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ABSTRACT

A vacuum gauge field A  for Yang-Mills theory is constructed;

this field (i) is pure vacuum (A  = 0) at the origin, (ii) approaches

at large distances, the Belavin-Polyakov-Schwartz-Tyupkin pseudo-

particle, and (iii) satisfies 3 Aa = 0 everywhere.  The net topologi-
A-4

cal charge is zero, and there'is a Dirac-like string terminating at

the origin.
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Because the physics of quantum chromodynamics  is evidently very

different from that of quantum electrodynamics, any theoretical distinction

between non-abelian and abelian gauge field theories arouses great interest.  One such

distinction, the full significance of which is yet to be established, was

2
pointed out recently by Gribov. The fundamental observation is that,

unlike the case of electrodynamics, the imposition of a continuous gauge

condition together with appropriate boundary conditions is not sufficient

in a Yang-Mills theory to specify uniquely the gauge field.  In particular,

the Coulomb gauge was studied in Ref.2.

In the present Letter, we study the vacuum of a Yang-Mills theory, but

now in the Landau gauge.  The situation is superficially similar to that of

the Coulomb gauge but there are significant and important differences.  For

example, the topological properties of the Landau gauge are quite different,

as will become clear below.

The SU(2) theory we are considering has lagrangian

2 = 1 Fa  Fa.                                         (1)4 Bv By

abc·b c
F•a   = bt,A -Bv<tge      A A (2)
BV B  V

with a = 1,2,3.  Let us consider the general gauge transformation

U (x)   =   z4   +  i g. s

where z (x) is a real unit vector.  If we perform such a gauge transformation
a

on the pure vacuum A =O w e arrive at the field
11

A;  =  1  11& B  (8»ze') 'B                                                                    (4)

where  T  0   is
the. symbol having the properties3

11 c = eabc   a,b,c = 1,2,3                         (5)

9 4 = -9 b = 6«b                                   (6)
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For example, choosing z11 = 3211 we arrive at
1

f:-  -       ,'9.0                                                                                                                                         (7 )

where R2 = x4 + 12.   This is the zero-size-limit of the pseudoparticle solu-

4tion of Belavin et al.  (BPST).  Note that throughout we are considering

only such classical solutions in euclidean space.

As a specific ansatz, for which we shall claim a vacuum copy exists,

we parametrize z  as follows
11

< cos g(R,a)

ZIi = <.8 sin g (R,00                         (8)

where   a  =   tan- 1(r/x4)'   A  =   35/r,    r2   =  x2.
The boundary conditions to be imposed are

R-00

g (R,a)            ) a 0:ga<TT                     (9)

R-0
g (R,a)  .--„4 0 0 5 a   TT. (10)

Thus, there is pure vacuum at the origin, and at large distances, for all a

except a = Tr, there is the limit of BPST,  Eq. (7).

We further insist that Fa  = 0 everywhere, with Fa  given by Eq. (2).
PV AV

The negative x4-axis  (a = Tr), excluded  in Eq. (9), is singular and

requires separate discussion related to topological charge conservation.

Now impose the Landau gauge condition aRA: =
0 which,  from Eq. (4),

implies

T  2  ( O zi) z  =  0.                                                      (11)

Inserting the ansatz, Eq.(8), we find after some algebra



I .

4

 g= 2.2 (12)
sin 2g
R sin a

Note that in general the copy of any field configuration A' in the
11

Landau gauge can be obtained as an extremum of the action

S =  d4xTr[BP'Ut811u- 2816UutA ]. (13)

To analyze the required solution of Eq. (12)  for a in ·the vicinity of
TT

a = 0,2, Tr it is convenient tp use variables  t =  0nR and g(R,a) = a f (t,a)

whereupon one finds

I+22 +   + 2  + cot a 1  1  f + 21:ta  f =  sin(22af)                               (14)/    OU _1 a sin a

Assuming sufficient smoothness in a for all t (i.e., neglecting a derivatives),

as special cases of Eq. (14) one may cite the mechanical analogs at fixed a:

(i)  a << 1 gives

I + 2/
=:43,f(1-f2) (15)

corresponding to attenuated motion in the ,potential

22
U(f) =  (1- f ) (16)

satisfying the required boundary conditions f=O a t t= -00 and f=l a t

t-+m.

(ii)   a= · -B,  B « 1  yields

f +  2f  = 2  sin Tr f (17)
1T

which describes dissipative particle motion in the potential well

U(f)  = -  cos Tr f (18)
TT

which again is seen to be consistent with the given boundary conditions.
C

(iii)  Consider now a = Tr- B, B << 1. This gives
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f   +   2 f   =   -·12    s i n 2Ff (19)

TT P                                 

corresponding to damped motion in potential

U (f)   =         2   2   cos (2rr  f) . (20)
21-r B

For B 0 0 this is consistent with f- 0,1 for t- -co, too , respectively.

For B=0 (or a= TT) exactly, only f (t,Tr) =O i s allowed as a solution.
2For the case of general a we introduce variables Z = sin a and

g = x4/r to find

E + 2A = sin 2g  - 1 32g .                                        (21)
1                            82     3 e

The form, Eq. (21), is useful because it enables us to make the following

quasi-mechanical analog in continuum limit.  An infinite ensemble of pendula

is arranged to pivot around a horizontal g-axis.  The pendulum lengths range

from 1 = 1 (at g = 0) to 1 = 0 (at & =·+co) according to Z = (1 +92)-1.  All

pendula start at t= -co in a vertical position; thereafter, for O c a w Tr/2,
2g(R,a) is the angle from the vertical of the pendulum at g = cota for

time t = BRR. For Tr/2 6 a < Tr, we have g(a,R) = M -g(rr-a,R).  To reproduce

the final term in Eq.(20) requires the pendula to be coupled by tension

springs with negative (but constant) torsional moduli. The system then moves

such that for all g,t one has Bg/Bg < 0 and 82g/Bg2 > 0.  Thus the final term

in Eq. (21) always acts to decrease  g.  This term is infinitely large for

1 - 0 and hence g(R,0) = 0 for all R; the same term bedomes progressively

less important for $ -0 where the motion i  that of a free damped pendulum.

This  mechanical   sys tem comes   to   rest   for   t  -  co   such   that

8 sin 2g = 32g/Bg2 (22)

which gives  g(00,a)  = a, as required. _ Also, the smoothness assumption mentioned
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immediately prior to Eq. (15) is seen to be consistent with this result.

We should emphasize that we have been unable to demonstrate rigorously

that the above motion is possible for the mechanical analog, but every

consistency check we have made is positive.

Now we turn to the most subtle part of the analysis.  Our vacuum copy

becomes, for R-oo, the BPST form, Eq. (7), and the reader may well ask why

the topological charge

Q = --S--   d4x Fa Fa (23)2 J BV 11\;321-r

should not have, therefore, the value Q=1 which would contradict our

a
assertion that F = 0 everywhere.pV

To understand how we. have Q=O i t i s profitable to consider the quantity

_st_ r .3 ijk a b cq(x4) =   2  1 a x€ 6    A.A A (24)
abc  i j k'96TT   -

fixed

X4                        -

This measures the amount of topological flux crossing a fixed-x  slice

of euclidean 4-space.  The total charge will then be given by

Q   =   q  C  + co)   -  q(  - co) (25)

provided, as iS the case here, there is no leakage for r - CO.

Let us first consider the case where A  is given everywhere by Eq. (7).

Then   one    has    Q   =     + 1    s ince
2

a -a 32rr 4
F-  F   =   2  6 (x) (26)BV BV g

and
2x           2          x

CO

q (x4) =-4  d r   2r  2 2   =    4 (27)
- 0  (r +x4) 2 Ix |
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This may also be written (as before, a = tan 1 r/x4)

1         r     3         s in2a   dalq (X4)     2 J d.x    2 dr (28)

2TT          r      tx  fixed4

1

n [a(r=co,x4) -0(r=O,x4)] (29)

which agrees with Eq. (27) since q(*00)= El/2 and hence, from Eq.(25), Q=+1.

In the present case, after some algebra one finds a formula different

from Eq. (29), namely

1q(x4) = w [g(r=co,x4)-g(r=O,x4)]. (30)

For x4 > 0' the result coincides with Eq.(29) for large x4.  For negative x4'

onemust nowwrite

g(r,x4) = f(r,x4) a (r,x4) (31)

and observe that because of the singular behavior already noted for Eq. (19)

one has

f(r= 0,x4)  =  0   ,   x4 <0. (32)

Thus, from Eq. (30), one obtains that q(foo) =+1/2 and therefore from Eq. (25),

Q = O consistent with Fa  = 0.
BV

The situation is the following:  for x4 - -co, q(x4) has two contributions;

one is -1/2 from the BPST component, the other is + 1  from a string of topo-

logical flux along the negative x -axis terminating at the origin.

The necessity for this string is quite analogous to that for the Dirac

5
magnetic monopole in electrodynamics·, where a string of magnetic flux is

required to comply with Gauss' theorem.

We speculate that there is a related stringless copy with a different

set of boundary conditions, namely pseudoparticle behavior in the positive

time hemihypersphere and anti-pseudoparticle behavior in the negative time
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hemihypersphere at R = co. This solution is necessarily discontinuous on

the great equatorial hypercircle and has, of course, zero topological

flux.  One can imagine a flux conserving deformation of this solution in

which the equator is shrunk to increasing latitude circles which finally

form the opening of a tube of pinched incoming flux along the negative

time axis which cancels the outgoing flux on the rest of the hypersphere.
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