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Preface 

The application of statistics to environmental pollution monitoring studies requires 
a knowledge of statistical analysis methods particularly well suited to pollution 
data. This book attempts to help fill that need by providing sampling plans, 
statistical tests, parameter estimation procedure techniques, and references to 
pertinent publications. The book is written primarily for nonstatisticians (envi­
ronmental scientists, engineers, hydrologists, etc.) who have had perhaps one 
or two introductory statistics courses. Most of the statistical techniques discussed 
are relatively simple, and examples, exercises, and case studies are provided to 
illustrate procedures. In addition to being a general reference, this book might 
be used in an upper undergraduate or lower graduate level applied statistics 
course or as a supplemental book for such a class. 

The book is logically, though not formally, divided into three pmts. Chapters 
1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field 
sampling designs and Chapters 11 through 18 deal with a broad range of 
statistical analysis procedures. Some statistical techniques given here are not 
commonly seen in statistics books. For example, see methods for handling 
correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), 
and for estimating a confidence interval for the mean of a lognormal distribution 
(Section 13.2). Also, Appendix B lists a computer code that estimates and tests 
for trends over time at one or more monitoring stations using nonparametric 
methods (Chapters 16 and 17). Unfortunately, some important topics could not 
be included because of their complexity and the need to limit the length of the 
book. For example, only brief mention could be made of time series analysis 
using Box-Jenkins methods and of kriging techniques for estimating spatial and 
spatial-time patterns of pollution, although multiple references on these topics 
are provided. Also, no discussion of methods for assessing risks from environ­
mental pollution could be included. 

I would appreciate receiving comments from readers on the methods discussed 
here, and on topics that might be included in any future editions. I encourage 
the reader to examine the references sited in the book since they provide a 
much broader perspective on statistical methods for environmental pollution than 
can be presented here. 

Financial support for this book was provided by the U.S. Department of 
Energy, Office of Health and Environmental Research. Dr. Robert L. Watters 
of that office deserves special mention for his encouragement and support. 
Pacific Northwest Laboratory provided facilities and secretarial support. David 
W. Engel wrote the computer code in Appendix B and helped with the trend 
examples in Chapters 16 and 17. Margie Cochran developed a reference filing 
system that greatly facilitated the development of the bibliography. Also, Robert 
R. Kinnison provided encouragement and support in many ways including 
statistical computing assistance and access to his library. The help of these 
individuals is very much appreciated. I am also grateful for review comments 
on drafts of this book by various reviewers, but any errors or omissions that 

ix 



x Preface 

remain are entirely my own responsibility. The encouragement and guidance 
given by Alex Kugushev during the early stages of this endeavor are also much 
appreciated. I am deeply grateful to Sharon Popp who has faithfully and with 
great skill typed all drafts and the final manuscript. I wish to thank the literary 
executor of the Late Sir Ronald A. Fisher, F.R.S. to Dr. Frank Yates, F.R.S. 
and to Longman Group Ltd., London (previously published by Oliver and Boyd, 
Ltd., Edinburgh) for permission to reprint Table III from Statistical Tables for 
Biological, Agricultural and Medical Research (6th Edition, 1974). 

Richard O. Gilbert 
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1 Introduction 

Activities of man introduce contaminants of many kinds into the environment: 
air pollutants from industry and power plants, exhaust emissions from 
transportation vehicles, radionuclides from nuclear weapons tests and uranium 
mill tailings, and pesticides, sewage, detergents, and other chemicals that enter 
lakes, rivers, surface water, and groundwater. Many monitoring and research 
studies are currently being conducted to quantify the amount of pollutants 
entering the environment and to monitor ambient levels for trends and potential 
problems. Other studies seek to determine how pollutants distribute and persist 
in air, water, soil, and biota and to determine the effects of pollutants on man 
and his environment. 

If these studies are to provide the information needed to reduce and control 
environmental pollution, it is essential they be designed according to scientific 
principles. The studies should be cost effective, and the data statistically analyzed 
so that the maximum amount of information may be extracted. 

The purpose of this book is to provide statistical tools for environmental 
monitoring and research studies. The topics discussed are motivated by the 
statistical characteristics of environmental data sets that typically occur. In this 
introductory chapter we discuss these characteristics and give an overview of 
the principal tasks involved in designing an environmental pollution study. This 
material sets the stage for Chapter 2, which develops an orientation and 
understanding of environmental sampling concepts needed before a sampling 
plan is devised. 

1.1 TYPES AND OBJECTIVES 
OF ENVIRONMENTAL 
POLLUTION STUDIES 

Environmental pollution studies may be divided into the following broad and 
somewhat overlapping types. 

1. Monitoring. Data may be collected (a) to monitor or to characterize ambient 
concentrations in environmental media (air, water, soil, biota) or (b) to 
monitor concentrations in air and water effluents. The purpose may be to 
assess the adequacy of controls on the release or containment of pollutants, 
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to detect long-tenn trends, unplanned releases, or accidents and their causes, 
to provide a spatial or temporal summary of average or extreme conditions, 
to demonstrate or enforce compliance with emission or ambient standards, 
to establish base-line data for future reference and long-range planning, to 
indicate whether and to what extent additional infonnation is required, or to 
assure the public that effluent releases or environmental levels are being 
adequately controlled. 

2. Research. Field and laboratory data may be collected (a) to study the 
transport of pollutants through the environment by means of food chains and 
aerial pathways to man and (b) to detennine and quantitate the cause-and­
effect relationships that control the levels and variability of pollution 
concentrations over time and space. 

Many design and statistical analysis problems are common to monitoring and 
research studies. Environmental data sets also tend to have similar statistical 
characteristics. These problems and characteristics, discussed in the next section, 
motivate the topics discussed in this book. 

1.2 STATISTICAL DESIGN AND 
ANALYSIS PROBLEMS 

Numerous problems must be faced when applying statistical methods to 
environmental pollution studies. One problem is how to define the environmental 
"population" of interest. Unless the population is clearly defined and related 
to study objectives and field sampling procedures, the collected data may contain 
very little useful infonnation for the purpose at hand. Chapter 2 gives an 
approach for conceptualizing and defining populations that leads into the 
discussion of field sampling (survey) designs in Chapters 3-9. The important 
role that objectives play in detennining sampling designs is discussed in Chapter 
3. 

Once data are in hand, the data analyst must be aware that many statistical 
procedures were originally developed for data sets presumed to have been drawn 
from a population having the symmetric, bell-shaped Gaussian ("nonnal") 
distribution. However, environmental data sets are frequently asymmetrical and 
skewed to the right-that is, with a long tail towards high concentrations, so 
the validity of classical procedures may be questioned. In this case, nonparametric 
(distribution-free) statistical procedures are often recommended. These procedures 
do not require the statistical distribution to be Gaussian. Alternatively, an 
asymmetrical statistical distribution such as the lognonnal may be shown or 
assumed to apply. Both of these approaches are illustrated in this book. 
Frequently, a right-skewed distribution can be transfonned to be approximately 
Gaussian by using a logarithmic or square-root transfonnation. Then the nonnal­
theory procedures can be applied to the transfonned data. However, biases can 
be introduced if results must be expressed in the original scale. Often, other 
assumptions, such as uncorrelated data and homoscedasticity (constant variance 
for different populations over time and space), are required by standard statistical 
analysis procedures. These assumptions also are frequently violated. The problem 
of correlated data over time and/or space is one of the most serious facing the 
data analyst. Highly correlated data can seriously affect statistical tests and can 
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give misleading results when estimating the variance of estimated means, 
computing confidence limits on means, or deternlining the number of measurements 
needed to estimate a mean. 

Other problems that plague environmental data sets are large measurement 
errors (both random and systematic, discussed in Chapter 2), data near or below 
measurement detection limits (Chapter 14), missing and/or suspect data values 
(Chapter 15), complex trends and patterns in mean concentration levels over 
time and/or space, complicated cause-and-effect relationships, and the frequent 
need to measure more than one variable at a time. Berthouex, Hunter, and 
Pallesen (1981) review these types of problems in the context of wastewater 
treatment plants. They stress the need for graphical methods to display data, 
for considering the effect of serial correlation on frequency of sampling, and 
for conducting designed experiments to study cause-and-effect relationships. 
Schweitzer and Black (1985) discuss several statistical methods that may be 
useful for pollution data. 

Many routine monitoring programs generate very large data bases. In this 
situation it is important to develop efficient computer storage, retrieval, and 
data analysis and graphical software systems so that the data are fully utilized 
and interpreted. This point is emphasized by Langford (1978). The development 
of interactive graphics terminals, minicomputers, and personal computers greatly 
increases the potential for the investigator to view, plot, and statistically analyze 
data. 

In contrast to monitoring programs, some environmental pollution research 
studies may generate data sets that contain insufficient information to achieve 
study objectives. Here the challenge is to look carefully at study objectives, the 
resources available to collect data, and the anticipated variability in the data so 
that a cost-effective study design can be developed. Whether the study is large 
or small, it is important to specify the accuracy and precision required of 
estimated quantities, and the probabilities that can be tolerated of making wrong 
decisions when using a statistical test. These specifications in conjunction with 
information on variability can be used to help determine the amount of data 
needed. These aspects are discussed in Chapters 4-10 and 13. 

1.3 OVERVIEW OF THE DESIGN AND 
ANALYSIS PROCESS 

When planning an environmental sampling study, one must plan the major tasks 
required to conduct a successful study. The following steps give an overview 
of the process. Schweitzer (1982) gives additional discussion relative to 
monitoring uncontrolled hazardous waste sites. 

1. Clearly define and write down study objectives, including hypotheses to be 
tested. 

2. Define conceptually the time-space population of interest. 
3. Collect information on the physical environment, site history, weather 

patterns, rate and direction of groundwater movement, and so on, needed 
to develop a sampling plan. 

4. Define the types of physical samples to be collected (e. g., 2 L of water or 
an air filter exposed for 24 h) or field measurements to be made. 



4 Introduction 

5. Develop a qual ity assurance program pertaining to all aspects of the study, 
including sample collection, handling, laboratory analysis, data coding and 
manipulation, statistical analysis, and presenting and reporting results. 

6. Examine data from prior studies or conduct pilot or base-line studies to 
approximate the variability, trends, cycles, and correlations likely to be 
present in the data. 

7. Develop field sampling designs and sample measurement procedures that 
will yield representative data from the defined population. 

S. Determine required statistical data plots, summaries, and statistical analyses, 
and obtain necessary computer software and personnel for these needs. 

9. Conduct the study according to a written protocol that will implement the 
sampling and quality assurance plans. 

10. Summarize, plot, and statistically analyze the data to extract relevant 
information and to evaluate hypotheses. 

11. Assess the uncertainty in estimated quantities such as means, trends, and 
average maximums. 

12. Evaluate whether study objectives have been met, and use the newly acquired 
information to develop more cost-effective studies in the future. 

1.4 SUMMARY 

This chapter emphasized the great diversity of environmental monitoring and 
research studies being conducted, the types of statistical design and analysis 
problems frequently encountered with pollution data, and the major tasks required 
to conduct a successful environmental sampling study. 
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Populations 

Data are easy to collect but difficult to interpret unless they are drawn from a 
well-defined population of environmental units. The definition of the population 
is aided by viewing the population in a space-time framework. In addition, 
sources of variability and error in data from a population should be understood 
so that a cost-effective sampling plan can be developed. This chapter discusses 
these concepts to provide a foundation for the discussion of field sampling 
designs in Chapters 3-9. More specifically, this chapter covers the space-time 
sampling framework, the population unit, target population, and sampled 
population, the sources of variability and error in environmental data, and the 
meaning of accuracy and precision. It concludes with an air pollution example 
to illustrate these concepts. 

2.1 SAMPLING IN SPACE AND TIME 

Environmental sampling can be viewed in a structured way by a space-time 
framework, as illustrated in Figure 2.1. The symbols T" T2 , .•• , denote time 
periods such as hours, days, weeks, seasons, or years. The specific times within 
the time period Ti when measurements or samples are taken are denoted by til' 

ti2' ... , and so on. Study sites S" S2' ... , denote study plots, geographical 
areas, sections of a city or river basin, and other areas that are part of a larger 
region. Within study sites specific sampling locations are chosen. The spatial 
location is determined by east-west, north-south, and vertical coordinates. 
Measurements or samples (soil, water, air) may be taken at each location and 
point in time. Alternatively, several samples collected over time or space may 
be combined and mixed to form a composite sample, and one or more subsamples 
may be taken for measurement from each sample or composite. Compo siting 
of samples is discussed in Chapter 7. 

Figure 2.2 shows four locations being sampled over time. Each location is 
represented by a box divided into two parts, where each part represents a 
replicate sample. The volume of each replicate denotes the space being sampled 
(grab sample of water, a core of soil to specified depth, a volume of air, etc.). 
This volume is the support of the sample, a term used by 10urnel and Huijbregts 
(1978) and other writers in the geostatistical literature. For example, suppose a 
stream is sampled at points in time for dissolved oxygen. At each sampling 

5 
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Figure 2.1 Space-time conceptual framework for environmental sampling within 
a study region (after Green, 1979, Fig. 3.1). 

time two equally sized grab samples (replicates) of water are taken at two 
predetermined depths and two locations along a transect spanning the stream. 
As another example, air samples are collected at several study sites (SI' S2, 
... ) located downwind from a pollution source. Several geographical coordinates 
at each site are selected, and two (replicate) air samplers are placed side by 
side at each of two heights. Samples are collected continuously at time intervals 
specified by the study design. 
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Figure 2.2 Sampling in time and space. Two aliquots from each of two replicate 
samples at four locations in space at study site 1. Two sampling times are 
shown. 

2.2 TARGET AND SAMPLED 
POPULATIONS 

Designing an environmental sampling program involves defining the environ­
mental units that make up what Cochran, Mosteller, and Tukey (1954) call the 
target population and the sampled population. The target population is the set 
of N population units about which inferences will be made. The sampled 
population is the set of population units directly available for measurement. 
Population units are the N objects (environmental units) that make up the target 
or sampled population. These units can be defined in many ways depending on 
study objectives, the type of measurement to be made, regulatory requirements, 
costs, and convenience. Some examples of population units are 

Ten-gram aliquots of soil taken from a sample of field soil that undergo 
specified preparatory procedures, such as drying, grinding, and so on, 
and that will be analyzed for pollutants according to a specified procedure 

Air filters exposed for a specified time interval that undergo specified 
procedures for chemical analysis 

Prescribed areas of ground surface scanned by an in situ radiation detector 
under specified operating conditions 

Aboveground vegetation from 2-m x 2-m plots that is dried and ashed 
according to prescribed procedures in preparation for wet cht\mistry 
analysis. 
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A 

B 

POPULATION 
UNITS 

/\ , , 

Figure 2.3 A target population comprised of 14 population units. 

The concepts of target and sampled populations are illustrated in Figure 2.3. 
The 14 population units in A and B make up the target population. If only the 
7 units in B are available for selection and measurement, then B is the sampled 
population. If all 14 units are available, then the sampled population and target 
population are identical, the ideal situation. Statistical methods cannot be used 
to make inferences about A + B (the target population) if only the units in B 
are available for selection. In this situation the analyst must use other sources 
of information, such as expert opinion or prior studies, to evaluate whether data 
from B have relevance to units in A. The following examples illustrate target 
and sampled populations. 

EXAMPLE 2.1 

Information is sought on the average concentration of a radionuclide 
in the surface 5 cm of soil in a 10-m x 10-m plot. Surface soil 
samples will be taken by using a rectangular template of dimensions 
10 cm x 10 cm and depth 5 cm. Samples will be dried, ball milled, 
and sieved. A lO-g aliquot will be removed from each soil sample 
and radiochemically analyzed according to a written protocol. The 
target population is the set of all N possible lO-g aliquots (population 
units) that could be obtained from the lO-m X lO-m plot according 
to the sampling, sample preparation, and aliquoting protocols. If all 
N units are available for selection for radiochemical analyses, then 
the target and sampled popUlations are identical. 

Note that the sampled and target populations are defined operationally-that 
is, in terms of collecting, preparing, and analyzing aliquots. Data obtained by 
using a given operational procedure cannot, in general, be used to make 
inferences about a target population defined by a different operational procedure. 
It is difficult to compare data sets from different study sites when the sites use 
different protocols. Careful consideration should always be given to whether 
operational procedures result in a target population different from that desired. 
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EXAMPLE 2.2 

A municipal wastewater treatment facility discharges treated water 
into a nearby river. A three-month study is designed to estimate the 
average amount of suspended solids and other water-quality variables 
immediately upriver from a proposed swimming area during June, 
July, and August of a particular year. 

The population unit could be defined to be a volume of water 
collected in a l-L grab sample at any location and depth along a 
sampling line traversing the river a specified distance upstream from 
the swimming area during the three summer months. The grab 
samples are collected, handled, and analyzed according to a specified 
protocol. The target population would then be the set of all N such 
population units that could conceivably be obtained during the three­
month summer period for the specified year. 

If the grab samples can only be collected at certain times, depths, 
and locations along the sampling line, then the sampled and target 
populations are not identical. Information from prior studies or expert 
opinion may permit reasonable judgments to be made about the 
target population on the basis of the collected data. 

2.3 REPRESENTATIVE UNITS 
The concept of a target population is closely related to that of a representative 
unit. A representative unit is one selected for measurement from the target 
population in such a way that it, in combination with other representative units, 
will give an accurate picture of the phenomenon being studied. 

Sometimes a list of guidelines for obtaining representative samples will be 
constructed. Such a list for sampling water and wastewater is the following 
[from a longer list in Environmental Protection Agency (EPA), 1982]. 

Collect the sample where water is well mixed-that is, near a Parshall 
flume or at a point of hydraulic turbulence such as downstream from 
a hydraulic jump. Certain types of weirs and flumes tend to enhance 
the settling of solids upstream and accumulate floating solids and oil 
downstream. Therefore such locations should be avoided as sample 
sources. 

Collect the sample in the center of the channel at 0.4 to 0.6 depth from 
the bottom where the velocity of flow is average or higher than average 
and chances of solids settling is minimal. 

In a wide channel divide the channel cross section into different vertical 
sections so that each section is of equal width. Take a representative 
sample in each vertical section. 

When sampling manually with jars, place the mouth of the collecting 
container below the water surface and facing the flow to avoid an 
excess of floating material. Keep the hand as far away as possible -from 
the mouth of the jar. 
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By imposing conditions such as those in the list, one defines the target population. 
The crucial point is whether the population so defined is the one needed to 
achieve study objectives. For example, the foregoing guidelines may be suitable 
for estimating the average concentration for well mixed water samples, but be 
completely inadequate for estimating maximum concentrations where mixing is 
not complete. The difficulty of obtaining representative samples for determining 
if air quality standards are being met is illustrated by Ott and Eliassen (1973). 

2.4 CHOOSING A SAMPLING PLAN 

Once the space-time framework is established and the target and sampled 
populations are clearly defined, a sampling plan can be chosen for selecting 
representative units for measurement. The choice of a plan depends on study 
objectives, patterns of variability in the target population, cost-effectiveness of 
alternative plans, types of measurements to be made, and convenience. Some 
plans use a random selection procedure to select units from the target population; 
others use a systematic approach, such as sampling at equal intervals in time 
or space beginning at a randomly chosen unit. 

In some applications expert knowledge plays an important role, such as when 
choosing a location for a groundwater monitoring well near a hazardous waste 
site (HWS) to detect chemicals leaking from the site. The hydrogeologist is 
needed to define regions where wells will intercept groundwater that has flowed 
in the vicinity of the HWS. A monitoring well in the wrong location is useless 
for detecting leaks. 

2.5 VARIABILITY AND ERROR IN 
ENVIRONMENTAL STUDIES 

Environmental pollution data are usually highly variable and subject to uncer­
tainties of various types. Sources of this variability and uncertainty are identified 
in this section. An awareness of these sources allows one to develop more 
efficient sampling plans and more accurate measurement techniques. 

2.5.1 Environmental Variability 
Environmental variability is the variation in true pollution levels from one 
popUlation unit to the next. Some factors that cause this variation are 

Distance, direction, and elevation relative to point, area, or mobile pollution 
sources 

Nonuniform distribution of pollution in environmental media due to 
topography, hydrogeology, meteorology, action of tides, and biological, 
chemical, and physical redistribution mechanisms 

Diversity in species composition, sex, mobility, and preferred habitats of 
biota 

Variation in natural background levels over time and space 
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Variable source emissions, flow rates, and dispersion parameters over time 
Buildup or degradation of pollutants over time. 

These factors illustrate the many interacting forces that combine to determine 
spatial and time patterns of concentrations. When choosing a sampling plan, 
one must know the concentration patterns likely to be present in the target 
population. Advance information on these patterns is used to design a plan that 
will estimate population parameters with greater accuracy and less cost than can 
otherwise be achieved. An example is to divide a heterogeneous target popUlation 
into more homogeneous parts or strata and to select samples independently 
within each part, as discussed in Chapter 5. 

2.5.2 Bias, Precision, and Accuracy 

Measurement bias is a consistent under- or overestimation of the true values in 
popUlation units. For example, if the measurement of each unit is consistently 
3 ppm too high, then a positive measurement bias of 3 ppm is present. Random 
measurement uncertainties are random (unpredictable) deviations from the true 
value of a unit. The magnitude of this deviation changes with each repeat 
measurement on a given unit and may result from the interplay of many factors. 

The difference between bias and random measurement uncertainty is illustrated 
in Figure 2.4. The center of each target in the figure represents the true value 
for a population unit, and the dots represent several repeat measurements of the 
unit. Figures 2.4(a) and 2.4(c) indicate bias is present, since the scatter of 
measurements is not centered on the target. 

.@ .. (§> 
• • 

• • • • 
• • • • 
(a) (b) 

(c) (d) 

Figure 2.4 Patterns of shots at a target (after Jessen, 1978, Fig. 1). (a): high 
bias + low precision = low accuracy; (b): low bias + low precision = low 
accuracy; (c): high bias + high precision = low accuracy; (d): low bias + high 
precision = high accuracy. 
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Precision is a measure of the size of the closeness of agreement among 
individual measurements. Since the dots in Figures 2.4(c) and (d) cluster tightly 
together, the measurements are said to be precise. Accuracy is a measure of 
the closeness of measurements to the true value. Figure 2.4(d) represents accurate 
measurements since bias is absent and random measurement uncertainties are 
relatively small (precision is high). 

2.5.3 Statistical Bias 
Data are used in algebraic fonnulas to estimate population parameters of interest. 
For example, the arithmetic mean x = 1:7=1 xJn is commonly used to estimate 
the true mean p. of a population of units. If sets of n representative samples 
are repeatedly drawn from the target population and x is computed for each set, 
all the x's could be averaged to estimate p.. If the average of all possible X's 
obtained this way exactly equals p., then x is said to be a statistically unbiased 
estimator of p.. The average of all possible x's from the target population is 
commonly denoted by E(x) and is called the expected value of x. 

If the units selected for measurement are obtained by simple random sampling 
(discussed in Chapter 4), x is indeed an unbiased estimator of p.-that is, E(x) 
= p.. Statistical bias is a discrepancy between the expected value of an estimator 
and the population parameter being estimated. Some estimators are biased if n 
is small but become unbiased for n sufficiently large. For examples, see Sections 
13.1.2 and 13.3.3. In this book when we say that an estimator is biased, we 
are referring to statistical bias, not measurement bias. 

2.5.4 Random Sampling Errors 
Suppose, using data obtained by selecting n population units at random from 
the target population, we compute x to estimate p.. In the previous section we 
learned that x is then an unbiased estimator of p.. Nevertheless, x will not 
exactly equal another x computed by using an independently drawn set of 11 

units unless by chance the same set of 11 units is drawn and there are no 
measurement uncertainties. The variation in x due only to the random selection 
process is called random sampling error and arises because of environmental 
variability-that is, because all N units do not have the same value. The random 
sampling error in x will be zero if all N units are measured and used to compute 
x. Of course, if N is infinitely large, the sampling error in x will never be zero, 
although it can be made small by increasing n. Note that if N is finite and if 
n = N so that the random sampling error is zero, x will still not equal p. if 
bias and/or random measurement uncertainties are present. Note also that random 
sampling error is different than bias introduced by subjective selection of 
population units. Estimating random sampling errors for estimators of p. is a 
major topic in Chapters 4-9. 

2.5.5 Gross Errors and Mistakes 
Gross errors and mistakes can easily occur during sample collection, laboratory 
analyses, data reduction, statistical analyses, and modeling. Efforts to carefully 
follow protocols, double check data transfers, and adequately test computer 
codes must be made. One must also be careful that statistical computing codes 
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are not applied inappropriately due to unfamiliarity with statistical techniques 
and their proper use and interpretation. Some types of gross mistakes or unusually 
deviant data can be identified by statistical tests and data-screening procedures. 
See Chapter 15 for these methods. 

2.6 CASE STUDY 

This example is motivated by a similar discussion by Hunter (1977). It illustrates 
the concepts discussed in this chapter. 

A study will be conducted to estimate the average concentration of ozone at 
noontime (12 noon to 1 P.M.) during June, July, and August at a sampling 
location over a three-year period (a total of 276 days). The target population 
consists of 276 population units of 1 h duration at the chosen sampling station 
that are measured by a particular measurement technique. A single measurement 
will be made on each of the 276 days. Hence, the sampled population equals 
the target population (assuming no equipment failure). 

Although only a single measurement will be made on each unit, we can 
conceive of taking J > 1 repeat measurements, using the same methods. 
Suppose the following simple additive model applies: 

i = 1, 2, ... ,276, j = 1, 2, ... , J 

where xij is the jth measurement of the noontime concentration on the ith day, 
J.ti is the true value for day (unit) i, and eij = xij - J.ti is the random measurement 
error. 

Figure 2.5 shows hypothetical values of J.ti and Xii for several days. The 
distribution of possible (conceptual) noontime concentrations is assumed to be 
normal (Gaussian) with the same spread (variance) for each day. The normal 
distribution, discussed more fully in Chapter 11, is shown here centered on J.ti' 
the true concentration for the noontime unit on day i. Hence, the measurement 
process is unbiased-that is, no measurement bias is present. 

In practice, the daily measurement distributions may be asymmetrical, possibly 
skewed toward high concentrations. Even so, the measurement process is 
statistically unbiased for a given day i if the true mean of that day's distIibution 
of measurements equals J.ti' The shape of the distribution could also vary from 
day to day and reflect a changing measurement error variance (precision) over 
time. 

To the far right of Figure 2.5 is shown the hypothetical histogram of the 
276 true noontime concentrations J.ti' This histogram arises because of the 
variability from day to day in true noontime concentrations. In practice, this 
distribution could take on many shapes, depending on the particular patterns 
and trends in the true values J.ti over the 276-day period. A hypothetical histogram 
of the 276 observed noontime concentrations Xii is also shown to the far right 
of Figure 2.5. This latter histogram estimates the histogram of the true values. 
The true and estimated histograms for this finite sequence will be identical in 
shape and location only when there is no systematic measurement bias or random 
measurement uncertainty and no gross errors or mistakes are made in sample 
collection, measurement, and data reduction. In that special case X, the arithmetic 
mean of the 276 observed values, will equal J.t = 1:f:6t J.tJ276. In Figure 2.5 
the two distributions are offset to illustrate that the random positive and negative 
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measurement uncertamtIes will not exactly balance each other for any finite 
sequence of measurements. Also, the histogram of observed data is shown as 
having a larger spread (variance) than the histogram of the true values. This 
spread, or the opposite case of smaller spread, can occur whenever random 
measurement uncertainties are present. If a constant measurement bias were 
present each day, then the histogram of Xi I would be shifted by that amount. 
A systematic measurement bias that changes over time might also be present. 
This changing bias would also affect the shape and location of the histogram 
of data values. Distributions commonly used to model environmental data sets 
are discussed in Chapters 11-13. 

2.7 SUMMARY 

This chapter discussed the following points: 

A space-time framework should be used to define the environmental 
population of interest. 

Clear definitions of the population unit, target population, and sampled 
population are needed. 

Variation in environmental data is due to variation in true concentration 
levels between population units, measurement bias, random measurement 
uncertainties, and gross errors and mistakes. Measurement uncertainties 
can be controlled by using accurate measuring techniques and careful 
planning. If the patterns of variation in true levels can be anticipated, 
more cost-effective sampling plans can be developed. 

The error that arises because only a random subset of the population units 
is selected and measured is called random sampling error. This error 
can be estimated by statistical methods given in Chapters 4-9. 

EXERCISES 

2.1 Suppose groundwater monitoring wells will be established in the area 
around an HWS to quickly detect leaks of chemicals from the HWS. 
Discuss how the target population and the population unit might be defined. 
Is it important that the sampled population equal the target population? 
Why? 

2.2 In Exercise 2.1 what role does the hydrogeologist play in choosing locations 
for wells? Under what conditions would it be acceptable to place wells at 
random locations down-gradient from the HWS? Are those conditions 
likely to occur in practice? 

2.3 Suppose the true mean of a population of size N = 1000 is known to be 
Jl = 100 and that n = 20 of the N units are measured. Suppose we decide 
to estimate Jl by computing the arithmetic average of the 5 largest of the 
20 measurements obtained. If this average happens to equal 100, does it 
imply that averaging the highest 5 concentrations in a sample of 20 is an 
unbiased procedure (estimator) for estimating Jl? How does one estimate 
the bias of an estimator? 
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ANSWERS 

2.1 Discussion. 

2.2 The hydrogeologist defines where leaking is most likely to be detected 
quickly and therefore plays a crucial role in defining the target population. 
Random locations are acceptable only if the aquifer is known to cover the 
entire area and contamination is as likely to show up in one spot as in 
any other spot. No. 

2.3 No. Draw a random sample of n measurements and use the estimator 
(procedure) to compute the estimate from these data. Repeat this, say, m 
times. Find the arithmetic mean of the m estimates and subtract the true 
value of the quantity being estimated. 
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3.1 INTRODUCTION 

Environmental Sampling 
Design 

Chapter 2 emphasized the need to develop a space-time framework for viewing 
environmental sampling and for carefully defining the population unit, target 
population, and sampled population. These actions must precede choosing a 
sampling plan and the number of units to measure. This chapter identifies 
criteria for selecting a sampling plan and gives an overview of sampling plans 
discussed more thoroughly in Chapters 4-9. 

The emphasis in Chapters 4-9 is on describing sampling plans and showing 
how to estimate the mean, the total amount and the sampling errors of these 
two estimates. Methods are given for determining the number of units that 
should be measured to estimate the mean and the total with required accuracy 
within cost constraints. If sampling is done for other objectives (e. g., estimating 
the temporal or spatial pattern of contamination, finding a hot spot, or detecting 
trends over time), then the required sampling design (number and location of 
units) may be quite different from that needed for estimating a mean. Sampling 
to detect hot spots is discussed in Chapter 10. Sampling for detecting and 
estimating trends is discussed in Chapters 8, 16, and 17. 

3.2 CRITERIA FOR CHOOSING A 
SAMPLING PLAN 

Four criteria for choosing a sampling plan are 

1. Objectives of the study 
2. Cost-effectiveness of alternative sampling designs 
3. Patterns of environmental contamination and variability 
4. Practical considerations such as convenience, site assessability and availability, 

security of sampling equipment, and political considerations. 

This book is primarily concerned with the first three criteria. Nonstatistical 
factors such as listed in item 4 can have a significant impact on the final design, 
but they are beyond the scope of this book. 

17 
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3.2.1 Objectives 

The importance of objectives in the design of environmental studies was 
emphasized in Chapter 1. Different objectives require different sampling designs. 
Van Belle and Hughes (1983) discuss in the context of aquatic sampling the 
pros and cons of a fixed station network (over time) as opposed to short-term 
intensive studies. They support the use of fixed sampling stations if the objective 
is to detect trends in water quality over time, whereas short-term intensive 
studies are urged for estimating causal relationships, effects of pollution, and 
mechanisms by which streams recover from pollution. An example of this for 
river sampling is in Rickert, Hines, and McKenzie (1976), who found that 
short-term, intensive, synoptic-type aquatic studies were needed to assess cause­
and-effect relationships in the Willamette River in Oregon. Loftis, Ward, and 
Smillie (1983) discuss statistical techniques appropriate for routine, fixed-station 
monitoring. 

Lettenmaier, Conquest, and Hughes (1982) evaluate sampling needs for a 
metropolitan, routine-stream-quality monitoring network. Six types of monitoring 
programs were identified by objectives: (a) surveillance, (b) model parameteri­
zation, (c) cause and effect, (d) trend detection, (e) water quality control, and 
(f) base line. They suggest that surveillance and water quality control objectives 
require relatively high sampling frequencies or continuous monitoring. Model 
parameterization and cause-and-effect studies require multiple stations per basin, 
high spatial density, and high sampling frequencies, since data on small time 
and space scales are needed to estimate transfer coefficients and model parameters. 
Detecting trends over time requires long sequences of data collected weekly or 
monthly. Base-line monitoring networks may be similar to those for model 
parameterization, cause-and-effect, and trend detection but at a lower level of 
sampling effort. Eberhardt and Gilbert (1980) present a similar set of four 
classes of sampling discussed in the context of terrestrial sampling. 

3.2.2 Cost Effectiveness 

A sampling design should be chosen on the basis of cost effectiveness as 
recommended by National Academy of Sciences (1977). That is, the chosen 
designs should either achieve a specified level of effectiveness at minimum cost 
or an acceptable level of effectiveness at specified cost. The magnitude of 
sampling errors should be evaluated for different sampling designs and levels 
of effort. For example, suppose effluent wastewater will be sampled to estimate 
the total amount, I, of a pollutant discharged during a month. We may ask, 
"What is to be gained in terms of greater accuracy in the estimate of I if the 
sampling effort is increased by 10%, 50% or 100%'1" This kind of question 
should be addressed before a study begins, so time and monetary resources are 
effectively used. Approaches to this problem are given in Chapters 4-9 for 
various designs. Papers that address this issue for environmental studies include 
Provost (1984), Smith (1984), Skalski and McKenzie (1982), Lettenmaier (1977 , 
1978), Loftis and Ward (1979, 1980a, 1980b), Montgomery and Hart (1974), 
Feltz, Sayers, and Nicholson (1971), Gunnerson (1966), Sanders and Adrian 
(1978), Moore, Dandy, and DeLucia (1976), and Chamberlain et al. (1974). 

Nelson and Ward (1981) and Sophocleous, Paschetto, and Olea (1982) discuss 
the design of groundwater networks. Optimum designs for the spatial sampling 
of soil are considered by McBratney, Webster, and Burgess (1981), McBratney 
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and Webster (1981), and Berry and Baker (1968). Air network design is 
considered, for example, by Elsom (1978), Handscombe and Elsom (1982), and 
Noll and Miller (1977). Rodriguez-Iturbe and Mejia (1974) formulate a meth­
odology for the design of precipitation networks in time and space. 

3.2.3 Patterns of Contamination 

An important criterion for selecting a sampling plan is the spatial and/or time 
pattern of concentrations. These patterns are often complex, particularly for air 
pollutants in urban areas, where topography and meteorology combine to create 
complex spatial patterns that can change with time. Similar problems exist for 
aquatic, biotic, soil, and groundwater studies. If the major patterns of contami­
nation are known before the study begins, then more cost-effective sampling 
plans can be devised. An example is stratified random sampling discussed in 
Chapter 5. 

3.3 METHODS FOR SELECTING 
SAMPLING LOCATIONS 
AND TIMES 

There are basically four ways of deciding where and when to sample: (1) 
haphazard sampling, (2) judgment sampling, (3) probability (statistical) sampling 
in conjunction with prior knowledge of spatial/time variability and other 
information, and (4) search sampling. Table 3.1 is a guide for when each 
method is appropriate. This chapter gives an overview of each method but 
stresses the probability methods because they yield computing formulas for 
estimating sampling error. Later chapters discuss these probability methods in 
greater detail. 

3.3.1 Haphazard and Judgment Sampling 

Haphazard sampling embodies the philosophy of "any sampling location will 
do." This attitude encourages taking samples at convenient locations or times, 
which can lead to biased estimates of means and other population characteristics. 
Haphazard sampling is appropriate if the target population is completely 
homogeneous in the sense that the variability and average level of the pollutant 
do not change systematically over the target population. This assumption is 
highly suspect in most environmental pollution studies. 

Judgment sampling means subjective selection of population units by an 
individual. For example, judgment sampling might be used for target populations 
where the individual can inspect or see all population units and select those 
that appear to be "representative" of average conditions. However, the individual 
may select units whose values are systematically too large or too small. 

If the individual is sufficiently knowledgeable, judgment sampling can result 
in accurate estimates of population parameters such as means and totals even 
if all population units cannot be visually assessed. But it is difficult to measure 
the accuracy of the estimated parameters estimated. Thus, subjective sampling 
can be accurate, but the degree of accuracy is difficult to quantitate. 

Judgment sampling as used here does not refer to using prior information to 
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Table 3.1 Summary of Sampling Designs and When They Should Be Used 
for Estimating Means and Totals 

Type of Sampling Design 

Haphazard sampling 

Judgment sampling 

Probability sampling 
simple random sampling 

stratified random 
sampling 

multistage sampling 

cluster sampling 

systematic sampling 

double sampling 

Search sampling 

Conditions When the 
Sampling Design Is Useful 

A very homogeneous population over time and space is essential 
if unbiased estimates of population parameters are needed. This 
method of selection is not recommended due to difficulty in 
verifying this assumption. 

The target population should be clearly defined, homogeneous, 
and completely assessable so that sample selection bias is not a 
problem. Or specific environmental samples are selected for 
their unique value and interest rather than for making 
inferences to a wider popu lalion. 

The simplest random sampling design. Other designs below will 
frequently give more accurate estimates of means if the 
population contains trends or patterns of contamination. 
(Chapter 4) 

Useful when a heterogeneous popUlation can be broken down into 
parts that are internally homogeneous. (Chapter 5) 

Needed when measurements are made on subsamples or aliquots 
of the field sample. (Chapters 6 and 7) 

Useful when popUlation units cluster together (schools of fish, 
clumps of plants, etc.) and every unit in each randomly 
selected cluster can be measured. 

Usually the method of choice when estimating trends or patterns 
of contamination over space. Also useful for estimating the 
mean when trends and patterns in concentrations are not 
present or they are known a priori or when strictly random 
methods are impractical. (Chapter 8) 

Useful when there is a strong linear relationship between the 
variable of interest and a le~s expensive or more easily 
measured variable. (Chapter 9) 

Useful when historical information, site knowledge, or prior 
samples indicate where the object of the search may be found. 

plan the study, define the target population, and choose an efficient probability 
sampling plan. For example, when sampling environmental media for estimating 
the degree that humans are exposed to a pollutant via some transport pathway, 
expert opinion is required to choose the appropriate environmental media, study 
areas, general time periods of interest, and so forth. As another example, we 
mention again that air concentrations are highly variable, depending on geo­
graphical location, height of the sampler from ground surface, distance from 
local pollution sources, time of day, day of week, and so on. Here, the use of 
prior information and expert opinion is clearly needed if the data are to be 
useful for the intended purpose. Finally, consider sampling groundwater around 
an HWS. The judgment and knowledge of geochemists and hydrologists is 
needed to make sure wells are placed in appropriate locations to detect leaks 
from the waste site. 

3.3.2 Probability Sampling 

Probability (statistical) sampling refers to the use of a specific method of random 
selection. Figure 3.1 shows several probability sampling plans (defined below) 
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Figure 3.1 Some two-dimensional probability sampling designs for sampling 
over space. 

for spatially distributed variables. These designs can also be applied to sampling 
along a line in time or space, as illustrated in Figure 3.2. Probability sampling 
is discussed in some detail in books by Cochran (1977), Jessen (1978), Sukhatme 
and Sukhatme (1970), Kish (1965), Yates (1981), Deming (1950, 1960), and 
Hansen, Hurwitz, and Madow (1953). Excellent elementary accounts are given 
by Williams (1978), Slonim (1957), and Tanur et al. (1972). 

The most basic method is simple random sampling [Figs. 3.1(a) and 3.2(a); 
see Chapter 4], where each of the N population units has an equal chance of 
being one of the n selected for measurement and the selection of one unit does 
not influence the selection of other units. Simple random sampling is appropriate 
for estimating means and totals if the population does not contain major trends, 
cycles, or patterns of contamination. Note that random sampling is not equivalent 
to picking locations haphazardly. 

Stratified random sampling [Figs. 3.1(b) and 3.2(b); see Chapter 5] is a 
design where the target population is divided into L nonoverlapping parts or 
subregions called strata for the purpose of getting a better estimate of the mean 
or total for the entire population. Sampling locations are selected from each 
stratum by simple random sampling. For example, Gilbert et al. (1975) divided 
nuclear weapons test areas into geographical subregions (strata) and chose 
sampling locations at random within each stratum. A more precise estimate of 
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Figure 3.2 Some probability sampling plans for sampling over time or along a 
transect to estimate a mean or total. 

239. 240pU inventory was obtained than if simple random sampling had been used 
without stratifying the region. If interest is directed at the strata themselves 
rather than at the site as a whole, then methods by Cochran (1977, pp. 140-
144) are useful. 

Two-stage sampling [Figs. 3.1(c) and 3.2(c); see Chapters 6 and 7] is where 
the target population is divided into primary units. Then a set of primary units 
is selected by using simple random sampling, and each is randomly subsampled. 



Methods for Selecting Sampling Locations and Times 23 

An example is collecting soil samples (the primary units) at random, then 
selecting one or more aliquots at random from each soil sample. 

Cluster sampling [Figs. 3.1(d) and 3.2(d)] is where clusters of individual 
units are chosen at random, and all units in the chosen clusters are measured. 
This method may be needed when it is difficult or impossible to select individual 
units, but where every unit in the chosen clusters can be measured. For example, 
it may be difficult to obtain a random sample of plants or organisms (trees, 
shrubs, fish, etc.) since this would involve numbering the individuals and 
selecting n at random. Selecting individuals nearest to random points can give 
biased results, as discussed by Pielou (1977, p. 157). The reader is referred to 
Cochran (1977) for further discussion of cluster sampling. 

Systematic sampling [Figs. 3.1(e) and 3.2(e); see Chapter 8] consists of 
taking measurements at locations and/or times according to a spatial or temporal 
pattern: for example, at equidistant intervals along a line or on a grid pattern. 
Systematic sampling is usually fairly easy to implement under field conditions, 
and statistical studies indicate it may be preferred over other sampling plans for 
estimating means, totals, and patterns of contamination. However, it is more 
difficult to estimate the variance of estimated means and other quantities than 
if random sampling is used. Also, incorrect conclusions may be drawn if the 
sampling pattern corresponds to an unsuspected pattern of contamination over 
space or time. 

The sampling plans in Figures 3.1(f) and 3.2(f) combine systematic and 
random sampling. The site (or line) is divided into blocks of equal size (or 
segments), and one or more samples are taken at random locations within each 
block (segment). This procedure allows for a more uniform coverage than simple 
random sampling does. 

Double sampling (Chapter 9) is useful when data using one measurement 
technique are linearly related to data obtained with less expense or effort using 
another measurement technique. For example, in situ measurements of radiation 
by portable detectors may be related linearly to radiochemistry determinations 
made on the same soil in the laboratory. If the cost of in situ measurements is 
sufficiently low, double sampling can give more accurate estimates of means 
and totals than can be obtained by using only wet chemistry data. 

3.3.3 Search Sampling 
Search sampling is conducted to locate pollution sources or to find "hot spots" 
of elevated contamination. Examples include the use of gamma radiation surveys 
from aircraft or portable ground detectors to look for areas of elevated radiation 
around nuclear installations, taking cores of soil to search for buried waste, and 
sampling water at strategic locations in a stream network to locate a pollution 
source (discussed by Sharp, 1970, 1971 and Rajagopal, 1984). The validity of 
the procedure depends on the accuracy of prior information on where or when 
to begin the search and on accurate measurements over time or space to guide 
the search. The most complete search possible is to measure all units in the 
target population-that is, to conduct a census. In practice, this is usually not 
possible or practical. Chapter 10 discusses methods for determining the optimum 
spacing between sampling points for finding a target of specified size. Liggett 
(1984) discusses statistical designs and tests for detecting hot spots by comparing 
the suspected hot spot area with a background region. 
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3.4 SUMMARY 

This chapter begins by discussing the following criteria for choosing among 
sampling plans: (1) objectives, (2) cost effectiveness, (3) patterns of environmental 
contamination, and (4) practical considerations. Then an overview is given of 
sampling plans that are discussed more thoroughly in Chapters 4-9. 

Sampling plans based on a random or systematic selection of population units 
are highly recommended over haphazard or judgement sampling. Simple random 
sampling is useful for estimating means and totals if the population is 
homogeneous-that is, does not have trends or patterns of contamination. 
Systematic sampling with a random start is preferred to random sampling plans 
if the objective is to map the variable over time or space. It may also be used 
to estimate the mean and total if the sampling interval or spacing does not 
coincide with a recurring pattern of contamination in the population. Stratified 
random sampling is effective for estimating means and totals if the strata 
themselves are of interest or if an estimate of the population mean or total over 
all strata is needed. Two-stage or multistage sampling is frequently necessary 
because the field sample cannot usually be measured as a whole. Multistage 
sampling can also be combined with other sampling plans. Cluster sampling is 
useful for estimating means if it is difficult to randomly select individual units 
for measurement and if all units in the cluster can be measured. Double sampling 
can be cost effective for estimating a mean or total if an accurate measurement 
technique produces data that are linearly related to data obtained using a less 
accurate and less costly measurement technique. The effectiveness of search 
sampling depends on the amount of prior information available regarding the 
location of the object being sought. 

EXERCISES 

3.1 Discuss the differences between haphazard sampling and simple random 
sampling. Under what conditions is either method appropriate? Give 
examples. 

3.2 Suppose a chemical processing plant discharges toxic chemicals into a 
river at unknown periodic intervals. If water samples below the discharge 
pipe will be collected to estimate the weekly mean concentration of water 
at that point, does simple random, stratified random, or systematic sampling 
seem best? Discuss the advantages and disadvantages of these three designs 
for this situation. 

3.3 Suppose the sampling in Exercise 3.2 is for the purpose of estimating the 
maximum concentration for each week of the year. Is your choice of a 
sampling plan different than in Exercise 3.2, where the objective was to 
estimate the weekly mean? Why? 

ANSWERS 

3.1 Simple random sampling assures that each population unit has the same 
chance of being selected for measurement. If haphazard sampling is used 
then the probability of selecting a unit is unknown. Some units may have 
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essentially no chance of being selected if, for example, they are more 
difficult to sample. Either method is okay if all population units have the 
same concentration or the same chance of having any particular concen­
tration. 

3.2 Systematic sampling will ensure that all periods of time during each week 
are sampled to the same extent. But contamination could be missed if the 
plant discharges on a systematic time schedule. Simple random sampling 
is an unbiased procedure but will require many samples to ensure a good 
estimate of the weekly average. Stratified random sampling is better than 
simple random sampling because it ensures that all periods (strata) during 
the week are sampled. 

3.3 To estimate the maximum concentration each week, one must know the 
patterns of contamination over time. Systematic sampling is effective for 
this if samples are collected frequently. 



4 Simple Random 
Sampling 

Simple random sampling is the simplest sampling plan and is the foundation of 
other probability sampling plans discussed in Chapters 5 through 9. This chapter 

Shows how to use simple random sampling to estimate the population mean, 
total amount of pollutant present, and the standard errors of these two 
estimates 

Gives formulas for detemlining the number of samples n required to estimate 
the mean when data are not correlated 

Indicates the effect that measurement uncertainties and correlated data can 
have on an estimated mean and its variance 

Shows how to determine the number of stations and measurements per sta­
tion for estimating a regional mean when data are correlated over space 
and/or over time 

Shows how to estimate the variance of the sample mean when data are spa­
tially and/or temporally correlated. 

4.1 BASIC CONCEPTS 

Suppose a target population consisting of N population units has been defined. N 
may be finite, such as the number of hours in a year, or it may be essentially 
infinite, such as the number of lO-g soil samples in a large field. Simple random 
sampling may be used to select n of these N units for measurement. If N is finite 
the first step is to number the units from 1 to N. Then n integers between 1 and N 
are drawn from a random number table. The use of such a table ensures that every 
unit not yet selected has an equal chance of being chosen on the next draw. The 
units labeled with the selected n integers are then measured. They constitute the 
sample of size n. n is also called the size of the sample. 

Cochran (1977) illustrates how to use a random number table. The table consists 
of rows and columns of the digits 0, 1, 2, ... , 9 in random order. First pick a 
starting place, then follow along horizontally or vertically in the table until the required 
n numbers are obtained. For example, suppose N = 50, n = lO, and we 
decide (perhaps by the flip of a coin) to move horizontally along the rows of the 
table. Once a starting point is randomly chosen, the first ten distinct two-digit 
numbers between 01 and 50 along the row identify the population units to be 

26 
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measured. Large random number tables are given by Rand (1955) and by Fisher and 
Yates (1974). Most statistics textbooks have smaller tables [e.g., Snedecor and 
Cochran (1980, Table AI)]. 

4.2 ESTIMATING THE MEAN AND 
TOTAL AMOUNT 

If the target population of N units is heterogeneous-for example, if concentrations 
cycle with the seasons, are higher in some regions than others, or if there are long­
term trends over time and/or space-then the objective of sampling will usually 
be to describe these features of the population. However, when the population is 
relatively homogeneous, emphasis is placed on estimating the mean and variance. 
In this latter situation simple random sampling is an efficient sampling plan. For 
the more complicated situations, stratified random sampling, systematic sampling, 
or some combination of the two are required. 

We assume the following model for the measurement Xi on the ith unit of the 
population: 

where: 

Xi = /1- + di + e i = /1-i + ei 4.1 

/1- = the true mean over all N units in the population, 
di = the amount by which the true value for the ith unit, /1-i' differs 

from /1-, 

ei = Xi - /1-i = measurement uncertainty = the amount by which the 
measured value for the ith unit, Xi' differs from the true value /1-i' 

We assume the average of the ei over the population of N units has zero mean­
that is, there are no systematic measurement, sample collection, or handling biases. 
The true mean concentration is 

The total amount (inventory) of pollutant present in the population is I = N /1-. The 
true variance of the N concentrations in the target population is 

1 N 

a 2 = -- .L; (/1-i - /1-)2 4.2 
N - 1 i~1 

Since it is frequently impossible or too costly to measure all N units, and since 
nonzero ei are always present, the population parameters /1- and a 2 are unknown. 
If simple random sampling is used, then statistically unbiased estimates of /1-, I, 
and a 2 are computed from the data as 

i = NX, and 

respectively. 

1 n 

X = - .L; Xi 
n i= I 

I n 
S2 = -- .L; (Xi - xi 

n - 1 i=\ 

4.3 

4.4 
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A measure of the random sampling error in i and Ni is their variances 
Var(i) and Var(Ni), which, when simple random sampling is used, are 

and 

1 
Var(i) = - (l - f)a 2 

n 

1 
Var(Ni) = N 2 Var(i) = - N\l - f)a 2 

n 

4.5 

4.6 

respectively, where a 2 is given by Eq. 4.2 andf = nlN is the sampling fraction­
that is, the fraction of the N units in the target population actually measured. The 
quantity 1 - fis called the finite population correction (fpc) factor. 

Equations 4.5 and 4.6 are appropriate when sampling without replacement from 
a finite population of N units. Sampling without replacement means that once a 
given popUlation unit has been selected for measurement, it is not replaced into 
the popUlation for possible reselection and measurement at a later time. If reselec­
tion is possible, then we have the option of sampling with replacement. 

If sampling with replacement is used, thenfis set equal to zero in Eqs. 4.5 and 
4.6. The equation for Var(i) when sampling with replacement is the same as 
that for sampling without replacement when N is much larger than n, so f == 
O. In most environmental sampling situations it is not feasible to replace a 
space-time popUlation unit into the population for possible selection at a later 
time. Hence, the fpc factor should be used unless n is such a small fraction of 
N that f is essentially zero. 

Unbiased estimators of Var(i) and Var(Ni) computed from the n data are 
(Cochran 1977, p. 26) 

4.7 

and 

respectively, when the Xi are uncorrelated. The standard errors of i and Ni are 
the square roots of these variances, namely 

H 
sex) = s ~~-n-

and 

H 
Ns(X) = Ns ~~-n-

respectively. 

EXAMPLE 4.1 

Suppose it is desired to estimate the mean concentration of 222Ra gas 
at a location downwind from a uranium mill tailings pile for the month 
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of October for a specified year; concentrations on other months or years 
are of no interest. Suppose 10 air measurements XI' X2, ... , XIO 

of24-h duration will be taken during October of that year, each beginning 
at 6 A.M. The n = 10 sample days will be selected at random from the 
N = 31 potential days by choosing 10 two-digit numbers between 01 
and 31 from a random number table. Suppose the 10 222Ra measure­
ments on the selected days are 1450, 1510, 1480, 1680, 2130, 2110, 
1010, 1290, 1150, and 1300 in units of pCi/day. 

The true mean for October is J.t = E7~ I J.t;l31, where J.ti is the true 
amount (pC i) on day i, and J.t is estimated by x = El~ I x;110 = 1511 
pCi/day. Using Eqs. 4.5 and 4.2, we obtain the true variance 

1 - 10/31 31 ( 1 31 )2 
Var(x) = 10(30) i~1 J.ti - 31 i~1 J.ti 

31 
0.67742 2:: _ 2 
10(30) i~ I (J.ti J.t) 

which is unknown because the J.ti are unknown. But Var(x) may be 
estimated by Eqs. 4.7 and 4.4. We find 

0.67742 10 

s 2 (x) = 10(9) i ~I (Xi - X)2 

0.67742 
= 10(9) (1,249,890) = 9407.8 

Hence, the standard error is seX) = 97.0. 
In this example the target population was defined to consist of just 

N = 31 unknown daily concentrations for a particular month. Since N 
is so small, the factor 1 - fis needed when computing s\x). However, 
suppose the ten measurements are considered as representative of con­
centrations that would arise during October for all years that the pile 
exists as an entity. Now n may be so large that f is essentially zero. 
Settingf = 0 and using Eq. 4.7 gives s(X) = 118, which is 21 % larger 
than the seX) obtained when f = 10/31. Clearly, the conceptualization 
and resulting size of the target population affects f and, hence, Var(X) 
and the estimate sex). 

EXAMPLE 4.2 

A study will be conducted to estimate the total emissions of carbon 
monoxide (CO) from a fleet of 500 specially built vehicles, each driven 
100 miles. Suppose n = 5 vehicles are selected by simple random 
sampling and the total CO emissions obtained for these vehicles during 
100 miles of driving are 501, 1467, 860, 442, and 495 g. (The data 
are part of a large data set in Table 2 of Lorenzen, 1980.) Since N = 
500 is the number of vehicles, n/N = 5/500 = 0.01. The estimated 
mean and standard error are x = 753 and sCx) = svl(l ~ f)/n = 
432.4v10.99/5 = 192, both in units of gllOO miles. Therefore, the 
estimated total emissions is Hi = 500 (753) = 376,500 gllOO miles 
with standard error Ns(x) = 500(192) = 96,000 g/lOO miles. 
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4.3 EFFECT OF MEASUREMENT 
ERRORS 

Measurement uncertainties ei have an effect on x and S2(X). Concerning X, if the 
uncertainties are random with zero mean (i.e., no systematic tendency to over- or 
under-estimate the true values of population units), then x is still a statistically 
unbiased estimate of p.. If a constant measurement bias is present, then x will also 
have this same bias. However, estimates of differences over time or space remain 
unbiased if the measurement bias is the same magnitude for all units. The esti­
mated variance, S2(X). is not affected by a constant additive measurement bias for 
all units since this fonnula involves computing 1:7 ~ I (Xi - X)2, where both Xi and 
x contain the same additive bias tenn. However, S2(X) is affected by a measurement 
bias that changes in magnitude from one unit to another. 

For the simple model given by Eq. 4.1, that is, Xi = P.i + ei , the usual 
fonnula for S2(X) (Eq. 4.7) gives an unbiased estimate of Var(x) if the uncertainties 
ei are uncorrelated and if f = nlN = O. This model is usually assumed in 
practice. However, iff = 0 and the errors have a positive (negative) correlation, 
S2(X) will tend to underestimate (overestimate) Var(x), making x seem more 
(less) precise than it really is. If f is nonzero and large random or systematic 
measurement errors are present, then Eq. 4.7 will not reflect the total unceltainty 
in x because the factor 1 - f does not apply to those components of variance. 
Additional discussion is given by Cochran (1977. pp. 380-384). 

4.4 NUMBER OF MEASUREMENTS: 
INDEPENDENT DATA 

This section gives three approaches to detennining n. Each approach is concerned 
with choosing n such that the estimated mean achieves some prespecified accuracy. 
These methods assume that the data are uncorrelated over time and space. which 
applies, in general, if the interval or distance measure between samples is suffi­
ciently large. Section 4.5 gives methods for detennining n when data are corre­
lated. 

4.4.1 Prespecified Variance 

Suppose that the true mean p. will be estimated by x and that Var(x) must be no 
larger than a prespecified value V. Setting V = Var(x) in Eq. 4.5 and solving for 
n give 

4.8 

Equation 4.8 reduces to 

4.9 

if N is very large relative to a 2 . Hence, if the variance a 2 is known, it is easy to 
obtain n for any desired V. If a 2 is not known, it may be estimated by taking an 
initial set of nl measurements and computing S2 (Eq. 4.4). Cox (1952) showed 
that enough additional samples should be taken so that the final number of mea-
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surements is 

52 ( 2) n = - 1+-
V n l 

This approximate result, which assumes x is nonnally distributed, is also given by 
Cochran (1977, p. 79). (The nonnal distribution is discussed in the next section 
and in Chapter 11.) 

EXAMPLE 4.3 

A study is planned to estimate the mean concentration of a pollutant 
in stream sediments in a defined area at a given point in time. The 
sediments have been sampled extensively in past years in this same 
area, so the variability in the measurements is known to be a 2 = 100 
(ppm)2. We assume a 21N = 0, that is, N is very much larger than a2 . 

Study objectives require that enough measurements be taken such that 
Var(x) will be no larger than V = 4 (ppm)2. Hence, by Eq. 4.9, 
approximately n = a21V = 100/4 = 25 measurements are needed. 

Now suppose no prior data are available and that nl = 15 data are 
collected and used in Eq. 4.4 to obtain 52 = 95 as an estimate of a 2 • 

Then the total number of samples to take is 

95 ( 2) n = 4 1 + 15 = 26.9 == 27 

Hence, 27 - 15 = 12 more units must be selected and measured. 

4.4.2 Prespecified Margin of Error 

Rather than specify V, the variance of x, we can specify (1) the absolute margin 
of error d that can be tolerated, and (2) an acceptably small probability 0: of 
exceeding that error. The idea is to choose n such that 

Prob r I x - p, I 2: d I :s; 0: 

where d and 0: are prespecified. For example, if d = 10 ppm and 0: = 0.05, the 
value of n must be found such that there is only a 1000: = 5 % chance that the 
absolute difference (positive or negative) between the estimate x (obtained from 
the n data to be collected) and the true mean p, is greater than or equal to 10 ppm. 
If this approach is used, V in Eqs. 4.8 and 4.9 is replaced by (diZ I _0{/2)2, where 
ZI-od2 is the standard nonnal deviate (discussed in Chapter 11) that cuts off 
(1000:/2) % of the upper tail of a standard nonnal distribution. Then Eqs. 4.8 and 
4.9 become 

4.10 

and 

4.11 

respectively. 
The motivation for replacing Vby (dIZ I _ od2)2 comes from the confidence inter-
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val about 11- given by Eq. 11.6. That equation gives 11- - x = ZI-o: I2 .JV, or 
(diZ I _ 0:12)2 = V, if we let d = 11- - x. 

Table Al in the appendix gives values for ZI _ al2 for various ex. Some selected 
values from this table for commonly used values of ex are 

a: 0.20 0.10 0.05 0.01 

ZI-aI2: 1.2816 1.6449 1.960 2.5758 

Equations 4.10 and 4.11 are exact only if x is normally distributed, which occurs 
if the data themselves are normally distributed or if n is sufficiently large. 

If the data are approximately normally distributed, but a 2 is not known with 
assurance, then the t distribution is used in place of the standard normal distribu­
tion. That is, t 1 _ aI2." _ 1 is used in place of ZI _ od2' where t 1 _ a12,,, _ 1 is the value 
of the t variate that cuts off (1 00ex/2) % of the upper tail of the t distribution with 
n - I degrees of freedom. Hence, Eq. 4. LO becomes 

(t l _ al2 ,,- I ald)2 
n = ----~~=-~--~--

+ (t l _ aI2 ,n_lald)2IN 

Values of t 1 _ al2, n _ 1 are given in Table A2. 
Since tl _ od2,n _ 1 depends on n, an iterative procedure is used. First, use Eq. 

4.10 or 4.11 (depending on the size of N) to determine the initial value of n; call 
it nl' (ZI _ al2 is used at this first stage since no prior value for n is available for 
entry into the t tables.) Find [1-aI2,nl -I in Table A2 and use it in place of ZI -a12 

in Eq. 4.10 (or4.11) to give a value ofn; call itn2' Then tl al2,m-1 is determined 
and used in Eq. 4.10 (or 4.11) to find n3' and so on. After a few iterations the 
value of n will stabilize to the final value. 

EXAMPLE 4.4 

Suppose we need to estimate the mean concentration of a pollutant in 
stream sediments, and we can accept a 10% chance (i.e., ex = 0.10) 
of getting a set of data for which d = 1 x - 11-1 ~ 20 I1-g/L. Suppose a 
pilot study suggests a = 50 I1-g. If N is very large, Eq. 4.10 gives 

11.645(50) r 
n l = I 20 J = 16.9 == 17 

From Table A2, to.95 , 16 = 1.746, which when used in place of ZI - al2 

in Eq. 4.10 gives 

_l1.746(50)l2 
n2 -

20 
19.05 _ 19 

Then to.95 , 18 = 1.734 gives 

_ 11.734(50)l2 
n3 - L 20 18.8 == 19 

Since n3 = n2, no further iteration is needed and n3 = n = 19. 
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4.4.3 Prespecified Relative Error 

In some cases a reliable value for (J2 will not be available for determining n. 
However, an estimate of the relative standard deviation 1/ = a/ I'- (the coefficient 
of variation), may be available. This quantity is usually less variable from one 
study site or time period to another than (J2 is. The approach is to specify the 
relative error dr = Ix - I'- 1/1'- such that 

Prob [Ix - 1'-1 ~ drp.,] = a 

Replacing d with drl'- in Eqs. 4.10 and 4.11 gives 

(Z\ _ a/21/ldr)2 n - ------'-~-=~---.!..:.-=--

- 1 + (Z\ _ a/21/ldr)2 IN 
and 

respectively, where 1/ = (J/ I'- must be prespecified. 

4.12 

Table 4.1 gives values of n computed by Eq. 4.12 for several values of a, 
d" and 1/. Large values of n result when 1/ or 1 - a is large or when dr is 
small. For a given coefficient of variation, one can determine from the table 
those combinations of a and dr that result in an n that can be accommodated 
within funding limitations. Alternatively, if a and dr are prespecified, then 1/ 

will determine n. The iterative procedure described in the previous section can 
also be used. The results in Table 4.1 assume uncorrelated data. If data collected 
in close proximity in time or space have a positive (negative) correlation, then 
the values in Table 4.1 are too small (large). Section 4.5 discusses how to 
determine n when data are correlated. 

EXAMPLE 4.5 

Consider again Example 4.3 where the goal is to estimate the mean 
concentration of a pollutant in stream sediments. Suppose we can 
accept a 10% chance of getting a set of data for which the relative 

Table 4.1 Sample Sizes Required for Estimating the True Mean I'-

Confidence Level 
(I - a) 

0.80 
(Zo90 = 1.2816) 

0.95 
(Zo 975 = I. 96) 

Relative 
Error 

d, 0.10 

0.10 2 
0.25 
0.50 

1 
2 
5 

0.10 4 
0.25 
0.50 

1 
2 
5 

Coefficient of Variation ('1) 

0.50 1.00 1.50 

42 165 370 
7 27 60 
2 7 15 

2 4 

97 385 865 
16 62 139 
4 16 35 

4 9 
3 

2.00 

657 
106 
27 

7 
2 

1,537 
246 

62 
16 
4 
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error d r exceeds 20%. Hence, d r = 0.2 and 21-0.10/2 

Suppose also that 11 = DAD. Then Eq. 4.12 gives 

ll.645(OAO)l2 
nl = = 10.8 == 11 

0.20 

Using the iterative approach, we get [095.10 = 1.812, so 

n = l1.812(OAO)l2 
2 0.20 

13.1 = 13 

Another iteration gives 

n = ll.782(OAO)12 

3 0.20 12.7 == 13 

Since n, = nz, we stop with n = 13. 

1.645. 

For many environmental pollutants the coefficient of variation will be much 
larger than the DAD used in the preceding example. If dr = 0.2 and ex = 0.10 
but 11 is increased to 1.0, the reader may verify that the iterative procedure 
gives n = 70, which is about five times larger than when 11 = DAD. 

4.4.4 Two-Stage Procedure 
To find n using Eqs. 4.9, 4.11, and 4.12, we must have estimates of a 2 or 11 
= alf.!. We can obtain these estimates by one of the following ways: 

1. Collect preliminary data from the population to approximate a 2 or 1J. 

2. Estimate 0 2 or 11 from data collected from the same population at a prior 
time or on a popUlation from a similar study site. 

3. Use best judgment when reliable data are not available. 

Option 1 is effective if there is time to take preliminary measurements at the 
study site. These measurements should be made under the same environmental 
conditions and be the same type as in the main study. Option 2 is useful if the 
variability of measurements obtained at a prior time or at a similar site is 
representative of current conditions. Option 3 depends entirely on expert opinion 
without using quantitative information. In most situations quantitative information 
will be available or can be obtained, so options 1 and 2 can be used. 

If very little data are available, an educated guess for the coefficient of 
variation, 11, might be made, and a provisional value of n, say n J, can be 
obtained by using Eq. 4.12. Then III or fewer data could be collected and used 
to compute x and sl x, the latter being an estimate of 11. Then n 2 is obtained 
with six in place of 11 in Eq. 4.12. If 112 > nl' the number of additional data 
to collect is n2 - n l . If 112 :5 n l , then no additional data are needed. The 
iterative approach using the t distribution could also be used if the data are at 
least approximately normally distributed. 
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4.5 NUMBER OF MEASUREMENTS: 
CORRELATED DATA 

4.5.1 Spatial Correlation 
The methods for estimating n in previous sections assume measurements are 
uncorrelated. In practice, a spatial correlation may be present so that part of 
the information contained in one measurement is also in other measurements 
taken close by in space. A method by Nelson and Ward (1981) to determine n 
in this situation is now given. 

Suppose n observations are taken at each of ns stations over the same time 
period to estimate the regional mean for that period. The regional mean is 
estimated by 

1 n.,· n 1 n, 

X = - L; L; x .. = - L; x· 
nn, i = 1 j = 1 IJ ns i = 1 I 

4.13 

where xij is the jth observation at station i and Xi is the estimated mean for the 
ith station. Suppose the variance over time, (]2, is the same at each station and 
that the data are correlated over space but not over time. Assume the true 
station means, l1i, are equal. Then the variance of the estimated regional mean 
(from Matalas and Langbein, 1962) is 

(]2 

Var(x) = - [1 + pc(ns - 1)] 4.14 
nn, 

where Pc is the average of the nins - 1)/2 cross-correlations between the ns 
stations, where -lI(ns - 1) ::5 Pc ::5 1. 

For this situation the generalization of Eq. 4.11 is 

4.15 

If n, is established a priori, then Eq. 4.15 is used to determine n, so the regional 
mean is estimated with an accuracy and confidence indicated by the prespecified 
values of d and ZI-a/2' If n is prespecified, Eq. 4.15 can be used to determine 
ns. If the Xi are quite variable, replace (]2 in Eq. 4.14 with (]2 + n(]i and solve 
for n, where (]i is the variance of the station means. 

In practice, Pc will usually be greater than zero. Theoretically, Pc could be 
negative, which would result in taking fewer measurements than if Pc was 0 or 
positive. If the estimate Pc is negative, a conservative approach would be to 
assume Pc equals zero or to use the absolute value of Pc' This would guard 
against taking too few measurements. 

EXAMPLE 4.6 

Suppose we are interested in estimating the average concentration in 
groundwater in a defined region, using 3 established wells in the 
region. Samples have been collected concurrently every month at 
the 3 wells over a two-year period, yielding 24 measurements per 
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well. Suppose, due to the location of the wells, they tend to give 
redundant information at each sampling time. However, we suppose 
there is little or no correlation between measurements made in 
different months. We wish to determine whether monthly sampling 
is required to estimate the annual regional mean nitrate concentration 
with accuracy of at least d = Ix - III = 20 mg/L. Suppose we 
can accept a 10% chance of getting a data set for which d exceeds 
20 mg/L. That is, (X = 0.10 and ZO.95 1.645. We estimate the 
pooled a as follows: 

fJ = l 1 ~ (ni - I)SfJ 112 
fls i= I 

~ (ni - 1) 
i= I 

4.16 

where ns = 3, s; is the estimated variance for well i (computed by 
Eq. 4.4) and ni = 24 for each well. Suppose Eq. 4.16 gives fJ = 

60 and that P12 = 0.40, PI3 = 0.25, and P23 = 0.70, so their 
average is Pc = 0.45. The estimates Pi;' are calculated by the usual 
formula, as given by, for example, Snedecor and Cochran (1980, p. 
175). For example, for wells 1 and 2, 

24 

.2: (XI} - XI)(X2j - X2) 
J=I 

P 12 = -;==================== 
24 24 

~ (Xlj - XI)2 ~ (X2j - X2)2 
j= I j= I 

where Xi = I:J! I xi/24 = mean for ith well, i = 1, 2, 3. Solving 
Eq. 4.15 for n gives 

= (1.645(60»)2[1 + 0.45(3 - 1)] 
n 20 3 

= 24.35(1.9) = 15.4 == 16 
3 

Therefore, monthly sampling is not frequent enough to obtain an 
estimate of the annual regional mean within 20 mg/L of the true 
value with 90% confidence. If the spatial correlation had not been 
taken into account, we would have obtained n = 24.35/3 == 8, a 
spurious conclusion. The reader may confirm that monthly sampling 
would be adequate to achieve the desired 20 mg/L accuracy with 
80% confidence. 

EXAMPLE 4.7 

Suppose we redo Example 4.6, keeping everything the same except 
that n, = 15 wells, instead of 3 wells, are present in the region. 
Again, we want to determine whether monthly sampling is required 
to estimate the annual regional mean with accuracy d = 20 units 
and 100(1 - 0.10) = 90% confidence. Solving Eq. 4.15 for n gives 
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24.35[1 + 0.45(15 - 1)] 
n = = 11.85 == 12 

15 

Hence, with 15 wells, monthly sampling is necessary and sufficient. 

In Example 4.7 we specified ns = 15 stations were to be sampled and we 
found n = 12 so that nns = (12)(15) = 180. In Example 4.6 only ns= 3 
stations were to be sampled and n was found to be 16 so that nns = 16(3) = 
48 measurements were needed. In both cases we specified d = 20 and 0: = 

0.10, so why does nns differ for the two cases? The answer lies in the positive 
correlation Pc between stations and the a priori specification of ns. Since the 
data from different stations are positively correlated, adding more stations does 
not result in proportionally more information for estimating the regional mean. 
Examples 4.6 and 4.7 show there is as much information obtained for estimating 
the regional mean by sampling each of the 3 stations 16 times as there is by 
sampling each of the 15 stations 12 times. Because of the correlation Pc, 
sampling the additional 12 stations adds little information for estimating the 
regional mean. In practice, when the number of stations, ns , is prespecified, 
we need to estimate the spatial correlation Pc and use Eq. 4.15 instead of Eq. 
4. 11 to determine n. 

Equation 4.15 can also be used to determine the number ns of stations for 
an a priori specified number n of measurements over time, if we still assume 
no correlation over time. If Eq. 4.15 is solved for ns , we obtain 

(ZI _ odzo/d)z(l - Pc) 
ns = z 4.17 

n - (ZI - a/2a/d ) Pc 

where n must be greater than (ZI_odZa/d)2pc. The use of Eq. 4.17 is illustrated 
in the following example. 

EXAMPLE 4.8 

Suppose on the basis of past studies we have the estimates & = 60 
and Pc = 0.45. Further suppose we chose d = 20 mg/L and 0: = 
0.10 as in Examples 4.6 and 4.7. Suppose also that we want an 
annual regional mean and it will be based on n = 12 measurements 
during the year, say one each month. Equation 4.17 gives 

n = 24.35(0.55) = 12.8 == 13 
s 12 - 24.35(0.45) 

But suppose that Pc = 0.3 instead of 0.45. Then the reader may 
verify, using Eq. 4.17, that only ns = 4 stations are needed with 
monthly sampling. Reducing Pc still further to zero (no spatial 
correlation between stations) results in only n, = 2 stations being 
required. Hence, as Pc decreases to zero and the number of samples 
per station remains constant, the number of stations can be reduced 
and still provide the same amount of information needed to estimate 
the regional mean with the same prespecified accuracy and confidence. 

We have assumed that Pc is an accurate estimate of the true Pe­

If this is not true, our estimates of nand ns may be far from the 
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values that will assure that the a priori accuracy and confidence 
requirements are met. 

4.5.2 Time Correlation 
Section 4.5.1 showed how to estimate Var(x) and determine the number of 
measurements to take for estimating x when data are correlated over space but 
not over time. This section shows how to do these things when data are 
correlated over time but not over space. In Section 4.5.3 both space and time 
correlation are considered. See Hirtzel and Quon (1979) and Hirtzel. Quon, and 
Corotis (l982a, 1982b) for additional information on estimating the mean or 
maximum of correlated air quality measurements. 

Let x I, X 2, . . . , x" denote a sequence of measurements taken at equal 
intervals along a line in time or space. This section gives a method for estimating 
the number, n, of these measurements needed at a given station to estimate the 
true mean /-t over a specified time (or space) interval with pre specified accuracy 
and confidence. Since measurements are collected at equal intervals. we do not 
require in this section (or Section 4.5.3) that samples be collected by simple 
random sampling. We do this because the efficient estimation of autocorrelation 
(see next paragraph) requires equally spaced samples. Collecting samples at 
equal intervals is an example of systematic sampling, the topic of Chapter 8. 

Let PI be the true correlation of the population of measurements taken 1 lag 
apart, that is, between measurements x I and x 2, X 2 and x 3, X 3 and X4, and so 
forth. Similarly, let P2 be the true correlation between measurements 2 lags 
apart (XI and X3, X2 and X4' etc.) and, in general, PI the true correlation between 
measurements I lags apart, where -1 ~ P, ~ 1. The set {PI, P2' ... } is 
called the autocorrelation function, and a plot of PI against I for all lags I is 
the correlogram. 

We assume that the underlying process being measured does not cycle, does 
not have long-term trends, and does not make sudden jumps in magnitude or 
change its autocorrelation function over time. That is, assume that the mean, 
variance, and serial correlations P, for any segment of the time series do not 
change as we move along the series-that is, the time series is weakly stationary. 
If these assumptions are unreasonable in a given situation, then it may not be 
meaningful to estimate the mean for the entire population. It would be better 
to divide the popUlation into more homogeneous subpopulations or to take 
measurements to determine the patterns of variability that are present. 

The sample mean x = E7= I x,ln is used to estimate the true mean /-t. If the 
foregoing model is appropriate, the variance of x is 

Var(x) = a 2 11 + ~ n~1 (n - I)Pll 
n L n 1= I 

4.18 

where a 2 is the variance of the population of measurements. (A proof of Eq. 
4.18 is given by Loftis and Ward, 1979.) Note that Eq. 4.18 reduces to a 2/n, 
the usual formula for Var(x) when all PI equal zero. 

Now, if all the PI are zero, we know from Eq. 4.11 that the number of 
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samples, n, required to estimate x with prespecified accuracy d = Ix - t-tl and 
100(1 - a)% confidence is 

11 = (ZI _ rxI2a/d)2 

which is obtained by solving the equation 

n 
4.19 

for n. When Var(x), given by Eq. 4.18, is substituted into Eq. 4.19, we obtain 
a quadratic equation that can be solved for n by using the quadratic formula. 
Doing so gives 

\ n-I i( n-1)2 II-I ll12J 
n = ~ (1 + 2 I~I PI + L 1 + 2 I~I PI - ~ I~I IPIJ 4.20 

where D = (ZI _ cd2a/d)2. The following approximate expression is obtained by 
ignoring the term in the quadratic equation that has n2 in the denominator: 

n = D(l + 2 "~I PI) 
I~ I 

4.21 

We note that, since ZI -a/2 is used in Eqs. 4.20 and 4.21, the measurements 
Xi are assumed to be normally distributed. Example 4.9 illustrates the computation 
of Eqs. 4.20 and 4.21. 

Equations 4.18, 4.20, and 4.21 require knowledge about the magnitude of 
the autocorrelation coefficients PI' These coefficients may be estimated from 
measurements from prior studies obtained at equal intervals (along a line in 
time or space). If x I, X 2, . . . , Xn denotes such a series, Box and Jenkins 
(1976) indicate that the most satisfactory method of estimating the lth lag 
autocorrelation, PI, is 

n-I 

L: (x, - X)(X'+i - x) 
PI = ~'~_I~------------­

fl 
4.22 

where x is the mean of the n data. [Wallis and O'Connell (1972) compare the 
estimation bias of Eq. 4.22 with that of competing estimators when n is small.] 
If one or more of the PI are negative it is suggested that they be set equal to 
zero or to their absolute values for the purpose of determining n using Eqs. 
4.20 and 4.21 (or Eqs. 4.24, 4.25, and 4.26). 

To illustrate the mechanics of calculating Eq. 4.22, consider the time series 
of five measurements 5, 3, 7, 4, and 10 collected one per month for five 
consecutive months. We find x = 5.8. Hence, the estimated autocorrelation 
between units I = 2 units apart is 

A (5 - 5.8)(7 - 5.8) + (3 - 5.8)(4 - 5.8) + (7 - 5.8)(10 - 5.8) 
P2 = (5 - 5.8)2 + (3 - 5.8)2 + (7 - 5.8)2 + (4 - 5.8)2 + (10 - 5.8)2 

= 0.30 

Estimates PI> P3' and P4 are obtained similarly. In practice, at least n = 50 
measurements are needed to obtain accurate estimates of the PI for lags I = 1, 
2, ... , K, where K should not exceed n14. 
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The use of Eqs. 4.20 and 4.21 also requires that we estimate a 2 • The usual 
estimator S2 given by Eq. 4.4 may be used for this purpose. This estimator is 
known to be biased unless the PI are zero (see Scheffe, 1959, p. 338), but the 
bias will be near zero if the number of data used to compute S2 is sufficiently 
large. A suggested alternative estimator of a 2 that takes into account the 
correlations PI is given in Exercise 4.4. 

EXAMPLE 4.9 

Determine the number n of equally spaced daily measurements needed 
over a 12-month period at a given sampling station to estimate the 
annual mean at that location with accuracy d = 20 units and 100(1 -
0.10) = 90% confidence. Suppose that past data collected daily over 
several months are normally distributed and give no indication of 
cycles, trends, or changing variance over time. Suppose these data are 
used to estimate a 2 by using Eq. 4.4, which, after taking the square 
root, gives s = 60. 

Finally, suppose that Eq. 4.22 is used to estimate PI> P2, and P3, 
yielding 0.6, 0.4, and 0.2, respectively, and that PI = 0 for I > 
3. Then Eq. 4.21 gives 

n = 24.354(1 + 2.4) = 82.80 == 83 

Using Eq. 4.20, the exact equation for n, we obtain 

n = 0.5(24.354)[3.4 + l(3.4)2 - 2:~:;4r2J 
= 8l.6 == 82 

The approximation (Eq. 4.21) works well in this case. Taking a 
measurement every fourth day during the year would result in 91 
measurements, more than is required to achieve the desired accuracy 
and confidence in the annual mean. 

4.5.3 Space and Time Correlations 
This section considers data collected at mUltiple stations at equal time intervals 
that are both spatially and serially correlated. We give expressions for estimating 
the variance of the estimated regional mean and for determining the number n 
of data at each station as well as the number ns of stations. 

Let x be the estimated regional mean as defined by Eq. 4.l3. Furthermore, 
suppose the correlations over time, Ph I = 1, 2, ... , are the same at all 
stations and that the time process is weakly stationary, as assumed in the 
previous section. Now, suppose we replace a 2/n in Eq. 4.18 by the variance 
of the mean of spatially correlated data (Eq. 4.14). Then if the same number, 
n, of observations is taken at each station, the variance of the regional mean 
is given by 

Var(x) = ~ 1 + ~ 2: (n - l)PI [1 + pc(ns - 1)] 
2l n-l J 

nns n 1= I 
4.23 

If all the PI equal zero, then Eq. 4.23 reduces to Eq. 4.14. Eq. 4.23 reduces 
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to Eq. 4.18 when ns = 1. If station means, Xi' are quite variable, use (J2 + 
n(J~. 

By using data from prior or similar studies to estimate (J2 and the serial 
correlations PI> i = 1, 2, ... , and using these estimates in Eq. 4.23, we can 
estimate the variance of the regional mean. 

Using the general procedure in Section 4.5.2 (following Eq. 4.18), and 
assuming (Ji = 0, we obtain the following equation for calculating the number 
of measurements at each station: 

n = ~ 11 + 2 n~1 PI + pins _ 1) (1 + 2 n ~I PI)l 
2ns L 1= I 1= 1 

f l n -1 (n - 1 )l2 
+ Q ~.1 + 2 L: PI + pc(ns - 1) 1 + 2 L: PI 

2 ns _ 1=1 I = I 

In-I n-I lJ lI2 

- _8_ L: iPI - pc(ns - 1) L: iPI 
nsD 1=1 1=1 

4.24 

where D (Zl _ od2(J/d)2. An approximate expression for n is 

D ( n-I) . 
n == - 1 + 2 L: PI [1 + pc(ns - 1)] 

ns 1= I 
4.25 

Equations 4.24 and 4.25 reduce to Eqs. 4.20 and 4.21, respectively, if n = s 

1. If aj > 0, Eqs. 4.24 and 4.25 are lower bounds on n. 
Equation 4.25 may be solved for ns ' giving 

D(l + 2 n~l PI) (1 - Pc) 
1=1 

which reduces to Eq. 4.17 when all PI are zero. 

EXAMPLE 4.10 

Suppose enough equally spaced measurements, n, are to be taken at 
each of ns = 3 stations to estimate the regional mean x with accuracy 
d = 20 units and 100(1 - 0.10) = 90% confidence. Suppose further 
that data from prior studies have given the estimates a = 60, Pc = 

0.45, PI = 0.6, P2 = 0.4, P3 = 0.2, and that PI = 0 for lags 
greater than 3. Using Eq. 4.24, we obtain 

(24.354) 
n = 2(3) [3.4 + 0.45(2)3.4] 

24.354 \1 
+ -2-/..9 [3.4 + 0.45(2)3.4f 

8 '(2 
- 3(24.354) [2 - 0.45(2)2] j 

= 52.38 == 53 

4.26 
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The approximate equation for n, Eq. 4.25, gives 

n = 24.35:(3.4) [1 + 0.45(2)] = 52.44 =:: 53 

the same result. 
Example 4.6 is identical to this example except that no serial 

correlation was present. In Example 4.6 only 16 measurements at 
each of three stations were required, much fewer than the 53 required 
here where positive spatial and temporal correlation is present. This 
example illustrates again that if data have positive correlation, there 
is less information per measurement than if the measurements are 
not correlated. Consequently, more measurements are required to 
estimate a mean with specified accuracy and confidence. 

4.6 ESTIMATING Var(x) 

Sections 4.5.1-4.5.3 were primarily concerned with determining n or n, for a 
future study. However, once data have been collected that are spatially and/or 
temporally correlated, an estimate of Var(x) will be needed to evaluate the 
uncertainty in X. The quantity Var(x) can be estimated by using Eqs. 4.14, 
4.18, or 4.23, whichever is appropriate, if estimates of a2 , P'" and the serial 
correlations PI are available. We have already indicated how these estimates 
can be obtained if enough data have been collected. The estimates of Pc and 
the PI are used when estimating Var(x), even if they are negative. Chapter 11 
shows how to use estimates of Var(x) for putting confidence limits about the 
true mean !J.. 

Now we give a method for estimating the variance of an estimated regional 
mean when the observations at a given station are correlated over time, but 
there is no correlation between stations. This method is simpler than using Eq. 
4.18 because it is not necessary to estimate the serial correlations PI' 

Suppose n random observations over time have been made at each of ns 
monitoring stations. The regional mean may be estimated by using Eq. 4.13 to 
compute X. Now, the variance of x may be estimated by computing the variance 
of the station means Xi: 

2..; (Xi- j / 
nJns - 1) i= I 

4.27 

where Xi = Ej= I xij/n. An advantage of Eq. 4.27 is that temporal correlation 
does not invalidate its use. Also, the observations at each station may be made 
systematically-for example, at equal intervals-rather than at random times. 
The potential benefits and pitfalls of systematic sampling are considered in 
Chapter 8. Equation 4.27 is the same as Eq. 6.7, which concerns two-stage 
sampling. 
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4.7 SUMMARY 

This chapter begins by discussing the basic concepts of simple random sampling 
and estimating the mean and total as well as the variance of these estimates. 
Then complications that arise when measurement errors are large and correlated 
are discussed. Methods are given for estimating the number of samples to collect 
for estimating a mean when the data are uncorrelated or correlated. Also given 
are equations for estimating Var(x) when data are correlated over space or time. 
These are used in Chapter 11 to compute confidence limits about the true mean. 

EXERCISES 

4.1 In Example 4.2, N was equal to 500 vehicles. Suppose instead that the 
target population is N = 1,000,000 vehicles, the total production for a 
year. Assume the n = 5 measurements are a random sample from this 
larger population, and use the data to compute s(x). Is this estimate very 
different from that in Example 4.2? Now, compute s(x), assuming N 
50, and note the amount of change. 

4.2 Repeat the iterative computations in Example 4.5 to obtain n, except 
assume TJ = 0.20. 

4.3 Doctor and Gilbert (1978) report count-per-minute readings of 241Am in 
surface soil taken with a handheld detector at 100 adjacent locations along 
a line transect. The estimated serial correlations for lags 1, 2, . . . , 14 
for measurements made 1 ft off the ground surface are (reading left to 
right) 

0.929 0.812 0.646 0.487 0.345 0.250 0.199 
0.187 0.184 0.186 0.162 0.122 0.074 0.029 

respectively. The sample mean and standard deviation of the n = 100 
data are x = 18,680 and s = 4030. Estimate the standard error of x, (i) 
assuming the data are uncorrelated, and (ii), using Eq. 4.18 and the 
previous correlations, assuming all serial correlations at lags greater than 
14 are zero. 

4.4 If data are normally distributed and correlated, then it can be shown that 
the mathematical expected value of S2 is 

E(S2) = a2l1 _ 2 n f,l (n - l)PIJ 
n(n - 1) l~ I 

This equation suggests using the following estimator for a 2 : 

S2 &2 = ______ --;-___ _ 
n I 

2 
I - L; (n - l)Pt 

n(n - 1) t ~ 1 

Repeat the computations of part (ii) in Exercise 4.3, except use the 
preceding estimator for a 2. Is sex) changed very much from that obtained 
in Exercise 4.3? 
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ANSWERS 

4.1 When N = 1,000,000, f = nlN = 511 ,000,000 = 5 X 10-6 . 

11 - 5 X 10-6 

sex) = 432.4~ 5 = 193 

When N = 50, f = 5/50 = 0.10. 

~ 
sex) = 432.4~5 = 183 

4.2 n = [1.645(0.20)/0.20f = 2.706 == 3. 

to .95 ,2 = (2.920)2 = 8.53 == 9 = n2 

to.95,8 = (1.86)2 = 3.5 == 4 = n3 

to.95.3 = (2.353)2 = 5.54 == 6 = n4 

to.95 . 5 = (2.015)2 = 4.06 == 5 = n5 

to 95 4 = (2.132)2 = 4.55 == 5 = n6 

4.3 (i) sex) = 4030110 = 403 

(1'1') l(4030)2 { sex) = ----wo 1 + 0.02[99(0.929) + 98(0.812) 

+ ... + 87(0.074) + 86(0.029)]} f2 

= 1260 

4.4 4030 
& = I 2 ll/2 = 4222.2 

1 - 440.5 
100(99) 

4222.2 
seX) = -1-0- (9.81)1/2 = 1320 

which is about 5% larger than seX) obtained in part (ii) of Exercise 4.3. 



5 Stratified Random 
Sampling 

Stratified random sampling is a useful and flexible design for estimating average 
environmental pollution concentrations and inventories (total amounts). The 
method makes use of prior information to divide the target population into 
subgroups that are internally homogeneous. Each subgroup (stratum) is then 
sampled by simple random sampling to estimate its average or total. These 
stratum estimates may be the primary focus of the study. However, if the mean 
and total for the entire population are needed, the stratum results may be 
combined as described in this chapter to give more precise estimates than would 
be achieved if stratification is not used. Applications of stratified random 
sampling to environmental studies are found in Jensen (1973), Liebetrau (1979), 
Environmental Protection Agency (1982), Thornton et al. (1982), Nelson and 
Ward (1981), Green (1968), Reckhow and Chapra (1983), and Gilbert et al. 
(1975). 

This chapter shows how to estimate the mean and total amount of pollutant 
in a population composed of or divided into strata, the standard error of the 
estimated mean and total, and the optimum allocation of samples to the strata 
under constraints of fixed cost or required precision of estimation. Examples 
and a case study are given to illustrate these procedures. 

5.1. BASIC CONCEPTS 

Let N be the total number of population units in the target population. These 
N units are divided into L nonoveriapping strata such that the variability of the 
phenomenon within strata is less than that over the entire population of N units. 
Let the number of population units in the L strata be denoted by N 1, N2 , 

... , NL • The weight of the hth stratum is Wh = Nh/N. These weights and 
the Nh are assumed to be known before any sampling takes place. Once the L 
strata are defined, a simple random sample of units is drawn from each stratum 
by the procedures described in Section 4.1. The number of units measured in 
the hth stratum is denoted by nh, with n = I;~ ~ I nh being the total number of 
units measured over all L strata. The objective is to first estimate the true mean 
value and/or total amount (inventory) of the pollutant in each stratum. A 
weighted average of these stratum means by using the weights Wh is computed 
to estimate the average and/or inventory over the entire population of N units. 

45 
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If the stratification has been effective in creating relatively homogeneous strata, 
then the estimated average and inventory for the entire population of N units 
should be more accurate than would be obtained if a simple random sample 
had been collected from the N units without first stratifying the population. 

EXAMPLE 5.1 

We want to estimate the average amount of a contaminant ingested 
by a specified population that eats a particular food. The population 
consists of N men, women, and children; men and women eat about 
the same amount of this food each day, but children eat less. Two 
groups (strata) are defined: stratum I consists of N, adult men and 
women, and stratum 2 consists of N2 children, and N = N, + N2. 
A simple random sample of individuals is drawn independently from 
both strata: n, in stratum 1 and n2 in stratum 2. These n, + n2 = 
n individuals are interviewed, and the data are used to estimate the 
average amount of food ingested per day per individual for each 
stratum. Then the average Il over the popUlation of N individuals is 
estimated by computing the weighted average of the stratum means. 
The weights for strata 1 and 2 are N,IN and N2IN, respectively. 

5.2 ESTIMATING THE MEAN 
This section gives equations for estimating the stratum means Ilh, the overall 
mean Il, and the standard errors of the estimated means. These equations and 
those used in Section 5.3 through 5.6 are from Cochran (1977). The mean Il 
of the population of N units is 

L 1 L 

Il = - 2.,; Nhllh = 2.,; Whllh 
N h=' h=' 

Hence, Il is the weighted average of the true stratum means Ilh, where 

1 Nh 

Ilh = N 2.,; Ilhl 
h i=' 

and where Ilhi is the true value for the ith unit in the hth stratum. 

5.1 

The stratum mean Ilh is estimated by randomly selecting nh units from stratum 
h and computing 

An unbiased estimator of Il is 

L 

XS! = 2.,; WhXh 
h=' 

5.2 

5.3 

Note that XSl is a weighted mean, the weights Wh being the relative sizes of the 
strata. If Nhl N = nhln in all strata-that is, if the proportion of samples collected 
in the hth stratum equals the proportion of the N units in stratum h-then is! 

reduces to 
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which is the simple arithmetic mean of the n data collected over all L strata. 
This type of sample allocation is called proportional allocation. It is simple to 
use but will not be optimal in the sense of giving the most accurate estimate 
of J.t if sampling costs or data variability differ for the various strata. 

Since only a portion of the population units in each stratum have been 
measured, XSI has a variance due to the random sampling procedure, of 

~ W2
h ~ (1 jj Var(xst) = L.J - h) 

h= I nh 

where (J~ is the (unknown) variance over all Nh units in stratum h, and fh 
n"INh • If proportional allocation is used, this expression reduces to 

1- f L 
Var(xsl) = -- 2: Wh(Jl. 

n h= I 

where f = nlN. The square root of Var(xsl) is the true standard error of i st . 

If simple random sampling is used in each stratum, a statistically unbiased 
estimate of Var(xst) is obtained by computing 

I L ( n ) S2 s2(i ) = - 2: N2 1 - -"- ....!!. 
sl N2 h N 

h = 1 h nil 
5.4 

where 

Equation 5.4 reduces to 

5.5 

if N is very large. 
In summary, i SI (Eq. 5.3) estimates the popUlation mean J.t of the N population 

units. The uncertainty in i SI due to sampling only a portion of the units is 
estimated by computing s\xst) with Eq. 5.4 or Eq. 5.5. An estimate of the 
standard error of xst is given by s(xst). The stratum means are estimated by Eq. 
5.2. The estimated variance of Xh is (1 - fh)s~/nh' If random uncertainties due 
to sample collection, handling, and measurement are present, then Eq. 5.4 is 
still an unbiased estimator of Var(xst) if fh = 0 for all strata. 

5.3 ESTIMATING THE TOTAL 
AMOUNT 

The total amount (inventory) over all strata is 

I. 

I = 2: NhJ.th = NJ.t 
h=1 

where J.t is defined by Eq. 5.1, and NhJ.th is the inventory for stratum h. The 
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quantity I is estimated by computing 

L 

j = I; NhXh = NxS! 
h ~ I 

where NhXh is the estimated total amount in stratum h. 
The variance of j is 

5.6 

An estimate of this variance is obtained by computing Eq. 5.4 and multiplying 
by N 2 • That is, 

EXAMPLE 5.2 

This example is patterned after a similar one in Reckhow and Chapra 
(1983). Suppose we want to estimate the average concentration and 
total amount of phosphorus in the water of a pond. Data from similar 
ponds suggest that phosphorus concentrations may be higher at depth 
than near the surface of the water. Hence, the pond is divided into 
3 depth strata; a surface layer, a bottom layer, and the intermediate 
zone. Within each stratum 1-L water samples are taken at random 
locations with respect to depth and horizontal position. The phosphorus 
concentration of a 100-mL aliquot from each 1-L sample will be 
measured. The target population is the total number N of 100-mL 
water samples in the pond. The number of such aliquots in stratum 
h is Nh . Suppose the funds available for sampling will allow for n 
= 30 samples and that proportional allocation to the 3 strata is used. 
Table 5.1 gives the values of Nh for our hypothetical pond along 
with the resulting values of nh. Hypothetical data and the resulting 
stratum means, totals, and variances are also given. Using Eqs. 5.3, 
5.4, 5.6, and 5.7, we obtain XS! = 3.45 j.tgIlOO mL, s(xst ) = 0.146 
j.tg/100 mL, j = 33.3 X 106 j.tg, and s(1) = 1.41 x 106 j.tg, 
respectively. 

5.4 ARBITRARY SELECTION OF 
STRATA 

5.7 

When sampling in one or two dimensions, such as along a line or over a land 
area, it may be desirable to distribute sampling points more uniformly than can 
be achieved by simple random sampling. One way to do it is to use systematic 
sampling discussed in Chapter 8. Another approach that still uses random 
sampling is to divide the area into blocks of equal or unequal sizes and choose 
one or more locations at random within each block. The case of one point per 
equal-sized block is illustrated in Figures 3.1(f) and 3.2(f). Also, strata might 
be defined on the basis of topography, political boundaries, roads, rivers, and 
so on. This design might be considered to be stratified random sampling with 



Table 5.1 Data and Computations for Stratified Random Sampling to Estimate Average Phosphorus Concentration (/1g/100 
mL) and Total Amount (/1g) in Pond Water 

Measurements WhXh 
Strata Nh Wh nh (JigIlOO mL) X h NhXh (Jig) s~ (JigIlOO mL) W~s~/nh 

3,940,000 0.409 12 2.1 1.2 1.5 2.5 1.99 7.8 x 106 0.4299 0.814 0.005993 
-I:>. 3.0 1.4 1.1 1.9 
(() 

1.7 3.1 2.3 2.1 
2 3,200,000 0.332 10 4.03.64.1 2.9 3.83 12.3 x 106 0.4134 1.27 0.004557 

4.8 3.3 3.7 3.0 
4.4 4.5 

3 2,500,000 0.259 8 6.0 5.8 3.4 5.1 5.26 13.2 x 106 1.294 1.36 0.Q1085 
3.9 5.3 5.7 6.9 

Sum 9,640,000 1.00 30 i = 33.3 X 106 X" = 3.45 S2(X,,) = 0.0214 
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one or more observations per stratum, except that the stratum (block) boundaries 
are arbitrarily determined rather than being based on a priori information on 
spatial or time variability. 

If equal-sized blocks are used, the main concern will probably be to estimate 
p" the mean of the entire popUlation. If two or more observations per block 
are obtained, the usual stratified random sampling estimate xst (Eq. 5.3) may 
be used to estimate the population mean p,. Equation 5.4 is used to estimate 
Var(xst). However, since the strata (blocks) have been arbitrarily defined, there 
is no assurance that this approach will result in a more precise estimate of p, 

than if the simple mean x = I:;l~ I x;ln of all the data is used. If there is only 
one observation per block as in Figure. 3.l(f), one could still compute xsu but 
Var(xst) cannot be estimated using Eq. 5.4 since two or more measurements 
per block are required. Some approaches for estimating Var(xst) for this situation 
are given by Cochran (1977, p. 138). 

5.5 ALLOCATION OF SAMPLES TO 
STRATA 

An impOltant aspect of the design of a stratified random sampling plan is to 
decide how many samples nh to collect within the hth stratum. If the main 
objective is to estimate the overall population mean p, or popUlation total Np" 
Cochran (1977, pp. 96-99) describes a procedure for choosing the nh that will 
either minimize Var(xst) for fixed cost of sampling or minimize cost C for a 
fixed pre specified Var(xst) that must not be exceeded. He uses the cost (in 
dollars) function 

L 

cost = C = Co + L: c"nh 
h~l 

5.8 

where Ch is the cost per population unit in the hth stratum and Co is the fixed 
overhead cost. With this cost function the optimum number of samples in the 
hth stratum is then 

Whah/~ 
n h = n ----:-L ----''--''------'- 5.9 

L: (Whah/~) 
h~1 

where ah is the true population standard deviation for the hth stratum and n is 
the total number of samples collected in all L strata. In practice, ah is replaced 
with an estimate, Sh, obtained from data from prior studies. Methods for 
determining n are given in Section 5.6. 

Equation 5.9 says to take more observations in a stratum if the stratum is 
larger (i.e., if Wh is large), more variable internally, or cheaper to sample. If 
the cost per popUlation unit is the same for all strata, Eq. 5.9 reduces to 

5.10 

Equation 5.10 is frequently called Neyman allocation. 
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A simple alternative to Eqs. 5.9 or 5.10 is to use proportional allocation: 

nNh 
nh = nWh =-

N 

For example, if a given stratum is 30% of the entire population, then 30% of 
the samples are allocated to that stratum. With proportional allocation there is 
no need to know the stratum standard deviations ah to find nh. However, a 
more accurate estimate of J-t will usually result if a reasonably accurate estimate 
of ah is available so that Eqs. 5.9 or 5.10 can be used. 

5.6 NUMBER OF SAMPLES 

The methods for estimating nh in Section 5.5 require knowing n, the total 
number of population units that will be measured in the L strata. This section 
shows how to estimate n. 

5.6.1 Prespecified Fixed Cost 

If total cost C (Eq. 5.8) for the study IS fixed a priori, the optimum n is 
estimated by 

L 

(C - co) ~ (Whshlrc,,) 
n = ______ ~h~~' ______ __ 

L 5.11 

~ (WhSh rc,,) 
h~' 

where Sh is obtained from prior studies and Co represents overhead costs. Hence, 
C - Co is the total dollars available for collecting and measuring samples, not 
including overhead expenses. 

5.6.2 Prespecified Variance 

If Var(xst) is a prespecified value V, then n is obtained by computing 

ct, WhShrc,,) ht, Whshlrc" 
n = ------------~-------

I L 

V + - ~ WhS~ 
Ni~' 

Another approach for determining n when V is prespecified is to also 
prespecify the stratum sampling fractions Wh = nhln (not to be confused with 
the stratum weights Wh = NhIN). Costs or other constraints might dictate the 
sampling fractions Who These fractions may not necessarily be optimum in the 
sense of minimizing cost for fixed precision or minimizing precision for fixed 
cost. Nevertheless, if both V and the Wh are prespecified, n is computed as 

5.12 
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Since the sampling fractions nh/n have been prespecified, the nh can be determined 
using n calculated from Eq. 5.12. If proportional allocation is used so that Wh 

= nh/n = Wh, then Eq. 5.12 reduces to 

L 

L: WhS~ 
n = _---'h-'--=_''------__ _ 

1 L 

V + - L: WhS~ 
N h=' 

5.6.3 Prespecified Margin of Error 
Rather than prespecify V, we may specify a margin of error d = IXst - ILl that 
can be tolerated and a small probability ex of exceeding that error. This general 
approach was also used in Section 4.4.2 for simple random sampling. If 
proportional allocation is used, and if xst is approximately normally distributed, 
then the optimum value for n may be estimated by computing (see Cochran, 
1977, p. 105) 

L 

ZLal2 L: Whs~/d2 
n = ____ ~h_=~' ____ _ 

L 

+ Z~ -a12 L: Whs~/d2N 
h=' 

5.13 

where Z, -a12 is the standard normal deviate defined in Section 4.4.2 and 
tabulated in Table AI. 

EXAMPLE 5.3 

Let us return to Example 5.2, where interest centered on estimating 
the average concentration of phosphorus in water of a pond. We use 
the stratum weights (Wh) and estimated variances (s~) in Table 5.1 
to determine n such that 

Prob[lxst - ILl ~ 0.2 ILgllOO mL] = ex 

where xst will be estimated from the n measurements. From Table 
5.1 we have 

L: WhS~ = 0.409(0.4299) + 0.332(0.4134) + 0.259(1.294) 
h=' 

= 0.6482 

Suppose we specify ex = 0.10. Then Z, _ al2 
gives 

1. 645 and Eq. 5. 13 

(1.645)2 0.6482/(0.2)2 
n = = 43.8 == 44 

1 + 0 

If sampling and analysis costs are equal in all strata, we may use 
Eq. 5. 10 to determine the optimum allocation of these 44 samples 
to the 3 strata. Using Sh from Table 5.1 in place of ah in Eq. 5.10, 
we obtain 
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44(0.409)(0.6557) 
15.2 15 n1 

0.7764 -

44(0.332)(0.6430) 
12.1 12 n2 = 

0.7764 -

44(0.259)(1.138) 
16.7 17 n3 

0.7764 -

5.7 CASE STUDY 

Hakonson and Bostick (1976) report 238pU and other radionuclide average 
concentrations in sediments from three canyons in Los Alamos, N. M. that 
receive liquid waste containing small amounts of these radionuclides. Three 
sediment core samples were taken at -100, 0, 20, 40, 80, 160, 320, 640, 
1280, 2560, 5120, and 10,240 m from the point of liquid waste discharge. The 
core sampling tool was a section of 2.4-cm-diameter plastic pipe driven to a 
maximum depth of 30 cm. Sampling depths varied from location to location as 
well as between the three cores at each location. Only the 238Pu data in one of 
the canyons (Mortandad) are considered here (data in Table 5.2). Suppose the 
objective is to estimate the total amount of 238pU in the top 2.5 cm of sediment 
in the stream channel from the point of discharge out to 10,000 m. One approach 
is to use stratified random sampling. Suppose six strata are defined as in Table 
5.3 and that the data in each stratum may be considered as representative for 
the stratum. Following are a series of three questions and answers concerning 
the design of the study. 

Question 1. Suppose cost considerations limit the number of sediment 
samples to n = 200. What is the optimum allocation of these 200 
samples to the 6 strata? Assume that sampling and radiochemical 
analysis costs are equal for all strata and that all cores will be taken 
to a depth of 12.5 cm. 

Since n is fixed and costs are equal, Eq. 5.10 is used to determine nl, nz, 
.. , n6. First determine the stratum weight Wh, which, since sampling depth 

is the same for all strata, is the proportion of the total surface area of the 
stream channel that lies in stratum h. The width of the channel varies from less 
than 1 m at distances less than 2000 m, to 2-3 m thereafter. For illustration 
purposes we assume that the width is 0.8 m from the discharge point out to 
2000 m, and 2.5 m beyond 2000 m. The resulting values of Wh are given in 
Table 5.3 along with values of Sh approximated using the values of S in Table 
5.2. The stratum sampling fractions nh/n computed by using Eq. 5.10 are given 
in the last column in Table 5.3. We see that the greatest proportion of the 
samples (78 %) should be taken in stratum 5. Although stratum 6 is larger than 
stratum 5, its Sh is very small. Hence, only about 1 % of the samples are 
allocated to stratum 6. Since the total n is 200, the allocation in Table 5.3 
gives n1 = 2, nz = 4, n3 = 20, n4 = 16, ns = 156, n6 = 2. 

Question 2. Hakonson and Bostick (1976) indicate that sediment 
depth increased with distance from the waste discharge point. Suppose 
that in strata 1 through 5 sediment cores will be taken to 12.5 cm, 
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Table 5.2 Average 238pU (pCi/g dry) 
Concentrations in Sediments from Mortandad 

Canyon in Los Alamos, New Mexico 

Meters Average Coefficient of 
Downstream Concentration" Variation 

0 160 0.40 64 
20 110 0.94 103.4 
40 65 0.91 59.2 
80 39 0.62 24.2 

160 86 0.87 74.8 
320 20 0.93 18.6 
640 17 0.06 1.0 

1,280 6.8 0.42 2.86 
2,560 8.6 1.10 9.46 
5,120 0.05 1.40 0.07 

10,280 0.01 1.20 0.01 

Source: After Hakonson and Bostick, 1976, Table I. 
"Three observations at each location. 

but in stratum 6 the depth will be increased to 25 cm. What are the 
stratum weights Wh? What is the optimum allocation for estimating 
total 238pu inventory by this approach? 

Since sampling depths are not constant for all strata, W" is now the proportion 
of sediment volume (rather than surface area) in stratum h. We find that WI = 
0.0002, W2 = 0.0005, W3 = 0.0040, W4 = 0.014, Ws = 0.248, W6 = 0.733. 
As expected, the sixth stratum gets more "weight," since the sampling depth 
was increased in that stratOm. The reader may determine the optimum allocation 
for estimating the total inventory. 

Question 3. Define thc population units for the core sampling plans 
as in Question 1, and estimate the stratum and total inventory of 
238PU. 

The population unit is a sediment core the size of the coring tool, a 2.4-cm­
diameter cylinder to a depth of 12.5 cm (volume = 56.55 cm3). Hence, Nh in 
Eq. 5.6 is the number of these unit volumes in stratum h, and Xh is the average 
amount of 238pU (in, say, pC i) in such units. 

The area of the sediment core is 7rr2 = 4.52 cm2, since r = 1.2 cm. Using 
the strata in Table 5.3, we obtain the number of 4.52-cm2 unit areas in the six 
strata by multiplying the stratum areas by (10,000 cm2)/m2 X (1/4.52 cm2) 
2212.4/m2. We obtain NI = 17,699, N2 = 35,398, N3 = 300,886, N4 = 

1,061,952, Ns = 18,716,904, N6 = 27,655,000. The required number nh of 
core samples (given in the answer to Question 2) is collected at random locations 
within the strata and radiochemistry determinations X"i are made and expressed 
as pCi per core. The mean X" and standard deviations are computed, and Eqs. 
5.6 and 5.7 are used to compute NXst and s2(Nxst), the estimated inventory and 
its estimated variance, respectively. 

5.8 SUMMARY 

Pollutant concentrations in environmental media are frequently highly variable 
over space and time. This variability means that estimates of average concen-



Table 5.3 Determining the Allocation of Samples to Strata 

Standard 
Meters Deviation Sh 

Strata Surface Area (m2) Downstream Stratum Weights Wh (pei/g) WhSh nh/n = WhSh;'I;~~IWhSh 

01 1 0.8 x 10 8 0-10 0.0004 64 0.0256 0.0073 
01 2 0.8 x 20 16 10-30 0.0007 103 0.0721 0.0205 

3 0.8 x 170 136 30-200 0.0063 57 0.3591 0.1021 
4 0.8 x 600 480 200-800 0.0222 13 0.2886 0.0821 
5 (0.8 x 1200) 

+(2.5 x 3000) 8,460 800-5,000 0.3917 7 2.7419 0.7798 
6 2.5 x 5000 12,500 5,000-10,000 0.5787 0.05 0.0289 0.0082 

21,600 E~~ I Wh = 1.0 E~~ I WhSh = 3.5162 1.00 
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trations and total amounts will also be highly variable. If the main patterns of 
spatial-time variability are known at least approximately, the population may 
be broken down into strata that are internally less variable. Then stratified 
random sampling can be used to obtain more accurate estimates of means and 
totals for the population. Methods for estimating means and totals are given 
and illustrated using examples and a case study. Also, the allocation of samples 
to strata is illustrated when the goal is to estimate the overall population mean. 

EXERCISES 

5. 1 Gilbert (1977) reports the results of sampling soil at a nuclear weapons 
test area by stratified random sampling to estimate the total amount of 
239, 240pU in surface soil. Use the following information from Gilbert (1977) 
to estimate the plutonium inventory in surface soil and its standard error 
(S.E.). 

Size of the 
Stratum Mean Xh Variance 

Strata Nh (m2 ) nh (IJ-Cilm2 ) s~ 

351,000 18 4.1 30.42 
2 82,300 12 73 10,800 
3 26,200 13 270 127,413 
4 11,000 20 260 84,500 

5.2 Use the data in Exercise 5.1 to determine the optimum number of population 
units to measure in each of the 4 strata. Also find the total number of 
units to sample, assuming cost is fixed. Assume the total money available 
for sampling and analysis, excluding overhead expenses, is $50,000 and 
that cost per population unit is c = $500 in all strata. 

5.3 Repeat Exercise 5.2 but let the costs per population unit in the 4 strata 
be CI = $800, C2 = $600, C3 = $600, C4 = $300. Does the allocation 
change very much from that in Ex:ercise 5.2? 

ANSWERS 

5.1 Using Eq. 5.6, we obtain f = 17,380,000 J..!Ci = 17.4 Ci. Using Eq. 5.7 
gives 

S.E. = s(1) = (1.354 X 1013)112 J..!Ci = 3.7 Ci 

5.2 Using Eq. 5.11, we have 

4 

50,000 L..; WhSh 

n= h=1 =100 

(500 htl WhSh) 

Using Eq. 5.10 with Sh in place of Gh, we then have 



100 WjSj 100(4.1146) 
nj = 4 = 48.96 = 8.4 == 8 

L; Whsh 
h=j 

Similarly, n2 = 37, n3 = 41, n4 = 14. 

5.3 Using Eq. 5.11, we have 
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50,000(0.14547 + 0.74212 + 0.81139 + 0.39237) 
n = 

116.38 + 445.27 + 486.83 + 117.71 

= 89.7 == 90 

Using Eq. 5.9 gives 

90(0.14547) 
nj = = 6.3 == 6 

2.0914 

Similarly, n2 32, n3 = 35 and n4 = 17. 



6 Two-Stage Sampling 

When environmental samples are collected, the entire sample mass may not 
be measured. For example, even though 500 g of soil are collected at a given 
point in time and space, a subsample (aliquot) of only 50 g may be actually 
measured. This procedure is called two-stage sampling or subsampling. The 
first stage consists of collecting the environmental sample. The second stage 
occurs when one or more aliquots are selected from each environmental sample 
for measurement. Subsampling introduces additional uncertainty into estimates 
of means and totals because the entire sample mass is not measured. This 
additional sampling variability may be large, particularly if the pollutant is in 
particulate form and very small subsamples are used. 

This chapter gives methods to estimate the mean and total when subsampling 
is used, to estimate the standard errors of these estimates, and to determine the 
optimum number of samples to collect and subsamples to measure. The two 
cases of equal and unequal numbers of population units in each sample are 
considered in Sections 6.2 and 6.3, respectively. 

6.1 BASIC CONCEPTS 
When two-stage sampling is applicable, the target popUlation is divisible into 
N primary (first stage) units, and the ith primary unit is divisible into M; subunits 
(second-stage units). Some of the N primary units are chosen at random and 
within the ith chosen primary unit mj subunits are selected for measurement in 
their entirety. The subunit corresponds to the popUlation unit discussed in 
previous chapters. There is no requirement that the M; be equal for all primary 
units, but the formulas for estimating the mean, total, and their standard errors 
are simpler in that case (see Section 6.2). The two situations of constant and 
variable M; are illustrated in Figure 6.1. 

Two examples of two-stage sampling are the following: (1) N soil samples 
of specified dimensions can be potentially collected from a study site. The ith 
sample can be divided into M; subsamples (aliquots). A set of n samples is 
selected at random. From the ith selected sample, m; subsamples are measured 
for a pollutant. (2) A month has N = 31 days (primary units). Each day may 
be divided into M = 6 periods of 4-h duration. A sample of n = 5 days is 
chosen at random and air samples are collected over m = 3 randomly chosen 
4-h periods on each of these days. 

58 
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(a) (b) 

Mil M12 M21 M22 Mil M12 M21 M22 

MI Mil MI4 M2l M24 M2 MI Mil MI4 M21 M24 M2 

MI5 MI6 M25 M26 MI5 MI6 M25 M26 

Mll Ml2 M41 M42 Mll MJ2 M41 M42 

Ml Mll Ml4 M4l M44 M4 Mll Ml4 M4l M44 

Ml M4 

Ml5 Ml6 M45 M46 M15 M16 M45 M46 

Ml7 Ml8 M47 M48 

N = 4 primary units N = 4 primary units 

M i = mean of the Mi subunit true means in the ith primary unit 

Figure 6.1 Two-stage sampling for cases of (a) equal and (b) unequal numbers 
M of subunits within primary units. 

In two-stage sampling the subunits chosen for measurement are measured in 
their entirety. Two-stage sampling is easily extended to three stages, where the 
subunit is itself subsampled. Then the third-stage unit becomes the population 
unit that is measured. Three-stage sampling is discussed in Chapter 7 along 
with compositing. 

The next section focuses on the case where all primary units contain the 
same number, M, of subunits. The case of unequal numbers of subunits per 
primary unit is considered in Section 6.3. 

6.2 PRIMARY UNITS OF EQUAL SIZE 

6.2.1 Estimating the Mean 
Suppose that the target population contains N primary units and each primary 
unit contains M subunits-that is, M\ = M2 = . . . = MN = M. Then NM 
is the total number of potential units available for measurement from the 
population. The true mean for these NM units is 

1 N M 

- 2: 2: It·· 
NMi~lj~1 Ij 

6.1 

where Itij is the true amount of pollutant present in the jth subunit of the ith 
primary unit. The true mean for the ith primary units is Iti = 1; J: I Itij / M. The 
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true mean !J. is estimated by measuring representative subunits selected from 
representative primary units. Suppose n of the N primary units are selected by 
simple random sampling. Then for each of these n units, m subunits (m ::5 M) 
are randomly selected for measurement. Then an unbiased estimate of !J. (Eq. 
6.1) is the arithmetic mean of the nm measurements xj/ 

1 n min 

i = - L; L; x = - L; i· 6.2 
nm j ~ I j ~ I IJ n j ~ I I 

where 

is the estimated mean of the m selected subunits in the ith primary unit. 
Let us assume that measurement and sample collection and handling errors 

are negligibly small. Then the uncertainty in i due to only nm of the NM 
subunits being measured (the sampling variance) is estimated by computing 

where: 

6.3 

IN = nlN = the proportion of the N primary units actually selected, 
1M = mlM = the proportion of the M subunits in each primary unit 

actually measured, 

1 n 
-- L; (Xj - i)2 
n - li~ I 

= estimated variance among the N primary unit means, 

1 n m 

s~ = L; L; (x - i.)2 
n(m - 1) j ~ 1 j ~ I l) I 

= estimated variance among M subunits within primary units. 

6.4 

6.5 

Equation 6.3 takes on different forms as the sampling fractions IN and 1M are 
or less than 1. Four cases can be identified 
Case 1. IN = 1, 1M = 1, that is, all subunits in all primary units are 

measured. Then Eq. 6.3 is zero, since all population units have been measured 
and by assumption there are no measurement or sample collection and handling 
errors. 

Case 2. IN < I, 1M = 1, that is, all M subunits within each unit of a 
random set of n primary units are measured. Then Eq. 6.3 becomes 

S2 

s\i) = (1 - IN) .-!. for n ~ 2 6.6 
n 

There is no need to compute s~ in this case. 
Case 3. IN = 1, 1M < I, that is, a random set of m subunits is measured 

within all N primary units. Then 

Case 4. IN "'" 0, 1M ::5 1, that is, one or more subunits are measured in a 
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random set of n primary units, where N is much larger than n. Then Eq. 6.3 
becomes 

sf 6.7 
n 

This case occurs frequently in practice. As in Case 2 there is no need to 
compute s~, which is a real advantage if subunits are selected by systematic 
sampling, since in that case s~ may be biased, as discussed in Chapter 8. Note 
that if several subsamples from each primary unit are composited and a single 
measurement made, then Eq. 6.7 can still be used. Chapter 7 discusses 
compositing. 

Two-stage sampling can also be viewed as a one-way analysis of variance 
(ADV) , random effects model, as described, for example, by Snedecor and 
Cochran (1980, pp. 238-242). The estimate of Var(x) is obtained by dividing 
the "between primary units" mean square (from the analysis of variance table) 
by nm, the total number of observations. This approach assumes iN is zero. 

EXAMPLE 6.1 

Suppose that hourly average oxidant air concentrations are routinely 
recorded at numerous sampling locations in an urban area. Interest 
centers on the maximum hourly average for each day. A study is 
planned to estimate the true average, /1-, of these daily maximums 
for a specific set of N = 30 stations during the months of July and 
August for 1973. Since there are M = 62 days in July and August, 
the target population consists of NM = (30)(62) = 1860 population 
units. Suppose that budget constraints restrict the number of operating 
stations to n = 5. Then /1- is estimated by computing x by using 
Eq. 6.2 with n = 5 and m = 62, since data are available for all 
62 days at all 5 operating stations. The variance of x is estimated 
by computing S2(X) by using Eq. 6.6 (since iM = 62/62 = 1) with 
iN = 5/30 = 0.1667. 

We illustrate, using the maximum hourly oxidant data at 5 stations 
in the San Francisco area for 1973 listed by Grivet (1980, pp. 65-68). 
The means for the 5 stations are XI = 4.95, X2 = 3.71, X3 = 6.95, 
X4 = 9.26, and Xs = 5.64. (Units are parts per hundred million, 
pphm.) Therefore, using Eqs. 6.2 and 6.6, we find x = 6.1 pphm 
and s2(x) = 0.748 (pphm)2, or sex) = 0.86 pphm. 

If large measurement or other errors are in the data, then Eq. 6.6 
will tend to be too small, since the factor iN does not apply to those 
components of variance. The one-way ADV approach is preferred 
to Eq. 6.6 in that case. 

6.2.2 Estimating the Total Amount 

From Eq. 6.1 we see that the total amount of pollutant present in the NM 
subunits of the target population is 

N M 

1= ~ ~ /1-. 
i= I j= I 1) 
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An unbiased estimate of I is 

j= NMx 6.S 

where x is given by Eq. 6.2. The sampling variance of f is estimated by 
computing 

S2(i) = (NM)2 s2(X) 

where S2(X) is given by Eq. 6.3. 

EXAMPLE 6.2 

Suppose the liquid effluent from a chemical manufacturing plant will 
be sampled to estimate the average concentration, p" and total 
amount, I, of a toxic chemical discharged continuously to a river 
over the 80-h operating period of the plant during a given week. 
Measurements will be made on 100-mL aliquots of effluent. Hence, 
the target population consists of the total number of 100-mL aliquots 
discharged during that week. To estimate p, and I, an 8-L sample 
of effluent will be collected at n randomly selected times during the 
week. The choice of n would depend, in practice, on cost consid­
erations and the variability in concentrations over time. Suppose, for 
illustration's sake, that n = 5. Two 100-mL aliquots are withdrawn 
from each of the 5 samples and chemically analyzed. The data are 
as follows: 

Concentrations (/J-gi/OO mL) 

Sample Xli X2i Xi 

0.013 0.010 O.oJ 15 
2 0.011 0.014 0.0125 
3 0.043 0.036 0.0395 
4 0.027 0.034 0.0305 
5 0.033 0.025 0.0290 

Equation 6.2 is used to compute x if the effluent flow rate is 
constant over time. Otherwise, a weighted mean is required. This 
latter case is considered in Chapter 7 (Section 7.3). We assume here 
that the flow rate is constant. Using Eq. 6.2 we find x = 0.0246 
p,g/lOO mL, our estimate of p,. 

Now, to estimate I, Var(X) , and Var(I), we need to determine N 
and M. Suppose the constant flow rate is 2000 Llh. Then 

(80 h)(2000 Llh) 
N = / I = 20,000 samples of size 8 L 

(8 L samp e) 

Also, the number M of 100-mL subsamples in each 8-L sample is 
M = SOOO mLilOO mL = SO. Therefore, by Eq. 6.S 

j = 20,000(80)x 

= (l,600,000 subsampJes)(0.0246 p,g/subsample) 

= 39,360 p,g 

6.9 
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Since nlN = 5/20,000 = 0.000250, we set nlN = 0 and use Eq. 
6.7 to compute S2(X) = 0.00002971, or s(X) = 0.00545 pog/l00 mL. 
Using Eq. 6.9, we obtain sCi) = 20,000(80)0.00545 pog = 8720 
pog. 

To summarize, if the flow rate is a constant 2000 Llh, the 
estimated mean and inventory for the 80-h period is 0.0246 pog/lOO 
mL and 39,360 pog, respectively. The standard errors of these 
estimates are 0.00545 pog/l00 mL and 8720 pog, respectively. 

6.2.3 Number of Primary Units and 
Subsamples 

When planning two-stage sampling, it is necessary to decide on nand m. If 
the primary objective is to estimate po or the inventory I with maximum precision 
for fixed total cost, the approach described here may be used. This method is 
also applicable if the goal is to minimize costs, given some pre specified value 
for Var(x) that must not be exceeded. Budget constraints must be considered, 
since they limit the number of samples that can be collected. If travel costs 
between primary units are of little importance, then the cost function C = c, n 
+ c2nm is useful. Using this function and assuming M is large, one can show 
(see, e.g., Snedecor and Cochran, 1967, p. 532) that the optimum value for m 
can be estimated from the equation 

6.10 

where si and s~ are computed by using Eqs. 6.4 and 6.5, respectively, with 
data from prior or pilot studies. If M is small, Eq. 6.10 becomes 

If the denominator is negative, mopt should be made as large as practical. Once 
m is chosen, n may be determined from the cost function C = c, n + c2nm. 

Note from Eq. 6.3 that if IN is close to zero, then the second term in that 
equation is also near zero, so S2(X) is not reduced very much by using a large 
m. If IN is not near zero and s i and s ~ are reliable and appropriate estimates 
from prior studies, then the effect on S2(X) (Eq. 6.3) of varying nand m can 
be determined. This effect is illustrated in the following example. 

EXAMPLE 6.3 

Suppose the oxidant air concentration data from Example 6.1 will 
be used to decide the number of stations to operate the following 
year (1974) for the purpose of estimating po for July and August. If 
plans are to operate samplers on each day of the 2-month period, 
then m = M = 62, and there is no need to estimate m by Eq. 6.10. 
Suppose the total money available for sampling and analysis in 1974 
is C = $100,000. Furthermore, suppose c1 = $2000 and C2 = $100, 
where C 1 is the cost associated with operating each station and C2 is 
the cost of collecting and measuring an air sample. Then 100,000 = 
2000n + 100(62)n, or n = 12.2, which is rounded to 12. Hence, 
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the budget will permit about 12 stations to operate daily during July 
and August. 

Now suppose there is no requirement that the air samplers operate 
each and every day. What would be the optimum values for nand m 
if the costs are as given in the previous paragraph? From the data listed 
by Grivet (1980) we calculate s7 = 4.49 and s~ = 9.55 by Eqs. 6.4 
and 6.5. Therefore, using Eq. 6.10 gives 

, = (2000/100)1/2 = 6.5 
mopt 4.49/9.55 

Using m = 7 in the cost equation, we obtain 100,000 = 2000n + 
100(7)n, or n = 37. Hence, the data and cost considerations suggest 
the most accurate estimate of p, for July and August of 1974 would be 
obtained by selecting 37 representative stations and taking oxidant 
measurements on 7 representative days during the July-August period. 

The assumption has been made that the 1973 data are representative 
of conditions in 1974. We also note that maximum oxidant concentra­
tions may be different on weekdays than on weekends. Therefore, care­
ful definition of the target population is required before selecting days 
on which data will be taken. 

To see the effect on s\x) of changing nand m, we can compute 
Eq. 6.3 for various combinations of nand m. Assume there are N = 
100 potential sampling stations. Then Eq. 6.3 becomes 

2 ( n ) 4.49 n ( m) 9.55 
s (x) = 1 - 100 -n- + 100 1 - 62 nm 

If the optimum n = 37 and m = 7 are used, then sex) = 0.298. If n 
is decreased to 20 and m is increased to 30, then sex) increases to 
0.426. Ifn is increased t045 andm is decreased to 2, the sex) = 0.318. 
If the cost equation is 100,000 = 2000n + 100nm, all these combi­
nations of nand m would cost approximately $100,000, but the stan­
dard errors sex) vary from 0.30 to 0.43. 

6.3 PRIMARY UNITS OF 
UNEQUAL SIZE 

Often it is not convenient or possible to have the same number of subunits M in 
each primary unit. For example, suppose an area of land is contaminated with a 
pollutant. Information is sought on the average concentration of the pollutant and 
on the total amount present within a prescribed contaminated area. A series of soil 
samples (primary units) are collected, and one or more aliquots (subunits) of soil 
are taken from each soil sample for chemical analysis. If the sizes (volumes) of 
the soil samples differ, the number of potential aliquots and the sample weight will 
vary from sample to sample. Even if the soil sample volumes or weights are iden­
tical, the number of aliquots may differ due to different proportions of stones and 
other debris in the samples. 

This section gives methods for estimating average pollutant concentrations and 
total amounts in environmental media when primary units have different numbers 
of subunits. Our discussion will be in terms of the soil example given in the pre-
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ceding example, but the procedures have wide applicability. The methods pre­
sented here are from Cochran (1977, p. 305) and are forthe case when all primary 
units have the same chance of being selected. Cochran (1977, pp. 308-310) con­
siders estimators that are appropriate when this is not the case. 

6.3.1 Estimating the Mean 

We want to estimate the true mean }J., over all I:~= 1 M; subunits. Let xij be the 
amount of pollutant in the jth subunit of the ith primary unit. Then 

N M; 

L; L; }J.," 
;= 1 j= 1 IJ 

}J., = N 

L; M; 
;=1 

N 

L; M;}J.,; 
;=1 

N 

L; M; 
;=1 

where the numerator is the total amount in the I:~= 1 M; subunits, and 

I M; 

}J.,=-.L;}J., 
I M- -=1 IJ /.1 

6.11 

is the true mean per subunit in the ith primary unit. Equation 6.11 is a weighted 
mean of the true primary unit means }J.,j, the weight W j = M/I:~= 1 Mi being the 
proportion of all subunits in the ith primary unit. Hence, if the ith unit constitutes, 
say, 80% of the target population, the weight for the ith true mean }J.,j is 0.80. 

We may estimate }J., by first selecting n of the N primary units by simple random 
sampling. Then mi of the Mi subunits in the ith selected primary unit are randomly 
selected and measured. An estimate of}J., may then be computed as 

x = :.-i =--.;1,--_ 6.12 n 

.L; M j 
i= 1 

where 

1 ni, 

x=-2..;x 
mij=1 'I 

is an estimate of }J.,j. 

Var(x) may be estimated by computing 

2(-) _ 1 - (nIN) ~ M2(- _ -)2 
S X - 2 L.J - x- x 

Mn(n-1)i=1 I I 

-l-l ~ 2 (l - m/ MJ S~iJ + - 2 L.J M I -'----'----''--'''' 

nNM j=1 mi 
6.13 

where 

1 m; 

S~i = --- .L; (x-- - xl 
mi- 1 j=I'J I 

the mean x is calculated using Eq. 6.12, and M = I:7 = 1 M/n. Note that the 
second term of Eq. 6.13 is negligibly small if nNM2 is sufficiently large. 
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Soil 

EXAMPLE 6.4 

Suppose we want to estimate the true average concentration of 
239, 240pU in surface soil over a 100-m2 area at a nuclear weapons 
test area on the Nevada Test Site. Suppose n = 5 soil samples of 
area 10 cm X 10 cm to a depth of 5 cm are collected at random 
locations within the 100-m2 plot. All Pu measurements are made on 
1O-g aliquots of soil that pass through a fine mesh screen. The 
weight in grams of fine soil differs for the 5 samples because some 
samples contain more stones (that are discarded) than other samples. 
Two aliquots of fine soil are removed from 3 of the 5 samples and 
3 aliquots from the remaining 2 samples. The Pu concentrations 
(nCillO g) are given in Table 6.1 along with M] through M5 (number 
of possible 1O-g aliquots in the 5 soil samples). For illustration, 
assume no Pu is present in soil not passing through the fine mesh 
screen. Using Eq. 6.12 gives i = 26,989/170.5 = 158 nCillO g. 

The variance of this estimate is approximated by Eq. 6. 13 with 
nlN = 0, since N is very large. Also, the second term of Eq. 6.13 is 
essentially zero since N is so large. As pointed out by Cochran (1977, 
p. 305), the numerator of the first term of Eq. 6.13 may be computed 
as 

Hence 

n n n 

L:; (MiXi - 2x L:; (MiXJ Mi + x2 L; M~ 
i=] i=] i=] 

229,269,141 - 320,092,421 + 149,323,414 

23,256 

58.500 X 106 

----- = 2515 (nCillO g)2 
23,256 

so that sex) = 50 nCillO g. 
In summary, based on the available data, the true concentration over 

the 100-m2 area is estimated to be 16 nCi/g. The estimated standard 
error of this estimate is 5 nCi/g. 

Table 6.1 239, 240pU Concentrations in Soil (nCi/10 g-aliquot) 

Number of 239. 240pU 

Number of 10- Aliquots (nCiIJO-g 
Sample Weight of R aliquots Selected aliquot/ nCi/Soil 
Number Sample (g)" (M,) (m;) Xii Xj2 Xi] Xi Sample M,x i 

1 435 43.5 2 203 226 214.5 9,331 
2 259 25.9 2 65 52 58.5 1,515 
3 363 36.3 2 227 396 311.5 11,307 
4 316 31.6 3 44 77 68 63 1,991 
5 332 33.2 3 57 68 132 85.7 ~845 

Sum = 1,705 Sum = 170.5 Sum = 26,989 
Ai = 34.1 

a Hypothetical weight of soil that passes through the fine mesh screen. 
bUnpublished data obtained by the Nevada Applied Ecology Group, U.S. Department of Energy, 
Las Vegas. Used by permission of the Nevada Applied Ecology Group. 
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6.3.2 Estimating the Total Amount 
The total amount of pollutant present in the E:Y~ I Mi subunits of the target popu­
lation is 

N M; N 

I = L; L; /-tij = /-t L; Mi 
i~ I j~ I ;~ I 

6.14 

An unbiased estimate of I is obtained by estimating /-t by x (Eq. 6.12) and by 
estimating /-t by E~~ 1 M; by NM. Making these substitutions in Eq. 6.14, we 
obtain 

ANn 
1=- L; Mixi 

n i~1 

The Var(i) may be approximated by computing 

s\i) = (NM)2 S2(X) 

where s\x) is computed using Eq. 6.13. 

EXAMPLE 6.5 

Continuing with Example 6.4, suppose there is a need to estimate 
the total amount, I, of 239, 240pU in the fine surface soil over the 
100-m2 area. The potential number, N, of surface soil samples in 
the 100-m2 area must be known before I can be computed. Since 
each soil sample has a surface area of 100 cm2, it follows that 
N = 10,000. Hence, using Eq. 6.15 and the data in Table 6.1, we 
have 

i = (10,000) e6,:89) 
= (10,000 soil samples) (5398 nCi/soil sample) 

= 53.98 X 106 nCi = 0.054 Ci 

The variance of i due to sampling only a portion of the lO-g aliquots 
in the 100 m2 area is estimated by Eq. 6.16: 

s2(i) = [(10,000)(34.1)]22515 = 292.4 x 1012 (nCi)2 

or sCi) = 17.1 X 106 nCi = 0.017 Ci. In summary we estimate 
that 0.054 Ci of 239, 240pU is present in the fine surface soil of the 
defined 100-m2 area. The standard error of this estimate is approx­
imately 0.017 Ci. 

6.15 

6.16 

To use the methods in this chapter, we assume that all subunits are exactly the 
same size (e.g., soil aliquots all of size 10 g), but in practice this assumption may 
not be valid. Even so, the methods given here may be used if Mi is redefined to 
be the weight (in grams, say) of the ith primary unit, and xi} is the amount per 

gram in the jth subunit of the ith primary unit. If this is done for the Pu soil data 
in Table 6.1, then 

x = [435(2l.45) + ... + 332(8.57)] nCil1705 g 

= 26989.39 nCi/1705 g 

= 15.8 nCi/g 
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and 

A _ (26989.39) 
I - (10,000) 5 

= (10,000 soil samples) (5398 nCi/soil sample) 

= 53.98 X 106 nCi 

which are the same results as we obtained before. The reader may verify that S2(X) 
and S2(1) are also unchanged. 

6.3.3 Number of Primary Units and 
Subsamples 

Section 6.2.3 showed how to detennine the optimum nand m when each primary 
unit contains the same number M of subunits. The same method may be used when 
M varies between primary units if sampling costs and within-unit variability are 
the same for each unit and if the N values of M; are roughly equal. These conditions 
will result in equal m for all units, with m detennined using Eq. 6.10. A special 
case is to take m = l. However, we have seen from Example 6.3 that this choice 
may be far from optimum. 

Ideally, mi should be greater for units with greater variability between subunits. 
However, in practice, it is impractical to estimate this variability for each unit. An 
alternative approach is to choose mi proportional to Mi' This implies that the within­
unit variability is approximately equal for all units. 

Once a method for detennining the mi has been chosen, the number of primary 
units n may be found by a suitable cost equation; for example, 

6.17 

where m = E 7 ~ I m;ln is the average number of measured subunits per unit. Now 
m cannot be detennined exactly until n is known. However, m can be estimated 
by choosing n' primary units at random, detennining m for each of these units, 
and computing E7~1 m;ln'. For example, if proportional allocation is used, m 
is estimated by computing E7~ I kM;ln', where k = m;lMi for all i. Then solving 
Eq. 6.17 for n gives 

c 
n = -------------­

n' 

Cl + c2k I; M;ln' 
i~1 

6.18 

If this procedure results in n > n', then n - n' additional units are randomly 
selected, all n units then being subsampled proportional to their size Mi' If n < 
n', then n' - n units (selected at random) are not used. Hence, n' should not be 
taken too large so as to avoid unnecessary sampling. 

Different values of k will result in different nand m. If the sampling program 
will be repeated many times in the future, it may be cost effective to conduct 
sampling experiments using several values of k. That is, select units and subunits 
accordingly for each k, measure the subunits, and see which k results in the 
smallest s\x) computed by Eq. 6.13. A choice of k to use in the future based 
on cost and precision in :x can then be made. 
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EXAMPLE 6.6 
Suppose a total of $10,000 is available for sample collection and anal­
ysis and that CI = $200 and C2 = $100. Furthermore, suppose pro­
p0l1ionai allocation will be used, and n' = 5 primary units from the 
target population are chosen at random, the Mi for these units being 
M, = 50, M2 = M3 = 100, M4 = Ms = 200, so E~~ 1 MJ5 = 130. 
If k = 0.02 is used, then ml = 1, m2 = m3 = 2, and m4 = m5 = 4. 
Also, Eq. 6.18 gives 

10,000 
n = = 22 

200 + 100(0.02)130 

Therefore, n - n' = 22 - 5 = 17 additional primary units are 
selected. If the 17 new units tend to have more than the average of 
130 subunits obtained from the preliminary 5 units, then total costs 
will exceed C = $10,000. Then some of the 22 primary units may 
not be used. 

If k = 0.04 had been used instead of k = 0.02, then 1111 = 2, fIl2 

= m3 = 4, m4 = m5 = 8, and n = 14. If a sampling study is conducted 
for these values of nand mi' the resulting value for S2(X) may be 
compared with the value of S2(X) obtained by using the nand mi 
given before for k = 0.02. Then the k giving the smallest S2(X) 
would be preferred, unless differences in s\x) are small. 

6.4 SUMMARY 
It is common practice to measure only a portion (subsample) of environmental 
samples. This chapter showed how to estimate the uncertainty of estimated means 
and total amounts that arise from variability between samples and between sub­
samples within samples. Methods are also given for choosing the number of sam­
ples and subsamples that will minimize the variance of estimated means and totals 
for a pre specified cost. 

EXERCISES 
6.1 Consider Example 6.2. Can you think of situations when it might be better 

to sample at equidistant points in time during the 80-h period rather than at 
randomly chosen times? Consider factors such as cost, convenience, and 
accuracy of the estimated mean and total amount. 

6.2 Suppose we want to estimate the average value, p., for specific conductance 
in groundwater for a defined region at a given point in time. There are n = 
5 wells more or less uniformly spaced over the region. A sample from each 
well is taken on the same day and m = 4 aliquots from each sample are 
measured, giving the following data: 

Aliquot 

Well 2 3 4 

1 3,150 3,150 3.145 3.150 
2 1,400 1,380 1,390 1.380 
3 2,610 2,610 2,610 2,610 
4 3,720 3,720 3,719 3,710 
5 2,100 2,120 2,110 2,080 
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Estimate jJ, and the standard error of that estimate. Assume that IN = 0 and 
that each groundwater sample has the same volume-that is, M is the same 
for all wells. 

6.3 Suppose the cost of collecting a sample is c, = $500, the cost of measuring 
an aliquot is C2 = $100, and the cost function C = c, n + c2nm applies. 
Estimate the optimum number of aliquots to measure for specific con­
ductance, using the data in Exercise 6.2. How many wells should be 
sampled if C = $2,000 is available for sampling and analyses? 

6.4 Suppose the data in Exercise 6.2 are replaced by 

Aliquot 

Well 2 3 4 

I 3110 3180 3180 3190 
2 3400 3400 3400 3400 
3 3090 3100 3080 3040 
4 3750 3750 3700 3750 
5 3100 3100 3140 3100 

Compute the mean, standard error of the mean, and the optimum m and n if 
c, = $500, C2 = $100, and C = $2000. Is mopt larger than in Exercise 6.3? 

ANSWERS 

6.1 Discussion. 

6.2 We use Eq. 6.2 and obtain x = 51,864/20 = 2593. Since IN = 0, we 
use Eq. 6.7 to obtain S2(X). The means for the 5 wells are 3149, l388, 
2610, 3717, and 2102. Hence, S2(X) = 163,345 or sex) = 404. 

6.3 Use Eq. 6.10. We have m = 4, n = 5, and we obtain s7 = 816,726.4 
and s~ = 1239.5/15 = 82.63 using Eqs. 6.4 and 6.5. Therefore, Eq. 
6.10 gives 

( 
5001100 )112 

mopt = 816,726.4/82.63 = (5/9884)112 = 0.02 

that is, mopt = 1. To determine n, we have 2000 = SOOn + 100n(l), or 
n = 2000/600 = 3.3 or 4 wells. 

6.4 By Eq. 6.2, x = 3298. By Eq. 6.7, S2(X) = 15,272, or sex) = 124. 
Now s7 = 76,360, s~ = 9250115 = 616.67. Therefore, 

r 5 lIn 
mopt = L76,360/616.67 = 0.2 

That is, mopt = 1, the same as in Exercise 6.3. Also, n = 4 as in Example 
6.3. 



7 Compositing and Three­
Stage Sampling 

One way to estimate an average is to collect individual grab samples, measure 
each, and mathematically compute their average value. An alternative approach 
is to collect several grab samples and thoroughly mix them together into a 
composite sample. Then either the entire composite is measured, or one or more 
random subsamples from the composite are withdrawn and measured. If the 
mixing process is thorough, a physical averaging process takes place, so the 
subsamples represent the average concentration of the original grab samples. 

Compositing is useful if the cost of analyzing individual grab samples for 
contaminants is high, if the mixing process is thorough, and if information on 
the variability or extreme concentrations for grab samples is not needed. Also, 
the total amount of pollutant present in the composite is equal to or greater 
than any single grab sample making up the composite. Hence, if the entire 
composite or large subsamples are analyzed, the pollutant may be more easily 
detected. 

Adequacy of the mixing process must be assessed before compositing is 
done. Ideally, equal proportions of each grab sample should be in every possible 
subsample that could be withdrawn for measurement from the composite. These 
proportions may vary widely between subsamples if the mixing process is 
inadequate. This variation in tum will tend to increase the variance between 
subsample measurements. Note that even if the proportions in each subsample 
are the same, the mixing process may not remove the heterogeneity that originally 
existed within each grab sample. 

This chapter discusses compositing in the setting of subs amp ling , since 
composite samples are usually subsampled rather than measured in their entirety. 
Examples show how to estimate averages, totals, and variances of these estimates 
when the composite samples are formed from a random partitioning of field 
samples. Methods for deciding on the number of composites and subsampJes 
within composites are also given. 

Compositing is frequently done in the monitoring of rivers and wastewater 
discharges. Guidelines when compositing should be preferred to grab sampling 
in such situations are given by Schaeffer and co-workers (1980, 1983), Schaeffer 
and lanardan (1978), Marsalek (1975), Montgomery and Hart (1974), and 
Rabosky and Koraido (1973). Brumelle, Nemetz, and Casey (1984), Elder, 
Thompson, and Myers (1980), and Rohde (1976) discuss statistical aspects of 
compositing. 

71 
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7.1 BASIC CONCEPTS 

When compositing is done, the target population is still defined in terms of 
population units, as discussed in previous chapters. But now these units are 
thought of as grouped into composite samples from which randomly selected 
units (subsamples) are withdrawn for measurement. 

Figure 7.1 illustrates one type of compositing design. The irregularly shaped 
area represents the target population of population units for which an estiamte 
of /-t is needed, sayan area of land contaminated with a pollutant. A set of ng 
soil (grab) samples are collected randomly or systematically over the area. 
(Chapter 8 discusses systematic sampling.) These samples are randomly grouped 
into n composite samples, each composed of g soil samples. Then m subsamples 
are withdrawn from each composite, and s repeat measurements made on each 
subsample. The illustration in Figure 7.1 uses n = 4 and g = m = s = 2. 
The population unit is defined to be the subsample, since each subsample 
selected is measured in its entirety. The target population is the set of all 
possible subsamples to which inferences will be made. 

The compositing design just described could be embedded in a more 
complicated design that could be used to take account of changing concentrations 
over space or time. For example. the target population of Figure 7.1 might 
correspond to one of many small local areas within a larger region, which might 
be one of several strata in a stratified sampling plan. This situation is discussed 
in the next section. 

In practice, it is common to set m = s = 1, that is, to make just one 
measurement on one subsample from each composite. This practice may be 
adequate for estimating a mean or total, but it does not provide information on 
subsampling and repeat-measurement variability. Such information in conjunction 
with estimates of variability between composite samples can be used to guide 
the choice of n, m, and s for future sampling and compositing efforts. This 
approach was illustrated in Section 6.2.3 for two-stage sampling and is considered 
in Section 7.2.4 for three-stage sampling. 

7.2 EQUAL-SIZED UNITS 

Suppose the goal is to estimate the mean, {t, and total amount, I, for a defined 
target popUlation of units. These popUlation units can be thought of as being 
grouped into batches, where one or more composite samples are formed from 
a random or systematic selection of units from each batch. For example the 
target population in Figure 7.1 corresponds to a batch. A batch might be a 
study plot of dimension 10m x 10 m from which soil samples are collected 
and used to form one or more composites. Several such batches (plots) might 
be located randomly or systematically over a large area. Information on the 
mean or total for each batch as well as for the larger area can be obtained from 
this design. A batch might also be the total flow of water from an effluent pipe 
during a 24-h period. Water samples could be collected at random times during 
this time span and pooled to form one or more composite samples. Each new 
24-h period would correspond to a new batch. 

Let B denote the number of batches in the population. Also, let N; be the 
number of composites that could possibly be formed in the ith batch, and let 
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Figure 7.1 Formation of composite samples by random grouping of field 
samples. 

Mij be the number of possible subsamples in the jth composite in the ith batch. 
In this section we assume that all batches are equal in size, that is, NI = N2 
= . . . = NB = N, and that all composites have the same number of 
subsamples, that is, Mij = M for all i and j. The general case of unequal Ni 
and Mij is considered in Section 7.3. 

7.2.1 Estimating the Mean and Total 
Amount 

For equal Ni and equal Mij the parameters J-t and I are 

and 

1 B N, M 

J-t = - L; ~ L; J-trk 
BNM i = I j = I k = 1 1 

1= BNMJ-t 7.1 

respectively, where J-tijk is the true value for the kth subsample (population unit) 
of the jth composite of the ith batch. 

These parameters may be estimated by selecting b of the B (b :5 Ii) batches 
at random, from each of which ng field samples are selected and randomly 
grouped to form n composite samples each containing g field samples. Then m 
subsamples from each composite are withdrawn and measured s times. Henceforth 
we assume s = 1, the usual case in practice. Then J-t is estimated by computing 
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b n m 

x = - L..; L..; L..; X'k 
bnm i = I j = I k = I I) 

1 b 

=-L..;x 
b i= I 1 

where Xijk is the measured value and 
n m 

Xi = - L..; L..; Xijk 
nmj=lk=1 

7.2 

7.3 

7.4 

is the estimated mean for the ith batch, The estimate of the inventory is i = 
BNMx. 

Note that Xi can be written as 

7.5 

where 

I m 
x .. = - L..; Xk 

Ij m k= I I) 
7.6 

is the mean of the m measurements from the jth composite in batch i. Equations 
7.5 and 7.6 are used in Equation 7.7. 

7.2.2 Variance of Batch Means 

Consider the case where nlN is very near zero and an estimate is required of 
Var(xi ), the variance of the ith batch mean. Elder, Thompson, and Myers 
(1980) showed that when compositing is used as discussed here, an unbiased 
estimate of this variance may be obtained by calculating a one-way analysis of 
variance (ADV) and dividing the between composites mean square by the 
number of measurements nm for the ith batch. This procedure is equivalent to 
computing the estimate of Var(xi) as follows: 

1 n 

S2(Xi) = L..; (xij - Xi)2 
n(n-l)j=1 

7.7 

where Xi and xij are computed by Eqs. 7.5 and 7.6, respectively. 
If nlN is not near zero, then Var(xi) may be estimated by Eq. 6.3, the usual 

formula for two-stage sampling, that is, by computing 

2 - (l - nlN) .; _ 
S (Xi) = L..J (xij - Xi)2 

n(n - 1) j= I 

(nlN) (1 - mlM) .; ~ _ - 2 
+ 2 L..J L..J (Xijk Xij) 

n m(m - 1) j = I k = I 
7.8 

In practice, g, n, and m may vary from batch to batch. If so, then nand m 
in Eqs. 7.2-7.8 are replaced by ni and m;, respectively, where ni is the number 
of composites in batch i, and mi is the number of subsamples withdrawn from 
each composite in batch i. 
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7.2.3 Variance of the Mean and Total 
Amount 

If biB is very near zero, an unbiased estimate of Var(x) (x as computed by 
Eqs. 7.2 or 7.3) may be obtained by computing a nested AOV (for methodology 
see, e.g., Snedecor and Cochran, 1980, pp. 248-250) and dividing the between 
batches mean square by the total number of measurements, bnm. This approach 
(when biB = nlN = 0) is identical to computing 

1 b 

S2(X) = ~ (Xi - X)2 
b(b - 1) i=1 

7.9 

For some applications, biB or nlN may not be near zero. Cochran (1977, p. 
287) then shows that Var(x) may be estimated by 

where 

and 

2 _ ( b) si b ( n) s~ 
s (x) = 1 - B b + B 1 - IV bn 

+ ~ (~) (1 _ m) ~ 
B N M bnm 

1 h 

-- ~ (Xi - X)2 
b - 1 i= 1 

1 b n 

S ~ = ~ ~ (Xij - xi )2 
ben - 1) i=1 )=1 

b n m 

s~ ~ ~ ~ (Xijk - Xij)2 
bn(m - 1) i=1 )=1 k=1 

7.10 

7.11 

7.12 

7.13 

Note that Eq. 7.9 is a special case of Eq. 7.10 when biB = O. The quantity 
Var (I) is estimated as (BNMl~2(x), where S2(X) is computed by Eqs. 7.9 or 
7.10, whichever is appropriate. 

If b, n, or m are large, estimating s~, s~, and s~ from Eqs. 7.11,7.12, and 
7. 13 can be tedious if done by hand. Of course, these equations can be 
programmed on a digital computer. Alternatively, the variances can be easily 
obtained using the computed mean squares from a nested AOV which can also 
be programmed. The appropriate AOV is illustrated by Snedecor and Cochran 
(1980, p. 248). Table 7.1 shows that si = (MS)Blnm, s~ = (MS)clm and s~ 

Table 7.1 Nested Analysis of Variance Showing the 
Relationships between the Mean Squares and s~, s~, 

and s~ [The method for computing the mean squares is 
given by Snedecor and Cochran (1980, p. 248).] 

Source of Variation 

Batches 

Composites within batches 

Measurements within composites 

Mean Squares 

(MS)B = nms; 

(MS)c = ms~ 

(MS)E = s~ 
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= (MSk This AOV method cannot be used unless m and n are the same for 
all composites and batches, respectively. 

EXAMPLE 7.1 

This example extends Example 6.2. The liquid effluent discharged 
by a manufacturing plant contains a toxic chemical. Samples of the 
effluent are to be collected to estimate the true concentration (J.tg IL) 
and the total amount (J.tg) of this chemical in the total effluent 
discharged over a given 80-h work week (two 8-h shifts per day). 
Measurements will be made on 100-mL aliquots of effluent. The 
population unit is a 100-mL aliquot, and the target population consists 
of the total number of 100-mL aliquots discharged into the river 
during the designated 80-h period. We shall assume that the effluent 
flow rate is a constant 2000 Uh over the 80-h. A constant flow rate 
will allow us to use the unweighted mean (Eq. 7.2) to estimate J.t. 
Unequal flow rates are considered in Section 7.3. 

Suppose one effluent I-L water sample is collected at a random 
time during each hour throughout the 80-h week. The ng = 16 
samples for a day are randomly grouped into n = 2 composite 
samples each consisting of g = 8 one-liter samples. Then m = 2 
subsamples of size 100-mL are withdrawn from each thoroughly 
mixed composite and measured for the chemical of interest. This 
sampling and compositing design is illustrated in Figure 7.2. 

Suppose the subsample data are as given in Table 7.2. Using 
Eqs. 7.2 or 7.3, x = 0.0483 J.tg/lOO mL is an estimate of J.t. Using 
Eq. 7.10, which requires that B, N, and M be determined, we 
estimate Var (x). Since the goal is to estimate J.t for the 5 days of a 
given week, we have B = 5. Hence, hlB = 1, since sUbsamplcs 
were measured on each of the 5 days. Each composite sample 
contains 8000 mL, so there are M = 8000 mU100 mL = 80 
subsamples in each composite. Hence, mlM = 0.025, since m = 
2. The number N of potential composites per day depends on the 
total flow. Multiplying the flow rate by 16 h gives 

Table 7.2 Hypothetical Concentrations for a Chemical in Effluent Water (for 
Example 7.1) 

Measurements Xijk Composite Mean Day Mean 
Day Composite (/-IgIlOO mL) xi) x; sC:x;l 

1 0.021 0.025 0.023 0.027 0.00400 
2 0.032 0.030 0.031 

2 0.045 0.048 0.0465 0.04275 0.00375 
2 0.038 0.040 0.039 

3 1 0.035 0.036 0.0355 0.03425 0.00125 
2 0.031 0.035 0.033 

4 1 0.065 0.066 0.0655 0.06475 0.00075 
2 0.068 0.060 0.064 

5 1 0.070 0.071 0.0705 0.07275 0.00225 
2 0.075 0.075 0.075 
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Hour Day 1 • • • Day 5 

2 Represent I liter _-1--"""" 

ng = 16 
samples 
per day 

n = 2 
composites 
per day 

3 

4 

5 

• 
• 
• 

13 

14 

15 
16 

samples collected 
at random during 
each hour 

• • • 

• • • 

m = 2 
subsampJes 
per composite 

• • • • • • • • 
Figure 7.2 An illustration for Example 7.1. Sampling the flow from an effluent 
pipe at a random time each hour. Flow is assumed constant over time. 

N = (2000 Llh) (16 h/day) (1 composite/8 L) = 4000 

composites per day. Hence, nlN = 2/4000 = 0.0005. Using biB 
1, mlM = 0.025, and nlN = 0 in Eq. 7.10 gives 

or 

s~ 0.0000149 s\x) = - = = 0.00000149 
bn 10 

sex) = 0.00122 f-tgIlOO mL 

The inventory is estimated as 

i = BNMX 

= (5 days)(4000 composites/day) 

(80 subsamples/composite)(0.0483 f-tg/subsample) 

= 77,300 f-tg for the week 

Then Var(i) is estimated as 

s2(1) = (BNM)2s2(x) 

= (5 X 4000 X 80)2 (0.00000149) 

= 3.81 X 106 (f-tg)2 
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or 

sCi) = 1950 p.g 

In summary, the average concentration released during the week 
is estimated to be x = 0.0483 p.g/IOO mL with an estimated standard 
error (due to sampling only a pOltion of the effluent) of 0.00122 
p.g/IOO mL. The estimated total amount discharged during the week 
is i = 77 ,300 p.g with a standard error of 1950 p.g. 

The estimates x, s (x), i, and s (I) in Example 7.1 may be misleading unless 
the 1-L sample collected at a random time each hour is representative of the 
true average concentration during that hour. If the chemical to be measured is 
released at discrete points in time, a pulse of the chemical could be missed by 
taking a single random sample each hour. This problem can be avoided by 
using continuous sampling rather than by compositing discrete grab samples. 

7.2.4 Number of Samples 

The selection of the optimum values of b, n, and m can be made in a manner 
similar to that given in Section 6.2.3 for two-stage sampling. The idea is to 
choose values of b, n, and m that will minimize Yar(x) for fixed cost or 
minimize cost for prespecified Yar(x). Assume the cost function 

7.14 

is applicable, where c, is the average cost per batch associated with selecting 
batches, C2 is the average cost per composite of forming bn composites, and C3 

is the cost per subunit of selecting and measuring subunits. Then the optimum 
values of m and n may be approximated by computing 

7.15 

and 

n = C/C2 ( )
'/2 

s~/s~ 
7.16 

where sL s~, and s~ are computed using Eqs. 7.11, 7.12, and 7.13, respectively. 
Equations 7.15 and 7.16 are derived, for example, by Snedecor and Cochran 
(1967, p. 533). (We note that Eqs. 7.15 and 7.16 are derived assuming M and 
N are large. When M and N are not large, the formulas for m and n are such 
that negative estimates can occur. Sukhatme and Sukhatme (1970, pp. 280-
282) give appropriate procedures for this case.) 

The data for computing s T, s ~, and s ~ should be obtained from prior studies 
at the same site. These studies should have used the same compo siting design 
and mixing procedure as will be used for the new study. If not, the estimates 
s T, s ~, and s ~ may not apply to the new study. Once m and n are determined, 
the cost equation (Eq. 7.14) may be solved to obtain b. 

Once best values for b, n, and m have been determined, we must still choose 
g, the number of field samples that should be collected and mixed to form each 
composite. Elder, Thompson, and Myers (1980, p. 185) discuss the problems 
involved in choosing g. The main complication is that mixing a larger number 
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g of field samples to fonn each composite will not in all cases reduce Var(x). 
If by increasing g the mixing process can no longer achieve a homogeneous 
composite, then Var(x) could actually increase. Practical considerations such as 
ease of sampling, costs, and capacity of the mixing apparatus will restrict g to 
some feasible range of values [gmin, gmaxJ. Elder, Thompson, and Myers (1980) 
suggest that a pilot study using gmin and another study using gmax could be 
perfomled to see if Var(x) changes significantly. This experimental approach 
may be cost effective for a long-tenn study where it is important to maintain 
Var(x) at a low level. 

EXAMPLE 7.2 

Consider Example 7. 1, where the average concentration and total 
amount of a toxic chemical discharged in an effluent stream was 
estimated for a given week. We shall use those data (Table 7.2) to 
estimate the optimum values of m, n, and b for estimating the mean 
and the total for a future week. Assume that the ratios sf / s~ and 
s~/s~ do not change appreciably over time and that the cost function 
given by Eq. 7.14 is appropriate. 

Using the data in Table 7.2 and Eqs. 7.11,7.12, and 7.13, we 
find that sf = 0.000388, s~ = 0.0000149, and s~ = 0.0000058. 
Hence, sf/s~ = 26 and s~/s~ = 2.6. Suppose the costs for a week's 
sampling and analyses effort are C = $2000, and that CI = $50, 
C2 = $50, and C3 = $100; then CI/C2 = 1 and C2/C3 = 0.5. Using 
Eqs. 7.16 and 7.17, we have 

m= (0.5)112 
- = 0.4 
2.6 

n= ( 
1 ) 1/2 

- =02 26 . 

Using m = 1 and n = 1 in Eq. 7.14, we find that b = 10. Hence. 
based on the available data and the cost function, the allocation that 
will minimize Var (x) is estimated to be b = 10, n = 1, and m = 

1. However, if n = m = 1, it will not be possible to compute s~ 
or s~ (Eqs. 7.12 and 7.13). If s~ and s~ are needed for planning 
future allocations or for other purposes. then nand m must be greater 
than 1. 

The effect on s\x) of varying b, n, and m can be evaluated by 
computing Eq. 7.10 for B = 5, N = 4000, M = 80, and the values 
of sf, s~, and s~ given in the example. See Exercise 7.3. 

7.3 UNEQUAL-SIZED UNITS 

Section 7.2 required that (a) each batch have the same number N of potential 
composite samples, and (b) each composite have the same number M of potential 
subsamples. In this section a method discussed by Sukhatme and Sukhatme 
(1970, pp. 302-304) is given for estimating p. and I when these requirements 
cannot be met. 
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7.3.1 Estimating the Mean and Total 
Amount 

Recall that Ni is the number of possible composite samples in the ith batch, 
and that Mij is the number of possible subsamples in the jth composite of the 
ith batch. Our goal is to estimate p-, which is now defined to be 

where 

and 

B N, Mij 

L; L; L; P-i·k 
i~lj~lk~l ~ 

P- = B Ni 

L;L;M 
i= 1 j~ 1 IJ 

total amount present in the target population 

total number of subsamples in the target population 

1 B 

= B i~l wiP-i 

N, 

L;M 
j ~ 1 IJ 

Wi =--'-,B----
1 Ni 

P-i = 

-L; L;M 
B i~ 1 j~ 1 I} 

number of possible subsamples in ith batch 

average number of possible subsamples per batch 

N, Mij 

L; L; P-ijk 
j~ 1 k~ 1 

Nt 

L;M 
j~l IJ 

7.17 

7.18 

= average amount per subs ample in the ith batch 7.19 

It is clear from Eq. 7.17 that the inventory is just 

B Nt 

1= P- L; L; M· 
i~ 1 j~ 1 IJ 

The parameters P- and I are estimated by selecting b of the B batches at 
grouped into ni composite samples, perhaps of different sizes. Each composite 
is thoroughly mixed, and mij subsamples are selected randomly from the jth 
composite in the ith batch. Each selected subsampJe is then measured in its 
entirety for the constituent of interest, yielding the data Xijk' 

The Xijk may be used as follows to estimate p-: 

7.20 

where 
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= estimated mean for the ith batch, 

where Wi was defined in Eq. 7.18, 

and 

= mean of the mij measured subsamples 
in the jth composite of the ith batch 

Vij = N; 

~ MijlNi 
j= 1 

number of possible subsamples in 
the jth composite of batch i 

average number of possible subsamples 
per composite in the ith batch 

Equation 7.20 reduces to Eq. 7.3 when Ni = N, Mij = M, ni 
m for all batches i and composites j. 

An estimate of the inventory I is 
B N; 

j=x~ ~M-
i= 1 j= 1 Ij 

where x is computed using Eq. 7.20. 

7.3.2 Variance of the Mean and the Total 
Amount 

7.21 

n, and mij 

7.22 

An estimate of Var(x) may be calculated from the Xijk data as follows, if all 
Mij are known: 

where 

and 

( b) si biB ~ 2( ni) Sf2 1 - - - + -2 L.J Wi 1 - - -
B b b i=1 Ni ni 

b b 2 n; ( ) 2 IB '" Wi (n;lN;) '" 2 mij Sij3 + - L.J L.J V·· 1 - - -
b2 . n2 . IJ Mm 1=1 i J= 1 ij ij 

1 n; 

-- ~ (v.X - X;)2 
ni - 1 j= 1 Ij IJ 

mij 

---1 ~ (Xijk - xii 
mij - k=l 

7.23 
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Equation 7.23 reduces to Eq. 7.10 when Ni = N, Mij 
= m for all batches i and composites j. 

n, and mi) 

The quantity Var(i) is estimated by computing 
B N, 2 

i(i) = i(x) (.L..:L..: MU) 
I = I} = I 

7.24 

where i(x) is computed by Eq. 7.23. 
As noted, Eqs. 7.23 and 7.24 can be used if all Mi) are known. In general, 

however, the Mij will be unknown for composites not among the ni actually 
formed unless all composites in the target population are the same size. If some 
of the Mij are unknown, then vij' Wi' X, i, and 52(1) cannot be computed, since 
Ejv"", I Mi) is required. However, we may estimate vi) and Wi as follows, using 
only knowledge of Ni and the Mi) for the composites actually formed: 

Mi) 
Vi;=---· 

" 1 fl, 

-L..:M 
ni j= I (I 

nj 

Ni L..: Mi)ni 
j = I 

Now, we estimate p, by computing 

where 

7.25 

7.26 

7.27 

Then we estimate Var(x) as before, using vij and Wi in Eq. 7.23, and the 
inventory I by computing 

i = ~ L..: Ni L..: Mi)ni 
-B ( b nj ) 

b i= I j= I 

where x is computed from Eq. 7.27. The quantity Var(1) is estimated by 

lB l> n; J 
5\1) = i(x) - L..:. Ni L..: Mi)lni 

b i= I j= I 

7.28 

7.29 

where s\x) is computed from Eq. 7.23 using vi) and wi) in place of vi) and wi). 

EXAMPLE 7.3 

Consider again Example 7.1, where a chemical plant discharges 
liquid effluent containing a toxic chemical into a river. The effluent 
must be sampled to estimate the average concentration p, and total 
amount I of the chemical discharged during a given 5-day work 
week. The effluent flow rate and the concentration (p,g/L) of the 
toxic chemical vary considerably during each day. 
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The target population is defined as in Example 7.1-that is, as 
the total number of 100-mL aliquots of effluent discharged to the 
river during a particular 80-h work week (5 days, 16 h per day). 
Suppose cost considerations will restrict the collection of samples to 
only b = 3 of the B = 5 days, the 3 days being selected at random. 
Suppose these days are Monday, Wednesday, and Thursday, denoted 
henceforth as day 1, day 2, and day 3, respectively. Composite 
samples will be formed manually by first collecting one 4-L sample 
at a random time during each hour of each selected day. Then the 
16 samples collected on the ith day will be used to form ni 

composites, where ni is chosen to be proportional to the total flow 
for that day. Suppose that cost constraints limit the total number of 
composites that can be formed to nl + n2 + n3 = 9. All composites 
will be constructed to be 8 L in size, and m = 2 subsamples each 
of size 100 mL will be withdrawn from each composite. 

Table 7.3 lists hypothetical flow data for days 1, 2, and 3. Since 
flow varies over time, the amount of the 4-L sample collected during 
hour h that goes into forming a composite is VPh , where V is the 
desired volume of the composite sample (V = 8 in this example) 
and Ph is the proportion of that day's flow that occurs during hour 
h. For example, using Table 7.3, we have that on day 1,0.182 L 
of the 4-L sample collected during the first hour is combined with 
0.217 L from the second hour, 0.317 L from the third hour, and so 
on, to form the 8-L composite sample. The same procedure is used 
to form each composite on day 1, and similarly for the other days. 
The total flow for the 3 selected days is 131,955 L, of which 29%, 
49%, and 22% occurred on days 1, 2 and 3, respectively. For the 
number of composites per day to be proportional to daily flow, we 
multiply these percents by 9, the allowed total number of composites. 
We get nl = 3, n2 = 4, and n3 = 2. 

The manner in which the composites are formed in this example 
is not in accordance with random grouping of ni g samples into fli 

composites, as described follQwing Eq. 7.19. In this example the 
several composites formed on a given day have a positive correlation 
because all of them are formed from the same set of effluent samples. 
The result is that s\x) given by Eq. 7.23 may be too small, that 
is, it may underestimate Var(x). To obtain a more accurate estimate 
of Var(x), we need an estimate of the variability due to the mixing 
process as well as that due to the variation in mixing proportions. 
The latter variance may be estimated by using the flow proportion 
Ph, but the mixing variance will usually be unknown in practice. 
An exception is when the constituent of interest is dissolved in 
water, so a well-mixed composite of water samples implies a mixing 
variance of zero. In this case Schaeffer and Janarden (1978) and 
Schaeffer, Kerster, and Janardan (1980) give a method for estimating 
Var(x) from composite samples all obtained for the same flow 
conditions. In this example we shall use Eq. 7.23 to estimate Var(x), 
with the understanding that it may be somewhat too small. 

Table 7.4 gives daily total flow data for each day of the week. 
The number N, of possible composites on day i is obtained by 
dividing these flows by 8 L. The total number of possible subsamples 



Table 7.3 Flow (in Liters) from an Effluent Pipe for Each Hour of the Three Days Selected at 
Random from a Five-Day Work Week (for Example 7.3) (hypothetical data) 

Monday Wednesday Thursday 

Hour Flow pha VPhb Flow Ph VPh Flow Ph VPh 

1 867 0.0228 0.182 1,570 0.0244 0.195 932 0.0314 0.251 
2 1,027 0.0271 0.217 1,864 0.0290 0.232 987 0.0333 0.266 
3 1,502 0.0396 0.317 2,288 0.0355 0.284 1,057 0.0357 0.286 
4 1,952 0.0514 0.411 3,160 0.0491 0.393 1,271 0.0429 0.343 
5 2,121 0.0559 0.447 4,558 0.0708 0.566 1,593 0.0537 0.430 
6 2,567 0.0676 0.541 6,080 0.0945 0.756 2.076 0.0700 0.560 

Cl:l 7 3,893 0.1026 0.821 6,440 0.1001 0.800 2,552 0.0861 0.689 "" 8 3,750 0.0988 0.790 5,988 0.0930 0.745 2,743 0.0925 0.740 
9 3,339 0.0880 0.704 6,052 0.0940 0.752 3,072 0.1036 0.829 

10 3,054 0.0805 0.644 5,460 0.0848 0.678 3,250 0.1096 0.877 
11 2,987 0.0787 0.630 5,058 0.0786 0.629 3,074 0.1037 0.830 
12 3,117 0.0821 0.657 4,396 0.0683 0.546 2,891 0.0975 0.780 
13 2,700 0.0711 0.569 3,686 0.0573 0.458 1,598 0.0539 0.431 
14 2,079 0.0548 0.438 3,400 0.0528 0.422 1,270 0.0428 0.342 
15 1,501 0.0395 0.316 3,300 0.0513 0.410 900 0.0304 0.243 
16 1,498 0.0395 0.316 1,060 0.0165 0.132 375 0.0127 0.102 

Totals 37,954 1.000 8 64,360 1.000 8 29,641 1.000 8 

a Ph = proportion of the day's flow that occurs during hour h. 
h V = 8 L = desired volume of the composite for this example. VPh = amount of the 4 L sample collected during hour 
h that goes into forming each 8 L composite sample for the day. 



Summary 

Table 7.4 Data for Computing the Wi and Vij 

Number of 

Number of Possible 

Possible Subsamplesh 

Flow Compositesa 
Ni 

Day (L) N; 
L.; Mij 

j=1 wj
C 

Monday 37,954 4,744 379,520 0.925 
Tuesday 34,500 4,312 345,000 0.841 
Wednesday 64,360 8,045 643,600 1.569 
Thursday 29,641 3,705 296,400 0.722 
Friday 38,700 4,837 387,000 0.943 

Total 25,643 2,051,520 

aObtained by dividing total daily flow by the size of the composite (8 L in this example). 
hEqual to 80N; in this example. 
CComputed from Eq. 7.18. 
dComputed from Eq. 7.21. 

on day i is obtained as E:~ I Mij, which reduces to 80N; because 
each composite contains M;j = 80 subsamples. This information 
allows us to compute the W; and vij using Eqs. 7.18 and 7.21. 
These results are given in Table 7.4. We note that total flows are 
required to compute W; and. vij' even for those days when composites 
are not formed. 

Table 7.5 gives hypothetical concentrations for the two subsamples 
selected from each composite. Using Eqs. 7.20 and 7.22, we estimate 
the true mean 11 and inventory I to be x = 0.053 Ilg/100 mL and 
J = 109,000 Ilg for the 5-day period. Equations 7.23 and 7.24 give 
S2(X) = 0.00021744 or s(x) = 0.015 Ilg/l00 mL and s(J) = 

0.0147(2,051,520) = 30,157, or 30,000 Ilg. 
The third term of S2(X) in Eq. 7.23 is essentially zero because 

n;lN; == 0 for all 3 batches. Also, the second term contributes a 
negligible amount because the variances S~2 of the composite means 
within each batch are so small relative to the variance si = 0.00162 
between the batch means. 

Now suppose the daily flows were recorded only on days when 
composites were formed. In that case Eq. 7.27 is used to compute 
x, and the vij and W; must be estimated by Eqs. 7.25 and 7.26. 
Using Mij = 80 and the N; data for Monday, Wednesday, and 
Thursday in Table 7.4, we find vij = 1 (as before) and WI = 0.863, 
W2 = 1.463, and W3 = 0.6740. Hence, from Eq. 7.27, x is equal 
to 0.0496, as compared to 0.0531, obtained when the W; did not 
have to be estimated. Using Eqs. 7.28 and 7.29, we find J = 
0.0495(5)(439840) 108,860, or 109,000 Ilg and s(J) 
(0.0138)(5) (439840) = 30,349, or 30,000 Ilg, the same values 
obtained previously. 

7.4 SUMMARY 

85 

v,/ 

This chapter gives fommlas for estimating the mean and the total amount of 
environmental contaminants when measurements are made on composite samples 



Table 7.5 Estimating the Average Concentration and Inventory of a Chemical by Analyzing Subsamples 

Measurements Xijk , 
Day n; Composite n/N; (fJ-g/IOO mLl Sij} Xii Vi) V1jX 1j S72 X; lVi \.1.-'/Xi 

Monday 3 0.000632 0.025 0.036 6.05 x 10- 5 0.0305 0.0305 2.33 x 10- 6 0.03083 0.925 0.0285 
2 0.031 0.028 4.50 x 10-6 0.0295 0.0295 
3 0.035 0.030 1.25 x 10-5 0.0325 0.0325 

CO Tuesday No composites formed 0) 

Wednesday 4 1 0.000497 0.065 0.063 2.0 x 10- 6 0.0640 0.0640 9.83 x 10-6 0.0635 1.569 0.0996 
2 0.059 0.061 2.0 x 10- 6 0.0600 0.0600 
3 0.057 0.078 2.2 x 10-4 0.0675 0.0675 
4 0.061 0.064 4.5 x 10- 6 0.0625 0.0625 

Thursday 2 1 0.000540 0.043 0.051 3.2 x 10- 5 0.0470 0.0470 2.81 x 10- 5 0.04325 0.722 0.0312 
2 0.038 0.041 4.5 x 10- 6 0.0395 0.0395 

Friday No composites formed 
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fonned from a random grouping of field samples. These methods involve two­
and three-stage subsampling since composite samples are frequently subsampled 
rather than measured in their entirety. Fonnulas for estimating the variance of 
estimated means are also provided, as are methods for choosing the optimum 
number of composites and subsamples within composites. 

EXERCISES 

7.1 Suppose in Example 7.1 that the target population is redefined to be a 
period of 52 weeks rather than 1 week and that the data in Table 7.2 
were obtained for 5 days chosen at random over the 365 days of the year. 
Estimate p, and I and compute the sample standard errors s(X) and s(1) of 
those estimates. Are sex) and sci) larger than obtained in Example 7.1? 
If so, why? 

7.2 In Example 7.1 suppose the flow rate is 100,000 Llh and the target 
population is as described in Exercise 7.1. Compute X, sex), i, and s(1). 
Do these estimates differ from those in Example 7.1 or Exercise 7. 1 ? 
Why or why not? 

7.3 For Example 7.2 use Equation 7.11 to evaluate the effect on sex) of 
varying the number of days (b), composites (n), and subsamples (m) when 
B = 5, N = 4000, M = 80, s~ = 0.000388, s~ = 0.0000149, and s~ = 
0.0000058. These 3 sample variances were computed by using the data 
in Table 7.2 in Equations 7.11, 7.12, and 7.13. 

ANSWERS 

7.1 x = 0.0483 p,gIlOO mL as in Example 7.1. But now biB 5/365 
0.013699. Equation 7.10 gives 

r ; ; 
s(X) = L (1 - 0.013699) i + 0.013699(0.9995) 1~ 

2] 112 
+ 0.013699(0.0005)(0.975) ;~ 

= (7.64 X 10-5 + 2.04 X 10-8 + 1.94 X 10- 12)1/2 

= 0.00874 

which is 7 times larger than in Example 7.1 since biB is smaller-that is, 
we are sampling only 5 of the 365 days in the year. 

7.2 x 

i = (365 x 4000 x 80)0.0483 = 5,641,440 or 5,640,000 p,g/year 

s(l) = (365 x 4000 x 80)0.00874 = 1,020,832 or 1,020,000 p,g 

0.0483 p,g/lOO mL as in Example 7.1 and Exercise 7.1. 

N = (100,000 Llh)(l6 h)(l composite/8 L) 

= 200,000 composites per day. 

Therefore, nlN = 21100,000 = 0.00002 ~ O. Hence, sex) is the same 
as obtained in Exercise 7.1. 
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i = (365 x 100,000 x 80)0.0483 = 141,036,000 or 191,000,000 /Lg/year 

and 

s(i) = (365 x 100,000 x 80)0.00874 = 25,520,800 or 25,500,000 /Lg 

which are larger than in Exercise 7.1, since the number of potential 
composites, N, is larger. 

l( b) 0.000387575 
7.3 s(x) = 1 - 5" b 

Days 
b 

5 
5 
5 
3 
3 
3 

+ (~) (1 __ n_) 0.0000149 
5 4000 bn 

(~) (_n ) (1 _ m) 0.0000058l1/2 
+ 5 4000 80 bnm 

Composites Subsamples 
n m s(x) 

2 2 0.00122 (as in Example 7.1) 
\0 2 0.000545 
\0 4 0.000545 
2 2 0.00729 

\0 2 0.00721 
\0 4 0.00721 

Taking more than 2 subsamples has no effect on s(x). Increasing n 
from 2 to 10 cuts s(x) in half if b = 5, but has almost no effect 
when b = 3. 
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Chapters 4-7 discuss sampling designs for estimating a mean or a total that 
usually use a random selection procedure for choosing all population units to 
be measured. However, it is frequently desirable to choose the units systemat­
ically. This chapter discusses systematic sampling, a method where, in general, 
only one of the units is randomly selected. This randomly selected unit establishes 
the starting place of a systematic pattern of sampling that is repeated throughout 
the population of N units. 

A simple example is choosing a point at random along a transect, then 
sampling at equidistant intervals thereafter. When sampling a geographical area, 
a common systematic design is to sample on a square grid. The location of one 
grid point, say that in the upper left comer, is determined at random within a 
local region. Then the locations of the remaining grid points are completely 
determined by the fixed spacing between grid lines. 

Systematic sampling is usually easier to implement under field conditions 
than are simple random or stratified random sampling plans. Moreover, it 
provides for a uniform coverage of the target popUlation that, in many cases, 
will yield more accurate estimates of mean concentrations. However, if the 
process being measured follows unsuspected periodicities over time and/or space, 
systematic sampling can give misleading and biased estimates of the population 
mean and total. Another problem with systematic sampling is the difficulty of 
obtaining an accurate estimate of the sampling error of the estimated mean and 
total unless the population is in random order. 

In practice, a monitoring program is seldom conducted solely to estimate 
means. Usually, there is a need to estimate long-term trends, to define seasonal 
or other cycles, or to forecast pollution concentrations. For these objectives the 
use of equal-spaced observation points is recommended. An important design 
question is how frequently to sample, a topic discussed in this chapter. 

This chapter 

Shows how to select a systematic sample 
Shows the dangers of using systematic sampling for estimating the 

popUlation mean when periodicities are present 
Compares the accuracy of simple random sampling, stratified random 

sampling, and systematic sampling for estimating means when the 
population is in random order or has trends, periodicities, or correlations 

89 
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Illustrates methods for estimating {t and Yarei') when systematic sampling 
is used and the population is not in random order 

Briefly discusses methods for estimating spatial distributions of pollutants 
and provides references to the geostatistical literature in this area 

A review of the statistical literature on systematic sampling is given by Iachan 
(1982). 

8.1 SAMPLING ALONG A LINE 

8.1.1. Selecting Systematic Samples 
Consider sampling over time at an air monitoring station to estimate the annual 
average {t at that location. Suppose air measurements are made on air filters 
exposed for 24-h periods so that the target population consists of N = 365 
population units (days) in the calendar year. A systematic sampling of these N 
units can be set up to obtain an unbiased estimate of {to 

First, an interval k (period between collection times) is chosen: for example, 
k = 5 days. Then a number between 1 and k inclusively is selected at random, 
say 3. A 24-h air sample is then collected on January 3 and every fifth day 
thereafter-that is, on January 3, 8, 13, 18, 23, and so on, as illustrated in 
Figure 8.1. The total number of observations for the year is then n = Nlk = 
365/5 = 73. Note that k is the number of possible systematic samples of size 
n that can be collected. These samples are enumerated in Table 8.1 for N = 
365 and k = 5. In practice, usually only one of the k systematic samples of 
size n is collected. The mean x of these n values is an unbiased estimate of 
the true mean {t of the N popUlation units. Then Yarei') may be approximated 
by one of the methods in Section 8.6. 

In the preceding example the interval k between sample collection points or 
times was selected first, and then the number n of observations was determined 
as n = Nlk. With this approach it is possible to get a fractional value for n 
(e.g., n = 36.5) if N = 365 and k = 10. A fractional value means some of 
the k systematic samples have a larger number of samples n than others. For 
the N = 365, k = 10 case, five systematic samples have n = 37 and five have 
n = 36. 

To avoid this complication, one can first select n and then determine k as k 
= Nln using the following procedure by Lahiri (1951) (discussed by Murthy, 
1967, p. 139) that provides a statistically unbiased estimate of the mean. First 
decide how many units n are to be selected. Then let k be the integer nearest 
to Nln. Regard the N units as ordered around a circle. Choose a random number 
between I and N and select every kth unit thereafter going around the circle 
until n units are obtained. The following example is given in Figure 8.2. 
Suppose a systematic sample with n = 4 observations is desired from a target 
population of N = 15 units. Since Nln = 3.75, we set k = 4. Suppose the 
random number selected between 1 and 15 is 7. Then the n = 4 units in the 
systematic sample are 7, 11, 15, and 4. 

When sampling along a transect in space, one need not actually specify N 
and k. Rather, the distance d between sampling points or times is specified. 
Then a random starting point P and the total length of line are specified. The 
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JANUARY FEBRUARY • • • DECEMBER 

I I I 

3 3 3 
5 5 5 
7 7 7 
9 9 9 

II II II 

13 13 13 
15 15 15 

17 17 17 

19 19 19 

21 21 21 

23 23 23 

25 25 25 

27 27 27 

29 29 

31 31 

Figure 8.1 A systematic sample of size n = 73 with a sampling interval of k = 

5 days and a random start position on January 3. N = 365 days. 

sampling locations are at the points P, P + d, P + 2d, and so on. When the 
end of the transect is reached, one goes to the beginning of the transect and 
progresses until the point P is reached. An example is given in Figure 8.3 for 
a transect of 2500 m and a distance d of 500 m. 

8.1.2 Cyclical Processes 
Akland (1972) used suspended particulate air data to compare systematic sampling 
with a stratified random sampling procedure. He found that a biweekly (k = 
14) or every third day (k = 3) systematic plan generally gave more accurate 
estimates of the annual mean than did the stratified random procedure. However, 

Table 8.1 The k Possible Systematic 
Samples, Each Containing n Observations, 

When N = 365 and k = 5. Table Entries Are 
the Day of the Year When Observations Are. 

Taken 

Possible Systematic Samples 
Observation 

Numbers 2 3" 4 5 

1 1 2 3 4 5 
2 6 7 8 9 10 
3 II 12 13 14 15 

72 356 357 358 359 360 
n = 73 361 362 363 364 365 

a Illustrated in Figure 8.1. 
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@ 2 

14 
3 

0 N = 15 
13 Desired n = 4 

5 
Therefore N/n = 3.7 ~4 k 

12 Random number between 

6 1 and 15 is 7 

@ (3) 10 
9 8 

Figure 8.2 Example of a method by Lahiri (1951) for choosing a systematic 
sample with prespecified number of observations n and known value of N. 

systematic sampling will not always result in a more accurate estimate of the 
mean. The accuracy of estimates depends on the particular cycles (if any) that 
exist in the variable and the particular value of k chosen. In the previous air 
example, Akland (1972) cautions that k = 7 or some multiple of 7 should not 
be used, since all samples would then be collected on the same day of the 
week. 

Figure 8.4 illustrates the importance of knowing the particular pattern likely 
to be present before choosing k (this example is from Cochran, 1977, p. 218). 
Shown is a pure sine wave fluctuating about a constant mean concentration with 
a period of 30 days. If k is chosen equal to the period, as illustrated by the 
sampling points A, or an even multiple of the period, then every datum will 
have the same value. In that case there is no more information in the n 
measurements than for a single observation chosen at random. Furthermore, the 
estimate of p, is biased unless the points A happen to fall exactly on the mean 
line. However, suppose k is chosen to be an odd multiple of the half-period, 
for example, k = 15 as illustrated by the points B in Figure 8.4. Then every 
datum in the systematic sample will be the same distance above or below the 
true mean. Hence their average, :t, will equal p" and the sampling variance of 
x is zero. For values of k between the extremes illustrated by points A and B, 
systematic sampling will give various degrees of accuracy in estimating p,. 

Figure 8.4 illustrates the danger of not knowing about the presence of periodic 
variation before using systematic sampling to estimate a mean or total. When 
estimating a mean, the general strategy in choosing k is to ensure that all 
portions of the cyclical curve are represented. For example, if the cycle is 
weekly. all days of the week should be equally represented. 

0 

I 

Power spectrum analysis may be used to study the periodic features of a 

500 

• I 

Random Starting Location P 

~ 1000 

I • 
~ 

Prespecified distance 
d = 500 m 

1500 

I 
2000 2500 meters 

• I • I 

Figure 8.3 Choosing sampling locations for a systematic sample along a 
transect. 
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Figure 8.4 Pure sine wave periodic variation. 

long series of data over time or space. The method, as applied to detennining 
the frequency of sampling water or wastewater, is illustrated in Environmental 
Protection Agency (1982), Gunnerson (1966, 1968), and Sparr and Schaezler 
(1974). Sanders and Adrian (1978) base the sampling frequency in river quality 
monitoring on the magnitude of half the confidence interval of the random 
component of an annual mean. Loftis and Ward (1980b) consider the effects of 
seasonality and temporal correlation on the frequency of sampling needed for 
estimating a geometric mean. Ward et a1. (1979) demonstrate a procedure for 
using statistics to evaluate a regulatory water-quality monitoring network's 
sampling frequencies. 

If time or resources do not pennit studying a suspected periodic structure 
before sampling begins, it may be preferable to estimate the mean by stratified 
random sampling with numerous strata. Systematic sampling rather than random 
sampling could be used within each stratum, with the starting point independently 
detennined for each stratum. 

8.2 SAMPLING OVER SPACE 

The simplest systematic designs for sampling an area are the aligned and central 
aligned square grids illustrated in Figure 8.5(a) and (b), respectively. To 
detennine the population units to be sampled for the aligned grid, first choose 
the distance between grid lines, which is equivalent to fixing n. Then two 
random coordinate numbers are drawn to fix the location of the point A in 
Figure 8.5(a). The remaining grid points are then fixed by the prespecified grid 
spacing. Deliberately placing A at the center of that square gives Figure 8.5(b). 

To guard against bias in the estimated mean due to unsuspected periodicities 
over space, one can use the unaligned grid pattern in Figure 8.5(c). Berry and 
Baker (1968) recommend this design because it combines the useful aspects of 
random, stratified, and systematic sampling methods. Cochran (1977, p. 228) 
cites studies by Quenouille (1949) and Das (1950) that suggest this design is 
superior to both the square grid and stratified random sampling at least for some 
simple spatial correlation functions. 

The sampling locations for the unaligned grid are detennined as follows 
[refer to Fig. 8.5(c)]. First, point A is selected at random. The x coordinate at 
point A is then used with three new random y coordinates to detennine points 
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Aligned Square Grid Central Aligned Square Grid 
I I I I 
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Figure 8.5 Systematic designs for sampling in space. 

B, C, and D. The y coordinate of A is then used with two new random x 
coordinates to locate points E and I. The x coordinate of E and the y coordinate 
of B are then used as the coordinates of point F. Similarly, the x and y 
coordinates of E and C, respectively, are the x and y coordinates of point G, 
and so on, for the remaining cells. 

The triangular systematic grid shown in Figure 8.5(d) is a variation on the 
aligned square glid. After the random point A is chosen, the other sampling 
points are fixed by the imposed triangular arrangement. Studies by McBratney, 
Webster, and Burgess (1981) suggest the triangular grid is slightly superior to 
the square grid if the spatial correlation structure varies with direction. Olea 
(1984) evaluated 14 different patterns of spatial sampling for estimating spatial 
processes. He found the triangular grid best but almost matcli.ed by the square 
pattern. Clustered patterns performed poorly relative to regular patterns. Section 
8.7 discusses the estimation of spatial distributions of pollutants, which is usually 
best accomplished using one of the grid designs in Figure 8.5. 

8.3 COMPARING SYSTEMATIC WITH 
RANDOM SAMPLING 

Systematic sampling is easy to use in practice. But, we may ask, will it give 
an estimated mean, X, with a variance at least as small as would be obtained 
if simple random sampling or stratified random sampling had been used? This 
question has been studied by examining environmental data sets. Results from 
13 data sets are summarized by Cochran (1977, p. 221). These data suggest 
systematic sampling is superior to stratified random sampling plans that use one 
or two data per strata. Another method for comparing sampling plans is to 
derive mathematical expressions for Var(x) for each plan and to see under what 
conditions this variance is less for one plan than for another. These comparisons 
have been made by Cochran (1977, pp. 207-223) and Sukhatme and Sukhatme 
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(1970, pp. 356-369). A brief summary of their results is given in subsections 
8.3.1, 8.3.2, and 8.3.3. Application of these results to environmental contaminant 
data is given in Section 8.4. Section 8.6 shows how Var(x) can be estimated 
with data obtained from a single systematic sample. 

The performance of systematic sampling relative to simple random and 
stratified random sampling depends on the particular trends, patterns, hot spots, 
and correlations present in the population. For some populations systematic 
sampling will give very precise estimates of /1-; for others, simple random 
sampling will do better. The structure of the population must be known to 
devise an efficient systematic sampling plan. This fact should be clear from the 
discussion in Section 8. 1.2. Four types of population structures have been 
studied in the literature: populations in random order, populations with linear 
trends, populations with periodicities, and populations with correlations between 
values in close proximity. The use of systematic sampling for these structures 
is now discussed. 

8.3.1 Populations in Random Order 

Suppose the following conditions apply: 

1. There are no trends in concentrations. 
2. There are no natural strata-that is, regions within the population where 

concentrations are locally elevated. 
3. Concentrations for all population units are uncorrelated. 

Then a systematic sample of n observations will, on the average, estimate the 
true mean with the same precision as a simple random sample of size nand 
with the same precision as a stratified random sample with one observation in 
each of n strata. 

Conditions 1-3 are summarized by saying the population is in "random 
order." In practice, even if conditions 1-3 are fulfilled, Var(x), obtained by 
systematic sampling, depends on the particular value chosen for k. But, on the 
average-that is, if the study were repeated many times with different values 
of k-systematic, stratified random (with one observation per stratum), and 
simple random sampling methods have equal Var(x). This equality suggests that 
for populations in random order we might as well use systematic sampling 
because of its convenience. 

An example of a random order popUlation might be radioactive fallout from 
atmospheric nuclear weapons tests that is uniformly distributed over large areas 
of land. In the absence of redistribution and concentration of these radionuclides 
by humans or nature, the "random" order population model could apply. If 
so, systematic sampling on a square grid would be convenient and should give 
an estimate of /1- as precise as simple random sampling. It would also provide 
a uniform coverage of the area that would provide information on any unsuspected 
trends that may be present. This information could be used to plan future 
sampling designs. 

8.3.2 Populations with Linear Trend 

In general, contaminants over space and time cannot be considered to be in 
random order. If a pollutant comes from a point source, concentrations will 



96 Systematic Sampling 

usually decrease with distance from the source. If the population being sampled 
consists entirely of a linear trend, Cochran (1977) shows that (1) systematic 
sampling, will on the average, give a smaller Var(x) than simple random 
sampling, and (2) stratified random sampling will, on the average, give a smaller 
Var(x) than either systematic sampling or simple random sampling. However, 
the performance of systematic sampling for estimating a mean can be improved 
by using a weighted estimate of the mean (see Section 8.5). 

If a linear or monotone trend is suspected, our first concern may be to 
estimate that trend rather than the mean. If unsuspected periodicities are not 
present, systematic sampling should work well for either objective. Methods for 
estimating and testing for trends are given in Chapters 16 and 17. 

8.3.3 Correlated Populations 
Stratified random sampling will, on the average, give a smaller Var(x) than 
simple random sampling will if the population has the following structure: 

1. Measurements at two points a distance u apart are correlated; the correlation 
is denoted by PU. 

2. This correlation is solely a function of u and decreases as u increases. 
3. There is no change in mean level or variability over the population. 

However, for this correlation structure, no general result holds for systematic 
sampling. That is, random start systematic sampling might be better or worse 
than stratified random sampling or simple random sampling, depending on the 
chosen value of k. Suppose the population has such a correlation structure and 
the correlogram (graph of the correlations Pu versus distance u) is concave 
upward (Pu + I + Pu - I - 2pu ~ 0 for all distances u). Then, on the average 
(over repetitions of the study), Var(x) for a centered systematic sample such as 
in Figure 8.S(b) is less than or equal to Var(x) for a random start systematic 
sample, a stratified random sample, or a simple random sample. 

8.4 ESTIMATING THE MEAN AND 
VARIANCE 

In Chapters 4-7 the mean J1 and total N/J. were estimated using measurements 
made on randomly selected population units. In this chapter, even though 
systematic sampling is used in place of random sampling, the same computing 
formulas are used to estimate J1 and N/J.. However, different formulas must 
usually be used when estimating Var(x). Unless the popUlation of units is in 
random order, it is difficult to obtain a completely valid estimate of this variance 
from a single systematic sample of size n because the random start position 
fixes all population units that will be measured. The following three designs 
that use systematic sampling do allow one to obtain an unbiased estimate of 
Var(x): 

1. Multiple systematic sampling using a randomly determined starting position 
for each 

2. Systematic stratified sampling where two or more systematic samples (each 
with a different random start position) are taken within each stratum 
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3. Two-stage sampling where the subsamples are collected according to a 
systematic sampling design 

4. Complementary systematic and random sampling where a systematic sample 
is supplemented by a random sample of size m from the remaining popUlation 
units 

If a single systematic sample of size n has already been collected or if the 
foregoing designs are not feasible, Var(x) might be approximated by one of the 
methods in Section 8.6. The first three options are considered in the next three 
sections. Option 4 is discussed by Zinger (1980). 

8.4.1 Multiple Systematic Sampling 

Suppose J > 1 systematic samples each of size n are obtained, each with an 
independently detennined random start position. Let Xj be the arithmetic mean 
of the n data from the jth systematic sample. Then 

1 J 

x=-L.;x 
J j~ I J 

and Nx are unbiased estimates of J-t and NJ-t, respectively. Also 

(l - Jlk) !v _ 
L.J (x - X)2 

J(J - 1) j= I J 

8.1 

8.2 

and N 2s2(X) are unbiased estimates of Var(x) and Var(Nx), respectively. Note 
that 1 - J Ik is a finite population correction factor that approximately equals 
1 if J is much smaller than k, the total number of possible systematic samples. 

If N cannot be factored exactly into nk parts, then all J systematic samples 
may not have the same number of observations. Then x is estimated as the 
weighted mean 

J 

L.; nx 
_ j= 1 .1.1 

x= 8.3 

where Xj is the arithmetic mean of the nj observations in the jth systematic 
sample. Equation 8.2 may still be used to estimate Var(x). 

Multiple systematic samples can be used for both line and area sampling. 
Example 8.1 illustrates line sampling. For area sampling, J systematic grids 
could be used. Referring to Figure 8.5, we see that J random starting points 
would be chosen in the upper left-hand square. A systematic grid sample would 
correspond to each such point. Then Eqs. 8.1-8.3 would be used, where Xj is 
the mean of the observations of the jth grid. 

The conclusions in Sections 8.3.1 and 8.3.2 remain unchanged if we compare 
collecting J independent random start systematic samples with stratified random 
sampling (J units selected at random from each of n strata) with a simple 
random sample of In units. If the popUlation is in random order, then, on the 
average, an equally precise estimate of J-t will be obtained whether we use a 
single random start systematic sample of size In or J independent random start 
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systematic samples each of size n. However, the fonner plan will be more 
precise, on the average, for a population with a linear trend or with a positive 
correlation between the elements where the correlogram is concave upward. 

EXAMPLE 8.1 

We want to estimate the average maximum daily ozone concentration 
at an air monitoring station from May 1 to September 30. Prior data 
indicate I-week cycles are expected. Five systematic samples are 
taken, so an unbiased estimate of Var(x) can be computed. The total 
number of population units (days) in the target population is N = 
153. A sampling interval of k = 10 days is chosen. Five random 
numbers between I and 10 (excluding 7) are then selected: for 
example, I, 3, 4, 6, and 8. Table 8.2 gives the data (from Chambers 
et aI., 1983). An unbiased estimate of fJ, is the weighted average of 
the 5 means, which are computed by Eq. 8.3. Thus x = 56.8. 
Equation 8.2 gives S2(X) = 3.264 or sex) = 1.8. 

8.4.2 Systematic-Stratified Sampling 
If two or more systematic samples are taken in each stratum, the estimated 
stratum mean and its variance for each stratum may be obtained by Eqs. 8.1 
(or 8.3) and 8.2, respectively. Then the techniques in Chapter 5 can be used 
to estimate the mean and the standard error for all strata combined. In some 
sampling programs it may not be necessary to estimate Var(x) in every stratum. 
In that case most strata would need only a single systematic sample of size n. 
But two or more systematic samples could be taken in a few randomly selected 
strata to estimate Var(x) for those strata. 

8.4.3 Two-Stage Sampling 
If systematic sampling is used to obtain subsamples in a two-stage sampling 
plan, a valid estimate of Var(x) can be obtained. The only condition is that the 
number of first-stage (primary) units selected for subsampling should be very 
small relative to the total number N available for selection. In this section we 
revert to the notation used in Chapter 6 for two-stage sampling. Hence, n = 

number of primary units selected for subsampling rather than the number of 
observations in a single systematic sample. 

Suppose a single systematic sample of size m is taken in each of the n 
randomly selected primary units. Let Xi be the arithmetic mean of the m data 
in the ith primary unit. If all N primary units in the population have the same 
number of possible subunits, then 

8.4 

is an unbiased estimate of the mean fJ, of the population. An unbiased estimator 
of Var(x) is 

n 

L; (Xi - x)2 
n(n - 1) i = I 

8.5 
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Table 8.2 Five Systematic Samples of Maximum Daily Ozone Concentrations (ppb) at 
Yonkers, N.Y. in 1974 

Systematic Samples 

2 3 4 5 

Max. Max. Max. Max. Max. 
Month Day Ozone Day Ozone OilY Ozone Day Ozone Day Owne 

May 1 47 3 27 4 37 6 42" 8 52 
11 27 13 40" 14 55 16 132 18 106 
21 80 23 21 24 50 26 37 28 33 
31 45 

June 10 106 2 24 3 52 5 III 7 31 
20 107 12 64 13 83 15 79 17 51 
30 119 22 68 23 19 25 20 27 30 

July 10 50 2 108 3 85 5 48 7 54 
20 25 12 37 13 47 15 46 17 49 
30 70 22 78 23 40 25 25 27 62 

Aug. 9 70 66 :2 82 4 28 6 55 
19 75 11 67 12 127 14 56 16 100 
29 87 21 70 22 53 24 117 26 27 

31 114 

Sept. 8 67 10 74 66 3 25 5 27 
18 34 20 35 11 75 13 42 15 38 
28 15 30 18 21 24 23 17 25 14 

64.0 56.9 59.7 55.0 48.6 
n 16 16 15 15 15 

S(}lIrc~: After Chambers et aI., 1983, p. 346. 
"No datum for this day is given by Chambers et al. (1983). The datum shown here is the average of the 
adjacent preceding and following concentrations. 

If the primary units have unequal numbers of subunits, then Eqs. 8.4 and 8.5 
may be replaced by Eq. 6.12 and the first term in Eq. 6.13, respectively. 

EXAMPLE 8.2 

Suppose the average 238pU concentration in herbaceous vegetation 
over a large area is to be estimated. The area is divided into, say, 
N = 500 square first-stage units of equal size, each of which is 
further divided into M = 100 smaller second-stage units of equal 
size. The population sampling unit of interest is a second-stage unit 
because the entire plant material in selected second-stage units will 
be ashed and analyzed for 238PU. Suppose n = 20 first-stage units 
are selected at random. Within each such unit a single systematic 
sample of 10 secondary units is selected, and the mean Xi for that 
unit is computed. Then Eq. 8.4 is used to compute X, and Eq. 8.5 
is used to estimate Var(x). 

8.5 POPULATIONS WITH TRENDS 

One disadvantage of a random start systematic sample is that any pronounced 
trend in the popUlation will result in a substantial reduction in the accuracy of 
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X as an estimate of p, as compared to stratified random sampling. However, the 
loss of accuracy can be avoided by the use of end corrections, which were 
investigated by Yates (1948). Other types of end corrections have also been 
proposed, as discussed by Cochran (1977, p. 216) and compared by Bellhouse 
and Rao (1975). The methods perform similarly and are superior to ordinary 
systematic sampling (without end corrections) when a linear or parabolic trend 
is present. 

End corrections for area sampling similar to those for line sampling could 
be developed. However, a simple solution is to use a central aligned square 
grid [Fig. 8.5(b)] so that each datum gets the same weight. This approach could 
also be used for line sampling. 

8.6 ESTIMATING YareX') FROM A 
SINGLE SYSTEMATIC 
SAMPLE 

If a single systematic sample of size n is collected, no completely valid estimate 
of Var(x) can be obtained from the n data values without some assumptions 
about the population. This section illustrates several approximate methods. 
Wolter (1984) provides guidance on which of these and others are preferred 
when sampling establishments and people. But he cautions that his conclusions 
could be somewhat different when sampling environmental populations, because 
the data may be more highly correlated. 

8.6.1 Population in Random Order 

If the population is in random order, as defined in Section 8.3.1, then an 
unbiased estimate of Var(x) is obtained by 

2 - 1 - (nIN) ~ 2 
S (x) = . L.J (Xi - x) 

n(n - 1) i = I 
8.6 

the same estimator used with simple random sampling (Eq. 4.7). Similarly, if 
systematic sampling is used in more complicated designs such as stratified 
random or multistage sampling, the formulas for Var(x) given in Chapters 5-7 
may be used, if one assumes the random order hypothesis is true within strata 
and primary units. The random order hypothesis is not tenable for environmental 
contaminant populations that contain trends, periodicities, or correlated data. 
Then Var(x) may be approximated by the method in the next section. 

8.6.2 Balanced Differences Along a Line 

Yates (1948) showed how to estimate Var(x) by computing "balanced differ­
ences" involving segments of nine consecutive and overlapping data values in 
a systematic sample. The first two differences are 
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There will be g such differences, where g == n/9, and n is the number of data 
in the systematic sample. The sampling error is approximated by computing 

2 1 - (nIN) ~ 2 
S (X) = L.J d u 

7.5gn II~L 
8.7 

where 7.5 is the sum of squares of the nine coefficients in each difference du ' 

In natural populations studied by Yates (1948), he found Eq. 8.7 overestimated 
the sampling error. 

EXAMPLE 8.4 

We return to Example 8.1 and the maximum daily ozone data. The 
use of Eq. 8.7 requires that n be fairly large so that the number of 
differences g will not be too small. In Example 8.1, N = 153. If 
k = 2, that is, if maximum ozone is measured every other day over 
the 153 days, then g = 9. The data for Yonkers, N.Y., on alternate 
days from the May 1 through September 30 period of 1974 are 
given in Table 8.3. The arithmetic mean of the n = 77 data is 
x = 54.9, our estimate of J1, for the 5-month period. The g = 9 
differences are 

d L = 1 (47) - 27 + 38 - 45 + 51 - 27 + 40 - 72 + 1 (119) = 41 

d2 = 1 (119) - 42 + 80 - 21 + 31 - 19 + 22 - 45 + 1 (24) = 77.5 

d9 = 1 (9) - 67 + 74 - 74 + 40 - 23 + 34 - 35 + 1 (27) - 33 

as given in Table 8.3. Therefore, Eq. 8.7 gives 

2 (1 - 77/153)(37104.5) 
s (X) = = 3.546 

7.5(9)(77) 

or sex) = 1.9. This number agrees well with s(X) = 1.8 obtained 
in Example 8.1 by using Eq. 8.2, where 5 independent systematic 
samples were used, each with a sample spacing of k = 10 days. 

8.6.3 Differences Over an Area 
The preceding methods of estimating the sampling error of x when sampling 
along a line can be extended to systematic samples over space. Two approaches 
are discussed by Yates (1981, p. 231, 233). However, little is known about 
their accuracy for environmental contaminant data. If the random order model 
applies, the usual estimator (1 - nlN)s2ln appropriate to simple random sampling 
can be used. If the random order model is inappropriate, one may collect several 
independent systematic area samples and estimate s \,i) as discussed in Section 
8.4.1. Koop (1971) shows that estimates of Var(i') can be seriously biased if 
the systematic sample is split into two halves or into successive pairs of units 
and each half is treated as an independent replicate. 

If the correlation structure of the phenomenon can be accurately estimated, 
then a weighted moving-average technique called kriging may be used to estimate 
area means. Kriging is discussed further in the next section. 
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Table 8.3 Maximum Daily Ozone Concentrations (ppb) on Alternate Days at 
Yonkers, N.Y. 

Max. Max. 
Ozone Ozone 

Date x, u du Dale Xi u du 

May 1 47 41 July 14 38 71 
3 2 27 16 39 41 
5 3 38 18 40 59 
7 4 45 20 41 25 6 -47.5 
9 5 51 22 42 78 

11 6 27 24 43 13 
13 7 40" 26 44 46 
15 8 72 28 45 80 
17 9 119" 2 77.5 30 46 70 
19 10 42 Aug. 47 66 
21 11 80 3 48 47 
23 12 21 5 49 44 7 37 
25 13 31 7 50 34 
27 14 19 9 51 70 
29 15 22 II 52 67 
31 16 45 13 53 96 

June 2 17 24 3 144.5 15 54 54 
4 18 88 17 55 44 
6 19 117 19 56 75 
8 20 37 21 57 70 8 -53.5 

10 21 106 23 58 36 
12 22 64 25 59 43 
14 23 97 27 60 77 
16 24 36 29 61 87 
18 25 75 4 -5.5 31 62 114 
20 26 107 Sept. 2 63 18 
22 27 68 4 64 14 
24 28 67 6 65 9 9 -33 

26 29 35 8 66 67 
28 30 31 10 67 74 
30 31 119 12 68 74 

July 2 32 108 14 69 40" 
4 33 96 5 -30.5 16 70 23 
6 34 60 18 71 34 
8 35 71 20 72 35 

10 36 50 22 73 27 
12 37 37 24 74 21 

26 75 32 
28 76 IS 
30 77 18 

Source: After Chambers et aI., 1983, p. 346. 
"No datum for this day is given by Chambers et al. (1983). The datum shown here is the average 
of the adjacent preceding and following concentrations. 

8.7 ESTIMATING SPATIAL 
DISTRIBUTIONS 

If a region is known to be contaminated with pollutants, there may be a need 
to estimate the spatial distribution (pattem) and total amount of pollution present 
over the region to assess the situation and plan for possible remedial actions. 
When estimating spatial distributions, it is usually best if the data are collected 
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on a central aligned or triangular grid system (shown in Fig. 8.5) to ensure 
that all areas of the region are represented. 

Data from the grid may be used in one or more ways to estimate the spatial 
distribution. Two commonly used methods are trend surface analysis and 
weighted moving averages. Trend surface analysis is described by Koch and 
Link (1980, Vol. 2), Davis (1973), and Krumbein and Graybill (1965). The 
technique can work well if the change in mean levels over the region is relatively 
small, if data are collected on a fine-enough grid over the region, and the goal 
is to show only the broad features of the spatial pattern. Delfiner and Delhomme 
(1975), Whitten (1975), and Davis (1973) discuss problems with trend surface 
analysis. 

Weighted moving-average methods use the notion that data values closest to 
the point or block where the mean is being estimated contain more information 
than data farther away and, hence, get more weight. A problem is knowing 
what weight to assign to each datum. Kriging, a weighted moving-average 
estimation technique based on geostatistics, determines the weights by using the 
spatial correlation structure of the pollutant, which is estimated from the grid 
data. In this way a mean is estimated at each node of a grid laid over the 
region of interest. Kriging permits one to estimate the variance of each estimated 
mean and hence to assess whether additional data are needed in any portion of 
the region. 

A difficulty in using kriging is estimating the correlation structure, particularly 
when data are not normally distributed. If the data are lognormal, correlation 
estimation and kriging may be done on the log-transformed data. However, the 
resulting estimated means and variances in the original scale will be biased if 
the correlation structure is not modeled correctly (see Gilbert and Simpson, 
1985). This problem is difficult if the correlation structure is changing over the 
region. 

Examples of applications of kriging to pollution problems are Bromenshenk 
et al. (1985), Gilbert and Simpson (1985), Flatman and Yfantis (1984), Flatman 
(1984), Journel (1984), Eynon and Switzer (1983), Sophocleous (1983), Hughes 
and Lettenmaier (1981), and Delhomme (1978, 1979). An introduction to geo­
statistics and kriging is given by Clark (1979). 10urnel and Huijbregts (1978) 
give a comprehensive discussion and provide computer codes. Recent devel­
opments are discussed by Verly et al. (1984). 

S.S SUMMARY 

The periodic features of a population should be known before systematic 
sampling is adopted. If unsuspected periodicities are present, biased estimates 
of means and standard errors can occur. Tests of significance, confidence 
intervals about means, and other statistical analyses based on the data would 
also be biased. If periodicities have been quantified before the study begins, 
then sampling intervals that are even multiples of the period can be avoided. 

Valid estimates of Var(X') can be obtained when systematic sampling is used 
if one of the following designs is utilized: (1) multiple systematic sampling, 
each with a randomly determined starting point, (2) stratified sampling where 
two or more systematic samples are taken in each stratum, and (3) two-stage 
sampling where subsamples are obtained by systematic sampling, and the fraction 
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Table 8.4 Five Systematic Samples of Maximum Daily Ozone Concentrations (ppb) at 
Yonkers, N.Y., in 1974 

Systematic Samples 

1 2 3 4 5 

Month Day Ozone Day Ozone Day Ozone Day Ozone Day Ozone 

May 2 37 5 38 7 45 9 51 10 22 
12 25 IS 72 17 119" 19 42 20 45 
22 107 25 31 27 19 29 22 30 67 

June I 36 4 88 6 117 8 37 9 93 
II 49 14 97 16 36 18 75 19 104 
21 56 24 67 26 35 28 31 29 81 

July 76 4 96 6 60 8 71 10 60.5" 
II 27 14 71 16 41 18 59 20 53 
21 45 24 13 26 46 28 80 30 39 
31 74 

Aug. 10 41 3 47 5 44 7 34 8 60 
20 86 13 96 IS 54 17 44 18 44 
30 47 23 36 25 43 27 77 28 75 

Sept. 9 74 2 18 4 14 6 9 7 16 
19 58 12 74 14 40" 16 23 17 50 
29 21 22 27 24 21 26 32 27 51 

Source: After Chambers et al., 1983, p. 346. 
aNa datum for this day is given by Chambers et al. (1983). The datum given here is the average of the 
adjacent preceding and following concentrations. 

of first-stage (primary) units that are subsampled is near zero. For long-term 
environmental studies it may be permissible to estimate Var (x) only occasionally. 
At those times multiple systematic samples could be used. At other times a 
single systematic sample may suffice. 

Estimating Var(x) from a single systematic sample can be accomplished by 
using segments of nine consecutive data values, as illustrated in Section 8.6.2, 
but the estimated variance will tend to be too large. Methods for estimating 
Var(x) developed for random sampling plans can be used with confidence only 
when the population is in random order. 

Estimating spatial distributions of pollutants is best achieved if measurements 
are taken on a grid system and if allowance is made for the correlation structure 
in the data. References to geostatistical and trend surface methods are provided. 

EXERCISES 

8.1 Suppose there is a need to estimate the total amount of radioactive fallout 
per square mile that has occurred from atmospheric testing within a defined 
geographical region. The total will be estimated by collecting surface soil 
samples with the assumption that no fallout radioactivity has migrated 
below the standard depth to which soil will be collected. Which of the 
following types of areal sampling designs over the region of interest would 
you choose to estimate the total: simple random, grid sampling, stratified 
random, or a combination of these? Why? Take into account that radioactive 
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particles in the soil can be redistributed by weathering processes such as 
runoff from rain storms and human activities such as road building. 

8.2 The data in Table 8.4 are J = 5 systematic samples of maximum ozone 
concentrations at a station in Yonkers, N.Y., drawn from the same 
population of N = 153 days as used in Example 8.1 and Table 8.2. The 
5 systematic samples in Table 8.2 begin on days May 1, 3, 4, 6, and 8. 
The systematic samples in Table 8.4 begin on days May 2, 5, 7, 9, and 
10. Estimate the average maximum ozone concentration and its standard 
error at this station for the period from May 1 to September 30, using 
the data in Table 8.4. Do these values of x and sex) agree well with those 
in Example 8.1? 

8.3 Using the data in Table 8.4, estimate x and seX) as if the data were 
obtained by using simple random sampling. Do x and sex) computed in 
this way differ very much from x and sex) in Exercise 8.2? 

ANSWERS 

8.1 Discussion. 

8.2 Xl = 53.69, X2 = 58.07, X3 = 48.93, X4 = 45.80, Xs = 57.37, nl = 16, 
n2 = n3 = n4 = ns = 15. From Eq. 8.3, x = 4011.59176 = 53. From 
Eq. 8.2, sex) = [(1 - 5/10)5.6711]112 = 1.7. Yes. 

8.3 From Eqs. 4.3 and 4.7, x = 53 and sCx) = 2.1. 
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Frequently, two or more techniques may be available for measuring the amount 
of pollutant in an environmental sample or unit. For example, a mobile laboratory 
situated at the study site may use an analytical technique different from what 
might be used if the sample were shipped to a laboratory for analysis. The 
mobile laboratory procedure may be less accurate ("fallible") but also less time 
consuming and costly. The shortened turnaround time may be a significant 
advantage in the field. For example, if a cleanup operation is underway, data 
may be needed quickly to avoid costly delays in taking remedial action. 

More generally, if the goal of sampling is to estimate an average concentration 
or total amount, one approach is to use both techniques on a relatively small 
number of samples. Then this information is supplemented with a larger number 
of samples measured only by the fallible method. This aproach, called double 
sampling, will be cost effective if the linear correlation between measurements 
obtained by both techniques on the same samples is sufficiently near I and if 
the fallible method is substantially less costly than the more accurate method. 

This chapter 

Describes how to use double sampling to estimate the population mean 
and total 

Shows how to determine whether double sampling is more cost effective 
than simple random sampling 

Gives methods for determining the optimum number of accurate and 
fallible measurements 

Gives a detailed case study to illustrate these methods. 

This chapter is based on discussions by Cochran (1977), Sukhatme and 
Sukhatme (1970), and Tenenbein (1971, 1974). 

9.1 LINEAR REGRESSION 
DOUBLE SAMPLING 

9.1.1 Method 

Following are the steps required to estimate J1, and the standard error of that 
estimate by linear regression double sampling. The assumption is made that 

106 
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there is an underlying linear relationship between the accurate and the fallible 
methods. This assumption must be verified by conducting one or more special 
studies before double sampling can be considered for use. Once this verification 
is done, the following steps are taken to estimate /1-: 

1. Select a random sample of n' units from the target population. 
2. Select a random sample of n units from among the n' units and measure 

each, using both the accurate and the fallible methods. Let XAi and XFi denote 
the accurate and fallible measurements, respectively, on the ith unit. 

3. Measure the remaining n' - n units, using only the fallible method. 
4. The estimate of /1-, denoted by Xlr (lr stands for linear regression), is obtained 

by computing 

9.1 

where xA and xF are the means of the n accurate and fallible measurements, 
respectively, xn ' is the mean of the n' fallible values, and b is the slope of 
the estimated linear regression of accurate on fallible values. The estimate 
of the total, N/1-, is Nxlr • 

5. The estimated variance of Xlr is computed as 

S2 (Xlr) = s~. /! + (xn ' - XF )2l 
I_n (n - 1)s~ 

9.2 
n' N 

where s~ and s~ are the variances of the n accurate and fallible values, 
respectively, and s~. F is the residual variance about the estimated linear 
regression line. The standard error of Xl r is the square root of Eq. 9.2. 

Computing formulas for all terms in Eqs. 9.1 and 9.2 are given in Table 
9.l. The tem1S XA' XF, s~, s}, and s~. F may also be obtained by a linear 
regression computer program from one of the standard statistical packages, such 
as the Biomedical Computer Programs, P-Series, (BMDP, 1983, programs P6D, 
PIR, or P2R). The last term in Eq. 9.2 is negligibly small if the number of 
population units N is very large relative to s~. 

Although the method is reasonably straightforward to apply in practice (see 
Section 9.3 for an example), it may not be cost effective unless the conditions 
given in the next section are met. Also, it can be shown mathematically that 
Xlr is a statistically biased estimate of /1- unless nand n' are reasonably large 
(Sukhatme and Sukhatme, 1970, p. 211, give the equation for the bias). 

We note that for populations with no unsuspected periodicities, systematic 
sampling (Chapter 8) may be preferred to random sampling in steps 1 and 2. 
However, if periodicities are present in the population, then xn " XA, and XF 

could be biased, resulting in a biased estimate of /1-. 

9.1.2 Comparison to Simple 
Random Sampling 

Suppose the cost equation 

= total dollars available for measuring 
collected samples 9.3 
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Table 9.1 Quantities Needed for Use in Equations 9.1 and 9.2 to Estimate 
the Mean and Its Variance Using Linear Regression Double Sampling 

I n 

xA = - ~ XAi = mean of n accurate values 
n i= I 

1 n 

XF = - I; XFi = mean of n fallible values 
n ;=1 

1 n 

s~ = -- I; (XAi - XA)2 = variance of the n accurate values 
n 1 i~ 1 

s~ = _1_ i: (XFi - XF)2 = variance of the n' fallible values 
n - 1 i~ I 

1 n' • 

X"' = - I; XFi = mean of the n falhble values 
n' ;=1 

I; (X A , - XA) (XFi - XF) 
b = ~i=~l_~ ____ __ 

= slope of the estimated linear regression of the accurate on the fallible values 

s~ F = n - 1 (s~ - b2s}) = residual variance about the estimated linear regression line 
n - 2 

= estimated correlation coefficient between the accurate and fa11ible values 

applies, where CA and CF are the costs per unit of making an accurate and a 
fallible measurement, respectively. (Note that C does not include costs of 
collecting samples.) Also, let R = cAlcF' Then under the following three 
conditions, linear regression doubling sampling will, on the average, yield a 
more precise estimate of /J. (smaller variance of the estimated mean) than would 
be achieved by the accurate method on ClcA units selected by simple random 
sampling: 

Condition 1. The underlying relationship between the accurate and fallible 
values is linear. 

Condition 2. The optimum values of nand n' are used to estimate /J. [those 
that minimize Var(xlr)]' 

Condition 3. 

or, equivalently, 

4R / > ----­
(1 + R)2 

9.4 

9.5 

Data from prior or pilot studies may be used to evaluate the linear hypothesis 
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in condition 1. The optimum nand n' in condition 2 depend on the true 
correlation coefficient p (see next section) as do Eqs. 9.4 and 9.5. In practice, 
since p is seldom known a priori, data from prior studies or from special pilot 
studies are usually needed to estimate p and hence to evaluate conditions 1, 2, 
and 3. The next section shows how to determine nand n' if p is known a 
priori and suggests what can be done when p must be estimated. 

9.1.3 Number of Samples 
Assume that the cost function given by Eq. 9.3 applies. Suppose we want to 
find nand n' that will minimize Var(x1r) for a given fixed budget of C dollars 
(the fixed-cost case). These optimum nand n' are given by the following 
equations (from Eqs. 2.4 and 2.5 of Tenenbein, 1971): 

and 

where 

n = _---'Cfi"""o_ 
cAfo + CF 

_ (~)1I2 
fo - /R 

9.6 

9.7 

9.8 

and fo is set equal to 1 if Eq. 9.8 gives an fo greater than 1. Hence, the 
procedure is to first determine fo by Eq. 9.8, then compute nand n' from Eqs. 
9.6 and 9.7, respectively. 

Alternatively, we may consider a fixed-variance case, where the goal is to 
choose nand n' such that cost is minimized subject to the constraint that 
Var(Xlr) is no greater than the variance of a mean computed by a simple random 
sample of nv accurate measurements. In that case the optimum nand n' are 
obtained as follows (from Eqs. 2.6 and 2.7 in Tenenbein, 1971): 

n = nv(1 - p2 + p2fo) 9.9 

and 

2 
, nn"p 

n = n _ nv(l _ p2) 9.10 

where fo is computed as in Eq. 9.8. 
Now, as previously noted, the true p is never known in practice. This means 

that Eqs. 9.6-9.10 will give only estimates of the optimum nand n'. Hence, 
there is no complete assurance in practice that linear regression double sampling 
will do better than simple random sampling, even if a linear model is appropriate 
and Eqs. 9.4 and 9.5 are satisfied by p. The problem is that Var(xlr) may be 
much larger than its minimum value if the estimates of nand n' are greatly 
different from their optimum values. 

Tenenbein (1974) gives guidance on how much Var(x1r ) can be increased 
when nonoptimum nand n' are used. For the fixed-cost case he shows that if 
the true p < 0.95, then [Var(xlr)]1/2 will not exceed about 15% of its minimum 
value if Eqs. 9.6 and 9.7 are replaced by 
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cJR 
n = 

(JR + l)cA 
9.11 

n'= 
C 

CF(JR + 1) 
9.12 

In other words, as long as p < 0.95, the use of Eqs. 9.11 and 9.12 instead 
of Eqs. 9.6 and 9.7 will not greatly increase Var(xlr) over its minimum possible 
value. (Equations 9.11 and 9.12 are obtained by using / = 0.5 in Eqs. 9.6-
9.8.) However, if the true p is believed to be greater than 0.95, then Eqs. 9.11 
and 9.12 should be avoided and Eqs. 9.6-9.8 should be used instead. For 
example, if p = 0.98, then the percentage increase in [Var(xlr )]II2, when using 
Eqs. 9.11 and 9.12 to obtain nand n', will be 57% and 104% when R = 5 
and 10, respectively (computed from Eq. 4.1 in Tenenbein, 1971). 

9.1.4 Number of Samples from a 
Pilot Study 

Note that nand n' can be determined by Eqs. 9.11 and 9.12 without having 
to first estimate p or evaluate from data the validity of the linear regression 
assumption. This practice, of course, is not recommended. Although Eqs. 9.11 
and 9.12 can give a rough guide to the nand n' that might be required to use 
double sampling, it is always necessary to conduct pilot studies or to use suitable 
data from prior studies to estimate p and to evaluate the linear regression 
hypothesis. 

If a pilot study is needed, a three-stage sampling procedure recommended 
by Tenenbein (1974) may be used to estimate p and then nand n'. Consider 
first the fixed-cost case. The first stage consists of randomly selecting m units 
from the popUlation and making both accurate and fallible measurements on 
each unit to estimate p. Then assuming condition 3 (Eq. 9.4 or 9.5) is satisfied, 
one obtains estimates fi and fi' by Eqs. 9.6-9.8. If m < fi then fi - m additional 
units are randomly selected for measurement by both methods. This selection 
is the second stage of the sampling plan. At this point p can be estimated by 
using all fi data, and condition 3 can be rechecked before proceeding. The third 
stage consists of using fi for n in Eq. 9.7 to reestimate n'. Once the data are 
in hand, Xlr and i(X'r) may be computed by Eqs. 9.1 and 9.2. 

Tenenbein (1974) recommends the following rule for deciding the number 
of units, m, to select at the first stage for this fixed-cost case: Use 

m = 21 if Eq. 9. 11 > 21 

= Eq. 9.11 otherwise. 9.13 

He found that estimating p on the basis of m accurate-fallible data pairs as 
determined by this rule gave values for nand n' sufficiently close to the 
optimum values that there was a less than a 1 in 20 chance that the increase 
in Var(xlr) would exceed 10%. This rule establishes an upper bound of m = 

21, which limits the losses that could occur by making too many accurate 
measurements at the first stage-that is. if it should happen that the second 
stage gives an fi less than m. 

If the fixed-variance approach is used, then the three-stage sampling plan 
remains unchanged except that (1) nand n' are estimated by Eqs. 9.9 and 9.10 
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Figure 9.1 Values of m, versus the cost ratio R for the Fixed Variance Case. 
(The plotted points are from Table 1 of Tenenbein, 1974.) 

instead of Eqs. 9.6 and 9.7, respectively, and (2) the following rule is 
recommended by Tenenbein (1974) for determining the number m of first stage 
units: 

l (O.21)1/2J 
m = n" 0.3 + R l (0.21)J/2J 

if m] > nv 0.3 + R 

otherwise, 9.14 

where m I depends on R and is plotted versus R in Figure 9.1. Recall that nv 
was defined in the paragraph preceding Eq. 9.9. This rule also establishes an 
upper bound for m. 

The rules given by Eqs. 9.13 and 9. 14 should be used to guide not dictate 
the number of units to collect at the first stage. Also, a minimum of m = 10 
or 15 seems generally advisable in cases where very little information on p is 
available prior to sampling. 

9.2 RATIO DOUBLE SAMPLING 

Thus far we have assumed that the regression of the accurate method on the 
fallible method is linear. If the additional assumption can be made that there is 
a ratio relationship between the two methods (equivalent to a linear regression 
through the origin), then a ratio double sampling estimator may be considered 
for estimating M and N M. This method is discussed by Cochran (1963, 1977) 
and Sukhatme and Sukhatme (1970). 

In practice, it is unwise to assume the ratio model (regression through the 
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origin) without plotting the data and calculating the usual least squares linear 
regression line. A test that the true line goes through the origin can be made 
by a linear regression procedure given by Snedecor and Cochran (1980, p. 
173). 

9.3 CASE STUDY 
This example is based on a study reported by Gilbert et aI. (1975). An experiment 
involving nuclear weapon materials is conducted in an isolated region (Tonopah 
Test Range) in Nevada. As a result of this experiment the soil in the test area 
contains 239. 240pU and 241Am. The approximate spatial distribution of Am over 
the site is given in Figure 9.2 (as determined using the FIDLER, an in situ 
gamma ray detector). Suppose that an estimate of the total amount of Pu in 
surface soil is required. The area is divided into strata using the in situ data as 
shown in Figure 9.2. 

One approach to estimating the inventory of Pu is to collect soil samples at 
random locations within each stratum and use stratified random sampling as 
discussed in Chapter 5. Another approach would be to use double sampling 
rather than simple random sampling within each stratum. Double sampling may 
be useful at this site for two reasons: (1) Pu and Am are expected to have a 
linear relationship and a high correlation, and (2) Am can be determined with 
less expense (using gamma ray spectrometry) than can Pu since the latter requires 
expensive radiochemical techniques. Sections 9.3.1 and 9.3.2 show how to set 
up a double sampling program in stratum 1. The extension to stratified double 
sampling is discussed in Section 9.3.3. 

9.3.1 Fixed Cost 

An estimate of the total Pu in surface soil within stratum 1 is needed. It will 
be obtained by first estimating the average Pu concentration on a per m2 basis. 
Then this mean is multiplied by the land area (m2 ) in stratum 1 to estimate the 
total Pu. 

Suppose data from similar field experiments suggest that a straight-line 
regression model is likely to be applicable and that correlation between the 
accurate and fallible measurements is very high, about 0.99. Also, suppose 
$5000 is available to measure the soil samples collected in stratum 1, and that 
the cost of Pu and Am measurements are CA = $200 and CF = $100, respectively. 
Hence, R = CAleF = 2. Therefore jl = 0.98 and 4RI(1 + R)2 = 8/9 = 0.89. 
Hence, by Eq. 9.5 (since 0.98 > 0.89), it appears that double sampling may 
be more cost effective than simple random sampling. 

If double sampling is used and we want the estimate of J1, to have the 
minimum possible variance for a fixed cost of $5000, then Eqs. 9.6-9.8 are 
used to determine the optimum nand n I as follows: 

[
1 - 0.98l1l2 

10 = 0.98(2) J = 0.10 

5000(0.1) 
n = = 4.17 which is rounded up to 5 

200(0.1) + 100 
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Figure 9.2 A study area on the Nevada Test Site for which an estimate of 
239, 24oPlutonium in surface soil is needed for each stratum (after Gilbert et aI., 
1975, Fig, 9). 
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and 

n' = 5000 - 200(5) = 40 
100 

Hence, if indeed p = 0.99, then 40 samples should be collected within stratum 
I by simple random sampling. All are measured for Am, and a random subset 
of five samples is measured for Pu. Since at this point no samples have been 
collected within stratum 1, the recommended procedure is to first collect the 
n = 5 samples and to use the Pu and Am values to estimate p. Then the 
optimum nand n f can be recomputed. 

In other applications there may be much more uncertainty about the true 
value of p than in the present example. Then the three-stage procedure discussed 
in Section 9.1.4 is needed. Using that procedure in the present example for the 
fixed-cost case, we obtain, using Eq. 9.11, 

5000h 
n = r::: = 14.6 or 15 

(v2 + 1)200 

Using the rule given by Eq. 9.13, we conclude that m = 15 soil samples 
should be collected and both Pu and Am measurements should be made on 
each sample. Then p is calculated, and Eqs. 9.6-9.8 are used to obtain the 
optimum nand n f. 

Since in the present example there is great confidence that p 2:; 0.99, we 
proceed by collecting only n = 5 samples. The resulting data are given in 
Table 9.2 and plotted in Figure 9.3. Using the data in Table 9.2, we find p = 

0.998. Using this value in Eqs. 9.6-9.8 gives fo = 0.0448, n = 2.06 or 3, 
and n f = 44. Collecting an additional 44 - 5 = 39 samples and measuring 
each for Am will cost $3900. This cost added to the 200(5) + 100(5) = $1500 
already spent gives $5400, which exceeds the budget of $5000. Rather than 
exceed the budget, suppose the original allocation n = 5 and n f = 40 is used. 
Then an additional n f - n = 35 soil samples are collected by simple random 
sampling. Only the Am measurement is obtained for these samples. 

Suppose the mean of the 40 Am data is xn ' = 678 (a hypothetical value). 
Then by Eq. 9.1 the estimated average amount of Pu per m2 within the top 5 
cm is 

Xlr = 22,112 + 18.06(678 - 1051.8) = 15,361 or 15,400 nCi/m2 

The estimated variance of Xlr is (by Eq. 9.2 and the results in Table 9.2) 

II (678 - 1051.8)2J 107,186,720 - 562,176 
i(Xlr) = (562,176)Ls + 4(327,336) + 40 

= 2,838,041 

Therefore, the standard error of xlr is s2(Xlr) = 1680 nCi/m2 . Now, the land 
area within stratum 1 is 1,615,000 m". Therefore, the estimated total amount 
of Pu present in surface soil is 

(1,615,000 m2 )(15,361 nCi/m2 ) = 2.48 X 1010 nCi = 24.8 or 25 Ci 

The estimated standard error of this estimate is 

(1,615,000 m2 )(1685 nCi/n ') = 2.72 X 109 nCi = 2.7 Ci 
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Table 9.2 Concentrations of 239, 240pU and 241Am in Surface Soil (nCi/m2)a 

Accurate Pu 
Fallible Am 

15,860 
719 

30,200 
1,540 

8,500 
310 

XA = 22,112, s~ = 107,186,720. XF = 1051.8, s} = 327,336 
b = 18.06, S~'F = 562,176, P = 0.998, p2 = 0.996 

33,900 
1,690 

22.100 
1,000 

aThese data are part of a larger data set given in Figure BI2(b) of Gilbert et al. (1975). Data 
used by permission of the Nevada Applied Ecology Group, U.S. Department of Energy, Las 
Vegas. 
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Figure 9.3 Regression of the accurate measurement (Pu) on the fallible 
measurement (Am) for five randomly selected soil samples (data from Gilbert et 
aI., 1975, Fig. B12(b». 
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It may be impractical to collect field samples in two or three stages. Therefore 
data from prior studies at the same or similar areas should be used to the 
maximum extent so that the initial estimates of p, n, and n' are as accurate as 
possible. As a last resort one can use Eqs. 9.11 and 9.12 to approximate nand 
n' since these equations do not require an advanced estimate of p. For the 
present case study these equations yield n = 15 and n' = 21. These compare 
with n = 3 and n' = 44, obtained by using p = 0.998, the best available 
estimate of p. 

9.3.2 Fixed Variance 
In the previous section the optimum nand n' were obtained to estimate /.t with 
the smallest possible variance, given that the total measurement budget is $5000. 
However, there may be a need to minimize costs to allow part of the $5000 to 
be used elsewhere. If the entire $5000 were used to obtain only Pu measurements 
on each sample, then nv = 5000/200 = 25 samples could be measured. By 
using Eqs. 9.9 and 9.10, we obtain nand n' such that the cost is minimized, 
yet Var (Xl r ) will be no greater on the average than the variance of the mean 
of the 25 samples. For the case study being used here, assuming p = 0.99, 
Eqs. 9.9 and 9.10 give 

n = 25[1 - 0.98 + 0.98(0.10)] = 2.95 or 3 

3(25) (0.98) 
n' = 3 _ 25(1 _ 0.98) = 29.4 or 30 

For this allocation the cost is 3(200) + 30(100) = $3600, a savings of 
$1400. Hence, the same precision in the estimated mean obtained by spending 
$5000 and taking Pu measurements on 25 samples can be achieved, on the 
average, by using double sampling and spending $3600. However, field sampling 
costs would be higher for double sampling, since 30 rather than 25 samples 
were required. Also, more than n = 3 samples are needed to estimate p to 
confirm that the assumed value of p = 0.99 is reasonable. As n is increased 
over n = 3, the cost savings will diminish. 

If the three-stage sampling approach is used for the fixed-variance case, Eq. 
9.14 gives 

l (021)'/2l r (0 21)'/2l 
nv 0.3 + ~ J = 25 LO.3 + ~ J = 15.6 or 16 

Hence, 16 samples are initially collected if m, from Figure 9.1 (for R = 2) 
exceeds 16. But since Figure 9.1 gives m, == 12, m = 12 initial samples are 
taken for the purpose of estimating p. Suppose p = 0.998 is obtained. Then 
10 = 0.04479 and Eqs. 9.9 and 9.10 give n = 2 and n' = 27. Hence, the 
total measurement cost would be 12(200) + 27(100) = $5100, which is only 
$100 over budget. However, if the fixed-variance approach is used, there is no 
guarantee that the measurement budget will not be exceeded. 

9.3.3 Stratified Double Sampling 
Double sampling could be applied separately and independently to each of the 
strata in Figure 9.2. Let Xlr.h and i(Xlr.h) denote the estimated mean and its 
variance in the hth stratum. Then, in accordance with Eq. 5.3 in Chapter 5, 
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the estimated mean concentration over the L strata is 

L 

Xlr = ~ WhXlr h 
h~ I ' 

Since the sampling is independent in different strata, Var(xlr) is estimated by 
computing 

L 

s2(Xlr) = ~ Whi(Xlr h) 
h=1 • 

The estimated total for the hth stratum is Nhxlr,h, where in this example, Nh is 
the total area in m2 for the hth stratum. Hence, the total estimated inventory 
over all four strata in Figure 9,2 is 1:1; = I Nhxlr,h' The estimated variance of 
th o , • ~4 N2 2 (- ) 

IS estimate IS "'h ~ I hS XIr,h • 

9.4 SUMMARY 

If a linear relationship exits between an accurate but expensive measurement 
technique and a less accurate and inexpensive technique, then double sampling 
may be cost effective compared with simple random sampling. In practice, it 
is necessary to know with some assurance the correlation p between the two 
measurement techniques and their relative costs before cost effectiveness can be 
evaluated. Methods are given here for deciding on the optimum number of each 
type of measurement to make with methods developed by Tenenbein (1971, 
1974). Once the data are collected, the estimated population mean and its 
estimated standard error are obtained by using linear regression or ratio methods. 
Double sampling may also be used in conjunction with other sampling plans 
such as stratified random sampling, 

EXERCISES 

9, I Suppose there is a linear relationship between accurate and fallible types 
of measurement for a pollutant. Suppose the correlation between them is 
p = 0.80 and the costs of the accurate and fallible methods are CA = $500 
and CF = $350, respectively. Is it likely that linear regression double 
sampling will yield an estimate of the mean concentration that is more 
precise than if simple random sampling is used? Assume equal dollars are 
available for both approaches and that appropriate nand n' are used in 
double sampling, What is your conclusion if p = 0.98? 

9.2 Continuing on with Exercise 9.1, suppose R = CAleF = 500/350 = 1.43 
and p = 0.98, (a) Find the optimum nand n' that will minimize Var(xlr) 
for a fixed budget of C = $50,000. (b) Find the optimum nand n' that 
ensure that V ar (xlr) will be no larger than the variance of the mean 
obtained by simple random sampling where each sample is analyzed with 
the accurate method. (c) How much would this latter optimum allocation 
cost? (d) Suppose p = 0.98 is only an estimate of the true correlation 
based on 4 observations. Would that affect your decision whether to use 
double sampling? What should you do in this situation? 
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9.3 Suppose a pilot study is conducted to estimate p. Suppose In = lO units 
are measured by both accurate and fallible methods and that the estimate 
of p is 0.80. Estimate the optimum nand n', assuming CA = $500, CF = 

$350, and the total cost is fixed at $50,000. Do additional units need to 
be measured? If new units are collected and analyzed, should they be 
combined and used to reestimate p? 

ANSWERS 

9.1 Using Eq. 9.4, R should exceed 2.5 for double sampling to be more 
efficient. Since R = 1.43, simple random sampling may be best. If p = 

0.98, R must exceed 1.25. Since R exceeds 1.25, double sampling is 
preferred. 

9.2 (a) By Eq. 9.8,10 = 0.1698. Equations 9.6 and 9.7 give n = 20 and 
n ' = 114. (b) From Eqs. 9.8, 9.9, and 9.lO, 10 = 0.1698, n = 21, and 
n I = 119. (c) From Eq. 9.3, total cost equals $52,150. (d) Yes. The true 
p could be much smaller than 0.98, so double sampling is actually less 
efficient than simple random sampling. Take more measurements to obtain 
a better estimate of p. 

9.3 R = 1.43, P = 0.80. From Eqs. 9.6, 9.7, and 9.8,10 = 0.63, n = 48, 
and Il I = 75. Since In = lO, which is smaller than 48, this implies 38 
additional units should be measured by the accurate and fallible methods. 
Yes. 
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Chapters 4 through 9 have discussed sampling designs for estimating average 
concentrations or total amounts of pollutants in environmental media. Suppose, 
however, that the objective of sampling is not to estimate an average but to 
determine whether "hot spots," or highly contaminated local areas are present. 
For example, it may be known or suspected that hazardous chemical wastes 
have been buried in a land fill but its exact location is unknown. This chapter 
provides methods for answering the following questions when a square, 
rectangular, or triangular systematic sampling grid is used in an attempt to find 
hot spots: 

What grid spacing is needed to hit a hot spot with specified confidence? 
For a given grid spacing, what is the probability of hitting a hot spot of 

specified size? 
What is the probability that a hot spot exists when no hot spots were 

found by sampling on a grid? 

This discussion is based on an approach developed by Singer (1972, 1975) for 
locating geologic deposits by sampling on a square, rectangular, or triangular 
grid. He developed a computer program (ELIPGRID) that was used by Zirschky 
and Gilbert (1984) to develop nomographs for answering the preceding three 
questions. These nomographs are given in Figures 10.3, lOA, and 10.5. We 
concentrate here on single hot spots. Some approaches for finding multiple hot 
spots are discussed by Gilbert (1982) and Holoway et aI. (1981). 

The methods in this chapter require the following assumptions: 

I. The target (hot spot) is circular or elliptical. For subsurface targets this 
applies to the projection of the target to the surface (Fig. 10.1). 

2. Samples or measurements are taken on a square, rectangular, or triangular 
grid (Fig. 10.2). 

3. The distance between grid points is much larger than the area sampled, 
measured, or cored at grid points-that is, a very small proportion of the 
area being studied can actually be measured. 

4. The definition of "hot spot" is clear and unambiguous. This definition 
implies that the types of measurement and the levels of contamination that 
constitute a hot spot are clearly defined. 

119 
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SUBSURFACE POCKET OF 
----=- CONTAMINATION OF 

;. A CONCENTRATION DEEMED 
IMPORTANT TO DETECT 

Figure 10.1 Hypothetical subsurface pocket of contamination (after Gilbert, 
1982, Fig. 1). 

5. There are no measurement misclassification errors-that is, no errors are 
made in deciding when a hot spot has been hit. 

Parkhurst (1984) compared triangular and square grids when the objective is 
to obtain an unbiased estimate of the density of waste clusters in a hazardous 
waste site. He showed that the triangular grid was more likely to provide more 

Square Rectangular Triangular 

r G -1 r 2G-1 

D G 

~ 

\ I \ / \ I 
~, f -- ----\ .... 

.......... ---- \ 
--~ Samples are collected at grid nodes 

Figure 10.2 Grid configurations for finding hot spots (after Zirschky and Gilbert, 
1984, Fig. 1). 
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infonnation than the square grid. He also concluded that if the waste clusters 
are expected to follow an unknown but regular pattern, the wells should be 
drilled at randomly selected locations. But for randomly located clusters, a 
triangular or square grid is preferred. 

10.1 DETERMINING GRID SPACING 

The grid spacing required to find a hot spot of prespecified size and shape with 
specified confidence may be detennined from the following procedure: 

1. Specify L, the length of the semimajor axis of the smallest hot spot important 
to detect (see Fig. 10.1). L is one half the length of the long axis of the 
ellipse. 

2. Specify the expected shape (S) of the elliptical target, where 

length of short axis of the ellipse 
S = length of long axis of the ellipse 

Note that 0 < S ::s; 1 and that S = I for a circle. If S is not known in 
advance, a conservative approach is to assume a rather skinny elliptical 
shape, perhaps S = 0.5, to give a smaller spacing between grid points than 
if a circular or "fatter" ellipse is assumed. That is, we sample on a finer 
grid to compensate for lack of knowledge about the target shape. 

3. Specify an acceptable probability ({3) of not finding the hot spot. The value 
{3 is known as the "consumer's risk." To illustrate, we may be willing to 
accept a 100{3% = 20% chance of not finding a small hot spot, say one for 
which L = 5 cm. But if L is much larger, say L = 5 m, a probability of 
only {3 = 0.01 (1 chance in 100) may be required. 

4. Tum to Figures 10.3, 10.4, or 10.5 for a square, rectangular, or triangular 
grid, respectively. These nomographs give the relationship between {3 and 
the ratio LlG, where G is the spacing between grid lines (Fig. 10.2). Using 
the curve corresponding to the shape (S) of interest, find LlG on the horizontal 
axis that corresponds to the prespecified {3. Then solve LlG for G, the 
required grid spacing. The total number of grid points (sampling locations) 
can then be found because the dimensions of the land area to be sampled 
are known. 

For elliptical targets (S < 1) the curves in Figures 10.3, 10.4, and 10.5 are 
average curves over all possible orientations of the target relative to the grid. 
Singer (1975, Fig. 1) illustrates how the orientation affects the probability of 
not hitting the target. If the orientation is known, Singer's (1972) program will 
give the curves for that specific orientation. 

EXAMPLE 10.1 

Suppose a square grid is used and we want to take no more than a 
100{3% = 10% chance of not hitting a circular target of radius 
L = 100 cm or larger. Using the curve in Figure 10.3 for S = 1, 
we find LlG = 0.56 corresponds to {3 = 0.10. Solving for G yields 
G = LlO.56 = 100 cm/0.56 == 180 cm. Hence, if cores are taken 
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on a square grid with spacing of 180 cm, we are assured the 
probability is only 0.10 (1 chance in 10) of not hitting a circular 
target that is 100 or more cm in radius. 

10.2 SIZE OF HOT SPOT LIKELY TO 
BE HIT 

Figures 10.2, 10.3, and 10.4 can also be used to find the maximum size hot 
spot that can be located for a given cost and consumer's risk. Suppose, for 
example, we can afford to take measurements at no more than 25 locations on 
a square grid system. What size elliptical target (characterized by L) can we 
expect to find with confidence 1 - {3 (the probability of hitting a target at least 
once)? The general procedure is to specify {3, G, and S, then use the curves to 
solve for L. 

EXAMPLE 10.2 

Suppose our budget allows taking measurements at n = 25 locations 
on a square grid pattern. Suppose also that a grid spacing of G = 

200 cm covers the area of interest. What size circular target can we 
be at least 90% confident of detecting-that is, for which the 
probability of not hitting the target is {3 = 0.10 or less? Using S = 
1 in Figure 10.3, we find LlG = 0.56 for {3 = 0.10. Hence, L = 

(200 cm) (0.56) = 112 cm. Therefore, we estimate that a circle 
with a radius of 112 cm or larger has no more than a 10% chance 
of not being hit when using a square grid spacing of 200 cm. If the 
circular target has a radius L less than 112 cm, the probability of 
not locating it will exceed 0.10. Conversely, if L > 112 cm, the 
probability of not locating it will be less than 0.10. If we require 
only a 50% chance of hitting the target (i.e., (3 = 0.50), the curve 
for S = 1 gives LlG = 0.4 or L = (200 cm) (0.4) = 80 cm. 

By computing L as in Example 10.2 for different values of {3 and G, we can 
generate curves that give the probability of hitting a circular or elliptical target 
of any size. These curves for grid spacings of 100, 200, and 300 distance units 
for two target shapes, S = 1 and 0.5, are given in Figure 10.6. 

For example, suppose the target is circular (S = 1) and the grid spacing is 
G = 100 units. Then the probability {3 that we do not hit a circular target of 
radius L = 50 units (same units as G) is about 0.2. If the target is smaller, 
say L = 20 units, then {3 is larger, about 0.87. 

10.3 PROBABILITY OF NOT HITTING 
A HOT SPOT 

Figures 10.3-10.5 can also be used to estimate the consumer's risk {3 of not 
hitting a hot spot of given size and shape when using a specified grid size. 
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EXAMPLE 10.3 

What is the average probability of not finding an elliptical hot spot 
that is twice as long as it is wide and for which the semimajor axis 
(L) is 40% as long as the spacing G between grid points? Suppose 
a rectangular sampling grid is used. Using S = 0.5 and LlG = 0.40 
in Figure 10.4, we find (3 to be 0.87. Hence, there is about an 87% 
chance that this size and shape target would not be found by sampling 
at the grid points. The actual (3 could be somewhat smaller or larger 
than 0.87, depending on the orientation of the target relative to the 
grid. 

10.4 TAKING PRIOR INFORMATION 
INTO ACCOUNT 

Thus far we have assumed that a hot spot does actually exist. In practice, no 
such assurance may be warranted. Now we consider how prior information 
about the probability that a hot spot exists can be used to obtain a more realistic 
estimate of (3. Let 

A = event that a hot spot of size L or larger exists 

B = event that a hot spot of size L or larger is hit 
by taking measurements on a grid. 

Then the law of conditional probabilities (see, e.g., Fisz, 1963, p. 20) says 
that 

where 

and 

P(BIA) = P(A, B) 
P(A) 

= probability that a hot spot of size L 
or larger is hit, given such a 
hot spot exists 

P(A, B) = probability that a hot spot of size L 
or larger exists and is discovered 
by sampling on a grid 

P(A) = probability that a hot spot of size L 
or larger exists 

10.1 

Whenever there is doubt whether a hot spot of size L or larger exists, then 
P(A, B) is of interest. From Eq. 10.1 we have 

P(A, B) = P(BIA)P(A) 10.2 

Now P(BIA) is just 1 - (3. Hence, P(A, B) can be estimated by using Figures 
10.3-10.5 and by specifying a value for P(A). In many situations a hot spot of 
size L or larger will be known to exist so that P(A) = 1 and P(A, B) = P(BIA). 
Then if a square grid is used, Figure 10.3 gives the final result. In other 
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situations an informed guess at P(A) may be made based on prior surveys and 
other knowledge. Then Eq. 10.2 may be used to approximate P(A, B). 

EXAMPLE 10.4 

Suppose L = 100 cm and {3 = 0.10 for a circular hot spot as in 
Example 10.1. Use of Figure 10.3 gives a grid spacing of G = 180 
cm. Suppose also that prior information about the site suggests P(A) 
is very low, say P(A) = 0.01 (1 chance in 100). Then, since P(BIA) 
= 1 - {3 = 0.90, Eq. 10.2 gives P(A, B) = (0.9) (0.01) = 0.009. 
Hence, if 180-cm grid spacing is used, the probability that a hot 
spot of size L = 100 cm or larger exists and is found is 0.009, 
assuming P(A) = 0.01. 

10.5 PROBABILITY THAT A HOT 
SPOT EXISTS WHEN NONE HAS 
BEEN FOUND 

Suppose samples are taken on a grid spacing determined by S, L, and {3, but 
no hot spot of size L or larger is found. Then it is natural to ask the question, 
What is the probability that a hot spot of size L or larger exists even though it 
was not found? A procedure for answering that question is now given. Let 

A = event a hot spot of size L or larger exists 

A = event a hot spot of size L or larger does not exist 

B = event a hot spot of size L or larger is hit 

B = event a hot spot of size L or larger is not hit 

Using Eq. 10.1 gives 

P(AIB) = probability that a hot spot of size L or 
larger exists given that our sampling 
effort on a grid did not find it 

P(A, B) 

P(B) 
10.3 

But using Eq. 10.1 again,_we find that the numerator of Eq. 10.3 is P(BIA)P(A). 
Also, since either A or A must occur, the denominator of Eq. 10.3 can be 
written as 

Hence 

P(B) = P(BIA) P(A) + P(BIIi) p(/i.) 

- P(BIA) peA) 
P(AIB) - ~~--'-.--'---'---'-~-~ 

- P(BIA) P(A) + P(BIA) P(A) 
10.4 

Equation 10.:..4 is known as Bayes' formula (Fisz, 1963, p. 23). Since P(BIIi) 
= 1 and P(A) = 1 - peA), Eq. 10.4 becomes 
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B P(BIA) peA) 
P(AI ) = P(BIA) peA) + 1 - peA) 

(3P(A) 

(3P(A) + 1 - peA) 
10.5 

Hence, P(AIB) for a given grid spacing can be estimated by Eq. 10.5 if (3 and 
peA) are specified. 

EXAMPLE 10.5 

Suppose we can tolerate a consumer's risk of no more than 10% of 
not hitting a circular target of radius L = 100 cm or greater. This 
leads to a grid spacing of 180 cm (Example 10.1). Also, suppose 
peA) = 0.01 is our best guess for the probability that a circular hot 
spot of size L or greater exists at the site. If no hot spot of size L 
or greater is found by taking measurements on the 180-cm grid, the 
probability that such a hot spot exists at the site is estimated to be 
(by Eq. 10.5) 

P(AIB) = (0.1O)~ .. ~~;~·~1)_ 0.01 = 0.001 

The probability P(AIB), computed by Eq. 10.5, is plotted in Figure 10.7 for 
a range of values of (3 and peA). Figure 10.7 shows that peA) has a major 
impact on the value of peA I B). Figure 10.7 also shows the importance of 
choosing a small value for (3 if we want high confidence that a hot spot has 
not been missed. 

EXAMPLE 10.6 

Suppose we set peA) = 0.50 and (3 = 0.10 for L = 100 cm or 
larger for a circular hot spot. Then Eq. 10.5 gives P(AIB) = 0.091. 
Hence, for these values of peA) and (3 the chances are about 1 in 
10 that a circular hot spot of size L = 100 cm or greater exists 
even though it was not found. For (3 = 0.50, P(AIB) increases to 
0.33. P(AIB) increases as (3 increases because larger (3's result in 
wider grid spacing. Hence, there is less chance of finding the hot 
spot. 

If grid spacing is determined for a circular hot spot, but the target is actually 
an ellipse, then (3 is actually larger than expected since a smaller grid spacing 
should have been used. Looking at Figure 10.7, we see then that P(AIB) is 
actually larger than expected. When in doubt about the shape of the target, the 
conservative approach is to assume a skinnier ellipse (smaller value of S) than 
expected, which will result in the use of a smaller grid spacing and a conservative 
(larger) estimate of peA IB). 

10.6 CHOOSING THE CONSUMER'S 
RISK 

Figure 10.7 can be used to help decide on a value for (3. Suppose peA IB) must 
be no larger than some prespecified value, say 0.01. That is, we want to be 
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99 % confident that a hot spot does not exist, given that no hot spots have been 
found. If at the planning stages of the survey effort some reasonable value for 
peA) can be determined, then Figure 10.7 can be used to determine (3. For 
example, for P(AIB) = 0.01 and peA) = 0.50, we find (3 = 0.01. This value 
of (3 may then be used to determine grid spacing. 

10.7 SUMMARY 

This chapter gives methods for determining grid spacing when the primary 
objective is to search for circular or elliptical hot spots. The grid spacings are 
obtained so that the consumer's risk is held to an acceptable level. The 
nomographs presented for this purpose can also be used to determine the 
consumer's risk for a given grid spacing that has been used. 

Since grid spacing must be small to have a high probability of finding small 
hot spots, the cost of sampling and analyses can be high. For that reason 
judgment is necessary to decide in advance where hot spots are most likely to 
lie and to concentrate sampling in those areas. Larger grid spacing can be used 
in areas where hot spots are less likely to be present. 

EXERCISES 

10.1 Find the required square grid spacing to achieve a consumer's risk no 
greater than (3 = 0.10 of not hitting the target if the target is expected 
to be twice as long as it is wide and if L ~ 100 cm. 

10.2 What size circular hot spot can we be 80% sure of detecting if a triangular 
grid of spacing G = 10 m is used? 

10.3 Determine the probability that a circular target of radius L = 30 units 
will not be hit when a square grid spacing of 200 units is used. 

10.4 In Example 10.4 suppose that the probability that a circular hot spot of 
radius L = 100 cm exists is 0.90 instead of 0.01. Using a consumer's 
risk of (3 = 0.25, determine peA, B). State your conclusions. 

10.5 In Example 10.5 suppose that (3 = 0.20 and peA) = 0.60. Find P(AIB). 
State your conclusions. 

ANSWERS 

lO.1 Using Figure 10.3 when S = 0.5, we obtain L/G = 0.84 or G 
100/0.84 = 119 cm. 

10.2 Using Figure 10.5, we obtain L/G = 0.47, so L 
4.7-m radius circle. 

10.3 Using Figure 10.7, we obtain (3 = 0.93. 

10.4 peA, B) = P(BIA) peA) = (1 - (3) peA) 

10.5 P(AIB) 
0.20(0.60) 

= 0.23. 
0.2(0.60) + 1 - 0.60 

0.75(0.90) 

0.47 (10 m) 

0.675. 



11 Quanti/es, Proportions, 
and Means 

This chapter discusses the nonnal (Gaussian) distribution and shows how to 
estimate confidence limits on quantiles, proportions, and means. It then 

Discusses estimators of the true mean and variance that are appropriate if 
the data are nonnonnal or if outliers or trace data are present 

Gives nonparametric (distribution-free) methods for estimating quantiles 
and confidence limits on quantiles and proportions 

Shows how to put confidence limits on the mean when data are correlated 
Discusses advantages and disadvantages of nonlinear transfonnations to 

achieve nonnality 

The nonnal distribution is important because many statistical procedures such 
as tests of significance, confidence limits, and estimation procedures are strictly 
valid only for nonnally distributed data. Even though most pollutants are not 
nonnally distributed, the data can often be transfonned to be approximately 
nonnal. Also, inferences about population means of nonnonnal populations are 
still possible if n is sufficiently large, since in that case the sample mean, X, is 
approximately nonnally distributed. 

11.1 BASIC CONCEPTS 

The nonnal distribution is a bell-shaped, symmetric distribution. It is described 
mathematically by its probability density function 

f(x) = ~exp r -~ (x - u)2l 
(Jv27r l 2(J J 

-00 < x < 00, -00 < jJ. < 00, (J > 0 

where f(x) is the height (ordinate) of the curve at the value x. The density 
function is completely specified by two parameters, jJ. and (J2, which are also 
the mean and variance, respectively, of the distribution. We use the notation 
N(jJ., (J2) to denote a nonnal probability density function (in short, nonnal 
distribution) with mean jJ. and variance (J2. 

Figure 11.1 shows two nonnal distributions. The solid curve is N(O, 1); the 
dashed curve is NO, 2.25). There is a different nonnal distribution for each 

132 
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Figure 11.1 Two normal (Gaussian) distributions: N(O, 1) and N(1, 2.25). N(O, 1) 
is the "standard normal" distribution. 

combination of p, and a 2• However, they can all be transformed to the N(O, 1) 
distribution by the transformation 

X-p, 
Z=-­

a 

That is, the random variable Z has the N(O, 1) distribution shown in Figure 
11.1 if the random variable X is N(p" ( 2 ). Z is commonly called a standard 
normal deviate. 

Figure 11.2 shows the density function f(x) and the cumulative distribution 
function (CDF) for a N(p" ( 2) distribution. The CDF is denoted by F(x) and 
is defined as follows: 

F(x) = Prob [X ::5 x] 

= probability that the random variable 
X will take on a value less than 
or equal to a specified value x 

In other words, F(x) gives the cumulative percentage of the normal density 
function that lies between - 00 and the point x on the abscissa. 

From Figure 11.2 we see, for example, that 2.15% of the density function 
lies between p, + 2a and p, + 3a, 2.28% lies below p, - 2a, and 2.28% lies 
above p, + 2a. Stated another way, p, - 2a is the 0.0228 quantile of the N(p" 
( 2) distribution, or XO.0228 is the quantile of order 0.0228. Similarly, p, + 2a 
is the 0.9772 quantile of the N(p" ( 2 ) distribution. More formally, the pth 
quantile, x" (where 0 < p < 1), is the value such that the probability is p 
that a unit in the population will have an observed value less than or equal to 
x p ' and the probability is 1 - p that a units value will be larger than xp' The 
median is the 0.5 quantile, and XO.25 and XO.75 are the lower and upper quartiles, 
respectively. Quantiles are also called percentiles. 
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Figure 11.2 Areas under the normal probability density function and the 
cumulative normal distribution function (after Sakal and Rohlf, 1981, p. 103.) 

11.2 ESTIMATING QUANTILES 
(PERCENTI LES) 

Quantiles of distributions are frequently estimated to determine whether envi­
ronmental pollution levels exceed specilied limits. For example, a regulation 
may require that the true 0.98 quantile of the population, XO.98, must not exceed 
1 ppm. In practice, xp must be estimated from data. This section gives two 
methods for estimating xp when the underlying distribution is normal. The 
following section shows how to put an upper conlidence limit on xI' when the 
distribution is normal. Methods for estimating quantiles of a lognormal distribution 
are given in Section 13.6. 

Quantiles of a normal distribution can be estimated by using the sample 
mean, X, and standard deviation, s, as computed by Eq. 4.3 and the square 
root of Eq. 4.4, respectively. Suppose the n data are a simple random sample 
from a normal distribution. Then xI' is estimated by computing 

11.1 

where Zp is the pth quantile of the standard normal distribution. Table Al gives 
values of p that correspond to Zp. For example, XO.9772 = x + 2s is an estimate 
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of the 0.9772 quantile of the distribution because Table Al gives ZO.9772 = 2. 
Similarly, XO.0228 = X - 2s is an estimate of the 0.0228 quantile because ZO.0228 

= -2. 
Saltzman (1972) gives a nomograph (his Fig. 2) for finding Zps without 

looking up Zp in Table AI. The user supplies sand p, and the resulting value 
of Zps from the nomograph is added (by the user) to x to obtain xp. 

Another method of estimating normal quantiles is to use probability plotting. 
The procedure is to first order the untransformed data from smallest to largest. 
Let x[l] ~ Xl2] ~ ••• ~ x[n] denote the ordered data. The Xli] are called the 
order statistics of the data set. Then plot Xli] versus (i - 0.5)100/n on normal 
probability paper. If the data are from a normal distribution, the plotted points 
should lie approximately on a straight line. If so, a best-fitting straight line is 
drawn subjectively by eye. Then quantiles can be easily approximated from the 
plot. An objective method for fitting a unique straight line to the points was 
developed by Mage (1982a, 1982b). 

EXAMPLE 11.1 

Figure 11.3 shows a normal probability plot for the concentration 
of 241 Am (pCi/g) for 20 soil samples collected near a nuclear facility 
(Price, Gilbert, and Gano, 1981). A straight line (fit by eye) fits the 
plotted points reasonably well, suggesting the underlying distribution 
may be normal. Using the line, we estimate the 0.9 quantile to be 
0.065 pCi/g. Similarly, we estimate the 0.5 quantile to be 0.038 
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Figure 11.3 Normal probability plot of 241 Am pCi/g soil data (after Price et aI., 
1981 ). 
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pCi/g. Since the nonnal distribution is symmetrical, the true mean 
and median of the distribution are identical. Hence, the 0.5 quantile 
estimates both the mean and median of the nonnal distribution. The 
standard deviation, 0, may be estimated from the probability plot 
by computing (X084 - xO.16)/2, where XO.84 and XO. 16 are the 0.84 
and 0.16 quantiles as read from the plot. From Figure 11.3 we find 
XO.84 = 0.059 and Xo 16 = 0.0165. Hence, the estimated standard 
deviation is (0.059 - 0.0165)/2 == 0.021. For this data set, .x = 

0.0372 and s = 0.0211, which agree well with the estimates obtained 
from the probability plot. 

11.3 CONFIDENCE LIMITS FOR 
aUANTILES 

An upper 100(1 - ex)% confidence limit for the true pth quantile, xl" can be 
easily obtained if the underlying distribution is nonnal. This upper limit, denoted 
by UL1 _ ",(Xl') , is 

11.2 

where K1_""p is obtained from Table A3 for specified ex and p. Note that Eq. 
11.2 is identical to Eq. 11.1 except that KI _"',p replaces Zp and K J -cx.p > Zp. 

This upper limit could be used to test whether the true xl' for the sampled 
population actually exceeds a specified XV' One rule would be to conclude that 
the specified xl' has been exceeded unless the estimated upper limit UL1 _ ",(xl') 

is less than the specified xl" 

EXAMPLE 11.2 

First, we shall use Eq. 11.1 to estimate the 0.99 quantile of the 
(assumed) nonnal population from which the 241Am data in Example 
11.1 were drawn. Then Eq. 11.2 will be used to estimate an upper 
90% confidence limit for the true 0.99 quantile. Since p = 0.99, 
we find from Table Al that ZO.99 = 2.3263. Also, from Example 
11.1, .x = 0.0372 and s = 0.0211. Therefore, Eq. 11.1 gives XO.99 

= 0.0372 + 2.3263(0.0211) = 0.0863 as the estimated 0.99 quantile 
of the underlying distribution. 

Now, referring to Table A3, we find that KI -"',1' = 3.052 when 
n = 20, ex = 0.10, and p = 0.99. Therefore, Eq. 11.2 gives 
ULO.90(x0.99) = 0.0372 + (0.0211)(3.052) = 0.102. 

11.4 ESTIMATING PROPORTIONS 

In Section 11.2 we learned how to estimate the concentration xI' such that 100(1 
- p)% of the population exceeds xl" The procedure was to first specify p and 
then to determine .ip . In this section we are interested in the reverse procedure, 
that is, we first specify a concentration, say XC' and then we estimate the 
proportion PXc of the popUlation exceeding XC' This latter approach is suitable 
if regulations specify that the proportion of the population exceeding a specified 
concentration Xc (upper limit) must be less than some specified value. 
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If the random variable X is known to be nonnally distributed with parameters 
p, and a2 , then the proportion of the population that exceeds Xc is 

PXe = Prob[X > xc] = 1 - cP(Xc ~ p,) 11.3 

where cP denotes the cumulative distribution function (CDF) of the N(O, 1) 
distlibution. For example, if J.t = 1 and a2 = 2.25 (the dashed-line nonnal 
distribution in Fig. 11.1) and we want to detennine the proportion of the 
population exceeding Xc = 3, then 

cP (Xc ~ p,) = cPC~.2~/I2) = cP(1.33) 

Using Table AI, we find cP(1.33) = 0.9082. Hence, PXe = Prob[X > 3] = 1 
- 0.9082 = 0.0918. Hence, 9.18% of this nonnal population exceeds Xc = 

3. Of course, in practice, p, and a2 are almost never known a priori. Then the 
estimates x and s are used in place of p, and a in Eq. 11.3. Hence, the estimate 
of PXe is 

(X - X) fixe = 1 - cP _c-s-

An alternative approach for nonnally distributed data is to construct a nonnal 
probability plot and read the cumulative probability for the specified concentration 
Xc directly off the plot. For example, using the nonnal probability plot in Figure 
11.3, we see that an estimated 15% of the population exceeds Xc = 0.06 
pCi 24IAm/g. 

11.5 TWO-SIDED CONFIDENCE LIMITS 
FOR THE MEAN 

This section shows how to compute two-sided confidence limits for the population 
mean J.t when either the data values Xi or the estimated mean, x, are nonnally 
distributed. Methods appropriate for lognonnal data are given in Chapter 13. 
Two-sided limits give an interval in which the true mean is expected to lie with 
specified confidence. This interval can be compared with intervals computed for 
different times and/or areas. One-sided limits can also be computed and used 
to test for compliance with environmental limits. These limits are discussed in 
Section 11.6. 

Throughout this section we assume the data are independent and therefore 
uncorrelated. Methods for computing confidence limits about J.t when data are 
correlated are given in Section 11.12, an important topic because pollution data 
are frequently correlated if collected at short time and/or space intervals. 

11.5.1 Known Variance 
If n data have been drawn by simple random sampling from a nonnal distribution, 
then x is also nonnally distributed, no matter how small or large n may be. 
Hence, if a2 is known a priori, a two-sided 100(1 - 0:)% confidence interval 
about p, is 
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a a 
:x - ZI-0I/2.,rn::;; I-'-::;;:X + ZI-0I/2.,rn 11.4 

where a/.,rn is the standard error of x and Z, _ cxl2 is the value of the standard 
normal variable that cuts off (100a/2)% of the upper tail of the N(O, 1) 
distribution. From our discussion of quantiles in Section 11.2, we know that 
Z, -01/2 is the 1 - a/2 quantile of the N(O, 1) distribution. Values of Z, -cx/2 
are obtained from Table AI. For example, if a = 0.05, then ZO.975 equals 1.96 
and Eq. 11.4 becomes 

This interval is easily computed, since a is known by assumption and x can be 
computed from the n data. 

11.5.2 Unknown Variance 
For the more realistic case where a 2 is unknown, the two-sided 100(1 - a)% 
confidence interval about I-'- is 

s s 
:x - t l - od2 ,n-1 .,rn ::;; I-'- ::;; x + t l - 0I/2 ,n-1 .,rn 11.5 

where s is an estimate of a computed from n data drawn at random from a 
normal distribution, and t, _ 0I/2,n _, is the value that cuts off (100a/2) % of the 
upper tail of the t distribution that has n - 1 degrees of freedom (df). The 
cumulative t distribution for various degrees of freedom is tabulated in Table 
A2. The validity of Eq. 11.5 does not require n to be large, but the underlying 
distribution must be normal. 

Returning for a moment to Eq. 11.4 when a is known, we see that the width 
of the confidence interval (upper limit minus lower limit) is constant and given 
by 2(1.96)a/.,rn. But when a is replaced by an estimate s as computed from a 
particular data set, the width will vary from data set to data set. Hence, even 
though two data sets are drawn at random from the same population, the width 
of the estimated confidence limits will be different. 

It is instructive to discuss the meaning of a 100(1 - a)% confidence interval. 
Suppose we repeat many times the process of withdrawing n samples at random 
from the population, each time computing a 100(1 - a)% confidence interval. 
Then 100(1 - a)% of the computed intervals will, on the average, contain the 
true value 1-'-. Hence, when a 95% confidence interval is computed by using n 
randomly drawn data, that interval may be expected to include the true mean 
I-'- unless this interval is one of those that will occur by chance 5 % of the time. 

11.6 ONE-SIDED CONFIDENCE LIMITS 
FOR THE MEAN 

The upper one-sided 100(1 - a) % confidence limit for I-'- when a is known is 

_ a 
UL, - a = X + Z\ -" .,rn 
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Similarly, the upper limit when a is estimated by s is 

11.6 

The corresponding lower one-sided limits are 

and 

11.7 

respectively. Note that the upper (or lower) 100(1 - ex)% one-sided limit uses 
ZI-a or t l - a , whereas 100(1 - ex)% two-sided limits use ZI-aI2 or {1-aI2' 

For example, if ex = 0.05, ZO.95 = 1.645 is used for computing a one-sided 
limit on p" whereas ZO.975 = 1.96 is used for the two-sided limits. 

Upper limits on the true mean p, may be computed to test for compliance 
with regulations that specify some mean value, say P,L> as an upper limit. If 
UL I _ a > P,L' this might be taken as evidence that p, may exceed P,L' 

EXAMPLE 11.3 

First we use Eq. 11.5 to compute a 90% confidence interval (ex 
0.10), using the 24lAm data in Example 11.1. Since x = 0.0372, s 
= 0.0211, n - 1 = 19, and (0.95.19 = 1.729 (from Table A2), Eq. 
11.5 gives 

1.729(0.0211) 
0.0372 ± r;::;:: or 0.0290::; p, ::; 0.0454 

,,20 

Second, a one-sided upper 90% confidence limit for p, is computed 
by Eq. 11.6. Since to.90,19 = 1.328, we obtain 

1,328(0.0211) 
ULo 90 = 0,0372 + r;::;:: = 0.0435 

. ,,20 

11.7 APPROXIMATE CONFIDENCE 
LIMITS FOR THE MEAN 

In the previous two sections we learned how to compute confidence limits for 
the true mean of an underlying normal distribution, But suppose the distribution 
is not normal, or suppose we are unwilling to make that assumption, Then if 
n is sufficiently large, a two-sided 100(1 - a) % confidence inteval for the 
mean p, is approximated by 

11.8 

Similarly, for large n, approximate one-sided upper and lower 100(1 - a)% 
confidence limits are 
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11.9 

and 

11.10 

respectively. 
In practice, there appears to be no simple rule for detennining how large n 

should be for Eqs. 11.8, 11.9, and 11.10 to be used. It depends on the amount 
of bias in the confidence limits that can be tolerated and also on the shape of 
the distribution from which the data have been drawn. If the distribution is 
highly skewed, an n of 50 or more may be required. 

11.8 ALTERNATIVE ESTIMATORS FOR 
THE MEAN AND STANDARD 
DEVIATION 

Thus far in this chapter we have used x and S2 to estimate· the true mean Jl 

and variance (j2 of a nonnal distribution. It can be shown that for data drawn 
at random from a nonnal distribution, x and S2 are the minimum variance 
unbiased (MVU) estimators of Jl and (j2. That is, of all unbiased estimators of 
Jl, the mean x has the smallest error that arises because only a portion of the 
population units are measured. (Unbiased estimators were defined in Section 
2.5.3.) Nevertheless, x and S2 are not always well suited for environmental 
data. For example, data sets are often highly skewed to the right, so a few 
data are much larger than most. In this case, even though x and S2 are unbiased 
estimators of the mean and variance of the distribution, they may not be 
accurate. If the skewed data set is believed to be drawn from a lognonnal 
distribution, the methods for estimating Jl and (j2 illustrated in Chapter 13 may 
be used. That chapter also gives methods for estimating the population median 
when the lognonnal distribution is applicable. 

A related problem is the frequent occurrence of outliers, where Hunt et al. 
(1981) define an outlier to be "an observation that does not conform to the 
pattern established by other observations." If the underlying distribution is 
believed to be symmetric (but not necessarily nonnal) the median, trimmed 
mean, or Winsorized mean can be used to estimate Jl, as discussed in Chapter 
14. 

Another problem is that environmental data sets are often censored-that is, 
the actual measured values for some popUlation units are not available. Censoring 
may occur when the pollutant concentration is very near or below the measurement 
limit of detection (LOD) and the datum is reported to the data analyst as 
"trace," the letters ND ("not detected'·), or the LOD itself. In this case the 
median, trimmed mean, and Winsorized mean may be useful because these 
estimators do not use data in the tails of the data set. Alternatively, if the 
censored data are believed to be from nonnal or lognormal distributions, the 
efficient estimators illustrated in Chapter 14 may be used. 

Finally, environmental data are often correlated in time and/or space. The 
sample mean x is still an unbiased estimator of the mean Jl, but correlation 
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should be taken into account when estimating Var(i). Methods for estimating 
Var(i) are discussed in Sections 4.5 and 4.6. 

11.9 NONPARAMETRIC ESTIMATORS 
OF QUANTILES 

Until now we have used methods appropriate when data have been drawn at 
random from normal distributions. However, quantiles, proportions, and confi­
dence limits on means can also be estimated when the underlying distribution 
is either unknown or nonnormal. These methods are called nonparametric or 
distribution-free techniques, since their validity does not depend on the data 
being drawn from any particular distribution. 

This section gives a nonparametric procedure for estimating quantiles that 
may be used in place of the method in Section 11.2. Suppose we are unwilling 
or unable to assume the distribution is normal, and we wish to estimate the pth 
quantile, xP' where p is some specified proportion (0 < p < 1). The procedure 
is as follows: Draw n data at random from the underlying popUlation and order 
them to obtain the sample order statistics x[1J ::5 XI2j ::5 ••• ::5 x[nJ. To estimate 
Xl" we first compute k = pen + 1). If k is an integer, the estimated pth 
percentile, xP' is simply the kth order statistic X[kJ' that is, the kth largest datum 
in the data set. If k is not an integer, xp is obtained by linear interpolation 
between the two closest order statistics. This procedure is used by Snedecor 
and Cochran (1967, p. 125) and by Gibbons, Olkin, and Sobel (1977, p. 195). 

For example, if we want to estimate XO.97' the 0.97 quantile, and n = 100 
data are obtained by random sampling, then k = (0.97)101 = 97.97. Since k 
is not an integer, X097 is found by linear interpolation between the 97th and 
98th largest of the n = 100 data. 

11.10 NONPARAMETRIC CONFIDENCE 
LIMITS FOR QUANTILES 

Suppose we want to estimate the lower and upper 100(1 - ex) % confidence 
limits for the true pth quantile, xP ' of an unknown distribution. If n ::5 20, it 
can be done with the procedure described by Conover (1980, p. 112) in 
conjunction with his Table A3 (pp. 433-444), which gives the cumulative 
distribution function of the binomial distribution. 

If n > 20, the following method may be used. First compute 

I = pen + 1) - ZI -adnp(l - p)]1/2 11.11 

and 

u = pen + 1) + ZI-adnp(1 - p)]1/2 11.12 

Since I and u are usually not integers, the limits are obtained by linear 
interpolation between the closest order statistics. For example, if 95 % limits 
are desired about the p = 0.90 quantile, and if n = 1000, then 

I = 0.9(1001) - 1.96[1000(0.9)(0.1)]1/2 = 882.306 
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and 

u = 0.9(1001) + 1.96[1000(0.9)(0.1)]1/2 = 919.494 

Then the lower limit is obtained by linear interpolation between the 882nd and 
883rd order statistic. Similarly, interpolating between the 919th and 920th order 
statistics gives the upper limit. 

One-sided confidence limits for the true pth quantile are also easily obtained. 
Suppose an upper 100(1 - a) % limit is required. If n > 20, this limit is 
obtained by computing 

u = pen + 1) + ZI_,,[np(1 - p)]112 11.13 

and interpolating between the two closest order statistics. For example, if the 
upper 95 % limit for the 0.90 quantile is desired and if n = 1000, then 

u = 0.9(1001) + 1.645[1000(0.9)(0.1)]112 = 916.506 

Therefore, the estimated upper limit is the value that is 50.6% of the way 
between the 916th and 917th largest values. A one-sided lower limit is obtained 
in a similar manner by using a negative sign in front of ZI _ 01 in Eq. 11.13. 

11.11 NONPARAMETRIC CONFIDENCE 
LIMITS FOR PROPORTIONS 

The two approaches for estimating proportions given in Section 11.4 are 
appropriate for normal distributions. Thc following approach is valid for any 
distribution, as long as the data are uncorrelated and were drawn by random 
sampling. To estimate PXc' the proportion of the population exceeding XC' we 
compute 

u 
11.14 

n 

where n is the number of observations and u is the number of those that exceed 
XC' 

A confidence interval for Px,. can easily be obtained. If n :5 30, then 95% 
and 99% confidence intervals can be read directly from Table A4 (from Blyth 
and Still, 1983). For example, suppose n = 30 observations are drawn at 
random from the population and that u = 1 of these exceeds a prespecified 
concentration XC' Then Eq. 11.14 gives Pxe = Jb = 0.033. Also, from Table 
A4 we find that 0 and 0.16 are the lower and upper 95 % confidence limits for 
the true proportion of the population exceeding XC' 

If n > 30, Blyth and Still (1983) recommend that the lower and upper limits 
of a two-sided 1 OO( 1 a) % confidence interval be computed as follows. 

Lower Limit = --....,-­
n +Z~-0:/2 

\ Z2 
• L(U - 0.5) + 1;0:/2 

(u - 0.5) Zl-al2 l 2 2 lll2J 
- ZI-exI2 (u - 0.5) - n + -4- . 

11.15 
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except that the lower limit equals 0 if u = O. 

U .. 1 
pper LImIt = 2 

n + ZI-aI2 

• (U + 0 5) + 1 - al2 [ 
Z2 

. 2 11.16 

r 2 2 l1/2] 
+ ZI-aI2l(U + 0.5) - (U +nO.5) + ZI~al2 

except that the upper limit equals 1 if U = n. 
Confidence limits about a proportion may also be obtained from data charts 

given, for example, by Conover (1980, Table A4). Finally, if npxc and npxr(1 
- Px) are both greater than 5, the following upper and lower limits give an 
approximate two-sided 100(1 - ex) % confidence interval for PXc: 

lA (1 A )l1l2 
A + Z PXc - PXc 

PXc - l-al2 n 

EXAMPLE 11.4 

Table 11.1 gives CO vehicle emissions data [in units of grams/mile 
(g/mi)] obtained on n = 46 randomly selected vehicles (reported by 
Lorenzen, 1980). We shall use these data to estimate the proportion 
of the population (from which the 46 vehicles were drawn) that 
exceeds 15 g/mi. We also compute a 90% confidence interval about 
the true proportion exceeding 15 g/mi using the nonparametric 
procedure. 

From Table 11.1 we find U = 4 data that exceed Xc = 15 g/mi. 
Therefore, Eq. 11.14 gives PIS = uln = ik = 0.087 as the estimated 
proportion of the population exceeding 15 g/mi. The confidence 
interval is obtained from Eqs. 11.15 and 11.16. Table Al gives 
ZI _ a/2 = Z095 = 1.645. Therefore, the lower limit obtained from 
Eq. 11.15 is 

{(4 - 0.5) + 2.706/2 -

1.645[(4 - 0.5) - (4 - 0.5)2/46 + 2.706/4]1I2} 
46 + 2.706 = 0.033 

11.17 

Similarly, using Eq. 11.16, we find that the upper limit is 0.194. 
Therefore, the 90% confidence interval about the true proportion of 
the population greater than 15 g/mi is from 0.033 to 0.19. A point 
estimate of that proportion is 0.087. 

Since npxc = 4 and nPxc(1 - Px) = [46(4)/46] (1 - ik) = 3.65, 
it is possible that npxc and npxc(l - PxJ are not greater than 5. 
Hence, we should not use Eq. 11.17 to obtain confidence limits. 
However, for illustration's sake, Eq. 11.17 gives 

rO.087(0.913)l1l2 
0.087 ± l.645 l 46 

or 0.019 and 0.16 for the lower and upper limits. 
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Table 11.1 Vehicle Emission Carbon Monoxide (CO) Data (grams/mile) for n 
= 46 Randomly Chosen Vehicles 

Vehicle CO Vehicle CO Vehicle CO 

5.01 17 15.13 33 5.36 
2 14.67 18 5.04 34 14.83 
3 8.60 19 3.95 35 5.69 
4 4.42 20 3.38 36 6.35 
5 4.95 21 4.12 37 6.02 
6 7.24 22 23.53 38 5.79 
7 7.51 23 19.00 39 2.03 
8 12.30 24 22.92 40 4.62 
9 14.59 25 11.20 41 6.78 

10 7.98 26 3.81 42 8.43 
11 11.53 27 3.45 43 6.02 
12 4.10 28 1.85 44 3.99 
13 5.21 29 4.10 45 5.22 
14 12.10 30 2.26 46 7.47 
15 9.62 31 4.74 
16 14.97 32 4.29 

Source: After Lorenzen, 1980, Table 2. 

11.12 CONFIDENCE LIMITS WHEN 
DATA ARE CORRELATED 

The methods given in Sections 11.5.2, 11.6, and 11.7 for placing confidence 
limits about the true mean f.t are appropriate when the data are not correlated. 
The same formulas may be used when data are correlated except that the 
estimates of the standard error of the mean, s/.[;'z, must be modified as discussed 
in Sections 4.5 and 4.6. The confidence intervals given in subsections 11.12.1 
and 11.12.2 require that estimates of serial and/or spatial correlation coefficients 
be obtained from the data. Since these estimates will not be accurate if they 
are based on only a few data, the formulas in this section should not be used 
unless n is large, preferably n ~ 50. 

11.12.1 Single Station 

Consider first the case of time (serial) correlation but no spatial correlation. 
Suppose data are collected at equal intervals sequentially in time at a monitoring 
station, and we wish to compute a confidence interval for the true mean over 
that period of time at that station. The two-sided and one-sided confidence 
intervals for f.t given by Eqs. 11. 5-11.10 can be used for this purpose if 
s/.[;'z in these equations is replaced by 

II ( ,,-1 )l1l2 
S - 1 + 2 L; PI 

n 1= I 
11.18 

where s is the square root of Eq. 4.4 and the PI are the estimated serial 
correlation coefficients of lag I = 1, 2, ... , n - 1 computed by Eq. 4.22. 
For example, by Eq. 11.5 the approx.imate 100(1 - a)% confidence interval 
for the true mean for the station is 

fl ( n-l )l1l2 
x ± tl-"/2,"-1Sl~ 1 + 2 I~l PI 11.19 
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If the serial correlation coefficients with lags greater than, say, I = m are all 
zero, then Eq. 11.18 is the same as given by Albers (1978b, Eq. 2.4), who 
developed a t test for dependent data. 

A somewhat more accurate confidence interval may be obtained by using 

[ll 2 fl-I lJ1I2 
S - 1 + - ~ (n - l)PI 

n n I~ I 
11.20 

instead of Eq. 11.18. We have encountered Eqs. 11.18 and 11.20 before in 
connection with determining the number of measurements needed for estimating 
a mean when data are correlated; see Eqs. 4.18 and 4.21. 

EXAMPLE 11.5 

In Exercise 4.3 there was serial correlation between the n = 100 
measurements taken along a line in space. The serial correlations 
for lags I = 1, 2,. . . , 14 were nonzero and summed to EJ! I PI 
= 4.612. Also, the sample mean and standard deviation were x = 
18,680 and S = 4030. Therefore, by Eqs. 11.5 and 11.18 a 90% 
confidence interval about the true mean along the transect is given 
by 

_ 11 + 2(4.612)lll2 
x ± to 95,99l 100 

or 18,680 ± 1.661(4030) (0.3197) or 16,500 and 20,800. 

11.12.2 Regional Means 

Suppose n observations over time are collected at each of ns monitoring stations. 
The arithmetic mean of the observations at the ith station is 

1 n 

Xi = ~j~1 xij 

Then an estimate of the true regional mean is 

1 fl, fl 1 fl, 

X = - ~ ~ x = - ~ x· 
nn, i ~ I j ~ I IJ n, i ~ I I 

If there is no correlation between stations, a confidence interval about the true 
regional mean is 

l In, ll/2 
x±tl - aI2 ,n,-1 ( 1)·~(Xi-X)2 ns ns - I~ I 

11.21 

Equation 11. 21 is valid even if there is serial correlation between the measure­
ments at each station. The quantity under the square-root sign in Eq. 11.21 is 
the standard error given previously in Section 4.6. Note that this estimator does 
not use individual data points at the stations but only the station means. 

If there is a spatial correlation Pc between ns stations but no time correlation 
between the n measurements at each station, the confidence interval about the 
true regional mean is (by Eq. 4.14) 

II + pcCns - 1)l1/2 
X ± t I - a/2, nn, - IS --'--"--=-----­

nns 
11.22 
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where s is approximated by the square root of nnss2(X), where s\x) is Eq. 4.27. 
Example 4.6 shows how to obtain Pc. 

Finally, if there are both spatial and temporal correlation, the confidence 
interval is (from Eq. 4.23) 

r 1 (2n-l) JII2 
X ± tl-aI2nn-ls - 1 + - ~ (n -l)Pt (1 + Peens - 1» ., nn, n t= I 

11.23 

where s is obtained as above for Eq. 11.22. Equations 11.18, 11.19, and 11.20, 
are approximate, since s in these equations is computed by Eq. 4.4, which is 
appropriate only when the data are independent. An alternative estimator for s 
is suggested in Exercise 4.4. 

11.13 RANK VON NEUMANN TEST 
FOR SERIAL CORRELATION 

Sections 4.5.2 and 11.12.1 gave methods for estimating Var(x) and for deciding 
how many measurements to take to compute x when the data are collected 
sequentially over time and are serially correlated. This section discusses the 
rank von Neumann test (Bartels, 1982), which tests the null hypothesis Ho that 
PI = ° versus the alternative hypothesis that PI > 0, where PI is the lag 1 
serial correlation coefficient. If this test is nonsignificant (null hypothesis not 
rejected) and at least 25 measurements are used in the test, we may tentatively 
conclude that the formulas for Var(x) given in Sections 4.5.2 and 11.12.1 may 
not be needed; the simpler formula S2//1 is sufficient. Additional tests can be 
carried out to help decide whether serial correlations of lags greater than 1 are 
equal to zero by the method given by Box and Jenkins (1976, p. 35). 

The von Neumann test will also detect trends and/or cycles in a sequence 
of data. Hence, if the test statistic gives a significant result, it could be due to 
trends, cycles, and/or autocorrelation. Also, for the test to be meaningful, the 
data should be collected at equal or approximately equal intervals. 

Assume there are no trends or cycles present. Then the null hypothesis being 
tested is that PI = 0. The alternative hypothesis of most interest is that PI > 
0, since positive correlation is the usual case with pollution data. Let XI, X2, 

... , Xn be a sequence (time series) of n observations obtained over time at a 
monitoring station. Then do the following: 

1. Assign the rank of 1 to the smallest observation, the rank of 2 to the next 
smallest, ... , and the rank of n to the largest observation. Let RI be the 
rank of X I, R2 be the rank of X2, ... , and Rn be the rank of Xn-

2. Compute the rank von Neumann statistic, R", as follows: 

12 n-I 

Rv = 2 ~ (Ri - Ri + 1)2 
n(n - 1) i= I 

where: Ri = rank of the ith observation in the sequence, 
Ri + I = rank of the (i + l)st observation in the sequence (the 

following observation). 

3. If 10 :5 n :5 100, reject the null hypothesis that PI = ° at the a significance 
level and conclude that PI > ° if Rv is less than Rv.", the a quantile for 
Rv given in Table A5 for the appropriate n. This table gives quantiles for 
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10 ~ n ~ 100. Tests for serial correlation are not recommended if n ~ 
10, but such tests are possible with Table 1 in Bartels (1982). 

4. If n > 100, compute 

and reject Ho and accept that p, > 0 if ZR is negative and IZRI > Z, - "" 
where Z, _" is obtained from Table AI. 

The rank von Neumann test is not exact if some measurements are tied (have 
the same magnitude). If the number of tied values is small, one may assign to 
each observation in a tied set the midrank, that is, the average of the ranks 
that would be assigned to the set. When this procedure is used, the critical 
values in the table "may provide a reasonable approximation when the number 
of ties is small" (Bartels, 1982, p. 41). 

EXAMPLE 11.6 

Hakonson and White (1979) conducted a field study in which soil 
samples were collected on a grid at I-m intervals both before and 
after the site was rototilled. Cesium concentrations (137Cs) were 
obtained for each sample. The authors have kindly provided the data 
for our use. We shall test at the ex = 0.05 significance level that 
there is no serial correlation between Cs concentrations along grid 
lines. The 13 137Cs concentrations and their ranks obtained in order 
along one line of the rectangular grid before rototilling are 

datum, rank 
2.20 10 
2.74 13 
0.42 4 
0.636 
0.827 
0.868 
0.31 2 
2.33 12 
0.505 
2.22 11 
1.109 
0.323 
0.01 1 

Since n(n 2 - 1)/12 = 13(168)/12 = 182, the rank von Neumann 
statistic is 

[(10 - 13)2 + (13 - 4)2 + (4 - 6)2 + ... 

+ (3 - 1)2]/182 = ~~~ = 1.98 

From Table A5 the critical value at the ex = 0.05 level is 1.14. 
Since 1. 98 > 1.14, we cannot reject the null hypothesis that PI = O. 

When testing for serial correlations over space, it is necessary to 
test along lines in several directions, for example, north-south, east­
west, and intermediate angles, since correlations can exist in some 
directions but not in others. 
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11.14 OAT A TRANSFORMATIONS 

Pollution data are frequently transformed before statistical or graphical analyses. 
This section briefly discusses when it is desirable to transform and some of the 
pitfalls that can arise. Our interest is in nonlinear transformations-that is, those 
that change the scale of measurement. We pay particular attention to the 
logarithmic transformation, since it is useful for pollution data and is used in 
later chapters of this book, primarily Chapters 13 and 14. 

11.14.1 Reasons for Using 
Transformations 

Here are some reasons for using nonlinear transformations. 

1. To obtain a more accurate and meaningful graphical display of the data 
2. To obtain a straight-line relationship between two variables 
3. To better fulfill the assumptions underlying statistical tests and procedures, 

such as normality, additive statistical models, and equal spreads (variance) 
in different data sets 

4. To efficiently estimate quantities such as the mean and variance of a lognormal 
distribution, as illustrated in Chapters 13 and 14 

As an example of items 1 and 2, suppose we wish to study the relationship 
between two pollutants. We measure both on the same set of n samples and 
plot the untransformed data on a scatter plot. It would not be unusual to obtain 
several data pairs with very high concentrations relative to the bulk of the data. 
In this case the low concentrations pairs will be clumped close to zero, and the 
high concentrations will appear as isolated values far from zero. If a straight 
line is fit to these data, the fit will be determined mainly by the position of the 
lower clump and the few high values. That is, the full set of n data pairs will 
not be efficiently used to examine the relationship between the two variables. 
If the logarithms of the data are plotted, the points will be more evenly spread 
out over the coordinate scales and the entire n pairs effectively used and 
displayed. 

Since pollution data tend to be skewed, the scatter plot of log-transformed 
data will tend to be linear. This behavior is fortunate because statistical methods 
for linear relationships are relatively simple. For example, as pointed out by 
Hoaglin, Mosteller, and Tukey (1983), departures from a linear fit are more 
easily detected, and interpolation and extrapolation are easier than if the 
relationship is not linear. 

Concerning item 3, most statistical methods books, such as Snedecor and 
Cochran (1980, pp. 282-297), discuss data transforn1ations that are useful before 
performing analysis of variance (AOV) computations. AOV tests of hypotheses 
assume that the effects of different factors are additive and that the residual 
errors have the same variance and are normally distributed. Cochran (1947), 
Scheffe (1959), and Glass, Peckham, and Sanders (1972) discuss the effects on 
AOV procedures when these assumptions are not fulfilled. Since pollutant data 
are often approximately lognormal, it is common practice to use a logarithmic 
transformation before conducting an AOV. The desired characteristics of 
additivity, constant variance, and normality are frequently achieved at least 
approximately when this is done. For the same reason, the logarithmic 
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transformation is frequently used before doing t tests to look for significant 
differences between two means. 

11 .14.2 Potential Problems with 
Transformations 

Following are three problems that may arise when using a nonlinear transfor­
mation. 

l. Estimating quantitIes such as means, variances, confidence limits, and 
regression coefficients in the transformed scale typically leads to biased 
estimates when they are transformed back into the original scale. 

2. It may be difficult to understand or apply results of statistical analyses 
expressed in the transformed scale. 

3. More calculations are required. 

We may illustrate the bias referred to in item 1 by considering the lognormal 
distribution. Let x represent an untransformed lognormal datum, and let y = 
In x. An unbiased estimator of the mean of the log-transformed distribution is 
y, the arithmetic mean of the y's. But if y is transformed back to the original 
scale by computing exp{)i), the geometric mean, we do not obtain an unbiased 
estimate of the mean of the untransformed (lognormal) distribution. A similar 
problem arises when estimating confidence limits for the mean of a lognormal 
distribution. Chapter 13 gives unbiased methods for estimating lognormal means 
and confidence limits. Heien (1968) and Agterberg (1974, p. 299) discuss similar 
bias problems when conducting linear regression and trend surface analysis on 
transformed data. 

Koch and Link (1980, Vol. 1, p. 233) suggest that transformations may be 
useful "when the conclusions based on the transformed scale can be understood, 
when biased estimates are acceptable, or when the amount of bias can be 
estimated and removed because the details of the distribution are known." 
Hoaglin, Mosteller, and Tukey (1983) point out that we lose some of our 
intuitive understanding of data in a transformed scale, and that a judgment must 
be made as to when the benefits justify the "costs." They indicate that a 
transformation is likely to be useful only when the ratio of the largest datum 
to the smallest datum in a data set is greater than about 20. 

11.15 SUMMARY 

The normal distribution plays an important role in the analyses of pollution data 
even though many environmental data sets are usually not normally distributed. 
This importance occurs because of the close relationship with the lognormal 
distribution and because the sample mean, X, is normally distributed if n is 
sufficiently large. 

This chapter provides a set of tools for characterizing normal distributions. 
Methods for estimating the mean, variance, proportions, and quantiles and for 
putting confidence intervals on proportions, quantiles, and the mean are given. 
Nonparametric (distribution-free) methods that may be used when the distribution 
is nonnormal are provided. Formulas are given for computing approximate 
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confidence limits about /l when data are correlated over time and/or space. The 
last section discusses the benefits and potential pitfalls of nonlinear data 
transformations. 

EXERCISES 

11.1 What percent of the standard normal distribution falls (a) above /1- + la, 
(b) between /1- - 2a and /1- + 1 a? 

11.2 Listed here are n = 10 carbon monoxide data from Table 11.1: 

6.02 5.79 2.03 4.62 6.78 
8.43 6.02 3.99 5.22 7.47 

Assume these data were drawn at random from a normal distribution. 
Estimate (a) the mean, /1-, (b) the variance, a 2 , and (c) the 90th percentile 
of the normal distribution from which these data are assumed drawn. 
Also, estimate the 90th percentile by the nonparametric method. Can the 
95th percentile be estimated by the nonparametric method when only 10 
samples are collected? 

11. 3 Estimate the upper 90 % confidence limit for the 90th percentile of the 
(assumed) normal distribution from which the data in Exercise 11.2 were 
drawn. 

11.4 Using the data in Exercise 11.2, estimate the proportion of the assumed 
normal distribution that exceeds the value 4.0. 

11.5 In Example 11.3 estimate (a) a two-sided 99% confidence interval for /1-, 

(b) a one-sided upper 80% confidence limit for /1-, and (c) a one-sided 
lower 95 % confidence limit for /l. 

11.6 Use the carbon monoxide data in Table 11.1 to estimate upper and lower 
80% confidence limits on the 60th percentile (0.60 quantile) of the 
population from which these data were drawn. 

11.7 Use the data in Table 11.1 to estimate the proportion of the popUlation 
that exceeds 20 g/mi. Estimate the lower and upper 95 % confidence 
limits for the true proportion greater than 20 g/mi. 

11.8 In Example 11.5 we found that when serial correlation was present, the 
90% confidence interval for the true mean was from 16,540 to 20,820. 
Recompute the 90% confidence interval using the same data but without 
taking the serial correlation into account. 

ANSWERS 

11.1 (a) 15.87%, (b) 81.85%. 

11.2 (a) x = 5.64, (b) 52 = 3.30, (c) the 90th percentile computed by Eq. 
11.1 is i o.90 = 5.64 + 1. 282( 1. 817) = 7.97, and by the nonparametric 
method, is 90% of the way between the 9th and 10th largest of the 10 
data, or 8.33. No. 
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11.4 

11.5 
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From Eq. 11.2, UL90(X90) = 5.64 + 2.066(1.817) = 9.39. 

P40 = 1 - ¢(4 - 5.64) = I - ¢(-0.9026) = 0.817 
. 1.817 

(a) From Eq. 11.5, 0.0372 ± 2.861(0.0211)/50, or 0.0237 and 
0.0507. 
(b) From Eq. 11.6, 0.0372 + 0.861(0.0211)/50 = 0.0413. 
(c) From Eq. 1l.7, 0.0372 - 1.729(0.0211)/50 = 0.0290. 

11.6 Using Eqs. 11.11 and 11.12 gives 

(I, u) = 0.6(47) ± 1.282[46(0.6)(0.4)]1/2 

Therefore, I = 23.94, u = 32.46, so lower limit = 6.01, upper limit 
= 8.51. 

11.7 P20 = i<; = 0.0435. By Eq. 11.15, 

1 [ 3.84 l (l.5)2 3.84JII2] Lower 95% Limit: - 15 + - - 196 1.5 - --+-
49.8' 2' 46 4 

= 0.0076 

By Eq. 11.16, 

Upper 95 % Limit: 
1 [ 3.84 l (2.5)2 3.8411/2] - 2.5 + - + 1.96 2.5 - -- + -

49.8 2 46 4 

= 0.16 

11.8 18,680 ± 1.661(4030)110, or 18,011 to 19,349. This interval is about 
one-third the length of the interval computed in Example 11.5. 



12 Skewed Distributions 
and Goodness-o~Fft 

Tests 

In many cases pollution data sets are skewed (asymmetrical) so that the symmetric 
normal distribution discussed in Chapter 11 is not a suitable model for estimating 
quantiles, proportions, or means. In that case the nonparametric procedures 
given in Chapter 11 may be used. Another approach is to find a distribution 
model that adequately fits the skewed data set. Then statistical methods for that 
distribution can be used. This chapter describes the lognormal distribution and 
several methods for testing whether a data set is likely to have arisen from a 
normal distribution or a lognormal distribution. 

12.1 LOGNORMAL DISTRIBUTION 

The lognormal distribution is used to model many kinds of environmental 
contaminant data: for example, air quality data (see the reviews by Mage, 1981; 
Georgopoulos and Seinfeld, 1982), radionuclide data sets (Pinder and Smith, 
1975; McLendon, 1975; and Horton et aI., 1980), trace metals in fish (Giesy 
and Weiner, 1977), and strontium-90 and other fission-product concentrations 
in human tissues (Schubert, Brodsky, and Tyler, 1967). 

Two-, three-, and four-parameter lognormal distributions can be defined. The 
two-parameter lognormal density function is given by 

1 l 1 2-1 f(x) = ~ exp - -2 (In x - J-ty) 
xay v27r 2a y _ 

x > 0, -00 < J-ty < 00, ay > 0 

12.1 

where J-ty and a;, the two parameters of the distribution, are the true mean and 
variance, respectively, of the transformed random variable Y = In X. Some 
authors refer to the true geometric mean [exp (J-ty)] and the true geometric 
standard deviation [exp (ay)] as the parameters of the distribution. We shall use 
A( J-ty, a;) to denote a two-parameter lognormal distribution with parameters J-tv 

2 ' 
and ay. 

Some two-parameter lognormal distributions are shown in Figure 12.1. The 
distribution is described in detail by Aitchison and Brown (1969) and Johnson 
and Kotz (1970a), who give several methods for estimating the parameters J-ty 
and a;. Mage and Ott (1984) evaluate several methods and demonstrate that 

152 
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Figure 12.1 Lognormal distributions for different values of the parameters My 
and a~, the mean and variance, respectively, of the log-transformed variate (after 
Aitchison and Brown, 1969, Figs. 2.2 and 2.3). 



154 Skewed Distributions and Goodness-of-Fit Tests 

the method of maximum likelihood is preferred. This method leads to the 
estimators 

where Yi = In Xi' Maximum likelihood estimation from a theoretical viewpoint 
is discussed in theoretical statistics books, such as Lindgren (1976). Georgopoulos 
and Seinfeld (1982) illustrate its application to statistical distributions of air 
pollution concentrations. 

The three-parameter lognormal density function is given by 

1 [1 2J f(x) = exp - -2' [In (x - T) - Ityl 
(x - T) G,ili 2a, 

x > T, -00 < It, < 00, G" > 0, -00 < T < 00 12.2 

Comparing Eqs. 12.1 and 12.2, we see that x - T has a two-parameter 
lognormal distribution. The third parameter, T, which may be positive or 
negative, simply shifts the two-parameter distribution to the right or left by the 
amount T without changing its shape. 

Figure 12.2 shows a two-parameter A(1, 1) distribution and the three­
parameter lognormal distributions that result when T is shifted from zero to 

0.5 
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::;l 
CI 0.4 U..l 
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0.2 
T =1. 

2 
.1(0.5,1,1) 

0.1 

0 
-I 0 2 3 4 5 6 7 8 9 

CONCENTRA nON 

Figure 12.2 The two-parameter lognormal distribution A(1, 1) and the three­
parameter lognormal distributions that result when T = -0.5 and 0.5 (after 
Gilbert and Kinnison, 1981, Fig. 1). 
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-0.5 or to 0.5. The population mean /J. and variance a 2 of the three-parameter 
lognormal distribution are defined in Table 12.1 along with other characteristics 
of the distribution. Setting T = 0 in Table 12.1 gives the appropriate expressions 
for the two-parameter lognormal distribution. 

Maximum likelihood estimates of the parameters /J.y, a;, and T may be 
obtained by the NeIder-Mead simplex procedure (Olsson and Nelson, 1975), 
as discussed by Holland and Fitz-Simons (1982). One of the conditional 
maximum likelihood estimates discussed by Cohen and Whitten (1981) could 
also be used. If the value for T is known a priori, then /J.y and a~ are estimated 
by computing y and s; from the data Yi = In (x; - T). 

Since pollution concentrations cannot be negative, a three-parameter lognormal 
with negative T may seem on first thought to be irrelevant. However, negative 
measurements can occur due to measurement errors when true concentrations 
are very near zero. For example, correcting environmental radionuclide mea­
surements by subtracting naturally occurring (background) radiation can give 
negative data when concentrations are only slightly above background and large 
measurement errors are present. 

The four-parameter lognormal is bounded by a lower bound and an upper 
bound on the possible values of the variable. Also, both right and left-skewed 
distribution shapes are possible. This distribution is discussed by Aitchison and 
Brown (1969) and Mage (1980) and has been applied to air quality data by 
Mage (1975). 

12.2 WEIBULL, GAMMA, AND BETA 
DISTRIBUTIONS 

The Weibull, gamma, and beta distributions are sometimes used to model 
environmental pollution data. Their density functions are given in Table 12.2 
along with the two- and three-parameter lognormal density functions. Plots 
showing the many shapes these distributions can take are given by Hahn and 
Shapiro (1967). Georgopoulos and Seinfe1d (1982) discuss the application of 
these distributions to air pollution concentrations. 

The parameters "I, a, and {3 of the three-parameter Weibull distribution 
determine the location, shape, and scale, respectively, of the distribution. The 
distribution can take on a wide vaIiety of shapes and can be used to model 
both right- and left-skewed data sets. 

The three parameters can be estimated by several methods, including Weibull 
probability paper (illustrated by King, 1971 and Hahn and Shapiro, 1967) or 
the maximum likelihood method, discussed, for example, by Johnson and Kotz 
(l970a, p. 255) and Holland and Fitz-Simons (1982). 

Pinder and Smith (1975) found that the Weibull distribution fit some 
radionuclide data sets better than the two-parameter lognormal. Apt (1976) 
recommends the Weibull distribution as being well suited for describing spatial 
and temporal distributions of atmospheric radioactivity. He suggests that the 
estimate of "I would be a reasonably good environmental '·background" or 
"nonimpacted" value, since "I is a threshold or minimum-value parameter. 
Johnson (1979) reported that ambient ozone data appeared to be better fit by 
the two-parameter Weibull distribution (i. e., when "I = 0) than by the two­
parameter lognormal. 



Table 12.1 Some Characteristics of Normal and Lognormal Populations 

Definitions of Distribution 
Parametersb 

Mean 

Geometric mean (GM) 
Median 
Mode 

Standard deviation 

Geometric standard deviation 

Coefficient of variation 

Coefficient of skewnessc 

Coefficient of kurtosisC 

Central 68% of the distribution 
Central 95 % of the distribution Il 

x Is from a Normal 
Distribution with 

Parameters Il and c? 

N- 1 Il = 

N 

N 

:6 X; 
i= I 

N- 1 :6 (x; - Il)' 
i= 1 

Il 
Il 
a 

alll 

° ° Il - a to Il + a 

1.96<1 to Il + 1.96a 

Source: After Miesch, 1976, Table 1. 
aN = number of population units in the target population. 
X; = datum for the ith population unit. 

Ilg 

x Is from a 3-Parameter Lognormal Distributiona with 
Parameters Ily' a;., and T 

N 

Ily = N- 1 :6 In(x; 
i= I 

N 

T), 

a;. = N- 1 :6 [In(x; - T) - Il,]' 
. i=1 

exp(lly + a~12) + T 

exp(ll,) + T 

exp(Il,.) + T 

exp(lly - a;) + T 

a - .Jexp(2ll, + a;)[exp(a;.) I] 

ag exp(aJ 
-,-1 

.Jexp(a;) I T j 11 I I + , 
exp(ll, + cr".I2) 

3 
111 + 3111 

8 
111 + 611t + 1511~ + 1611~ 
Ilgla, to ILK X aK 
ll/a~96 to ILK X a!·96 

If T = 0, the three-parameter lognormal reduces to the two-parameter. Note that the expressions for Il, ILK' 11 and the mode 
simplify when T = 0, that is, when the variable has the two-parameter lognormal distribution. 
bVarious notations have been used to denote the two parameters and the mean and variance of the lognormal distribution. 
Care must be taken to avoid confusion. For example, Aitchison and Brown (1969) use Ci and (32 instead of our Il and a' 
for the mean and variance of the untransformed (lognormal) variate. They use Il and c? instead of our Il.' and a; for the 
mean and variance of the log-transformed (normal) variate. 

c 111 = .Jexp(a;)- 1 
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Table 12.2 Probability Density Functions Sometimes Used to Model 
Environmental Pollutant Concentrations 

Distributi()n Probability Density Functi()n (Pdf) 

Two-parameter lognormala 1 I" (In x - Jiv)rj ---exp 
xay ,ff; _ 2a; 

x > 0, -00 < Jiy < 00, ay > 0 

Three-parameter lognonnal" 

x > T, -00 < T < 00, -00 < Jiy < 00, ay > 0 

Three-parameter WeibuUb a (x - ,)" -, 1 (x - ')"J ~ -(3- exp - -(3-

-00 < , < 00, x > " (3 > 0, a > 0 

Three-parameter gammab 
(3f

l
(a) (x ~ 'r-' exp[ _(x ~ ')J 
-00 < , < 00, x > " a > 0, (3 > 0 

Four-parameter betaC f( a + (3) (0 _ )' -" - ~ (x _ )" -, (0 _ x)~ 1 

fCa) f«(3) , 'Y 

, < x < 0, a > 0, (3 > 0 

a Ji, and a; are defined in Table 12.1. 
hReduces to two-parameter distributions when, = O. 
cReduces to three-parameter beta distribution when, = O. 

The parameters 'Y, a, and {3 of the three-parameter gamma distribution are 
also location, shape, and scale parameters, The density function (given in Table 
12.2) contains the gamma function rea), which is defined to be 

rCa) = roo X",-I exp (-x) dx Jo 
where rca) = (a - I)! when a is a positive integer, The maximum likelihood 
estimates of the three parameters may be obtained as described by Johnson and 
Kotz (1970a, p, 185), Preliminary and easily computed estimates of the parameters 
can be obtained by using Eqs. 39,1, 39.2, and 39.3 in Johnson and Kotz 
(l970a, p. 186). However, these estimators are not as accurate as the maximum 
likelihood estimators. 

The density function of the beta distribution given in Table 12,2 has four 
parameters: a, {3, fJ, and 'Y. The variable X is bounded below by 'Y and above 
by fJ, a useful feature because such bounds may occur for some types of 
environmental data. Methods for estimating the parameters are given by Johnson 
and Kotz (1970b, pp, 41-46), 

12.3 GOODNESS-OF-FIT TESTS 

The previous section presented several density functions that might be used 
to model environmental contaminant data. The data analyst is faced with deciding 
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on the basis of data which of these probability distributions to use. Common 
ways to approach this problem are to construct a histogram, stem-and-leaf 
display, or normal and lognormal probability plots of the data. (See Section 
13.1.3 for more on lognormal probability plots.) Histograms and stem-and-Ieaf 
displays (the latter are discussed and illustrated by Hoaglin, Mosteller, and 
Tukey, 1983) will give a visual impression of the shape of the data set, but 
they are not adequate tools for discrimination. If the normal probability plot is 
a straight line, it is evidence of an underlying normal distribution. A straight 
line on the lognormal probability plot suggests the lognormal distribution is a 
better model. Coefficients of skewness and kurtosis may also be computed from 
the n data values and used to test for normality (Bowman and Shenton, 1975). 
Most statistical packages of computer programs contain a code that will plot 
histograms and compute the coefficients of skewness or kurtosis, and some 
(e.g., Minitab; see Ryan, Joiner, and Ryan, 1982) will construct probability 
plots. 

This section presents several statistical tests that test the null hypothesis that 
the distribution is in some specified form. We begin with the W test developed 
by Shapiro and Wilk (1965), one of the most powerful tests available for 
detecting departures from a hypothesized normal or lognomlal density function. 
Shapiro and Wilk provided tables that allow the W test to be made if n :5 50. 
This limitation on n was overcome somewhat by D' Agostino (1971), who 
developed a related test for when n is between 50 and 1000. D'Agostino's test 
and the W test are discussed and illustrated in this section. Royston (1982a) 
developed a computational procedure for the W test for n as large as 2000. His 
procedure is well suited for computation on a computer, and computer codes 
are available (Royston, 1982a, 1982b, 1982c, 1983; Koniger, 1983). 

Tests closely related to the W test with similar perfomlance capabilities are 
those by Shapiro and Francia (1972) and Filliben (1975). Looney and Gulledge 
(1985) use the correlation coefficient app] ied to a probability plot to test for 
normality or lognormality. A table of critical values needed for the test is 
provided for n between 3 and 100. Their test is simple, and its perfonnance is 
roughly the same as that of the W test. 

The nonparametric Kolmogorov-Smimov (KS) test and the related Lilliefors 
test may also be used to evaluate the fit of a hypothesized distribution. These 
tests, described by Conover (1980) are considered to be more powerful than 
the chi-square goodness-of-fit tests. The KS test is not valid if the parameters 
of the hypothesized distribution are estimated from the data set. The Lilliefors 
test (Lilliefors, 1967, 1969) was developed to surmount this problem when the 
hypothesized distribution is the normal or lognormal. Iman (1982) developed 
graphs that simplify the Lilliefors test procedure. Kurtz and Fields (1983a, 
1983b) developed a computer code for computing the KS test. One can also 
use an IMSL (1982) subroutine as well as SAS (1982, 1985) software, but the 
Kurtz and Fields' code is valid for smaller n (n > 3). 

12.3.1 The W Test 

The W test developed by Shapiro and Wilk (1965) is an effective method for 
testing whether a data set has been drawn from an underlying normal distribution. 
Furthermore, by conducting the test on the logarithms of the data, it is an 
equally effective way of evaluating the hypothesis of a lognomlal distribution. 
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We suppose that n :5 50 data, XI' X2, ..• , Xn , have been drawn at random 
from some population. The null hypothesis to be tested is 

Ho: The population has a nonnal distribution 

versus 

HA : The population does not have a nonnal distribution 

If Ho is rejected, then HA is accepted. If Ho is not rejected, the data set is 
consistent with the Ho distribution, although a retest using additional data could 
result in rejecting Hu. 

The W test of this Ho is conducted as follows: 

1. Compute the denominator d of the W test statistic, using the n data. 

n n 1 (n )2 
d = .L: (Xi - x)2 = ~ x7 - - I: Xi 

i= I i= I n i= I 
12.3 

2. Order the n data from smallest to largest to obtain the sample order statistics 
x[I] :5 X12] :5 . . . :5 x[n]' 

3. Compute k, where 

n 
k=-

2 

n -

2 

if n is even 

if n is odd 

4. Tum to Table A6 and for the observed n find the coefficients ai, a2, 

... , ak' 

S. Then compute 

12.4 

6. Reject Ho at the a significance level if W is less than the quantile given in 
Table A7. 

To test the null hypothesis 

Ho: The population has a lognonnal distribution 

versus 

HA : The population does not have a lognonnal distribution 

the preceding procedure is used on the logarithms of the data. That is, we 
compute d (Eq. 12.3), using YI> Y2, •.• , Yn, where Yi = In Xi' and we use 
the sample order statistics of the logarithms Y[I] :5 Y[2] :5 . . • :5 YIn] in place 
of the Xli] in Eq. 12.4. 

EXAMPLE 12.1 

Lee and Krutchkoff (1980) list mercury concentrations (ppm) in 115 
samples of swordfish. We have selected 10 of these data at random 
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Table 12.3 Mercury Concentrations (ppm) in Ten Samples of Swordfish 

Xi 0.13 0.45 0.60 

Yi = In Xi -2.0402 -0.7985 -0.5108 

Xi 1.12 1.20 1.37 

Yi = In Xi 0.1133 0.1823 0.3148 

Source: After Lee and Krutchkoff, 1980, Table I. 

to illustrate the W test. We test the null hypothesis 

Ho: The distribution is lognormal 

versus 

HA : The distribution is not lognormal 

0.76 1.05 
-0.2744 0.04879 

1.69 2.06 
0.5247 0.7227 

and we test at the Q( = 0.05 level. The natural logarithms of the 
10 randomly selected values are listed from smallest to largest in 
Table 12.3. 

The denominator of the W statistic computed with the 10 Yi data 
is d = 5.7865 (by Eq. 12.3). Since n = 10, we have k = 5. Using 
the 5 coefficients a], az, ... , as from Table A6 for n = 10, we 
use Eq. 12.4 to obtain 

1 
W = -- {0.5739 [0.7227 - (-2.0402)J 

5.7865 

+ 0.3291 [0.5247 - (-0.7985)] 

+ 0.2141 [0.3148 - (-0.5108)] 

+ 0.1224 [0.1823 - (-0.2744)] 

+ 0.0399 [0.1133 - 0.04879] F 
= 0.8798 

From Table A7 we find this calculated W is greater than the 0.05 
quantile 0.842. Hence, we cannot reject Ho, and we conclude that, 
based on the n = 10 data, the lognormal distribution may be a 
reasonable approximation to the true unknown distribution. Of course, 
if n were much greater than 10, the W test might lead to the opposite 
conclusion, since the additional data would provide more information 
about the shape of the target popUlation distribution. 

An alternative method of using W to test Ho is to convert W to a standard 
normal variable and to use Table A 1 to decide whether to reject Ro. This 
approach is illustrated by Hahn and Shapiro (1967) and by Conover (1980). 
One attractive feature of this approach is that it can be used to combine several 
independent W tests into one overall test of normality (or lognormality). This 
testing procedure is illustrated by Conover (1980, p. 365). 

12.3.2 D'Agostino's Test 

D' Agostino (1971) developed the D statistic to test the null hypothesis of 
normality or lognormality when n ~ 50. He shows that his test compares 
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favorably with other tests in its ability to reject Ho when Ho is actually false. 
This test complements the W test, since tables needed for the latter test are 
limited to n ::5 50. 

Suppose we wish to test the null hypothesis that the underlying distribution 
is normal. Then the D test is conducted as follows: 

I. Draw a random sample x I, X2, • . • , XI/ of size n ?: 50 from the population 
of interest. 

2. Order the n data from smallest to largest to obtain the sample order statistics 
x[ll ::5 X[2] ::5 • • • ::5 xrn]' 

3. Compute the statistic 

where 

n 

~ [i - ~(n + I)]x1iJ 
i= 1 

[
1 n ]In 

s = - ~ (Xi - X)2 
ni=l 

4. Transform D to the statistic Y by computing 

D - 0.28209479 
Y=------=-

0.02998598/..rn 

[One should aim for five-place numerical accuracy in computing D (step 3), 
since the denominator of Y is so small.] If n is large and the data are drawn 
from a normal distribution, then the expected value of Y is zero. For 
nonnormal distributions Y will tend to be either less than or greater than 
zero, depending on the particular distribution. This fact necessitates a two­
tailed test (step 5). 

5. Reject at the a significance level the null hypothesis that the n data were 
drawn from a normal distribution if Y is less than the a/2 quantile or greater 
than the 1 - a/2 quantile of the distribution of Y. These quantiles are given 
in Table A8 for selected values of n between 50 and 1000 (from D' Agostino, 
1971). 

The Y statistic can also be used to test the null hypothesis of a lognormal 
population by using Yi = In Xi in place of Xi in the calculations. 

EXAMPLE 12.2 

We test at the a = 0.05 significance level that the n = 115 mercury 
swordfish concentrations in Table I of Lee and Krutchkoff (1980) 
have been drawn from a normal distribution. That is, we test 

Ho: The distribution is normal 

versus 

HA : The distribution is not normal 

and we assume that the data were drawn at random from the target 
popUlation. 
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The value of s in the denominator of D is computed to be 

I I 112 11/2 
s = - ~ (Xi - X)2 = 0.4978213 

liS i = 1 

Hence the denominator is 

(115)\0.4978213) = 6583.687 

Since (n + 1)/2 = 116/2 = 58, the numerator of D is 

(l - 58)x[l J + (2 - 58)x[2] + . . . + (114 

- 58)x[114] + (115 - 58)x11151 == 1833.3 

Therefore 

D = 6~:~~~~7 = 0.27846099 

Hence 

0.27846099 - 0.28209479 
y = = -1.30 

0.02998598/~ 

Table A8 contains no quantiles of the Y statistic for n = 115. 
Hence, we must interpolate. If n = 100, the cx/2 = 0.05/2 = 0.025 
quantile is -2.552, and the 1 - 0.025 = 0.975 quantile is 1.303. 
If n = 150, Table A8 gives -2.452 and 1.423 for these quantiles. 
Linear interpolation between the 0.025 quantiles for n = 100 and 
150 gives -2.522 as the approximate 0.025 quantile for n = 115. 
The 0.975 quantile when n = 115 is similarly approximated to be 
1.339. Since Y = -1.30 is not less than -2.522 nor greater than 
1.339, the null hypothesis of a normal distribution cannot be rejected. 
Hence, we tentatively accept the hypothesis that the popUlation from 
which the data were obtained can be approximated by a normal 
distribution. 

12.4 SUMMARY 

This chapter introduced the most important frequency distributions used to model 
environmental data sets. The lognormal distribution is frequently used and will 
be discussed in more detail in Chapter 13. 

Two statistical procedures for testing that a data set has been drawn (at 
random) from a hypothesized normal or lognormal distribution have also been 
described and illustrated. One of these, the W test, is recommended as a 
powerful general-purpose test for normality or lognormality when n :5 50. The 
other test, by D' Agostino (1971), is appropriate for n ;:: 50. Two easily used 
graphical tests are the Kolmogorov-Smimov (KS) and Lilliefors tests discussed 
by Conover (1980). If the hypothesized distribution is normal or lognormal, the 
Lilliefors test is preferred to the KS test because the parameters of the distribution 
need not be known a priori. The simple correlation coefficient procedure 
discussed by Looney and Gulledge (1985) is recommended as a test for normal 
or lognormal distributions if n :5 100. 
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EXERCISES 

12.1 Use the data in Table 12.3 and the W test to test at the ex = 0.05 level 
the null hypothesis that mercury concentrations in swordfish are normally 
distributed. Compare your conclusion to that in Example 12.1, where we 
tested the null hypothesis that these data are from a lognormal distribution. 
Does the normal or lognormal seem to be the better choice? 

12.2 The following mercury concentrations were drawn at random from the 
list of ll5 values given by Lee and Krutchkoff (1980): 

1.00 1.08 1.39 1.89 0.83 
0.89 0.13 0.07 1.26 0.92 

Combine these data with those in Table 12.3 and use the W test to test 
at the ex = 0.05 level that the sampled population is normal. Does the 
test result differ from that in Exercise 12.1? 

ANSWERS 

12.1 By Eq. 12.3, d = 3.0520. Using the 5 coefficients from Table A6 and 
Eq. 12.4, we obtain 

1 
W = 3.0520 [0.5739 (2.06 - 0.13) + 0.3291 (1.69 - 0.45) 

+ 0.2141 (1.37 - 0.60) + 0.1224 (1.20 - 0.76) 

+ 0.0399 (1.12 - 1.05)]2 

3.01792 = 0.989 
3.0520 

The critical value from Table A 7 is 0.842. Since W > 0.842, we cannot 
reject the null hypothesis of a normal distribution. In Example 12.1 we 
could not reject the null hypothesis that the population is lognormal. 
Hence, the data are not sufficient to distinguish between normality and 
lognomlality. 

12.2 n = 20. d 5.757295. 

W = 1 [0.4734 (2.06 - 0.07) + 0.3211 (1.89 - 0.13) 
5.757295 

+ 0.2565 (1.69 - 0.13) + 0.2085 0.39 - 0.45) 

+ 0.1686 (1.37 - 0.60) + 0.1334 (l.26 - 0.76) 

+ 0.1013 (1.20 - 0.83) + 0.07ll (1.12 - 0.89) 

+ 0.0422 (1.08 - 0.92) + 0.0140 (1.05 - 1.00)]2 

= 0.968 

The critical value from Table A7 is 0.905. Since W > 0.905, we cannot 
reject the null hypothesis of normality, the same test result as in Exercise 
12.1. 



13 Characterizing 
Lognormal Populations 

The lognormal distribution is the most commonly used probability density model 
for environmental contaminant data. Therefore this chapter considers several 
estimation procedures for this distribution. More specifically, the chapter 

Gives optimal methods for estimating the mean and median 
Shows how to compute confidence limits about the mean and median 
Shows how to determine the number n of data needed to estimate the 

median 
Shows how to estimate quantiles 
Discusses the geometric mean and some problems with its use in evaluating 

compliance with environmental pollution limits. 

13.1 ESTIMATING THE MEAN 
AND VARIANCE 

We begin by giving four methods that can be used to estimate the mean p, and 
variance a2 of a lognormal distribution: (1) the sample mean X, (2) the minimum 
variance unbiased (MVU) estimator (i], (3) an easily computed estimator {i, and 
(4) the probability-plotting estimator. Which of these is used in practice depends 
on circumstances, as discussed in what follows. 

The arithmetic mean x is easy to compute. Furthermore, it is a statistically 
unbiased estimator of p, no matter what the underlying distribution may be 
(lognormal, normal, Weibull, etc.). If the underlying distribution is normal, it 
is also the MVU estimator of p,. Unfortunately, x does not have this MVU 
property when the underlying distribution is lognormal. Also, x is highly sensitive 
to the presence of one or more large data values. Nevertheless, even when the 
underlying distribution is lognormal, x is probably the preferred estimator if the 
coefficient of variation YJ is believed to be less than 1.2 (a rule suggested by 
Koch and Link, 1980). 

If statistical tests support the hypothesis of a lognormal distribution, the 
MVU estimator {i] described in Section 13.1.1 may be used. As a general rule, 
{i] is preferred to x if YJ > 1.2, that is, if the lognormal distribution is highly 
skewed, assuming that one has a good estimate of a;, the variance of the 
transformed variable Y = In X. Finally, the easily computed estimator {i, 
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described in Section 13.1.2, may be used to estimate /l if n is reasonably large 
and the distribution is lognormal. 

13.1.1 Minimum Variance Unbiased 
Estimators 

This section shows how to estimate /l and a2 from the MVU estimators ill and 
u~, developed independently by Finney (1941) and Sichel (1952, 1966). An 
MVU estimator of a parameter is one that is statistically unbiased and has the 
smallest sampling error variance of all unbiased estimators of the parameter. 
Hence, since ill is an MVU estimator, it has a smaller variance than x or the 
alternative estimators of /l given in Sections 13.1.2 and 13.1.3. However, ill 
is a biased estimator of /l if the distribution is not lognormal. 

To obtain ill, we first estimate the parameters /ly and a; of the lognormal 
distribution by computing 

1 n 

y = - ~ Yi 13.1 
ni=l 

13.2 

where y and s; are the arithmetic mean and variance of the n transformed 
values Yi = In Xi' Then compute 

~l = [exp (Y))'lrnC;) 13.3 

where exp (Y) is the sample geometric mean, and 'lrn(t) (with t = s~/2) is the 
infinite series 

13.4 

This series can be programmed on a computer, or one may use tables of 
'lrn(t) given by Aitchison and Brown (1969, Table A2), Koch and Link (1980, 
Table A7), or Sichel (1966). (Sichel's table is entered with t = (n - l)s;ln 
rather than t = s;I2.) Portions of these tables are given here as Table A9. 
Also, Agterberg (1974, p. 235) gives a table from which 'lr net) can be obtained 
for t up to 20, and Thoni (1969) published tables for use when logarithms to 
base 10 are used. 

An unbiased estimator of the variance of ill is (from Bradu and Mundlak, 
1970, Eq. 4.3) 

I[ (S;)J2 [s~(n - 2)lJ 
s2(ill) = exp (2y) l 'lrn 2. - 'lrn n - 1 J 13.5 

where y and s; are computed from Eqs. 13.1 and 13.2. To obtain the first and 
second 'lrn(t) terms in Eq. 13.5, enter Table A9 with t = s;/2 and t = 

s;(n - 2)/(n - 1), respectively. 
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The MVU estimator of the variance (J2 of a two-parameter lognormal 
distribution was found by Finney (1941) to be 

EXAMPLE 13.1 

Table 13.1 gives 10 data that were drawn at random (using a 
computer) from a 2-parameter lognormal distribution with parameters 
/J-y = 1.263 and a; = 1.099. We use iii to estimate the mean /J- = 
exp (/J-y + a;/2) = 6.126 of this distribution, using the 10 data. 
We also estimate Var(iil) using Eq. 13.5. Equations 13.1 and 13.2 
give y = 1.48235 and s~ = 0.56829 (see Table 13.1). Using linear 
interpolation in Table A9, we find 'Ir 10(0.56829/2) = 1.2846. 
Therefore, Eq. 13.3 gives 

iii = 4.403(1.2846) = 5.66 

which is smaller than the true mean /J- = 6.126 of the distribution. 
Equation 13.5 gives 

s2Ciil) = exp C2.964) {['Ir 1O(0.28414)f - 'Ir IOCO.5051)} 

= 1.97 

or the standard error s(ii I) = 1.40. Hence. our estimate of /J- is 
iii = 5.66, and its standard error is 1.40. These estimates may be 
compared with x = 5.89 and sex) = 1.80. For this data set x is 
closer than Al to /J- = 6.126. 

Table 13.1 Ten Data Drawn at Random 
from a Two-Parameter Lognormal 

Distribution with Parameters My = 1.263 
and a; = 1.099 

Xi Yi = In Xi 

3.161 1.1509 
4.\5\ 1.4233 
3.756 1.3234 
2.202 0.7894 
\.535 0.4285 

20.76 3.0330 
8.42 2.1306 
7.81 2.0554 
2.72 1.0006 
4.43 1.4884 

x = 5.89 Y = 1.48235 
s; = 32.331 s~ = 0.56829 

s, = 5.69 s, = 0.75385 

s(x) = \.80 exp(ji) = 4.40 
= sample geometric mean 

13.6 
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As estimate of a 2 is obtained from Eq. 13.6: 

a-i 19.389['1'10(1.1366) - '1'10(0.50515)] 

19.8 

which is considerably smaller than the true variance a2 = (6.126)2 . 
[exp (1.099) - IJ = 75.1. This discrepancy shows the importance 
of obtaining precise estimates of J.ty and a; when using PI and uf 
to estimate J.t and a 2 . Using more than n = lO data is clearly 
desirable. 

13.1.2 Less Efficient But Simpler 
Estimators 

A simple method of estimating the mean J.t and variance a2 of the two-parameter 
lognonnal distribution is to replace /-tv and a~ by y and s~ in the fonnulas for 
J.t and a 2 • We get 

( s~) p. = exp y + "2 13.7 

and 

13.8 

For example, using the data in Table 13.1, we obtain 

( 0.56829) P = exp 1.48235 + 2 = 5.85 

and 

82 = (5.85)2[exp (0.56829) - 1] = 26.2 

The variance of P may be approximated as follows by using a result m 
Kendall and Stuart (1961, p. 69): 

s\P) == exp (2Y + s:) ~ (1 _ 2:~) -(n - 1)/2 

(s~) ( s~) -(n - I)J 
. exp - 1 - -

n n 
13.8a 

Using the data in Table 13.1, we find s;'ln = 0.056829, so Eq. 13.8a gives 
S2(p.) = 2.6387, or s(p.) = 1.6. 

The mathematical expected value (over many repetitions of the experiment) 
of P is (from Kendall and Stuart, 1961, p. 68): 

I ( S2)l ( a2)-(Il-I)!2 ( 1) 
E L exp y + ; J = /-t 1 - : exp - n 2~ a~ 

= (true mean) (bias factor) 
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Hence, p, is biased upward for /J-, but the bias factor approaches zero as n 
becomes large. For example, if n = 20 and a; = 2, then the bias factor = 
1.0522, indicating a 5.22 % positive bias on the average. If n = 100, the bias 
factor is only 1.010, a 1 % bias. 

Note that p, will tend to decrease as n increases because the bias goes to 
zero for large n. This effect should be kept in mind if p, is used to evaluate 
compliance with environmental pollution guidelines. For example, one facility 
emitting pollutants might be declared in compliance, whereas another is not, 
solely because the first took more samples, not because it was emitting lower 
levels of pollution. This problem does not occur if x or P,I are used to estimate 
/J-. The same problem occurs if the geometric mean is used to estimate the true 
median of a lognormal distribution, as discussed in Section 13.3.3. Also see 
Landwehr (1978). 

13.1.3 Probability Plotting 
In Section 11.2 we used probability plotting to estimate the mean and variance 
of a normal distribution. A similar procedure may be used to estimate the 
parameters /J-y and a; of the lognormal distribution, which can in tum be used 
to estimate the mean, /J-, and variance, a 2 , of the distribution. 

First, order the n untransformed data from smallest to largest to obtain the 
order statistics XIII ~ x[21 ~ • • • ~ x[nj' Then plot Xli] versus (i - 0.5) 
100ln on log-probability paper and fit a straight line by eye (or use the objective 
method of Mage, 1982) if the plotted points fall approximately on a straight 
line. Then the 0.16,0.50, and 0.84 quantiles (XOI6, XO. 50, and XO.84, respectively) 
are read from the plot and are used as follows to estimate /J-y and a; (from 
Aitchison and Brown, 1969, p. 32): 

P-y = In XO.50 13.9 

a~ = lIn [! (Xo. 5Q + XO' 84)l't l 2 XO.16 XO.50 J 13.10 

The mean and standard deviation of the distribution are then estimated by 
computing 

p, = exp (p,y + ~~) 13.11 

a = p,[exp (a~) - 1]1/2 13.12 

Estimates of the geometric mean, exp (/J-y)' and the geometric standard deviation, 
exp (a), are given by XO.50 and ~(xo5olxo.16 + x084Ixo50), respectively. 

Probability plotting is a quick way to evaluate whether the data are likely to 
have come from a two-parameter lognonnal distribution-that is, by checking 
whether a straight line fits the plotted points. If so, the foregoing procedure is 
used to estimate /J-. If not, probability plotting techniques for other hypothesized 
distributions, such as the normal, Weibull, gamma, and exponential, can be 
tried by using methods given by, for example, Hahn and Shapiro (1967) and 
King (1971). 
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Figure 13.1 Log-probability plot of the data in Table 13.1. 

EXAMPLE 13.2 

99.9 

99 

Return to the n = 10 data in Table 13. 1. Since these data are drawn 
from a 2-parameter lognormal distribution, the ordered data should 
plot as a straight line on log-probability paper. This plot is given in 
Figure 13.1. The eyeball fit straight line is used to obtain the 
percentiles XO.16 = 1.95, xo.so = 4.3, and XO.84 = 9.5. Using these 
in Eqs. 13.9 and 13.10 gives fi y = 1.459 and a; = 0.6268. These 
values deviate from the true values J.ty = 1.263 and a; = 1.099 
because of random sampling error and the subjective (eyeball) fit of 
the line to the points. Using fiy and a~ in Eq. 13.11 estimates the 
mean to be 5.88 as compared to x = 5.89, fi = 5.85, and fi, = 
5.66. 

13.2 CONFIDENCE LIMITS FOR 
THE MEAN 

% 

Thus far we have discussed methods for estimating the mean J.t of a two­
parameter lognormal distribution. We now see how to obtain confidence limits 
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for /-to If n is large, the simple method (Eq. 11.8) in Section 11.7 may be used. 
However, if one is confident that the underlying distribution is lognormal, the 
method discussed in this section is preferred. 

Land (1971, 1975) showed that the upper one-sided 100(1 - a) % and the 
lower one-sided 100a % confidence limits for /-t are obtained by calculating 

13.13 

and 

(
_ 2 SyHa) 

LLa = exp y + 0.5s, + ~ 13.14 

respectively, where y and s; are calculated using Eqs. 13.1 and 13.2, respectively. 
The quantities HI _ a and HOI are obtained from tables provided by Land (1975), 
a subset of which are given here in Tables AIO-A13. The values of HI-a and 
HOI depend on SY' n, and the chosen confidence level a. 

EXAMPLE 13.3 

Suppose n = 15 data have been drawn at random from a 2-parameter 
lognormal population. We estimate the mean /-t of this population, 
using the MVU estimator (J,I (Eq. 13.3); we then obtain the upper 
and lower one-sided 90% confidence limits about /-t, using Eqs. 
13.13 and 13.14. 

Suppose the n = 15 data give y = 1.8 and s; = 4.0. Then Eq. 
13.3 gives 

,1[ = exp (1.8) W1S(2) ,= 6.0496(5.439) = 33 

where wI5(2) is obtained from Table A9. Entering Table AlO with 
n = 15 and Sy = 2.0, we obtain Ho.9o = 3.244. Hence, 

( 2(3.244)) 
ULo.9o = exp 1.8 + 0.5(4) + Ji4 

= 253 

Entering Table All with n = 15 and Sy = 2.0, we find Ho.lo 
-1.733. Hence, 

( 2( - 1. 733)) 
LLoio = exp 1.8 + 0.5(4) + Ji4 

= 17.7 

In summary, /-t is estimated to be 33 with lower and upper one­
sided 90% limits of 18 and 250. The interval 18 to 250 is the two­
sided 80% confidence interval about /-to To obtain one-sided upper 
and lower 95 % limits (equivalent to a two-sided 90 % confidence 
interval about /-t) use Tables Al2 and Al3. 

In practice, H may be required for values of Sy and n not given in Tables 
A10-A13. Land (1975) indicates that cubic interpolation (four-point Lagrangian 
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interpolation; Abramowitz and Stegun, 1964, p. 879) appears to be adequate 
with these tables. 

13.3 ESTIMATING THE MEDIAN 

The true median of an underlying distribution is that value above which and 
below which half the distribution lies. If the distribution is symmetrical, then 
the median equals the mean iJ-. But for the two-parameter lognormal or other 
right-skewed distributions, the true median is less than iJ-. For left-skewed 
distributions the median exceeds iJ-. 

13.3.1 Sample Median 

The median of any distribution, no matter what its shape, can be estimated by 
the sample median. First, the data are ranked from smallest to largest. Then 
the sample median (median of the n data) is computed from the sample order 
statistics x[lJ :5 x[2] • • • :5 x[nJ as follows: 

sample median = x[(n + 1)/2] if n is odd 

if n is even 

Uses of the sample median are discussed in Section 14.2.2. 

EXAMPLE 13.4 

We estimate the median of the population from which the n = 10 
data in Table 13.1 were drawn. Since n = 10 is even, the sample 
median is 

~(X[10/2] + x[I2d = ~(X[5] + X[6]) = ~(3.756 + 4.151) = 3.95 

Hence, for this particular set of data, the sample median is larger 
than exp (iJ-y ) = exp (1.263) = 3.536, the true median of the 
population. 

13.3.2 Minimum Variance Unbiased 
Estimator 

13.15 

13.16 

As we noted earlier, using the sample median to estimate the true median is 
appropriate no matter what the underlying distribution may be. However, if the 
distribution is known to be lognormal, other methods can also be used. One 
approach is to prepare a log-probability plot of the data, as discussed in Section 
13.1. 3. Then the true media is estimated by the 50th percentile, XO.50, obtained 
from the straight line. 

If the distribution is truly lognormal, and if the lognormal distribution 
parameter a~ (defined in Table 12.1) is known a priori, an unbiased estimator 
of the true median is 

( 2) ..... a v 

M1 = exp (y) exp -2 13.17 
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If an estimate s~ of a; is available, s~ could be used in place of a; in Eg. 
13.17. However, the preferred approach is to use the MVU estimator given by 
(from Bmdu and Mundlak, 1970) 

M2 = exp (y) 'lFn(t) 

where t = -s;/[2(n - 1)] and 'lFnCt) is the infinite series defined by Eg. 13.4. 
Using this value for t and the first five terms of Eq. 13.4, we obtain the 
approximate expression 

I s~ (n - l)(s~)2 
M2 == exp (Y)L1 - 2n + 2!(2n?(n + 1) 

(n - 1)2(S;)3 (n - 1)3(s;)4 l 
- 3!(2n)\n + l)(n + 3) + 4!(2n)\n + l)(n + 3)(n + 5) 13.18 

Additional terms in the 'IF n(t) series may be required before 'IF n(t) stabilizes 
if s; is very large and n is small. An unbiased estimator of Var(M2) is (Bradu 
and Mundlak, 1970, Eq. 4.3) 

s2(M2) = exp (2Y)\l'IFn(--~)Y - 'lFn(-~)] L 2(11 - 1) J n - 1 

13.3.3 Sample Geometric Mean 

The sample geometric mean (GM) is computed as 
n 

GM = II xl!n = exp (y) 
i= I 

where 

1 II 1 n 

y = - 2..; Yi ,= - 2..; In Xi 
n i= I n i= I 

It is tempting to estimate the true median exp (/J-y) of a lognormal distribution 
by computing the GM-that is, by simply replacing /J-y in this expression by 
the estimate y. However, in the previous section we learned that the GM is a 
biased estimator of exp (/J-y)' The bias factor is exp (a~l2n), since (from 
Aitchison and Brown, 1969, p. 45) 

(a;) E(GM) = E[exp (y)] == exp (/J-J exp -'-
. 211 

= (true median) (bias factor) 13.19 

The bias factor is positive and decreases as 11 increases and/or as a; (or 
equivalently the skewness of the lognormal distribution) becomes small. 

The GM is also a biased estimator of the mean of the two-parameter lognormal 
distribution. This fact can be seen by writing Eg. 13 .19 in a different way 
(from Aitchison and Brown, 1969, p. 45): 

E(GM) = /J- exp (- n - 1 a~) 
2n . 

= (true mean) (bias factor) 
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In this case the bias factor is less than 1, so the GM tends to underestimate 
the true mean. Furthermore, this bias does not go to zero as n increases. 

In summary, if the underlying distribution is known to be lognormal, then 
the sample GM estimates the true GM if n is reasonably large, but the sample 
GM should not be used to estimate the mean /-t unless 0'; is very near zero. 

Landwehr (1978) discusses some properties of the geometric mean and some 
problems inherent in its use for evaluating compliance with water quality 
standards for microbiological counts. The basic problem, which is generic to 
all compliance situations, is that the sample GM will tend, on the average, to 
be smaller if a larger number of samples is collected. Hence, one facility 
emitting pollutants might be declared in compliance, whereas another is not, 
solely because the first took more samples. We discussed in the last paragraph 
of Section 13.1. 2 that this same problem occurs if P- (Eq. 13.7) is used to 
estimate the lognormal mean. Landwehr (1978) shows that this problem also 
occurs for other distributions, such as the Weibull and gamma. 

13.4 CONFIDENCE LIMITS FOR THE 
MEDIAN 

An approximate two-sided 100(1 - (X) % confidence interval for the true median 
of a lognormal distribution is obtained by computing 

exp (y) exp (-tl-aI2,n-1Sy) :5 exp (iJ.y) :5 exp (y) exp (t1-al2,n-1Sy) 13.20 

or equivalently, 

exp (y) 
__ ~--'-'--c--_ :5 exp (/-t",.) :5 exp (y) [exp (s_y)](I-aI2,n-l 
[exp (Sy))'I-al2,n-l 

where exp (Sy) is the sample geometric standard error, and tl _ al2,n _ I is obtained 
from Table A2. These lower and upper limits, given by the left and right sides 
of Eq. l3.20 are approximate when n is small and 0'; is large since in this 
situation exp (y) is a biased estimator of exp (iJ.y)' However, the bias factor 
(O';l2n) (from Eq. 13.19) will be near zero even for rather small n unless a; 
is very large. 

The use of Eq. 13.20 requires the underlying distribution to be lognormal. 
However, a two-sided 100(1 - (X) % confidence interval for the true median 
from any continuous underlying distribution can be easily obtained from Table 
A14 if the data are not correlated. This table gives values for integers I and u 
such that the order statistics x[1] and x[u] are the estimated lower and upper 
limits. 

For example, suppose two-sided 95 % confidence limits are desired, and a 
random sample of n = 10 independent measurements from some unknown 
underlying distribution has been obtained. From Table A14 we find for (X = 
0.05 and n = 10 that l = 2 and u = 9. Hence, the lower and upper 95% 
confidence limits are given by the second and ninth largest data values, 
respectively, in the random sample of ten measurements. For the n = 10 data 
in Table 13.1, we find X[2] = 2.202 and X[9] = 8.42, which are the lower and 
upper 95% limits about the true median. Values of land u for n as large as 
499 and for (X = 0.10, 0.05, 0.025, 0.01, 0.005, and 0,001 are given by Geigy 
(1982, pp. 103-107). 
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If n is fairly large, say n > 20, approximate values for land u may be 
obtained as follows: 

n+l Z'-Dl/2..hz 
l=------

2 2 
13.21 

n + 1 Z, - (X/2..hz 
u=--+-----'-'--- 13.22 

2 2 

where Z, _ 0<12 is obtained from Table A 1. For example, if n 100 independent 
measurements are drawn at random from a population and a 95 % confidence 
interval about the true median is desired, then ZO.975 = 1.96, and Eqs. 13.21 
and 13.22 give l = 40.7 and u = 60.3. The value of the lower confidence 
limit, X1407j, is obtained by linear interpolation between the 40th and 41st sample 
order statistics. Similarly, the upper limit, XI60.3j, is obtained by linear interpolation 
between the 60th and 61st sample order statistics. 

13.5 CHOOSING n FOR ESTIMATING 
THE MEDIAN 

Hale (1972) derived the following expression for approximating the number of 
independent observations, n, required for estimating the true median of a 
lognormal distribution: 

Z 2 2 
'-Dl/2 S " n = -----~-~~-~-

[In (d + 1)]2 + ZT -DlI2S;1N 
13.23 

where d is the prespecified relative error in the estimated median that can be 
tolerated, 100(1 - ex) % is the percent confidence required that this error is not 
exceeded, and s; is given by Eq. 13.2. 

For example, suppose we choose d = 0.10 (10% relative error) and ex = 
0.05, and that prior studies give s; = 2.0. Also, suppose the size, N, of the 
population is very large. Then Eq. 13.23 gives 

(1.96)2(2) 
n = 0 == 845.8 == 846 

(In LIt 

If the budget will not allow collecting this much data, we must either accept a 
larger percent error or smaller confidence (larger ex). For example, if d is set 
at 0.50 (50% relative error) and ex = 0,05, we obtain n = 47. 

13.6 ESTIMATING QUANTILES 

Estimates of quantiles other than the median are frequently needed to evaluate 
compliance with standards or guidelines, For example, as discussed by Crager 
(1982), one way to evaluate whether air quality standards for ozone have been 
violated is to estimate the 1 - 1/365 =, 0.99725th quantile of the population 
of daily maximum ozone readings. By definition, the 0.99725th quantile is that 
daily maximum reading that exceeds 100(0.99726) = 99.726% of the popUlation 
and is exceeded by 100(0.00274) = 0.274% of the population. 
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One method of approximating quantiles of a lognormal distribution is to read 
the quantile directly off a log-probability plot. For example, using the log­
probability plot in Figure 13.1, the 0.75 and 0.99 quantiles are estimated to be 
7.4 and 28, respectively. This method is subjective, since the line is drawn by 
eye and it is a matter of judgment whether the plotted data are adequately fit 
by a straight line. These problems can be overcome by using the objective 
fitting and testing procedures of Mage (1982). However, estimating extreme 
quantiles from a region of the line that extends beyond the range of the data 
is not recommended. 

Since the data in Table 13.1 were drawn from a two-parameter lognormal 
distribution, the true pth quantile is exp (/-ty + Z" av ), where Zp cuts off 100(1 
- p)% of the upper tail of the standard normal distribution. Since /-tv = 1.263, 
a; = 1.099, and ZO.99 = 2.3263 (from Table AI), the true 0.99 'quantile is 
exp [1.263 + 2.3263(1.04833)] = 40.5, as compared to the estimate of 28 
obtained from the probability plot. The difference between 40.5 and 28 illustrates 
the difficulty of estimating extreme quantiles by probability plotting when only 
ten data from the population are available. 

Rather than use probability plotting to estimate a quantile x" of a two­
parameter lognormal distribution, we may compute 

XI' = exp (Y + ZpSy) = exp (5i) exp (ZpSy) 

Using the data in Table 13.1, we obtain, using Eq. 13.24, 

XO.99 = exp [1.48235 + 2.3263(0.75385)] = 25.4 

13.24 

which is similar to the estimated 0.99 quantile obtained earlier by probability 
plotting. 

We note that Saltzman (1972) gives a nomograph for estimating quantiles, 
using Eq. 13.24, that eliminates the need for looking up Z" in Table AI. The 
nomograph gives the value of exp (Zps.) for given values of p and Sy. Then 
exp (Zpsv) is multiplied by the sample geometric mean exp (5i) to obtain xp-

13.7 SUMMARY 

This chapter focused on the lognormal distribution, since it is so frequently 
used. Methods for estimating the mean and median of that distribution have 
been given, with the warning that they will result in biased results if the 
underlying distribution is not lognormal. Alternative methods are also given 
since they perform well under certain conditions and are easier to compute. We 
have also provided methods for computing confidence limits for the mean and 
median, for estimating quantiles other than the median, and for deciding how 
many samples, n, are required for estimating the median. 

EXERCISES 

13.1 In Example 13.3 find the two-tailed 90% confidence interval about /-t, 

using y = 1.8, s; = 4.0, and Land's method. 

13.2 Suppose n = 30 observations from a lognormal distribution have been 
obtained and that Eqs. 13.1 and 13.2 yield y = 1.2 and s; = 4.0, using 



176 Characterizing Lognormal Populations 

those data. Estimate the median of the lognonnal population using Eg. 
13.18. Estimate the standard error of this estimate. 

13.3 Suppose 30 observations are drawn at random from a lognonnal distribution 
and the sample mean and variance of the logarithms of these data are y 
= 1.2 and s; = 4.0, as in Exercise 13.2. Compute a 95% confidence 
interval for the true median of the underlying distribution. 

13.4 In Exercise 13.3 detennine the order statistics of the sample of size 30 
that are the 95% limits on the true median (use Egs. 13.21 and 13.22). 

13.5 How many randomly drawn observations from a lognonnal distribution 
should be taken to estimate the median with a relative error no larger 
than 20% with 90% confidence if preliminary data give s; = 1.5. Assume 
the size of the target population is very large. Repeat the calculations, 
using a relative error of 50%. 

ANSWERS 

13.1 

13.2 

( 2(4.564») 
ULo 95 = exp 1.8 + 0.5(4) + r:;-; = 513 

. . v14 

( 2(-2.144») 
LLo 05 = exp 1.8 + 0.5(4) + r:;-; = 14 

. . v14 

M2 = 3.320[1 - 0.066667 + 0.002078853 

- 0.000040597 + 0.000000561] 

= 3.1 

s2(M2) = 11.02318{['lr30(-0.06897)f 

- 'lr 30( -0.27586)} 

'lr30( -0.06897) = 0.935368 

'lr 30( -0.27586) = 0.76414 

Therefore, sCM 2) = 1.1 = standard error of M 2' 

13.3 When n = 30, (0.975,29 = 2.045 (from Table A2). By Eg. 13.20, the 
lower and upper limits are 1.6 and 7.0. 

13.4 Since n = 30 and ZO.975 = 1.96, we have I = 10.13 and u = 20.87. 
Therefore the lower limit is 13 % between the 10th and 11 th largest 
observations. The upper confidence limit is 87 % between the 20th and 
21 st largest observations. 

13.5 Using Eg. 13.23 with d = 0.20 gives n = 123, and with d = 0.50 
gives n = 25. 



14 Estimating the Mean 
and Variance from 

Censored Data Sets 

In some environmental sampling situations the pollution measurements are 
considerably greater than zero, and measurement errors are small compared to 
variations in true concentrations over time and/or space. In other situations the 
true concentration of the sample being measured may be very near zero, in 
which case the measured value may be less than the measurement limit of 
detection (LOD). In this situation, analytical laboratories may report them as 
not detected (ND), zeros, or less-than (LT) values. Data sets containing these 
types of data are said to be "censored on the left" because data values below 
the LOD are not available. 

These missing data make it difficult to summarize and compare data sets and 
can lead to biased estimates of means, variances, trends, and other population 
parameters. Also, some statistical tests cannot be computed, or they give 
misleading results. One problem, the topic of this chapter, has to do with how 
to estimate the mean Il and variance a 2 of a population when only a censored 
data set is available. We begin by considering the several ways laboratories 
may report measurements, and the biased estimates of Il and a 2 that can result 
when actual measurements are not available. We then discuss the median, 
trimmed mean, and Winsorized mean and standard deviation, methods that may 
be used on censored data sets. Then two methods (probability plotting and 
maximum likelihood) are given for using a censored data set to estimate Il and 
a 2 of a population that has a normal or two-parameter lognormal distribution. 

14.1 DATA NEAR DETECTION LIMITS 

Keith et a1. (1983) define the LOD as "the lowest concentration level that can 
be determined to be statistically different from a blank." When a measurement 
is less than the LOD (however it is defined), the analytical laboratory may: (1) 
report the datum as "below LOD," (2) report the datum as zero, (3) report an 
LT value-that is, a numerical value (usually the LOD) preceded by a "<" 
sign, (4) report some value between zero and the LOD, for example, one half 
the LOD, as suggested by Nehls and Akland (1973), or whenever possible (5) 
report the actual concentration (positive or negative) whether or not it is below 
the LOD. 
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The last option, the reporting of actual concentrations, is the best procedure 
from both practical and statistical analysis points of view, as discussed by 
Rhodes (1981), assuming the very small measurement values are not the result 
of a measurement bias in the laboratory. Environmental Protection Agency 
(1980, Chapter 6) discusses detection limits for radionuclides, emphasizing that 
these limits are estimated quantities that should not be used as a posteriori 
criterion for the presence of radioactivity. Reporting only "below LaD" or 
zero throws away information useful to the data analyst. Evidence of this loss 
is supplied by Gilliom, Hirsch, and Gilroy (1984), who showed, using computer 
Monte Carlo experiments, that linear trends in data near detection limits are 
more likely to be detected if data sets are not censored-that is, if the actual 
concentrations for all analyses are used rather than only those above the detection 
limit. 

Keith et al. (1983) recommend that measurements below the LaD (as they 
define it) be reported as ND and that the LaD be given in parentheses. It is 
strongly recommended here that, whenever the measurement technique permits, 
report the actual measurement, whatever it may be, even if it is negative. 
Similar recommendations are also made by Environmental Protection Agency 
(1980, Chapter 6) and American Society of Testing Materials (1984). 

14.2 ESTIMATORS OF THE MEAN 
AND VARIANCE 

14.2.1 Biased Estimators 

If only LT values are reported when a measurement is below the LaD, the 
mean J.I. and variance a 2 of the population might be estimated by computing the 
sample mean x and variance S2 in one of the following ways: 

1. Compute x and S2 using all the measurements, including the LT values. 
2. Ignore LT values and compute x and S2 using only the remaining "detected" 

values. 
3. Replace L T values by zero and then compute x and S 2. 

4. Replace L T values by some value between zero and the LaD, such as one 
half the LaD; then compute x and ,\'2. 

The first three methods are biased for both J.I. and a 2 • The bias of the second 
method is illustrated in Environmental Protection Agency (1980, Chapter 6). 
The fourth method is unbiased for J.I. (but not for a 2) if the analytical measurement 
technique cannot result in negative measurements, and if all measurements 
between zero and the LaD are equally likely to occur-that is, if they have a 
uniform distribution. Kushner (1976) studied this fourth method when aerometric 
data below the detection limit are lognormal. For his application (pollution data) 
he concluded that biases in using the midpoint would be overshadowed by 
measurement error. 

If the reported data set consists almost entirely of L T values, one could use 
the first method (averaging all the data, including L T values) and report the 
resulting value of x preceded by a "<" sign. In this case the complete data 
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set should be reported, if possible, including the LT values. As a minimum, 
the number of LT values used in computing .x and S2 should be indicated. 

14.2.2 Sample Median 
Instead of computing .x when the data set is censored, one could compute the 
sample median. This approach is appropriate for estimating the mean if the 
underlying distribution is symmetric. The median can be estimated even if 
almost half the data set consists of NDs, L T values, or "trace." The reason 
is that the median is computed by using only the middle value of the ordered 
measurements if n is odd, or the average of the two middle values if n is even 
(see Eqs. 13.15, 13.16). The median is also not affected by erratic extreme 
values (errors or mistakes), that is, it is robust or resistant to outliers. If the 
distribution is asymmetric, then the sample median estimates the median of the 
popUlation rather than the mean. Hence, the sample median will tend to be 
smaller than the true mean 11 if the distribution is skewed to the right and larger 
than the true mean if the distribution is skewed to the left. 

14.2.3 Trimmed Mean 
An alternative to computing the median of n data values is to compute a lOOp % 
trimmed mean, where 0 < p < 0.50, that is, to compute the arithmetic mean 
on the n(1 - 2p) data values remaining after the largest np data values and 
the small~st np data values are eliminated (trimmed away). If the number of 
measurements reported as NDs, LT, or "trace" are no more than np, then the 
trimmed mean can be computed. The degree of trimming (p) that can be used 
will depend on the number of these values that are present. The number of data 
trimmed off both ends of the ordered data set is the integer part of the product 
pn. When n is even, the most extreme case is when all but the middle two 
data are trimmed away. In that situation the trimmed mean is just the sample 
median. 

The trimmed mean is usually recommended as a method of estimating the 
true mean of a symmetric distribution to guard against outlier data (very large 
data that are mistakes or are unexplainable). Hence, it may be useful even if 
the data set does not contain NDs or L T values. When the underlying distribution 
is symmetric, Hoaglin, Mosteller, and Tukey (1983) suggest that a 25% trimmed 
mean (the midmean) is a good estimator of 11. Hill and Dixon (1982) considered 
asymmetric distributions and found that a 15 % trimmed mean was a "safe" 
estimator to use, in the sense that its performance did not vary markedly from 
one situation to another. Mosteller and Rourke (1973) give an introductory 
discussion of trimmed means. David (1981) considers the statistical efficiency 
of trimmed means. 

EXAMPLE 14.1 

Suppose fl = 27 data are collected from a symmetric distribution 
with true mean /1. If we want to estimate /1 using a 25 % trimmed 
mean, we first compute 0.25/1 = 0.25(27) = 6.75. Hence, the 6 
smallest and 6 largest data are discarded. The arithmetic mean of 
the remaining 27 - 12 = 15 data is the estimate of /1. 



180 Estimating The Mean and Variance from Censored Data Sets 

14.2.4 Winsorized Mean and Standard 
Deviation 

"Winsorization" can be used to estimate the mean, /-t, and standard deviation, 
G, of a symmetric distribution even though the data set has a few missing or 
unreliable values at either or both ends of the ordered data set. A detailed 
discussion of the method is given by Dixon and Tukey (1968). 

Suppose n data are collected, and there are three ND values. The Winsorization 
procedure is as follows: 

1. Replace the three ND values by the next largest datum. 
2. Replace the three largest values by the next smallest datum. 
3. Compute the sample mean, xw , and standard deviation, s, of the resulting 

set of n data. 
4. Then xw , the Winsorized mean, is an unbiased estimator of /-t. The Winsorized 

standard deviation is 

sen - 1) 
v-I 

which is an approximately unbiased estimator for G, where n is the total 
number of data values and v is the number of data not replaced during the 
Winsorization. (The quantity v equals n - 6 in this example because 3 ND 
values are present.) 

5. If the data are from a normal distribution, the upper and lower limits of a 
two-sided 100(1 - a)% confidence interval about /-t are 

_ Sw 

Xw ± t l -' od2 ,v-1 ,f;z 14.1 

where tl _ 0:/2, v _ I is the value of the t variate (from Table A2) that cuts off 
(1 OOal2) % of the upper tail of the t distribution with v-I degrees of 
freedom. (Note: Equation 14.1 is identical to the usual limits, Eq. 11.5, 
except the degrees of freedom are v-I instead of n - 1, and Sw replaces 
s.) One-sided limits on /-t can be obtained from Eqs. 11.6 and 11.7 using v 

- 1 degrees of freedom and s". 

Note the distinction between trimming and Winsorizing. Trimming discards 
data in both tails of the data set, and the trimmed mean is computed on the 
remaining data. Winsorizing replaces data in the tails with the next most extreme 
datum in each tail and then computes the mean on the new data set. 

EXAMPLE 14.2 

Suppose groundwater has been sampled monthly for 12 months from 
the same well, yielding the following concentrations for a hazardous 
chemical (ordered from smallest to largest): 

trace trace 0.78 2.3 3.0 
3.1 3.2 4.0 4.1 5.6 6.7 9.3 

Replace the two trace concentrations by 0.78 and the two largest 
concentrations by 5.6. The sample mean and standard deviation of 
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the new data set are Xw = 3.24 and s = 1.838, respectively. This 
Xw is a statistically unbiased estimate of J1,. The Winsorized standard 
deviation is 

( n - 1) s =s-­
w v-I 

1.838(11) 
= = 2.888 

7 

There are v-I = 7 degrees of freedom, and Table A2 gives 
to.975.7 = 2.365. Therefore, assuming the population is normally 
distributed, the 95 % upper and lower limits about J.I- are (using Eq. 
14.1) 3.24 ± 2.365(2.888)/m, or 1.27 and 5.21. 

If the data set is skewed to the right, the logarithms of the data 
may be approximately symmetric. For example, if the untransformed 
data are from a lognormal distribution, the logarithms are from a 
normal distribution. If so, Winsorization could be used to estimate 
the mean and standard deviation of the log-transformed data. These 
Winsorized estimates, Xw and sw, could then be used in Eqs. 13.7 
and 13.8 to estimate the mean and variance of the underlying 
lognormal distribution. 

14.3 TWO-PARAMETER LOGNORMAL 
DISTRIBUTION 

This section gives two methods for estimating J.I- and 0- 2 when only a censored 
data set from a two-parameter lognom1al distribution is available. These methods 
were developed for normal distributions, but they may also be used to estimate 
the parameters J.l-y and O'~ of the two-parameter lognormal distribution, which 
can be used in tum to estimate J.I- and 0'2. 

Two types of censoring can occur, depending on whether the number of 
measurements falling below the point of censorship is or is not specified before 
the measurements are made. If the number is not specified (i.e., if the number 
is a random variable) the censoring is called Type I. If the number is specified, 
we have Type II censoring. Type I censoring is perhaps more common for 
pollution data. Probability plotting can be used for either type. The maximum 
likelihood method differs slightly for the two types as described in Section 
14.3.2. 

Data sets may also be "censored on the right," meaning that all data values 
above some known point of censorship are not available. The two methods 
given here may be used with censoring either on the left or on the right. 

14.3.1 Probability Plotting 

In Section 13.1. 3 log-probability plotting was used to estimate the parameters 
J.l-y and a; of a two-parameter lognonnal distribution when a complete (uncensored) 
data set of size n was available. The same plotting procedure is used with a 
left-censored data set except that the data below the point of censorship, Xo 

(which may be the LOD or some other value), cannot be plotted. If the n' 
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smallest of the n data are missing, then the (n' + 1 )th ordered datum x[n' + 1] 

(smallest reported datum) is plotted versus [(n' + 1) - 0.5] 100In on log­
probability paper, and similarly for the (n' + 2)th datum x[n' +2] versus [(n' + 2) 
- 0.5]100In, and so on. If the measurements above Xo are from a lognormal 
distribution, then the resulting plot should be linear on log-probability paper. 
If so, a straight line is drawn through the points, and /1-, and a~ are estimated 
by Eqs. 13.9 and 13.10, respectively. Then the mean, /J-: and the variance, 0 2 , 

of the lognormal population are estimated by Eq. 13. 11 and the square of Eq. 
13.12, respectively. From Eq. 13.10 we see that if more than 16% of the data 
set is censored, a~ cannot be determined by Eq. 13.10. If the distribution is 
known with assurance to be lognormal, the straight line might be extended 
down to the 0.16 quantile. However, extrapolation into a region where no data 
are available is always risky. 

14.3.2 Maximum Likelihood Estimators 

Cohen (1959, 1961) used the method of maximum likelihood to obtain estimates 
of the mean and variance of a normal distribution when the data set is either 
left or right censored. His procedure can also be applied to estimate the mean 
and the variance of the logarithms of left or right-censored lognormally distributed 
data, since the logarithms are normally distributed. Then the mean and the 
standard deviation of the lognormal distribution can be estimated by Eqs. 13 .11 
and 13.12. 

We now describe Cohen's procedure for the lognormal case. Let n = total 
number of measurements Xi' k = number out of n that are above the LOD, Yi 

= In Xi' and Yo = In LOD. To estimate the mean /J-y and the variance a; of 
the log-transformed population, we 

1. Compute h = (n - k)ln = proportion of measurements below the LOD. 
2. Compute 

14.2 

and 
k 

2 1" - 2 
.I' u = - L, (Yi - y) 

k i= I 
14.3 

the sample mean and variance of the k measurements above the LOD. 
3. Compute 

.1'2 

-; = (__ u )2 
)'u - )'0 

14.4 

4. Obtain an estimate ~ of the parameter),. from Table A15. Enter the table 
with hand '9 and use linear interpolation in both horizontal and vertical 
planes if necessary. 

5. Estimate the mean and the variance of the log-transformed data as follows: 

(1, = v" - ~(yu - Yo) 14.5 

14.6 
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These estimates may then be used to estimate the mean and the variance of 
the lognormal distribution by computing 

( 8~) It = exp Ity + 2 14.7 

14.8 

This procedure is appropriate for Type I censored samples. For Type II 
censoring the procedure is the same except that Yo in Eqs. 14.5 and 14.6 is 
replaced by the logarithm of the smallest fully measured concentration-that is, 
of the smallest observed concentration above the LOD (Cohen, 1961, Eg. 3). 

If the censored data set is from a normal distribution, Egs. 14.2-14.6 are 
used to estimate J-t and a 2 of that distribution, where Yi = In Xi and Yo = 
In LOD are replaced by Xi and the LOD, respectively. 

EXAMPLE 14.3 

We use the mercury data in Table 12.3. For the sake of illustration, 
suppose the LOD is 0.20 ppm, so the smallest observation in Table 
12.3 is not available. The calculations are laid out in Table 14.1, 
yielding the following estimates of the mean and standard deviation 
of the lognormal population: It = l.1 and 8 = 0.93. 

Table 14.1 Computations to Estimate the Mean and Variance of a Two­
Parameter Lognormal Distribution Using a Left Censored Data Set 

(Example 14.3) 

1. The nine log-transformed data above the LOD = 0.20 are (from Table 12.3) 

YI = -0.7985 Y6 = 0.1823 

Y2 = -0.5108 Y7 = 0.3148 
Y3 = -0.2744 Ys = 0.5247 
Y4 = 0.04879 Y9 = 0.7227 
y, = 0.1133 

2. n = 10, k = 9, h = (10 - 9)/10 = 0.1, Yo = In LOD = - 1.6094 

3. Using Eqs. 14.2, 14.3, and 14.4, we obtain 

Yu = 0.03588 s~ = 0.21193 
l' = 0.21193/(0.03588 + 1.6094)2 = 0.07829 

Entering Table AI5 with h = 0.1 and l' = 0.07829, we find using linear interpolation, that 
~ = 0.1164. 

4. Therefore, Eqs. 14.5 and 14.6 give 

/J.y = 0.03588 - 0.1164(0.03588 + 1.6094) 
= -0.1556 

a;. = 0.21193 + 0.1164(0.03588 + 1.6094)2 
= 0.5270 

5. Therefore, using Eqs. 14.7 and 14.8, 

( 0.5270) /J. = exp -0.1556 + -2- = 1.114 or 1.1 

;; = (1.114)' [exp(0.5270) - II = 0.8611 or iJ = 0.93 
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14.4 THREE-PARAMETER 
LOGNORMAL DISTRIBUTION 

Suppose a left -censored data set has been drawn from a three-parameter lognonnal 
rather than from a two-parameter distribution. Recall from Chapter 12 that the 
third parameter is T, which shifts the two-parameter distribution to the right or 
left, depending on whether T is positive or negative, respectively. If T is known 
a priori, then the procedures given in Sections 14.3.1 and 14.3.2 can be applied 
to the transfonned data Xi - T rather than to the Xi' But estimation procedures 
become more complicated if T is not known a priori. In that case the simplest 
approach is to estimate T, subtract this estimate from each Xi' and use the 
procedure in Sections 14.3.1 or 14.3.2. 

The optimum method for estimating J-t and (12 is to use maximum likelihood 
methods if n is reasonably large (see discussions by Harter and Moore, 1966; 
Tiku, 1968; Ott and Mage, 1976; and Mage and Ott, 1978). These require 
iterative solutions on a computer. Two simpler approaches, the method of 
quantiles and a graphical trial-and-error procedure are illustrated by Gilbert and 
Kinnison (1981) and Aitchison and Brown (1969). 

14.5 SUMMARY 

This chapter considered methods for estimating the mean and variance of 
populations when data less than some known point, frequently the limit of 
detection, are censored-that is, they are not available to the data analyst. 
Simple procedures such as treating these missing values as if they were zero 
can lead to biased estimates. Three alternative methods that are unbiased for 
estimating the mean when the population distribution is symmetric are the 
median, trimmed mean, and Winsorized mean. Probability plotting and maximum 
likelihood methods are illustrated when the two-parameter lognonnal distribution 
applies. The methods given here may also be used when the data set is censored 
on the right (above some point) rather than on the left. 

EXERCISES 

14. 1 Compute the median and the 15 % trimmed mean on the following data 
set: 

34 18 22 32 48 35 5 
22 21 8 10 12 2 80 95 

14.2 Assume the two smallest data in Exercise 14.1 were reported as "not 
detected." Compute a Winsorized mean and standard deviation for this 
censored data set. 

14.3 Suppose the smallest mercury datum in Table 12.3 was less than the 
limit of detection (LOD), where LOD = 0.20. Assume the remaining 
(censored) data set was drawn from a nonnal distribution and use Cohen's 
(1961) procedure to estimate J-t and (12 of that nonnal distribution. 
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ANSWERS 

14.1 The median is 22. The trimmed mean is 23.8. 

14.2 Xw = 24.9 and Sw = sen - l)/(v - 1) = 15.026(14110) = 21. 

14.3 h = (10 - 9)/10 = 0.10. Using the untransfonned data in Eqs. 14.2, 
14.3, and 14.4, we obtain Xu = 1.144, s~ = 0.23620, 1 = 0.23620/ 
(1.144 - 0.20)2 = 0.26505. From Table A15, ~ = 0.1286. Therefore, 
by Eqs. 14.5 and 14.6, {l = l.0, 62 = 0.351 or 6 = 0.59. 



15 Outlier Detection and 
Control Charts 

An unavoidable problem in the statistical analysis of environmental pollution 
data is dealing with outliers. Hunt et a1. (1981) define an outlier to be "an 
observation that does not conform to the pattern established by other observa­
tions." Outliers may arise from mistakes such as transcription, keypunch or 
data-coding errors. They may also arise as a result of instrument breakdowns, 
calibration problems and power failures .. In addition, outliers may be manifes­
tations of a greater amount of inherent spatial or temporal variability than 
expected for the pollutant. They could also be an indication of unsuspected 
factors of practical importance such as malfunctioning pollutant effluent controls, 
spills, and plant shutdowns. 

This chapter briefly discusses data·screening and validation procedures, 
followed by recommendations on how to handle outliers in practice. The chapter 
then illustrates Rosner's procedure for detecting up to k outliers and a method 
for detecting outliers in correlated variables. The remainder of the chapter is 
concerned with how to use Shewhart control charts to look for consistent data 
over time or shifts in the mean or standard deviation of a time process. 

Many methods for detecting outliers are discussed by Beckman and Cook 
(1983), Hawkins (1980), and Barnett and Lewis (1978). Burr (1976) and 
Vardeman and David (1984) provide many references on control chart techniques. 
Kinnison (1985) discusses extreme value statistics, which are closely connected 
with the ideas of outlier detection. 

15.1 DATA SCREENING 
AND VALIDATION 

Statistical tests for outliers are one part of the data validation process wherein 
data are screened and examined in various ways before being placed in a data 
bank and used for estimating population parameters or making decisions. Nelson, 
Armentrout, and Johnson (1980) and Curran (1978) discuss data screening and 
validation procedures for air quality data. 

Nelson and co-workers identify four categories of data validation procedures. 

1. Routine checks made during the processing of data. Examples include looking 
for errors in identification codes (those indicating time, location of sampler, 
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method of sampling, etc.), in computer processing procedures, or in data 
transmission. 

2. Tests for the internal consistency of a data set. These include plotting data 
for visual examination by an experienced analyst and testing for outliers. 

3. Comparing the current data set with historical data to check for consistency 
over time. Examples are visually comparing data sets against gross upper 
limits obtained from historical data sets, or testing for historical consistency 
using the Shewhart control chart test. The Shewhart test was recommended 
by Hunt, Clark, and Goranson (1978) for screening 24-h air pollution 
measurements (one measurement per day) and is discussed in Section 15.6. 

4. Tests to check for consistency with parallel data sets, that is, data sets 
obtained presumably from the same population (e.g., from the same time 
period, region of the aquifer, air mass, or volume of soil). Three tests for 
doing so are the sign test, the Wilcoxon signed-ranks test, and the Wilcoxon 
rank sum test. These tests are discussed in Chapter 18. 

15.2 TREATMENT OF OUTLIERS 

After an outlier has been identified, one must decide what to do with it. Outliers 
that are obvious mistakes are corrected when possible, and the correct value is 
inserted. If the correct value is not known and cannot be obtained, the datum 
might be excluded, and statistical methods that were developed specifically for 
missing-value situations could be used. Examples of such methods are general 
analysis of variance and covariance (available in most commercial packages of 
statistical computer codes), estimating the mean and the variance from censored 
data sets by methods given in Chapter 14, and testing for trend by the Mann­
Kendall non parametric test (discussed in Chapter 16). Alternatively, the outlier 
could be retained, and a robust method of statistical analysis could be used, 
that is, a method that is not seriously affected by the presence of a few outliers. 
Examples of robust methods are the sample median, trimmed mean, and 
Winsorized mean (discussed in Chapter 14); the trend estimation and testing 
techniques given in Chapters 16 and 17; and the nonparametric tests for 
comparing populations in Chapter 18. 

It is important that no datum be discarded solely on the basis of a statistical 
test. Indeed, there is always a small chance (the ex level of the test) that the 
test incorrectly declares the suspect datum to be an outlier. Also, multiple 
outliers should not be automatically discarded since the presence of two or more 
outliers may indicate that a different model should be adopted for the frequency 
distribution of the population. For example, several unusually large measurements 
may be an indication that the data set should be modeled by a skewed distribution 
such as the lognormal. There should always be some plausible explanation other 
than the test result that warrants the exclusion or replacement of outliers. The 
use of robust methods that have the effect of eliminating or giving less weight 
to extreme values should also be justified as being appropriate. 

If no plausible explanation for an outlier can be found, the outlier might be 
excluded, accompanied by a note to that effect in the data base and in the 
report. In addition, one could examine the effect on final analysis procedures 
applied to the data set when the outlier was both included and excluded. A 
description of major effects should be included in the report. In some cases it 
may be feasible to take another sample for comparison with the old. 
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15.3 ROSNER'S TEST FOR 
DETECTING UP TO 
k OUTLIERS 

This section gives Rosner's (1983) "many-outlier" sequential procedure for 
identifying up to k = 10 outliers. The procedure is an improved version of 
Rosner's (1975) "extreme studentized deviate" outlier test. Simonoff (1982) 
found that this earlier test performed well compared to other outlier tests, 
although Rosner (1983) points out that it tends to detect more outliers than are 
actually present. This problem does not exist with the improved version discussed 
here. Rosner's (1983) method assumes that the main body of data is from a 
normal distribution. If the assumption of a lognormal distribution is more 
plausible, all computations should be performed on the logarithms of the data. 

Rosner's approach is designed to avoid masking of one outlier by another. 
Masking occurs when an outlier goes undetected because it is very close in 
value to another outlier. In Figure 15.1 datum B could mask datum A if an 
inappropriate outlier test for A is performed. 

To use Rosner's approach, we need to specify an upper limit k on the number 
of potential outliers present. Then we repeatedly delete the datum (large or 
small) farthest from the mean and recompute the test statistic after each deletion. 
Table Al6 (from Rosner, 1983) is used to evaluate the test statistic when n ;::: 
25. This table is also used when the null hypothesis specifies a lognormal 
distribution. Linear interpolation may be used to obtain critical values not given 
in the tables for Il between 50 and 500. A formula for obtaining approximate 
critical values when n > 500 is given in the footnote to Table A16. If n < 
25, Rosner's test cannot be used. In that situation, a test for a single outlier, 
such as that by Dixon (1953), may be used, but the problem of masking may 
occur. 

Rosner's tests are two-tailed since the procedure identifies either suspiciously 
large or suspiciously small data. When a one-tailed test is needed, that is, 
when there is interest in detecting only large values or only small values, then 
the skewness test for outliers discussed by Barnett and Lewis (1978) is suitable. 

Some notation is needed to illustrate Rosner's procedure. Let x(i) and sci) be 
the arithmetic mean and the standard deviation, respectively, of the n - i 
observations in the data set that remain after the i most extreme observations 
have been deleted. That is, 

I n - i 

xii) = -- :z:; x 
n-ij~1 } 

l 1 n-; ll/2 
sCi) = .. --. ~ (x. - X(i))2 

n-lj~1 ) 

15.1 

15.2 

where i ranges from zero to k. For example, X(I) and s(1) are the sample mean 

, 
o 

. - - ,- --
10 

•• I 

20 
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30 

B A 
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40 

Figure 15.1 How datum B can "mask" datum A if an inappropriate outlier test 
is conducted for the suspected outlier A 
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and the standard deviation of the n - 1 data remaining after the most extreme 
datum from :x(O) has been removed. Let xU) denote the most outlying observation 
(farthest from the mean :xli»~ remaining in the data set after i more extreme data 
(large or small) have been removed. Then 

Ix(i) - xli) I 

= test statistic for deciding whether the i + 
most extreme values in the complete data set are 
outliers from a normal distribution 

Ai + 1 = tabled critical value (Table A16) for comparison with Ri + 1 

15.3 

Rosner provides a FORTRAN IV computer code for computing the values of 
Ri + 1 for an arbitrary unordered data set. This code is given here in Table 15.1. 

The null hypothesis being tested by Rosner's method is 

Ho: The entire data set is from a normal distribution 

There are a series of alternative hypotheses: 

HA,k: There are k outliers. 
HA,k _ I: There are k - 1 outliers. 

HA . 1: There is one outlier. 

The first test is Ho versus HA.b which is made by comparing Rk with Ak' If Ho 
is not rejected, we test Ho versus HA,k _ 1 by comparing Rk _I with Ak _ 1, and 
so on, until one of the tests is statistically significant or all tests are nonsignificant. 
If the test of Ho versus HA,k -1 is significant, we conclude that k - 1 outliers 
from the assumed normal distribution are present. When one of the tests is 
significant, then no more tests are made. 

If the null hypothesis is 

Ho: The entire data set is from a lognormal distribution 

then Eqs. 15.1, 15.2, and 15.3 are computed on the logarithms of the data, in 
which case we use the notation ),(i) y-(i) sU) and R· instead of xli) :x(i) sci) , ~ Y' Y,l + I , , , 

and Ri + I, respectively. 

EXAMPLE 15.1 

Table 15.2 gives the logarithms of n = 55 total suspended particulate 
(TSP) air data that were collected every sixth day at a monitoring 
site (from Nelson, Armentrout, and Johnson, 1980, Table 3.11). 
The logarithms are ordered from smallest to largest. Since TSP data 
are frequently approximately lognormally distributed, we use Rosner's 
procedure to test the null hypothesis Ho: The entire data set is from 
a lognormal distribution. We are interested in testing whether outliers 
from this assumed lognormal distribution are present. We use a = 

0.05. 
Suppose that prior to seeing the data set, we had set k = 3. Then 

Ho is tested versus the following series of k = 3 alternative hypotheses: 
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Table 15.1 FORTRAN IV Program to Compute Values of R; f 1 for Rosner's 
(1983) Test for up to k Outliers 

SUBROUTINE WTCX,N,NSAM, 
NOUT,WTVEC,N1,Q) 

C COMPUTE ESD OUTLIER STATISTICS 
DIMENSION XCN), WTVECCN1),QCN) 
I 1=1 
SUM=O.O 
SUMSQ=O.O 
FN=O.O 
DO 2 1=1, NSAM 
QCI)=O.O 
SUM=SUM+XCI) 
SUMSQ=SUMSQ+XCI)**2 
FN=FN+1.0 

2 CONTINUE 
SS=SUMSQ-CSUM**2)/FN 
S=CSS/(FN-1.0»**.5 
XBAR=SUM/FN 
BIG=O.O 
IBIG=O 
DO 3 1=1, NSAM 
IFCQCI) .EQ.1.0) GO TO 3 
A=ABSCXCI)-XBAR) 
IFCA.LE.BIG) GO TO 3 
BIG=A 
IBIG=I 

3 CONTINUE 
WTVECCII)=BIG/S 
QUBIG)=1.0 
11=11+1 
IF UI.GT.NOUT) GO TO 999 
SUM=SUM-XCIBIG) 
SUMSQ=SUMSQ-XCIBIG)**2 
FN=FN-1.0 
GO TO 1 

999 RETURN 
END 

Source: After Rosner, 1983. 

where 
NSAM 

NOUT 

N 

N1 

x 

WTVEC 

sample size of data set 

maximum number of outliers 
to be detected 

maximum sample size for all 
data sets used with this 
subroutine on a given 
computer run 

maximum number of outliers 
to be detected for all data 
sets used with this subrou­
tine on a given computer 
run 

single-precision input vector 
of dimension N, whose first 
NSAM elements represent 
the unordered data set to 
which this subroutine is 
applied 

single-precision output vector 
of dimension N1 whose first 
NOUT elements are R i , 

... , RNouT 

Q single-precision input vector 
of dimension N used 
internally in the subroutine 

Table 15.2 Total Suspended Particulate (TSP) Data (Units of loge Jig/m 3) 

Ordered from Smallest to Largest 

2.56 3.58 3.83 4.06 4.32 
3.18 3.58 3.91 4.08 4.33 
3.33 3.64 3.91 4.09 4.33 
3.33 3.64 3.95 4.17 4.34 
3.40 3.69 3.97 4.17 4.44 
3.43 3.69 3.99 4.17 4.47 
3.43 3.71 4.03 4.23 4.48 
3.43 3.74 4.04 4.23 4.48 
3.50 3.76 4.04 4.26 4.62 
3.50 3.76 4.04 4.29 4.68 
3.50 3.81 4.04 4.32 5.16 

Source: Data from Nelson, Armentrout, and Johnson, 1980. 



o 

2 

Detecting Outliers in Correlated Variables 191 

Table 15.3 Computations for Using Rosner's (1983) Test for up to Three 
Outliers from a Lognormal Distribution 

n - i 

55 
54 
53 

3.94 
3.96 
3.94 

0.444 
0.406 
0.374 

2.56 
5.16 
4.68 

HA ,3: There are three outliers. 
HA,z: There are two outliers. 
H A, I: There is one outlier, 

3.11 
2.96 
1.98 

J..{ f 1 

(a = 0.05) 

3.165 
3.155 
3.150 

Values of y(i), s~), and Ry .i + I for i = O. I, and 2 were computed 
from the data in Table 15,2. These values are summarized in Table 
15.3. The terms )1(0) and s;O) are the mean and the standard deviation 
for all the data, whereas 5'(1) and S~I) were computed after deleting 
2.56, and y(Z) and S~2) after deleting 2.56 and 5.16. The most extreme 
datum, y(i), at each stage is also shown. The critical values in the 
last column of Table 15.3 were obtained by linear interpolation 
between the ex = 0.05 entries for n = 50 and Il = 60 in Table 
A16. That is, since there are 55 measurements in the data set, each 
of the Ai + I in Table 15.3 is halfway between the tabled values for 
n = 50 and n = 60. 

We first test Ho versus HA ,3 by comparing Ry ,3 with A3' Since 
Ry.3 = 1.98 is less than A3 = 3.150, we cannot reject Ho in favor 
of HA.3 . Next. we test Ho against HA,z by comparing Ry,z with A2' 
Since Rv.2 = 2.96 is less than Az = 3.155, we cannot reject Ho in 
favor of HA ,2' Finally, we test Ho against HA . 1 by comparing Rv•

' 
with AI' Since Ry,1 = 3.11 is less than Al = 3.165, we cannot 
reject Ho in favor of HA, I' We conclude that there are no outliers 
from the assumed lognormal distribution. 

15.4 DETECTING OUTLIERS IN 
CORRELATED VARIABLES 

Suppose the following Il paired data on two correlated variables x and z are 
obtained: (XI, ZI), (xz, Z2), ... , (xn' zn). We wish to determine whether any 
of the 2n observations are outliers. Rosner's test could be applied independently 
on each variable. However, if two variables are correlated, this additional 
information can be used to uncover outliers that would not be found by using 
a univariate procedure applied separately on each variable. 

An indispensable tool for outlier detection with bivariate data is the simple 
scatter plot of Xi against Zi for the n pairs of data. Visual inspection of these 
plots will identify points that seem too far removed from the main cloud of 
points. That is, these points may not be from the same bivariate distribution as 
the remaining points. An approximate probability plotting technique suggested 
by Healy (1968) and discussed by Barnett and Lewis (1978, p. 212) may be 
used to supplement scatter plots. The method consists of computing a "distance," 
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D, from the cloud of points for each of the n pairs of observations. The distance 
D; for the ith pair is calculated as follows: 

[-( _)2 ( --) ( -) ( -)2l1l2 
Di = L Xi ~ X - 2r Xi ~ -~ Zi ~ Z + Zi ~ Z J 15.4 

where X, Z, SO and Sz are the sample means and the standard deviations of the 
two variables, and r is the estimated correlation between X and Z, computed as 

" 

15.5 

If the pairs are assumed to be from a bivariate normal distribution except 
for possible outliers, then the ordered D values are plotted on normal probability 
paper. An obvious deviation from a straight line suggests either that the 
assumption of a bivariate normal distribution is erroneous or that one or more 
outliers are present. When a nonlinear plot occurs, the scatter plot should be 
examined to identify possible outliers. If these suspect points are deleted and 
the calculations and plotting redone, a resulting linear plot would suggest that 
the remaining points are from a bivariate normal distribution_ However, if a 
nonlinear plot is still obtained, this would suggest that the "nonoutliers" are 
not from a bivariate normal distribution. 

Healy (1968) and Barnett and Lewis (1978, p. 212) illustrate the technique 
on a data set of 39 pairs of data. If the population distribution is assumed to 
be bivariate lognormal rather than bivariate normal, then the Di would be 
calculated using the logarithms of the data, and would be plotted on normal 
probability paper. 

Nelson, Armentrout, and Johnson (1980) give a graphical procedure for 
identifying outliers from a bivariate norn1al or bivariate lognormal distribution 
that is closely related to Healy's method. They illustrate the technique, using 
TSP air quality data obtained at the same times at two measurement sites. 

15.5 OTHER OUTLIER TESTS 

Methods for detecting multivariate outliers are discussed by Everitt (1978, pp. 
67-73), Beckman and Cook (1983), Barnett and Lewis (1978), Rohlf (1975), 
Gnanadesikan and Kettenring (1972), and Hawkins (1974). Outliers in designed 
experiments are difficult to detect, but methods are discussed by Stefansky 
(1972), Snedecor and Cochran (1980, p. 280), and Barnett and Lewis (1978, 
pp. 238-249). Outliers from linear regression may be detected with methods 
discussed by Snedecor and Cochran (1980, pp. 167-169), Barnett and Lewis 
(1978, pp. 252-256), and Marasinghe (1985). 

Rather than identifying outliers and discarding them before doing least squares 
regression, one could do robust regression, as discussed and illustrated by 
Mosteller and Tukey (1977) and Reckhow and Chapra (1983). The objective 
of robust regression is to reduce the impact of data far removed from the 
regression line. Standard least squares methods are highly sensitive to divergent 
data points, whereas robust methods assign less weight to these points. However, 
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Reckhow and Chapra (1983) caution that robust regression should be applied 
only after the investigator is satisfied that less weight should be applied to the 
divergent data. Nonparametric regression discussed by Hollander and Wolfe 
(1973, p. 201) and Reckhow and Chapra (1983) is an alternative to either 
standard least squares regression or robust regression. 

15.6 CONTROL CHARTS 

Outlier tests discussed in Sections 15.2 and 15.3 check for the internal consistency 
of a data set. This section illustrates the use of Shew hart control charts for 
checking whether current data are consistent with past data. A lack of consistency 
over time may be an indication of data outliers. However, it could also indicate 
shifts or trends in mean concentrations or in levels of variability. Control charts 
are useful graphical tools because they provide a basis for action, that is, they 
indicate when changing data patterns over time should be examined to determine 
causes. 

The essential features of the chart for means is illustrated in Figure 15.2. 
The features of charts for ranges and standard deviations are similar, as will 
be illustrated. The control chart for means can detect outliers and shifts in 
average concentrations, whereas charts for ranges and standard deviations check 
for shifts in variability. For completeness, the control chart for means should 
be accompanied by a control chart for standard deviations or ranges. 

The general idea underlying the control chart for means is first to select k 
historical data sets and to compute the mean Xi' range Ri , and standard deviation 
Si for each, where the ith data set contains ni data. This information is used to 
construct the center line and the upper and lower control limits. Then if the k 
subgroup means all fall between the control limits, the time process being 

OBSERVED VALUES 
OF x 

~ UPPER CONTROL LIMIT 

------'----------

CENTER LINE 

. / LOWER CONTROL LIMIT 
____________ 1 _______ _ 

2 3 4 5 6 7 8 

SUBGROUP NUMBER 

Figure 15.2 Essential features of a control chart for means. 
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measured is said to be "in control" -that is, operating consistently over time. 
In that situation we may think of each new subgroup of measurements as simply 
a new set of data from the same population. If a process is in control, then it 
makes sense to use the control limits to judge whether future subgroups of data 
are from this same popUlation. If one or more sufficiently large outliers are 
present in a future subgroup, they will inflate the sample mean Xi enough so 
that it exceeds the upper control chart limit. Also, if the population mean has 
changed greatly from what it was during the historical period, the sample mean 
Xi is likely to exceed the upper or lower control limits. 

15.6.1 Assumptions Underlying Control 
Charts 

The assumptions underlying control charts are that the data are independent and 
normally distributed with constant mean p. and constant variance a 2 . These 
assumptions can be expressed as the simple stochastic model 

t = 1,2, ... , n 15.6 

where x{ is the datum at time t, p. is the mean, n is the number of data values, 
and e{ are random, independent disturbances that are normally distributed with 
mean zero and variance a 2 . 

For many environmental pollutants these assumptions are not realistic even 
for a process with constant mean. As discussed several times in this book, 
environmental data are commonly correlated and nonnormally distributed. Also, 
the process variance may change over time. Berthouex et al. (1978) examine 
whether Shew hart control charts are appropriate for data from processes with 
these characteristics. Based on their expenence with modeling sewage treatment 
plants, they conclude that, given some care, standard quality control charts can 
provide useful qualitative information for purposes of process control. 

Berthouex, Hunter, and Pallesen (1978) show how to modify the standard 
control chart procedures so that the usual assumptions are more nearly satisfied 
to allow for a more rigorous quantitative analysis. They develop a realistic 
stochastic model for the process, using time series methods developed by Box 
and Jenkins (1976). The residuals from this model (residual = observed value 
- value estimated using the model) are treated as raw data and are used to 
construct control charts. If the model is correct, the residuals will more nearly 
fulfill the standard assumptions of normal, independent, constant variance errors. 

For comprehensive discussions of Box-Jenkins time series modeling tech­
niques, the reader is referred to Box and Jenkins (1976), Fuller and Tsokos 
(1971), McClearly and Hay (1980), Berthouex and co-workers (1975, 1978), 
and Hipel and co-workers (1977a, 1977b). The potential and problems associated 
with applying control charts to detect pollution limit violations is discussed by 
Vaughan and Russell (1983). They also discuss other graphical methods for 
detecting trends (CUSUM and MOSUM techniques) and provide a list of 
references to environmental quality control papers. Vardeman and David (1984) 
provide an annotated list of papers and books on quality control techniques. 
Burr (1976) and Wetherill (1977) give clear discussions of control charts, and 
the former gives many references. 

In the following material we present the standard control charting techniques 
based on the usual assumptions (Eq. 15.6). If the data are normally distributed 
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and serial correlation is not large, these methods should work well. If the data 
are lognormally distributed, the standard procedures should be applied to the 
logarithms of the data. 

15.6.2 Historical Data Sets 

Before a control chart can be constructed, it is necessary to define meaningful 
historical data sets. These data sets were called rational subgroups by Shewhart 
(1931). When sampling over time, a rational subgroup may be the n data 
collected at a particular point in space by a given instrument during a specified 
time period, such as a day, week, month or quarter. For example, Hunt, Clark, 
and Goranson (1978) and Nelson, Armentrout, and Johnson (1980) used the 
five air quality (24-h) measurements made during a month at a particular 
sampling site as a rational data set. If groundwater samples are being collected 
monthly at a particular well, the three samples within each calendar quarter 
might be used as a subgroup. 

Rational subgroups must be chosen with care because the variability within 
subgroups is used to construct control chart limits. Each subgroup should consist 
of data that are homogeneous-that is, for which there are only nonassignable 
(chance) causes of variability present. Then the control chart will be more 
sensitive to changes over time that may be due to assignable causes such as a 
new source of pollution, sampling or measurement biases, seasonal cycles, 
trends in mean concentrations, or outliers. If subgroups consist of data collected 
over several months, the variability within subgroups may be large due to 
seasonal effects. This seasonal variation will cause the control limits to be more 
widely spaced, so only very extreme outliers or very large shifts in mean or 
variance may be detected. 

The definition of a rational subgroup is somewhat subjective, since it depends 
on one's concept of the model representing a controlled situation. Also, a series 
of data may consist of segments that are considered to represent an in control 
situation and other segments that are out of control. The latter segments are 
not used when estimating the control limits on the control chart. 

The number of data in each rational subgroup should be as large as possible 
while still maintaining nonassignable variability within subgroups. The number 
of subgroups, k, should also be as large as possible with the warnings that 
there should be no outliers within subgroups and no trends over time in subgroup 
means or within subgroup variances. Tests for outliers may be applied to 
historical subgroups, and trends may be identified by simple time plots of data 
or by statistical tests. Techniques for detecting trends and estimating their mag­
nitude are discussed in Chapters 16 and 17. 

For 24-h air quality data, Nelson, Armentrout, and Johnson (1980) suggest 
that each data set contain between 4 and 15 data and that at least 10 to 15 
such data sets be available. They also suggest that the chosen time period (e.g., 
week or month) should relate to the National Ambient Air Quality Standards 
(NAAQS) of interest. They cite the example of using months or quarters for 
24-h TSP, S02' and N02 data collected at 6- or 12-day intervals. 

15.6.3 Construction of Control Charts 

The information needed from historical data sets to construct control charts for 
means, ranges and standard deviations is 
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Number of Sample 
Data Set Data in the Sample Sample Standard 

(Subgroup) Data Set Mean Range Deviation 

n, Xi Ri Sj 

1 n l XI RI SI 

2 n2 x2 R2 S2 

k Ilk Xk Rk Sk 

The fonnulas for computing the center line and control limits for means 
control charts are given in Table 15.4, while those for range and standard 
deviation charts are in Table 15.5. Table 15.6 defines the quantities used in 
Tables 15.4 and 15.5. 

The value of the constants d2 , d3 , and C4 depend on ni and are given in 
Table A17 for ni from 2 to 25. The derivation and meaning of these constants 
is discussed by Burr (1976, Chapter 5) and American Society for Testing and 
Materials (1976). They were derived under the assumption that the data are 
nonnally distributed. 

The quantity Zp in the limit fonnulas is usually set equal to 2 or 3, although 
other values can be used. If the data are nonnally distributed, we find from 
Table A 1 that, for a process in control, the probability of a plotted point falling 
outside the Zp = 2 limit lines is 0.0456 (about 1 chance in 20). This probability 
is 0.0026 when Zp = 3 is used (about three changes in 1000). The Zp = 2 
line might be used as a "warning" line, whereas the Zp = 3 line could be 
used to indicate action of some kind. 

Although environmental data are frequently nonnonnally distributed, control 
charts constructed under the assumption of nonnal data are still useful for 
indicating when the measurements are not likely to be from the same distribution 

Center line 

Control limits" 

n; :5 10 

n, 2: 2 

Table 15.4 Formulas for Control Charts for Means 

Equal ni 

_ I k 

x=-L:x 
k 1=1 I 

Unequal ni 

k 

L: nixi 
= i= I 
X=-k-

L: ni 
1= 1 

Source: Formulas from American Society for Testing and Materials, 1976. Formulas are defined 
in Table 15.6. 
U Control limits computed using .~ I are appropriate for any subgroup size ni 2: 2. Control limits 

using RI are easier to compute but are less efficlent than those computed with SI if most ni > 
10. 

d2i and d" are constants from Table Al7 that depend on n,. C4i = 1 if n, > 25. 



Table 15.5 Formulas for Range and Standard Deviation Control Charts 

Center line 

Range: Use when n, <; 10 

Standard 
deviation: Use when n; > 10 

Control limitsb 

Range: Use when n; <; 10 

Standard 
deviation: Usc when n; > 10 

Equal n; 

1 k 

5 - 2.: S; 
k ;= 1 

k (I ZA) +--
- d, 

r H1 5 1 ± Zp ~ 

Source: Fonnulas from American Society for Testing and Materials, 1976. 

Unequal n;" 

R" 

R2i (I ± Z~') 
d2i 

S2i [1 ± Zp 

a Formulas for RI and .'1 arc given in Table 15.4. d2 , d" and C4 are constants from Table A 17 that depend on ni . 

"Control limits computed using ., or 52; are appropriate for any subgroup size n; 2!: 2. Limits computed using R or R2; are 
simpler to compute but are less efficient than those computed with 5 or S2; if most n; > 10. 
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Table 15.6 Definition of Quantities Used in the Control Chart Formulas in Tables 15.4 and 15.5 

k = number of historical data sets (subgroups) 
ni = number of data in the ith subgroup 

Zp = 2 if 2-sigma control limit lines are desired 

Zp = 3 if 3-sigma control limit lines are desired 

x = grand average of all data over the k subgroups 
R = average range for the k subgroups 

R, = estimator of the population standard deviation within subgroups when all ni are not equal; R, reduces to R/d2 when all ni are equal 

R2i = approximate expression for the average range at time i when all IIi are not equal. R2i reduces to R when all n, are equal 

s = average standard deviation for the k subgroups 
s, = estimator of the population standard deviation within subgroups when all ni are not equal; s, 

reduces to slc4 when all ni are equal 

S2i = approximate expression for the average standard deviation at time i when all 

ni are not equal. '2, reduces to s when ni > 25 for each of the k subgroups or when all ni are equal 

dz, d), C4 = correction factors to improve the accuracy of the estimators; these factors 

(in Table A 17) are appropriate when the data are normally distributed 
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as in the past. Control charts are not constructed for the purpose of making 
precise probability statements. They are constructed as a guide for when 
investigative action is needed. If the data are known or suspected of being 
lognormally distributed, then control charts should be constructed with logarithms 
of the data in the formulas in Tables 15.4 and 15.5. Alternatively, control chart 
limits in the original (untransformed) scale can be constructed for lognormal 
data by the methods of Morrison (1958) or Ferrell (1958). 

EXAMPLE 15.2 

Suppose total suspended particulate (TSP) air measurements have 
been taken for several months at a site and that control charts are 
desired to look for outliers and changes in the mean and the standard 
deviation over time. The first step is to see if historical data sets 
indicate that the population is homogeneous, that is, to see if the 
TSP time process is in control. This step is done by constructing a 
control chart with the historical data. 

For illustration purposes we use TSP data listed by Nelson, 
Armentrout, and Johnson (1980, Table 3-11, Site 14) that were 
collected every sixth day (with occasional missing values) for 12 
months at a particular site. These data are listed in Table 15.7. The 
observations taken within a month are considered to be a rational 
subgroup. For illustration purposes we use the first 7 months of data 
to construct control charts for the mean Xi and range Ri. The reader 
is asked to construct the standard deviation control chart in Exercise 
15.2. 

The values of ni , Xi, Ri , and Si for the subgroups are given in 
Table 15.7. Using the first 7 months of data, we compute in Table 
15.8 the center line and control limits for the mean and range control 
charts, using the formulas in Tables 15.4 and 15.5. The Zp = 2 
and 3 limit lines are drawn in Figures 15.3 and 15.4 and the means 
and ranges plotted for the 12-month period. 

We see from Figure 15.3 that X6 falls just outside the 2-sigma 
limit, and XI and X4 are very close to the limit. However, no Xi 

Table 15.7 TSP Measurements (/Lg/m3) Taken at Six-Day Intervals at a Site 

Subgroup TSP Concentrations Mean Standard 
(month) n; (flglm3) X, Range R; Deviation Si 

4 31. 34, 13, 40 29.5 27 11.62 
2 5 49, 19, 79, 39, 51 47.4 60 21.74 

Historical 3 5 46, 72, 49, 72, 33 54.4 39 17.16 
data 4 4 18, 24, 24, 47 28.2 29 12.82 

5 5 32, 66, 28, 68, 74 53.6 46 21.79 
6 5 83, 80. 37, 69, 55 64.8 46 19.03 
7 2 28,51 39.5 23 16.26 
8 5 42, 53, 56, 129, 64 68.8 87 34.56 
9 5 46, 46, 57, 26, 41 43.2 31 11.26 

10 5 41,90,31,63,37 52.4 59 24.24 
11 5 69, 108,37,47.43 60.8 71 29.02 
12 5 26, 25, 45, 39, 23 31.6 22 9.79 

Source: After Nelson, Annentrout, and Johnson, 1980. Table 3-11, Site 14. 
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Table 15.8 Computations for Means and Range Control Charts Using the 
First Seven Subgroups of Data in Table 15.7 

A. Means Control Chart 

i = to [4(29.5) + 5(47.4) + ... + 2(39.5)1 = 47 

- ( 27 60 23 ) 
RJ = ~ 2.059 + 2.326 + ... + 1.128 = 18.5 

Limit Lines i ± Zj? /.,In, 

Center Line 
Zp = 2 Zp = 3 

Months ni R, x Lower Upper Lower Upper 

1,4 4 18.5 47 28 66 19 75 
2,3,5,6 5 18.5 47 30 64 22 72 

7 2 18.5 47 21 73 7.7 86 

B. Range Control Chart 
Limit Lines R2i (1 ± Zpd3/d2;) 

Center Line Zp = 2 ZI' = 3 

Months ni d2i d3i R2i = d2iR J Lower Upper Lower 

1,4 4 2.059 0.880 38.2 5.5 71 0 
2,3,5,6 5 2.326 0.864 43.1 11 75 0 

7 2 1.128 0.853 20.9 0 52 0 

exceeds the 3-sigma limit. These results show that the average 
monthly TSP concentrations can deviate substantially from the 7-
month average, but no wild swings were present during that time 
period. From Figure 15.4 we see that none of the R; during the first 
7 months fall outside the 2-sigma limits. Taken together, these results 
suggest that the control charts constructed during the first 7 months 
of data will be useful for evaluating future TSP data sets. 

Plotting the next 5 months of Xi and R; on the 2 control charts, 
we see that both Xs and Rs exceed their 2-sigma limits and XII and 
RII are very close to their 2-sigma limits. Hence the data for month 
8 and possibly month 11 may contain outliers. Considering the full 
12 months of data in the 2 control charts, we see that there appears 
to be no evidence for a permanent shift in either mean or range over 
the year. 

Control charts should be updated periodically when there is no 
evidence of a trend or a pemlanent shift in mean or range. In this 
example it would be appropriate to treat the full 12 months of data 
as a new historical data set and to recompute the center line and 
limits for the 2 control charts. These values could then be used 
during the coming year to look for outliers and changes. 

15.6.4 Seasonality 

Upper 

87 
91 
68 

When mean pollution levels fluctuate or cycle over time, this component of 
variation must be properly handled when constructing control charts. Since the 
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Figure 15.3 Means control chart for the TSP data in Table 15.7. 
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width between control limits is detern1ined by only the within-group (short­
term) variability, seasonal changes in mean level can cause plotted points to 
fall outside the control limits and give a false indication of outliers or changes 
in mean level due to some activity of man. 

If the historical time series of data is long enough so that a number of full 
cycles are present, a separate control chart could be constructed for different 
parts of the cycle. For example, if data are high in summer and low in winter, 
separate control charts for the two seasons could be constructed. 

If the historical time series data is of short duration and the magnitude of 
the cycles is not too great, a moving-average control chart could be used. Hunt, 
Clark, and Goranson (1978) describe such a control chart applied to 24-h air 
pollution measurements of TSP, S02, and N02 . The rational subgroup was the 
five air measurements taken within a month. The averages and ranges plotted 
on mean and range control charts were computed with the three previous monthly 
averages and ranges. With each new month the control limits changed, because 
the oldest month was dropped and the latest (past) month added when computing 
the limits, to look for outliers in the present month. Hunt, Clark, and Goranson 
(1978) developed computer software to perform these calculations. 

A third method for handling seasonality is to estimate the seasonal cycles 
and remove them from the data, that is, to construct the control chart on the 
residuals that remain after the cycle has been removed. This method is similar 
to that applied by Berthouex, Hunter, and Pallesen (1978) to sewage treatment 
plant data discussed in Section 15.6.1. If a long time series of data is available, 
then Box-Jenkins modeling techniques may be used to find a suitable model for 
the data, one for which the residuals from the model are norn1al, independent, 
of mean zero, and of constant variance. This model could be more complicated 
than a simple seasonal cycle. If the model is appropriate for the next year, the 
control chart constructed by using the residuals could be used to evaluate whether 
outliers or shifts in mean levels occur during that year. 

15.7 SUMMARY 

This chapter considered several methods for identifying outliers-that is, 
measurements that are unusual with respect to the patterns of variability followed 
by the bulk of the data. In addition, methods are given for constructing control 
charts to detect outliers or changes in the process mean level over time. To put 
these techniques in perspective, we note that statistical tests can identify unusual 
measurements, but knowledge of the measurement process itself in combination 
with professional judgment must be relied upon to interpret the outliers identified 
by statistical tests. The techniques described in this chapter are important, since 
increasing attention is being directed to rigorous control of quality in the 
collection, handling, laboratory analyses, and data reduction of pollution data. 

EXERCISES 

15.1 Use Rosner's procedure to test the null hypothesis that the n = 55 TSP 
data in Table 15.7 are from a normal distribution. Let the alternative 
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hypothesis be that there are at most three outliers present. Test at the 0' 

= 0.05 significance level. 

15.2 Using the TSP data for the first 7 months given in Table 15.7, construct 
a standard deviation control chart and plot s\, S2, ••• ,s12 on the chart. 
What do you conclude? 

ANSWERS 

15.1 Using the data in Table 15.7, we compute 

0 
1 
2 

15.2 

Month 

1.4 
2,3,5,6 

7 

Ai+l 

Rx. i+l = (a = 
n - i x(i) sx(i) xli) Ix") - i(iJl/s}') 0.05) 

55 49.0 22.9 129 3.49 3.165 
54 47.5 20.3 \08 2.98 3.155 
53 46.4 18.6 90 2.34 3.150 

Since Rx •3 < 3.150 and Rx .2 < 3.155, we cannot reject the null hypothesis 
of no outliers versus the alternative hypothesis of 2 or 1 outlier, 
respectively. Since Rx,1 > 3.165, we reject the null hypothesis and 
conclude that datum 129 is an outlier from the assumed normal distribution. 

_ ! ll1.62 21.74 17.16 
SI - 7 0.9213 + 0.94 + 0.94 

12.82 21.79 19.03 +--+--+--
0.9213 0.94 0.94 

16.26 ] 
+ 0.7979 = 18.8164 

Z" = 2 Zp = 3 
Center Line 

~(l - C~J/C~i 
-

ni C4i S2i = C-li"'[ Lower Upper Lower Upper 

4 0.9213 0.4221 17.3 2.7 32 0 39 
5 0.94 0.3630 17.7 4.8 31 0 37 
2 0.7979 0.7555 15.0 0 38 0 49 

Conclusion: Ss exceeds the upper 2-sigma limit, and SII is slightly less 
than that limit. These same results were obtained by using the range 
control chart (Example 15.2). 



16 Detecting and 
Estimating Trends 

An important objective of many environmental monitoring programs is to detect 
changes or trends in pollution levels over time. The purpose may be to look 
for increased environmental pollution resulting from changing land use practices 
such as the growth of cities, increased erosion from farmland into rivers, or 
the startup of a hazardous waste storage facility. Or the purpose may be to 
determine if pollution levels have declined following the initiation of pollution 
control programs. 

The first sections of this chapter discuss types of trends, statistical complexities 
in trend detection, graphical and regression methods for detecting and estimating 
trends, and Box-Jenkins time series methods for modeling pollution processes. 
The remainder of the chapter describes the Mann-Kendall test for detecting 
monotonic trends at single or multiple stations and Sen's (l968b) non parametric 
estimator of trend (slope). Extensions of the techniques in this chapter to handle 
seasonal effects are given in Chapter 17. Appendix B lists a computer code that 
computes the tests and trend estimates discussed in Chapters 16 and 17. 

16.1 TYPES OF TRENDS 
Figure 16.1 shows some common types of trends. A sequence of measurements 
with no trend is shown in Figure 16.1(a). The fluctuations along the sequence 
are due to random (unassignable) causes. Figure 16.1(b) illustrates a cyclical 
pattern wih no long-term trend, and Figure 16.1(c) shows random fluctuations 
about a rising linear trend line. Cycles may be caused by many factors including 
seasonal climatic changes, tides, changes in vehicle traffic patterns during the 
day, production schedules of industry, and so on. Such cycles are not "trends" 
because they do not indicate long-term change. Figure 16.1(d) shows a cycle 
with a rising long-term trend with random fluctuation about the cycle. 

Frequently, pollution measurements taken close together in time or space are 
positively correlated, that is, high (low) values are likely to be followed by 
other high (low) values. This distribution is illustrated in Figure 16.1(e) for a 
rising trend but can occur for the other situations in Figure 16.1. 

Figure 16.1 (f) depicts a random sequence with a short-lived impulse of 
pollution. A permanent step change is illustrated in Figure 16.1(g). This latter 
type could be due to a new pollution abatement program, such as a water 
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treatment plant. Finally, a sequence of random measurements fluctuating about 
a constant level may be followed by a trend as shown in Figure 16.I(h). We 
concentrate here on tests for detecting monotonic increasing or decreasing trends 
as in (c) , (d), (e), and (h). 

16.2 STATISTICAL COMPLEXITIES 

The detection and estimation of trends is complicated by problems associated 
with characteristics of pollution data. In this section we review these problems, 
suggest approaches for their alleviation, and reference pertinent literature for 
additional information. Hamed et al. (1981) review the literature dealing with 
statistical design and analysis aspects of detecting trends in water quality. Munn 
(1981) reviews methods for detecting trends in air quality data. 

16.2.1 Changes in Procedures 

A change of analytical laboratories or of sampling and/or analytical procedures 
may occur during a long-term study. Unfortunately, this may cause a shift in 
the mean or in the variance of the measured values. Such shifts could be 
incorrectly attributed to changes in the underlying natural or man-induced 
processes generating the pollution. 

When changes in procedures or laboratories occur abruptly, there may not 
be time to conduct comparative studies to estimate the magnitude of shifts due 
to these changes. This problem can sometimes be avoided by preparing duplicate 
samples at the time of sampling: one is analyzed and the other is stored to be 
analyzed if a change in laboratories or procedures is introduced later. The 
paired, old-new data on duplicate samples can then be compared for shifts or 
other inconsistencies. This method assumes that the pollutants in the sample do 
not change while in storage, an unrealistic assumption in many cases. 

16.2.2 Seasonality 
The variation added by seasonal or other cycles makes it more difficult to detect 
long-term trends. This problem can be alleviated by removing the cycle before 
applying tests or by using tests unaffected by cycles. A simple nonparametric 
test for trend using the first approach was developed by Sen (1968a). The 
seasonal Kendall test, discussed in Chapter 17, uses the latter approach. 

16.2.3 Correlated Data 

Pollution measurements taken in close proximity over time are likely to be 
positively correlated, but most statistical tests require uncorrelated data. One 
approach is to use test statistics developed by Sen (1963, 1965) for dependent 
data. However, Lettenmaier (1975) reports that perhaps several hundred mea­
surements are needed for their validity. Lettenmaier (1976) uses the concept of 
effective independent sample size to obtain adjusted critical values for the 
Wilcoxon rank sum test for a step trend and for Spearman's rho correlation test 
for a linear trend. Montgomery and Reckhow (1984) illustrate his procedure 
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and provide tables of adjusted critical values for the Wilcoxon rank sum and 
Spearman tests. Their paper summarizes the latest statistical techniques for trend 
detection. 

16.2.4 Corrections for Flow 

The detection of trends in stream water quality is more difficult when concen­
trations are related to stream flow, the usual situation. Smith, Hirsch, and Slack 
(1982) obtain flow-adjusted concentrations by fitting a regression equation to 
the concentration-flow relationship. Then the residuals from regression are tested 
for trend by the seasonal Kendall test discussed in Chapter 17. Hamed, Daniel, 
and Crawford (1981) illustrate two alternative methods, discharge compensation 
and discharge-frequency weighting. Methods for adjusting ambient air quality 
levels for meteorological effects are discussed by Zeldin and Meisel (1978). 

16.3 METHODS 

16.3.1 Graphical 

Graphical methods are very useful aids to formal tests for trends. The first step 
is to plot the data against time of collection. Velleman and Hoaglin (1981) 
provide a computer code for this purpose, which is designed for interactive use 
on a computer terminal. They also provide a computer code for "smoothing" 
time series to point out cycles and/or long-term trends that may otherwise be 
obscured by variability in the data. 

Cumulative sum (CUSUM) charts are also an effective graphical tool. With 
this method changes in the mean are detected by keeping a cumulative total of 
deviations from a reference value or of residuals from a realistic stochastic 
model of the process. Page (1961, 1963), Ewan (1963), Gibra (1975), Wetherill 
(1977), Berthouex, Hunter, and Pallesen (1978), and Vardeman and David 
(1984) provide details on the method and additional references. 

16.3.2 Regression 

If plots of data versus time suggest a simple linear increase or decrease over 
time, a linear regression of the variable against time may be fit to the data. A 
t test may be used to test that the true slope is not different from zero; see, 
for example, Snedecor and Cochran (1980, p. 155). This t test can be misleading 
if seasonal cycles are present, the data are not normally distributed, and/or the 
data are serially correlated. Hirsch, Slack, and Smith (1982) show that in these 
situations, the t test may indicate a significant slope when the true slope actually 
is zero. They also examine the performance of linear regression applied to 
deseasonalized data. This procedure (called seasonal regression) gave a t test 
that performed well when seasonality was present, the data were normally 
distributed, and serial correlation was absent. Their results suggest that the 
seasonal Kendall test (Chapter 17) is preferred to the standard or seasonal 
regression t tests when data are skewed, cyclic, and serially correlated. 
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16.3.3 Intervention Analysis and 
Box- Jenkins Models 

If a long time sequence of equally spaced data is available, intervention analysis 
may be used to detect changes in average level resulting from a natural or man­
induced intervention in the process. This approach, developed by Box and Tiao 
(1975), is a generalization of the autoregressive integrated moving-average 
(ARIMA) time series models described by Box and Jenkins (1976). Lettenmaier 
and Murray (1977) and Lettenmaier (1978) study the power of the method to 
detect trends. They emphasize the design of sampling plans to detect impacts 
from polluting facilities. Examples of its use are in Hipel et al. (1975) and Roy 
and Pellerin (1982). 

Box-Jenkins modeling techniques are powerful tools for the analysis of time 
series data. McMichael and Hunter (1972) give a good introduction to Box­
Jenkins modeling of environmental data, using both deterministic and stochastic 
components to forecast temperature flow in the Ohio River. Fuller and Tsokos 
(1971) develop models to forecast dissolved oxygen in a stream. Carlson, 
MacCormick, and Watts (1970) and McKerchar and Delleur (1974) fit Box­
Jenkins models to monthly river flows. Hsu and Hunter (1976) analyze annual 
series of air pollution S02 concentrations. McCollister and Wilson (1975) forecast 
daily maximum and hourly average total oxidant and carbon monoxide concen­
trations in the Los Angeles Basin. HipeL McLeod, and Lennox (1977a, 1977b) 
illustrate improved Box-Jenkins techniques to simplify model constmction. 
Reinsel et al. (1981a, 1981b) use Box-Jenkins models to detect trends in 
stratospheric ozone data. Two introductory textbooks are McCleary and Hay 
(1980) and Chatfield (1984). Box and Jenkins (1976) is recommended reading 
for all users of the method. 

Disadvantages of Box-Jenkins methods are discussed by Montgomery and 
Johnson (1976). At least 50 and preferably 100 or more data collected at equal 
(or approximately equal) time intervals are needed. When the purpose is 
forecasting, we must assume the developed model applies to the future. Missing 
data or data reported as trace or less-than values can prevent the use of Box­
Jenkins methods. Finally, the modeling process is often nontrivial, with a 
considerable investment in time and resources required to build a satisfactory 
model. Fortunately, there are several packages of statistical programs that contain 
codes for developing time series models, including Minitab (Ryan, Joiner, and 
Ryan 1982), SPSS (1985), BMDP (1983), and SAS (1985). Codes for personal 
computers are also becoming available. 

16.4 MANN-KENDALL TEST 

In this section we discuss the nonparametric Mann-Kendall test for trend (Mann, 
1945; Kendall, 1975). This procedure is particularly useful since missing values 
are allowed and the data need not conform to any particular distribution. Also, 
data reported as trace or less than the detection limit can be used (if it is 
acceptable in the context of the population being sampled) by assigning them 
a common value that is smaller than the smallest measured value in the data 
set. This approach can be used because the Mann-Kendall test (and the seasonal 
Kendall test in Chapter 17) use only the relative magnitudes of the data rather 
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than their measured values. We note that the Mann-Kendall test can be viewed 
as a nonparametric test for zero slope of the linear regression of time-ordered 
data versus time, as illustrated by Hollander and Wolfe (1973, p. 201). 

16.4.1 Number of Data 40 or Less 

If n is 40 or less, the procedure in this section may be used. When n exceeds 
40, use the normal approximation test in Section 16.4.2. We begin by considering 
the case where only one datum per time period is taken, where a time period 
may be a day, week, month, and so on. The case of multiple data values per 
time period is discussed in Section 16.4.3. 

The first step is to list the data in the order in which they were collected 
over time: x), X2' ••• , XII' where Xi is the datum at time i. Then determine 
the sign of all n(n - 1)/2 possible differences Xj - Xb where j > k. These 
differences are X2 - Xl' X3 - Xl' ... , Xn - Xl, X3 - X2' X4 - X2, .•. , Xn 

- Xn _ 2, Xn - XII _ l' A convenient way of arranging the calculations is shown 
in Table 16.1. 

Let sgn(xj - Xk) be an indicator function that takes on the values 1, 0, or 
-1 according to the sign of Xj - Xk: 

sgn(Xj - Xk) 1 if Xj - Xk > 0 

0 if Xj - Xk = 0 

-1 if Xj - Xk < 0 

Then compute the Mann-Kendall statistic 

n-) n 

S = ~ ~ sgn(xj - Xk) 
k~lj~k+1 

16.1 

16.2 

which is the number of positive differences minus the number of negative 
differences. These differences are easily obtained from the last two columns of 
Table 16.1. If S is a large positive number, measurements taken later in time 
tend to be larger than those taken earlier. Similarly, if S is a large negative 
number, measurements taken later in time tend to be smaller. If n is large, the 
computer code in Appendix B may be used to compute S. This code also 
computes the tests for trend discussed in Chapter 17. 

Suppose we want to test the null hypothesis, Ho, of no trend against the 
alternative hypothesis, HA, of an upward trend. Then Ho is rejected in favor of 
HA if S is positive and if the probability value in Table A 18 corresponding to 
the computed S is less than the a priori specified a significance level of the 
test. Similarly, to test Ho against the alternative hypothesis HA of a downward 
trend, reject Ho and accept HA if S is negative and if the probability value in 
the table corresponding to the absolute value of S is less than the a priori 
specified a value. If a two-tailed test is desired, that is, if we want to detect 
either an upward or downward trend, the tabled probability level corresponding 
to the absolute value of S is doubled and Ho is rejected if that doubled value 
is less than the a priori a level. 

EXAMPLE 16.1 

We wish to test the null hypothesis Ho, of no trend versus the 
alternative hypothesis, HA , of an upward trend at the a = 0.10 



Table 16.1 Differences in Data Values Needed for Computing the Mann-Kendall Statistic S to Test 
for Trend 

Data Values Listed in the Order Collected Over Time 

XI X 2 X-' X4 Xu - I 

X2 - XI X:'\ - XI X4 - XI XII_ I 
- XI 

X, x.::' X 4 - X2 Xn - I 
- X2 

X 4 - X, Xn - I - X) 

XII- I - Xn - 2 

XII 

Xu - XI 

.t n '\2 

XII - X, 

XII - XI/_ :::' 

Xn - Xn- I 

S = 

No. of + 
Signs 

( sum Of) + 
+ signs 

No. of­
Signs 
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Table 16.2 Computation of the Mann-Kendall Trend Statistic S for the Time 
Ordered Data Sequence 10, 15, 14, 20 

Time 

Data 
1 2 3 4 No. (~f + No. «f-

10 15 14 20 Signs Signs 

15 - 10 14 - 10 20 - 10 3 0 
14 - 15 20 - 15 

20 - 14 0 
S .5 T 

significance level. For ease of illustration suppose only 4 measure­
ments are collected in the following order over time or along a line 
in space: 10, 15, 14, and 20. There are 6 differences to consider: 
15 - 10, 14 - 10, 20 - 10, 14 - 15, 20 - 15, and 20 - 14. 
Using Eqs. 16.1 and 16.2, we obtain S = + 1 + 1 + 1 - 1 + I 
+ 1 = +4, as illustrated in Table 16.2. (Note that the sign, not 
the magnitude of the difference is used.) From Table A18 we find 
for n = 4 that the tabled probability for S = +4 is 0.167. This 
number is the probability of obtaining a value of S equal to +4 or 
larger when n = 4 and when no upward trend is present. Since this 
value is greater than 0.10, we cannot reject HQ • 

lf the data sequence had been 18,20,23, 35, then S = +6, and 
the tabled probability is 0.042. Since this value is less than 0.10, 
we reject Ho and accept the alternative hypothesis of an upward 
trend. 

Table A18 gives probability values only for n :s 10. An extension 
of this table up to n = 40 is given in Table A.21 in Hollander and 
Wolfe (1973). 

= 4 

16.4.2 Number of Data Greater Than 40 
When n is greater than 40, the normal approximation test described in this 
section is used. Actually, Kendall (1975, p. 55) indicates that this method may 
be used for n as small as 10 unless there are many tied data values. The test 
procedure is to first compute S using Eq. 16.2 as described before. Then 
compute the variance of S by the following equation, which takes into account 
that ties may be present: 

VAR(S) = 18 rn(n - 1)(2n + 5) - ± tpCtp - 1)(2tp + 5)l 16.3 
1 p~1 J 

where g is the number of tied groups and tp is the number of data in the pth 
group. For example, in the sequence {23, 24, trace, 6, trace, 24, 24, trace, 
23} we have g = 3, t I = 2 for the tied value 23, t 2 = 3 for the tied value 
24, and t3 = 3 for the three trace values (considered to be of equal but unknown 
value less than 6). 

Then S and V AR(S) are used to compute the test statistic Z as follows: 

S - 1 
Z = if S > 0 

[V AR(S)] 1/2 

= 0 if S = 0 

S + 1 
[VAR(S)] 1/2 

if S < 0 16.4 
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Figure 16.2 Concentrations of 238U in ground water in well E at the former 8t. 
Louis Airport storage site for January 1981 through January 1983 (after Clark 
and Berven, 1984). 

A positive (negative) value of Z indicates an upward (downward) trend. If the 
null hypothesis, Ho, of no trend is true, the statistic Z has a standard normal 
distribution, and hence we use Table Al to decide whether to reject Ho. To 
test for either upward or downward trend (a two-tailed test) at the ex level of 
significance, Ho is rejected if the absolute value of Z is greater than ZI - cx12, 

where ZI -ex12 is obtained from Table AI. If the alternative hypothesis is for an 
upward trend (a one-tailed test), Ho is rejected if Z (Eq. 16.4) is greater than 
ZI _ cx' We reject Ho in favor of the alternative hypothesis of a downward trend 
if Z is negative and the absolute value of Z is greater than ZI _ cx12' Kendall 
(1975) indicates that using the standard normal tables (Table AI) to judge the 
statistical significance of the Z test will probably introduce little error as long 
as n ~ 10 unless there are many groups of ties and many ties within groups. 

EXAMPLE 16.2 

Figure 16.2 is a plot of n = 22 monthly 238U concentrations XI' X2, 

X3, ... , Xn obtained from a groundwater monitoring well from 
January 1981 through January 1983 (reported in Clark and Berven, 
1984). We use the Mann-Kendall procedure to test the null hypothesis 
at the ex = 0.05 level that there is no trend in 238U groundwater 
concentrations at this well over this 2-year period. The alternative 
hypothesis is that an upward trend is present. 

There are n(n - 1)/2 = 22(21)/2 = 231 differences to examine 
for their sign. The computer code in Appendix B was used to obtain 
Sand Z (Egs. 16.2 and 16.4). We find that S = + 108. Since there 
are 6 occurrences of the value 20 and 2 occurrences of both 23 and 
30, we have g = 3, tl = 6, and t2 = tl = 2. Hence, Eg. 16.3 gives 
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VAR(S) = Ts [22(21)(44 + 5) 

- 6(5)(12 + 5) - 2(1)(4 + 5) - 2(1)(4 + 5)] 

1227.33 

or [VAR(S)]1/2 = 35.0. Therefore, since S > 0, Eq. 16.4 gives Z 
= (l08 - 1)/35.0 = 3.1. From Table Al we find Z095 = 1.645. 
Since Z exceeds 1.645, we reject Ho and accept the alternative 
hypothesis of an upward trend. We note that the three missing values 
in Figure 16.2 do not enter into the calculations in any way. They 
are simply ignored and constitute a regrettable loss of information 
for evaluating the presence of trend. 

16.4.3 Multiple Observations per Time 
Period 

When there are multiple observations per time period, there are two ways to 
proceed. First, we could compute a summary statistic, such as the median, for 
each time period and apply the Mann-Kendall test to the medians. An alternative 
approach is to consider the n; ~ 1 multiple observations at time i (or time 
period i) as ties in the time index. For this latter case the statistic S is still 
computed by Eq. 16.2, where n is now the sum of the n;, that is, the total 
number of observations rather than the number of time periods. The differences 
between data obtained at the same time are given the score 0 no matter what 
the data values may be, since they are tied in the time index. 

When there are multiple observations per time period, the variance of S is 
computed by the following equation, which accounts for ties in the time index: 

1 I g VAR(S) = - n(n - 1)(2n + 5) - ~ tpUp - 1)(2tp + 5) 
18 L p= 1 

h 

- q~1 uq(uq - 1)(2uq + 5)J 
g h 

~ tpUp -
p=1 

l)(tp - 2) ~ uq(uq - l)(uq - 2) 
'1=1 

+ ----------------------------------
9n(n - l)(n - 2) 

g h 

~ tp(tp -
p=1 

1) ~ uq(uq - 1) 
q=1 

+ ---------------------- 16.5 
2n(n - 1) 

where g and tp are as defined following Eq. 16.3, h is the number of time 
periods that contain multiple data, and uq is the number of multiple data in the 
qth time period. Equation 16.5 reduces to Eq. 16.3 when there is one observation 
per time period. 

Equations 16.3 and 16.5 assume all data are independent and, hence, 
uncorre1ated. If observations taken during the same time period are highly 
correlated, it may be preferable to apply the Mann-Kendall test to the medians 
of the data in each time period rather than use Eq. 16.5 in Eq. 16.4. 



214 Detecting and Estimating Trends 

40 • • 
z 
0 

30 - • • E-< 

~ • E-< • Z 20 • 
~ 
U 
Z 
0 u 10 • 

0 I I 
2 3 4 5 

TIME PERIOD 

Figure 16.3 An artificial data set to illustrate the Mann-Kendall test for trend 
when ties in both the data and time are present. 

EXAMPLE 16.3 

To illustrate the computation of S and V AR(S), consider the following 
artificial data set: 

(concentration, time period) 

= (10, 1), (22, 1), (21, 1), (30, 2), (22, 3), (30, 3), (40,4), (40, 5) 

as plotted in Figure 16.3. There are 5 time periods and n = 8 data. 
To illustrate computing S, we layout the data as follows: 

Time Period : I 2 3 3 4 5 
Data \0 22 21 30 22 30 40 40 

We shall test at the ex = 0.05 level the null hypothesis, Ho, of no 
trend versus the alternative hypothesis, HA,of an upward trend, a 
one-tailed test. 

Now, look at all 8(7)/2 = 28 possible data pairs, remembering 
to give a score of 0 to the 4 pairs within the same time index. The 
differences are shown in Table 16.3. Ignore the magnitudes of the 
differences, and sum the number of positive and negative signs to 
obtain S = 19. It is clear from Figure 16.3 that there are g = 3 
tied data groups (22, 30, and 40) with (I = (2 = (, = 2. Also, 
there are h = 2 time index ties (times 1 and 3) with UI = 3 and 
U2 = 2. Hence, Eq. 16.5 gives 

V AR(S) = 118 [8(7) (16 + 5) - 3(2)(1)(4 + 5) - 3(2) (6 + 5) 

_ 2(1)(4 + 5)] + 0 + [3(2)(1)][3(2) + 2(1)] 
2(8) (7) 

= 58.1 

or [VAR(S)]1/2 = 7.6. Hence, Eq. 16.4 gives Z (19 - 1)17.6 
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Table 16.3 Illustration of Computing S for Example 16.3 

Time Period 1 1 1 2 3 3 4 5 Sum of + Sum of-
Data /0 22 21 30 22 30 40 40 Signs Signs 

NC NC +20 +12 +20 +30 +30 5 0 
NC +8 0 +8 +18 +18 4 0 

+9 +1 +9 +19 +19 5 0 
-8 0 +10 +10 2 1 

NC +18 +18 2 0 
+10 +10 2 0 

0 0 0 
S = 20 - 1 

= 19 

NC = Not computed since both data values are within the same time period. 

= 2.4. Referring to Table AI, we find ZO.95 = 1.645. Since Z > 
1.645, reject Ho and accept the alternative hypothesis of an upward 
trend. 

16.4.4 Homogeneity of Stations 
Thus far only one station has been considered. If data over time have been 
collected at M > 1 stations, we have data as displayed in Table 16.4 (assuming 
one datum per sampling period). The Mann-Kendall test may be computed for 
each station. Also, an estimate of the magnitude of the trend at each station 
can be obtained using Sen's (1968b) procedure, as described in Section 16.5. 

When data are collected at several stations within a region or basin, there 
may be interest in making a basin-wide statement about trends. A general 
statement about the presence or absence of monotonic trends will be meaningful 
if the trends at all stations are in the same direction-that is, all upward or all 
downward. Time plots of the data at each station, preferably on the same graph 
to make visual comparison easier, may indicate when basin-wide statements are 
possible. In many situations an objective testing method will be needed to help 
make this decision. In this section we discuss a method for doing this that 

Table 16.4 Data Collected over Time at Multiple Stations 

Station 1 

Sampling Time 

1 2 

XIII X211 

2 X 121 X221 

Year 
L XILI X2l_1 

Mann-Kendall ,Test S, 

21 

M = number of stations 
K = number of sampling times per year 
L = number of years 

K 1 

XK11 X 11M 

XK21 2 X12M 

X KU L X1LM 

SM 
2M 

XiI] = datum for the ith sampling time in the lth year at the jth station 

Station M 

Sampling Time 

2 

X21M 

X22M 

X2LM 

K 

XK1M 

Xk2M 

X K1.M 
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makes use of the Mann-Kendall statistic computed for each station. This 
procedure was originally proposed by van Belle and Hughes (1984) to test for 
homogeneity of trends between seasons (a test discussed in Chapter 17). 

To test for homogeneity of trend direction at multiple stations, compute the 
homogeneity chi-square statistic, X~omog, where 

M 
2 _ 2 _ 2 _ L: 2 _ Mz2 

X homog - X total X t"end - ZJ 
j=l 

16.6 

Sj 
Z = ----'---: 

J [VAR(Sj)] 112 
16.7 

Sj is the Mann-Kendall trend statistic for the jth station, 

_ 1 M 

and Z = - L: Z 
M j=1 J 

If the trend at each station is in the same direction, then X~omog has a chi­
square distribution with M - 1 degrees of freedom (df). This distribution is 
given in Table A19. To test for trend homogeneity between stations at the ex 
significance level, we refer our calculated value of X~omog to the ex critical value 
in Table A19 in the row with M - 1 df. If X~omog exceeds this critical value, 
we reject the Ho of homogeneous station trends. In that case no regional-wide 
statements should be made about trend direction. However, a Mann-Kendall 
test for trend at each station may be used. If X~omog do~s not exceed the ex 
critical level in Table A 19, then the statistic X ~rend = MZ2 is referred to the 
chi-square distribution with 1 df to test the null hypothesis Ho that the (common) 
trend direction is significantly different from zero. 

The validity of these chi-square tests depends on each of the Zj values (Eq. 
16.7) having a standard normal distribution. Based on results in Kendall (1975), 
this implies that the number of data (over time) for each station should exceed 
10. Also, the validity of the tests requires that the Zj be independent. This 
requirement means that the data from different stations must be uncorrelated. 
We note that the Mann-Kendall test and the chi-square tests given in this section 
may be computed even when the number of sampling times, K, varies from 
year to year and when there are multiple data collected per sampling time at 
one or more times. 

EXAMPLE 16.4 

We consider a simple case to illustrate computations. Suppose the 
following data are obtained: 

Station 1 
Station 2 

10 
10 

2 

12 
9 

Time 

3 4 

11 IS 
10 8 

5 

18 
9 

We wish to test for homogeneous trend direction at the M = 2 
stations at the ex = 0.05 significance level. Equation 16.2 gives SI 
= 1 + 1 + I + 1 - 1 + 1 + 1 + 1 + I + 1 = +9 - I = 
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8 and S2 = - 1 + 0 - 1 - 1 + 1 - 1 + 0 - 1 - 1 + 1 = 

2 - 6 = -4. Equation 16.3 gives 

V AR(S ) = 5(4)(15) 
1 18 16.667 and V AR(S2) 

[5(4)(15) - 2(1)(9) - 2(1)(9)] 

18 

Therefore Eq. 16.4 gives 

7 -3 

14.667 

(16.667)1/2 1. 71 and Z2 = 112 -0.783 
(14.667) 

Thus 

X~omog = 1.712 + (-0.783)2 - 2 (1.71 ~ 0.783Y = 3.1 

Referring to the chi-square tables with M 1 = 1 df, we find the 
ex = 0.05 level critical value is 3.84. Since X~omog < 3.84, we 
cannot reject the null hypothesis of homogeneous trend direction 
over time at the 2 stations. Hence, an overall test of trend using the 
statistic X;rend can be made. [Note that the critical value 3.84 is only 
approximate (somewhat too small), since the number of data at both 
stations is less than 10.] X~rend = MZ2 = 2(0.2148) = 0.43. Since 
0.43 < 3.84, we cannot reject the null hypothesis of no trend at 
the 2 stations. 

We may test for trend at each station using the Mann-Kendall 
test by referring SI = 8 and S2 = -4 to Table A18. The tabled 
value for SI = 8 when n = 5 is 0.042. Doubling this value to give 
a two-tailed test gives 0.084, which is greater than our prespecified 
ex = 0.05. Hence, we cannot reject Ho of no trend for station 1 at 
the ex = 0.05 level. The tabled value for S2 = -4 when n = 5 is 
0.242. Since 0.484 > 0.05, we cannot reject Ho of no trend for 
station 2. These results are consistent with the X;rend test before. 
Note, however, that station 1 still appears to be increasing over 
time, and the reader may confirm it is significant at the ex = 0.10 
level. This result suggests that this station be carefully watched in 
the future. 

16.5 SEN'S NONPARAMETRIC 
ESTIMATOR OF SLOPE 

As noted in Section 16.3.2, if a linear trend is present, the true slope (change 
per unit time) may be estimated by computing the least squares estimate of the 
slope, b, by linear regression methods. However, b computed in this way can 
deviate greatly from the true slope if there are gross errors or outliers in the 
data. This section shows how to estimate the true slope at a sampling station 
by using a simple non parametric procedure developed by Sen (1968b). His 
procedure is an extension of a test by Theil (1950), which is illustrated by 
Hollander and Wolfe (1973, p. 205). Sen's method is not greatly affected by 
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gross data errors or outliers, and it can be computed when data are mlssmg. 
Sen's estimator is closely related to the Mann-Kendall test, as illustrated in the 
following paragraphs. The computer code in Appendix B computes Sen's 
estimator. 

First, compute the N' slope estimates, Q, for each station: 

x·, - X. 
Q=~ __ .' 

I - I 
16.8 

where Xi' and Xi are data values at times (or during time periods) i' and i, 
respectively, and where i' > i; N' is the number of data pairs for which i' > 
i. The median of these N' values of Q is Sen's estimator of slope. If there is 
only one datum in each time period, then N' = n(n - 1)/2, where n is the 
number of time periods. If there are multiple observations in one or more time 
periods, then N' < n(n - 1)/2, where n is now the total number of observations, 
not time periods, since Eq. 16.8 cannot be computed with two data from the 
same time period, that is, when i' = i. If an Xi is below the detection limit, 
one half the detection limit may be used for Xi' 

The median of the N' slope estimates is obtained in the usual way, as 
discussed in Section 13.3.1. That is, the N' values of Q are ranked from 
smallest to largest (denote the ranked values by Q[n $ Q[21 $ . . . $ 

Q[N'-'] $ Q[N'I) and we compute 

Sen's estimator = median slope 

= Q[(N'+ 1)/2] if N' is odd 

= ~ (Q[N'/2] + Q[(N'+2)/2]) if N' is even 16.9 

A 100(1 - a)% two-sided confidence interval about the true slope may be 
obtained by the nonparametric technique given by Sen (1968b). We give here 
a simpler procedure, based on the normal distribution, that is valid for n as 
small as 10 unless there are many ties. This procedure is a generalization of 
that given by Hollander and Wolfe (1973, p. 207) when ties and/or multiple 
observations per time period are present. 

1. Choose the desired confidence coefficient a and find Z, _ a/2 in Table AI. 
2. Compute CIT = ZI_a/2[VAR(S)]'/2, where VAR(S) is computed from Eqs. 

16.3 or 16.5. The latter equation is used if there are multiple observations 
per time period. 

3. Compute MI = (N' - Ca )/2 and M2 = (N' + Ca )/2. 
4. The lower and upper limits of the confidence interval are the M,th largest 

and (M2 + 1)th largest of the N' ordered slope estimates, respectively. 

EXAMPLE 16.5 

We use the data set in Example 16.3 to illustrate Sen's procedure. 
Recall that the data are 

Time Period 1 2 3 3 4 5 
Data 10 22 21 30 22 30 40 40 

There are N' = 24 pairs for which i' > i. The values of individual 
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Table 16.5 Illustration of Computing an Estimate of Trend Slope Using Sen's 
(1968b) Nonparametric Procedure (for Example 16.5). Tabled Values Are 

Individual Slope Estimates, Q 

Time Period 1 1 1 2 3 3 4 
Data 10 22 21 30 22 30 40 

NC NC +20 +6 +10 +10 
NC +8 0 +4 +6 

+9 +0.5 +4.5 +6.33 
-8 0 +5 

NC +18 
+10 

NC = Cannot be computed since both data values are within the same time period. 

slope estimates Q for these pairs are obtained by dividing the 
differences in Table 16.3 by i' - i. The 24 Q values are given in 
Table 16.5. 

Ranking these Q values from smallest to largest gives 

-8,0,0, 0, 0.5, 3.33,4,4.5,4.5,4.75, 5, 5, 6, 6, 6.33, 7.5, 8, 9, 9, 10, 10, 
10, 18, 20 

Since N' = 24 is even, the median of these Q values is the average 
of the 12th and 13th largest values (by Eq. 16.8), which is 5.5, the 
Sen estimate of the true slope. That is, the average (median) change 
is estimated to be 5.5 units per time period. 

A 90 % confidence interval about the true slope is obtaied as 
follows. From Table Al we find ZO.95 = 1.645. Hence, 

COl = 1.645[VAR(S)]1I2 = 1.645[58.1]112 = 12.54 

where the value for V AR(S) was obtained from Example 16.3. Since 
N' = 24, we have M[ = (24 - 12.54)/2 = 5.73 and M2 + 1 = 
(24 + 12.54)/2 + 1 = 19.27. From the list of 24 ordered slopes 
given earlier, the lower limit is found to be 2.6 by interpolating 
between the 5th and 6th largest values. The upper limit is similarly 
found to be 9.3 by interpolating between the 19th and 20th largest 
values. 

16.6 CASE STUDY 

5 
40 

+7.5 
+4.5 

+4.75 
+3.33 
+9 
+5 

0 

This section illustrates the procedures presented in this chapter for evaluating 
trends. The computer program in Appendix B is used on the hypothetical data 
listed in Table 16.6 and plotted in Figure 16.4. These data, generated on a 
computer, represent measurements collected monthly at two stations for 48 
consecutive months. The model for station 1 is XiII = exp [0.83 Cil - 0.35 J -
1.0, where XiII is the datum for month i in year / at station 1. The model used 
at station 2 was Xil2 = exp [0.83ci/ - 0.35] - 1.0 + 0.40(iI12 + I). For 
both stations the measurement errors Cil were generated to have mean 0 and 
variance 1. The data for station I are lognomlally distributed with no trend, 
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Table 16.6 Simulated Monthly Data at Two Stations over a Four-Year Period 

NUMBER OF YEARS = 4 
NUMBER OF STATIONS = 2 

NUMBER OF NUMBER OF 
STATION DATA POINTS STATION DATA POINTS 

1 48 2 48 
YEAR MONTH STATION 1 YEAR MONTH STATION 2 

6.00 5.09 
2 5.41 2 5.07 
3 4.58 3 4.93 
4 4.34 4 4.94 
5 4.77 5 5 . 1 5 
6 4.54 6 11 .82 
7 4.50 7 5.48 
8 5.02 8 5.18 
9 4.38 9 5.79 

10 4.27 10 5 . 11 
11 4.33 11 5.10 
1 2 4.33 12 5.94 

2 13 5.00 2 13 6.91 
2 14 5.02 2 14 7 . 11 
2 1 5 4.14 2 1 5 5.40 
2 16 5.16 2 16 6.77 
2 17 6.33 2 17 5.35 
2 18 5.49 2 18 6.04 
2 19 4.54 2 19 5.45 
2 20 6.62 2 20 6.95 
2 21 4.64 2 21 5.54 
2 22 4.45 2 22 5.71 
2 23 4.57 2 23 6.14 
2 24 4.09 2 24 7.13 
3 25 5.06 3 25 5.80 
3 26 4.83 3 26 5.91 
3 27 4.92 3 27 5.88 
3 28 6.02 3 28 7.21 
3 29 4.77 3 29 8.29 
3 30 5.03 3 30 6.00 
3 31 7.15 3 31 6.28 
3 32 4.30 3 32 5.69 
3 33 4'.15 3 33 6.52 
3 34 5.13 3 34 6.27 
3 35 5.28 3 35 6.46 
3 36 4.31 3 36 6.94 
4 37 6.53 4 37 6.28 
4 38 5 . 11 4 38 6.74 
4 39 4.31 4 39 6.91 
4 40 4.64 4 40 7.81 
4 41 4.87 4 41 6.53 
4 42 4.89 4 42 6.26 
4 43 4.92 4 43 7.01 
4 44 4.94 4 44 7.42 
4 45 4.69 4 45 8.35 
4 46 4.50 4 46 6.27 
4 47 4.80 4 47 6.69 
4 48 4.80 4 48 6.99 
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Figure 16.4 Data at two stations each month for four years. Data were simulated 
using the lognormal independent model given by Hirsch, Slack, and Smith (1982, 
Eq. 14b). Simulated data were obtained by D. W. Engel. 
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and the data for station 2 are lognormal with a trend of 0.4 units per year or 
0.0333 units per month. These models were among those used by Hirsch. Slack, 
and Smith (1982) to evaluate the power of the seasonal Kendall test for trend, 
a test we discuss in Chapter 17. 

The results obtained from the computer code in Appendix B are shown in 
Table 16.7. The first step is to decide whether the two stations have trends in 
the same direction. In this example we know it is not so, since one station has 
a trend and the other does not. But in practice this a priori information will 
not be available. 

Table 16.7 shows that the chi-square test of homogeneity (Eq. 16.6) is highly 
significant (X~omog = 10.0; computed significance level of 0.002). Hence, we 
ignore the chi-square test for trend that is automatically computed by the program 
and tum instead to the Mann-Kendall test results for each station. This test for 
station 1 is nonsignificant (P value of 0.70), indicating no strong evidence for 
trends, but that for station 2 is highly significant. All of these test results agree 
with the true situation. Sen's estimates of slope are 0.002 and 0.041 per month 
for stations 1 and 2, whereas the true values are 0.0 and 0.0333, respectively. 
The computer code computes 100(1 - a) % confidence limits for the true slope 
for a = 0.20, 0.10, 0.05, and 0.01. For this example the 95% confidence 
limits are -0.009 and 0.012 for station 1, and 0.030 and 0.050 for station 2. 

The computer code allows one to split up the 48 observations at each station 
into meaningful groups that contain multiple observations. For instance, suppose 

Table 16.7 Chi-Square Tests for Homogeneity of Trends at the Two Stations, 
and Mann-Kendall Tests for Each Station 

HOMOGENE ITY TEST RESULTS 
PROB. OF A 

CHI-SQUARE STATISTICS df LARGER VALUE 

TOTAL 
HOMOGENEITY 
TREND 

23.97558 
10.03524 
13.94034 

2 

1 
1 

0.000 
0.002 
0.000 

Z 
STATION SEASON 

MANN­
KENDALL 

S 

STATISTIC STATISTIC 

1 

2 

STATION 

2 

SEASON 

45.00 
549.00 

D.39121 
4.87122 

SEN SLOPE 
CONFIDENCE INTERVALS 

ALPHA LOWER LIMIT 

0.010 -0.013 
0.050 -0.009 
0.100 -0.007 
0.200 -0.005 

0.010 0.026 
0.050 0.030 
0.100 0.032 
0.200 0.034 

Trend not equal 
~ at the 2 stations 
4-- Not meani ngfu l 

PROB. OF EXCEEDING 
THE ABSOLUTE VALUE 
OF THE Z STATISTIC 
(TWO-TAILED TEST) 

n IFn>1o 

48 0.696 
48 0.000 

SLOPE UPPER LIMIT 

0.002 0.016 
0.002 0.012 
0.002 0.011 
0.002 0.009 

0.041 0.054 
0.041 0.050 
0.041 0.048 
0.041 0.046 
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Table 16.8 Analyses of the Data in Table 16.6 Considering the Data as 
Twelve Multiple Observations in Each of Four Years 

NUMBER OF YEARS = 4 

NUMBER OF SEASONS = 1 
NUMBER OF STATIONS = 2 

HOMOGENEITY TEST RESULTS 

SOURCE 

TOTAL 

HOMOGENEITY 

TREND 

STATION SEASON 

2 

STATION SEASON 

2 

CHI-SQUARE 

21.45468 
5.79732 

15.65736 

MANN-

KENDALL 

S 

STATISTIC 

119.00 
489.00 

Z 
STATISTIC 

1.08623 
4.49132 

SEN SLOPE 
CONFIDENCE INTERVALS 

ALPHA LOWER LIMIT 

0.010 -0.120 
0.050 -0.065 
0.100 -0.037 
0.200 -0.014 

0.010 0.290 
0.050 0.353 
0.100 0.370 
0.200 0.390 

df 

2 

n 

48 
48 

PROB.OFA 

LARGER VALUE 

0.00 
0.016 
0.000 

PROB. OF EXCEEDING 

THE ABSOLUTE VALUE 
OF THE Z STATISTIC 

(TWO-TAILED TEST) 

SLOPE 

0.080 
0.080 
0.080 
0.080 

0.467 
0.467 
0.467 
0.467 

IFn>10 

0.277 
0.000 

UPPER LIMIT 

0.225 
0.190 
0.176 
0.153 

0.670 
0.620 
0.600 
0.575 

we regard the data in this example as 12 multiple data points in each of four 
years. Applying the code using this interpretation gives the results in Table 
16.8. 

The conclusions of the tests are the same as obtained in Table 16.7 when 
the data were considered as one time series of 48 single observations. However, 
this may not be the case with other data sets or groupings of multiple observations. 
Indeed, the Mann-Kendall test statistic Z for station 1 is larger in Table 16.8 
than in Table 16.7, so that the test is closer to (falsely) indicating a significant 
trend when the data are grouped into years. For station 2 the Mann-Kendall 
test in Table 16.8 is smaller than in Table 16.7, indicating the test has less 
power to detect the trend actually present. The best strategy appears to be to 
not group data unnecessarily. The estimates of slope are now 0.080 and 0.467 
per year, whereas the true values are 0.0 and 0.40, respectively. 

16.7 SUMMARY 

This chapter began by identifying types of trends and some of the complexities 
that arise when testing for trend. It also discussed graphical methods for detecting 
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and estimating trends, intervention analysis, and problems that arise when using 
regression methods to detect and estimate trends. 

Next, the Mann-Kendall test for trend was described and illustrated in detail, 
including how to handle multiple observations per sampling time (or period). 
A chi-square test to test for homogenous trends at different stations within a 
basin was also illustrated. Finally, methods for estimating and placing confidence 
limits on the slope of a linear trend by Sen's nonparameter procedure were 
given and the Mann-Kendall test on a simulated data set was illustrated. 

EXERCISES 

16.1 Use the Mann-Kendall test to test for a rising trend over time, using the 
following data obtained sequentially over time. 

Time 1 2 3 4 5 6 7 
Data NO NO 3 1.5 1.2 4 

Use O! = 0.05. What problem is encountered in using Table A 18? Use 
the nonnal approximate test statistic Z. 

16.2 Use the data in Exercise 16.1 to estimate the magnitude of the trend in 
the population. Handle NDs in two ways: (a) treat them as mIssmg 
values, and (b) set them equal to one half the detection limit. Assume 
the detection limit is 0.5. What method do you prefer? Why? 

16.3 Compute a 90% confidence interval about the true slope, using the data 
in part (b) of Exercise 16.2. 

ANSWERS 

16.1 n = 7. The 2 NDs are treated as tied at a value less than 1.1. S = 
16 - 4 = 12. Since there is a tie, there is no probability value in Table 
A18 for S = + 12, but the probability lies between 0.035 and 0.068. 
Using the large sample approximation gives Var(S) = 43.3 and Z = 
1.67. Since 1.67 > 1.645, we reject Ho of no trend. 

16.2 (a) The median of the 10 estimates of slope is 0.23. (b) The median of 
the 21 estimates of slope is 0.33. 

Pros and Cons: Using one half of the detection limit assumes the 
actual measurements of ND values are equally likely to fall anywhere 
between zero and the detection limit. One half of the detection limit is 
the mean of that distribution. This method, though approximate, is 
preferred to treating NDs as missing values. 

16.3 From Eq. 16.3, VAR(S) = 44.3. (The correction for ties in Eq. 16.3 
is not used because the 2 tied values were originally ND values and were 
assigned to be equal.) Cn: = 10.95, MJ == 5, M2 + I == 17. Therefore, 
the limits are 0 and 0.94. 
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Chapter 16 discussed trend detection and estimation methods that may be used 
when there are no cycles or seasonal effects in the data. Hirsch, Slack, and 
Smith (1982) proposed the seasonal Kendall test when seasonality is present. 
This chapter describes the seasonal Kendall test as well as the extention to 
multiple stations developed by van Belle and Hughes (1984). It also shows how 
to estimate the magnitude of a trend by using the nonparametric seasonal Kendall 
slope estimator, which is appropriate when seasonality is present. All these 
techniques are included in the computer code listed in Appendix B. A computer 
code that computes only the seasonal Kendall test and slope estimator is given 
in Smith, Hirsch, and Slack (1982). 

17.1 SEASONAL KENDALL TEST 

If seasonal cycles are present in the data, tests for trend that remove these 
cycles or are not affected by them should be used. This section discusses such 
a test: the seasonal Kendall test developed by Hirsch, Slack, and Smith (1982) 
and discussed further by Smith, Hirsch, and Slack (1982) and by van Belle and 
Hughes (1984). This test may be used even though there are missing. tied, or 
ND values. Furthermore, the validity of the test does not depend on the data 
being normally distributed. 

The seasonal Kendall test is a generalization of the Mann-Kendall test. It 
was proposed by Hirsch and colleagues for use with 12 seasons (months). In 
brief, the test consists of computing the Mann-Kendall test statistic S and its 
variance, V AR(S), separately for each month (season) with data collected over 
years. These seasonal statistics are then summed, and a Z statistic is computed. 
If the number of seasons and years is sufficiently large, this Z value may be 
referred to the standard normal tables (Table AI) to test for a statistically 
significant trend. If there are 12 seasons (e.g., 12 months of data per year), 
Hirsch, Slack, and Smith (1982) show that Table Al may be used as long as 
there are at least three years of data for each of the 12 seasons. 

Conceptually, the seasonal Kendall test may also be used for other "seasons" 
(e.g., four quarters of the year or the three 8-h periods of the day). However, 
the degree of approximation of Table Al when there are fewer than 12 seasons 
has not, apparently, been given in the literature. For applications where an 
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Table 17.1 Data for the Seasonal Kenda" Test at One Sampling Station 

Season 

1 2 K 

XII X 21 X K1 

2 X l2 X,, xn 
Year 

L X,L X2L XKL 

S, S2 SK 

K K 
S' 2: Si Var(S') = 2: Var(S,) 

i= 1 i= I 

exact test is important, the exact distribution of the seasonal Kendall test statistic 
can be obtained on a computer for any combination of seasons and years by 
the technique discussed by Hirsch, Slack, and Smith (1982). 

Let Xii be the datum for the ith season of the lth year, K the number of 
seasons, and L the number of years. The data for a given site (sampling station) 
are shown in Table 17.1. The null hypothesis, Ho, is that the Xii are independent 
of the time (season and year) they were collected. The hypothesis Ho is tested 
against the alternative hypothesis, HA , that for one or more seasons the data 
are not independent of time. 

For each season we use data collected over years to compute the Mann­
Kendall statistic S. Let Si be this statistic computed for season i, that is, 

ni-1 nj 

Si = L: L: sgn (Xii - Xik) 
k=l/=k+1 

17.1 

where I > k, ni is the number of data (over years) for season i, and 

if Xii - Xik > 0 

=0 if Xii - Xik = 0 

-] if Xii - Xik < 0 

V AR(S;) is computed as follows: 

~ ~ 

L: tip (tip - l)(t;p - 2) L: Uiq(Uiq - l)(uiq - 2) 
+p=1 q=1 

9ni(ni - l)(ni - 2) 

17.2 
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where gi is the number of groups of tied (equal-valued) data in season i, tip is 
the number of tied data in the pth group for season i, hi is the number of 
sampling times (or time periods) in season i that contain multiple data, and U;q 

is the number of multiple data in the qth time period in season i. These 
quantities are illustrated in Example 17.1. 

After the Si and Var(S;) are computed, we pool across the K seasons: 

and 

Next, compute 

K 

S' = L; S; 
;=\ 

K 

V AR(S') = L; V AR(S;) 
;=\ 

Z = (S' - 1) 
[V AR(S ')] JI2 

=0 

(S' + 1) 

[VAR(S,)]JI2 

if S' > 0 

if S' = 0 

if S < 0 

17.3 

17.4 

17.5 

To test the null hypothesis, Ho, of no trend versus the alternative hypothesis, 
HA , of either an upward or downward trend (a two-tailed test), we reject Ho if 
the absolute value of Z is greater than Z\ -",/2, where Z, -",/2 is from Table AI. 
If the alternative hypothesis is for an upward trend at the a level (a one-tailed 
test), we reject Ho if Z (Eq. 17.5) is greater than ZJ _ ". Reject Ho in favor of 
a downward trend (one-tailed test) if Z is negative and the absolute value of Z 
is greater than Z, -,,' The computer code in Appendix B computes the seasonal 
Kendall test for multiple or single observations per time period. Example 17.1 
in the next section illustrates this test. The + 1 added to the S' in Eq. 17.5 is 
a correction factor that makes Table A 1 more exact for testing the null hypothesis. 
This correction is not necessary if there are ten or more data for each season 
(n; 2: 10). 

17.2 SEASONAL KENDALL SLOPE 
ESTIMATOR 

The seasonal Kendall slope estimator is a generalization of Sen's estimator 
of slope discussed in Section 16.5. First, compute the individual Ni slope 
estimates for the ith season: 

where, as before, Xii is the datum for the ith season of the lth year, and Xik is 
the datum for the ith season of the kth year, where I > k. Do this for each of 
the K seasons. Then rank the N; + N2 + ... + Nk = N' individual slope 
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estimates and find their median. This median is the seasonal Kendall slope 
estimator. 

A 100(1 - a) % confidence interval about the true slope is obtained in the 
same manner as in Section 16.5: 

1. Choose the desired confidence level a and find ZI _ oil2 in Table AI. 
2. Compute C" = ZI _"dVAR(S,)]1/2. 
3. Computer MJ = (N' - Cc<)/2 and M2 = (N' + Ca )l2. 
4. The lower and upper confidence limits are the Mlth largest and the (M2 + 

l)th largest of the N' ordered slope estimates, respectively. 

EXAMPLE 17.1 

We use a simple data set to illustrate the seasonal Kendall test and 
slope estimator. Since the number of data are small, the tests and 
confidence limits are only approximations. All computations are 
given in Table 17.2. Suppose data are collected twice a year (e.g., 
December and June) for 3 years at a given location. The data are 
listed below and plotted in Figure 17.1. 

Season 
Data 

I 2 
8 10 15 

Year 

2 

2 2 
12 20 18 

3 

2 
15 20 

Note that two observations were made in season 1 of year I and in 
season 2 of year 2. Also, there is 1 tied data value, 20, in season 
2. 

Table 17.2, Part A, gives the N; + Ni = 5 + 5 = 10 individual 
slope estimates for the 2 seasons and their ranking from smallest to 
largest. The seasonal Kendall slope estimate, 2.75, is the median of 
these 10 values. In Table 17.2, Part B, the seasonal Kendall Z 
statistic is calculated to be 2.1 by Eqs. 17.3-17.5. To test for an 
upward trend (one-tailed test) at the a = 0.05 level, we reject the 
null hypothesis, Ro, of no trend if Z > Z095, that is, if Z > 1.645. 
Since Z = 2.10, we reject Ro and accept that an upward trend is 
present. 

A 90 % confidence interval on the true slope is obtained by 
computing C", = I.645[VAR(S,)]112 = 1.645(3.808) = 6.264, MI 
= (10 - 6.264)/2 = 1.868, and M2 + 1 = (10 + 6.264}/2 + 1 
= 9.132. Hence, the lower limit is found by interpolating between 
the first and second largest val ues to obtain 1. 7. The upper limit is 
similarly found to be 4.1. 

17.3 HOMOGENEITY OF TRENDS IN 
DIFFERENT SEASONS 

Section 16.4.4 showed how to test for homogeneity of trend direction at different 
stations when no seasonal cycles are present. That test is closely related to the 
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Table 17.2 Illustration of the Seasonal Kendall Test and Slope Estimator. 
Tabled Values Are Individual Slope Estimates Obtained from Eq. 17.6 

Part A. Computinli the Seasonal Kendall Slope Estimate 

Season I 

Year 1 1 2 3 Sum of Sum of 
Data 810 12 15 + Signs - Signs 

a +4 +3.5 2 0 
+2 +2.5 2 0 

+3 0 
S, = 5 + 0 = 5 

Ordered values of individual slope estimates: 
0, 2, 2, 2.5, 2.5, 3, 3, 3.5, 4, 5 

Median: Seasonal Kendall slope estimate = 2.75 
80% Limits: 0.936 and 4.53 

Part B. Computing the Seasonal Kendall Test 

n, = 4 

g, = 0 

h, = 1, u" = 2 

N; = 5 

n, = 4 

g, = 1, t2 , = 2 

h, = 1, u,' = 2 

N2 = 5 

1 
15 

Var(S,) = -h [4(3)(13) - 2(1)(9)J + 0 + 0 = 7.667 

2 
20 

+5 

2 3 
18 20 

+3 +2.5 
(l 0 

+2 
S, = 

Var(S,) = -h [4(3)(13) - 2(1)(9) - 2(1)(9)] + 0 + [2(1)]12(1)]18(3) 
= 6.667 + 0.1667 = 6.834 
[Var(S,)]'!' = 2.8 [VAR(S,)]'12 = 2.6 
S' = S, + S, = 5 + 4 = 9 
VAR(S') = VAR(S,) + VAR(S,) = 7.667 + 6.834 14.5 

[VAR(S,)]I1' = 3.808 Z = (9 - 1) = 2.1" 
3.808 

Season 2 

Sum of 
+ Signs 

3 
0 

4 + 

a Cannot be computed since both data values are within the same time period. 

Sum of 

Silins 

0 
0 
0 
0 = 4 

bReferring this value to Table Al is only an approximate test for this example, since n, and 
n, are small and there are only two seasons. 

procedure developed by van Belle and Hughes (1984) to test for homogeneity 
of trend direction in different seasons at a given station. This latter test is 
important, since if the trend is upward in one season and downward in another, 
the seasonal Kendall test and slope estimator will be misleading. 

The procedure is to compute 

2 2 
X homog = X total 

2 
X trend 

where 

S z. = I 

, [VAR(Si)] 112 

Si is the Mann-Kendall statistic, computed with data collected over years, during 
the ith season, and 

K 

Z=~ ~ Z 
Ki~1 I 
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Figure 17.1 Artificial data set to illustrate computation of the seasonal Kendall 
slope estimator. 

If X~omog exceeds the a critical value for the chi-square distribution with K 
- 1 df, we reject the null hypothesis, Ho, of homogeneous seasonal trends over 
time (trends in the same direction and of the same magnitude). In that case the 
seasonal Kendall test and slope estimate are not meaningful, and it is best to 
compute the Mann-Kendall test and Sen's slope estimator for each individual 
season. If X ~omog does not exceed the cri!ical value in the chi-square tables (Table 
A19), our calculated value of X ;rend = KZ2 is referred to the chi-square distribution 
with 1 df to test for a common trend in all seasons. 

The critical value obtained from the chi-square tables will tend to be too 
small unless (1) the number of data used to compute each Zi is 10 or more, 
and (2) the data are spaced far enough apart in time so that the data in different 
seasons are not correlated. For some water quality variables Lettenmaier (1978) 
found that this implies that sampling should be at least two weeks apart. 

Van Belle and Hughes (1984) show how to test whether there is a pattern 
to the trend heterogeneity when X~omog is significantly large. They illustrate by 
showing how to test whether trends in summer and winter months are significantly 
different. 

17.4 SEN'S TEST FOR TREND 
The seasonal Kendall and chi-square tests are versatile and easy to use with the 
computer code in Appendix B. However, if seasonal cycles are present, van 
Belle and Hughes (1984) show that a nonparametric aligned rank test, used by 
Farrell (1980) (proposed by Sen, 1968a), is more likely to detect monotonic 
trends. It is especially true when only a few years of data are available. 
However, Sen's test is more difficult to compute than the seasonal Kendall test 
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when there are missing values, and the test is inexact in that case. Given these 
facts, Sen's test is preferred to the seasonal Kendall test when no data are 
missing. The computer code in Appendix B also computes Sen's test. Com­
putational procedures are given in van Belle and Hughes (1984). 

17.5 TESTING FOR GLOBAL TRENDS 

In Section 17.3 the X ~omog statistic was used to test for homogeneity of trend 
direction in different seasons at a given sampling station. This test is a special 
case of that developed by van Belle and Hughes (1984) for M > 1 stations. 
Their procedures allow one to test for homogeneity of trend direction at different 
stations when seasonality is present. The test for homogeneity given in Section 
16.4.4 is a special case of this test. Van Belle and Hughes illustrate the tests, 
using temperature and biological oxygen demand data at two stations on the 
Willamette River. 

The required data are illustrated in Table 17.3. The first step is to compute 
the Mann-Kendall statistic for each season at each station by Eq. 17.1. Let Sim 

denote this statistic for the ith season at the mth station. Then compute 

z. = Sim 
1m [V AR(Sim)] 1/2' 

i = 1,2, ... ,K, m = 1,2, ... ,M 17.6 

where V AR(Sim) is obtained by using Eq. 17.2. (For this application all quantities 
in Eq. 17.2 relate to the data set for the ith season and mth station.) Note that 
missing values, NDs, or multiple observations per time period are allowed, as 
discussed in Section 17. 1. Also, note that the correction for continuity (± 1 
added to Sin Eq. 16.5 and Sf in Eq. 17.5) is not used in Eq. 17.6 for reasons 
discussed by van Belle and Hughes (1984). 

Next, compute 

i = 1,2, ... , K 

= mean over M stations for the ith season 

Table 17.3 Data to Test for Trends Using the Procedure of van Belle and 
Hughes (1984) 

Station J Station M 

Season 2 K 2 

1 XIII X211 XKll I XI 1.\1 X 21M 

2 X I21 X 221 X K 21 2 X 12M X22M 

Year 
L XILI X2LI XKLI L XILM X2LM 

S11 S21 SKI SIM S2M 

211 221 2KI 21M 22M 

K = number of seasons; M = number of stations; L = number of years. 
Xii; = datum for the ith sampling time in the lth year at the jth station. 
Multiple obselVations per year for one or more seasons are allowed but not shown here. 

K 

X K1M 

XK2M 

XKLM 

SKM 

2"M 
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Z .. 

K 

L; Zim, 
Ki=1 

m = 1,2, ... ,M 

mean over K seasons for the mth station 

1 
- L; L; Zim 
KMi=1 m=\ 

K M 

= grand mean over all KM stations and seasons 

Now, compute the chi-square statistics in Table 17.4 in the following order: 

X ~ota\' X ~rend' X ~tation' and X ;eason' Then compute 
2 2 2 

X homog = X total - X trend 

and 

2 
X station-sea~on 

2 
Xhomog X ;tation - X ;eason 

Refer X ~tation' X ~eason' and X;tation-,ca"m to the a level critical values in the chi­
square tables with M - 1, K - 1, and (M - I)(K - 1) df, respectively. 

If all three tests are nonsignificant, refer X ;rcnd to the chi-square distribution 
with 1 df to test for global trend. If X ~ea,on is significant, but X ;tation is not, 
that is, if trends have significantly different directions in different seasons but 
not at different stations, then test for a different trend direction in each season 
by computing the K seasonal statistics 

i = 1, 2, .. , K seasons 17.7 

and referring each to the a-level critical value of the chi-square distribution 
with 1 df. 

If X :tation is significant, but X :c",on is not, that is, if trends have significantly 
different directions at different stations but not in different seasons, then test 
for a significant trend at each station by computing the M station statistics 

Table 17.4. Testing for Trends USing the Procedure of van Belle and 
Hughes (1984) 

Chi-Square Statistics 

K M 

X~)\al = ~ L: Z7m 
i= 1 m= I 

K M 

X~omog = L; L; Z~m - KMZ? 
i= I m= 1 

K 

X~eason 

2 
Xstation 

M L; n - KMZ? 
;= I 

M 

K L: Z:m - KMZ2. 
m= I 

K M K 

X;tation-season = L: L ZTm - M L; zf. 
i= I m= 1 

M 

K L; Z2j + KMZ? 
m= I 

Xt,end = KMZ:. 

KM 

Degrees of 
Freedom 

KM -

K-I 

M - I 

(M - I) (K - I) 

Remarks 

Obtained by subtraction 

Test for ,easonal 
heterogeneity 

Test for station 
heterogen,~ity 

Test for interaction 
Obtained by subtraction 

Test for overall trend 

M = number of stations; K number of seasons; Z'm Mann-Kendall statistic for the ith 
season-mth station data set (see Table 17.3). 
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m = 1,2, ... ,M stations 

and refer to the a-level critical value of the chi-square distribution with 1 df. 
If both X~tation and X~eason are significant or if X;tation-season is significant, then 

the X2 trend test should not be done. The only meaningful trend tests in that 
case are those for individual station-seasons. These tests are made by referring 
each Zim statistic (see Table 17.3) to the a-level critical value of the standard 
normal table (Table AI), as discussed in Section 16.4.2 (or Section 16.4.3 if 
multiple observations per season have been collected). For these individual 
Mann-Kendall tests, the Zim should be recomputed so as to include the correction 
for continuity (± 1) as given in Eq. 16.4. 

The computer code listed in Appendix B computes all the tests we have 
described as well as Sen's estimator of slope for each station-season combination. 
In addition, it computes the seasonal Kendall test, Sen's aligned test for trends, 
the seasonal Kendall slope estimator for each station, the equivalent slope 
estimator (the "station Kendall slope estimator") for each season, and confidence 
limits on the slope. 

The code will compute and print the K seasonal statistics (Eq. 17.7) to test 
for equal trends at different sites for each season only if (1) the computed P 
value of the X;eason test is less than a', and (2) the computed P value of the 
X;tation exceeds a', where a' is an a priori specified significance level, say 
a' = 0.01, 0.05, or 0.10, chosen by the investigator. Similarly, the M station 
statistics (Eq. 17.8) are computed only if the computed P value of X;tation is 
less than a' and that for X;eason is greater than a'. The user of the code can 
specify the desired value of a'. A default value of a' = 0.05 is used if no 
value is specified. 

EXAMPLE 17.2 

Table 17.5 gives a set of data collected monthly at 2 stations for 4 
years (plotted in Fig. 17.2). These data were simulated on a computer 
using the lognormal, autoregressive, seasonal cycle model given in 
Hirsch, Slack, and Smith (1982, p. 112). The data at station 1 have 
no long-term trend (i.e., they have a slope of zero), whereas station 
2 has an upward trend of 0.4 units per year for each season. Hence, 
seasonal trend directions are homogeneous, but the station trend 
directions are not. 

The chi-square tests are given in Table 17.6. We obtain that 
X;tation = 8.16 has a P value of 0.004. That is, the probability is 
only 0.004 of obtaining a X;tation value this large when trends over 
time at the 2 stations are in the same direction. Hence, the data 
suggest trend directions are different at the 2 stations, which is the 
true situation. Both X;eason and X;tation-season statistics (8.48 and 2.63) 
are small enough to be nonsignificant. This result is also expected, 
since trend direction does not change with season. 

We chose a' = 0.05. Since X;eason was not significant (computed 
P level exceeded a' = 0.05), the K seasonal statistics (Eq. 17.7) 
were not computed. However, since X;tation was significant (P value 
less than a' = 0.05) and X~eason was not, the 2 station statistics 
12Z~ and 12Z22 were computed by Eq. 17.8 and found to equal 2.46 
and 31.45, respectively (see Tble 17.6). These tests indicate some 
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Table 17.5 Simulated Water Quality Using a Lognormal Autoregressive, 
Seasonal Cycle Model Given by Hirsch, Slack, and Smith (1982, Eq. 14f) 

NUMBER OF YEARS = 4 
NUMBER OF SEASONS = 12 
NUMBER OF STATIONS = 2 

NUMBER OF NUMBER OF 
STATION DATA POINTS STATION DATA POINTS 

1 n = 48 2 n = 48 
YEAR SEASON STATION 1 YEAR SEASON STATION 2 

6.32 6.29 
2 6.08 2 6.11 
3 5.16 3 5.66 
4 4.47 4 5.16 
5 4.13 5 4.75 
6 3.65 6 6.79 
7 3.48 7 4.51 
8 3.78 8 4.37 
9 3.94 9 4.95 

10 4.40 10 5.22 
11 4.94 11 5.73 
1 2 5.32 12 6.72 

2 5.82 2 7.42 
2 2 5.76 2 2 7.56 
2 3 4.88 2 3 6.13 
2 4 4.84 2 4 6.24 
2 5 4.87 2 5 5.07 
2 6 4.13 2 6 4.95 
2 7 3.51 2 7 4.59 
2 8 4.32 2 8 5.22 
2 9 4.06 2 9 5.13 
2 10 4.47 2 10 5.69 
2 11 5.05 2 11 6.41 
2 12 5.20 2 12 7.53 
3 5.83 3 7.02 
3 2 5.65 3 2 6.93 
3 3 5.32 3 3 6.55 
3 4 5.33 3 4 6.66 
3 5 4.20 3 5 6.69 
3 6 3.85 3 6 5.23 
3 7 4.45 3 7 5.14 
3 8 3.56 3 8 5.06 
3 9 3.85 3 9 5.71 
3 10 4.72 3 10 6.17 
3 11 5.38 3 11 6.78 
3 12 5.33 12 7.64 
4 6.59 4 7.46 
4 2 5.93 4 2 7.56 
4 3 4.98 4 3 7.30 
4 4 4.61 4 4 7.22 
4 5 4.18 4 5 6.07 
4 6 3.79 4 6 5.53 
4 7 3.64 4 7 5.65 
4 8 3.77 4 8 5.94 
4 9 4.05 4 9 6.68 
4 10 4 . .50 4 10 6.42 
4 11 5.15 4 11 7.10 
4 12 5.57 4 12 7.86 
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Figure 17.2 Data at two stations each month for four years. Data were simulated 
using the lognormal autoregressive seasonal model given by Hirsch, Slack, and 
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Table 17.6 Chi-Square Tests for Homogeneity of Trends over Time between 
Seasons and between Stations 

HOMOGENEITY TEST RESULTS 

CHI-SQUARE STATISTICS df 

PROB. OF A 

LARGER VALUE 

TOTAL 45.02007 24 

23 

11 

0.006 

0.686 HOMOGENEITY 19.26657 

SEASON 8.48201 0.670 ____ Trends not equaL 

STATION 8.15667 1 
11 

0.004~ atthe2stations 

STATION-SEASON 2.62789 0.995 

TREND 25.75349 0.000 ~ Not meani ngfu L 

INDIVIDUAL STATION TREND 

STATION CHI-SQUARE df 
PROB. OF A 

LARGER VALUE 

1 
2 

2.46154 

31.44863 

0.117 

0.000 

evidence of a trend at station 1 (P level = 0.117) and a definite 
trend at station 2 (P level = 0.000). 

Table 17.7 gives the seasonal Kendall and Sen aligned rank tests 
at both stations. These results agree with the true situation. The 
seasonal Kendall slope estimates are 0.042 and 0.440. which are 
slightly larger than the actual values of 0.0 and 0.4, respectively. 
The lower and upper confidence limits on the true slope are also 
given in Table 17.7. Finally, Table 17.8 gives the individual Mann­
Kendall tests for trend over time for each season-station combination. 
Since n is only 4 for each test, the P values are approximate because 
they were obtained from the nomlal distribution (Table AI). The 
exact P values obtained from Table A18 are also shown in the table. 
The approximate levels are quite close to the exact. None of the 
tests for station I are significant, and the 12 slope estimates vary 
from -0.08 to 0.208 (the true value is zero). Seven of the 12 tests 
for station 2 are significant at the ex = 0.10 2-tailed level. If n were 
greater than 4, more of the tests for station 2 would have been 
significant. The 12 slope estimates range from -0.070 to 0.623 with 
a mean of 0.414. Since n is so small, these estimates are quite 
variable, but their mean is close to the true 0.40. Confidence intervals 
for the true slope for 4 station-season combinations are shown in 
Table 17.9. The computer code computes these for all KM combi­
nations. 

17.6 SUMMARY 

This chapter described and illustrated the seasonal Kendall test for trend, the 
seasonal Kendall estimator of linear trend, the chi-square tests for homogeneous 
trends for different stations and seasons, and tests for global trends. These tests 
do not require the data to be normally distributed, they are not greatly affected 
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Table 17.7 Seasonal Kendall and Sen Aligned Ranks Tests for Trend over 
Time 

STATION 

2 

STATION 

2 

STATION 

2 

SEASONAL 
KENDALL 

1.47087 
5.51784 

SEN T 

1.02473 
4.57814 

n 

48 
48 

n 

48 
48 

SEASONAL-KENDALL SLOPE 
CONFIDENCE INTERVALS 

ALPHA LOWER LIMIT 

0.010 -0.060 
0.050 -0.020 
0.100 -0.004 
0.200 0.007 

0.010 0.345 
0.050 0.365 
0.100 0.377 
0.200 0.380 

PROB. OF EXCEEDING 
THE ABSO,LUTE VALUE 

OF THE KENDALL 
STATISTIC 

(TWO-TAl LED TEST) 

0.141 
0.000 

PROB. OF EXCEEDING 
THE ABSOLUTE VALUE 

OF THE SEN T STATISTIC 
(TWO-TAILED TEST) 

SLOPE 

0.042 
0.042 
0.042 
0.042 

0.440 
0.440 
0.440 
0.440 

0.306 
0.000 

UPPER LIMIT 

O. 111 
0.085 
0.081 
0.070 

0.525 
0.499 
0.486 
0.478 

by outliers and gross errors, and mIssmg data or ND values are allowed. 
However, the tests still require the data to be independent. If they are not, the 
tests tend to indicate that trends are present more than the allowed lOOa % of 
the time. 

EXERCISES 

17.1 Use the following data to test for no trend versus a rising trend, using 
the seasonal Kendall test. Use a = 0.01. 

Season 

Year 2 3 4 5 6 

I 5,71 4,63 3,97 3,37 3,88 4,95 

2 6,29 4,79 5,64 4,42 5,18 6,29 
3 7,33 6,91 5,96 6,48 5,30 7.77 

17.2 Plot the data in Exercise 17.1 in their time order, and estimate the slope 
of the rising trend, using the seasonal Kendall slope estimator. 
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Table 17.8 Mann-Kendall Tests for Trend over Time for Each Season at 
Each Station 

PROB. OF EXCEEDING 
THE ABSOLUTE 

MANN- VALUE OF THE Z 
KENDALL STATISTIC 

S Z' (TWO-TAILED SEN 
STATION SEASON STATISTIC STATISTIC n TEST) IFn>10 SLOPE 

2 0.33968 4 0.734 (0.750)b 0.050 
2 -2 -0.33968 4 0.734 (0.750) -0.080 
3 0 0.00000 4 1.000 (1.000) -0.005 
4 2 0.33968 4 0.734 (0.750) 0.208 
5 0 0.00000 4 1.000 (1.000) -0.002 
6 0 0.00000 4 1.000 (1.000) -0.007 
7 4 1.01905 4 0.308 (0.334) 0.059 
8 -2 -0.33968 4 0.734 (0.750) -0.057 
9 0 0.00000 4 1 .000 (1.000) 0.016 

10 4 1.01905 4 0.308 (0.334) 0.052 
11 4 1.01905 4 0.308 (0.334) 0.090 
12 4 1.01905 4 0.308 <0.334) 0.107 

2 4 1.01905 4 0.308 (0.334) 0.378 
2 3 0.72232 4 0.470 ) , 0.447 
3 6 1.69842 4 0.089 (0.084) 0.508 
4 6 1.69842 4 0.089 (0.084) 0.623 
5 4 1.01905 4 0.308 (0.334) 0.470 
6 0 0.00000 4 1.000 (1.000) -0.070 
7 6 1.69842 4 0.089 (0.084) 0.445 
8 4 1.01905 4 0.308 (0.334) 0.442 
9 6 1.69842 4 0.089 (0.084) 0.578 

10 6 1.69842 4 0.089 <0.084) 0.435 
11 6 1.69842 4 0.089 (0.084) 0.413 
12 6 1.69842 4 0.089 (0.084) 0.300 

a ± I correction factor used to compute the Z statistic. 

hExact two-tailed significance levels for the S statistic using Table A 18. 
C Cannot be determined from Table A 18 since S = 3 resulted because of two tied data in the 
season. 

17.3 Use the results in Exercises 17.1 and 17.2 to compute an 80% confidence 
interval about the true slope. 

17.4 Test for equal trend directions in different seasons, using the data in 
Exercise 17.1. Use ex = 0.01. If the trends in the 6 seasons are 
homogeneous, use chi-square to test for a statistically significant trend at 
the ex = 0.05 level. 

17.5 Suppose the data in Exercise 17.1 were collected at station 1 and the 
following data were collected at station 2. 

Year 

2 
3 

9 
12 

17 

2 

8.5 
11.5 

16.5 

3 

8 
11.2 

16 

Season 

4 

7.5 
II 

15.5 

5 

8.3 
12.5 

16.3 

6 

10 
15 

17 
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Table 17.9 Sen Slope Estimates and Confidence Intervals for Each Station­
Season Combination 

SEN SLOPE 
CONFIDENCE INTERVALS 

STATION SEASON ALPHA LOWER LIMIT SLOPE UPPER LIMIT 

0.010 ntoosmall a 0.050 ntoosmall' 
0.050 ntoosmall 0.050 0.08.7 
0.100 ntoosmall 0.050 0.440 
0.200 -0.471 0.050 0.718 

2 0.010 ntoosmall -0.080 ntoosmall 
0.050 ntoosmall -0.080 0.032 
0.100 n too small -0.080 0.162 
0.200 -0.308 -0.080 0.258 

2 0.010 ntoosmall 0.378 ntoosmall 
0.050 n too small 0.378 -0.171 
0.100 n too small 0.378 O. 511 
0.200 -0.353 0.378 1. 052 

2 0.010 n too small 0.447 ntoosmall 
0.050 ntoosmall 0.447 0.251 
0.100 n too small 0.447 0.984 
0.200 -0.488 0.447 1 .265 

a The lower and upper limits cannot be computed if n is too small. 

Test for homogeneity of trend direction between seasons and between 
stations, using the chi-square tests in Table 17.4 with ex = 0.01. Test 
for a significant common trend at the 2 stations, if appropriate. 

ANSWERS 

17.1 Var(Sj) = 3(2)(11)/18 = 3.667 for each season. S' = E?=ISj = 18, 
Var(S') = 6(3.667) = 22. From Eg. 17.5, Z = 171m = 3.62. Since 
ex = 0.01 (one-tailed test), Z099 = 2.326. Since 3.62 > 2.326, we 
accept the hypothesis of a rising trend. 

17.2 The median of the 18 slope estimates is 1.09 units per year. 

17.3 ZI-od2 = ZO.90 = 1.282. Var(S') = 22 from Exercise 17.1. Therefore, 
CO! = 1.282m 6.0131, MI = 6, M2 + 1 = 13. Lower limit = 

0.81; upper limit = 1.4. 

17.4 From Exercise 17.1 we have ZI = 1.567 = Z2 = Z3 = Z4 = Z6' 
- 2 2 2 Therefore Z = 1.567; then X total = 14.7, Xtrend = 14.7, Xhomog = O. 

Since X~omog < 15.09 (from Table AI9), we cannot reject the null 
hypothesis of homogeneous trend direction in all seasons. Hence, test for 
trend, using X~rend = 14.7. Since 14.7 > 3.84 (from Table AI9), we 
conclude that a significantly large trend is present. 

17.5 Sim = 3, Var(Sjm) = 3.667, and Zim = 1.567, for i = 1, 2, ... , 6 
seasons and m = 1, 2 years. Z\. = Z2. = ... = Z6 = Z.I = Z.2 = Z .. 
- 1 567 2 - 2 - 29 5 d 2 - 2 - 0 2 -- . . Xtotal - Xtrend - . an X station - Xscason - , Xhomog -

X;tation-season = O. 
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Since X;eason < 15.09, we cannot reject Ho of equal trend direction for 
seasons. 
Since X;tation < 6.63, we cannot reject Ho of equal trend direction for 
stations. 
Since X;eason-station < 15.09, we cannot reject Ho of no station-season 
interaction. 
Since the foregoing tests are all nonsignificant and X;rend > 6.63, we 
conclude that a significant trend is present for both stations over all 
seasons. 



18 Comparing Populations 

An objective of many pollution monitoring and research studies is to make 
comparisons between pollution levels at different times or places or collected 
by different measurement techniques. This chapter provides simple nonparametric 
tests for making such comparisons. These tests do not require that data follow 
the normal distribution or any other specific distribution. Moreover, many of 
these tests can accommodate a few missing data or concentrations at the trace 
or ND (not detected) levels. 

We begin with procedures for comparing two populations. The procedures 
are of two types: those for paired data, and those for independent data sets. 
Examples of paired data are (i) measurements of two pollutants on each of n 
field samples, (ii) measurements of a pollutant on air filters collected at two 
adjacent locations for n time periods, and (iii) measurements of a pollutant on 
both leaves and roots of the same n plants. The paired test we consider is the 
sign test. Friedman's test, an extension of the sign test to more than two 
populations, is also given. 

Independent data sets are those for which there is no natural way to pair the 
data. For example, if n soil samples are collected at each of two hazardous 
waste sites, there may be no rational way to pair a pollution measurement from 
one site with a pollution measurement from the other site. For this type of data 
we illustrate Wilcoxon's rank sum test (also known as the Mann-Whitney test) 
for the comparison of two populations and the Kruskal-Wallis test for the 
comparison of more than two populations. The tests discussed in this chapter 
can be computed by using a statistical software computer package such as 
Biomedical Computer Programs P Series, (1983) and Statistical Package for the 
Social Sciences (1985). Additional information on the tests in this chapter and 
on related testing, parameter estimation, and confidence interval procedures are 
given in Lehmann (1975), Conover (1980) and/or Hollander and Wolfe (1973). 

18.1 TESTS USING PAIRED DATA 

Suppose n paired measurements have been made. Denote these pairs by (XII' 

X21), (XI2' X22), ... , (Xln' x2n), where Xli is the ith observation from population 
1 and X2i is the paired ith observation from population 2. When data are paired, 
we could compare the two populations by looking at the sign or the magnitudes 
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of the set of n differences Di = X2i - Xli' i = 1, 2, ... , n. The sign test 
uses the signs and the Wilcoxon signed rank test uses the magnitudes. These 
two tests are alternatives to the commonly used paired t test described in many 
statistical methods books, e.g., Snedecor and Cochran (1980, p. 85). The latter 
test should be used if the differences are a random sample from a normal 
distribution. 

18.1.1 Sign Test 
The sign test is simple to compute and can be used no matter what the underlying 
distribution may be. It can also accommodate a few ND (not detected) 
concentrations. It is more versatile than the Wilcoxon signed rank test since the 
latter test requires that the underlying distribution be symmetric (though not 
necessarily normal) and that no NDs be present. However, the Wilcoxon test 
will usually have more power than the sign test to detect differences between 
the two populations. The sign test may be the better choice if ease of computation 
is an important consideration. 

The sign test statistic, B, is the number of pairs (Xli' X2i) for which Xli < 
X 2i , that is, the number of positive differences D j • The magnitudes of the D j 

are not considered; only their signs are. If any Di is zero so that a + or -
sign cannot be assigned, this data pair is dropped from the data set and n is 
reduced by 1. The statistic B is used to test the null hypothesis: 

Ho: The median of the population of all possible 

differences is zero, that is, XII is as likely 

to be larger than X 2i as X 2i is likely to be 

larger than X Ii 18.1 

Clearly, if the number of + and - signs are about equal, there is little reason 
to reject Ho. 

Two-Sided Test 

If the number of paired data, n, is 75 or less, we may use Table A14 to test 
Ho versus the alternative hypothesis 

H,4: The median difference does not equal zero, that is, 

Xli is more likely to exceed X 2i than X2i is likely 

to exceed Xli' or vice versa 

Then reject Ho and accept HA at the ex significance level if 

B :s I - 1 or B ~ u 

18.2 

where I and u are integers taken from Table A14 for the appropriate nand 
chosen ex. 

For example, suppose there are n = 34 differences, and we choose to test 
at the ex = 0.05 level. Then we see from Table A14 that we reject Ho and 
accept H,4 if B :s 10 or if B ~ 24. 

EXAMPLE 18.1 

Grivet (1980) reports average and maximum oxidant pollution con­
centrations at several air monitoring stations in California. The daily 
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maximum (of hourly average) oxidant concentrations (parts per 
hundred million) at 2 stations for the first 20 days in July 1972 are 
given in Table 18.1. The data at the 2 stations are paired and perhaps 
correlated because they were taken on the same day. This type of 
correlation is permitted, but correlation between the pairs, that is, 
between observations taken on different days, should not be present 
for the test to be completely valid. If this latter type of positive 
correlation is present, the test would indicate more than the allowed 
100a % of the time a significant difference between the 2 stations 
when none actually exists. This problem is discussed by Gastwirth 
and Rubin (1971) and by Albers (1978a). 

We test the null hypothesis that the median difference in maximum 
concentrations between the two stations is zero, that is, there is no 
tendency for the oxidant concentrations at one station to be larger 
than at the other station. Since concentrations are tied on 3 days, n 
equals 17 rather than 20. The number of + signs is B = 9, the 
number of days that the maximum concentration at station 41541 
exceeds that at station 28783. Suppose we use a = 0.05. Then 
from Table A14 for n = 17 we find I = 6 and u = 15. Since B 
is not less than or equal to I - 1 = 5 nor greater than or equal to 
15, we cannot reject Ho. 

Table A14 gives values of I and u for n ~ 75. When n > 20, we may use 
the following approximate test procedure: 

1. Compute 

B - nl2 
Z - --==-B - ,J;j4 

2B - n 

..rn 
18.3 

2. Reject Ho and accept HA (Eq. 18.2) if ZB ~ -Z\-oll2 or if ZB ~ Z\-a/2, 

where Z\ _ a/2 is obtained from Table AI. 

EXAMPLE 18.2 

Using the data in Example 18.1, we test Ho versus HA, using ZB. 

We have ZB = (18 - 17)/J17 = 0.243. For a = 0.05, Table Al 
gives ZO.975 = 1.96. Since ZB is not less than or equal to -1.96 

Table 18.1 Maximum Oxidant Concentrationsa at Two Stations in July 1972 

Station Station Sign of Station Station Sign of 
Day 28783 41541 Difference Day 28783 41541 DifJerence 

8 10 + 11 11 13 + 
2 5 7 + 12 12 14 + 
3 6 7 + 13 13 20 + 
4 7 7 14 14 28 + 
5 4 6 + 15 12 6 
6 4 6 + 16 12 7 
7 3 3 17 13 7 
8 5 4 18 14 6 
9 5 5 19 12 4 

10 6 4 20 15 5 

"Data are parts per hundred million. 
'Tied concentrations. 
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nor greater than or equal to 1.96, we cannot reject Ho. This 
conclusion is the same as that obtained by using Table A14 in 
Example 18.l. 

One-Sided Test 

Thus far we have considered only a two-sided alternative hypothesis (Eq. 18.2). 
One-sided tests may also be used. There are two such tests: 

1. Test Ho versus the alternative hypothesis, HA, that the X2 measurements tend 
to exceed the XI measurements more often than the reverse. In this case 
reject Ho and accept HA if B ~ u, where u is obtained from Table A14. 
Alternatively, if n > 20, reject Ho and accept HA if ZB ~ ZI _~, where ZB 
is computed by Eq. 18.3 and ZI _ 01 is from Table A l. 

2. Test Ho versus the alternative hypothesis that the XI measurements tend to 
exceed the X2 measurements more often than the reverse. If n :5 75, use 
Table A14 and reject Ho and accept HA if B :5 I - 1. Alternatively, if n 
> 20, reject Ho and accept HA if ZB :5 -ZI-OI' where ZB is computed by 
Eq. 18.3. 

When one-sided tests are conducted with Table A14, the a levels indicated 
in the table are divided by 2. Hence, Table A14 may only be used to make 
one-sided tests at the 0.025 and 0.005 significance levels. 

Trace Concentrations 

The sign test can be conducted even though some data are missing or are ND 
concentrations. See Table 18.2 for a summary of the types of data that can 
occur, whether or not the sign can be determined, and the effect on n. The 
effect of decreasing n is to lower the power of the test to indicate differences 
between the two populations. 

18.1.2 Wilcoxon Signed Rank Test 
The Wilcoxon signed rank test can be used instead of the sign test if the 
underlying distribution is symmetric, though it need not be a normal distribution. 
This Wilcoxon test (not to be confused with the Wilcoxon rank sum test 
discussed in Section 18.2.1) is more complicated to compute than the sign test 

Table 18.2 Determination of the Sign Test 

Type of Data 

One or both members of a pair 
are absent 

X2i = Xli 

One member of a pair is ND 
Both members of a pair are ND 

Can Sign Be 
Computed? 

No 

No 
Yes" 
No 

Decreases n? 

Yes 

Yes 
No 
Yes 

a If the numerical value is greater than the detection limit of the 
ND value. 
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because it requires computing and ranking the D;. In most situations it should 
have greater power to find differences in two populations than does the sign 
test. The null and alternative hypotheses are the same as for the sign test. The 
test is described by Hollander and Wolfe (1973). 

18.1.3 Friedman's Test 

Friedman's test is an extension of the sign test from two paired populations to 
k related populations. The underlying distribution need not be normal or even 
symmetric. Also, a moderate number of ND values can be accommodated 
without seriously affecting the test conclusions. However, no missing values 
are allowed. The null hypothesis is 

Ho: There is no tendency for one population to 

have larger or smaller values than any other 

of the k populations 

The usual alternative hypothesis is 

HA : At least one population tends to have la,rger 

values than one or more of the other popUlations 

Examples of "populations" appropriate for Friedman's test are (i) measure­
ments of k = 3 or more pollutants on each of n field samples, (ii) measurements 
of a single pollutant on air filters collected at k = 3 or more air monitoring 
stations for n time periods, or (iii) measurements obtained by k = 3 or more 
analytical laboratories on a set of n identical spiked samples. The data are laid 
out as follows: 

Block 

2 3 n 

Population I XII X l2 Xu 

Population 2 X21 Xn X2} 

Population k Xkl X" Xu 

The steps in the testing procedure are as follows: 

1. For each block, assign the rank 1 to the smallest measurement, the rank 2 
to the next largest measurement, . . . , and the rank k to the largest 
measurement. If two or more measurements in the block are tied, then assign 
to each the mid rank for that tied group (illustrated Example 18.3). 

2. Compute Rj , the sum of the ranks for the jth population. 
3. If no tied values occur within any block, compute the Friedman test statistic 

as follows: 

l 12 k J 
Fr = k k 2: RJ - 3n(k + 1) 

n ( + 1) j= 1 
18.4 

4. If tied values are present within one or more blocks, compute the Friedman 
statistic as follows: 
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k l n(k + l)Y 
12 j~1 Rj - 2 J 

Fr = --1--11 [( -gi )-] 

nk(k + 1) - -- ~ 2:; t ;,j - k 
k-li=l j~1 

18.5 

where gi is the number of tied groups in block i and ti,j is the number of 
tied data in the jth tied group in block i, Each untied value within block i 
is considered to be a "group" of ties of size 1. The quantity in braces { } 
in the denominator of Eq. 18.5 is zero for any block that contains no ties. 
This method of handling ties is illustrated in Example 18.3. Equation 18.5 
reduces to Eq. 18.4 when there are no ties in any block. 

5. For an ex level test, reject Ho and accept HA if Fr ;::= X~ -cl,k- j, where 
X T - a, k - 1 is the 1 - ex quantile of the chi-square distribution with k - 1 
df, as obtained from Table A 19, where k is the number of populations. The 
chi-square distribution is appropriate only if n is reasonably large. Hollander 
and Wolfe provide exact critical values (their Table A.15) for testing F, for 
the following combinations of k and n: k = 3, n = 2, 3, ... , 13; k = 
4, n = 2, 3, .. , , 8; k = 5, n == 3, 4, 5. Odeh et al. (1977) extend 
these tables to k = 5, n = 6,7, 8; k = 6, n = 2, 3,4,5,6. These tables 
will give only an approximate test if ties are present. The use of Fr computed 
by Eq. 18.5 and evaluated using the chi-square tables may be preferred in 
this situation. The foregoing tests are completely valid only if the observations 
in different blocks are not correlated. 

In step 1, if there is one ND value within a block, assign it the rank 1. If 
there are two or more ND values within a block, treat them as tied values and 
assign them the midrank. For example, if three NDs are present within a block, 
each is assigned the rank of 2, the average of 1, 2, and 3. This method of 
handling NDs assumes all measurements in the block are greater than the 
detection limit of all the ND values in the block. 

EXAMPLE 18.3 

The data in Table 18.3 are daily maximum oxidant air concentrations 
(parts per hundred million) at k = 5 monitoring stations in California 
for the first n = 6 days in July 1973 (from Grivet, 1980). We shall 
use Friedman's procedure to test at the ex = 0.025 significance level 
the null hypothesis, Ho, that there is no tendency for any station to 

Table 18.3 Daily Maximum Air Concentrations8 in California During July 1973 

Day (Block) 
Station Sum of 
Number 2 3 4 5 6 Ranks (R) 

28783 7 (2)" 5 (4) 7 (3,5) 12 (2) 4 (3) 4 (4) 18.5 
41541 5 (l) 3 (15) 3 (l) 8 (I) 3 (1,5) 2 (I) 7 
43382 11 (4) 4 (3) 7 (3,5) 17 (4) 5 (4,5) 4 (4) 23 
60335 13 (5) 6 (5) 12 (5) 21 (5) 5 (4.5) 4 (4) 28,5 
60336 8 (3) 3 (1.5) 4 (2) 13 (3) 3 (1,5) 3 (2) 13 

"Data are parts per hundred millions, 
h Rank of the measurement. 
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Table 18.4 Computing the Correction for Ties in Eq. 18.5 for Friedman's Test 

Blocks 

2 
3 
5 
6 

g, tj,j 

4 12 . I = 2, 12 . 2 = (2.3 

4 13 . I = 2, (3.2 = (3.3 

3 15. I = (5.2 = 2, ('.3 

3 (6. I = 3, t6 .2. = (6.3 

= (2 .• = 
= (3 .• = 
= 1 

= 1 

1 

1 

g, 

~ t,'.J - k 
J-o-\ 

11-5=6 
11-5=6 
17 - 5 = 12 
29 - 5 = 24 
Sum = 48 

have oxidant levels greater or smaller than any other station. Also 
shown in Table 18.3 are the ranks of the measurements obtained as 
in step 1 and the sum of the ranks for each station (step 2). 

Since there are ties in blocks 2, 3, 5, and 6, we must use Eq. 
18.5 to compute Fr. First compute the quantity in braces { } in the 
denominator of Eq. 18.5 for all blocks that contain ties. This 
computation is done in Table 18.4. 

Note that the values of all the t;,/s in each block must sum to 
k, the number of populations (stations). Since k = 5, n = 6, and 
Sum = 48, Eq. 18.5 is 

12[(18.5 - 18)2 + (7 - 18)2 + ... + (13 - 18)2] 
F = ~~----~--~----~--------~----~ 

r 6(5) (6) - 48/4 

= 20.1 

For a = 0.025 we find from Table A19 that X6.975.4 = 11.14. 
Since Fr > 11.14, we reject Ho and accept the HA that at least 1 
station tends to have daily maximum oxidant concentrations at a 
different level than the other stations. From Table 18.3 it appears 
that stations 41541 and 60336 have consistently lower concentrations 
than the other stations. 

18.2 INDEPENDENT DATA SETS 

We discuss two nonparametric tests for independent data sets: the Wilcoxon 
rank sum test (not to be confused with the Wilcoxon signed rank test discussed 
in Section 18.1.2) and the Kruskal-Wallis rank test, which generalizes the 
Wilcoxon rank sum test to more than two populations. 

18.2.1 Wilcoxon Rank Sum Test 

The Wilcoxon rank sum test may be used to test for a shift in location between 
two independent populations, that is, the measurements from one population 
tend to be consistently larger (or smaller) than those from the other population. 
This test is an easily computed alternative to the usual independent-sample t 
test discussed in most statistics methods books (see, e.g., Snedecor and Cochran, 
1980, p. 83). (Do not confuse the independent-sample t test with the paired t 

test for paired data. The latter is discussed by Snedecor and Cochran, 1980, p. 
85.) 
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The rank sum test has two main advantages over the independent-sample t 
test: (i) The two data sets need not be drawn from normal distributions, and 
(ii) the rank sum test can handle a moderate number of ND values by treating 
them as ties (illustrated in Example 18.4). However, both tests assume that the 
distributions of the two populations are: identical in shape (variance), but the 
distributions need not be symmetric. Modifications to the t test to account for 
unequal variances can be made as described in Snedecor and Cochran (1980, 
p. 96). Evidently, no such modification exists for the rank sum test. Reckhow 
and Chapra (1983) illustrate the use of the rank sum test on chlorophyll data 
in two lakes. 

Suppose there are n] and n2 data in data sets 1 and 2, respectively (n] need 
not equal n2)' We test 

Ho: The populations from which the two data sets have 
been drawn have the same mean 18.6 

versus the alternative hypothesis 

HA : The populations have different means 

The Wilcoxon rank sum test procedure is as follows: 

18.7 

1. Consider all m = n l + n2 data as one data set. Rank the m data from 1 to 
m, that is, assign the rank 1 to the smallest datum, the rank 2 to the next 
largest datum, . . . , and the rank m to the largest datum. If several data 
have the same value, assign them the midrank, that is, the average of the 
ranks that would otherwise be assigned to those data. 

2. Sum the ranks assigned to the nl measurements from population 1 Denote 
this sum by Wrs' 

3. If n l ~ 10 and n2 ~ 10, the test of Ho may be made by referring Wrs to 
the appropriate critical value in Table A.5 in Hollander and Wolfe (1973) 
(see their pages 67-74 for the test method). 

4. If nl > 10 and n2 > 10 and no ties are present, compute the large sample 
statistic 

Wrs _. nl(m + 1)/2 
Z = 

rs [nln2(m + 1)/12] 1/2 
18.8 

5. If n l > 10 and n2 > 10 and ties are present, do not compute Eg. 18.8. 
Instead, compute 

Wrs - n,(m + 1)/2 

Zrs = r n ln2 " 1/2 18.9 
2..: 2 1) l r12 

m + 1 -. t/tj -
J = I j m(m - 1) 

where g is the number of tied groups and tj is the number of tied data in 
the jth group. Equation 18.9 reduces to Eq. 18.8 when there are no ties. 

6. For an (X level two-tailed test, reject Ho (Eq. 18.6) and accept HA (Eq. 18.7) 
if Zrs ~ -ZI-od2 or if Zrs ~ Z, -01/2' 

7. For a one-tailed (X level test of Ho versus the HA that the measurements 
from population 1 tend to exceed those from population 2, reject Ho and 
accept HA if Zrs ~ Z, - 01' 
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8. For a one-tailed a level test of Ho versus the HA that the measurements 
from population 2 tend to exceed those from population 1, reject Ho and 
accept HA if Zrs ::;; -ZI-a' 

EXAMPLE 18.4 

In Table 18.5 are 241 Am concentrations (pCi/g) in soil crust material 
collected within 2 plots, one near ("onsite") and one far ("offsite") 
from a nuclear reprocessing facility (Price, Gilbert, and Gano, 1981). 
Twenty measurements were obtained in each plot. We use the 
Wilcoxon rank sum test to test the null hypothesis that average 
concentrations at the 2 plots are equal versus the alternative hypothesis 
that the onsite plot (population 1) has larger concentrations than in 
the offsite plot (population 2). That is, we perform the test in step 
7. We shall use a = 0.05. The ranks of the combined data are 
shown in Table 18.5 and Wrs is computed to be 500. 

There are g = 6 groups of ties. Four groups have length 2, that 
is, t = 2, and 2 groups have t = 3. Equation 18.9 gives 

Z = 500 - 20(41)/2 = 244 
rs {[20(20)112] [41 - [(4)(2)(3) + (2)(3)(8)]/40(39)]} 112 • 

Performing the test in step 7, since Zrs > 1.645, we reject Ho 
and accept HA that the onsite population has larger 241 Am concen­
trations than the offsite plot. 

We note that the correction for ties, that is, using Eq. 18.9 instead of Eq. 
18.8, will usually have a negligible effect on the value of Z'S' The correction 
becomes more important if the tj are large. Also, if NDs are present but occur 
in only one of the populations, it is still possible to rank all the data and 
perform the test. For instance in Example 18.4 if the negative concentrations 
had been reported by the analytical laboratory as ND values, they would still 
have been assigned the ranks 1, 2, and 3 if NDs were treated as being less in 
value than the smallest numerical value (0.0056). In addition, if the three ND 
values had been considered to be tied, all three would have been assigned the 

Table 18.5 241 Am Concentrations in (pCi/g) Soil Crust Material 

Population I (onsite) Population 2 (offsite) 

0.0059 (5)" 0.036 (28) -O.Ollb (I) 0.019 (16) 
0.0074 (7) 0.040 (29) -0.0088b (2) 0.020 (18.5) 
0,015 (9.5) 0.042 (30) -0.0055b (3) 0.020 (18.5) 
0.Q18 (13.5) 0.045 (31) 0.0056 (4) 0.022 (20) 
0.019 (16) 0.046 (32) 0.0063 (6) 0.025 (22) 
0.019 (16) 0.053 (34) 0.013 (8) 0.030 (23) 
0.024 (21) 0.062 (36) 0.015 (9.5) 0.031 (25) 
0.031 (25) 0.066 (37) 0.016 (11.5) 0.050 (33) 
0.031 (25) 0.069 (38) 0.016 (11.5) 0.057 (35) 
0.034 (27) 0.081 (40) 0.018 (13.5) 0.073 (39) 

Wrs = 5 + 7 + 9.5 + . . . + 38 + 40 = 500 . 
aRank of the datum. 
b Negative measurements reported by the analytical laboratory. 
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average rank of 2, which would not have changed the value of W". If NDs 
occur in both populations, they can be treated as tied values all less than the 
smallest numerical value in the combined data set. Hence, they would each 
receive the average rank value for that group of NDs, and the Wilcoxon test 
could still be conducted. (See Exercise 18.4.) 

18.2.2 Kruskal-Wallis Test 
The Kruskal-Wallis test is an extension of the Wilcoxon rank sum test from 
two to k independent data sets. These data sets need not be drawn from 
underlying distributions that are normal or even symmetric, but the k distributions 
are assumed to be identical in shape. A moderate number of tied and ND values 
can be accommodated. The null hypothesis is 

Ho: The populations from which the k data sets have 
been drawn have the same mean 

The alternative hypothesis is 

HA : At least one population has a mean larger or 

18.10 

smaller than at least one other population 18.11 

The data take the form 

Population 

2 3 k 

XII X21 X31 Xk1 

X I 2 X22 X32 Xu 

XlIII X2n: X31l1 X"III 

The total number of data is m = nl + n2 + . . . + nb where the ni need 
not be equal. The steps in the testing procedure are as follows: 

1. Rank the m data from smallest to largest, that is, assign the rank 1 to the 
smallest datum, the rank 2 to the next largest, and so on. If ties occur, 
assign the midrank (illustrated in Example 18.5). If NDs occur, treat these 
as a group of tied values that arc less than the smallest numerical value in 
the data set (assuming the detection limit of the ND values is less than the 
smallest numerical value). 

2. Compute the sum of the ranks for each data set. Denote this sum for the 
jth data set by Rj . 

3. If there are no tied or ND values, compute the Kruskal-Wallis statistic as 
follows: 

l 12 ~ R7J K" = ~ - - 3(m + 1) 
m(m + 1) j "' I nj 

18.12 

4. If there are ties or NDs treated as ties, compute a modified Kruskal-Wallis 
statistic by dividing Kw (Eq. 18.12) by a correction for ties, that is, compute 
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Kw 
K~ = --------:l,-----------:cu,---------

1 - 0 L; t(t2 - 1) 
m(m- - l)j=1 J J 

18.13 

where g is the number of tied groups and t; is the number of tied data in 
thejth group. Equation 18.13 reduces to Eq. 18.12 when there are no ties. 

5. For an c< level test, reject Ho and accept HA if K~ ~ xi _ Oi.k _ 1, where 
X ~ -(X,k I is the 1 - c< quantile of the chi-square distribution with k - I 
df, as obtained from Table A19, where k is the number of data sets. Iman, 
Quade, and Alexander (1975) provide exact significance levels for the 
following cases: 

k = 3 

k = 4 

k = 5 

ni 

nl 

n l 

ni 

fli 

:5 

= 

= 

:5 

:5 

6 

n2 = n3 = 7 

n2 = n3 = 8 

4 

3 

Less extensive exact tables are given in Conover (1980) and Hollander and 
Wolfe (1973) for k = 3 data sets. 

EXAMPLE 18.5 

An aliquot-size variability study is conducted in which multiple soil 
aliquots of sizes 1 g, 10 g, 25 g, 50 g, and 100 g are analyzed for 
241Am. A portion of the data for aliquot sizes I g, 25 g, and 100 
g is used in this example. (Two ND values are added for illustration.) 
The full data set is discussed by Gilbert and Doctor (1985). We test 
the null hypothesis that the concentrations from all 3 aliquot sizes 
have the same mean. The alternative hypothesis is that the concen­
trations for at least 1 aliquot size tend to be larger or smaller than 
those for at least 1 other aliquot size. We test at the c< = 0.05 
level. The data, ranks, and rank sums are given in Table 18.6. 

Table 18.6 Aliquot-Size Variability Study 

24'Am Concentrations (nO/g) 

1 g 25 g lOOg 

1.45 (7)a 1.52 (8.5) 1.74 (13) 
1.27 (6) 2.46 (22) 2.00 (17,5) 
1.17 (4) 1.23 (5) 1.79 (14) 
1.01 (3) 2.20 (20) L81 (15) 
2.30 (21) 2.68 (23) 1.91 (16) 
1.54 (10) 1,52 (8,5) 2.11 (19) 
1.71 (11.5) ND (1,5) 2.00 (17 .5) 
1.71 (11.5) 
ND (1.5) 
R, = 75.5 R2 = 88.5 R, = 112 
n, = 9 n2 = 7 n3 = 7 

aRank of the datum. 
ND = not detected, 
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There are g = 4 groups of ties and t = 2 for each group. The 
modified Kruskal-Wallis statistic CEq. 18.13) is 

K' = [12/23(24)](75.5 2/9 + 88.52/7 + 112217) - 3(24) = 5.06 
W I - 4(2)(3)/23(528) 

From Table A19 we find X695.2 = 5.99. Since K~ < 5 .. 99, we 
cannot reject Ho at the cy = 0.05 level. 

Note that the correction for ties made a negligible difference in 
the test statistic. However, a bigger correction is obtained if t is 
large for one or more groups of ties. This could happen if there are 
many NDs, where t is the number of NDs. 

18.3 SUMMARY 

This chapter discussed simple nonparametric tests to determine whether observed 
differences in two or more populations are statistically significant, that is, of a 
greater magnitude than would be expected to occur by chance. We emphasize 
the correction for ties that these nonparametric tests provide, since a moderate 
number of trace or ND measurements can be accommodated by assuming they 
are a group of tied values. Hollander and Wolfe (1973) and Conover (1980) 
provide other uses for these tests and discuss related estimation and confidence 
interval procedures. 

EXERCISES 

18.1 Use the first 10 days of oxidant data in Example 18.1 to conduct a one­
tailed sign test at the cy = 0.025 level. Use the alternative hypothesis 
HA : Maximum oxidant concentrations at station 41541 tend to exceed 
those at station 28781 more than the reverse. 

18.2 Suppose the following paired measurements have been obtained (ND 
not detected; M = missing data): 

NO 
NO 

2 

7 
6 

3 

NO 
6 

4 

M 
6 

5 

3 

Pair 

6 

M 
M 

7 

3 
2 

8 

7 

9 

12 
11 

10 

10 
8 

11 

15 
3 

Conduct a one-tailed sign test of Ho versus the HA that XI measurements 
tend to exceed X2 measurements more often than the reverse. Use cy 
0.025. 

18.3 Compute Friedman's test. using the data in Example 18.3 and CY = 
0.025. Ignore the correction for ties. 

18.4 Suppose all 241 Am concentrations less than 0.02 pCilg in the 2 populations 
in Example 18.4 were reported by the analytical laboratory as ND. Use 
the Wilcoxon rank sum test to test Ho: means of both populations are 
equal versus HA : the offsite popUlation has a smaller mean than the onsite 
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population. Use a = 0.025. What effect do the large number of NDs 
have on Zrs? Is it more difficult to reject Ho if NDs are present? 

18.5 Suppose that all 241Am measurements less than 1.5 nCi/g in Example 
18.5 were reported by the laboratory as ND. Use the Kruskal-Wallis test 
on the resulting data set. Use a = 0.05. (Retain the 2 NDs in Example 
18.5.) 

ANSWERS 

18.1 Denote station 28781 data as Xl data, and station 41541 data as X2 data. 
B = 5. From Table A14, U = 7. Since B < 7, we cannot reject Ho at 
the a = 0.025 level. 

18.2 Delete pairs 1, 4, and 6. n = 8, B = 1. From Table A14, I - 1 = o. 
Since B = 1, we cannot reject Ho. 

18.3 Equation 18.4 gives Fr = 18.77. Reject Ho and accept HA , since 18.77 > 
11.14, the same result as when the correction for ties was made. 

18.4 Wrs = 487. g = 3 with t = 17, 2, and 3. Zrs = 77/35.5163 = 2.168. 
Since Zrs > 1.645, reject Ho and accept HA- The NDs reduced Zrs from 
2.436 in Example 18.4 to 2.168. Yes! 

18.5 Rl = 74, R2 = 90, R3 = 112, m = 23, K~ = 5.339/0.97085 = 5.50. 
Since K~ < 5.99, we cannot reject Ho at the a = 0.05 level. 
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Statistical Tables 

Table A1 Cumulative Normal Distribution (Values of p Corresponding to Zp 
for the Normal Curve) 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
P 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5674 .4714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5967 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .77<)'< .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8706 .8719 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 · 95~Jl .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .967 1 .9676 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .97:16 .9744 .9750 .9756 • 976~ .9767 

2.0 .9772 .9778 .97b3 .9788 • 97~l3 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .985e .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .98~15 .9878 .9881 .9884 .9887 .989C 
2.3 .9893 .9896 .989b .9901 .991)4 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9~63 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .99}? .9978 .9979 .9979 .9980 .9981 
;: .9 .9981 .9982 .9982 .9963 .99B4 .9984 .9985 .9985 .9986 .9986 

3.0 .99b7 .9987 .9987 .9988 .9986 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .999; .9992 .999, .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .99~;6 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 • 99~)7 .9997 .9997 .9997 .9997 .9998 

Source: After Pearson and Hartley, 1966. 
This table is first used in Section 4.4.2. 

254 
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Table A2 Quantiles of the t Distribution (Values of t Such That 100p% 
of the Distribution Is Less Than tp ) 

Deg ree5 
of 

t o •60 t o . 70 to.CO t o . 90 to.95 to.975 t o •990 tU.995 F reedorr 

"I .325 .727 1.376 3.078 6.314 12.706 31.821 63.657 
2 .289 .617 1.061 1 .886 2.920 4.303 6.965 9.925 
3 .277 .584 .S78 1.638 2.353 3.182 4.541 5.841 
4 .271 .569 .941 1 .533 2.132 2.776 3.747 4.604 
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032 

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707 
7 .263 .549 .896 1.415 , .895 2.365 2.998 3.499 
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355 
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250 

10 .260 .5'+2 .879 1.372 1.812 2.228 2.764 3.169 

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106 
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055 
13 .259 .538 .870 1.350 1. 771 2.160 2.650 3.012 
1'+ .258 .537 .868 1.345 1.761 2.145 2.624 2.977 
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947 

16 .258 .535 .865 1 .337 1.7'+6 2.120 2.583 2.921 
17 .257 .53,+ .863 1.333 1 .740 2.110 2.567 2.898 
18 .257 .53'+ .862 1.330 1.734 2.101 2.552 2.878 
19 .257 .533 .861 1.328 1.729 2.09; 2.539 2.8£ 1 
20 .257 .533 .860 1 .325 1.725 2.086 2.528 2.845 

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831 
22 .256 .532 ,858 1.321 1 .717 2.074 2.508 2.819 
23 .256 .532 .858 1.319 1.7,4 2.069 2.500 2.807 
24 .256 .531 .857 1.3,8 1 .711 2.064 2.492 2.797 
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787 

26 .256 .531 .856 1 .315 1.706 2.056 2.479 2.779 
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771 
28 .256 .530 .855 1.313 1. 701 2.048 2.467 2.763 
29 .256 .530 .854 1.31 , 1.699 2.045 2.462 2.756 
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750 

40 .255 .529 .851 1.303 1.684 2.021 2.423 2.70'+ 
60 .25'+ .527 .8'+a 1.296 1.671 2.000 2.390 2.660 

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617 
.253 .524 .842 1.282 1.645 1.960 2.326 2.576 

Source: From Fisher and Yates, 1974. Used by permission. 
This table is first used in Section 4.4.2. 
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Table A3 Factors Kl _ a,p for Estimating an Upper 100(1 - a)% Confidence Limit on the pth 
Quantile of a Normal Distribution 

- a = 0.90 - a = 0.95 

P 

0,900 0.950 0.975 0.990 0.999 0.900 0.950 o .97~· 0.990 0.999 

2 10.253 13 .090 15.586 18.500 24.582 2 20.581 26.260 31.257 37.094 49.276 
3 4.258 5.311 6.2'14 7.340 9.651 3 6.1SS. 7.656 8.98(· 10.553 13.857 
4 3.188 3.957 4.637 5.438 7.129 4 4.16, 5.144 6.015 7.042 9.214 
5 2.744 3.~01 3.983 ... 668 6.113 3.413 ~. 21 0 4.91E. 5.749 7.509 

6 2 .~94 3.093 3.621 4.243 5.556 6 3.008 3.711 4.33, 5.065 6.614 
7 2.333 2.893 3.389 3.972 5.201 7 2.756 3.401 3.971 4.643 6.064 
8 2.219 2.754 3.227 3.7&3 4.955 8 2.582 3.188 3.724 4.355 5.6e9 
9 2.133 2.650 3.106 3.641 4.771 9 2.454 3.032 3 .S4~ 4.144 5.414 

10 2.066 2.568 3,011 3.532 4.620 10 2.355 2.911 3.403 3.981 5.204 

11 2.012 2.503 2.936 3.444 4.515 11 2,275 2.815 3.291 3.852 5.036 
12 1.966 2.448 2.872 3.371 ~ .420 12 2.210 2.736 3.201 3.747 4.900 
13 1.928 2.403 2.820 3.310 4.341 13 2.155 2.670 3 .12~ 3.659 ~.787 

14 1.895 2.363 2.774 3.257 4.274 14 2.108 2.614 3.06(' 3.585 4.690 
15 1.866 2.329 2.735 3.212 4.215 15 2.068 2.566 3.005 3.520 4.607 

16 1.842 2.299 2.700 3.172 4.164 16 2.032 2.523 2.95E 3.463 4.534 
17 1.819 2.272 2.670 3.137 4.118 17 2.002 2.486 2.913 3.414 4.471 
18 1.800 2.249 2.643 3.106 4.078 le 1.974 2.45:; 2.875 3.370 4.415 
19 1.781 2.228 2.618 3.078 4.041 19 1.949 2.423 2.84(' 3.331 4.364 
20 1.765 2.208 2.597 3.052 4,009 20 1.926 2.396 2.809 3.295 4.319 

21 1. 750 2.190 2.575 3,028 3.979 21 1.905 2.371 2.781 3.262 4.276 
22 1.736 2.174 2.557 3.007 3.95; 22 1.887 2.350 2.75E 3.233 4.238 
23 1.724 2.159 2.540 2.987 3.9; 7 23 1.869 2.329 2.732 3.206 4.204 
24 1.712 2.145 2.525 2.969 3.904 24 1.853 2.309 2.711 3.181 4.171 
25 1.702 2.132 2.51 G 2.952 3.862 25 1.838 2.292 2.691 3.158 ~. 143 

30 1 .657 2.080 2.450 2.884 3.794 30 1.778 2.220 2.608 3.064 ~ .022 
35 1.623 2.041 2.406 2.833 3.730 35 1 .732 2.'66 2.548 2.994 3.934 
40 1.598 2.010 2.371 2.793 3.679 ~o 1.697 2.126 2.501 2.941 3.866 
45 1.577 1.986 2 .3~4 3,762 3.638 "5 1.669 2.092 2.463 2.897 3.811 
50 1.560 , .965 2.320 2.735 3.604 50 1.646 2.065 2,432 2.863 3.766 

60 1.532 1.933 2.284 2.694 3.552 60 1.609 2.022 2.384 2.807 3.695 
70 1,511 1.909 2.257 2.663 3.513 70 1.581 1 .990 2.H8 2.766 3.643 
80 1.495 1.890 2.235 2.638 3.482 80 1.560 1.965 2.319 2.733 3.601 
90 1.481 1.874 2.217 2.618 3.456 90 1.542 1.944 2.295 2.706 3.567 

100 1.470 1.861 2.203 2.601 3.435 10O 1.527 1.927 2.276 2,684 3.539 

120 1,452 1 .841 2.179 2.574 3.402 120 1.503 1.899 2.245 2.649 3.49~ 

145 1.436 1.821 2.158 2.550 3.371 145 1.481 1.874 2.217 2.617 3.455 
300 1.386 1.765 2.094 2.477 3.280 300 1.417 1.800 2.133 2.522 3.335 
500 1.362 1.736 2.062 2.442 3.235 500 1.385 1.763 2.092 2.475 3.277 

1.282 1.645 1.960 2.326 3.090 1.282 1.645 1.960 2.326 3.090 

Source: From Owen, 1962. Used by pennission. 
This table is used in Section 11. 3. 
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Table A4 Nonparametric 95% and 99% Confidence Intervals on a Proportion 

n = n = 2 n = 3 n = 4 n = 5 n = 6 

0 0 0 .95 .99 0 0 .78 .90 0 0 .63 .78 0 0 .53 .68 0 0 .50 .60 0 0 .41 .54 0 
1 .01 .05 1 1 .01 .03 .97 .99 .00 .02 .86 .94 .00 .01 .75 .86 .00 .01 .66 .78 .00 .01 .59 .71 1 
2 .10 .22 1 1 .06 .14 .98 1 .04 .10 .90 .96 .03 .08 .81 .89 .03 .06 .73 .83 2 
3 .22 .37 1 1 .14 .25 .99 1 .11 .19 .92 .97 .08 .15 .85 .92 3 

n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 

0 0 0 .38 .50 0 0 .36 .45 0 0 .32 .43 0 0 .29 .38 0 0 .26 .36 0 0 .24 .25 0 
1 .00 .01 .55 .64 .00 .01 .50 .59 .00 .01 .44 .57 .00 .01 .44 .51 .00 .00 .40 .50 .00 .00 .37 .45 1 
2 .02 .05 .66 .76 .02 .05 .64 .71 .02 .04 .56 .66 .02 .04 .56 .62 .01 .03 .50 .59 .01 .03 .46 .55 2 
3 .07 .13 .77 .86 .06 .11 .71 .80 .05 .10 .68 .75 .05 .09 .62 .70 .04 .08 .60 .66 .04 .07 .54 .65 3 
4 .14 .23 .87 .93 .12 .19 .81 .88 .11 .17 .75 .83 .09 .15 .70 .78 .08 .14 .67 .74 .08 .12 .63 .70 4 
5 .24 .34 .95 .98 .20 .29 .89 .94 .17 .25 .83 .89 .15 .22 .78 .85 .13 .20 .74 .81 .12 .18 .71 .77 5 
6 .36 .45 .99 1 .29 .36 .95 .98 .25 .32 .90 .95 .22 .29 .85 .91 .19 .26 .80 .87 .17 .24 .76 .83 6 

r. :: 13 n = 14 n = 15 n = 16 n = 17 n = 18 u 

0 0 0 .23 .32 0 0 .23 .30 0 0 .22 .28 0 0 .20 .26 0 0 .19 .26 0' 0 .18 .25 0 
1 .00 .00 .34 .43 .00 .00 .32 .42 .00 .00 .30 .39 .00 .00 .30 .36 .00 .00 .28 .35 .00 .00 .27 .34 1 
2 .01 .03 .43 .52 .01 .03 .42 .50 .01 .02 .39 .46 .01 .02 .37 .lt5 .01 .02 .35 .43 .01 .02 .33 .41 2 
3 .04 .07 .52 .59 .03 .06 .50 .58 .03 .06 .47 .54 .03 .05 .44 .52 .03 .05 .42 .50 .03 .05 .41 .47 3 
4 .07 .11 .59 .68 .06 .10 .58 .64 .06 .10 .53 .61 .06 .09 .50 .58 .05 .08 .49 .57 .05 .08 .47 .53 4 
5 .11 .17 .66 .73 .10 .15 .63 .70 .09 .14 .61 .67 .09 .13 .56 .64 .08 .12 .54 .62 .08 .12 .53 .59 5 
6 .16 .22 .74 .79 .15 .21 .68 .75 .13 .19 .67 .72 .13 .18 .63 .70 .12 .17 .59 .66 .11 .16 .59 .66 6 
7 .21 .26 .78 .84 .19 .24 .76 .81 .18 .22 .71 .77 .17 .20 .70 .74 .16 .19 .65 .73 .15 .18 .63 .69 7 
8 .27 .34 .83 .89 .25 .32 .79 .85 .23 .29 .78 .82 .21 .27 .73 .79 .20 .25 .72 .76 .18 .24 .67 .75 8 
9 .32 .41 .89 .93 .30 .37 .85 .90 .28 .33 .81 .87 .26 .30 .80 .83 .24 .28 .75 .80 .23 .27 .73 .77 9 

n = 19 n = 20 n = 21 n = 22 n = 23 n = 24 u 

0 0 0 .17 .24 0 0 .16 .22 0 0 .15 .21 0 0 .15 .20 0 0 .14 .19 0 0 .13 .19 0 
1 .00 .00 .25 .32 .00 .00 .24 .31 .00 .00 .23 .29 .00 .00 .22 .28 .00 .00 .21 .27 .00 .00 .20 .26 1 
2 .01 .02 .32 .39 .01 .02 .32 .37 .01 .02 .30 .37 .01 .02 .29 .35 .01 .02 .27 .33 .01 .02 .26 .32 
3 .02 .04 .39 .46 .02 .04 .37 .44 .02 .0'1 .35 .42 .02 .04 .34 .40 .02 .04 .32 .39 .02 .03 .31 .39 3 
4 .05 .08 .45 .52 .04 .07 .42 .50 .04 .07 .40 .47 .04 .06 .39 .45 .04 .06 .39 .45 .04 .06 .37 .43 It 
5 .07 .11 .50 .56 .07 .10 .47 .56 .07 .10 .46 .53 .06 .09 .45 .50 .06 .09 .43 .50 .06 .09 .41 .48 5 
6 .10 .15 .55 .61 .10 .14 .53 .60 .09 .13 .51 .58 .09 .13 .50 .55 .08 .12 .48 .55 .08 .11 .46 .52 6 
7 .14 .17 .61 .68 .13 .16 .58 .64 .12 .15 .55 .63 .12 .15 .55 .60 .11 .14 .52 .58 .11 .13 .50 .57 7 
8 .17 .22 .66 .71 .16 .21 .63 .69 .15 .20 .60 .66 .15 .19 .58 .65 .14 .18 .57 .62 .13 .17 .54 .61 6 
9 .21 .25 .69 .76 .20 .24 .68 .73 .19 .23 .65 .71 .18 .22 .62 .68 .17 .21 .61 .67 .16 .20 .59 .64 9 

10 .24 .31 .75 .79 .22 .29 .71 .78 .21 .28 .70 .74 .20 .26 .66 .72 .19 .25 .64 .70 .19 .23 .63 .68 10 
11 .29 .34 .78 .83 .27 .32 .76 .80 .26 .30 .72 .79 .24 .29 .71 .76 .23 .27 .68 .73 .22 .26 .66 .72 11 
12 .32 .39 .63 .86 .31 .37 .79 .84 .29 .35 .77 .81 .28 .34 .74 .80 .27 .32 .73 .77 .26 .31 .69 .74 12 

n = 25 n = 26 n = 27 n = 28 n = 29 n = 30 

0 0 0 .13 .18 0 C .12 .17 0 0 .12 .17 0 0 .'2 .16 0 0 .11 .16 0 0 .11 .16 0 
1 .00 .00 .19 .26 .00 .00 .19 .25 .00 .00 .18 .24 .00 .00 .17 .23 .00 .00 .17 .22 .00 .00 .16 .22 1 
2 .01 .01 .25 .31 .01 .01 .24 .30 .01 .01 .23 .30 .01 .01 .23 .29 .01 .01 .22 .28 .01 .01 .21 .27 2 
3 .02 .03 .30 .37 .02 .03 .30 .36 .02 .03 .29 .34 .02 .03 .28 .33 .02 .03 .27 .32 .01 .03 .26 .31 3 
4 .03 .06 .36 .41 .03 .05 .34 .40 .03 .05 .33 .38 .03 .05 .32 .36 .03 .05 .31 .37 .03 .05 .30 .36 4 
5 .05 .08 .40 .46 .05 .08 .38 .44 .05 .08 .37 .44 .05 .07 .36 .42 .05 .07 .36 .41 .04 .07 .35 .39 5 
6 .08 .11 .44 .50 .07 .11 .42 .49 .07 .10 .41 .48 .07 .10 .41 .46 .07 .09 .39 .44 .06 .09 .38 .43 6 
7 .10 .13 .48 .54 .10 .12 .47 .53 .09 .12 .46 .52 .09 .12 .44 .50 .09 .11 .43 .48 .08 .11 ... 1 .47 7 
8 .13 .16 .52 .59 .12 .15 .51 .56 .12 .15 .50 .56 .11 .14 .48 .54 .11 .14 .46 .52 .10 .13 .45 .51 8 
9 .16 .19 .56 .63 .15 .19 .54 .60 .14 .18 .54 .59 .14 .17 .52 .58 .13 .17 .50 .56 .13 .16 .48 .54 9 

10 .18 .22 .60 .66 .17 .21 .58 .64 .17 .20 .57 .62 .16 .19 .56 .62 .16 .18 .54 .59 .15 .18 .52 .57 10 
11 .21 .25 .64 .69 .19 .24 .62 .68 .18 .23 .60 .66 .18 .23 .59 .64 .17 .22 .57 .63 .16 .21 .55 .61 11 
12 .25 .30 .68 .74 .23 .28 .66 .'70 .22 .27 .63 .70 .21 .2e .62 .67 .21 .25 .61 .65 .20 .24 .59 .64 12 
13 .26 .32 .70 .75 .25 .30 .70 .75 .24 .29 .67 .72 .23 .28 .65 .71 .22 .27 .64 .68 .22 .26 .62 .67 13 
14 .31 .36 .75 .79 .30 .34 .72 .77 .28 .33 .71 .76 .27 .32 .66 .73 .26 .31 .66 .72 .25 .30 .65 .69 14 
15 .34 .40 .78 .82 .32 .38 .76 .81 .30 .37 .73 .76 .29 .35 .72 .77 .28 .34 .69 .74 .27 .32 .68 .73 15 

Source: After Blyth and Still, 1983. 
Inner entries give the 95 % interval, and outer entries the 99 % interval. For example, for n = 13, u = 3, the 95% 
interval is (0.07, 0.52) and the 99% interval is (0.04, 0.59). n = number of observations. u = number of those 
that exceed some specified value X,. 

This table is used in Section 11.11. 
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Table A5 Quantiles of the Rank von Neumann Statistic Rv 

T RO.005 RO.010 RO.025 RO.050 Ro.100 

10 0.62 0.72 0.89 1.04 1.23 
11 0.67 0.77 0.93 1.08 1.26 
12 0.71 0.81 0.96 1.11 1.29 
13 0.74 0.84 1. 00 1.14 1. 32 
14 0.78 0.87 1.03 1.17 1.34 
15 0.81 0.90 1.05 1.19 1.36 
16 0.84 0.93 1.08 1.21 1.38 
17 0.87 0.96 1.10 1. 24 1.40 
18 0.89 0.98 1.13 1.26 1. 41 
19 0.92 1. 01 1.15 1. 27 1.43 
20 0.94 1. 03 1.17 l.29 1.44 
21 0.96 1. 05 1.18 1. 31 1.45 
22 0.98 1.07 1.20 1.32 1.46 
23 1.00 1.09 1.22 1.33 1.48 
24 1.02 1.10 1. 23 1.35 1.49 
25 1.04 1.12 1.25 1. 36 1. 50 
26 1.05 1.13 1.26 1.37 1.51 
27 1.07 1.15 1. 27 1. 38 1. 51 
28 1.08 1.16 1.28 1.39 1.52 
29 1.10 1.18 1.30 1.40 1.53 
30 1.11 1.19 1. 31 1.41 1. 54 
32 1.13 1. 21 1.33 1.43 1. 55 
34 1.16 1.23 1.35 1.45 1. 57 
36 1.18 1. 25 1.36 1. 46 1. 58 
38 1.20 1.27 1. 38 1.48 1. 59 
40 1.22 1. 29 1. 39 1.49 1.60 
42 1.24 1.30 1.41 1. 50 1.61 
44 1. 25 1. 32 1.42 1. 51 1. 62 
46 1.27 1.33 1.43 l. 52 1.63 
48 l.28 1.35 1.45 1. 53 1.63 
50 1.29 1. 36 1.46 1. 54 1.64 
55 1. 33 1.39 1.48 1.56 1. 66 
60 1.35 1.41 1. 50 1. 58 1.67 
65 1.38 1.43 1. 52 1. 60 1.68 
70 1.40 1.45 1.54 1.61 1. 70 
75 1.42 1.47 1.55 1.62 1.71 
80 1.44 1.49 1.57 1.64 1. 71 
85 1.45 1. 50 1.58 1.65 1.72 
90 1.47 1.52 1.59 1.66 1. 73 
95 1.48 1.53 1.60 1. 66 1. 74 

100 1.49 1. 54 1.61 1.67 1. 74 

Source: From Bartels, 1982. Used by pennission. 
This table is used in Section 11.13. 
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Table A6 Coefficients aj for the Shapiro-Wilk W Test for Normality 

i\ 4 5 6 8 9 10 

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 
2 0.0000 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 
3 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141 

" 0.0000 0.0561 0.0947 0.1224 
5 0.0000 0.0399 

c; 11 12 13 14 15 16 17 18 19 20 

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211 
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565 
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085 
5 0.0695 0.0922 0.1099 0.1240 0.1353 0.10\47 0.1524 0.1587 0.1641 0.1686 
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1330\ 
7 0.0000 0.020\0 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013 
8 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711 
9 0.0000 0.0163 0.0303 0.0422 

10 0.0000 0.0140 

,,\ 21 22 23 24 25 26 27 28 29 30 

1 0."643 0.4590 0.0\542 0.""93 0.4450 0."407 0.4366 0.4328 0.4291 0.4254 
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944 
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487 
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148 
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870 
6 0.1399 0.1443 0.1"80 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630 
7 0.1092 0.1150 0.1201 0.12"5 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415 
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219 
9 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 0.0923 0.0965 0.1002 0.1036 

10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862 
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697 
12 0.0000 0.0107 0.0200 0.0284 0.0358 0.042" 0.0483 0.0537 
13 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381 
10\ 0.0000 0.0084 0.0159 0.0227 
15 0.0000 0.0076 

Source: From Shapiro and Wilk, 1965. Used by pennission. 
This tahle is used in Section 12.3.1. 
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Table A6 (continued) 

~n 31 32 33 34 35 36 37 38 39 _0 

1 0._220 0._188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964 
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737 
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368 
4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098 
5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878 
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 
7 0.1433 0.1"9 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 C.1520 0.1526 
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376 
9 0.1066 0.1093 0.1116 0.1140 0.11W 0.1179 0.1196 0.1211 0.1225 0.1237 

10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108 
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986 
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870 
13 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706 C .0733 0.0759 
14 0.0289 0.0344 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592 0.0622 0.0651 
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 0.05"6 
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.04"4 
17 0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343 
18 0.0000 0.0057 0.0110 0.0158 0.0203 0.0244 
19 0.0000 0.0053 0.0101 0.0146 
20 0.0000 0.0049 

8 41 42 43 44 45 46 47 48 49 50 

1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751 
2 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2W4 C .2589 0.257" 
3 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.22W 
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032 
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847 
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691 
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554 
8 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.11130 
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.131 :< 0.1317 

10 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212 
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113 
12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020 
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932 
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846 
15 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764 
16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685 
17 0.0379 0.0411 0.0442 0.0471 0.0_97 0.0522 0.0546 0.0568 0.0588 0.0608 
18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532 
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.OU6 0.0459 
20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386 
21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314 
22 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244 
23 0.0000 0.0039 0.0076 0.0111 0.0143 0.0174 
24 0.0000 0.0037 0.0071 0.0104 
25 0.0000 0.0035 
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Table A7 Quantiles of the Shapiro-Wilk W Test for Normality (Values of W Such That 100p% 
of the Distribution of W Is Less Than Wp) 

n WO.Ol ·0.02 ·O.OS WO.l0 WO.SO 

3 0.753 0.756 0.767 0.789 0.959 
~ 0.687 0.707 0.7~8 0.792 0.935 
5 0.686 0.71S 0.762 0.80t 0.927 
6 0.713 0.743 0.788 0.826 0.927 
7 0.730 0.760 0.803 0.838 0.928 
8 0.749 0.778 0.818 0.851 0.932 
9 0.764 0.791 0.829 0.859 0.935 

10 0.781 0.806 0.8~2 0.869 0.938 
11 0.792 0.817 0.850 0.876 0.940 
12 0.805 0.828 0.859 0.883 0.943 
13 0.814 0.837 0.866 0.889 0.945 
14 0.825 0.846 0.874 0.895 0.947 
15 0.835 0.855 0.881 0.901 0.950 
16 0.844 0.863 0.887 0.906 0.952 
17 0.851 0.869 0.892 0.910 0.954 
18 0.858 0.874 0.897 0.9H 0.956 
19 0.863 0.879 0.901 0.917 0.957 
20 0.868 0.88~ 0.905 0.920 0.959 
21 0.873 0.888 0.908 0.923 0.960 
22 0.878 0.892 0.911 0.926 0.961 
23 0.881 0.895 0.91'1 0.928 0.962 
2~ 0.884 0.898 0.916 0.930 0.963 
25 0.886 0.901 0.918 0.931 0.964 
26 0.891 0.904 0.920 0.933 0.965 
27 0.894 0.906 0.923 0.935 0.965 
28 0.896 0.908 0.92~ 0.936 0.966 
29 0.898 0.910 0.926 0.937 0.966 
30 0.900 0.912 0.927 0.939 0.967 
31 0.902 0.914 0.929 0.940 0.967 
32 0.904 0.915 0.930 0.941 0.968 
33 0.906 0.917 0.931 0.942 0.968 
34 0.908 0.919 0.933 0.943 0.969 
35 0.910 0.920 0.934 0.944 0.969 
36 0.912 0.922 0.935 0.945 0.970 
37 0.914 0.924 0.936 0.946 0.970 
38 0.916 0.925 0.938 0.947 0.971 
39 0.917 0.927 0.939 0.948 0.971 
40 0.919 0.928 0.940 0.949 0.972 
41 0.920 0.929 0.941 0.950 0.972 
.. 2 0.922 0.930 0.9"2 0.951 0.972 
43 0.923 0.932 0.943 0.951 0.973 
44 0.924 0.933 0.944 0.952 0.973 
45 0.926 0.934 0.9~5 0.953 0.973 
46 0.927 0.935 0.9~5 0.953 0.974 
47 0.928 0.936 0.946 0.954 0.974 
.. 8 0.929 0.937 0.9~7 0.954 0.974 
49 0.929 0.937 0.947 0.955 0.974 
50 0.930 0.938 0.947 0.955 0.97. 

Source: After Shapiro and Wilk, 1965. 
The null hypothesis of a normal distribution is rejected at the ex significance level if the calculated W is less than 
WQ • 

This table is used in Section 12.3.1. 
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Table AS Quantiles of D'Agostino's Test for Normality (Values of Y Such That 100p% of the 
Distribution of Y is Less Than Yp) 

y 0.005 
Y 

YO.025 Y 0.05 YO.l0 
Y Y YO•975 Y Y 

0.01 0.90 0.95 0.99 0.995 

50 -3.949 -3.442 -2.757 -2.220 -1.661 0.759 0.923 1.038 1.140 1.192 
60 -3.846 -3.360 -2.699 -2.179 -1.634 0.807 0.986 1.115 1.236 1.301 
70 -3.762 -3.293 -2.652 -2.146 -1.612 0.844 1.036 1.176 1.312 1.388 

80 -3.693 -3.237 -2.613 -2.118 -1.594 0.874 1.076 1.226 1 .37'1 1.~59 

90 -3.635 -3.100 -2.580 -2.095 -1.579 0.899 1.109 1.268 1.426 1.518 
100 -3.584 -3.150 -2.552 -2.075 -1.566 0.920 1.137 1.303 1.470 1.569 
150 -3.40, -3.009 -2.452 -2.004 -1.520 0.990 1.233 1 .~23 1.623 1.7'16 
200 -3.302 -2.922 -2.391 -1.960 -1.491 1.032 1.290 1 .~96 1. 715 1.853 
250 -3.227 -2.861 -2.348 -1.926 -1 .~71 1.060 1.328 1.5.5 1.779 1.927 
300 -3.172 -2.816 -2.316 -1.906 -1 •• 56 1.080 1.357 1.528 1.826 1.983 
350 -3.129 -2.781 -2.291 -1.888 -1.444 1.096 1.379 1.610 1.863 2.026 
~OO -3.094 -2.753 -2.270 -1.873 -1.434 1.108 1.396 1.633 1.893 2.061 
~50 -3.064 -2.729 -2.253 -1.861 -1 .~26 1.119 1..11 1.652 1.918 2.090 
500 -3.040 -2.709 -2.239 -1.850 -1 .~19 1.127 1 .• 23 1.668 1.938 2.1" 
550 -3.019 -2.691 -2.226 -1.841 -j '~13 1.135 1 .~34 1.682 1.957 2.136 

600 -3.000 -2.676 -2.215 -1.833 -'1.408 1.141 1 •• 43 1.694 1.972 2.154 

650 -2.984 -2.663 -2.206 -1.826 -'1 •• 03 1.147 1.451 1.7~ 1.986 2.171 
700 -2.969 -2.651 -2.197 -1.820 -'1.399 1.152 1 •• 58 1.714 1.999 2.185 
750 -2.956 -2.640 -2.189 -1.814 -'1.395 1.157 1.465 1. 722 2.010 2.199 
800 -2.9H -2.630 -2.182 -1.809 -'1.392 1.161 1 •• 71 1.730 2.020 2.211 
850 -2.933 -2.621 -2.176 -1.804 -'1.389 1.165 1.476 1.737 2.029 2.221 
900 -2.923 -2.613 -2.170 -1.800 -1.386 1.168 1 •• 81 1.743 2.037 2.231 
950 -2.914 -2.605 -2.164 -1.796 -'1.383 1.171 1.~85 1.7'19 2,045 2.241 

1000 -2.906 -2.599 -2.159 -1.792 -1.381 1.174 1 •• 89 1.754 2.052 2.249 

Source: From D'Agostino, 1971. Used by permission, 
The null hypothesis of a normal distribution is rejected at the ex significance level if th,~ D' Agostino test statistic Y 
is less than Yal2 or greater than Y\ - ,,12' 

This table is used in Section 12,3,2, 



Table A9 Multiplying Factor 'IT n(t) for Estimating the Lognormal Mean and Variance 

Number of Sameles (n) 

t 10 13 15 20 25 30 50 70 90 100 150 200 500 

0.05 1.025 1.041 1.045 1.046 1.047 1.048 1.048 1.049 1.049 1.050 1.050 1.051 1.051 1.051 1.051 1.051 1.051 
0.10 1.050 1.082 1.091 1.093 1.096 1.097 1.099 1.100 1.101 1.103 1.103 1.104 1.104 1.104 1.105 1. lOS 1.105 
0.15 1.076 1.125 1.138 1. 1 43 1.147 1.149 1.152 1.154 1.155 1.158 1.159 1.160 1.160 1.160 1.161 1.161 1.162 
0.20 1.102 1.169 1.187 1.194 1.200 1.203 1.207 1.210 1.212 1.216 1.217 1.218 1.218 1.219 1.220 1.221 1.221 
0.25 1.128 1 .214 1.238 1.247 1.255 1.259 1.265 1.268 1.271 1.276 1.278 1.280 1.280 1.281 1.282 1.283 1.284 
0.30 1.154 1.260 1.291 1.302 1.312 1.317 1.325 1.330 1.333 1.340 1.342 1.344 1.345 1.346 1.347 1.349 1.350 
0.35 1.180 1.307 1.345 1.359 1.372 1.378 1.387 1.393 1.398 1.406 1.410 1.412 1.412 1.415 1.416 1.418 1.419 
0.40 1.207 1.356 1.401 1.418 1.433 1.441 1.453 1.460 1.465 1.476 1.480 1.483 1.484 1.486 1.488 1.490 1.492 
0.45 1.234 1.406 1.459 1.479 1.498 1.506 1.521 1.530 1.536 1.548 1.554 1.557 1.558 1.562 1.563 1.566 1.568 
0.50 1.261 1.457 1.519 1.542 1.564 1.574 1.592 1.602 1.610 1.625 1.631 1.635 1.637 1.641 1.643 1.646 1.649 
0.55 1.288 1.509 1.581 1.608 1.633 1.645 1.666 1.678 1.687 1.705 1.713 1.717 1.719 1.724 1.726 1.730 1.733 
0.60 1.315 1.563 1.645 1.675 1.705 1.719 1.743 1.757 1.768 1.789 1.798 1.803 1.805 1.811 1.814 1.819 1.822 
0.65 1.343 1.618 1.711 1.746 1.780 1.796 1.823 1.840 1.852 1.876 1.887 1.893 1.896 1.902 1.905 1.912 1.916 
0.70 1.371 1.675 1.779 1.818 1.857 1.876 1.907 1.926 1.940 1.968 1.981 1.988 1.990 1.998 2.002 2.009 2.014 
0.75 1.399 1.733 1.849 1.894 1.938 1.958 1.994 2.016 2.032 2.064 2.079 2.087 2.090 2.099 2.103 2.111 2.117 
0.80 1.427 1.792 1.922 1.971 2.021 1.045 2.085 2.110 2.128 2.165 2.182 2.191 2.194 2.205 2.210 2.219 2.226 
0.85 1.456 1.853 1.996 2.052 2.108 2.134 2.179 2.208 2.228 2.270 2.289 2.300 2.304 2.316 2.322 2.332 2.340 

I\) 0.90 1.485 1.915 2.074 2.135 2.197 2.227 2.278 2.310 1.333 2.381 2.402 2.414 2.419 2.432 2.439 2.451 2.460 
0) 0.95 1.514 1.979 2.153 2.221 2.291 2.323 2.380 2.417 2.442 2.496 2.521 2.534 2.540 2.554 2.562 2.708 2.586 
Co) 1.00 1.543 2.044 2.235 2.310 2.387 2.424 2.487 2.528 2.556 2.617 2.644 2.660 2.666 2.683 2.692 2.576 2.718 

1.05 1.573 2.111 2.320 2.403 2.487 2.528 2.598 2.644 2.676 2.744 2.774 2.792 2.798 2.818 2.828 2.845 2.858 
1.10 1.602 2.180 2.407 2.498 2.591 2.636 2.714 2.765 2.800 2.876 2.911 2.930 2.938 2.959 2.970 2.990 3.004 
1.15 1.632 2.250 2.497 2.596 2.698 2.748 2.834 2.891 2.930 3.014 3.053 3.076 3.083 3.108 3.120 3.143 3.158 
1.20 1.662 2.321 2.589 2.698 2.810 2.864 2.960 3.022 3.066 3.159 3.203 3.228 3.237 3.263 3.277 3.303 3.320 
1. 25 1.693 2.395 2.685 2.803 2.926 2.985 3.090 3.159 3.207 3.311 3.359 3.387 3.397 3.427 3.442 3.471 3.490 
1.30 1.724 2.470 2.783 2.911 3.045 3.111 3.226 3.301 3.354 3.470 3.523 3.554 3.565 3.599 3.616 3.648 3.669 
1.35 1.754 2.547 2.884 3.023 3.169 3.241 3.367 3.450 3.508 3.636 3.695 3.729 3.741 3.779 3.798 3.833 3.857 
1.40 1. 786 2.626 2.988 3.139 3.298 3.376 3.514 3.604 3.669 3.809 3.875 3.912 3.926 3.968 3.989 4.028 4.055 
1.45 1.817 2.706 3.096 3.259 3.431 3.515 3.666 3.766 3.836 3.991 4.063 4.105 4.120 4.166 4.189 4.233 4.263 
1.50 1.849 2.788 3.206 3.382 3.569 3.661 3.825 3.933 4.011 4.181 4.260 4.306 4.323 4.374 4.400 4.448 4.482 
1.55 1.880 2.873 3.320 3.510 3.711 3.811 3.990 4.108 4.193 4.379 4.467 4.518 4.536 4.592 4.621 4.675 4.712 
1.60 1.913 2.959 3.437 3.642 3.859 3.967 4.161 4.291 4.383 4.587 4.683 4.739 4.759 4.821 4.853 4.912 4.953 
1.65 1.945 3.047 3.558 3.777 4.012 4.129 4.339 4.480 4.581 4.804 4.910 4.971 4.993 5.062 5.097 5.162 5.207 
1.70 1.977 3.137 3.682 3.918 4.171 4.297 4.525 4.678 4.787 5.031 5.147 5.215 5.239 5.314 5.352 5.424 5.474 
1.75 2.010 3.229 3.810 4.062 4.334 4.471 4.717 4.883 5.003 5.269 5.395 5.469 5.496 5.578 5.621 5.700 5.755 
1.80 2.043 3.323 3.942 4.212 4.504 4.651 4.917 5.097 5.228 5.517 5.655 5.736 5.766 5.856 5.903 5.990 6.050 
1.85 2.077 3.420 4.077 4.366 4.680 4.838 5.125 5.320 5.461 5.776 5.928 6.016 6.048 6.147 6.198 6.294 6.360 
1.90 2.110 3.51e 4.216 4.525 4.861 5.031 5.341 5.552 5.705 6.048 6.212 6.309 6.344 6.453 6.509 6.613 6.686 
1.95 2.144 3.619 4.359 4.688 5.049 5.232 5.566 5.794 5.959 6.331 6.511 6.616 6.655 6.773 6.834 6.949 7.029 
2.00 2.178 3.721 4.506 4.857 5.243 5.439 5.799 6.045 6.224 6.628 6.823 6.938 6.980 7.109 7.176 7.302 7.389 

Source: After Koch and Link. 1980 and Aitchison and Brown. 1968. 
This table is used in Section 13.1.1. 
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Table A10 Values of H,-c< Ho.go for Computing a One-Sided Upper 90% Confidence Limit 
on a Lognormal Mean 

'y 5 10 12 15 21 31 51 101 

0.10 1.686 1.438 1.381 1.349 1 .3~8 1.328 1.317 1.308 1.301 1.295 
0.20 1.885 1.522 1.442 1.396 1.380 1.365 1.3~8 1.335 1.324 1.314 
0.30 2.156 1.627 1.517 1.~53 1.432 1.411 1.388 1.370 1.354 1.339 
0.40 2.521 1.755 1.607 1.523 1.494 1.467 1.437 1.412 1.390 1.371 
0.50 2.990 1.907 1. 712 1.604 1.567 1.532 1.494 1.462 1.434 1.~09 

0.60 3.542 2.084 1.834 1.696 1.650 1.606 1.558 1.519 1.485 1.454 
0.70 ~ .136 2.284 1.970 1.800 1.743 1.690 1.631 1.583 1.541 1.504 
0.80 4.742 2.503 2.119 1.914 1.845 1. 781 1. 710 1.654 1.604 1.560 
0.90 5.349 2.736 2.280 2.036 1.955 1.880 1.797 1.731 1.672 1.621 
1.00 5.955 L.980 2.450 2.167 2.073 1.985 1.889 1.812 1. 745 1.686 

1.25 7.466 3.617 2.904 2.518 2.391 2.271 2.141 2.036 1.946 1.866 
1.50 8.973 4.276 3.383 2.896 2.7>3 2.581 2.415 2.282 2.166 2.066 
1.75 10.48 4.944 3.877 3.289 3.092 2.907 2.705 2 .5~3 2.~02 2.279 
2.00 11.98 5.619 4.380 3.693 3.461 3.244 3.005 2.814 2.648 2.503 
2.50 14.99 6.979 5.~01 4.518 4.220 3.938 3.629 3.380 3.163 2.974 

3.00 18.00 8.346 6.434 5.359 4.994 ~.650 4.270 3.964 3.697 3.463 
3.50 21.00 9.717 7.473 6.208 5.778 5.370 4.921 4.559 4.242 3.965 
4.00 24.00 11.09 8.516 7.062 6.566 6.097 5.580 5.161 4.796 4.474 
4.50 27.01 12.47 9.562 7.919 7.360 6.829 6.243 5.769 5.354 4.989 
5.00 30.01 13.84 10.61 8.779 8.155 7.563 6.909 6.379 5.916 5.508 

6.00 36.02 16.60 12.71 10.50 9.751 9.037 8.248 7.607 7.()/IS 6.555 
7.00 42.02 19.35 14.81 12.23 11.35 10.52 9.592 8.842 8.186 7.607 
8.00 48.03 22.11 16.91 13.96 12.96 12.00 10.94 10.08 9.329 8.665 
9.00 54.03 24.87 19.02 15.70 14.56 13.48 12.29 11.32 10.48 9.725 

10.00 60.04 27.63 21.12 17 .43 16.17 14.97 13 .64 12.56 11.62 10.79 

Source: After Land, 1975. 
This table is used in Section 13.2. 

Table A11 Values of H" Ho.,o for Computing a One-Sided Lower 10% Confidence Limit on 
a Lognormal Mean 

.~ 5 10 12 15 21 31 51 101 

0.10 -1._31 -1.320 -1.296 -1.285 -1.281 -1.279 -1.277 -1.277 -'1.278 -1.279 
0.20 -1.350 -1.281 -1.268 -1.266 -1.266 -1.266 -1.268 -1.272 -'1.275 -1.280 
0.30 -1.289 -1.252 -1.250 -1.254 -1.257 -, .260 -1.266 -1.272 -'1.280 -1 .287 
0._0 -1.245 -1.233 -1.239 -1.249 -1.254 -1.261 -1.270 -1.279 -, .289 -1.301 
0.50 -1.213 -1.221 -1.234 -1.250 -, .257 -1.266 -1.279 -1.291 -, .304 -1.319 

0.60 -1.190 -1.215 -1.235 -1.256 -1.266 -1.277 -1.292 -1.307 -'1.3'-4 -1.342 
0.70 -1.176 -1.215 -1 .2~1 -1.266 -1.278 -1.292 -1.310 -1.329 -1.3119 -1.370 
0.80 -1.168 -1.219 -1.251 -1.280 -1.294 -1.311 -1.332 -1.354 -1.377 -1.~03 
0.90 -1.165 -1.227 -1.264 -1.298 -1.314 -1.333 -1.358 -1.383 -'1.409 -1._39 
1.00 -1.166 -1.239 -1.281 -1.320 -1.337 -1.358 -1.387 -1.414 -, .445 -1.478 

1.25 -1 .18~ -1.280 -1.334 -1.384 -1.407 -1.434 -1.470 -1.507 -, .547 -1.589 
1.50 -1.217 -1.334 -1.~00 -, .462 -1.491 -1.523 -1.568 -1.613 -, .063 -1.716 
1.75 -1.260 -1.398 -1.477 -1.551 -1.585 -1.624 -1.677 -1.732 -1.790 -1.855 
2.00 -1.310 -1 .~70 -1.562 -1.6~7 -1.688 -1.733 -1.795 -1.859 -', .928 -2.003 
2.50 -1.426 -1 .63~ -1.751 -1.862 -1.913 -1.971 -2.051 -2.133 -:'.223 -2.321 

3.00 -1.560 -1.817 -1.960 -2.095 -2.157 -2.229 -2.326 -2.427 -2.536 -2.657 
3.50 -1.710 -2.014 -2.183 -2.341 -2.415 -2.499 -2.615 -2.733 -2.864 -3.007 
4.00 -1.871 -2.221 -2 .~15 -2.596 -2.681 -2.778 -2.913 -3.050 -3.200 -3.366 
4.50 -2.041 -2.435 -2.653 -2.858 -2.955 -3.064 -3.217 -3.372 -3.542 -3.731 
5.00 -2.217 -2.654 -2.897 -3.126 -3.23:\ -3.356 -3.525 -3.698 -3.889 -4.100 

6.00 -2.581 -3.10~ -3.396 -3.671 -3.800 -3 .9~9 -4.153 -~ .363 -1I.59~ -II .8~9 
7.00 -2.955 -3.564 -3.904 -4.226 -4.37/ -4.549 -'1.790 -5.037 -!; .307 -5.607 
8.00 -3.336 -4.030 -4.418 -4.787 -4.960 -5.159 -5.433 -5.715 -6.026 -6.370 
9.00 -3.721 -4.500 -4.937 -5.352 -5.547 -5.771 -6.080 -6.399 -6.748 -7.136 

10.00 -4.109 -~. 973 -5.459 -5.920 -6.137 -6.386 -6.730 -7.085 -i·.4H -7.906 

Source: After Land, 1975. 
This table is used in Section 13.2. 
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Table A12 Values of Hl ~" H095 for Computing a One-Sided Upper 95% Confidence Limit 
on a Lognormal Mean 

• 5 10 12 15 21 31 51 101 
Y 

0.10 2.750 2.035 1.886 1.802 1.775 1 . 7~9 1.722 1.701 1.68' 1.670 
0.20 3.295 2.198 1.992 1.881 1.8~3 1.809 1.771 1.742 1.718 1.697 
0.30 '.109 2 .~02 2.125 1.977 1.927 1.882 1.833 1.793 1.761 1.733 
0.40 5.220 2.651 2.282 2.089 2.026 1.968 1.905 1.856 1.813 1.777 
0.50 6.495 2.9"7 2.'65 2.220 2.Hl 2.068 1.989 1.928 1.876 1.830 

0.60 7.807 3.287 2.673 2.368 2.271 2.181 2.085 2.010 1.946 1.891 
0.70 9.120 3.662 2.904 2.532 2.414 2.306 2.191 2.102 2.025 1.960 
0.80 10.43 '.062 3.155 2.710 2.570 2.'43 2.307 2.202 2.112 2.035 
0.90 11.74 4.478 3."20 2.902 2.738 2.589 2.432 2.310 2.206 2.117 
1.00 13.05 ".905 3.698 3.103 2.915 2.H" 2.564 2.423 2 .306 2 .205 

1.25 16.33 6.001 ..... 26 3.639 3.389 3.163 2 .923 2.737 2.580 2.'47 
1.50 19.60 7.120 5.184 '.207 3.896 3.612 3.311 3.077 2.881 2.713 
1.75 22.87 8.250 5.960 ".795 '.422 4.081 3.719 3."37 3.200 2.997 
2.00 26.14 9.387 6.7"7 5.396 '.962 '.56" '.1 .. 1 3.812 3.533 3.295 
2.50 32.69 11.67 8.339 6.621 6.067 5.557 5.013 ".588 ... 228 3.920 

3.00 39.23 13.97 9.9'5 7.86" 7.191 6.570 5.907 5.388 ".947 ".569 
3.50 "5.77 16.27 11.56 9.118 8.326 7.596 6.815 6.201 5.681 5.233 
".00 52.31 18.58 13.18 10.38 9."69 8.630 7.731 7.02" 6.424 5.908 
".50 58.85 20.88 14.80 11.64 10.62 9.669 8.652 7.854 7.17" 6.590 
5.00 65.39 23.19 16."3 12.91 11.77 10.71 9.579 8.688 7.929 7.277 

6.00 78.47 27.81 19.68 15.45 14.08 12.81 11."4 10.36 9.4"9 8.661 
7.00 91.55 32.43 22.94 18.00 16.39 1~.90 13.31 12.05 10.98 10.05 
8.00 104.6 37.06 26.20 20.55 18.71 17.01 15.18 13.7" 12.51 11."5 
9.00 117.7 "1.68 29."6 23.10 21.03 19.11 17.05 15."3 1".05 12.85 

10.00 130.8 "6.31 32.73 25.66 23.35 21.22 18.93 17.13 15.59 H.26 

Source: After Land, 1975. 
This table is used in Section 13.2. 

Table A13 Values of H" HO.05 for Computing a One-Sided Lower 5% Confidence Limit 
on a Lognormal Mean 

. 3 
X 

S 7 10 12 15 21 31 Sl 101 

0.10 -2.130 -1.806 -1.731 -1.690 -1.677 -1.666 -1.655 -1.648 -1.644 -1.642 
0.20 -1.9"9 -1.729 -1.678 -1.653 -1.646 -1.640 -1.636 -1.636 -1.637 -1.641 
0.30 -1.816 -1.669 -1.639 -1.627 -1.625 -1.625 -1.627 -1.632 -1.638 -1.648 
0."0 -1.717 -1.625 -1.611 -1.611 -1.613 -1.617 -1.625 -1.635 -1.6"7 -1.662 
0.50 -1.64" -1.594 -1.594 -1.603 -1.609 -1.618 -1.631 -1.646 -1.663 -1.683 

0.60 -1.589 -1.573 -1.584 -1.602 -1.612 -1.625 -1.643 -1.662 -1.685 -1. 711 
0.70 -1.549 -1.560 -1.582 -1.608 -1.622 -1.638 -1.661 -1.686 -1.713 -1.74" 
0.80 -1.521 -1.555 -1.586 -1.620 -1.636 -1.656 -1.685 -1.714 -1.747 -1.783 
0.90 -1.502 -1.556 -1.595 -1.637 -1.656 -1.680 -1.713 -1.7n -1.785 -1.826 
1.00 -1."90 -1.562 -1.610 -1.658 -1.681 -1.707 -1.745 -1.7&4 -1.827 -1.874 

1.25 -1.486 -1.596 -1.662 -1.727 -1.758 -1.793 -1.842 -1.893 -1.9~9 -2.012 
1.50 -1.508 -1.650 -1.733 -1.81" -1.853 -1.896 -1.958 -2.020 -2.091 -2.169 
1.75 -1.547 -1.719 -1.819 -1.916 -1.962 -2.015 -2.088 -2.164 -2.247 -2.3"1 
2.00 -1.598 -1.799 -1.917 -2.029 -2.083 -2.1" -2.230 -2.318 -2.416 -2.526 
2.50 -1.727 -1.986 -2.138 -2.283 -2.351 -2.430 -2.5'0 -2.65" -2.780 -2.921 

3.00 -1.880 -2.199 -2.384 -2.560 -2.6" -2.740 -2.87" -3.01" -3.169 -3.3"2 
3.50 -2.051 -2."29 -2.647 -2.855 -2.953 -3.067 -3.226 -3.391 -3.57" -3.780 
".00 -2.237 -2.672 -2.922 -3.161 -3.275 -3."06 -3.589 -3.779 -3.990 -~ .228 
'.50 -2."3" -2.924 -3.206 -3.'76 -3.605 -3.753 -3.960 -".176 - ..... 16 -4.685 
5.00 -2.638 -3.183 -3."97 -3.798 -3.9"1 ..... 107 ..... 338 ..... 579 ..... 847 -5.148 

6.00 -3.062 -3.715 ..... 092 - ..... 55 -".627 ..... 827 -5.106 -5.397 -5.721 -6.086 
7.00 -3."99 -".260 -".699 -5.123 -5.325 -5.559 -5.886 -6.227 -6.608 -7.036 
8.00 -3.9"5 -".812 -5.315 -5.800 -6.031 -6.300 -6.674 -7.066 -7.502 -7.992 
9.00 ..... 397 -5.371 -5.936 -6."82 -6.7"2 -7.045 -7.468 -7.909 -8.'01 -8.953 

10.00 ..... 852 -5.933 -6.560 -7.168 -7."58 -7.79" -8.264 -8.755 -9.302 -9.918 

Source: After Land, 1975. 
This table is used in Section 13.2. 
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Table A14 Confidence Limits for the Median of Any Continuous Distribution 

a a 

n 0.05 0.01 n 0.05 0.01 
.t u i U i u i U 

5 41 14 28 12 30 
6 1 6 42 15 28 13 30 
7 1 7 43 15 29 13 31 
8 1 8 1 8 44 16 29 14 31 
9 2 8 1 9 45 16 30 14 32 

10 2 9 1 10 46 16 31 14 33 
11 2 10 1 11 47 17 31 15 33 
12 3 10 2 11 ~8 17 32 15 34 
13 3 11 2 12 49 18 32 16 34 
14 3 12 2 13 50 18 33 16 35 
15 4 12 3 13 51 19 33 16 36 
16 4 13 3 14 52 19 34 17 36 
17 5 13 3 15 53 19 35 17 37 
18 5 14 4 15 54 20 35 18 37 
19 5 15 4 16 55 20 36 18 38 
20 6 15 4 17 56 21 36 18 39 
21 6 16 5 17 57 21 37 19 39 
22 6 17 5 18 58 22 37 19 40 
23 7 17 5 19 59 22 38 20 40 
24 7 18 6 19 60 22 39 20 41 
25 8 18 6 20 61 23 39 21 41 
26 8 19 7 20 62 23 40 21 42 
27 8 20 7 21 63 24 40 21 43 
28 9 20 7 22 64 24 41 22 43 
29 9 21 8 22 65 25 41 22 44 
30 10 21 8 23 66 25 42 23 44 
31 10 22 8 24 67 26 42 23 45 
32 10 23 9 24 68 26 43 23 46 
33 11 23 9 25 69 26 44 24 46 
34 11 24 10 25 70 27 44 24 47 
35 12 24 10 26 71 27 45 25 47 
36 12 2S 10 27 72 28 45 25 48 
37 13 25 11 27 73 28 46 26 48 
38 13 26 11 28 74 29 46 26 49 
39 13 27 12 28 75 29 47 26 50 
40 14 27 12 29 

Source: After Geigy. 1982. 
Given are the values I and u such that for the order statistics Xii] and xlu], Prob[xl/] < true median < x lu]] "" 1 - ex. 
This table is first used in Section 13.4. 
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Table A15 Values of A for Estimating the Mean and Variance of a Normal Distribution Using 
a Singly Censored Data Set 

>; h 

.01 .02 .03 .O~ .05 .06 .07 .08 0.9 .10 .15 .20 / 
.00 .010100 .020~00 .030902 .0~1583 .052507 .063627 .07~953 .08~88 .09824 .11020 .173~2 .2~268 
.05 .010551 .02129~ .032225 .043350 .054670 .066189 .077909 .089834 .10197 .lH31 .17935 .25033 
.10 .010950 .022082 .033398 .044902 .056596 .06M83 .080568 .092852 .1053~ .11804 .18~79 .257~1 
.15 .011310 .022798 .03~466 .046318 .058356 .070586 .083009 .095629 .10M5 .12148 .18985 .2~05 
.20 .011~2 .023~59 .035453 .047629 .059990 .072539 .085280 .098216 .11135 .12~69 .19460 .27031 

.25 .011952 .02~076 .036377 .0118858 .061522 .074372 .087413 .10065 .11408 .12772 .19910 .27626 

.30 .012243 .024658 .0372~9 .050018 .062969 .076106 .089433 .10295 .11667 .13059 .20338 .28193 

.35 .012520 .025211 .038077 .051120 .0643~5 .077756 .091355 .10515 .11914 .13333 .20747 .28737 

.40 .012764 .025738 .038866 .052173 .065660 .079332 .093193 .10725 .12150 .13595 .21139 .29260 

.~5 .013036 .026243 .03962~ .053182 .066921 .080845 .094958 .10926 .12377 .13M7 .21517 .29765 

.50 .013279 .026728 .0~0352 .05~153 .068135 - .082301 .096657 .11121 .12595 .14090 .21882 .30253 

.55 .013513 .027196 .04105~ .055089 .069306 .083708 .098298 .11308 .12806 .1~325 .22235 .30725 

.60 .013739 .027~9 .021733 .055995 .0701139 .085068 .099887 .11~90 .13011 .1~552 .22578 .31184 

.65 .013958 .028087 .0112391 .056874 .071538 .086388 .10143 .11666 .13209 .H773 .22910 .31630 

.70 .014171 .028513 .0~3030 .057726 .072605 .087670 .10292 .11837 .13~02 .1~987 . 2323~ .32065 

.75 .1 0~378 .028927 .043652 .058556 .073~3 .088917 .10438 .12004 .13590 .15196 .23550 .32489 

.80 .014579 .029330 .044258 .059364 .074655 .030133 .10580 .12167 .13773 .15~00 .23858 .32903 

.85 .014775 .029723 .044848 .060153 .075~2 .091319 .10719 .123.5 .13952 .15599 .24158 .33307 

.90 .014967 .030107 .045~25 .060923 .076606 .092~77 .10854 .12480 .14126 .15793 .2 .. 452 .33703 

.95 .01515~ .030483 .0~5989 .061676 .077549 .093611 .10987 .12632 .14297 .15963 .247~0 .3~091 

1.00 .015338 .030850 .046540 .062413 .078471 .094720 .11116 .12760 .14465 .16170 .25022 .34471 1. 

>\ .25 .30 .35 .~O .45 .50 .55 .60 .65 .70 .80 .90 L 
.00 .31862 .4021 .~941 .5961 .7096 .8368 .9808 1.145 1.336 1.561 2.176 3.283 
.05 .32793 .4130 .5066 .6101 .7252 .8540 .9994 1.166 1.358 1.585 2.203 3.314 
.10 .33662 .4233 .5184 .6234 .7400 .8703 1.017 1.185 1.379 1.608 2.229 3.345 
.15 .3~480 .4330 .5296 .6361 .7542 .8860 1.035 1.204 1.~00 1.630 2.255 3.376 
.20 .35255 .4422 .5403 .~83 .7678 .9012 1.051 1.222 1.~19 1.651 2.280 3.405 

.25 .35993 .~510 .5506 .6600 .7810 .9158 1.067 1 . 2~0 1.439 1.672 2.305 3.435 

.30 .36700 .4595 .5604 .6713 .7937 .9300 1.083 1.257 1.457 1.693 2.329 3.~~ 

.35 .37379 .~676 .5699 .6821 .8060 .9437 1.098 1.274 1.476 1.713 2.353 3 .~92 

.~O .38033 .4755 .5791 .6927 .8169 .9570 1.113 1.290 1.494 1.732 2.376 3.520 

.45 .38665 .~831 .58S0 .7029 .8295 .9700 1. 127 1.306 1.511 1.751 2.399 3.547 

.50 .39276 .4904 .5967 .7129 .8408 .9826 1.141 1.321 1.528 1.770 2 .~21 3.575 

.55 .39870 .~976 .6051 .7225 .8517 .9950 1.155 1.337 1.545 1. 788 2 ."~3 3.601 

.60 .40447 .5045 .6133 .7320 .8625 1.007 1.169 1.351 1.561 1.806 2.465 3.628 

.65 .~1008 .5114 .6213 .7412 .8729 1.019 1.182 1.366 1.557 1.824 2.~86 3.654 

.70 .41555 .5180 .6291 .7502 .8832 1.030 1.195 1.380 1.593 1.841 2.507 3.679 

.75 .42090 .5245 .6367 .7590 .8932 1.042 1.207 1.394 1.608 1.858 2.528 3.705 

.80 .42612 .5308 .~41 .7676 .9031 1.053 1.220 1 .~08 1.624 1.875 2.548 3.730 

.85 .43122 .5370 .6515 .7761 .9127 1.064 1.232 1.422 1.639 1.892 2.568 3.754 

.90 .43622 .5430 .6586 . 78~4 .9222 1.074 1.24~ 1.435 1.653 1.908 2.588 3.779 

.95 .44112 .5490 .6656 .7925 .9314 1.085 1.255 1.~48 1.668 1.92~ 2.607 3.803 

1.00 .4~592 .5548 .6724 .8005 .9406 1.095 1.267 1.~61 1.682 1.940 2.626 3.827 

Source: From Cohen. 1961. Used by pennission. 
'Y and h are defined in Section 14.3.2 where this table is used. 
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Table A16 Approximate Critical Values Aj + 1 for Rosner's Generalized ESD Many-Outlier 
Procedure 

a a 

n i+1 0.05 0.01 0.005 n i+l 0.05 0.01 0.005 

25 1 2.82 3.14 3.25 31 1 2.92 3.25 3.38 
2 2.80 3.11 3.23 2 2.91 3.24 3.36 
3 2.78 3.09 3.20 3 2.89 3.22 3.34 
4 2.76 3.06 3.17 4 2.88 3.20 3.32 
5 2.73 3.03 3.14 5 2.86 3.18 3.30 

10 2.59 2.85 2.95 10 2.76 3.06 3.17 

26 1 2.84 3.16 3.28 32 1 2.94 3.27 3.40 
2 2.82 3.14 3.25 2 2.92 3.25 3.38 
3 2.80 3.11 3.23 3 2.91 3.24 3.36 
4 2.78 3.09 3.20 4 2.89 3.22 3.34 
5 2.76 3.06 3.17 5 2.88 3.20 3.32 

10 2.62 2.89 2.99 10 2.78 3.09 3.20 

27 1 2.86 3.18 3.30 33 1 2.95 3.29 3.41 
2 2.84 3.16 3.28 2 2.94 3.27 3.40 
3 2.82 3.14 3.25 3 2.92 3.25 3.38 
4 2.80 3.11 3.23 4 2.91 3.24 3.36 
5 2.78 3.09 3.20 5 2.89 3.22 3.34 

10 2.65 2.93 3.03 10 2.80 3.11 3.23 

28 1 2.88 3.20 3.32 34 1 2.97 3.30 3.43 
2 2.86 3.18 3.30 2 2.95 3.29 3.41 
3 2.84 3.16 3.28 3 2.94 3.27 3.40 
4 2.82 3.14 3.25 4 2.92 3.25 3.38 
5 2.80 3.11 3.23 5 2.91 3.24 3.36 

10 2.68 2.97 3.07 10 2.82 3.14 3.25 

29 1 2.89 3.22 3.34 35 1 2.98 3.32 3.44 
2 2.88 3.20 3.32 2 2.97 3.30 3.43 
3 2.86 3.18 3.30 3 2.95 3.29 3.41 
4 2.84 3.16 3.28 4 2.94 3.27 3.40 
5 2.82 3.14 3.25 5 2.92 3.25 3.38 

10 2.71 3.00 3.11 10 2.84 3.16 3.28 

30 1 2.91 3.24 3.36 36 1 2.99 3.33 3.46 
2 2.89 3.22 3.34 2 2.98 3.32 3.44 
3 2.88 3.20 3.32 3 2.97 3.30 3.43 
4 2.86 3.18 3.30 4 2.95 3.29 3.41 
5 2.84 3.16 3.28 5 2.94 3.27 3.40 

10 2.73 3.03 3.14 10 2.86 3.18 3.30 
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Table A16 (continued) 

a a 

n ;+1 0.05 0.01 0.005 n ;+1 0.05 0.01 0.005 

37 1 3.00 3.34 3.47 44 1 3.08 3.43 3.56 
2 2.99 3.33 3.46 2 3.07 3.41 3.55 
3 2.98 3.32 3.44 3 3.06 3.40 3.54 
4 2.97 3.30 3.43 4 3.05 3.39 3.52 
5 2.95 3.29 3.41 5 3.04 3.38 3.51 

10 2.88 3.20 3.32 10 2.98 3.32 3.44 

38 1 3.01 3.36 3.49 45 1 3.09 3.44 3.57 
2 3.00 3.34 3.47 2 3.08 3.43 3.56 
3 2.99 3.33 3.46 3 3.07 3.41 3.55 
4 2.98 3.32 3.44 4 3.06 3.40 3.54 
5 2.97 3.30 3.43 5 3.05 3.39 3.52 

10 2.89 3.22 3.34 10 2.99 3.33 3.46 

39 1 3.03 3.37 3.50 46 1 3.09 3.45 3.58 
2 3.01 3.36 3.49 2 3.09 3.44 3.57 
3 3.00 3.34 3.47 3 3.08 3.43 3.56 
4 2.99 3.33 3.46 4 3.07 3.41 3.55 
5 2.98 3.32 3.44 5 3.06 3.40 3.54 

10 2.91 3.24 3.36 10 3.00 3.34 3.47 

40 1 3.04 3.38 3.51 47 1 3.10 3.46 3.59 
2 3.03 3.37 3.50 2 3.09 3.45 3.58 
3 3.01 3.36 3.49 3 3.09 3.44 3.57 
4 3.00 3.34 3.47 4 3.08 3.43 3.56 
5 2.99 3.33 3.46 5 3.07 3.41 3.55 

10 2.92 3.25 3.38 10 3.01 3.36 3.49 

41 1 3.05 3.39 3.52 48 1 3.11 3.46 3.60 
2 3.04 3.38 3.51 2 3.10 3.46 3.59 
3 3.03 3.37 3.50 3 3.09 3.45 3.58 
4 3.01 3.36 3.49 4 3.09 3.44 3.57 
5 3.00 3.34 3.47 5 3.08 3.43 3.56 

10 2.94 3.27 3.40 10 3.03 3.37 3.50 

42 1 3.06 3.40 3.54 49 1 3.12 3.47 3.61 
2 3.05 3.39 3.52 2 3.11 3.46 3.60 
3 3.04 3.38 3.51 3 3.10 3.46 3.59 
4 3.03 3.37 3.50 4 3.09 3.45 3.58 
5 3.01 3.36 3.49 5 3.09 3.44 3.57 

10 2.95 3.29 3.41 10 3.04 3.38 3.51 

43 1 3.07 3.41 3.55 50 1 3.13 3.48 3.62 
2 3.06 3.40 3.54 2 3.12 3.47 3.61 
3 3.05 3.39 3.52 3 3.11 3.46 3.60 
4 3.04 3.38 3.51 4 3.10 3.46 3.59 
5 3.03 3.37 3.50 5 3.09 3.45 3.58 

10 2.97 3.30 3.43 10 3.05 3.39 3.52 



270 Appendix A 

Table A16 (continued) 

a a 

n i+1 0.05 0.01 0.005 n i+1 0.05 0.01 0.005 

60 1 3.20 3.56 3.70 200 1 3.61 3.98 4.13 
2 3.19 3.55 3.69 2 3.60 3.98 4.13 
3 3.19 3.55 3.69 3 3.60 3.97 4.12 
4 3.18 3.54 3.68 4 3.60 3.97 4.12 
5 3.17 3.53 3.67 5 3.60 3.97 4.12 

10 3.14 3.49 3.63 10 3.59 3.96 4.11 

70 1 3.26 3.62 3.76 250 1 3.67 4.04 4.19 
2 3.25 3.62 3.76 5 3.67 4.04 4.19 
3 3.25 3.61 3.75 10 3.66 4.03 4.18 
4 3.24 3.60 3.75 
5 3.24 3.60 3.74 300 1 3.72 4.09 4 . .!4 

10 3.21 3.57 3.71 5 3.72 4.09 4.24 
10 3.71 4.09 4.23 

80 1 3.31 3.67 3.82 
2 3.30 3.67 3.81 350 1 3.77 4.14 4.28 
3 3.30 3.66 3.81 5 3.76 4.13 4.28 
4 3.29 3.66 3.80 10 3.76 4.13 4.28 
5 3.29 3.65 3.80 

10 3.26 3.63 3.77 400 1 3.80 4.17 4.32 
5 3.80 4.17 4.32 

90 1 3.35 3.72 3.86 10 3.80 4.16 4.31 
2 3.34 3.71 3.86 
3 3.34 3.71 3.85 450 1 3.84 4.20 4.35 
4 3.34 3.70 3.85 5 3.83 4.20 4.35 
5 3.33 3.70 3.84 10 3.83 4.20 4.34 

10 3.31 3.68 3.82 
500 1 3.86 4.23 4.38 

100 1 3.38 3.75 3.90 5 3.86 4.23 4.37 
2 3.38 3.75 3.90 10 3.86 4.22 4.37 
3 3.38 3.75 3.89 
4 3.37 3.74 3.89 750 1-10 3.95 4.30 4.44 
5 3.37 3.74 3.89 

10 3.35 3.72 3.87 1000 1-10 4.02 4.37 4.52 

150 1 3.52 3.89 4.04 2000 1-10 4.20 4.54 4.68 
2 3.51 3.89 4.04 
3 3.51 3.89 4.03 3000 1-10 4.29 4.63 4.77 
4 3.51 3.88 4.03 
5 3.51 3.88 4.03 4000 1-10 4.36 4.70 4.83 

10 3.50 3.87 4.02 
5000 1-10 4.41 4.75 4.88 

Source: Entries for n :s; 500 are from Table 3 in Rosner, 1983 and are used by pennission. 
For n > 500, the approximate percentage points were computed as Zp(n - i - 1)/[(n - i - 2 + Zi,) (n - i)]li2, 

where p = I - [(a/2)/(n - i)] and Z" is the pth quantile of the N(O, I) distribution (from Rosner, 1983). 
This table is used in Section 15.3.2. 
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Table A 17 Factors for Computing Control Chart Lines 

n. d2 d3 C4 1 

2 1.128 0.853 0.7979 
3 1.693 0.888 0.8862 
4 2.059 0.880 0.9213 
5 2.326 0.864 0.9400 
6 2.534 0.848 0.9515 
7 2.704 0.833 0.9594 
8 2.847 0.820 0.9650 
9 2.970 0.808 0.9693 

10 3.078 0.797 0.9727 
11 3.173 0.787 0.9754 
12 3.258 0.778 0.9776 
13 3.336 0.770 0.9794 
14 3.407 0.763 0.9810 
15 3.472 0.756 0.9823 
16 3.532 0.750 0.9835 
17 3.588 0.744 0.9845 
18 3.640 0.739 0.9854 
19 3.689 0.734 0.9862 
20 3.735 0.729 0.9869 
21 3.778 0.724 0.9876 
22 3.819 0.720 0.9882 
23 3.858 0.716 0.9887 
24 3.895 0.712 0.9892 
25 3.931 0.708 0.9896 

Source: From Burr, 1976. Used by permission. 
n, = number of data in the subgroup. 
C4 approaches 1 as n, becomes large. 
This table is used in Section 15.6.3. 
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Table A18 Probabilities for the Mann-Kendall Nonparametric Test for Trend 
I 

Values of n Values of n 
S 4 5 8 9 S 6 7 10 

0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500 
2 0.375 0.408 0.452 0.460 3 0.360 0.386 0.431 
4 0.167 0.242 0.360 0.381 5 0.235 0.281 0.364 
6 0.042 0.117 0.274 0.306 7 0.136 0.191 0.300 
8 0.042 0.199 0.238 9 0.068 0.119 0.242 

10 0.0283 0.l38 0.179 11 0.028 0.068 0.190 
12 0.089 0.130 13 0.0283 0.035 0.146 
14 0.054 0.090 15 0.0214 0.015 0.108 
16 0.031 0.060 17 0.0254 0.078 

18 0.016 0.038 19 0.0214 0.054 
20 0.0271 0.022 21 0.0320 0.036 
22 0.0228 0.012 23 0.023 
24 0.0387 0.0263 25 0.014 
26 0.0319 0.0229 27 0.0283 
28 0.0425 0.0212 29 0.0246 

30 0.0343 31 0.0223 
32 0.0312 33 0.0211 

34 0.0425 35 0.0347 
36 0.0528 37 0.0318 

39 0.0458 
41 0.0415 
43 0.0528 
45 0.0628 

Source: From Kendall, 1975. Used by pennission. 
Repeated zeros are indicated by powers; for example, 0.0347 stands for 0.00047. 
Each table entry is the probability that the Mann-Kendall statistic S equals or exceeds the specified 
value of S when no trend is present. 
This table is used in Section 16.4.1. 

I 
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Table A19 Quantiles of the Chi-Square Distribution with v Degrees of Freedom 

Degrees 
Prob.bility of obtaining 0 v.lue of y! of .... l1er thon the t.b 1 ed v.l ue 

Freedom 
v 0.005 0.001 0.025 0.050 0.100 0.250 0.50 0.750 0.900 0.950 0.975 0.990 0.995 0.999 

1 0.02 0.10 0.115 1.32 2.71 3.811 5.02 6.63 7.88 10.83 
2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 ".61 5.99 7.38 9.21 10.60 13 .82 
3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 11.11 6.25 7.81 9.35 11. 311 12.811 16.27 
II 0.21 0.30 0.118 0.71 1.06 1.92 3.36 5.39 7.78 9.119 11.111 13.28 H.86 18.117 
5 0."1 0.55 0.83 1.15 1.61 2.67 11.35 6.63 9.2" 11.07 12.83 15.09 16.75 20.52 

6 0.68 0.87 1.24 1.6 .. 2.20 3."5 5.35 7.84 10.64 12.59 1".45 16.81 18.55 22.46 
7 0.99 1.211 1.69 2.17 2.83 ".25 6.35 9.04 12.02 H.07 16.01 18.48 20.28 2".32 
8 1.34 1.65 2.18 2.73 3.49 5.07 7.3" 10.22 13.36 15.51 17.53 20.09 21.96 26.12 
9 1.73 2.09 2.70 3.33 11.17 5.90 8.34 11.39 14.68 16.92 19.02 21.67 23.59 27.88 

10 2.16 2.56 3.25 3.94 ".87 6.7" 9.3" 12.55 15.99 18.31 20."8 23.21 25.19 29.59 

11 2.60 3.05 3.82 ".57 5.58 7.58 10.34 13.70 17.28 19.68 21.92 24.72 26.76 31.26 
12 3.07 3.57 11.40 5.23 6.30 8 ..... 11.3" H.85 18.55 21.03 23.3" 26.22 28.30 32.91 
13 3.57 4.11 5.01 5.89 7.04 9.30 12.34 15.98 19.81 22.36 24.74 27.69 29.82 3".53 
1 .. ".07 ".66 5.63 6.57 7.79 10.17 13.34 17.12 21.06 23.68 26.12 29.H 31.32 36.12 
15 ".60 5.23 6.27 7.26 8.55 11.0 .. 1".3" 18.25 22.31 25.00 27."9 30.58 32.80 37.70 

16 5.1" 5.81 6.91 7.96 9.31 11.91 15.3" 19.37 23.54 26.30 28.85 32.00 3".27 39.25 
17 5.70 6.41 7.56 8.67 10.09 12.79 16.34 20."9 2".77 27.59 30.19 33.41 35.72 "0.79 
18 6.26 7.01 8.23 9.39 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16 42.31 
19 6.84 7.63 8.91 10.12 11.65 14.56 18.311 22.72 27.20 30.111 32.85 36.19 38.58 113.82 
20 7.43 8.26 9.59 10.85 12.11" 15.45 19.34 23.83 28."1 31.41 3".17 37.57 40.00 45.32 

21 8.03 8.90 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35."8 38.93 111.40 46.80 
22 8.64 9.54 10.98 12.34 H.04 17.24 21.3" 26.04 30.81 33.92 36.78 40.29 "2.80 48.27 
23 9.26 10.20 11.69 13.09 1".85 18.H 22.34 27.14 32.01 35.17 38.08 .. 1.64 411.18 49.73 
2. 9.89 10.86 12.40 13.85 15.66 19.0" 23.34 28.2" 33.20 36."2 39.36 42.98 115.56 51.18 
25 10.52 11.52 13.12 1".61 16."7 19.9" 211 .34 29.34 34.38 37.65 "0.65 ".31 46.93 52.62 

26 11.16 12.20 13.84 15.38 17.29 20 .811 25.311 30.43 35.56 38.89 "1.92 45.64 48.2, 5".05 
27 11.81 12.88 H.57 16.15 18.11 21.75 26.3" 31.53 36.7" "0.11 113.19 "6.96 49.64 55.48 
28 12."6 13.56 15.31 16.93 18.9. 22.66 27.34 32.62 37.92 111.34 11 •• 46 "8.28 50.99 56.89 
29 13.12 14.26 16.05 17 .71 19.77 23.57 28.34 33.71 39.09 "2.56 "5.72 "9.59 52.3" 58.30 
30 13.79 1 ... 95 16.79 18."9 20.60 24."8 29.3" 34.80 "0.26 "3.77 "6.98 50.89 53.67 59.70 

.. 0 20.71 22.16 24."3 26.51 29.05 33.66 39.34 "5.62 51.80 55.76 59.34 63.69 66.77 73."0 
50 27.99 29.71 32.36 311.76 37.69 "2.9" "9.33 56.33 63.17 67.50 71."2 76.15 79."9 86.66 
60 35.53 37.48 40."8 43.19 46."6 52.29 59.33 66.98 74.40 79.08 83.30 88.38 91.95 99.61 
70 "3.28 "5.4" "8.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 100."2 10".22 112.32 
80 51.17 53.5" 57.15 60.39 64 .28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 116.32 124.8" 
90 59.20 61.75 65.65 69.13 73.29 80.62 89.33 98.6" 107.56 113.H 118.14 124.12 128.30 137.21 

100 67.33 70.06 7 ... 22 77 .93 82.36 90.13 99.33 109.H 118.50 12 ... 3" 129.56 135.81 1"0.17 1"9.45 

X -2.576 -2.326 -1.96 -1.645 -1.282 -0.67" 0.0 0.67" 1.282 1.645 1.96 2.326 2.576 3.090 

Source: After Pearson and Hartley, 1966. 
For v > 100, take x 2 = v[i - 2/9v + X .J2i9v]3 or x 2 1/2 rX + ~f if less accuracy is needed. where 
X is given in the last row of the table. 
This table is first used in Section 16.4.4. 
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TESTING FOR MONOTONIC TRENDS USING 
MANN-KENDALL, SEASONAL KENDALL, AND 
RELATED NONPARAMETRIC TECHNIQUES 

IMPLEMENTATION 

Written in FORTRAN 77. 
The 110 units that may need to be changed are: 

IN = 5 ! Input from the terminal 
lOUT = 6 ! Output to the terminal 
I FIN 1 ! Input data from a file 
IFOUT = 3 ! Output results to a tile 

TREND 

There are a few requirements if a driver program is substituted for the 
provided driver (T R END). 

1. Parameters in the parameter statement must be large enough to fit the data. 
The parameters are 

a. NYRS 15 
b. NSEAS 12 
c. NSIT 10 

d. NTOT 180 

e. NTTOT 16110 

f. NY S = 2500 

! Number of possible years 
! Number of possible seasons 
! Number of possible stations 
! (sites) 
! Number of possible data points 
! NTOT = NYRS * NSEAS 
! Number of possible differences for 
! the Mann-Kendall slopes 
! NTTOT = NTOT * (NTOT - 1)/2 
! Number of possible differences for 
! the seasonal Kendall slopes 

2. The common blocks and parameter statement must be present as listed in 
the driver program. These same common blocks and parameters are used in 
the subroutines. Thus, if either a common block or a parameter is changed 
in the driver program, it must be changed in the subsequent routines. 

Note: Appendix B was written by D. W. Engel, technical specialist, Pacific Northwest Laboratory. 
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DESCRIPTION OF ROUTINES 

Driver routine 

I. Establishes parameters and common blocks 
2. Inputs the following data parameters 

NY EAR Number of years of data 
N SEA SON Number of seasons of data 
N SIT E Number of sites or stations of data 
ALP H A Acceptance level of significance of the homogeneity statistics 

3. Inputs data into the following arrays 
Y EAR Years 
SEASON 
DATA 

Seasons 
Observed values 

4. Calls the subroutines to calculate the different trend statistics after inputting 
one data set (station) at a time. These statistics are stored for output and for 
calculating statistics between stations (sites). 

5. Output results in the form of a table. 

Major Subroutines 

1. THOMO 
2. SENT 
3. KTEST 

Calculates and stores the homogeneity statistics 
Calculates the Sen T statistic 
Calculates the seasonal Kendall statistic or the Mann-Kendall 
statistic. Also calculates the Sen and seasonal Kendall slopes. 
Confidence intervals are also calculated by calling the subroutine 
CONINT 

COMMENTS 

All of the statistics (homogeneity. Sen T. Kendall) are calculated with each run 
of the program. The Mann-Kendall statistic is calculated if the number of 
seasons that is input (N SEA SON) is zero; otherwise the seasonal Kendall statistic 
is calculated. 

All of the homogeneity statistics are calculated in the calls to the subroutine 
THO MO. On output, if the homogeneity statistics are significant (i.e., P < 
ALP H A), then some of the related statistics are not printed. 

Data does not have to be sorted on inpuL The driver program sorts the data 
by seasons. The Sen T statistic cannot be calculated if there are missing years, 
seasons, or stations (sites). The program calculates the homogeneity and Kendall 
statistics, but only outputs a message for the Sen T statistic if there are missing 
data (years, seasons, stations). Replicate data values are averaged when calculating 
the Sen T statistic. Data is input from one data file for each station (site). 

When running the Mann-Kendall test (N SEA SON = 0), only time and data 
values are needed. But to keep the program T R END general enough to run all 
of the tests, a year, season, and data value must be input. This may be 
accomplished by reading the time variable twice, using a T (tab) format. 

The current version of T R END calculates a confidence interval about the 
estimated slope by using four different alpha (significance) levels. Different 
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alpha levels may be added, or those presently in T R END may be deleted by 
changing two statements in the subroutine CON I NT. Simply add or delete the 
alpha level (A L P) and its corresponding Z value (Z A) in the data statement. 

If the number of alpha levels (N C I) is changed, the line setting the number 
must also be changed. At present, the line reads N C I = 4. 

Input file names and data format are input to the driver program (TREND). 
The results for each run are written to the disk file T R END. 0 U T . 

If the investigator wants to treat ND, trace, or LT values as missing 
observations, then no data are entered into the program for those cases. If they 
will be treated as one half the detection limit or some other values, those values 
should be entered as part of the data set. 

PROGRAM TREND 
C 
C THIS IS THE DRIVING PROGRAM FOR THE SUBROUTINES THAT 
C CALCULATE THE FOUR STATISTICS TESTING FOR TREND. THE 
C SUBROUTINES ARE, 
C 
C THOMO ..•. CALCULATES THE CHI-SQUARED STATISTICS FOR THE 
C HOMOGENEITY TESTS. 
C SEN ....•• CALCULATES THE ALIGNED RANK (SEN) STATISTIC. 
C KTEST •..• CALCULATES THE SEASONAL KENDALL STATISTIC, OR 
C CALCULATES THE MANN KENDALL STATISTIC IF THE NUMBER 
C OF SEASONS = O. 
C 
C INPUT PARAMETERS: 
C NYEAR ••.• NUMBER OF YEARS. 
C NSEASON .. NUMBER OF SEASONS. 
C NSITE .... NUMBER OF SITES (STATIONS). 
C ALPHA .... ACCEPTANCE LEVEL FOR THE STATISTICS. 
C 
C INPUT DATA ARRAYS: 
C YEAR ..••. ARRAY OF YEARS. 
C SEASON ... ARRAY OF SEASONS. 
C DATA ..... ARRAY OF DATA. 
C 
C NSEASON = 0 --> CALCULATE THE MANN KENDALL STATISTIC. NO 
C SEASON AFFECT. 
C 

C 

PARAMETER NYRS = 3D, NSEAS = 12, NTOT = 180, NSIT = 10, 
1 NTTOT = 16110, NYS = 2500, NA = 10, NE = 2 

COMMON /DATA/ NYEAR, YEAR(NTOT), 
NSEASON, SEASON(NTOT), 

2 NDATA(NSIT), DATA(NTOT) 
COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT) 
COMMON /SLOPE/ ZSLOPE(NSEAS,NSIT), SEASSL(NSEAS), SITESL(NSIT). 
1 YSSLOPE(NYS,NSEAS), NYSSLOPE(NSEAS) 
COMMON /ZST/ ZSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT), 
1 SSTAT(NSEAS,NSIT) 
COMMON /HO~lO/ TOTAL, NTOTAL, PTOTAL, 
1 HOMOGEN, NHOMOGEN, PHOMOGEN, 
2 SEASONAL, NSEASONAL, PSEASONAL, 
3 SITE, NSITES, PSITES, 
4 SITESEAS, NSITESEAS, PSITESEAS, 
5 TRENDS, NTRENDS, PTRENDS, 
6 ZSEASON(NSEAS), PSEASON(NSEAS), 
7 ZSITE(NSIT), PSITE(NSIT) 
COMMON /Cl1/ ALP(NA), ZA(NA) 
COMMON /CI2/ CIMKS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT), 
1 VSEA(NSEAS), NUME, CISES(NA,NE,NSEAS) 
COMMON /WR1/ SENT(NSIT), PSENT(NSIT), ZKEN(NSIT), PKENZ(NSIT) 
COMMON /WR2/ NC(NTOT), NCRS(NTOT,NSIT), NCRC(NSIT) 



C 

C 

C 

REAL RANKS(NTOT) 
BYTE INFILE(80), OUTFILE(80), FMT(80), IFPRT 
LOGICAL LAST 

DATA LAST / .FALSE. / 

C SETTING I/O UNITS 
IN = 5 ! INPUT FROM TERMINAL 
lOUT = 6 OUTPUT TO TERMINAL 
IFIN = 1 ! INPUT FORM FILE 
IFOUT = 3 ! OUTPUT TO FILE 

C 
C OUTPUT TO FILE TREND.OUT 

OPEN(UNIT=IFOUT,NAME='TREND.OUT' ,TYPE='NEW') 
C 
C INPUT INFORMATION 
C 

WRITE (roUT, 110) 

TREND 277 

110 FORMAT(' ENTER MAX NUMBER OF YEARS, SEASONS, AND STATIONS.', 
l' NUMBER SEASON = 0 --> CALCULATE MANN KENDALL STATISTIC') 
READ(IN,*) NYEAR, NSEASON, NSITE 

C 

c 
WRITE(IOUT,*) , ENTER ALPHA (ACCEPTANCE) LEVEL' 
READ(IN,*) ALPHA 

WRITE(IOUT,*) , DO YOU WANT DATA PRINTED ON OUTPUT? Y or N' 
READ(IN,120) IFPRT 

120 FORI'IAT(A1) 
C 
C HEADER FOR OUTPUT FILE 

IF (NSEASON.EQ.O) THEN 
WRITE(IFOUT,130) NYEAR, NSITE, ALPHA 

130 FORMAT(' NUMBER OF ITMES =' ,14/ 
1 ' NUMBER OF STATIONS =' ,14/ 
2 ' ALPHA LEVEL =' ,F6.3) 
ELSE 

WRITE(IFOUT,140) NYEAR, NSEASON, NSITE, ALPHA 
140 FORMAT(' NUMBER OF YEARS =' ,14/ 

1 ' NUMBER OF SEASONS =' ,14/ 
2 ' NUMBER OF STATIONS =',14/ 
3 ' ALPHA LEVEL =' ,F6.3) 
ENDIF 

C 
C MAIN LOOP FOR DIFFERENT SITES (STATIONS) 
C 

DO 300 J=l,NSITE 
C 
C INPUT DATA FILE SPECS 

WRITE(IOUT ,*) , ENTER NAME OF INPUT DATA FILE' 
READ(IN,150) KCI, (INFILE(I) ,I=l,KCI) 

150 FORMAT(Q,80A1) 

C 

C 

INFILE(KCI+1)=0.0 
OPEN (UN IT= I FI N, NAME= I NF I LE, TYPE=' OLD' , READONL y) 

WRITE(IOUT ,*) , ENTER INPUT FILE FORMAT; YEAR, SEASON,', 
'DATA. Ex. (3F10.0)' 

READ(IN,150) KC, (FMT(I),I=l,KC) 
FMT(KC+l)=O.O 

C INITIALIZE DATA TO 0.0 
DO 160 I=I,NTOT 

YEAR(I) = 0.0 
S EASON (I) = O. 0 
DATA(I) = 0.0 

160 CONTINUE 
C 
C READ DATA, FIND MINIMUt1 YEAR, AND SET UP FOR MANN TEST 

NO = 0 
YM = 2000.0 
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C 

170 
180 
C 
C 

190 

200 
C 

DO 170 1=1,2000 
READ(IFIN,FMT,END=180) YR, SSN" DATA(I) 
ND = ND + 1 
IF (YR.LT.YM .AND. YR.NE.O.O) YM = YR 
YEAR(I) = YR 

IF(NSEASON.EQ.O) THEN 

ELSE 

NC (I) = 0 
RANKS(I) = I 
SEASON( I) = I 

S EASON (I) = SSN 
ENDIF 

CONTINUE 
IF (NSEASON.EQ.O) NC(l) = ND 

HEADER FOR OUTPUT FILE 
IF (J.GT.1) WRITE(IFOUT,190) 
FORMAT(1H1 ) 
WRITE(IFOUT,200) 
FORMAT(//' STATION NUMBER DATA POINTS INPUT FILE NAME'/) 

WRITE(IFOUT,210) J, ND, (INFILE(I),I=l,KCI) 
210 FORMAT(X,I4,T12,I6,T33,80A1) 

C 

NDATA(J) = ND 
CLOSE(UNIT=IFIN) 

C OUTPUT DATA IF DESIRED 
IF (IFPRT.EQ.'Y' .OR. IFPRT.EQ.'y') THEN 
IF (NSEASON.EQ.O) THEN 

WRITE(IFOUT,220) J 
220 FORMAT(j /' TIME STATION' ,12) 

DO 240 I=l,ND 
IYEAR = YEAR(I) 
ISEAS = SEASON(I) 
WRITE(IFOUT,230) IYEAR, DATA(I) 

230 FORMAT(5X,I8,2X,F10.2) 
240 CONTINUE 

ELSE 
WRITE(rFOUT,250) J 

250 FORMAT(//' YEAR SEASON STATION' ,12) 
DO 270 I=l,ND 

rYEAR = YEAR(I) 
ISEAS = SEASON(I) 
WRITE(IFOUT,260) IYEAR, ISEAS, DATA(r) 

260 FORMAT(I5,I8,2X,F10.2) 
270 CONTINUE 

ENDIF 
ENDIF 

C 
C SORT DATA BY SEASONS AND SCALE YEAR FROM 1 TO NYEAR 

IF (NSEASON.NE.O) CALL RANK(SEASON,RANKS,ND,NC) 
INCR = 0 
NCRT = 0 
DO 280 I=l,ND 

Ncr = NC(I) 
NCRT = NCRT + NCI 
IF (NCI.NE.O) THEN 

INCR = INCR + 1 
NCR(INCR) = Ncr 
NCRS(INCR,J)= NCI 

C IF (NCI.LT.2) STOP' NOT ENOUGH DATA IN SEASON' 
ENDIF 
YEAR(I) = YEAR( I) - YM + 1 

280 CONTINUE 
C 

DO 290 I=l,ND 
RS = RANKS (I) 
NR = NC(RS) 
RI = RS - (NR - 1.0)/2.0 



NC(RS) = NR - 2 
IF (NSEASON.EQ.O) RI 
SORTY(RI) = YEAR(I) 
SORTS(RI) = SEASON(I) 
SORTD(RI) = DATA(I) 

290 CONTINUE 
IF (NSEASON.EQ.O) NCR(I) = NO 

C 
C TESTING FOR HOMOGENEITY OF TREND. IF THIS IS THE 
C LAST CALL TO THOMO, THEN CALCULATE ALL STATISTICS. 

C 

IF (J.EQ.NSITE) LAST = .TRUE. 
CALL THOMO(J,LAST) 

C CALCULATING THE SEN T STATISTIC IF THERE IS MORE 
C THAN 1 SEASONS 

C 

IF (NSEASON.GT.O) THEN 
CALL SEN(T,ND) 
CALL PNORM(T,PT) 
SENT(J) = T 
IF (T.GT.O.O) THEN 

PSENT(J) = 2*(1.0 - PT) 
ELSE 

PSENT(J) = 2*PT 
ENDIF 

ENDIF 

TREND 279 

C CALCULATING THE SEASONAL KENDALL (NU~lBER SEASONS> 0) OR 
C THE MANN KENDALL (NUMBER SEASONS = 0) STATISTIC. 

CALL KTEST(Z,J,LAST) 
CALL PNORM(Z,PZ) 
ZKEN(J) = Z 
IF (Z.GT.O.O) THEN 

PKENZ(J) = 2*(1.0 - PZ) 
ELSE 

PKENZ (J) = 2*PZ 
ENDIF 
NCRC(J) = NCRT 

300 CONTINUE 
C 
C OUTPUT THE RESULTS OF THE TREND TESTS 
C 

C 
CALL WRITE1(IFOUT,NSITE,ALPHA) 

CLOSE(UNIT=IFOUT) 
STOP 
END 

c ************************************************************ 
SUBROUTINE THOMO(IJ,LAST) 

C ************************************************************ 
C 
C THIS SUBROUTINE CALCULATES THE CHI-SQUARE STATISTICS Z**2 
C FRO~l THE KENDALL S STATISTIC. 
C 
C Z = S / SQRT(VAR(S)) 
C 
C S = SUM[Sj] 
C VAR(S) = SUM[VAR(Sj)] 
C Sj = SUM(SUM(SIGN(Xj - Xk))) 
C k=l to N-1, j= k+1 to N, and N = NUMBER 
C OF YEARS 
C VAR(Sj) = [N(N-1)(2N+5) - TIE]/18 + CORRECT 
C TIE = SUM(t(t-I)(2t+5)) 
C t = NUMBER INVOLVED IN TIE. 
C CORRECT IS A CORRECTION FACTOR FOR REPLICATE DATA. 
C 
C IJ ..... SITE (STATION) INDEX. 
CLAST ... LOGICAL VARIABLE. IF LAST = • TRUE. --> THIS IS LAST 
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C 
C 

C 

C 

C 

C 

SITE, SO CALCULATE THE FINAL STATISTICS. 

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10, 
1 NTTOT = 16110 

COM~lON IDATAI NYEAR, YEAR(NTOT), 
1 NSEASON, SEASON(NTOT), 
2 NDATA(NSIT), DATA(NTOT) 
COMMON ISORTI SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT) 
COMMON IHOMOI TOTAL, NTOTAL, PTOTAL, 
1 HOMOGD., NHOMOGEN, PHOMOGEN, 
2 SEASONAL, NSEASONAL, PSEASONAL, 
3 SITE, NSITES, PSITES, 
4 SITESEAS, NSITESEAS, PSITESEAS, 
5 TRENDS, NTRENDS, PTRENDS, 
6 ZSEASON(NSEAS), PSEASON(NSEAS), 
7 ZSITE(NSIT), PSITE(NSIT) 

REAL SLOPES(NTTOT) 
INTEGER NSTAT(NSEAS,NSIT) 
LOGICAL LAST 

DATA TOTAL, TOT2, ZSEASON I 0.0, 0.0, NSEAS*O.O I 
NSITE = IJ 

C LOOP FOR EACH SEASON. DEFINE N = NUMBER SEASONS, BUT IF N = 0 
C (ie MANN KENDALL TESTS) THEN SET N = 1 FOR THE CALCULATIONS. 
C 

C 

N = NSEASON 
IF (N.EQ.O) N = 1 
IS = 1 
ZSITES = 0.0 
DO 120 I=l,N 

NC = NCR( I) 

C CALCULATE THE KENDALL STATISTIC Sj 
CALL KEND(SORTO(IS),SORTY(IS),SJ,NC,SLOPES,SMEO,NS) 

C 
C CALCULATE THE VARIANCE OF Sj 

C 

CALL TIES(SORTO(IS),SORTY(IS),NC,VAR) 
IS = IS + NC 

C CALCULATE THE Z-STATISTIC. 

C 

ZSTATS = 0.0 
IF(VAR.EQ.O.O) GOTO 120 

SJV = SJ/SQRT(VAR) 
TOTAL = TOTAL + SJV*SJV 
ZSITES = ZSITES + SJV 
ZSEASON(I) = ZSEASON(I) + SJV 

120 CONTI NUE 
ZSITE(IJ) = ZSITES 

C 
C IF NOT LAST CALL (ie. IJ .NE. NSITE) THEN RETURN 

IF (.NOT.LAST) RETURN 
C 
C IF LAST CALL THEN CALCULATE THE FINAL CHI-SQUARE STATISTICS 
C 
C CALCULATE Z-STAT OVER THE DIFFERENT SITES, SEASONS MEANS 

ZOD = 0.0 
DO 220 I=l,NSITE 

ZSITES = ZSITE(I) I N 
ZSITE(I) = ZSITES 
ZOO = ZDD + ZSITES 

220 CONTINUE 
C 

ZOOS = 0.0 
DO 230 I=l,N 

ZSEASONS = ZSEASON(I) I NSITE 
ZSEASON(I) = ZSEASONS 
ZDDS = ZODS + ZSEASONS 



230 CONTINUE 
C 

C 

zoo = ZOO / NSITE 
ZOOS = ZDDS / N 

C CALCULATING CHI-SQUARE STATISTICS 
C 

C 

C 

C 

NTOTAL = N*NSITE 
CALL CHICDF(TOTAL,NTOTAL,PTOTAL) 

TRENDS = NSITE*N*ZDD*ZDD 
NTRENDS = 1 
CALL CHICDF(TRENDS,NTRENDS,PTRENDS) 

HOMOGEN = TOTAL - TRENDS 
NHOMOGEN = NTOTAL - 1 
CALL CHICDF(HOMOGEN;NHOMOGEN,PHOMOGEN) 

SEASONAL = 0.0 
DO 320 I=l,N 

SUM = ZSEASON(I) - ZOO 
SEASONAL = SEASONAL + SUM*SUM 

320 CONTI NUE 

C 

SEASONAL = NSITE*SEASONAL 
NSEASONAL = N - 1 
CALL CHICDF(SEASONAL,NSEASONAL,PSEASONAL) 

SITE = 0.0 
DO 330 l=l,NSITE 

SUM = ZSITE(I) - ZOO 
SITE = SITE + SUM*SUM 

330 CONTINUE 

C 

C 

SITE = N*S ITE 
NSITES = NSITE - 1 
CALL CHICDF(SITE,NSITES,PSITES) 

SITESEAS = HOMOGEN - SEASONAL - SITE 
NSITESEAS = NSITES*NSEASONAL 
IF (SITESEAS.LT.O.O) SITESEAS = 0.0 
CALL CHICDF(SITESEAS,NSITESEAS,PSITESEAS) 

C CALCULATE CHI-SQUARE FOR INDIVIDUAL SEASONS AND SITES 
DO 340 I=l,N 

ZS = ZSEASON(I) 
ZS = NSITE*ZS*ZS 
CALL CHICDF(ZS,l,PSEASON(I)) 
ZSEASON(I) = ZS 

340 CONTI NUE 
C 

DO 350 I=l,NSITE 
ZS = ZSITE( I) 
ZS = N*ZS*ZS 
CALL CHICDF(ZS,l,PSITE(I)) 
ZS ITE (1) = ZS 

350 CONTINUE 
C 
360 RETURN 

END 

c ****************************************************** 
SUBROUTINE SEN(T,ND) 

c ****************************************************** 
C 
C THIS ROUTINE CALCULATES AND RETURNS THE SEN T STATISTIC 
C FOR TESTING OF TRENDS. THIS ROUTINE AVERAGES REPLICATE 
C DATA. 
C FOR LARGE ENOUGH M (SEASONS) T IS DISTRIBUTED N(O,l). 
C 

TREND 281 
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C T = SQRT[12M*M/(N(N+l)SUM(SUM(Rij-R.j)))]* 
C SUM[(i-(N+l)/2)(Ri.-(NM+l)/2)] 
C 
C R = RANKED DATA WITH SEASON EFFECT REMOVED. (Xij - X.j) 
C M = NUMBER SEASON, N = NUMBER YEARS, i = 1 to N, j = 1 to M 
C 
C 

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10 
COMMON /DATA/ NYEAR, YEAR(NTOT), 
1 NSEASON, SEASON(NTOT), 
2 NDATA(NSIT), DATA(NTOT) 
REAL RIDOT(NYRS), RDOTJ(NSEAS), RIJ(NYRS,NSEAS) 
REAL XDATA(NTOT), RDATA(NTOT) 
INTEGER NC(NTOT), ICOUNT(NYRS,NSEAS) 

C 
C 

DOUBLE PRECISION SUMI, SUMJ 

MISSING DATA IF ICOUNT(I,J) = 0 
DO 110 J=l,NSEAS 
DO 110 I=l,NYRS 

RIJ(I,J) = 0.0 
ICOUNT(I,J) = 0 

110 CONTINUE 
C 
C 
C 

PUT DATA INTO YEAR x SEASON 
AVERAGE REPLICATE DATA 
DO 120 I=I,ND 

IIND = YEAR(!) 
JIND = SEASON(I) 

MATRIX AND 

RIJ(IIND,JIND) = RIJ(IIND,JIND) + DATA(I) 
ICOUNT(IIND,JIND) = ICOUNT(IINO,JIND) + 1 

120 CONTINUE 
C 

DO 130 J=l,NSEASON 
DO 130 I=l,NYEAR 

ICOUN = ICOUNT(I,J) 
IF (ICOUN.GT.1) THEM 
RIJ(I,J) = RIJ(I,J)/ICOUN 

ELSE 
IF (ICOUN.EQ.O) GOTO 260 

ENDIF 
130 CONTINUE 
C 
C 
C 

REMOVE SEASONAL EFFECT BY SUBTRACTING THE SEASON 
AVERAGES FROM THE DATA MATRIX RIJ. 
DO 140 I=l.NYEAR 

RIDOT(!) = 0.0 
140 CONTINUE 
C 

K = 1 
DO 170 J=l,NSEASON 

RDOTJS = 0.0 
DO 150 I=l,NYEAR 
X = RIJ(I.J) 
RDOTJS = RDOTJS + X 

150 CONTINUE 
RDOTJS = RDOTJS/NYEAR 
DO 160 I=l,NYEAR 
RIJIJ = RIJ(I.J) - RDOTJS 
RIJ(I,J) = RIJIJ 
XDATA(K) = RIJIJ 
K = K + 1 

160 CONTINUE 
170 CONTI NUE 
C 
C RANK DIFFERENCES ALL TOGETHER 

CALL RANK(XDATA.RDATA,ND,NC) 
C 
C PUT RANKS BACK INTO YEAR x SEASON 

IND =- 1 
DO 180 J=l,NSEASON 
DO 180 I=l,NYEAR 

RIJ(I,J) = RDATA(IND) 
I NO = I ND + 1 

MATRIX 



180 CONTI NU E 
C 

TREND 283 

C CALCULATE YEAR AND SEASON AVERAGES FOR THE RANKED MATRIX RIJ. 
DO 190 I=l,NYEAR 

RIDOT(I) = 0.0 
190 CONTINUE 
C 

DO 210 J=l,NSEASON 
RDOTJS = 0.0 
DO 200 I=l,NYEAR 
X = RIJ(I,J) 
RDOTJS = RDOTJS + X 
RIDOT(I) = RIDOT(I) + X 

200 CONTINUE 
RDOTJ(J) = RDOTJS/NYEAR 

210 CONTINUE 
C 

DO 220 I=l,NYEAR 
RIDOT(I) = RIDOT(I)/NSEASON 

220 CONTINUE 
C 
C 

230 
240 
C 

CALCULATE SEN STATISTIC 
SUMI = 0.0 
SUMJ = 0.0 
YADD1 = (NYEAR + 1)/2.0 
YADD2 = (NYEAR*NSEASON + 1)/2.0 
DO 240 J=l,NSEASON 

RDOTJS = RDOTJ(J) 
DO 230 I=l,NYEAR 

SUMJ = SUMJ + (RIJ(I ,J) - RDOTJS)**2 
CONTINUE 

CONTINUE 

DO 250 I=I,NYEAR 
SUMI = SUMI + (I - YADD1)*(RIDOT(I) - YADD2) 

250 CONTINUE 
C 

C 

IF (SUMJ.EQ.O.O .OR. SUMI.EQ.O.O) GOTO 260 
T = SQRT(12*NSEASON*NSEASON/(NYEAR*(NYEAR+1)*SUMJ))*SUMI 
GOTO 270 

C MISSING DATA IN DATA SET, CAN NOT COMPUTE SEN T STATISTIC 
260 T = 0.0 
C 
270 RETURN 

END 

c ************************************************************ 
SUBROUTINE KTEST(Z,J,LAST) 

c ************************************************************ 
C 
C THIS ROUTINE CALCULATES THE Z (STANDARD NORMAL) STATISTIC 
C FOR THE SEASONAL KENDALL TEST OF TREND. IF NSEASON = 0 
C CALCULATES THE MANN KENDALL STATISTIC. ALSO CALCULATES THE 
C KENDALL SLOPES AND CONFIDENCE INTERVALS ABOUT THE SLOPE. 
C 
C Z ...• RETURN KENDALL STATISTIC. 
C J .... NUMBER OF SITE (STATION) FOR THIS CALL. 
C 
C Z = (S - l)/SQRT(VAR(S)) IF S > 0 
C Z = 0 IF S = 0 
C Z = (S + l)/SQRT(YAR(S)) IF S < 0 
C 
C S = SUM[Sj] 
C YAR(S) = SUM[YAR(Sj)] 
C Sj = SUM(SUM(SIGN(Xj - Xk))) 
C k=1 to N-l, j= k+1 to N, and N = NUMBER 
C OF YEARS 
C YAR(Sj) = [N(N-1)(2N+5) - TIE]/18 + CORRECT 
C TIE = SUM(t(t-l)(2t+5)) 
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C t = NUMBER INVOLVED IN TIE. 
C CORRECT IS THE CORRECTION FACTOR FOR REPLICATE JATA 
C 
C SLOPE = MEDIAN(Xj - Xk)/(j-k); j" 1 to N-l by 1 and k = j+l to N by 1. 
C 
C 

C 

C 

PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10, 
1 NTTOT = 16110, NYS = 2500, NA = 10, NE = 2 
COMMON /DATA/ NYEAR, YEAR(NTOT), 
1 NSEASON, SEASON(NTOT), 
2 NDATA(NSIT), DATA(NTOT) 
COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT) 
COMr~ON /ZST/ lSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT), 
1 SSTAT(NSEAS,NSIT) 
COMMON /SLOPE/ lSLOPE(NSEAS,NSIT), SEASSL(NSEAS), SITESL(NSIT), 
1 YSSLOPE(NYS,NSEAS), NYSSLOPE(NSEAS) 
COMMON /Cl1/ ALP(NA), lA(NA) 
COMMON /CI2/ CIMKS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT), 
1 VSEA(NSEAS), NUME, CISES(NA,NE,NSEAS) 

REAL SLOPES(NTTOT) 
LOGICAL LAST 

C LOOP FOR EACH SEASON. DEFINE N = NUMBER SEASONS, BUT IF N " 0 
C (ie MANN KENDALL TESTS) THEN SET N = 1 FOR THE CALCULATIONS. 
C 

C 

N = NSEASON 
IF (N.EQ.O) N = 1 
IS = 1 
IN = 1 
NSS = 0 
SSUM = 0.0 
VSUM = 0.0 
DO 110 I=l,N 

NC = NCR (I ) 

C CALCULATE THE KENDALL STATISTIC Sj 

C 

CALL KEND(SORTD(IS),SORTY(IS),SJ,NC,SLOPES(IN),SMED,NS) 
SSUM = SSUM + SJ 
lSLOPE(I,J) = SMED 

C SAVE SLOPE VALUES 
IYS = NYSSLOPE(I) + 1 
NSS = NSS + NS 
IN1 = IN 
IN2 = IN + NS - 1 
DO 100 K=INl,IN2 

YSSLOPE(IYS,I) = SLOPES(K) 
IYS = IYS + 1 

100 CONTINUE 
NYSSLOPE(I) = IYS - 1 

C 
C CALCULATE THE VARIANCE OF Sj 

C 

CALL TIES(SORTD(IS) ,SORTY(IS),NC,VAR) 
IS = IS + NC 
IN = IN + NS 
VSUM = VSUM + VAR 
VSEA(I) = VSEA(I) + VAR 

C CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE 

C 

CALL CONINT(NS,VAR,SLOPES(INl),CIMKS(l,l,I,J), 
NUME,CIMKS(l,2,I,J)) 

C STORE ALL l'S USING THE CONTINUITY CORRECTION 
IF (VAR.EQ.O.O) GOTO 110 
IF (SJ.GT.O.O) THEN 
ZSTAT(I,J) = (SJ - l)/SQRT(VAR) 

ELSE 
IF (SJ.LT.O.O) lSTAT(I,J) = (SJ + l)/SQRT(VAR) 

ENDIF 
NSTAT(I,J) = NC 
SSTAT(I,J) = SJ 



110 CONTINUE 
C 
C Z-STATISTIC USING THE CONTINUITY CORRECTION 

Z = 0.0 

C 

IF (VSUM.EQ.O.O) GOTO 120 
IF (SSUM.GT.O.O) THEN 

Z = (SSUM - l)/SQRT(VSUM) 
ELSE 

IF (SSUM.LT.O.O) Z = (SSUM + l)/SQRT(VSUM) 
ENDIF 

C FIND SEASONAL-KENDALL SLOPE 
C 
120 IN = IN - 1 

C 

CALL SORT(SLOPES,IN,SMED) 
S ITESL (J) = SMED 

C CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE 
CALL CONINT(NSS,VSUM,SLOPES,CISIS(1,1,J),NUME,CISIS(1,2,J)) 

C 
C IF LAST CALL THEN CALCULATE FINAL KENDALL SLOPE 
C 

IF (.NOT.LAST) GOTO 140 
DO 130 l=l,N 

IS = NYSSLOPE(I) 
CALL SORT(YSSLOPE(l,I),IS,SMED) 
SEASSL(I) = SMED 
CALL CONINT(IS,VSEA(I),YSSLOPE(l,I),CISES(l,l,I), 

NUME,CISES(1,2,I)) 
130 CONTINUE 
C 
140 RETURN 

END 
C 

c *********************************************************** 
SUBROUTINE KEND(X,Y,S,N,SLOPE,SMED,NS) 

C *********************************************************** 
C 
C THIS ROUTINE CALCULATES THE KENDALL STATISTIC S 
C 
C X ARRAY OF DATA FOR ONE SEASON AND N YEARS. 
C Y ARRAY OF YEARS CORRESPONDING TO THE DATA (USED 
C FOR MULTIPLE OBSERVATIONS). 
C S OUTPUT KENDALL STATISTIC. 
C N NUMBER DATA POINTS IN THIS SEASON. 

TREND 285 

C SLOPE ARRAY OF CALCULATED SEASONAL KENDALL SLOPE ESTIMATORS. 
C THE SLOPE ESTIMATOR IS THE MEDIAN OF ALL THE SLOPE 
C ESTIMATES THAT GO WITH S, INSTEAD OF JUST THE SIGN. 
C SMED .... MEDIAN SLOPE FOR EACH CALL TO THIS SUBROUTINE. 
C NS ...... NUMBER OF SLOPE ESTIMATES CALCULATED. 
C 
C S = SUM[SIGN(X(J)-X(I))] WHERE 1=1,N-1 J=I+1,N 
C SIGN (X) = + 1 I F X > 0 
C SIGN (X) = 0 I F X = 0 
C SIGN (X) = -1 I F X < 0 
C 
C IF MULTIPLE OBSERVATIONS OCCUR IN TIME, THEN S = O. 
C 

C 
REAL X(l), Y(l), SLOPE(l) 

S = 0.0 
NS = 0 
DO 120 1=1,N-1 

XI = xlI) 
YI = Y(I) 
DO 110 J=I+1,N 

XD = X (J) - X I 
YD = Y (J) - YI 
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IF (YD.NE.O.O) THEN 
IF (XD.GT.O.O) THEN 
S = S + 1.0 

ELSE 
IF (XD.LT.O.O) S S - 1.0 

ENDIF 
NS = NS + 1 
SLOPE(NS) = XD/YD 

ENDIF 
110 CONTINUE 
120 CONTINUE 
C 
C FIND MEDIAN SLOPE. 1ST SORT AND THEN PICK MEDIAN 

CALL SORT(SLOPE,NS,SMED) 
C 

RETURN 
END 

c *************************************************** 
SUBROUTINE TIES(X,Y ,N,VAR) 

C *************************************************** 
C 
C SUBROUTINE TO CALCULATE THE CORRECTION FACTOR DUE TO TIES 
C AND CALCULATE THE VARIANCE OF THE KENDALL S STATISTIC. 
C 
C VAR(S) = [N(N-1)(2N-5) - NT1 - NU1J/18 + 
C NT2*NU2/[9N(N-1)(N-2)J + NT3*NU3/[2N(N-1)J 
C 
C N = NUMBER DATA (INPUT TO SUBROUTINE) 
C NTI = SUM[ T; * (T; - 1)* (2*T; + 5) J ; = 1 to 9 
C NUl = SUM[Uj*(Uj - 1)*(2*Uj + 5)J j = 1 to h 
C NT2 = SUM[Ti*(Ti 1)*(Ti 2)J i 1 to 9 
C NU2 = SUM[Uj*(Uj l)*(Uj - 2)J j 1 to h 
C NT3 = SUM[Ti*(Ti l)J i 1 to 9 
C NU3 = SUM[Uj*(Uj 1)J j 1 to h 
C 
C INPUT TO SUBROUTINE: 
C 
ex .... VECTOR CONTAINING DATA 
C Y ...• VECTOR CONTAINING YEARS (TIME) 
eN .... NUMBER OF VALUES IN X AND Y 
C VAR .. OUTPUT VARIANCE OF THE KENDALL Z STATISTIC 
C 

REAL X (1 ), Y ( 1 ) 
INTEGER*2 INDEXT(100), INDEXU(100) 

C 
C COUNT TIES 

INDT = 0 
INDU = 0 

C 

DO 140 l=l,N 
XI = X(I) 
YI = Y(I) 
INDT = 0.0 
INDU = 0.0 
IF (I.EQ.N) GOTO 130 

C CHECK TO SEE IF THIS TIE HAS ALREADY BEEN COUNTED 
IF (I. GT. 1) THEN 

DO 1l0K=l,I-1 
IF (X(K).EQ.XI) XI -999.99 
IF (Y(K).EQ.YI) YI -999.99 

110 CONTINUE 

C 
ENDIF 

DO 120 J=l,N 
IF (XI.EQ.X(J)) INDT = INDT + 
IF (YI.EQ.Y(J)) INDU = INDU + 

120 CONTINUE 



130 INDEXT( I) 
I NDEXU ( I) 

140 CONTINUE 

INDT 
INDU 

C 
C 

150 
C 
C 
C 

C 

CALCULATE CORRECTION FACTORS 
NT! = 0 
NT2 = 0 
NT3 = 0 
NUl = 0 
NU2 = 0 
NU3 = 0 
DO 150 l=l,N 

NT = INDEXT( I) 
,NU = INDEXU(I) 
NT1 = NTI + NT*(NT - 1)*(2*NT + 5) 
NUl = NUl + NU*(NU - 1)*(2*NU + 5) 
NT2 = NT2 + NT*(NT - l)*(NT - 2) 
NU2 = NU2 + NU*(NU - l)*(NU - 2) 
NT3 = NT3 + NT*(NT - 1) 
NU3 = NU3 + NU*(NU - 1) 

CONTINUE 

CALCULATE VAR(S) 

VAR = N*(N - 1.0)*(2.0*N + 5.0)/18.0 
IF (N.LE.2) GOTO 160 
VAR = (N*(N - 1.0)*(2.0*N + 5.0) - NT1 - NUl)/18.0 + 
1 NT2*NU2/(9.0*N*(N - 1.0)*(N - 2.0)) + 
2 NT3*NU3/(2.0*N*(N - 1.0)) 

160 RETURN 
END 

C 

c ***************************************************** 
SUBROUTINE RANK(X,R,N,NC) 

C ***************************************************** 
C 
C THIS ROUTINE RANKS THE DATA IN VECTOR X 
C 
C X ...• ARRAY TO BE RANKED 
CR .... OUTPUT ARRAY OF RANKS 
C N •... NUMBER OF VALUES IN X 
C NC •.. ARRAY OF THE NUMBER IN EACH RANKING 
C 
C 

C 
DIMENSION X(l), R(1), NCO) 

DO 110 I=l,N 
NC(!) = 0 
R(!) = 0.0 

11 0 CONTI NU E 
C 

DO 130 I=l,N 
XI = X(I) 
DO 120 J=I,N 

IF (ABS(XI-X(J)).LT.l.OE-6) THEN 
R(J) = R(J) + 0.5 

ELSE 
R(I) = R(I) + 0.5 

IF (XI.GT.X(J)) THEN 
R(I) = R(I) + 1.0 

ELSE 
R(J) = R(J) + 1.0 

ENDIF 
ENOl F 

120 CONTINUE 
130 CONTINUE 

TREND 287 
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C 
C COUNTING NUMBER IN RANKS (NUMBER IF THERE WERE TIES) 
C 

D0140I=l,N 
IR = R(I) 
NC(IR) = NC(IR) + 1 

140 CONTINUE 
C 

C 

RETURN 
END 

c ******************************************************* 
SUBROUTINE SORT(X,N,SMED) 

c ******************************************************* 
C 
C THIS SUBROUTINE SORTS THE ARRAY X AND ALSO RETURNS 
C MEDIAN. USES BUBBLE SORTING. 
C THIS ROUTINE CALLS THE ROUTINE RANK TO RANK THE DATA. 
C 
ex ..... ON INPUT X IS THE ARRAY TO SORT, 
C ON OUTPUT X IS THE SORTED ARRAY. 
C N ..... NUMBER IN ARRAY X. 
C SMED .. RETURN MEDIAN VALUE OF X. 
C 
C FOR THIS ROUTINE AS IS, N MUST BE LESS THAN 7410. 
C 

C 

C 

PARAMETER NTTOT = 10000 
COMMON IT/ITO 
DIMENSION X(l), WORK(NTTOT), RANKS(NTTOT), NC(NTTOT) 

SMED = 0.0 
IF (N.LT.1) GOTO 150 
SMED = X (1) 
IF (N.EQ.1) GOTO 150 

!TEMP = 1 
DO 140 I=2,N 

IF (X(ITEMP).LE.X(I)) GOTO 130 
TEMP = X(I) 
DO 110 J=JTEMP,l,-l 
J I = J 
IF (TEMP.GE.X(J)) GOTO 120 
X(J+l) = X(J) 

110 CONTINUE 
JI = 0 

C 
120 X(JI+1) = TEMP 
130 ITEMP = I 
140 CONTINUE 
C 
C FIND MEDIAN 
C 

C 

NH = N/2 
NF = 2*NH 
IF (NF.NE.N) THEN 

SHED = X (NH+ 1 ) 
ELSE 

SMED = (X(NH+1) + X(NH))/2.0 
ENDIF 

150 RETURN 
END 
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c ***************************************************** 
SUBROUTINE CONINT(N,VAR,SLOPE,CIL,NCI,CIU) 

c ***************************************************** 
C 
C THIS ROUTINE CALCULATES THE CONFIDENCE INTERVALS 
C ABOUT THE KENDALL SLOPE. 
C 
C N .•..•• NUMBER DIFFERENCES IN CALCULATING SLOPE. 
C VAR ..•. VARIANCE OF THE KENDALL S STATISTIC. 
C SLOPE .. ARRAY CONTAINING SLOPES. 
C CIL .... ARRAY OF LOWER LIMITS. ONE FOR EACH ALPHA LEVEL. 
C CIU •... ARRAY OF UPPER LIMITS. ONE FOR EACH ALPHA LEVEL. 
C 
C LOWER LIMIT = M1 th LARGEST SLOPE ESTIMATE. 
C UPPER LI~1IT = M2 + 1 th LARGEST SLOPE ESTIMATE. 
C 
C M1 = (N° - C)/2 
C M2=(N'+C)/2 
C 
C N° = NUMBER OF ORDERED SLOPE ESTIMATES 
C C = Z * SQRT[VAR(S)] 
C 
C Z IS FROM A NORMAL TABLE FOR ALPHA/2 
C 
C THIS ROUTINE IS SET UP TO HANDLE ALPHA = .01, .05, .10, .20. 
C TO ADD NEW ALPHAS OR CHANGE THE EXISTING ALPHAS, TWO LINES OF 
C CODE MUST BE CHANGED. ADD TO OR CHANGE THE DATA STATnlENT BELOW. 
C ALSO, IF THE NUMBER OF ALPHAS IS CHANGED, CHANGE THE STATEMENT 
C NCI = 4. 
C 

C 

C 

C 

PARAMETER NA = 10, NE = 2, NSEAS = 12, NSIT = 10 
COMMON ICI11 ALP(NA), ZA(NA) 

REAL SLOPE(l), CIL(l), CIU(l) 
DATA ALP, ZA I .01, .05, .10, .20, 6*0.0, 
1 2.576, 1.960, 1.645, 1.282, 6*0.0 I 

NCI = 4 

C CALCULATE CONFIDENCE INTERVALS ABOUT THE SLOPE 

C 

C 

DO 100 I=l,NCI 
CA = ZA(I)*SQRT(VAR) 
XM1 = .5*(N - CAl 
XM2 = .5*(N + cAl + 1 

M1 = XM1 
M2 = XN2 
XDI = xm - MI 
XD2 = XM2 - M2 

C CHECK TO SEE IF ENOUGH DATA TO CALCULATE CI. 
C -99.99 MEANS THAT N IS TOO SMALL TO CALCULATE THE CI. 

C 

C 

IF (Ml.GE.l) THEN 
CIl(I) = XDl*SlOPE(Ml+l) + (1.0 - XD1)*SlOPE(Ml) 

ELSE 
CIl(!) = -99.99 

ENDIF 

IF (M2.LE.N) THEN 
CIU(I) = XD2*SLOPE(M2+l) + (1.0 - XD2)*SLOPE(M2) 

ELSE 
C IU (I) = -99.99 

ENDIF 

100 CONTINUE 
C 

C 

RETURN 
END 



290 Appendix B 

c ****************************************************** 
SUBROUTINE CHICDF(C,N,P) 

c ****************************************************** 
C 
C THIS ROUTINE COMPUTES THE CUMULATIVE CHI-SQUARE 
C PROBABILITY. 
C 
C C COMPUTED CHISQUARE VALUE. 
C N ... DEGREES OF FREEDOM. 
C P ... RETURNED CUMULATIVE CHI-SQUARED PROBABILITY. 
C 

P = 0.0 
IF (C.LE.O.OOOOl) GOTO 50 
IF (N.LE.O) RETURN 
A = FLOAT(N) 
GAMMA = 1.0 

10 GAMMA = GAMr1A*C/A 
A = A - 2 
IF(A) 20,30,10 

20 GAMMA = GAMMA*SQRT(2./C)/1.7724578 
30 C2 = 1. 0 

C3 1.0 
o FLOAT(N) 

40 0 = 0 + 2.0 
C3 = C3*C/D 
C2 = C2 + C3 
IF (C3.GE.0.5E-7) GO TO 40 
P = EXP(-C/2.)*C2*GAMMA 

50 P = 1.0 - P 
C 

C 

RETURN 
END 

c ********************************************* 
SUBROUTINE PNORM(X,P) 

C ********************************************* 
C 
C THIS ROUTINE COMPUTES A VERY QUICK AND CRUDE 
C CUMULATIVE NORMAL PROBABILITY. 
C 
C X ... COMPUTED NOR~1AL VALUE. 
C P ... RETURNED NORMAL CUMULATIVE PROBABILITY. 
C 
C EXP ... IS THE EXPONENTIAL FUNCTION. 
CABS ... IS THE ABSOLUTE VALUE FUNCTION. 
C 

C 

C 

DOUBLE PRECISION PC 

P =.5 
IF (X.EQ.O.O) GOTO 20 
AX = ABS(X) 
PC = EXP(-((83.0*AX + 351.0)*AX + 562.0)/(703.0/AX + 165.0)) 
P = 1.0 - 0.5*PC 
IF (X.GT.O.O) GOTO 20 
P = 1.0 - P 

20 RETURN 
END 

C 



c ******************************************************** 
SUBROUTINE WRITE1(IFOUT,NSITE,ALPHA) 

C ******************************************************** 
C 
C THIS SUBROUTINE OUTPUTS THE RESULTS FROM ALL THE TREND 
C TESTS. 
C 
C IFOUT ••.• OUTPUT UNIT NUMBER 
C NSlTE .... NUMBER OF SITES. 
C 
C 

c 
PARAMETER NYRS = 30, NSEAS = 12, NTOT = 180, NSIT = 10, 

NTTOT = 16110, NYS = 2500, NA = 10, NE = 2 

COMHON /DATA/ NYEAR, YEAR(NTOT), 
NSEASON, SEASON(NTOT), 

2 NDATA(NSIT), DATA(NTOT) 
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COMMON /SORT/ SORTY(NTOT), SORTS(NTOT), SORTD(NTOT), NCR(NTOT) 
COMMON /SLOPE/ ZSLOPE(NSEAS,NSIT), SEASSL(NSEAS), SITESL(NSIT), 

C 

C 

1 YSSLOPE(NYS,NSEAS), NYSSLOPE(NSEAS) 
COMMON /ZST/ ZSTAT(NSEAS,NSIT), NSTAT(NSEAS,NSIT), 
1 SSTAT(NSEAS,NSIT) 
COHMON /HOMO/ TOTAL, NTOTAL, PTOTAL, 
1 Hor~OGEN, NHOMOGEN, PHOMOGEN, 
2 SEASONAL, NSEASONAL, PSEASONAL, 
3 SITE, NSITES, PSITES, 
4 SITESEAS, NSITESEAS, PSITESEAS, 
5 TRENDS, NTRENDS, PTRENDS, 
6 ZSEASON(NSEAS), PSEASON(NSEAS), 
7 ZSITE(NSIT), PSITE(NSIT) 
COMMON /Cll/ ALP(NA), ZA(NA) 
COMMON /CI2/ W1KS(NA,NE,NSEAS,NSIT), CISIS(NA,NE,NSIT), 
1 VSEA(NSEAS), NUME, CISES(NA,NE,NSEAS) 
COMMON /WR1/ SENT(NSlT), PSENT(NSlT), ZKEN(NSIT), PKENZ(NSIT) 
COMMON /WR2/ NC(NTOT), NCRS(NTOT,NSIT), NCRC(NSIT) 

BYTE INFILE(BO), OUTFILE(BO), FMT(BO), IFPRT 
CHARACTER AOUT*66, Cl*5, C2*11, C3*12, C4*12, C5*10, C6*12 
CHARACTER DOUT*58, Dl*B, D2*12, 03*12, D4*10, D5*12 
CHARACTER CNL*10, CNU*10 
EQUIVALENCE (AOUT(I:5), Cl), (AOUT(6:16),C2), (AOUT(17:2B) ,C3), 
1 (AOUT(29:40) ,C4) ,(AOUT(43:52) ,C5), (AOUT(53:64) ,C6), 
2 (AOUT(33:42) ,CNL), (AOUT(57:66) ,CNU) 
EQUIVALENCE (DOUT( 1:8), D1), (DOUT(9:20) ,D2), (DOUT(21 :32) ,D3), 
1 (DOUT(35:44) ,D4), (DOUT(45:56) ,05), 
2 (DOUT(25:34),CNL), (DOUT(49:58) ,CNU) 

C HOMOGENEITY STUFF 
C 

C 

IF (NTOTAL.GT.l) WRITE(IFOUT,300) 
1 TOTAL, NTOTAL, PTOTAL 
IF (NHOMOGEN.NE.O) WRITE(IFOUT,310) 
1 HOMOGEN, NHOMOGEN, PHOMOGEN 
IF (NSEASONAL.NE.O .AND. NSEASONAL.NE.NHOMOGEN) WRITE(IFOUT,320) 
1 SEASONAL, NSEASONAL, PSEASONAL 
IF (NSITES.NE.O .AND. NSITES.NE.NHOMOGEN) WRITE(IFOUT,330) 
1 SITE, NSITES, PSITES 
IF (NSITESEAS.NE.D) WRITE(IFOUT,340) 
1 SITESEAS, NSITESEAS, PSITESEAS 
IF (NTOTAL.GT.l) WRITE(IFOUT,350) 
1 TRENDS, NTRENDS, PTRENDS 
IF (PSEASONAL.GT.ALPHA.AND.PSITES.LT.ALPHA.AND.NSEASON.GT.1) 
1 WRITE(IFOUT,370) ((I,ZSITE(I), PSITE(I)),I=l,NSITE) 

IF (PSEASONAL.LT.ALPHA.AND.PSITES.GT.ALPHA.AND.NSEASON.GT.1) 
1 WRITE(IFOUT,360) ((I,ZSEASON(I),PSEASON(I)),I=I,NSEASON) 

C 
C SEN SLOPES AND CONFIDENCE LIMITS FOR EACH SEASON. 

WRITE(IFOUT,200) 
200 FOR~1A T (j / 
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C 

1 T26'SEN SLOPE'/T20'CONFIDENCE INTERVALS'II 
2 4X, 'SEASON ',4X,' ALPHA' ,4X,' LOWER LIMIT' ,4X, 'SLOPE' ,4X, 
3 'UPPER LIMIT') 

DO 260 K=I,NSEASON 
FM = 1 
DO 250 J=I,NUME 

Dl =' 
CNL = ' 
CNU = ' 
D3 = ' 
D5 = ' 
IF (FM.EQ.l) THEN 
ENCODE(8,210,Dl) K 

210 FORMAT(I8) 

C 

C 

ENDIF 

ENCODE(12,220,D2) ALP(J) 

CL = CISES(J,I,K) 
IF (CL.EQ.-99.99) THEN 

CNL = 'N TO SMALL' 
ELSE 

CNL = ' 
ENCODE(12,220,D3) CL 

220 FORMAT(FI2.3) 

C 

230 
C 

C 

ENDIF 

ENCODE(10,230,D4) SEASSL(K) 
FORMAT(FlO.3) 

CU = CISES(J,2,K) 
IF (CU.EQ.-99.99) THEN 

CNU = 'N TO SMALL' 
ELSE 

CNU = ' 
ENCODE(12,220,D5) CU 

ENDIF 

WRITE(IFOUT,240) DOUT 
240 FORMAT(A) 

HI = 2 
250 CONTINUE 

WRITE (I FOUT , *) 
FM = 1 

260 CONTINUE 
ENDIF 

C 
300 FORMAT(lHl/' HOMOGENEITY TEST RESULTS'II 

7 T48,'PROB. OF A'I 
1 'SOURCE' ,T20, 'CHI-SQUARE' ,T40, 'DF' ,T47, 
1 'LARGER VALUE'/X,57('-')1 
1 'TOTAL ',T20,F9.5,T37 ,I5,T49,F7.3) 

310 FORMAT( 'HOMOGENEITY ',T20,F9.5.T37,I5,T49,F7.3) 
320 FORMAT ( 'SEASON ',T20,F9.5,T37.I5,T49,F7.3) 
330 FORMAT ( 'STATION ',T20,F9.5.T37,I5,T49,F7.3) 
340 FORMAT ( , STATION-SEASON' ,T20,F9.5,T37,I5,T49,F7.3) 
350 FOR~lAT ( , TREND ' , T20 ,F9. 5, T37 ,15, T49 ,F7. 3) 
360 FORMAT(IIIT16,' INDIVIDUAL SEASON TREND'I 

1 T41,' PROB. OF A',I 
2 4X,' SEASON' ,5X, 'CH I -SQUARE' ,6X, 'OF' ,6X, 'LARGER VALUE' I 
3 <NSEASON>(I8,2X,F14.5,' 1 ',Fl4.3/)) 

370 FORMAT(IIIT15,'INDIVIDUAL STATION TREND'/T57,1 
1 T41,'PROB. OF A',T57,1 
2 4X,'STATION',4X,'CHI-SQUARE',6X,'DF',6X,'LARGER VALUE'I 
3 <NSITE>(I8,2X,F14.5,' 1 ',Fl4.3/)) 

C 
WRITE (I FOUT ,380) 

380 FORMAT(lH1) 
C 



C SEASONAL KENDALL STATISTICS 
C 

IF (NSEASON.GT.l) THEN 
WRITE(IFOUT,390) 

ENDIF 
390 FORMAT(IIT29,'PROB. OF EXCEEDING'/T29,'THE ABSOLUTE VALUE', 

I IT12,'SEASONAL' ,T26,'OF THE KENDALL STATISTIC'I 
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2 'STATION',T12,'KENDALL',T24,'N',T30,'(TWO-TAILED TEST)') 
C 

IF (NSEASON.GT.l) THEN 
DO 410 I=l,NSITE 
N = NCRC( I) 

WRITE(IFOUT,400) I, ZKEN(I), N, PKENZ(I) 
400 FORMAT(I5,2X,Fll.5,16,4X,F12.3) 
410 CONTINUE 
C 
C SEASONAL KENDALL SLOPES 

WRITE(IFOUT,500) 
500 FORMAT(j I 

c 

1 T19'SEASONAL-KENDALL SLOPE'/T20'CONFIDENCE INTERVALS'II 
2 4X, 'STATION' ,4X, 'ALPHA' ,4X, 'LOWER LIMIT' ,4X, 'SLOPE' ,4X, 
3 'UPPER LIMIT') 

DO 560 K=l,NSITE 
FM = 1 
DO 550 J=l,NUME 

Dl =' 
CNL = ' 
CNU = ' 
D3 = ' 
05 = ' 
IF (FM.EQ.l) THEN 
ENCODE(8,510,Dl) K 

510 FORMAT( 18) 

C 

C 

ENDIF 

ENCODE(12,520,D2) ALP(J) 

CL = CISIS(J,l,K) 
IF (CL.EQ.-99.99) THEN 

CNL = 'N TO SMALL' 
ELSE 

CNL = ' 
ENCODE(12,520,D3) CL 

520 FORMAT(Fl2.3) 
ENDIF 

C 
ENCODE(10,530,D4) SITESL(K) 

530 FOR~lAT(FI0.3) 
C 

C 

CU = CISIS(J,2,K) 
IF (CU.EQ.-99.99) THEN 

CNU = 'N TO SMALL' 
ELSE 

CNU = ' 
ENCODE(12,520,D5) CU 

ENDIF 

WRITE(IFOUT,540) DOUT 
540 FORHAT(A) 

FM = 2 
550 CONTINUE 

WRITE(IFOUT ,*) 
FM = 1 

560 CONTINUE 
ENDIF 

C 
C SEN STATISTICS 
C 

IF (NSEASON.GT.l) THEN 
WRITE(IFOUT,600) 



294 Appendix B 

600 FORMAT(IIT29,'PROB. OF EXCEEDING'/T29, 

C 

1 'THE ABSOLUTE VALUE'/T27,'OF THE SEN T STATISTIC'I 
2 'STATlON',Tl3,'SEN T' ,T24,'N' ,T30, 
3 '(TWO-TAILED TEST) 'I) 

DO 630 I=I,NSITE 
N = NCRC (I) 
IF (SENT(I).EQ.O.O) THEN 

WRITE(IFOUT,610) I 
610 FORMAT(15,' MISSING VALUES IN DATA') 

ELSE 
WRITE(IFOUT,620) I, SENT(I), N, PSENT(I) 

620 FORMAT(I5,2X,Fl1.5,I6,4X,F12.3) 
ENDIF 

630 CONTINUE 
ENDIF 

C 
C INDIVIDUAL MANN KENDALL Z STATISTICS 
C 

WRITE(IFOUT,640) 
640 FORMAT(fIIT49,'PROB. OF EXCEEDING'/,T21,'MANN' ,T49, 

c 

1 'THE ABSOLUTE VALUE'/T20,'KENDALL', 
1 T49,'OF THE Z STATlSTlC',I,T23,'S', 
1 T34,'Z',T50,'(TWO-TAILEO TEST)'I 
2 'STATION SEASON STATISTIC STATISTIC', 
3 'N IF N > 10') 

N = NSEASON 
IF (N.EQ.O) N = 1 
DO 670 J=I,NSITE 
DO 670 1=I,N 

Z = ZSTAT(I,J) 
CALL PNORM(Z,PZ) 
IF (Z.GT.O) THEN 

PZ = 2*(1.0 - PZ) 
ELSE 

PZ = 2*PZ 
ENDIF 
NS = NSTAT(I,J) 
IF (I.EQ.l) THEN 
WRITE(IFOUT,650) J,I,SSTAT(I,J),Z,NS,PZ 

650 FORMAT(/15,19,Fll.2,F12.5,17,2X,F14.3,6X) 
ELSE 
WRITE(IFOUT,660) I, SSTAT(I,J), Z, NS, PZ 

660 FORMAT(5X,19,Fll.2,FI2.5,17,2X,FI4.3,6X) 
ENDIF 

670 CONTINUE 
C 
C SEN SLOPES FOR MANN KENDALL TEST 
C 

WRITE(IFOUT,700) 
700 FORMAT( IIT29'SEN SLOPE'/T24'CONFIDENCE INTERVALS'II, 

C 

1 'STATION' ,4X,'SEASON',5X,'ALPHA',4X,'LOWER LIMIT', 
2 4X,' SLOPE' ,4X,' UPPER LIMIT') 

DO 780 K=I,NSITE 
FM = 1 
DO 770 1=I,N 

DO 760 J=I,NUME 
Cl = ' 
C2 = ' 
CNL = ' 
CNU = ' 
C4 = ' 

C6 =' 
IF (FM.EQ.l) THEN 
ENCODE(5,710,Cl) K 

710 FORMAT(15) 
ENCODE(II,720,C2) I 

720 FORMAT(ll1) 
ENDIF 



C 

C 

C 

IF (Fl-1.EQ.2) ENCODE(1l,720,C2) 

ENCODE(12,730,C3) ALP(J) 

CL = CIMKS(J,l,I,K) 
IF (CL.EQ.-99.99) THEN 
CNL = 'N TO SMALL' 

ELSE 
CNL = ' 
ENCODE(12,730,C4) CL 

730 FORHAT(F12.3) 
ENDIF 

C 
ENCODE(10,740,C5) ZSLOPE(I,K) 

740 FORMAT(FIO.3) 
C 

C 

CU = CIMKS(J,2,I,K) 
IF (CU.EQ.-99.99) THEN 

CNU = 'N TO SMALL' 
ELSE 

CNU = ' 
ENCODE(12,730,C6) CU 

ENDIF 

WRITE(IFOUT,750) AOUT 
750 FORMAT(A) 

FN = 3 
760 CONTINUE 

FM = 2 
WR IT E ( I FOUT , *) 

770 CONTINUE 
FM = 1 

780 CONTINUE 
C 

RETURN 
END 

TREND 295 



B 

c - Co 

1-f 

1 - fh 

fM = mlM 

fN = nlN 

GM 

GSE 

I 

j 

L 

M 

N 

n 

Symbols 

Sign test statistic (18.1.1) 

Dollars available for collecting and measuring samples, not 
including fixed overhead expenses (5.6.1) 

Cost of collecting and measuring a population unit in stratum 
h (5.5) 

Finite population correction factor (4.2) 

Proportion of Nh population units in stratum h that are measured 
(5.2) 

Finite population correction factor for stratum h (5.2) 

Proportion of the M subunits selected for measurement (6.2.1) 

Proportion of the N primary units selected for measurement 
(6.2.1) 

Friedman's test statistic (18.1.3) 

Geon.etric mean (13.3.3) 

Geometric standard error (13.4) 

Total amount (inventory) of pollutant in the target population 
(4.2) 

Estimate of I 

Kruskal-Wallis test statistic (18.2.2) 

Number of strata (5.1) 

Number of subunits in each primary unit (subsampling) (6.2.1) 

Number of population units in stratum h (5.1) 

Number of population units measured in stratum h (5.1) 

Number of population units in the target population (4.1) 

Number of population units selected for measurement; more 
generally, the number of measurements in a data set (4.2) 

Note: The numbers in parentheses are the section numbers where the symbols are first mentioned. 
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N(O, 1) 

sex) 
s\x) 
i(xst) 

s\xlr ) 

t l - od2,n -I 

Var(i) 

Var(X) 

Var(xst) 

W 

Wh = nhln 

W h NhlN 

Wi 

Wrs 

X 

Xh 

Xiii 

Xi 

Xlr 

Xp 

Symbols 297 

Number of monitoring stations (4.5.1) 

A normal (Gaussian) distribution with mean J.1, and variance a 2 

(11.1) 

The standard normal distribution (11.1) 

The proportion of the population that exceeds the value Xc 

(11.4) 

Rank von Neumann test for serial correlation (11.13) 

Variance of n measurements (4.2) 

Variance of the nh measurements in stratum h (5.2) 

Estimated variance of i (4.2) 

Winsorized standard deviation (14.2.4) 

Estimated standard error of X (4.2) 

Estimate of Var(x) (4.2) 
Estimated variance of XSl (5.2) 

Estimated variance of Xlr (9. 1. 1) 

Variance of n log-transformed data (12.1) 

(l - a/2) quantile of the t distribution with n - 1 degrees 
of freedom (11.5.2); value that cuts off (100a/2) % of the upper 
tail of the t distribution with n - 1 degrees of freedom (4.4.2) 

True variance of i (4.2) 

True variance of x (4.2) 

True variance of xst (5.2) 

The W statistic for testing that a data set is from a normal 
distribution (12.3. I) 

Proportion of n measurements that were made in stratum h 
(5.1) 

Proportion of population units in stratum h (5.1) 

Proportion of all subunits that are in primary unit i (6.3.1) 

Wilcoxon rank sum test statistic (18.2.1) 

Arithmetic mean of n measurements (4.2) 

Arithmetic mean of the nh measurements in stratum h (5.2) 

The ith order statistic (ith largest value) of a data set (11.2) 

The measurement on the ith population unit (4.2) 

Linear regression (double sampling) estimator of the population 
mean (9.1.1) 

The pth quantile (percentile) of a distribution. That value, xp ' 

below which lies lOOp% of the population (11.1) 
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y 

y 

J-ti 

Pii' 

Pc 

PI 

Estimated mean of a stratified population (5.2) 

Winsorized mean (14.2.4) 

Arithmetic mean of n log-transformed data (12.1) 

D' Agostino's test statistic for testing that a data set is from a 
normal distribution (12.3.2) 

1 - a./2 quantile of the N(O, 1) distribution (11.5.1); value 
that cuts off (l OOa./2) % of the upper tail of an N(O, 1) 
distribution (4.4.2) 

The pth quantile of the N(O, 1) distribution (11.2) 

A two-parameter lognormal distribution with parameters J-ty and 
a~, the mean and variance of the logarithms, respectively. 
(12.1) 

A three-parameter lognormal distribution with parameters J-ty' 

a;, and T (12.1) 

The true mean over all N units in the target population (4.2) 

True mean for stratum h (5.2) 

True mean for primary unit i (6.2.1) 

True amount of pollutant present in the jth subunit of primary 
unit i (6.2.1) 

True mean of the logalithms of the population values (12.1) 

Population coefficient of variation (4.4.3) 

Correlation between stations i and i' (4.5.1) 

Average of all possible cross-correlations between monitoring 
stations (4.5.1) 

True correlation between measurements l lags apart collected 
along a line in time or space (4.5.2) 

Infinite series used to estimate the mean and variance of a 
lognormal distribution (13 .1.1) 

True variance of the N population units in the target population 
(4.2) 

True variance of the logarithms of the population values (12.1) 



Accuracy 

Censored data set 

100(1 - a)% confidence interval 
on a population parameter 

Measurement bias 

Median 

Nonparametric technique 

Outlier observation 

Precision 

Probability sampling 

Glossary 

A measure of the closeness of measure­
ments to the true value (2.5.2) 

Measurements for some population units 
are not available, for example, they are 
reported as "trace" or "not detected" 
(11.8) 

lf the process of drawing n samples from 
the population is repeated many times and 
the 100(1 - a)% confidence interval com­
puted each time, 100(1 - a)% of those 
intervals will include the population param­
eter value (11.5.2) 

Consistent under- or overestimation of the 
true values in population units (2.5.2) 

That value above which and below which 
half the population lies (13.3) 

One that does not depend for its validity 
upon the data being drawn from a specific 
distribution, such as the normal or log­
normal. A distribution-free technique 
(11.9) 

An observation that does not conform to 
the pattern established by other observa­
tions in the data set (Hunt et aI., 1981) 
(11.8) 

A measure of the closeness of agreement 
among individual measurements (2.5.2) 

Use of a specific method of random selec­
tion of population units for measurement 
(3.3.2) 

Note: The numbers in parentheses are the section numbers where the terms are first mentioned. 
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300 Glossary 

Random measurement uncertainty 

Random sampling error 

Representative unit 

Sampled population 

Statistical bias 

Target population 

Trimmed mean 

Unpredictable deviation from the true value 
of a unit (2.5.2) 

Variation in an estimated quantity due to 
the random selection of environmental 
units for measurement (2.5.4) 

One selected from the target population 
that in combination with other represen­
tative units will give an accurate picture 
of the phenomenon being studied (2.3) 

Set of population units available for mea­
surement (2.2) 

Discrepancy between the expected value 
of an estimator and the population param­
eter being estimated (2.5.3) 

Set of N population units for which infer­
ences will be made (2.2) 

Arithmetic mean of the data remaining 
after a specified percent of the n data in 
both tails is discarded (14.2.3) 
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Index 

Air monitoring networks, design of, 
19 

Aligned rank test. See Sen's test for 
trend 

Americium, 112-117, 135-136,249, 
251 

Analysis of valiance (AOV) 
related to two-stage sampling, 61 
use in compositing, 74-75 
using transformed data, 148 
when data are missing, 187 

Arithmetic mean, 27 
rule for use of, 164 

Asymmetrical distributions, 152-157, 
164-176 

Autocorrelation. See also Correlation 
over time and space 

calculating, 39 
correlogram, 38, 96 
function, 38 
tests, 146-147 

Autoregressive integrated moving­
average, time series models, 
208 

Autoregressive trend model, 233 

Bayes' formula, 128 
Beta distribution, 155-157 
Bias, II 

affecting compliance decisions, 168, 
173 

from changes in procedures, 205 
measurement, 11, 27, 30 
sample collection, handling, 27 
statistical, 12, 167-168, 172-173, 

300 
when using less-than values, 178 

Binomial distribution, 141 
Bivariate normal and lognormal distri­

butions, 192 
Box-Jenkins time series models 

for control charts, 194, 202 
to detect trends, 208 

315 

Carbon monoxide, 29, 143-144 
Case study 

double sampling using plutonium 
and americium, 112-117 

ozone over time, 13-15 
plutonium in stream sediments, 

53-54 
trend detection, estimation, 219-223 

Censored data sets, 140, 177-185,299 
estimating mean and variance, 

178-184 
Censoring, Type I and Type II, 181 
Cesium data, 147 
Chi-square distribution, 216, 222, 

229-240, 246 
Cluster sampling, 20-23 
Coefficient of variation, 33, 156 
Compliance with standards, 168, 

173-174, 194 
Compositing, 71-88 

basic concepts, design 72 
equal size units, 72-79 
examples, 76-79, 82-85 
number of samples, 78-79 
unequal size units, 79-85 

Computer codes 
Biomedical Computer Programs, 

P-Series, 107, 208, 241 
to choose grid spacing to detect hot 

spots, 119, 121 
for comparing populations, 241 
for data smoothing, 207 
for goodness-of-fit tests, 158 
for kriging, 103 
Minitab, 208 
for moving average control chart, 

202 
for Rosner's outlier test, 189-190 
for scatter plots, 207 
for seasonal Kendall test and slope, 

225 
Statistical Analysis System (SAS), 

208, 241 
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Computer codes (Cont.) 
Statistical Package for the Social 

Sciences (SPSS), 208, 241 
for time series analysis, 208 
for trend detection and estimation, 

274-295 
Conditional probabilities, law of, 127 
Confidence interval. See also Confi-

dence limits 
about a slope (trend), 218 
definition, 138, 299 
to determine sampling frequency, 93 
using Winsorized mean, 180-181 

Confidence limits 
for means 

correlated data, 144-146 
independent data, 137-140 

for proportions 142-144 
for quantiles, 136, 141-142 

Control charts, Shewhart, 193-202 
construction of, 195-200 
examples, 199-201 
for lognormal data, 195, 199 
for seasonal data, 200-202 
for sewage treatment plants, 194, 

202 
stochastic model for, 194 

Correlation 
between accurate and fallible mea­

surements, 108-117 
between stations, calculation of, 36 

Correlation coefficient as goodness-of­
fit test, 158 

Correlation over time and space, 
35-43, 103 

effect on choice of sampling design, 
96 

effect when detecting and estimating 
trends, 205, 207 

effect on mean and variance, 35-42, 
140 

effect on statistical tests, 243 
Cost-effectiveness of sampling plans, 

17-19 
Cost function for allocating samples 

in compositing, 78-79 
in double sampling, 107-117 
in stratified random sampling, 

50-51 
in two-stage sampling, 63 

CUSUM charts, 194, 207. See also 
Control charts, Shew hart 

Cycles 
sampling, 91-93 
test for, 146 

D' Agostino's goodness-of-fit test, 
160-162 

Data. See also Less-than values; Limit 
of detection (LOD) data 

bases, 3 
homogeneous, 195 
missing, 208, 212, 225, 241 
screening and validation, 186-187 

Design and analysis problems, over­
view, 2-4 

Design of sampling networks, 10, 
17-24,119-131,208 

Detection limit. See Limit of detection 
(LOD) data 

Distribution-free techniques. See Non­
parametric techniques 

Double sampling, 20-23, 106-118 
case study, 112-117 
comparison to simple random sam-

piing, 107-109 
linear regression, 106-111 
number of samples, 109-111 
ratio, 111-112 
stratified, 116-117 

Environmental Protection Agency, 9, 
93, 178 

Expected value 
of the geometric mean, 172 
of the mean, 12, 167 
of the variance, 43 

Finite popUlation correction factor 
for compositing, 74-76, 81-82, 

85-88 
for multiple systematic sampling, 97 
for simple random sampling, 28-30 
for stratified random sampling, 

47-48, 53 
for two-stage sampling, 60-61 

Friedman's test, 245-247 

Gamma distribution, 155-157 
Geometric mean, 93, 149, 152, 156, 

165-166, 168 



bias of, for lognormal mean and 
median, 172 

Geometric standard deviation, 152, 
156, 168 

Geometric standard error, 173 
Geostatistics, 103 
Goodness-of-fit tests, 157-163 
Grid sampling designs, 21, 93-94, 

120 
Gross errors and mistakes, 12-13. See 

also Outliers 
Groundwater 

data, 69-70 
wells, location of, 10 

Hazardous waste site, 10, 15, 20, 
120-121 

Histogram, 13-15, 158 
Hot spots 

locating, 119-131 
assumptions, 119-120 
consumer's risk (of not 

detecting), 121-131 
nomographs for grid spacing, 

122-124 
prior infom1ation on, 127-128 
when shape of hot spot is 

unknown, 129 
probability of existing when none 

found, 128-129 
probability of not hitting, 125-127 
size likely to be hit, 125 

Intervention analysis. See Time series 
Inventory of a pollutant. See Mean and 

total amount of pollutant, esti­
mating 

Kolmogorov-Smimov goodness-of-fit 
test, 158 

Kriging, 101, 103 
Kruskal-Wallis test, 250-251 
Kurtosis, coefficient of, 156, 158 

Less-than values, 177-179, 225 
Limit of detection (LOD) data 

problems with, 140, 177-178 
treating as tied values, 246, 

249-250 
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use of 
in Kruskal-Wallis test, 252 
in seasonal Kendall test, 225 
in Wilcoxon rank sum test, 

248-250 
Liquid effluent data, examples, 53-54, 

62-64, 76-79, 82-85 
Lognormal distribution 

four-parameter, 155 
three-parameter, 154-157, 184 
two-parameter, 149, 152-157, 

181-183 
with censored data set, 181-183 
confidence limits for mean, 

169-171 
estimating mean and variance, 

164-169 
Lognormal trend data, 219-223, 

233-236 

Mann-Kendall test for trend, 208-217 
grouped data, 222-223 
multiple sampling stations, 215-217 
single sampling station, 208-214 

Maximum likelihood estimation, 
154-157, 182-183 

Mean and total amount of pollutant, 
estimating. See also Censored 
data sets; Lognormal distribu­
tion 

using compositing and three-stage 
sampling, 73-74, 80-81 

using double sampling, 106-108, 
111-112, 116-117 

using simple random sampling, 
27-29 

using stratified random sampling, 
46-48 

using systematic sampling, 96-100 
using two-stage sampling, 59-63, 

65-68 
Measurements 

accuracy of, 11-12, 299 
bias of, 299 
in situ, 23 
model for (simple random sam­

pling),27 
negative, 155, 177-178 
number of. See Number of measure­

ments (samples) 



318 Index 

Measurements (Cont.) 
precision of, 11-12, 299 
random uncertainties, 11-15, 27, 

300 
Median 

confidence limits for, 173-174 
definition, 171,299 
to detect trends, 213 
to estimate trends, 217-219, 

227-228 
estimating with censored data set, 

179 
Mercury concentrations, 159-162, 

183-184 
Minimum variance unbiased (MVU) 

estimator 
of lognormal mean, 164-167 
of lognormal median, 171-172 
of normal mean and variance, 140 

Missing data, methods for, 177-185, 
208-237, 241-244 

Monitoring program, types of, 18 
MOSUM charts, 194 
Multistage sampling, 20-22 

National Academy of Sciences, 1977 
report, 18 

Negative concentrations, 177-178 
NeIder-Mean simplex for parameter 

estimation, 155 
Nevada Applied Ecology Group, 66, 

115 
Nevada Test Site, 66, 113 
Neyman allocation, of samples to 

strata, 50 
N onparametric techniques 

to compare populations, 241-253 
confidence limits for the median. 

173-174 
confidence limits on proportions, 

142-144 
definition, 299 
to estimate and test for trends, 

204-240 
goodness-of-fit test, 158 
for quantiles, 141-142 
rank von Neumann test. 146-147 

Normal distribution, 13-14,31-34, 
52-53 

characterizing, 134-141 
definition, 132-134, 156 

Nuclear weapons material, 112-117 

Nuclear weapons tests, 56, 66-68, 95 
Number of measurements (samples) 

to detect hot spots, 119-131 
to estimate the mean and total 

amount 
using compositing, 78-79 
using double sampling, 109-111 
using kriging, 103 
using simple random sampling, 

30-42 
using stratified random sampling, 

50-53 
using systematic sampling, 90-94 
using two-stage sampling, 63-64, 

68-69 
to estimate the median, 174 

Objectives of pollution studies, 1-2, 
18 

Order statistics 
definition, 135 
to estimate 

median, 171, 173-174,218-219, 
227-229 

quantiles, 141-142, 168-169, 
174-175, 181-182 

Outliers, 186-193 
in correlated variables, experiments, 

and regression, 191-193 
definition, 299 
masking of, 188 
Rosner's test for, 188-191 

Oxidant data, 61, 242-244, 246-247 
Ozone, 13-15,98-99, 101-102, 104, 

155, 174 

Percentiles. See Quantiles 
Phosphorus, in pond water, 48-49, 

52-53 
Plutonium, 53-57, 66-68, 99, 

112-117 
Pollutant, mean and total amount of, 

estimating. See Mean and total 
amount of pollutant, estimating 

Pollution studies, types of, 1, 2 
Populations, comparing using tests, 

241-253 
independent data sets, 247-252 
related data sets, 241-247 

Population units, examples, 7-9 
Precipitation networks, design of, 19 
Precision of measurements, 11-12, 

299 



Probability plotting 
to detect outliers, 191-192 
to estimate lognormal parameters, 

168-169 
to estimate quantiles, 135-136, 

168-169,174-175,181-182 
to estimate Weibull parameters, 155 
objective method, 175 
to test goodness-of-fit, 158 

Probability sampling, 20-23, 299 
Proportional allocation 

of samples to strata, 47-48, 51 
in two-stage sampling, 68 

Proportions, estimates and confidence 
limits, 136-137, 142-144 

Quantiles. See also Order statistics, to 
estimate 

confidence limits for, 136 
definition, 133 

Radium measurements, 29 
Random measurement uncertainty, 11, 

300 
Random number table, 26-27 
Random sampling error, 12, 28, 300 
Rank von Neumann test for serial cor-

relation, 146-147 
Regional means 

confidence intervals for, 145-146 
estimating, 35-37,40, 145 
estimating the variance of, 35, 40, 

42 
Regression 

robust, nonparametric, 192-193 
seasonal, to detect trend, 207 

Relative standard deviation. See Coef­
ficient of variation 

Representative units, 9-10, 300 

Sampled population, 7-9, 300 
Sample size n. See Number of mea­

surements (samples) 
Sampling fraction. See Finite popUla­

tion correction factor 
Sampling in space and time, 5-7 
Sampling with and without replace­

ment, 28 
Seasonal cycle data, 225-236. See 

also Cycles 
Seasonality 

effects on trend detection, 205 
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effect of when estimating a mean or 
total,91-93 

Seasonal Kendall shope estimator, 
27-228 

Seasonal Kendall trend test 
multiple sampling stations, 231-236 
power of, 222 
single sampling station, 225-231 
when preferred, 207 

Sen's estimator of slope, 217-219 
Sen's test for trend, 230 
Serial correlation. See Autocorrelation 
Sewage treatment plants. See Control 

charts, Shewhart 
Shew hart control charts. See Control 

charts, Shewhart 
Sign test, 242-244 
Simple random sampling, 20-22,26-44 
Size of the sample, n. See Number of 

measurements (samples) 
Skewness, coefficient of, 156 

as goodness-of-fit test, 158 
as test for outliers, 188 

Soil sampling, 67-68 
for cesium, 147 
design of, 18-19 
near a nuclear facility, 135-136, 

249-250 
on Nevada Test Site, 112-117 
of radioactive fallout, 104-105 

Space-time conceptual framework, 5-7 
Standard error of mean and total 

amount 
using compositing, 74-78, 81-82 
using double sampling, 107-108, 

114, 117 
using simple random sampling, 28-

29,42 
using stratified random sampling, 

47-48 
using systematic sampling, 97-101 
using two-stage sampling, 60-68 

Stochastic model, 194,207 
Strata, allocation and selection, 48-51 
Stratified random sampling, 20-22, 

45-57 
Subsampling. See Three-stage sam­

pling; Two-stage sampling 
Support, of the sample, 5 
Systematic sampling, 20-23,89-105 

along a line and over space, 21-22, 
90-94 
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Systematic sampling (Cont.) 
combined with random sampling, 97 
compared with random sampling, 

94-96 
cycles, sampling frequency, 91-93 
estimating Var(x), 96-102 
grid designs, 21, 93-94, 120 
multiple, 96-98 
problems with, 23, 89, 92-93, 103 
stratified, 96, 98 
with trends present, 99-100 

Target population, 7-9, 300 
for compositing and three-stage 

sampling, 72-73 
for simple random sampling, 26-27 
for stratified random sampling, 

45-46 
for two-stage sampling, 58 

t distribution 
to find confidence limits, 138-139, 

144-146, 173, 180-181 
to find number of samples, 32, 

43-44 
Three-stage sampling, 59. See also 

Compositing 
Tied (equal-value) data 

in Friedman's test, 245-247 
in Kruskal-Wallis test, 250-252 
in Mann-Kendall test, 211-214 
in seasonal Kendall test and slope 

estimator, 226-228 
in Sen's estimator of slope, 218-219 
in Sign test, 242-245 
in Wilcoxon rank sum test, 247-250 

Time series, 90-93, 204-240 
models for control charts, 194 

Total suspended particulate (TSP) 
data, 189-191, 199-200 

Trace concentrations. See Less-than 
values; Limit of detection 
(LOD) data 

Transformed data, 2, 103, 195, 199 
problems with, 149 
reasons for, 148 

Trends 
basin-wide, 215 
detection of 

statistical complexities, 205, 207 
tests for, 146, 207-240 
using control charts, 194 

using flow corrections, 207 
with multiple data per time 

period,213-215 
end corrections, 99-100 
estimation of, 96, 207-208, 

217-223,227-228 
homogeneity of, 215-217, 222-223, 

228-236 
global, testing for, 215-217, 

231-236 
types of, 204-206 

Trend surface analysis, 103 
Triangular grid design 

to detect hot spots, 119-120, 124, 
131 

to estimate a mean, 94 
to estimate spatial distributions, 103 

Trimmed mean, 140, 300 
with censored data set, 177, 179 

t test 
for dependent data, 145 
to detect trend, 207 
for independent data sets, 247 
for paired data, 247 
using transformed data, 149 
when unequal variances present, 

248 
Two-stage sampling, 20-23, 58-70 

examples of, 58, 61-64, 66-69 
number of samples, 63-64, 68-69 
primary units, equal size, 59-64 
primary units, unequal size, 64-69 
with systematic sampling, 98-99 

Unbiased estimator, definition, 12 
Uniform distribution, 178 
Uranium in ground water, 212-213 

Variability, environmental, causes of, 
10-11 

Weibull distribution, 155·-157 
Weighted mean, 46-47, 65-66, 

80-86, 97, 103, 117 
W goodness-of-fit test, 158-160 
Wilcoxon rank sum test, 247-250 
Wilcoxon signed rank test, 242, 

244-245 
Winsorized mean and standard devia­

tion, 140, 177, 180-181 






