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I N T R O D U C T I O N 

Quantum Cbromodynamics (Q('D) potentially describes all of hadronic and 

nuclear physics in terms of quarks and gluons as fundamental degrees of freedom. 

Many features of the theory aw consistent with experiment, especially at large 

momentum transfer where asymptotic freedom allows perlurbalive prediction!!. 

However, confrontation with the most significant and intrinsically non -perlurbative 

aspects of the theory, its predictions for the spectrum and wavefunclions of hadrons, 

as well as the mechanisms for confinement and jet hadronization, still must wait 

for theoretical solutions. In this talk, the application to QCD in 1 + 1 dimensions 

of a general non-perturbative approach to field theory ('Discrelized Light-Cone 

Quantization (DLCQ}") developed in lief. [1| is presented, and the prospects for 

'A + 1 dimensions are discussed. 

Sl'(,\\ gauge theories restricted to one spatial dimension and time have been 

studied extensively, both analytically '' and numerically/ predominantly fur the 

case when .V is large. There are some special properties of these theories peculiar 

to 1 + 1 diMiensiorib which should be mentioned for the sake of orientation. Hecause 

tfiere are no transverse directions, the gluons are not dynamical, and (\u A* = 0 

gauge) their presence is felt only by the constraint equation they leave behind. 

Likewise the quarks carry no spin. The fennion field may be represented as a two-

component spinor. and chiralily for massless fermions identifies only the direr lion 

of motion. The coupling constant g carries the dimension of mass, and for one 

quark flavor of mass r«, the relevant pararueter is g/tn. After the subtraction 

of iitlinite constants, the theory is finite, finally, the restriction to one spatial 

dimension produces confinement automatically, even for QEI)\+ \ The electric 

field is unable to spread out and the energy of a non-singlet stale diverges as the 

length of the system. 

In spite of these idiosyncracie>, these models possess certain qualities to torn 

mend their study, not the least being tract ability. There are only so many op 

portunilies in a lifetime to solve, albeit numerically, a confining field theory with , 
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arbitrary coupling from first principles. With solutions in hand, conceptual ques­

tions, points of principle, or approximation schemes which do not depend on the 

dimensionality of the model may be addressed. For example, Kroger has used 

QED\+i quantized on the light-cone to discuss the numerical treatment of scat­

tering for bound systems.1*1 Also, these models provide a test bed for approximation 

schemes and numerical techniques which may prove useful for realistic problems 

and a check on those, such as the large-AT expansion, already »n use. Ultimately, 

though, the motivation for this study 13 negative; if these models cannot be solved, 

there is no hope for QCD in 3 + 1 dimensions. 

LIGHT-CONE QUANTIZATION 

Quantization on the light-cone is formally similar to standard canonical equal-
time quantization, but with a few technical differences which nevertheless make 
life much easier. Given a (Lorentz-invariant) Lagrangian jCfj**), a new variable 
x + = i ° + x 3 is defined to play the role of time, along with new spatial variables (in 
four dimensions), : ' 3 i ° - i 3 and xj. = ( r 1 , ! 2 ) . Independent degrees of freedom 
are identified by the equations of motion. These are initialized to satisfy canonical 
commutation relations at x+ = 0, and the creation and annihilation operators from 
their momentum space expansion define the Fock space. The momenta conjugate 
to x~ and i j . , P+ and P±_ respectively, are diagonal in this space and conserved 
by interactions. P~ acts as a Hamiltonian; in general it is complicated, dependent 
on the coupling constant, and it generates evolution in x + . Diagonalizing it is 
equivalent to solving the equations of motion. 

The mass shell condition, p2 = m2, 'or individual quanta implies that p~ = 
(m +p\)/p+, so that positive (light-cone) energy quanta must also carry positive 

p + . This seemingly innocent detail is actually a very good thing; the positivily of 

p + combined with its conservation is responsible in large part for the simplicity 

of this approach. First, x +-ordered perturbation theory becomes calrulationallv 

viable because a large class of diagrams which appear in the time-ordered ana­

log vanish. These include any diagram containing a vertex in which quanta are 
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created out of the vacuum; since all p* are positive, at such a vertex the total 

momentum cannot be conserved. 

More importantly for the work described here, but by essentially tbe same 
reasoning, tbe perturbative vacuum is an ciginstale or tbe f J11, interacting Hamil-
Lonian, with eigenvalue zero. Fairs of quanta cannot be produced which conserve 
p+"i Q D e v e r y desirable feature of this remarkable fact is that not only is the 
ground state trivial, but also that all the quanta occurring in higher states are 
associated with meson and baryon wavefunctions rather than disconnected pieces 
of the vacuum. 

Finally, it greatly simplifies the numerical work, especially in 1 -f1 dimensions. 
The system is quantized in a box of length L in the x~ direction with appropriate 
boundary conditions so that momenta are discrete and Fock space states denumer-
able. For the fixed total momentum P+, tbe relevant dtmensionless momentum 
will be K = -fjP*• To see how K restricts the Bpace of states, consider K = 3, 
which must be partitioned among tbe quanta in each state. Tbe only three pos­
sibilities are (3), (2,1), and (1,1,1). Contrast this with equal-time Fock states of 
definite Pl. For equivalent numerical momentum, partitions will include not only 
those enumerated above, but also (4, —1), (104, —101), ( 5 ,5 ,3 ,1 , -1 , —10), and so 
on. To keep the number of states finite, an additional cut-off in momentum must 
be introduced, whereas this is not necessary in the light-cone case. 

Not only does a fixed A' act implicitly as a momentum cut-off, it also severely 
limits both the total number of states of definite momentum and tbe number of 
quanta in each individual state, as the example above demonstrates. K serves one 
more role. The continuum limit L —» oo is equivalent to A' —* oo as the physical 
momentum P* remains fixed. The size of A' determines the physical size of the 
system, or equivalently, the fineness of the momentum space grid. 
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An SU(N) gauge theory is denned by the Lagrangian 

£ = - | F ^ ^ + # ^ - m M . (I) 

Ff,, is the field strength tensor F£, = dmA% — Q»A\ — gJ^A^AI and the covariant 
derivative is defined as iD? — idM — gA^T*. In two dimensions, the fermron field 
(in a representation in which 7* is diagonal) 

•-GS) 
is a two-component spinor in the fundamental representation. L and R indicate 
cbirality, which, for masflesa fermions specifies only direction. 

A useful gauge choice is A+ = Q. In this gauge there are neither ghosts nor 
negatively nnnned gauge bosons, so the Fock space quanta, and therefore the wave-
function constituents are physical and positively uonned. Also, in 1 +1 dimensions, 
this gauge choice is Lorentz (but not parity) invariant. The equations of motion 
are then 

*0-Vn=jmtfa (3) 

-OLA- - * £ r V * = \g}^ (4) 

id+^R =4 gA~mT*^R + \ m^L (5) 

6V3_ A- - n t f i r V i - \ gf^d-A^A-' = ± w — (6) 

Only Eqs. (5) and (6) are dynamical; these will be generated by the Hamiltonian 
P~ • Eqs. (3) and (4) are constraints, as they involve only derivatives in x~. At 
each time x + , both $1 and A~* may be solved for in terms of rffR by inverting 
these derivatives with appropriate Green's functions. 
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v'-fl is evidently ihe only independent degree of freedom and as such is the only 
field quantized." The standard canonical commutator 

ii>xi*}tr*B(yf' }x+=9< = &%*{*' - v~) (?) 

may be implemented at i + = 0 by expanding in termB of creation and annihilation 
operators: 

0=5.5.••• 

The operators which generate translations in x^ are derived from the energy 
momentum tensor: 

P" = i fdx-&+». (9) 

P+, the momentum conjugate to x~, is diagonal, P + = £ » ^(b&fb*^ +<£,«<£), 
while P~, which generates evolution in x + , is in general complicated and dependent 
on the coupling g. Diagoaalizing P~ is equivalent to Bolving the equations of 
motion. 

P~ in the space of color singlets may be divided into P~ =• m2Ho + g3V. 
m2Ho is the free Hamiltonian which assigns an energy m 2 /Jt + to each quark. The 
interacting piece is 

*2V = - i fdx~dy-\x- -y-\j+a(x-))+'(v-h (10) 

where the current is normal-ordered: j + B = 2 : ip'gT'rffjt: . 

The potential |x~ - y~\ is the result of inverting the constraint equation (4) 
Tor A~, Finally, the interaction may be divided into a part : V : which is entirely 
normal-ordered (Pig. lb ) and a remaining diagonal part V ^ ? (Fig. la ) which 
contains a quark mass renormaiization. The linear potential in position space 
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I \ ^ W 
Figure 1. Interaction Vertices. 

becomes the instantaneous gluon propagator ( l / p + ) 2 in momentum space. Typical 

four-quark interactions in : V : have the form 

T H E P R O G R A M 

In order to evaluate and di&gonalize P~ numerically, the system is quantized 
in a box in x~ of length 2X and boundary conditions are selected. Consequently, 
the momenta are discrete, denumerable and therefore digestible by the computer. 
To expand 0jj in a complete set of plane-wave solutions of the free equations of 
motion, anti-periodic boundary conditions are employed. (For periodic conditions 
the term with fc+ = 0, needed for completeness, is not a solution of the free equation 
k+k~ = nt 3 except when m is zero.) The field i>R expanded in operators with 
discrete momenta is then inserted in Eq. (9) to produce the discretized Hamiltonian 
P~. 

The program is set up to run for arbitrary number of colors TV, baryon number 
B, and numerical momentum K = (L/2x)P+. Given these, it constructs the Fock 
space by generating all possible distributions of K among quarks in color singlets. 
In general, this construction is over-complete. The inner product matix (i\j) of 
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these states is evaluated and diagonalized; redundant slates are identified by zero 
eigenvalues and removed; those remaining are orthononnal and complete. 

The Hamiltonian matrix (t| H \j) is evaluated in this basis, with the color con­
tractions performed diagrammatically. Because the light-cone Hamiltonian breaks 
up simply into Ha proportional to m2 and V to g2, the corresponding matrices 
are stored separately. Altering g (or m) involves only multiplying these matrices 
by the new parameter prior to diagonalization, with almost no additional cost in 
time. 

0 0.2 0.4 0 6 OS 1.0 
i / ( n W / o 2 ) w — 

Figure 2. Spectra for N = 3, baryon Qiunber B = 0,1 and 2 as a function of g/m, K fixed. 

Setting g/mt combining /fo and V, and diagonahzing produces the full spec­
trum (Fig. 2 ). Included in the spectra are not only single mesons and baryons 
and their excited states., but also multiple-hadron scattering states. Note the large 
number of massless mesons and baryons in the strong coupling (small mass) limit. 
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WAVEFUNCTIONS 

Diagonaiization gives not only eigenvalues but also I heir eigenvectors, or wave 

functions. Because the perturbative vacuum is also the full interacting vacuum, ait 

quanta in the wavemnctions are associated with mesons and baryons, making them 

simple to interpret and straightforward to employ in calculations." Expressed m 

terms of the Bjorken variable x = ^+f^iaf> '•boy are invariant under longitudinal 

Loremz boosts, and so, in 1 -+• I are Lorentz-iavarianl. Parity in more complicated, 

as it is not respected by the quantization scheme. For wavefunctions with two 

particles in I -H J, however, it involves only an interchange of s variables. 

Filially, these wavefunclions are universal; they contain all of the information 
about the hadruiis. Once computed, masses, form factors and inclusive and ex< hi 
sive scattering amplitudes are reduced to computing a few integrals For example, 
in four dimensions, the ratio 

R{Q~) ~ i*e*c-—kadnuuf <*?+»-—hadf***) (12) 

is a textbook ex&mpk- of a quantity calculable in QCI) whf-n Qi ^ large Tlie 

relevant matrix element, (ei/Q2)vt),u(hadrons\Jtm |0) is typically squared and 

related to vacuum polarization graphs, which i re then computed as an expansion 

in a . { y 3 ) . However, were someone to provide the appropriate hadronir wavefunc-

tions. this mainv clement could be computed directly at any Q2. A feature surh 

as the ft resonance would then appear as an enhancement in Ire densiiv of states 

in tee wx continuum. 

The valence wavefunctions for the lightest N = 3 meson and baryon are dis­

played in Fig. 3 by means of their quark structure functions For weak coupling 

[Tn/g = 1.6) the quark mass dominates p + and so moment urn peaks around equal 

sharing among constituents iz = j a f M ^ JT ' t > r t o e i " " " " a « d baryon. respertivejy). 

Stronger coupling tends to smear out the distribution. 

Wavefunctions contain in general higher Fock components with additional num­

bers of quarks. Figs. 4a and b illustrate the contribution to the quark structure 
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function from the component of the lightest A' = 3 meson and baryon wavefunc-
tion with an additional qq pair. Their contribution is suppressed relalive to that 
of the valence vavefunction by from iwo to four orders of magnitude. Because P"1 

must be distributed among more quanta, the average x is lower The character 
istic bump structure may be understood in terms of qq pairs splitting off of th<* 
valence quarks, at least for weak coupling."1 Fig. 4b also includes the antiquark 
structure functions and gives an indication of the pion content of the baryon. Fig 
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4c presents the (negligible) contribution from the Fock sLate with two extra quark 

pairs. 

1 — i — i — i — i — r 
o q - q q - q (* 10 2 ) _ 

Figure 5. a-o) Fin»t three stales in JV = 3 meson spectrum for m/j = 1.6, 2K=24 d) Eleventh 
state 

Of course the spectrum consists of many states beyond the lightest. Because 

tne quanta are associated only with the hadrnn, the wavcfunctions need not be 

disentangled from the vacuum and are often relatively simple to interpret. In Fig. 

5, the first three (weakly coupled) meson wavefunctions are clearly the first three 

radial excitations of a predominantly qq state. In fact, in the non- relativistir 

limit these become the momentum transforms of Airy functions. In Fig. 5d the 

dominant contribution is from two qq pairs peaked at x = 1/4, with a mass I wire 

that of the first state; it clearly represents a pair of the lightest mesons. Fig. 6 

presents a similar picture for the A' = .'i haryons. The pair of baryons in Fig. fid 

is selected from the B = 2 spectrum. For strong coupling, it is more difficult to 
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Figure C. »-c) Pint three utoies m JV = 3 baryon spectrum, 2K=21. d) First fl = 2 atate. 

disentangle states due to the presence of a large number of /ery light mesons and 

baryons. 

MASSLESS MESONS A N D BARYONS IN THE m/g - . 0 LIMIT 

The massless hadrons at zero quark mass may be understood by studying the 
momentum space transforms of the SU{N) currents (at x* = 0) 

J. 

-L 

dx- -*T*~ • + a 

rmi*~) (13) 

which satisfy \Vf. V;*j = if^Y^, + \ 16ab6t+ifi The currents j + ° are defined by 
point splitting along J~: for , 4 + = 0. the path- ordered exponential included to 
ensure gauge invariance reduces to one. The algebra may be extended to include 
the #(1) cur.ent j * — ijj)' : VgVR : - The transformed operator 14 commutes 
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with the other SV[ N) elements, and the related operator a k = ( j JJ c (A:} Vjt satisfies 

the free boson commutation relations [a*,a[] = 6t,l-

The interacting part of the Hamiltonian is greatly simplified when expressed 

in terms of these operators: 

Pr = -^Jdx-dy-\T--y-\i+"(*-)J+a(y-) ( 14 ) 

- L 

be­comes 

(15) 

Because V£ =^ Qa, the contribution at k = 0 is proportional to the total charge 
QaQa and so may be discarded. 

The Vic are color-singlet bilinears in if>R, and so may be used to create mesonic-
like states with momentum P* = ^~. In the limit where m/g is zero, the entire 
Hamiltonian is given by Eq. (15). Because the V* commute with the Vt° which 
appear in Pf, 

trt 
W2VJt|0) = —[P- ,H] |0) = 0. (16) 

Not only is the state created by acting with 14 on the vacuum an exactly massless 
eigenstate in this limit, but states formed by repeated applications are also exactly 
massless. Furthermore, acting with Vi on an eigenstate of non-zero mass produces 
a degenerate state of opposite parity. This argument is independent of the value 
of the numerical momentum A' and so gives an exact continuum result. 

Just as the existence and number of massless states is most simply discussed 
in terms of the V^, so also are the wavefunctions of these slates. Applying one V^ 
to the vacuum 

" = £•5, . . 

yields a continuum wavefunction of 0{x) = 1 (where n/2A' —» x). Because 4> is 
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t'vt-u uiidrr llif interchange 1/ s and 1 - r , this state is a pseudosral&r. The 
wavt-f unctions uf momentum A created by applying V twice are, for any / < K, 

i A-iH 10) = ^ [ £ (*lf-^^ - * 4 - . , ) 

K-l-J 1-
(18) 

£ £ *5?-*+.A*,<&4*. 
m=J n=j 

10) 

The 99 piece is odd; therefore this state is a scalar, as a product of pseudoscalars 

must be. All the massless meson wavefunctioas for a given K may be constructed 

in this manner; parity will alternate with each additional V. 

Were the gauge group U{N) rather than SU(N) '* the additional term asso­
ciated with the extra U( 1), 

J t = l 

appears in P~. The a* satisfy free bosonic commutation relations, and this addi­
tional interaction is therefore th? discrete light-cone Hamiltonian for free bosons 
of mass squared 92/2TT- These formerly massless states created by the o[ are pro­
moted to the free massive bosons found in the Scbwtnger model and discussed in 
[17] and fl8j. The wavefunctioas for these states however are unchanged. 

Note that while the entire £>'(]) spectrum may be built up from these non-
mieracting bosons," for l!(W) or SV{N) they describe only part of the spectrum; 
these are the massless mesons for SU(N). In addition there are massive states 
which include excited qq pairs. 

Similarly, the composite baryon field 

B> = \j 
L 

«b-e—r* u, *„1>F[x-)--4%"(x-) (20) 
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commutes with the V/, and, in the limit m/g -* 0, with the Hamiltonian P~. As 
in the case for mesons, this field creates an identically masslesa baryon. Repeated 
applications on the vacuum produce a massless state with arbitrarily desired baryon 
number. Furthermore degenerate states with the same baryon number may be 
created by acting with the massless mesonic operators Vt ic conjunction with the 
fit- Again, these results are independent of K and are true in the continuum limit. 
The {nsBormalized) wavefunction associated with this maasless baryon is 

Bk | o > = — ^ = r £ SKXn.t<,.~cAc; • • * ifir 10). (2i) 
2(2£J a n. 

Whether this state is a fermion or boson depends on N being odd or even. The 
quark distribution derived from this wavefunction for N — 3 becomes 6(1 — x) in 
the continuum limit; this x dependence is clearly evident in Pig. (3]. The general 
expression for the quark distribution for a single baryon in the mfg —* 0 limit is 

o(x) = i V ( j V - l ) ( l - x ) A r - 2 , (22) 

For N = 2, q(x) = 2, which apart from the normalization, is identical to the meson 
distribution for all N. 

NUMERICAL ACCURACY 

A great deal of information about solutions in the continuum limit may be 

extracted by restricting the Fock space to a single qq pair. This is a good approx­

imation to the lightest meson and its radial excitations, but neglects a large part 

of the low-lying spectrum when gfm is large. 

Restricting the eigenvalue equation 

M2\*(P+)) = P-P+\4(P+)) (23) 
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to the yg ?ut>spat'(* and taking thf limit rv —• ex: yields the integral equation 

a 
(24) 

_ 9 - / ( I -<,)AT 

0 

For SLf(y), a - 1, and a =- 0 for L!(N). The continuum wavefuncuon 0 ( J ) is 

defined by 

This equation incorporates all of the leading order dynamics of Lhe large-A' 
approximation.'Because it could be derived from the discretized Hami 1 Ionian in 
the continuum limit K —* oo, it demonstrates that this limit is sensible. Also, it 
shows trivially that, when m = 0, 4>[z) = 1 is an eigenfunction with M2 = 0 for 
SU[N), g2J2x for U(N). The latter is the well-known Schwinger Model boson. 

More importantly for this work, it shows the error due to discretization as 
that of an integral evaluated numerically on a regularly spaced grid, with spacing 
t = 1/A'. This is not normally the most efficient method, and this case is not even 
normal. In addition to the typical errors of order e", n > 2, the prinripal-vaJuo-
regulated singularity in Eq. (24) induces an error of order t. Also, for small x. 
<A(x) <x xa. with a given implicitly by * 

•xm2 

l-a*coHa*)= ; (26) 

a ranges from zero (when m/g = 0) to one {g/m = 0). This non-analytic endpoint 
behavior produces additional a-dependent errors. As a result, a mass, for example 
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measured at finite K behaves as 

M(1)-«(O) + ! + ] ^ +£., .-£_ +.... < 2 7 ) 

Af(0) is the continuum limit. This behavior, as well as Eq. (26) apply as well to 
baryons and higher Foci states.' Knowing Eq. (27), convergence may be improved 
significantly by Richardson extrapolation: compute M at n different K, and fit to 
Eq. (27). An estimate of the error in determining M(0) is given by the ntk term. 

— SU(4> — SUP) — SU(2) 

0 QJS 1 0 1J5 0 0.5 1.0 1.5 

F i g a r o 7. Extrapolated n u a a for JV = 2,3 and 4 meson and buyon. 

This extrapolation has allowed lor meaningful numerical results from the rel­
atively low K « 10, ai well as error estimates. Plots for the lightest meson and 
baiyoa for N = 2,3 and 4 are presented if Fig. 7; when not visible, the estimated 
error ban are smaller than the data point. The xero masses at mfg—0 are exact. 
The next two at m/g = .05 and .1 u e probably not close enough to convergence 
for the assigned errors to be more than rough estimates. 

Finally, these data may be compared with previous calculations. Fig. 8b 
demonstrates the rapid meson mass approach to the large-TV limit from Ref. [2] 
sa N increases from two to four. In Fig. 8a, points from the Hamiltonian lattice 
calculationH,of Hamer {at N = 2 agree well with the light-cone results. This is 
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- • SU<4) - - SU(3) — Large N — SU(2) 
• Hsimr: SU(2) Lattice 

1 i " 1 1 f 1 4 I 1 1 " 1 " T3 

mfc (ixlH)yamQ 

Figure S. Comparison of N = 2 .3 and 4 meson masses with largc-N and lattice calculation*. 

gratifying in that, while both techniques possess peculiarities, they are peculiar in 
different places. Also, the ratio of lightest meson to baryon masses in the strong-
coupling limit for N = 2,3 and 4 , are consistent (to within the roughly 10% e m . J 
with the ratio 2s in( a ^J_^) derived by bosonization.w 

LARGE-TV APPROXIMATION 

Most previous work on this model employed the large-/V approximation to 
leading order. By obtaining numerical solutions at finite TV, the validity of this 
approximation for interesting values of JV (three, for example) can be tested. From 
Figs. 7 and 8 , for weak coupling (large quark mass) it is quite good. The meson 
mass is already well approximated for N = 2, and, as expected, the baryon masses 
increase proportionally with TV. The low-lying states are indeed qq excitations; 
higher Foclc contributions are negligible. For strong coupling (small mass), the 
approximation is not as reliable; the effective expansion parameter g2N/m2 is no 
longer small. Light baryons exist for all finite N and so may not be neglected. 
The low-lying meson spectrum is dominated by states with arbitrary numbers of 
quarks rather than qq excitations. Finally, the U(N) meson mass (as mfg — 0) of 
g2/2* is neglected in the large-JV limit. 
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PROSPECTS IN FOUR DIMENSIONS 

QCD in two dimensions is both manageable and instructive, but the world 
in reality consists of (at least) four. Not surprisingly, the problem becomes much 
more challenging, as introducing transverse directions greatly increases the degrees 
of freedom. Spin for the quarks, and (in A* = 0 gauge) physical, transversely po­
larized gluons must be included, and both carry transverse momentum, which may 
be discretized on a Cartesian grid, p^ = (2%{L^)n\. The n'± can be negative, and 
will be restricted by the cut-off discussed below. As the Fock space grows roughly 
exponentially with the degrees of freedom, exploiting the remaining symmetries of 
the light-cone Hamillonian tinder, for example, isospin, charge conjugation, and 
rotations of 90° in the transverse plane will be necessary to restrict the space. 

In contrast to 1 +1 dimensions, QCD3+1 requires a non-trivial renormalization. 
This may be implemented directly on the space of states by restricting it to those 
whose invariant mass satisfies 

The cut-off A must be sufficiently larger than the scale of interest, with physics be­
yond it absorbed into the couplings and masses.' As is, this prescription is Lorentz, 
but not gauge, invariant, and likely will need to be improved. Finally, gauge invari-
ancv may be checked by showing, for example, that in the continuum and large-A 
limits matrix elements such as q? (O\j0 \q) vanish, and, for QED, that the photon 
remains roassless. 

A crude estimate of the difficulty of this problem may be made by selecting 
minimum appropriate values for A of I GeV and I fermi for (£j_/2ir). These 
correspond, by Eq. (28), to x — 1/A' ** 1/25 and n i — 5. This allows some hope 
that systems with longitudinal momentum K comparable to that used in 1 + 1 
dimensions combined with the first several transverse modes may begin to provide 
a recognizable picture of hadronic physics. 
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Presently, programs for QED3,.j have been written by A. Tang and H. C. Pauli 

and are under investigation. Among other things, positronium will be studied for 

various ctjplings. Initial attacks on QCD3+1 will most likely involve purely gluonic 

or heavy qq systems. 
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