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INTRODUCTION

Quantuin Chromodynamics (')} potentially describes all of hadronic and
nuclear physics in terms of quarks and gluons as fundamental degrees of freedom.
Many features of the theory are consistent with experiment, especially at large
momentum transier where asymptotic freedom allows perturbative predictions.
However, ennfrontation with the most significant and intrinsically non-perturbative
aspects of the theory, its predictions for the spectrum and wavefunctions of hadrons,
as well as the mechanisms for confinement and jet hadromzation, still must wait
for theoretical solutions. In this talk, the application to @C' 2 in I + 1 dunensions
of a general non-perturbative approach te field theory (‘Discretized Light Cone
Quantization (DLCQ)) developed in Ref. [I] is presented. and the prospects for

3 4 | dimensions are discussed.

SULN ) gauge theornes restricled to une spatial difnension and time have been
studied extensively, buth analyticatly“™" and numerically® ™ predominantly for the
case when N is Jarge. There are sume special properties of these theones peculiar
to 141 dimensions which should be mentioned for the sake of orientation. Because
there are na transverse directions, the gluons are not dynamical, and (in At =@
gauge) their presence is felt only by the cunstraint equation they leave behind.
Likewise the quarks carry no spin. The fermion field may be represented as a two
component spinor. and chirality for massless fermions identifies only the direction
of motion. The coupling constant g carries the dimension of mass, and for one
quark flavor o mass m, the relevant parameter is g/m. After the subtraction
of inlinite constants, the theory is finite. Finally, the restriction to one spatial
dimension produces confinement automatically, even for QEI, ), The electne
field is unable to spread out and the energy of a non-singlet stale diverges as the

length of the system.

In spite of these idivsyncracies, these models possess certain qualities to com
mend their study. not the least bemg tractability. There are only so many op

portunities in a hfetime to sofve. albat nurterically, a confining field theory with |
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arbitrary coupling from first principles. With solutions in hand, conceptual ques-
tions, points of principle, or approximation schemes which do not depend on the
dimensionality of the model may be addressed. For example, Kroger has used
QED\4, quantized on the light-core to discuss the numerical treatment of scat:
tering for bound aystems!" Also, these models provide a test bed for approximation
schemes and numerical techniques which may prove useful for realistic problems
and a check on those, such as the large- N expansion, zlready in use. Ultimately,
though, the motivation for this study is negative; if these models cannot be solved,

there is no hope for QCD in 3 + 1 dimensjons.
LIGHT-CONE QUANTIZATION

Quantization on the light-cone is formally similar to standard canonical equal-
time quantization, but with a few technical differences which nevertheless make
life much easier. Given a (Lorentz-invariant) Lagrangian £{z*), a new variable
z+ = 2% 4 27 is defined to play the role of time, along with new spatial variables (in
four dimensions), = = 7% — 2% and z; = (2!, 2%). Independent degrees of freedom
are identified by the equations of motion. These are initialized to satisfy canonical
commutation relations al z* = 0, and the creation and annihilation operators from
their momentum space expansion define the Fock space. The momenta conjugate
to x~ and z;, P* and P, respectively, are diagonal in this space and conserved
by interactions. £~ acts as a Hamiltonian; in general it is complicated, dependent
on the coupling constant, and it generates evolution in r+. Diagonalizing it is

eqnivalent to solving the equations of motion.

The mass shell condition, p? = m?, “or individual quanta implies that p~ =
(m?+ pi]l p*t, so that positive {light-cone) energy quanta must also carry positive
p*. This seemingly innocent detail is actually a very good Lhing; the positivity of
p¥ combined with its conservation is responsible in large part for the simplicity
of this approach. First, z*-ordered perturbation theory becomes calculationally
viable because a large class of diagrams which appear in the time-ordered ana-

log vanish!” These include any diagram containing a vertex in which quanta are



created out of the vacuum; since all p* are positive, at such a vertex the total

momentuli: cannot be conserved.

More importantly for the work described here, bul by essentially the same
reasoning, the perturbative vacuum is an eigenstate of the fall, interacting Hamil-
tonian, with eigenvalue zero. Pairs of quanta cannol be produced which conserve
pt™ One very desirable feature of this remarkable fact is that pot only is the
ground state trivial. but also that all the quanla occurring in higher states are

associated with meson and baryon wavefunctions raltber than disconnected pieces

of the vacuum.

Finally, it greatly simplifies the numerical work, especially in 1+1 dimensions"™
The system is quantized in a box of length L in the £~ direction with appropriate
boundary conditions so that momenta are discrete and Fock space states denumer-
able. For the fixed total momentum Pt the relevant dimensionless momentum
will be K = %P*. To see how K restricts the space of stales, consider K = 3,
which must be partitioned among the quanta in each state. The only three pos-
sibilities are (3), (2,1), and (1,1,1). Contrast this with equal-time Fock states of
definite P'. For equivalent numerical momentum, partitions will include not only
those enumerated above, but also (4, —1), (104, —101), (5,5,3,1,—1, —10), and so
on. To keep the number of states finite, an additional cut-offl in momentum must

be introduced, whereas this is not necessary in the light-cone case.

Not only does a fixed A act implicitly as a momentum cut-ofl, it also severely
limits both the total number of states of definite momentum and the pumber of
quanta in each individual state, as the example above demonstrates. X serves one
more role. The continuum limit L — oo is equivalent to A — co as the physical
momentum P+ remains fixed. The size of K determines the physical size of the

system, or equivalently, the fineness of the momentum space grid.



SU(N}, ,, .

An SU(N) gauge Lheory is defined by the Lagrangian
£-—-F’”F‘ +9(i P — m)yp. (1

F,, is the field strength tensor F3, = 8,4 — 3, A5 — j“‘A:Af, and the covartant
derivative is defined as 1D, = 18, gAST". In two dimeunsioas, the lermion field
{in a representation in which 4° is diagonal)

z
- Vil ):) (2)
¥a(z),
is a two-component spinor in tae fundamental representation. L and R indicate

chirality, which, for massless fermions specifies only direction.

A useful gauge choice is A¥ = 0. In this gauge there are neither ghosts nor
negatively normed gauge bosons, so the Fock space quanta, and therefore the wave-
function constituents are physical and positively normed. Also, in 1+ 1 dimensions,
this gauge choice is Lorentz (but not parity) invariant. The equations of motion
are then

10y =} mep (3)
~F AT =gefT*¥r = L oi** )
i0y9p =3 gA™* T*¥r + I myy (5)
0 A" =g} Ty — Lor*a A*4<=Lqj (6)

Only Eqs. (5) and (6) are dynamical; these will be generated by the Hamiltonian
P~. Eqs. (3) and (4) are constraints, as they involve only derivatives in . At
each time z+, both ¥y, and A~* may be solved for in terms of ¥g by inverting

these derivatives with appropriate Green’s functions.



vig is evidently the only independent degree of freedom and as such is the only

field qua.ntizedf"' The standard canonical commmutator
{erlz)e wrly) )y, = 62627 - y7) (7)

may be implemented at £+ = 0 by expanding in terms of creation and annihilation

operators:
l i ( T i df %.- -)
va(z" ) = bnee LT t+d €T ). 8
V21 !
2 =i3,.

The operators which generate translations in r* are derived from the energy

momentum tensor:

Pr=1 / dz~ O™, (9)

P*, the momentum conjugate to z—, is diagonal, P* = 3 k¥ (bi°h. . +db d5),
while P~ which generates evolution in z*, is in general complicated and dependent
on the coupling g. Diagoaalizing P~ is equivalent to solving the equations of
motlion.

P~ in the space of color singlets may be divided into P~ = m?H, 4 ¢°V.
m?Hy is the free Hamiltonian which assigns an energy m?/k% to each quack. The

interacting piece is
PV =-1 j dr™dy" |z~ —y TN T ), (10)

where the current is normal-ordered: ;42 =2: gbLT"tlm .

The potential |1~ — y~{ is the result of inverting the constraint equation (4)
for A~. Finaily, the interaction may be divided into a part : V : which is entirely
normal-ordered (Fig. 1b ) and a remaining diagonal part V., (Fig. 1a ) which

contains a quark mass renormalization. The linear potential in position space
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Figure 1. I[nteraction Yertices.

[t PY Y]

becomes the instantaneous gluon propagator (1/p*)? in momentum space. Typical
four-quark interactions in : V : have the form

L 6-. 3,3 |
2Ol G- X Sometege w0y
-l'-'i g’:

THE PROGRAM

In order to evaluate and diagonalize P~ numerically, the system is quantized
in a box in z~ of length 2L and boundary conditions are selected. Consequently,
the momenta are discrete, denumerable and therefore digestible by the computer.
To expand ¥g in a complete set of plane-wave solutions of the free equations of
motion, anti-periodic boundary conditions are employed. {For periodic conditions
the term with £* = 0, needed for completeness, is not a solution of the free equation
k*k~ = m? except when m is zero.) The field ¥z expanded in operators with
discrete momenta is then inserted in Eq. (9) to produce the discretized Hamiltonian
P

The program is set up te run for arbitrary number of colors N, baryon number
B, and numerical momentum K = (L/2x)}P*. Given these, it constructs the Fock
space by generating all possible distributions of K among quarks in color singlets.
In general, this construction is over-complete. The inner product matix (|;) of

7



these states is evaluated and diagonalized; redundant states are identified by zero

eigenvalues and removed; those remaining are orthonormal and complete.

The Hamiltonian matnix (¢} H |7) is evaluated in this basis, with the color con-
traciions performed diagrammatically. Because the light-cone Hamiltonian breaks
up simply into Hp proportional to m? and V to g%, the corresponding matrices
are stored separately. Allering g (or m) involves only multiplying these matrices

by the new parameter prior to diagonalization, with almost no additional cost in
na

time.
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Figure 2. Spectra for N =3, baryon qumber B =8,1 and 2 as a function of g/m; K fixed.

Setting g/m, combining He and V, and diagonalizing produces the full spec-
trum (Fig. 2 ). Included in the spectra are not only single mesons and baryons
and their excited states, but also multiple-hadron scattering states. Note the large

number of massless mesons and baryons in the strong coupling {(small mass) limit.



WAVEFUNCTIONS

Diagonalization gives not only eigenvalues but also their elgenvectors, or wave
functions. Because the perturbative vacuum is also the full interaciing vacuum, ajl
quanta in the wavefunctions are associated with mesons and baryouns, making them
simple to interpret and straightforward to employ in calculations’™ Expressed 10
terms of the Bjorken variable x = k*/P}, |, they are invariant under longitudinal
Lorentz boosts, and so, in 1 + 1 are Lorentz-invariant. Parily i1 more complicated,
as it is not respected by the quantization scheme. For wavefunctions with two

particles in I + 1. however. it involves only an interchange of r variables.

Finally, these wavefunctions are universal; they contain all of the formation
about the hadruns. Once computed, masses, form factors and inclusive and exclu
sive scattering amplitudes are reduced to computing a few integrals. For example,

in four dirnensions, the ratio

R{Q®) = (6t e-—hadrons/ Out - —hadrons ) {(12)
18 a textbook exampie of a quantity calculable in QCI) when Q¢ is large  The
refevart matrix element, (e?/Q?) #y,u (hadrons| J5, |0) is typically squared and
related to vacuum polarization graphs, which are then computed as an expaunsion
in a,{Q?). Huowever, were someone to provide the appropnate hadronic wavefunc-
tions, this matriv element could be computed directly at any °. A feature such
as the p resonaace would Lhen appear as an enhancement in the density of slates

in the xx coatinuum.

The valence wavefunctions for the lightest N = 3 mesou and baryon are dis-
played in Fig. 3 by means of their quark structure functions. Fur weak coupling
im/g = 1.6) the quark mass dominates p* and so momentuin peaks around equal
sharing among canstituents (z = 3 and 3 for the meson and barvun. respectively).
Stronger coupling tends to smear out the distnbution.

Wavefunctions contain in general higher Fock components with additional num-

bers of quarks. Figs. 4a and b illustrate the contribution to the quark structure
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Figure 4. Higher Fock contphutrmne 1o 5 = 1 structure funciims  a) Lightest meson b}
Lightest baryon, including antiquarks ) Baryen contribution from two extra quark pairs

function from the component of the lightest ¥ = 3 meson and baryon wavefunc-
tion with an additional ¢§ paxr. Their contribution js suppressed relative to that
of the valence wavefunction by from iwo to four orders of magmtude. Because P
must be distributed among more quanta, the average 7 is lower The character
1stic bump structure may be understood 1n terms of g§ pairs splitting off of the

valence quarks. at Jeast for weak coupling™* Fig. 4b also includes the antiquark

structure funciions and gives an indication of the pion content of the baryon. Fig.

10



4c presents the (negligible) contribution from the Fock state with two extra quark

pairs.
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Figure 5. a-c¢) Firsl three states m N = 3 meson spectrum for m/fg = 1.6, 2K=24 d) Eleventh

atate

Of course the spectrum consists of many states beyond the lightest. Because
tne quanta are associated only with the hadron, the wavefunctions need not be
disentangled from the vacuum and are often relalively simplie to interpret. In Fig.
5, the first three (weakly coupled) meson wavefunctions are clearly the first three
radial excitations of a predominantly ¢¢ state. In fact, in the non- relativistic
limit these become the momentum transforms of Airy functions™ In Fig. 5d the
dominant contribution is {rom two ¢ pairs peaked at xr = 1/4, with 2 mass 1wice
that of the first state; it clearly represents a pair of the lightest mesons. Fig. 6
presents a similar picture for the N = 3 baryons. The pair of baryons in Fig. 6d

is selected from the B = 2 spectrum. For strong coupling, it is more dificnlt to

1
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Figure 6. a-¢) First three states 10 N = 3 baryon spectrum, 2K=21. d) First B =2 state.

disentangle states due to the preseuce of a large number of very light mesons and

baryons.
MASSLESS MESONS AND BARYONS IN THE m/g — 0 LIMIT

The massless hadrons al zero quark mass may be understood by studying the

momentium space transforms of the SU{N) currents (at z*+ = @)

L
V=g / dr” e ) (13)
-L

which satisfy [V, V,‘] = :f"bfl';__,, + %M"bﬁk“'o. The currents )*° are defined by
point splitiing along r~: fur 4% = . the path- ordered exponential included to
ensure gauge invariance reduces lo one. The algebra may be extended to include

the (1) curent 3* = (7%)5 : !,{‘}it."n : . The transformed operator V. commutes

12



with the other SU/( V) elements, and the related operator al = (f )7 e(k)Vy satisties

the free boson commutation relations [a,al] = 8¢ .

The interactling part of the Hamiltonian is greatly simplified when expressed

in terms of these aperators:
2 i
Fp = —%gjdz—dy“!r‘ -y =)y ) {14)

becomes
LY a 13)
_.-—oo
Because V? = Q°, the contribution at k = 0 is proportional to the total chasge

@°Q° and so may be discarded.

The V} are color-singlet bilinears in 1/g, and so may be used to create mesonic-
like states with momentum P¥ = %! In the limit where m/g is zero, the entire
Hamiltonian is given by Eq. (15). Because the V; commute with the V}* which
appear in FP; ,

2xk
M? Vi l0) = [P~ Vi] |0} = O. (16)
Not only is the state created by acting with Vi on the vacuum an exactly massless
eigenstate in this limit, but states formed by repeated applications are also exactly
massless. Furthermore, acting with ¥; on an eigenstate of non-zero mass produces
a degenerate state of oppasite parity. This argument is independent of the value

of the numerical momentum K and so gives an exact continuum result.

Just as the existence and number of massless states is most simply discussed
in terms of the Vi, so0 also are the wavefunctions of these states. Applying one Vy

tp the vacuum
K-1

Vi [0) = Z b _adh ¢ 10) (17)
n—ggn

yields a continuum wavefunction of ¢{x) = 1 {(where n/2K — r). Because ¢ is

13



even under the interchange o r and 1 - r, this slate is a pseudescalar. The

wavelunctions of momentum A created by applying V twice are, for any { < &,

¥
I-3

Vea¥ilo) = 5 [ PO CHIC BRI R

n:l

betet 1o (18)

o
E bk: l+m mCa ‘::“ nc-] |U)

m=§ n=x

Wi

The gq piece is odd; therefore this state is a scalar, as a product of pseudoscalars
must be. All the massless meson wavelunctions for a given K may be constructed

in this manier; parity will alternate with each additional V.

Were the gauge group U(N) rather than SU(N ]"" the additional term asso-
ciated with the extra [/(1),

knh (ig)

"’{r—
|¢|u,
J'I-I -

appears in . The a; satisfy free bosonic commutation relations, ar:d this addi-
tional interaction is therefore th= discrete light-cone Hamiltonian for free bosuns
of mass squared g2/2x. These formerly massless states creaied by the ui are pro-
moted to the free massive busons found in the Schwinger model and discussed in

(17] and {18]. The wavefunctions for these states however are unchanged.

Note that while ihe entire /(1) spectrum may be built up from these non-
interacting bosons! for {"{¥) or SU/{N) they describe only part of the spectrum;
these are the massless mesons for SU(N). In addition there are massive states

which include excited gq pairs.
Similarly, the composite baryon field

L
Bz} farme e e o ul ) (20)
L

14



commutes with the V*, and, in the limit m/fg — 0, with the Hamiltonian P~. As
1n the case for mesons, this field creates an identically massless baryon. Repeated
applications on the vacuum produce & massless state with arbitrarily desired baryon
pumber. Furthermore degenerate states with the same baryon number may be
created by acting with the massless mesonic operators ¥} in conjunction with the
By. Again, these results are independent of K and are true in the continuum limit.
The {unnormalized) wavefunction associated with this massless baryon is

1
BulO) = g T nsrentl - W 0. (21)

Whether this state is a feymion or boson depends on N being odd or even. The
quark distribution derived from this wavefunction for N = 3 becomes 6(1 — z) in
the continuum limit; this z dependence is clearly evident in Fig. [3]. The general
expression for the quark distribution for a single baryon in the m/g — 0 limit is

g(z)=N(N -1)1 - z)¥ 2, (22)

For N =2, ¢(z) = 2, which apart from the normalization, is identical to the meson
distribution for all V.

NUMERICAL ACCURACY

A great deal of information about solutions in the continuum limit may be
extracted by restricting the Fock space to a single g4 pair. This is a good approx-
imation to the lightest meson and its radial excitations, but neglects a large part
of the low-lying spectrum when ¢/m is large.

Restricting the eigenvalue equation

M2 |$(P*)) = P~ P* |¢(P)) (23)

15



14,

to the ¢g subspace and taking the lumt A — oc yields the imegral equation

oty (L 1 Joter - £ (M) p [ 20200
Me(z)=m (:+ )MI, * IN P (y - )¢

(24)

For SU(N), a =1, and a = 0 for U(N). The continuum wavefunction @{r) is

defined by

i

dr
Pt =[ ()bt o dpe [0). 25
S 0 [4IN:(!—I)]5¢(I, (-2)pedzpe c 10) (25)

This eguation incorporates all of the leading order dynamicys of the large- NV
approximation''Because it could be derived from the discretized Hamiltonian in
the continuum limit K — oc, it demonstrates that this limit is sensible. Also, il
shows trivially thal, when m = 0, ¢(z) = 1 is an eigenfunclion with M? = 0 for

SU(N), g2f2x for U{N). The latter is the well-known Schwinger Model boson.

More importantly for this work, i1 shows the error due to discretization as
that of an integral evaluated numerically on a regularly spaced grid, with spacing
¢=1/K. This is not normally the most eflicient method, and this case is not even
normal. In addition to the typical errors of order €™, n 2 2, the principal-value-
regulated singularity in Eq. (24) induces an error of order ¢, Also. for small z.

#{z) o 1. with a given implicitly by"

:rmz

2 fNI-1 '
¢ (%)

@ ranges from zero (when m/g = 0} to one {g/m = (). This non-analytic endpoint

{26}

1 — axcot(ax) =

behavior produces additional a-dependent errors. As a result, a mass, for example

16



measured at finite K behaves as

1 1 c2 €3 €4 .
M(E)=M(0]+?+W+E§+W+n-. {(27)
M{0) s the continuum lmit. This behavior, as well as Eq. (26) apply as well to
baryons and higher Fock states"*Knowing /. {27}, convergence may be improved
significantly by Richardson extrapolation: compute M at n different K, and fit to

Eq. (27). An estimate of the egror in determining M(0) is given by the n'® term.
— SL{4) — SUQ) — SU2)

T T T T L H

4

P) Baryon Masa -

Lo my
Figuro 7. Extrapolatcd masses for N = 2,3 and 4 meson and baryon.

This extrapolation has allowed for meaningful numerical results from the re)-
atively low K == 10, ax well az exror estimates. Plots for the lightest meson and
baryon for N =2,3 and 4 are presented if Fig. 7; when not visible, the estimated
estor bars are smaller than the data point. The zero masses at mfg = 0 are exact.
The next two at m/g = .05 and .1 are probably not close enough to convergence
for the assigned errors to be more than rough estimates.

Finally, these data may be compared with previous calculations. Fig. 8b
demoustrates the rapid meson mass approach to the large-N limit from Ref. [2]
23 ¥ increases from two to four. In Fig. 8a, points from the Hamiltonian lattice
calculation"'of Hamer for N = 2 agree well with the light-cone results. This is

17
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Figure 8. Comparison of N = 2,3 and 4 meson masses with large-N and laitice calculations.

gratifying in that, while both technigues possess peculiarities, they are peculiar in
different places. Also, the ratio of ightest meson to baryon masses in the slrong-
coupling limit for N = 2,3 and 4 , are consistent (to within the roughly 10% err-.)
with the ratio 25in{ﬂ2—j’-_—1)-) derived by bosonization™

LARGE-N APPROXIMATION

Most previous work on this model employed the large-N approximation to
leading orde:. By obtaining numerical solutions at finite N, the validity of this
approximation for interesting values of N (three, for example) can be tested. From
Figs. 7 and 8 , for weak coupling {large quark mass) it is quite good. The meson
mass is already well approximated for N = 2, and, as expected, the baryon masses
increase proportionally with V. The low-lying states are indeed ¢§ excitations;
higher Fock contributions are pegligible. For strong coupling (small mass), the
approximation is nol as reliable; the effective expansion parameter g>N/m? is no
longer small. Light baryons exist for all finite N and so may not be neglected.
The low-lying meson spectyum is dominated by states with arbitrary numbers of
quarks rather than ¢§ excitations. Finally, the U/ (N} meson mass (as m/g — 0) of
§2/2x is neglected in the large-N limit.
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PROSPECTS IN FOUR DIMENSIONS

QCD in two dimensions is both manageable and instructive, but the world
in reality consists of {at least) four. Not surprisingly, the problem becomes much
more challenging, as introducing transverse directions greatly increases the degrees
of {reedom. Spin for the quarks, and (in A% =0 gauge) physical, transversely po-
larized gluons must be included, and both carry transverse momentum, which may
be discretized on a Cartesian grid, p' = (2x/L,)n",. The n’, can be negative, and
will be restricted by the cut-off discussed below. As the Fock space grows roughly
exponentially with the degrees of freedom, exploiting the remaining symmetries of
the light-cone Hamillonian under, for example, isospin, charge conjugation, and

rotations of 90° in the transverse plane will be necessary Lo restrict the space.

In contrast to 1+ 1 dimensions, QC D14 requires a non-trivial renormalization.
This may be implemented directly on the space of states by restricting it to those

whose invariant mass satisfies
kz 2
M2= Z £y +m° < A (28)

The cut-off A must be sufficiently larger than the scale of interest, with physics be-
yond it absorbed into the couplings and massesAs is, this prescription is Lorentz,
but not gauge, invariant, and likely will need to be improved. Finally, gauge invari-
ance may be checked by showing, for example, that in the continuum and large-A
limits matrix elements such as g (0] 7* [g) vanish, and, for Q£ D, that the photon

remains massless.

A crude estimate of the difficulty of this problem may be made by selecting
minimum appropriate values for A of 1 GeV and 1 fermi for (L, /2r). These
correspond, by Eq. (28), to z ~ 1/K ~ 125 and n; ~ 5. This allows some hope
that systems with longitudinal momentum K comparable 10 that used in 1 + 1
dimensices combined with the first several transverse modes may begin to provide

a recognizable picture of hadronic physics.
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Presently, programs for @QE D34 have been written by A. Tang and H. C. Pauli

and are under investigation. Among other things, positronium will be studied for

various ceaplings. Initial attacks on QC D34, will most likely involve purely gluonic

or hcavy g§ systems.
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