 3, 4.

Though we may use Eq. (162) to determine the metric coefficients for the
second fundamental quadratic form, it is not necessary for the current presenta-
tion.

The hypersurface which is embedded in the five-dimensional space is a four-
dimensional curvilinear space-time manifold. Thus the relativistic hydrodynamic
equations are applicable here so long as the metric coefficients are determined
as coefficients of the hypersurface quadratic form.

The complete energy-momentum tensor for a fluid in a flat Riemannian space-
time manifold is given by*

T«S . y -a-g + _P ((ia.0 _ ga3) (165)

c

where ua = -jj— , s is the arc length. Then based upon this energy-momentum
tensor the flow of a fluid under the effect of its own internal pressure force
is given by setting the divergence of (165) equal to zero, or

T a 6, 3 = 0 . (166)

If we reduce Eq. (165) to the non-relativistic limit, the use of (166) gives
us

g36 x a 3 ) S = Y a a , a,S,6 = 1, 2, 3 , (167)

where T = Pg°* is the three-dimensional stress tensor of an ideal fluid.
If in Eq. (165) we use the fact that the metric coefficients for the hyper-

surface may be written as the sum of (164), then we have

Tae = Y " a u B + 4 (uau6 - gaf3 - haf3) . (168)
c

*R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity, 2nd
Ed.(McGraw-Hill, New York, 1975), p. 337.
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where it must be remembered that the itaii are also dependent upon this same sum.
In the nonrelativistic limit the effects of this sum of metric tensors appear
as a sum in the stress tensor

T - - K g - rn , a j p = l , < i , J . ( I b y j

Recall that the g°* refer to the three-dimensional space viewed from the
five-dimensional manifold. The h , however, contain the information about the
surface embedded in the five-dimensional space. If we then associate the tensor

t<xB = _ pnaf3 (170)

with the viscous stresses, we are saying that the viscous stresses depend upon
the geometric character of the hypersurface.

In the limit of small displacements we write the strain velocity tensor as

p s I (w + v ,)
a6 2 v a,B 8,a' '

Then the first order coefficients of viscosity are related to the strain velocity
tensor and viscous stresses according to

If we then use (170) in (171), we find that the relationship between the geo-
metric character of the hypersurface and the viscous coefficients is given by

V « ) • (172)

Equation (172) then expresses the functional dependence of the viscous
coefficients upon the strain velocities, pressure, mass density, and their deriv-
atives. I
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2. Relativistic Hydrodynamics. By viewing classical hydrodynamics to be
given by the embedding of a four-dimensional hypersurface within a five-
dimensional manifold, the association (172) between the geometric properties
of the hypersurface and the viscous coefficients could be tentatively made. We
may now go back and develop this relationship more completely.

The hypersurface, which becomes embedded in the five-dimensional manifold
by the restriction that x* = x (x , x , x , x ) is a four-dimensional relativ-
istic manifold. Thus for the surface we may use the relativistic energy-momentum
tensor, which is

= Y ^ + -\ (uV - gyv) , (173)

where uy H -^ and u,v = 0, 1, 2, 3. The divergence of (173) yields the flow
dxu

equations for a fluid under the effects of its own internal pressure.
However, from the viewpoint of the Dynamic Theory, the surface metric coef-

ficients may be written in terms of the metric coefficients of the first four
space coordinates as given by Eqs. (164) and (165), or

Aa0 = 9a3 + ha3 ' a'e = °' U 2> 3 ' (165)

Thus the square of the arc length for the entropy manifold may be written as

(dq0)2 = A a 6dx
a dxe = i a g dx

a dx3 + h a 3 dx
a dxB

or, if ua E \ , then
dq°

= Aa3

Then on the hypersurface the energy momentum tensor would become

P
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or

P (uau3 _ £ . h«3} . (174)

Since the surface coordinates, xa, are the same as the first four coordi-
nates of the surrounding space, the velocities ua are the same whether considered
as surface or space vectors. The difference between the surface view and a four-
dimensional space view appears in the metric coefficients. Thus while the square
of the arc element on the surface is unity, the square of the arc element in
the surrounding space is not, or

but

u*u* = 1 - h . u au 3

3. Classical Hydrodynamics. Suppose we consider gag to be a flat space
then because of (174) we may write

c c

If we then form the space divergence

T0v _ 1 _3 { _ _P yOOy + _1_ / M^ + p (i^ _ n
O a)} = 0

this may be written as

146



where h has components hOa, a = 1, 2, 3.
Therefore

(YV) - - fV • (P7) + ^ [ l ( f ^ 1 + V • (Ph0)]

so that if hv is a four-vector with components h v = hv, then

The remaining components of the divergence are given by

c c

3X«

which may be rearranged to read

If we look at the nonrelativistic limit, then, by neglecting the terms
P(v/c), we get
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The multiplicative factor - | on the right-hand side suggests that

at + v • (Y V) = o ,

which is the assumption we chose to place our system on a particular surface.

This corresponds to a classical system where conservation of mass is assumed.

Therefore, on the surface of a curve specified by

we must then have

. _if. + I 3(Ph
a°) ,

^ a c 3t

or

a a _ 3P 1 3(Pha0)
a C 3t

3X

Thus we may write

where T" B = - PgaB • Ph°6 - - P(g°8- h"6) . (175)

1 -x / Dh01^ ̂

The term f d^" ' has been neglected in (175).
C dl
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Thus we see that the geometric character of the hypersurface, contained in

the term PhaP, behaves as if it were a viscous effect to be added to the normal

viscous effects. Recalling Eq. (165), it may be seen that the viscous-like

effects of the geometry of the hypersurface depend upon the density gradient.

If these terms exist, they must be very small in everyday phenomena. Yet if we

consider phenomenon which involve very large density gradients, these terms could

become large enough tc see.

4. Shock Waves. One field of physical phenomena that displays large den-

sity gradients is shock waves. Therefore let us take a quick look at the effect

of these additional terms on the description of a shock front for a steady, one-

dimensional shock.

The total stress in a steady, one-dimensional shock would be given by

a =
aO

when g,, = 1 and h... is evaluated using Eq. (165). However, for a steady shock

we also have

yu

+ a =

and

k?E " 4 = k3 •
These equations represent the conservation of mass, momentum, and energy. By

using the conservation of mass relation we may write the total stress as

< >
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where

P k2
neff = n • ~TJ { WaQu

may be called the effective viscous coefficient. Since within the shock front
the velocity gradient du/dx is negative, we see that the effective viscous coef-
ficient acts so as to thicken the shock front when compared to the classical
viscous coefficient n-

E. Mass Conservative Electrodynamics
One of the incentives for -seeking to determine whether the five equations of

motion were generalizations of the classical hydrodynamic equations was the pos-
sibility of shedding new light upon fusion plasmas. Now before mass conversion
is accomplished the plasma must reach certain conditions. The attainment of
these conditions involve electromagnetic fields not encountered in usual circum-
stances on earth. If the Dynamic Theory is to be believed, then perhaps it may
provide new insight into the attainment of the appropriate conditions before mass
conversion begins.

The following development still assumes conservation of mass in order to
see the geometry of the hypersurface for a system under the influence of elec-
tromagnetic fields.

Suppose we now describe the behavior of charged matter under the influence
of an electromagnetic field from the viewpoint of the Dynamic Theory. From this
viewpoint the conservation of mass has the effect of restricting our system to
a four-dimensional hypersurface which is embedded in the five-dimensional mani-
fold of space, time, and mass density.

Since we desire to consider the effects of an electromagnetic field we must
consider a gauge function. When a gauge function exists, the square of the arc
length in the entropy space is related to the square of the arc length in the
sigma space by

(dq 0) 2 = g., dx1' dxj = (^-) g\, dx1 dxJ" -
U nOO J "00
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A

When the system is restricted to a hypersurface by the relation x
x (x , x , x , x ), then the entropy surface may be written as

(dq0)2 =

where

9ua
- a

i

Likewise for the sigma surface

(da)2 = S a g du
a duB

where

j x« x e •

Thus we have

The principle of increasing entropy requires that the equations of motion
be geodesies in the entropy space but they will appear as equations involving
forces in the sigma space. We desire to expose these forces and therefore should
work in the sigma space. Our objective then is to determine the effect of embed-

4 4 0 1 2 3ding a four-dimensional surface given by x = x (x , x , x , x ) in the sigma
space and thus obtain a sigma surface describing a system subjected to the class-
ical conservation of mass restriction.

Having previously determined the metric coefficients for the entropy space
by Eqs. (163) and (164) we may write the coefficients for the sigma surface as

151



= h OO hOO ha3 ]

However by considering the effects of the electromagnetic field as a force
we must first consider the space field tensor:

0

"E2

0

-B,

-B,

"E 52

h -V, -V,

If we restrict ourselves to the classical field quantities E and B and for
the moment assume that the field quantities VQ and V are zero, then we obtain
only the effects of the hypersurface viewpoint. This assumption seems reasonable
considering the possible interpretation of the new field quantities in terms of
nuclear effects. Under this assumption our field tensor becomes

0

E l

E2

E3

D

E l

0

"B3

B2

0

E2

B3

0

"B l

0

E3

"B2

B l

0

0

0

0

0

0

0

Me can now use this space field tensor to determine the appearance of the
fields when viewed from the surface. The surface field tensor will be given by

F _
ot6

x x^ .a 3
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But since x1 = 61 for i,a = 0, 1, 2, 3 and x = f , the surface field tensor of
a purely electromagnetic space field tensor is only the four-dimensional portion
of the space field tensor since F.^ = 0 for i = 0, 1, 2, 3, 4.

Thus when we use the relativistic energy-momentum tensor for the surface,
we have

cotv . i ~yv cap c T n-ic\

T L ' a "5" aB-* ' U'DJ
c

which is the relativistic energy-momentum tensor for matter under the influence
of electromagnetic fields. But since a D = g o + h D , then (176) becomes

01 p Ctp Up

uv + -\ [ F ^ Fav

or

Tuv _ -i-yv , Tyv
rel geo

where

* \ ff™

is the four-dimensional space relativistic energy momentum tensor and

Tyv .
Tgeo =

is the portion of the energy-momentum tensor which contains the geometrical pro-
perties of the hypersurface.

From Eq. (177) we can say that the Dynamic Theory has the appearance of
adding a term to the relativistic energy-momentum tensor. This term contains
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the geometrical character of the surface and represents the difference between
the appearance of the energy-momentum tensor when viewed from the surrounding
space as compared to the view from the hypersurface.

If we take the divergence of the energy-momentum tensor (177), we have

.v rel »v geo >v '

The additional force terms from the surface geometry are given by

But if we define

ag (178)

as the electromagnetic energy density, where

then the geometric energy-momentum tensor becomes

Tyv _ -4TT
'geo

and the additional forces are given by

We may also look at the radiation pressure predicted by the Dynamic Theory
to see how the surface restriction affects the relativistic prediction of radia-
tion pressure.
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The relativistic radiation pressure is taken as one third of the three-
dimensional Maxwell stress tensor which is the space portion of the energy-
momentum tensor, or

= ? W 'Ta3 = 4? <EaE3 + W

where a,g = 1, 2, 3.
To get the equivalent stress tensor for the Dynamic radiation pressure we

must add the space portion of (178) so that the total stress tensor becomes

Ta3 = 4̂  (EaE3 + W "

- 4? Kh + W ~

We can then obtain the negative of the trace by

= - F ^ (E2 + B2) - 3£ - (hn + h22 +

5 - ("n + h22
 + h 3 3 ^

The radiation pressure is then given by

P = | [1 + h n + h 2 2 + h33] . (179)

The first term in (179) is the classical radiation pressure in electro-
dynamics. The remaining three terms give the difference between the pressure
predicted by the Dynamic Theory and the classical prediction. To determine what
this difference is let us restrict our system to again be very near equilibrium
so that the g . = 0 for a = 0, 1, 2, 3 and g ^ = constant. Thus we have a flat
space. For this space the
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aO

from (163) and g44 = -1. Thus

• *33

By substituting (180) into (179) the pressure becomes

3X1 9x^ 3x

However, since the classical pressure is given by P = 4 , then the pressure

predicted by the Dynamic Theory becomes

aO

We see then that the Dynamic Theory predicts a decrease in the radiation

pressure as a result of viewing the system to be restricteo to a four-dimensional

hypersurface embedded in a five-dimensional space. The amount of this decrease

in pressure depends upon the gradient of the mass density and the constant 3LQ.

Once the constant a~ is determined, then the deviation in predicted pressures

can be specified.

F. Field Equations

Einstein's General Theory of Relativity made possible various models of

the universe through solutions of his field equations. These solutions gave

the metric coefficients according to the various models considered. Using Weyl's

interpretations the Dynamic Theory leads to a five-dimensional set of field

equations. These equations are generalizations of Einstein's field equations

and, together with their boundary conditions will be presented here.
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1. Nonlinear Field Equations. The seven Maxwell equations may be used to

determine the gaugp function for the five-dimensional manifold for an isolated

system. The remaining metric coefficients may be determined by Einstein-type

field equations. Therefore let us assume that the gauge function is simply a

constant so that the following may concentrate upon the remaining coefficients.

We shall suppose that the metric coefficients are determined by the gravi-

tating effects of mass as is done in Einstein's Theory and, further, if our

system is infinitely far from gravitating matter, then it will be in an equili-

brium state. Therefore the boundary conditions to be imposed is that the system

satisfy the conditions of equilibrium when far removed from gravitating matter.

In equilibrium the second partial derivatives will be constants evaluated at

this equilibrium state. Therefore the limiting metric will be one with constant

coefficients. This is similar to the conditions used in the Schwarzchild solu-

tion to Einstein's equations.

Thus our limiting metric will be

(dq 0) 2 = c 2 dt2 - (dx a) 2 , a = 1, 2, 3, 4 .

The field equations in a vacuum are

or

_ 8 _ r I
3x* 1J

{'{'} ^ i f l L , (181)
1J 3xs

where i,j = 0 , 1, 2, 3, 4.

Setting c = 1 and taking the trajectory to be a straight line far from grav-

itating matter leads us to assume the limiting form of the metric to be
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I .»•

(dq0)2 = (dt)2 - (dr)2 - r2(d9)2 - r2sin2d (d<j>)2 - &g- .
aO

(Note: This involves an assumption concerning the nature of how the mass density
is affected and should be considered in detail later.)

We may further set a0 = 1 in the same sense as c = 1 for further simplifi-
cation. Therefore let us adopt the form

(dq0)2 = f1(r,Y)(dt)
2 - f2(F,y)(dr)

2 - r2(de)2 - r2sin26 (d<(»)2

- f3(7sY)(dr)
2 . (182)

Here the cross-product terms have been rejected due to arguments of static
spherical symmetry and simplicity.

Suppose for the purpose of finding the functions f,, f~. and f, we follow
Schwarzchild's example by setting

fx = e
y ; f2 - e

A ; f3 = e
v .

Substituting these into the metric of (182), the metric becomes

(dq0)2 = -eA(dr)2 - r2(d6)2 - r2sin2e (d<j>)2 - e v(d Y)
2 + ey(dt)2 . (183)

Thus the metric coefficients are given by

% = "eV » and 9ij = 0 for i ?« j .

The determinant for the quadratic form of Eq. (183) is

9 - 900911922933% - e<X + * + v> A i ^
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and the contravariant tensor g1J is given by the matrix

/ e ^ 0

/ 0 - e A

0 0

n n
u u

\o o

0 0

0 0

0 l

2 . 2
r sin e

0 0

The Christoffel symbols {.;:} may now be constructed and since g.. = 0 when i f j

we have

The non-zero Christoffel symbols are then

{33 } "re sin e {44 }
1-, 1
1} = F

{33
2> - -sin e c o s e , I . cot

. |OS_| ,

r 4, _ 1
l41J " I l3r' ' ana

4, 1
4' " I
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The equations for y, v, and X are then obtained by inserting the ChristoffeT

symbols into Eq. (181) and setting R.. = 0. This procedure yields five equa-

tions:

o n _

e(y-A)

= 0
L
L 2

If

Sin 6<e 1 + (o-M-^ + 3 7 - - a 7 ) - l > = 0 ; anri (185)

i(M,j . 0

Equation (185) is a repetition of Eq. (184). Therefore there are only four

equations on the three functions X, y, and v to consider. This situation is

similar to the one in Schwarzchild's solution. It is relatively easy to show

that these equations reduce to Einstein's equations of Schwarzchild.

Here the solution to these equations are not obtained. However, obtaining

the solution will provide a model of the universe in which mass conversion, or
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creation, plays a free role as an independent coordinate. This picture of the

universe should produce an interesting and perhaps enlightening view of black

holes, particularly since black holes involve tremendous mass densities and mass

density changes.

2. Linearization of Field Equations. The set of differential equations

for the functions y, v, and X given in the preceding section are nonlinear equa-

tions which may prove difficult to solve. Linearizations of these equations

may provide approximate solutions that could prove useful.

The procedure to linearize the equations is identical to the process of

linearizing the general relativistic field equations. However, here the equa-

tions involve five-dimensions and we therefore obtain 15 partial differential

equations.

If we restrict our system to be sufficiently near an equilibrium state so

that the metric tensor differs only slightly from the flat-space metric for the

equilibrium state, then we may write the metric tensor as the flat-space tensor

T).. given by

0 0 0

- 1 0 0

0 - 1 0

0 0 - 1

0 0 0

Where the five-dimensional Minkowski coordinates ict, x, y, z, —- are used for
0simplicity, plus a perturbation term e£.. so that

g^- = T]JJ + e S ^ , i,j = 0, 1, 2, 3, 4 ,

then only the first-order terms in the parameter e are to be considered as sig-

nificant in all equations.

By following the same procedures as in the relativistic case the linearized

partial differential equations for the 15 distinct perturbation terms y.- may

be found to be
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3xd3x' Z=0 1=0 3x L 3x 3xJ 3x
( 1 8 6 )

The only difference between Eqs. (186) and the linearized relativistic
equations is the increased dimensionality which results in summing over the five
coordinates and allowing the indices to range over five dimensions instead of
the four used in the general relativistic approach.

IV. CONCLUSIONS

The generality of the fundamental laws adopted by the Dynamic Theory makes
it possible to arrive at a great number of conclusions. However, only a few
will be selected for discussion here.

The first question which provided the motivation to seek a new theoretical
approach to physics concerned the uniqueness of the velocity of light as a
limiting velocity for all natural forces. The answer is provided by the axio-
matic development of the second law. This development produced an integrating
factor for the differential statement of the first law. A characteristic veloc-
ity was shown to exist in the definition of the absolute velocity. That absolute
velocity is given by a constant velocity process at which the integrating factor
is zero. The important point in the development which provides the answer to
the uniqueness of the velocity is the proof that the integrating factor is in-
dependent of the nature of the force. Therefore, if the absolute velocity is
independent of the force, it must be applicable to all forces and hence unique.

Since by definition the absolute velocity is a constant in one reference
frame, it must also be a constant in any other reference frame moving with a
constant velocity relative to the first. Thus the absolute velocity must be
unique avd a constant in all reference frames moving with constant relative
velocities. The experimental and theoretical evidence of electromagnetism re-
quires that this absolute velocity be the same value in all these reference
frames. This requirement leads to the princip1* of Lorentz covariance. Then
all the laws of nature must be Lorentz covariant whether electromagnetic, gravi-
tational, or nuclear since the absolute velocity is unique and independent of
the force.
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We find that the appearance of the integrating factor also clarifies the
relationship between the velocity dependent relativistic mass and velocity depen-
dent forces. In Einstein's Special Theory of Relativity we find it necessary to
consider a velocity dependent relativistic mass and a velocity independent force.
However, in the Dynamic Theory there appear two differential expressions which
become important for any system description. The first differential expression
is the first law itself, which, in simplified form is

d£ = mq dq - A - q2/c2 F(q) dq .

The other is the expression for the differential change in mechanical entropy or

- F(q) dq

The integral of cfe depends upon the path and therefore is of little utility
in determining the actual process, or path, taken by the system. On the other
hand, the entropy is independent of the path. This characteristic together with
the principle of increasing entropy for an isolated system establishes tha varia-
tional principle for determining the path. Since the objective of dynamics is
to find the path taken, then it becomes obvious that the differential expression
for the entropy change plays a dominant role and it is in this expression that
we find Einstein's velocity dependent relativistic mass and a velocity indepen-
dent force. However, from the Dynamic Theory's point of view the first law
describes "reality" and here we find velocity dependent forces and mass that
are independent of the velocity.

Thus we find that the Dynamic Theory requires that the kinetic energy, which
comes from the energy expression, to be the classical kinetic energy, or (i) mq ,

2 /i 2 2~while from the entropy expression comes a function, -me A - q /c , which may
be called the "kinetic entropy." In this manner the Dynamic Theory clarifies
the mental controversy which motivated it. For from this viewpoint kinetic
energy does not depend upon the value of the limiting velocity; kinetic entropy
does. The two are distinct concepts, however, the distinction can not be seen
from a relativistic point of view.
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Though the philosophy which formed the basis for the development of the
Dynamic Theory made it necessary to set aside the fundamental postulates of
Einstein's relativistic theories and Newtonian laws and begin to establish a
new theoretical basis, we find that the Dynamic Theory requires the same conclu-
sions as special cases. Therefore the viewpoint of the Dynamic Theory, which
appeared incompatible with current theories, not only supports current theories
but lends them additional strength from its more general approach. The concept
of a limiting velocity takes on a new, more fundamental, character as the mech-
anical counterpart to thermodynamics absolute zero temperature. Yet because
of the different point of view this limiting velocity does not have the absolute
character attributed to it in relativistic theory for we find that its value
depends upon the dimensionality of the system.

When the metric provided by the stability conditions is considered, we find
that the Dynamic Theory, through the second law, specifies the geometry which
must be considered. This removes the necessity of assuming a particular geo-
metric character and, for an isolated system specifies the type of geometry which
can satisfy the principle of increasing entropy. Using Weyl's interpretations
from his unified field theory we find that the Dynamic Theory answers some ques-
tions that Weyl's theory leaves unanswered or introduces.

First recall that Weyl assumed the existence of a quadratic and linear dif-
ferential form. The Dynamic Theory produces two quadratic, plus a linear, dif-
ferential forms for isolated systems and it is the interplay of these three forms
which provide the answers. Weyl's theory raised a question concerning integra-
bility and Einstein produced an argument which indicated that Weyl's theory would
not produce the sharp spectral lines we see from atoms changing states. Weyl
only had one quadratic form. The Dynamic Theory has two; one an entropy mani-
fold, which yields an integrable arc length of entropy, the other manifold is
related to it by the gauge function. Thus the second law requires that the en-
tropy manifold have an integrable arc length though the other may not and in
that event the gauge function behaves like an integrating factor.

An additional feature of the interrelation of the three differential forms
lies in its ability to shed new light upon the existence of both positive and
negative electromagnetic charges. Weyl's theory, as well as Maxwell's leaves
this question unanswered. Weyl defined the potentials <f>k, which are the coef-
ficients of the linear differential form, as
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—

where f is the gauge function. Though the gauge function relates Weyl's "dis
tance measures" t and I by

Weyl did not take the potentials to be logarithmic derivatives of a radical func-
tion. As a result, he pointed out that one way of accounting for the difference
between positive and negative electricity would be to introduce a radical some-
where .

The Dynamic Theory requires that the entropy manifold be related to the
sigma manifold by

(dq0)2 = f(do)2

Here the principle of increasing entropy provides the variational principle hence
there is added significance in considering the differential change in entropy
or

Thus the only mathematically consistent definition for <J>. is

. _ . 1 3£nf ,
*k "2 — k
K £ 3xK

thereby accounting for the existence of both positive and negative electromag-
netic potentials.

The recognition of the existence of the radical together with the fact that
the second law demands a real function for the entropy since dq >. 0 for an
isolated system provides the capability to remove London's difficulty with imag-
inary distances in his quantization of Weyl's theory. This coupled with the
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logical demand, by the Dynamic Theory, for the conditions resulting in quantiza-
tion demonstrate the power of the theory to unify the whole of physical theory
under the umbrella of a single set of generalized laws.

The real power of the theory begins to make its appearance when some of
the restrictions are relaxed. This is demonstrated here by considering a thermo-
dynamic work term in the first law together with three mechanical work terms.
For it is here that forces with the appearance of nuclear forces appears. These
forces come from the action of new field quantities appearing as the fifth-
dimensional components of the gauge field. Though these field components first
appear in an interrelationship with the classical electromagnetic fields it is
the quantization that provides the connection of the field quantities with
nuclear properties. The connection shows up first in the prediction of anomalous
magnetic moments but gains additional support from the appearance of three spin
vectors that become necessary to complete a set of commuting observables.

Thus the Dynamic Theory offers the hope of including nuclear theory and
elementary particle theory within the same unified structure. Two aspects from
this approach seem particularly significant in their support of this contention.
One is the appearance of octets as the number of allowed combinations of funda-
mental eigenvalues for the components of the three spin vectors. The other is
the necessity for one of the vectors to be a four-dimensional spin vector instead
of being a three-dimensional one. Could this not be the additional freedom
necessary to include the newly discovered elementary particles within the same
theoretical framework as the others?

When mass conservative systems are considered, the theory offers new views
of several different physical phenomena. First, there is the viscous effect
of the geometry of a four-dimensional hypersurface embedded by mass conservation
into the five-dimensional manifold. This allows the prediction of thickened
shock fronts.

Another phenomenon which appears under a new light in the Dynamic Theory
is the electromagnetic containment of an ionized plasma. This should prove to
be of considerable benefit when applied to a fusion reactor. For here the theory
gives a geometric view of a hypersurface embedded into a five-dimensional space
until such time as mass conversion begins to take place then the system descrip-
tion becomes one given by the five equations of motion in the full five-
dimensional space.
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It is here that the concept of limiting rate of mass conversion becomes
prominent. This limiting rate stands as a fundamental concept with the same
character as the speed of light in relativistic theories and within this theory
where mass conservation applies. As far as is known, the prediction of the
existence of a limiting rate of mass conversion is original. However, the manner
in which it appears within the theory is identical with the manner in which the
limiting, or absolute, velocity appears, namely as the result of applying the
third law. Further, this coincides with the classical appearance of the absolute
zero temperature as a limiting value. Thus from the Dynamic Theory's point of
view the concept of a limiting rate of mass conversion is just as fundamental
as the concept of a limiting temperature or velocity.

On the other hand the existence of a limiting rate of mass conversion seems
intuitively pleasing. For if we accept the notion that something cannot travel
with infinite velocity, it seems only reasonable to believe that mass may not
be converted instantaneously.

The third law establishes a limiting value of the time rate of change of
one of the coordinates, or variables, by the integrating factor going to zero.
Then for a system near equilibrium, so that a flat space may be considered, the
integrating factor goes to zero when

2 -2
1 = \ + ~ 2 T (187)

c aQc

9 Hv1 2 rfy2 2 Hv3 2

where y = dy/dt and / = (~) + (~) + (^) . Thus the limiting rate of
mass conversion depends upon the velocity since, from Eq. (187)

y = ± aoc / - ̂  • (188)
c

Therefore the maximum rate of mass conversion occurs when v = 0 and then it may
be seen that the limiting rate of mass conversion is given by yMyt = anc. The

max u
limiting rate is specified for a particle which is sitting still, or for v = 0.
However, on the other hand if v = c, then there can be no mass conversion. This
might be better seen from another view. A system, which we might consider as a
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particle, finds itself limited in how fast its mass may change (to be concise
we should say "mass density") by the relativistic appearing Eq. (188). On
the other hand the speed of light, c, represents a limiting velocity and the
arguments of special relativity may be reproduced here to show that, for a par-
ticle beginning with a velocity less than c, no massive particle may be accelera-
ted to the speed of light. Here we find the further conclusion that a particle
may not be created and have a velocity equal to c upon creation.

Notice that in the argument above we hedged a little when comparing the
argument to an argument based upon Einstein's special theory. The reason for
this comes from an important difference between the theories. Einstein's theory
is restricted to the four-dimensional world of space-time. Thus it seems rea-
sonable to conclude that if something cannot be accelerated up to the speed of
light, then nothing can exist at a velocity greater than the speed of light.
This logic, howevf.r, contains the pitfall of inductive reasoning. The trap
appears, not so much in the logic of the Special Theory, as in the limitations
imposed by the nature of Einstein's postulates. By this I mean that by adopting
Einstein's postulates we are limited to a four-dimensional world and must rule
out solutions with velocities greater than the speed of light.

If, on the other hand, we look at the Dynamic Theory, we find that the
theory is not restricted to any number of independent variables, or dimension-
ality. Further, we find that the limiting effect of the third law does not
exclude solutions with velocities greater than the speed of light but, in the
four-dimensional case, rather rules out solutions with velocities which cross
the absolute velocity. This means that within the Dynamic Theory solutions may
exist for particles with velocity greater than the speed of light.

The next question might well be, if velocities greater than the speed of
light are allowed, how might they be obtained? Obviously, the allowance of these
velocities as solutions does not necessarily mean that they can be obtained.
Here we find the generality of the Dynamic Theory coming into the picture. It
allows a fifth dimension. Equations (187) and (188) were written for a system
restricted to remain very near equilibrium so that a flat, or Euclidean, space
may be used. Suppose we remove this restriction so that we must consider a
curved space. However, suppose that we relax this restriction in a very partic-
ular fashion. Let us suppose that the only non-constant metric element is g«*.
Then Eq. (187), which is the conditions for the vanishing of the integrating
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factor, may be written,

where g 4 4 may depend upon position and mass density. Then solving for the veloc-
ity which drives the integrating factor to zero we find

1 o—o—v0 = ± c f l - -22-^- . (190)
aQc

Now suppose we define the speed of light to be the velocity for which the inte-
grating factor goes to zero. This definition is consistent with Einstein's
definition of light waves traveling along a null trajectory in the four-
dimensional space-time manifold. However, in the five-dimensional manifold of
the Dynamic Theory this speed of light depends upon the rate of mass conversion
and the metric element g^.

Obviously, if g.4 is negative, then the limiting velocity, vQ, exceeds the
absolute zero velocity c, which now may be defined as the limiting velocity in
the absence of mass conversion. Thus the attainment of solutions with velocities
which are greater than c depends upon the possibility that the metric element
g 4 4 be less than zero.

For cosmological modeling the Dynamic Theory offers the possibility of zero
radiation pressure boundary conditions. Further, the theory may offer new
insights on black holes. Black holes are considered to have tremendous mass
densities and seem to be appropriate for the application of the theory. Further
justification of the theory's applicability to black holes comes from the recent
appearance in the literature of the need to talk of a generalized second law.
This generalization appears as a particular combination of the thermodynamic
entropy and an area of a black hole.

To quote Wald*, "The generalized second law is a truly remarkable law in
that it involves three rather distinct fields of physics: thermodynamics,

*Wald, R., 1977, Particle Creation Near Black Holes, Scientific American.
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general relativity, and quantum theory. Is it merely a strange coincidence that
this new law appears to be true, or is there some deep, fundamental significance
behind it which we do not yet fully appreciate? At the present, I do not feel
that we can answer this question." The Dynamic Theory offers an answer for it
shows that there is no coincidence in finding a second law involving these three
theories to be seen to hold. Indeed that is just what it predicts. The unifica-
tion of the different physical theories by the adoption of the three generalized
laws points out the fundamental significance of a generalized second law.

It thus seems appropriate to offer three further quotes: "The ultimate
aim of many theoretical physicists is, first, to define more precisely the range
of validity of the currently known laws of physics and, then, to find the new
laws of physics that govern the phenomena outside this range. The discovery
of such new laws is generally accompanied by a major breakthrough in our under-
standing of nature." (R. Wald, 1977) "If we wish to find in rational mechanics
an a priori foundation for the principles of thermodynamics, we must seek mech-
anical definitions of temperature and entropy." (J. W. Gibbs) "A Theory is
the more impressive the greater the simplicity of its premises are, the more
different kinds of things it relates, and the more extended is its area of
applicability. Therefore, the deep impression that classical thermodynamics
made upon me. It is the only physical theory of universal content concerning
which I am convinced that, within the framework of applicability of its basic
concepts, it will never be overthrown." (A. Einstein, 1949). So the Dynamic
Theory, as a new view of space, time, and matter, appears to me.
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