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ABSTRACT

A study is made of a scale model! in three dimensions of a guiding center
plasma within the purview of gyroelastic (also known as finite gyroradius—-near
theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular
symmetry called isorrhopy which permits the decoupling of fluid modes from drift
modes. /sorrhopic equilibria are analyzed within Lhe framework o! geometrical
optics, 1esulting in (local) dispersion relations and ray constants. A general
schem~ is developed to evolve an arbitrary linear perturbation of a screwpinch
equilibrium as an invertible integral transform (over the complete sel of
generalized eigenfunctions defined neturally by the equilibrium.) Details of
the structure of the function space and the associated spectra are elucidated.
Features of the (global) dispersion relation owing to the presence of
gyroelastic stabilization are revealed. An energy principle is developed to
study the stability of the tubular screwpinch.
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INTRODUCTION

The theoretical model) is a metaphor used as a Lool Lo represenl some aspect

of realily. We analyze Lhe model as surrogate to nature. Its succe: + 1s gauged
in its simplicity and 1ls pertinence. If the model is intractable l:ttle can be
learned of it. {f the mode! 1s inapplicable or irrelevant little can be learned
from it.

To assure simplicity we symmetrize; to assure relevance we choose a s:mmetry
which persists tn accordance with physie=' law. The underlying symmetry dealt
with in this work is permutation symmeiry., a concept developed by Newcomb?'~??
who called 1t isorrhopy.

The presence of o symmetry can be expressed bv identifying its associated
infinitesmal symmetlry operation. An operatlion which leaves Lhe action irtegral
of a Lagrangian syslem unchanged is a symmelry operation. Noether’s theorem
states Lhal every such symmetry operation irduces a conservation law for a
certain physical quantity; the quantity can be given onc~ the Lagrangian is
known. For example, translation symmetry gives rise to Ilipear momentum
conservation. To find the conserved quantity one has uniy to find a variation
of the action which leaves the action integral invariant, Lut does not vanish at
the limits of integration. The essential feature o! the exchange invar:ant cr
isorrhopic fluid system resides in the invariance of its action integral under
symmetry vperations called permutations. A permutation is a virtuai
displacement which leaves the solution at a fixed space-time point relevantly
unaffected. The operation in eilect exchanges the identily of neighboring fluid
elements. Neighboring fluid point world lines are not uniquely identified in
the isorrhopic fluid.

Chapter | is devoled to a discussion of some unique fealures of isorrhopic
gyroelastic systems. Cyroelastic is the term | will use to denote the
particular scaling regime to which attention is restiricted in the presentl work.
CGyroelastic scaling corresponds to what is often referred to in the literature
as finite-gvro-radius scaling. However, here the key physical quantity is ia
fact not the size of the orbit of a charged particle in a magnetic field, but
rather the angular momentum associated with its motion. It is this angular
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momentum (density) which gives rise to gyroscopic and quasielastic forces in
addition to the usual pressure related forces ol standard i#D.

A rudimentary understanding of the nature of the gyroscopic-quasielastic
forces can be gleaned from a graphic though crude analogy. A spinring top vill
tend to wobble if disturbed from its equilibrium state. The wobble will tend to
occur at a higher frequency the larger (he anguiar momentum of the top {‘he
faster it is spinning.) In analogy wilh a spring and maxs, lhe angular momen.um
can be cast in the role of an elasticity in determining the (wobble) frequency.
In the gyroelastic fluid, angular momentum is considered & continuum property.
It is this angular momentum (densily) which gives ri:se to the property ol
quasielasticity. In the case of the top, the influence of the presence of
angular momentum is to stabilize the motion of (he syrtem. The top i3 prevented
from falling over 1f its angular momentun is large enough. A similar effect
exists in ‘he gyroelastic fluird system.

Considerable literature exists on the subject of finite gyroradius effecls
in near theta-pinch or long-thin geomctiry 3-%:15.10-17.21-22,28-34.36-30 pohopyg
and Taylorza were among the earliest researchers to recognize \he stabilizing
influence connected with the angular momentum of particle gyration in magnet:zed
plasma. Rosenbluth and Simon®' in a classic work developed the thcory of low-g
gyroscopic fluids with plasma flow. In the early 1970°s there arose
concurrently iwo approaches to the more general probliem dealing with nonuniform

magnetic field (long-thin geometry) and high-g: the Vlasov [fluid model

developed by Freidberga'5 and the theory of gyroscoptc—quasielastic fluids
developed by  Newcomb®!~22, Whereas the path used in each approach s
substantively similar, the scenery along the way varies greatly. Lertain

results accessible to the Vlasov fluid model?7+3% derive also from the theory of
gyroelastic systems. (An example is presented in Appendix 1!.) This study 1s
an examination of the view at and beyond the periphery of the earlicr work by
Newcomb®? as seen through the wrism of that approach.

The starting point for the construction of the mode! is the Vlasav equation
in the adopted scaling. The Lagrangian for the general scale model is
developed, then systematically specialized to the 4isorrropic case. ‘The
specialization is in essence an initialization. A system once isorrhopic will
evolve so as to remain isorrhopic. The class of igorrhopic MHD systems contains
equilibria as a subclass. A closed sel of equations governing the behavior of
isorrhopic gyroelastic syslems is presented. Transformation properlies of these
equations under changes of representation (transformations which continuously
permute the identity of fluid elements) are reviewed. The thesry is developed
in fully nonlinear form.

In chapter [l the isorrhopic configuration is examined in the geometrical
optics limit. Ray constants and the local dispersion reistion are revealed by a
variational technique. A canonical theory of linear waves in the isorrhiopic
gyroelastic system is developed.

~3-



In chapter Il the nonlinear system is linearized. The iinearized Euler
equation together with fixed boundary conditions Lhen defines the eigensolution
space fur a chosen gyroelastic screwpinch equilibrium. The spectrum of
eigenvalues is generally composed of discrete spectra and continua which tou-h
at points of sccumulation. The Euler equation may become singular over ranges
of the parameters which map the solution space. These ranges then define the
continua. Strictly speaking, the sgingular solutions are not fuactions, but
rather generalized funclions or distributions.

Distributions are linear functionals. Although not members of the Hilbert
space of possible motions of the equilibrium they play an essential role in the
construction of an invertible integral transform 1o evolve arbitrary
perturbations that are pcssibie motions.

Once the iniegral thcorem is expressed, some of the deterls of the spectira
are elaborated. At this point it is shomm thal (ixed boundary equilibria which
are normally Suydam unstable in the non-gyroelastic system scem (o be
stabilizable by gyroelastic effects. In particular. il s seen that no
Kruskal-Shafranov instability behavior occurs when the eigenmode 1s comective
([he'i~ity of perturbation equal to helicity of field lines } near the surface
of 1. plasma.

In chapter I\ the boundary condition is generalized to allow frec toundary
motions of the gyroelastic screwpinch. The resultant spectra are siudted and
compared with those «f the fied boundary model. In the limt that the vacuum
region becomes thin an interesting discrepancy between ‘he (ixed and [rce
boundery models ariser .

In chapter V the boundary condition 1s used to develop an energy principle
with which to streamline the study of the stability and stabilizability
( through gyroelasticity effects ) of a more general screwpinch con'iguration,
Vhereas in previous chapters the equilibria were columnar, now the more general
tubular case is ires‘ed. Stability ecriteria are devised and growln rates arc
calculated for some typical systems.

The present work deals with the isorrhopic case. There exists ol course
also the anisorrhopic case. Though the subject is avoided thraughout most of
what follows it is tempting to mention briefly the relationship between the
cases. As indicated, isorrhopy is an initializalion. One chooses a set of
initial conditions which coblain idextically in time. The question of the
stability of this configuration to fluid perturbations is addressed in this
work. However, the stability of the configuration to perturbations which
violate the isorrhopy of the system are not considered. Such perturbations come
under the general heading of drift modes, which are beyond the scope of this
analysis. Attention is restricted to the inccmpressible helical motions of the
isorrhopic gyroelastic system.



NOTATIO.Y

We adopt u notalion which 15 a slight modification of that used by
NewcombZ2. Vectors in the usual three  vmensionas space w11l be trc.'ed as an
ordered pair of objeclts

A" = Jadl =ae +ae +Ae, 0.1)
the first having two componenits, Lhe xecond having one. Thes s simply o
“hard=-wired” distinction between perpendicviar and par=zilel) wilh respect o Lhe
direction ot the magnetic [ield, to lowes! order. say o,. The trenspos.tion of
some common vector identities follows: 1-* A'3'z(g,.4) and #°7=(3.8) e lwo
three-vectors and let

3 - = 1
[ 23 .. Gy.' G’.v o (0.2)
then

leAi-18.8] = 8- + A8

(0.3.1)
loa(x|e.B] = |8°5-0°4 . 80" (0:32)

v-'.la 4} =V-a + a, (0.3.3)
703 x {a.4) = |Va-0,8% .V 4| (0.5.4)



(AB-C-C-AB)'3) = |(8-0")e" + C(BRAD) , —(Banb)-ef 10.3.5)

V-ab = tV-a + 8-Vb
1(0.3.6)

For three-veciors A'7! and #'?) we write the tensor product AlIgE3) Gy

j@.A{|0.B{ = }) ab.aB ; AD.AB ||

i0.4)
The unit two~tensor can be written as
I=00 + o0 (0.5)
and the follow:ng identities with regard to i1t apply:
af=1l-a=s
(0.6)
s+ as =98l
{C.7)
The antisymmetric< pait of a two—tensor ap 1s
alab) = a,b" - ava = &b (0.8)
from which derives the useful relation
ab-c - ¢c-ab=c'(ad*}
(0.9)
If two two-vector fields dilffer by the gradient of a scalar field x
a—-b=W%
(0.10)
then & and b will be said to be congrueat
a~b
(0.11)
Likewise, il two two—tensor fields satisfly
V-(ad-cd) = Vx
{0.12)

then they are said also to be congruent to one another, and thei: dilference
congruent to zero



o ~ od

(0.13)
There derives fr m these last consideralisns Lhal
“1~0 10.14.1)
*a® ~ 0

sataa 10.14.2)

V'Va ~ 0
10.13.3)

VVx=0
(0.14.4)

The operator denoting total or conveclive lime differentiatiopn along a flurd
two—trajectory is written O, so that

Dx = v(x.2;t)

{0.15)
or, for an arbitrary function F{x,t)
DF = 8. F + vV
{0.1€)
The operators D and V 4o not comr-.te and il can be easily shown thast
[V.0] =D - IV = Vy-¥ (0.17.1)
and also that
{v- D] =90 - DV = V¥
(0.17.2)
An addition, the following symbals are used throughout the text:
8 = |Br |, B| = magnetic field
! ! 4 (0.18.1)
E3} = |E | 8] = electric field
t ! 4 {0.18.2)
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) = |}, Ji = electric current demsity

(0.18.3)

3 = Iy = 1
vl L 20 i Sluid velocity (0.18.4)
n = electric charge density 10.18.5)



CHAPTER 1

Doscription of the modod

The Cyroclasiic Flund

The go1ding center plasma forms the basis fe. our model of o gyreiastae
flurd. Since | intend to examine collisioniess plasma behsvior | have tahen the
\laxcv equation to apply and neglecied all transpe.t processex and particle
correlations. The gyroclastic ordering s entircly characterized 1 the
following ¢xpression of the Vlasov equation:

t (B -9 pg,.-. 8o .
+ &' (( - vV + el o Br V' + ST av + E v';)/

2 q _
+£° (a3, + n a,+ e&Bq)f =0
(1.1}
where
= f(ix.z}{:}p.g|:t
S =slxaziilpglit) 1.2)
1s the one particle distribution function,
I = p,
ip.ql (1.3)
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1s the particle

parameter. The
qrantities as

three-momentum and ¢ 15 a formal expansion

(smalincss)

Viasov equation as written 'n (1.1} dictates the ordering of

T~ o~ P - Agyrorndxus
L perpendicular scale length

-t

8 ~ 1%~ _L = gyroperiod
' . plasma flow time scale

3 ~1i~ Pg - . __gyrovadius
: 2 parallel scale length

| €E~¢ , &~ e? | =electric faeld

Y Hr~e ,B~1 | =magnetrc freld

The sct of equations governing the behavior of the gyroelastic
Maxwell s equations which in the adopted notation are written ax

completed with

8, (Br) +V'E- 3 F =0

3B+VE =0

WE+ e y,0.8=1¢%

Vg - €% 8, (Br") = p ) + £%u,x,0,8

-11--

(L3

{1.1.5)

fluid s

{1.5.3)

(1.5.4)



. *) = 2
VABT®) = pyd + £° p,x,8,6 (15.5)

v-(Br) +3,8=0 (1.5.6)

Faclors of € are included in (1.5.1)-(1.5.6) to indicale Lhe relalive ordering

of terms.

Essentially all the -elevant physics necessary to derive an equalion of
motion for the gyroelastic system 1s contained 1n cquations (1.1) and
(1.5.1)=(1.5.8). There remains to derive from this system, in standard form.
the law of conservation of momentum

(3) (3. ¢l3) =
3,87 +v T 0 (1.6.1)

whiere 8$'9) is the three-momentium-density

=15 (1.6.2)

and T'%) is the three-siress tensor

) = §) 67w {) 11.6.3)

It will prove expedierl Lo separate [ into two constituenls respectively even
and odd in p:

2 el

(f(p) + fi-P)) 0
and

2ef"(p)

(fip) - f(-P)) (1.8)

The presence of the factor € in (1.8) will be discussed in more detail below.
Now write (1.1), the Vlasov equation, in the form

Wp) flp) =0 (1.9)

where U{p) is the Vlasov operalor as indicated. Since f(p) and f(-p) both solve
the Vlasov equatlion, two equivalent versions of (1.9) can be displayed as

Hzp) fl=p) =0 (1.10)

Substijtution of (1.7) and (1.8) in (1.10) gives



¢ gp-v;f(z’) =&2(9,+ r% 3+ e&2,)f(+p)
L
m

16 (g-v + e(- :l.. B -V,+ B.orea + B9,))1(2p)

(ray

For the following calculation factors of ¢ will be deleted for claritly. The sum
and dilference of the two equations represented by {1.11) give the wuseful
relationships

g Pur = (294 1809 - Boprea )
(ﬁ‘+m3z)f’ +me —e(—!V’+mBr V. mB‘r GQU'
B _ o
+e( = pV -8 )f
{1.12)
Retaining the relativistic form of the particle mass

2 =m? 4+ 2z, 2
m® =mf + (q/c)? + (p/c) s

define l;”' to be the total material three-momentum density

8 = 10,.51= Y [ doas tpal 1,
k]

(r.14)

where » denoles the species of particie. Now, Lo develop an expression of the
conservation of momentum for the gyroelastic system, begin with the definition:

FU) = | = vf a4+ 183 v.9 . .9
1.5} A dp dg (3,4} . 1-19.8,{) (Ip.ql S (P.q:1))
{1.15)
It willt turn out that the parallel comporent of th.s equaltion is reducible
to a more or less obvious relation whereas the transverse component embodies the

essential dynamical [features unique to the gyroelastic system. In the interest
of completeness the parallel component is kept in the fo.lowing analysis.

Separating f, into odd and even paris as prescribed above, equat on {1.15)

becomes

-13-



r= z_fdpdqp((a‘-o-’% 2,17 + 2

>

F= S dp dg + 9 r+ By
5 f (e, maz) *m N
(1.16)

The sum and difference formulee {1.11) can rnow be used 1o reexpress the
righl-hand member of (1.16), ieaviig the equation of iwt.on 1n the form

N[ g P,
) | @ ag ptta,+ L 0,)r; + Bovp)

- \" 8 o 9a. P,
= LfdeQP(( ﬂ-‘p-v'—&q)j: + (—I-V'-r;Br v, ;I-B-r aq)f:)

N [ a0 aq a2 a5+ By
3

B 2 d - - —-

= S_: f dp dg q(( = p-9;- 80,)17 + (-&V,+ L v - Bopreg )y
3

(1.17)

Gor a function G which vanishes at the limits of integration. »n integration

by parts gives the result
fd.r dy eb-VNG = -f dr dy (aV-b + b-Va)C (1.18)

( also valid with V replaced by V°.) Using this result and noting that the
refativistic mass m depends on the particle momentum through ([.13) a short
calculation recasts the right-hand member of (1.17) as
t =87 +B1°- Br*J
F = + Br*»
on ! (1.19.1)

where 17 is the electric charge density, J is the parallel electric current
density and J is the electric two-current density. These sources of the
electromagnetic fields are related to the distribution function as follows:

n=ZE,fdndqf:

{1.19.2)

_14_



(1.19.3)

"\
e fawals
(1.19.4)

Maxwell s equations are now used to free the equation of motion of explicit
reference to sources, in favor of fields. Evaluate B7 using (1.5.3) to find

By = x,(-V-(EE )+ v;f +EV-E+ 8.5 )
{1.20)

where (0.1.6) and (0.8) have been used. Ampere's law (1.5.4) 1s applied next to

express H)® as

B =/71('Vg—2 +83,(Br) ) - x,(8,(EB) + E'V-£")
(/]

{1.21)
Adding these express on: gives
By + B)'= X,V (EE)+ v;f -o,(E8) + B8 )
7
2+ paom) )
Ho (1.22)
Similarly, Br"-} and & are evaluated resulting in
En + Br°- ) = x (B GE+¢5VE+6—)+—(BTVB—6(B;)
(1.23)

Finally (1.5.5) is used to represent the parallel current density with the

result

-BrtJ = ——(V(PZTT)V ) - Bra 8 ) + x pra,s
(1.24)

wher2 (0.4.6),(0.10) and (1.5.6) have been applied.

Reintroducing the scaling factor ¢ into these latter expressions the
ecuation of motion can be writien in terms of field quantities as

—15-



r= Zfdp dg p(e?(0,+ L 0,117 + Boopty

>

- 7 B .. X

= (_V'&Tol ) + ‘2‘_‘7"2;—40(7 =T T) + NEE- EE))

+8,(B%) - 8,(x,EB)) +0(e*)
Ho

F= N [apaq quia,s 2a,ys7 + Bvpy)

TJ m m

= (vt + 32—152) + 0(2)

Ho Ho (1.25)
In these expressions the relative ordering of the terms involving (ield
quantities 1s evidenl on the basis of (1.4.1)-(1.4.5). However. Lhe reason for
the ¢+ expansion of the distribution function consisient with the adopled
ordering scheme has not yel been made apparent. Here a plausibility argument
will suffice, to be justified a posteriori.

It +s 1mplicit in the ordering that guiding cenlers drift slowly with
respecl to the velocily of gyration of a particle. The electric draift

two—velocity given by

.1.26)
1s clearly O{e) »on the basis of (1.4.4) and (1.4.5). The part of [
antisymmetric in p must then have its lowest order nonvanishing contribution at
O(e)}. Take the formal representation of the distribution function as an
asymplotic series of the form

+ 2 £+

= + £ 4 eea

fi=1 72 (1.27.1)
and
- 8 -

£ =¢ + & + eee
7 55 I3 (1.27.2)
The fact that the successive terms in these series are smaller by a factor

€? resulls from the choice of ordering in the Vlasov equation. This can be seen
more clearly by the following: Adjust (1.12) as

B et = g2 g
K ;;p'VPP =¢ (a¢+ma:+ eé‘éq)f*

2 (B — 93 gy 4 Bpye .
+ & (mV+e( mB‘r V-+mB'r3q+!V’))j_ ‘a8

-16—



and

B opm — g2 g
e;p-V’f =z (a,+;a,+ egaq)r

B, -2 5. P oo 3 +
+(mV+e( mB-r V'+mBraq+!V.))f

‘1.28.2)
The operator p-T; can be written also as
V= p(ed +e3,) =pe-(eld, - e5)=0
pi,=pled ‘spo) = pe, opp, ®,0,) =29,
{1.29)
where ., and @, are unit vectors in the two-momentum space. Using this

abbreviation and substituting the representaticns of f given by (1.27.1) and

(1.27.2) into the Viasov equation in the form (1.28.1) gives to lowest order the
result that

afs=0

ofo {1.30)

The lowes! order contribution to f is evidently gyrophase independent. Define
this gyrophase independent component of f as

+ = - .
Sy = glx.z50.9:5¢t) (r.a1)

where o = p?/2.

The ordering of lerms in the equation of motion {1.25) is now complete. The
moments appearing explicitly there are ordered as

N 1 ! .
= \T’ f dp dq(-V-ppg, + £2(-V-ppf;, + (3,+ gl ales7 0}

N ! g q
F= ) [ dg((;V-apf;, + (3,+ 18,99} + e20,+ L 0,)gr3 )
v (1.32)
The standard form (1.6.1) of the equalion of motion is apparent in (1.25) and
(1.32). The following identifications can thus be made: Including the faclors
of ¢ to specil{y the relative ordering, the componenis of the equalion of molion

are

I+t +9T=0
t * (1.33.1)
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3S+Vu+dU=0

(1.33.2)
where
s= Zfdpdq (Bf7, + x,EB) + 0(e?)
> (1.34.1)
s= ) f dp dg (qg, + £% qf},) + &% x EBr" + 0e’) = S, + 0(e%)
-
i (1.34.2)
1
t= Y [dpaq fpmtg,r 2 13,)
»
2 B oo X <
[ (—(TT—TT)+2-"(!‘!‘-EE))+O(c )
R (1.34.3)
1 1
u=T= Zfdpdq,;(mf;,) - o)
(1.34.4)
7 B (Br)? £
U= Zf@dqi(ngj e? 9°r3,) T o, + &2 (317 +X—§—) +0(c*)
1 B
= };fdpdq;(ng,) - &+ 0le?)
(1.34.5)

The next task toward developing a fluid Lagrangian for the gyroelastic system is
to evaluate the gyrophase dependent components of f in (1.27.1). and (1.27.2).
This is done order by order, expressing successive corrections to f in terms of
(gyrophase dependent) operators on g{g,q:x,2:t). First, to find Jy. use (1.29)
to express (1.28.2) at lowest order:

By = pW°
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Here the gyrophase—independent function M is defined as

, L]
»= (- 2-8\7 - mv,3,+ f(qa,—dq))g = 4g
(1.38}
Since g and M are Dboth independen. of &, noting that 3, = -p* and
a’p‘ =-p** =p, find

PN=-p°-N= a,p.. = a'(p..) (1.37)

This equation can be integrated simply to give s,

= p-b
fr=p 11.38)

The constant of integration i1s zero since [, must be odd in §-.

A somewhat more tedious though straightforward calculation yields [; at next
lowest order. The analogue to {1.35) 1s

! 7
P-V"f; == E(p‘p +mp):Lh= - E(p'p +pp):llyg
(1.39)

Noting again the coment proceeding (1.37) there results irom a revision of
{1.49) that the 8-derivative of f; is given by

8,55 = ,(L(p p - p"P"):LLg)
. (1.40)

Again, an integration can be perflormed on sight resuliting in

1 Ly
fi=pp-pP )k ik
(1.41)
where k = LLg. The constant of integralion is ¢ = £fa.g) a function independent
of 6, not necessarily zero.

The equation of molion is now expressed as a relation among eleclromagnetic
field quantities and various moments of the lowest order gyrophase-independent
distribution function. Further simplification is afforded by performing the
angular integrations indicated in (1.34.1)-(1.34.5).

Define the operation of gyrophase—averaging as follows:



2=

( F),, = gyrophase average ofF‘:z-:deﬂF‘
e (1.42)

then it 1s obvisus that

|
fd’qu_ZnJ do dg (F),, {1.43)

A lew ident:ties useful 1n carrying out the gyrophase inlegrz'ion are

P, = (#°),, =0

(1.34.1)

PP, =pPP), =0t (L44.2)

(pp9),, = (P®),,9 = ol (1.44.3)
((pp-pP)K), =(pPp-pP),, :8=0 (14 4)

and finally

— n*m* k= e |
(po(pp - pp')), k=27~ 1 Trk (1.44.5)

Here g, M = Lg and &k = LLg are independent of 8. Furthermore, & 13 a symmetric
two—-lensor since

a(k) = alllg) = I-L°¢g =0

(1.45)
With these identities, a short calcuiation yields
pr,),, = (-0, = (pp),  -tg = olg (1.46.1)
and
! 1
#pf1),, = (PP L(p P -P"P"):E),, + (PRh),, = Z0°(LL = Zot-t)g + fok
(1.46.2)

which, together with (1.34.1)-({1.34.5) &and (1.33.1)~(1.33.2) comprise the
ey=ation of motion to lowest order.

—-20-



Define the operation of performing the species sum and momentum integrals as

‘= Y-‘
e &‘,T'fdodqi’g’

(1.47)
where ¥ is an operalor. Adapting (1.46.1)-(1.46.2) and 1ndicating th-
gyrophease—averaged moments, 83} and _T“” in the format (1.34.1)-(1.34.5) can
be represented as

e=( oL + x,E'H )+ 0(c*
( Xo ) + 0(e%) (1.48.1)

No= C+0e2) = 5+ 0e?
9 (e5) =5, + 01e7) 11.48.2)

2
t = ( g + )—Ii 1X]
m 2ty
2 ag? ! ., B . X 4
+ 3 S (M- - L) + K+ S (TT -1 T) + OEE- EE) +0(:7)
2m . 4 ET 2 .
(1.48.3)
T=u=( ':Tq" - o2y v 0:2)
Ho (1.48.1)
2
U= -:I— ) —2—5—2 + 0(£?)
(] (1.48.5)

where X, appears due lo the occurence of a constant of the gyrophase
integration. Finally, the equation of motion for the gyroelastic fluid can by
expressed in the concise form

V(¢ 5. ) +2—? )i =0+ 0(e?)
0 (1.49.1)

at lowest order,

2
8,0 g )+9( %’L)—#—’B’-r)+a=(( 7;1'— )—g ) = v+ 0(e?)
0 4 (1.49.2)



at order ¢’ (relative to lowest order) and

3,/ oL - + x,E'B)
+ V-( U—z(l.l.— A n-e) + E-z('r"r’— TT) + “’(E‘E‘— EEB) + X1
me 2! 2, 2 o
o T - Ig2 y = 0 + 0(:%)
Ko (1.49.3)

at order :? (relative to lowest order.)

The Isorrhopic Statle

To Lhis point in the analysis, no mention has been made of symmelry. The
equation of motion outlined above 1s .n fact applicable without quaiification.
However, a crucial jucture n the analysis has been reached. A unique
opportunity to simplify matters has presented itself.

The general gyroelastic system may possess a certain symmetry called
tsorrhopy. In the gyruelastic ordering a system 1s i1sorrhopic for all time; the
system once isorrhopic remains 1sorrhopic naturally. Distortions of the network
of contours due to motions of the isorrhopic gyroelastic fluid do not destroy

the symmetry. This allows the decoupling of phenomena which :nvolve
perturbations of the distribution function along fluid contours from those which
do not: drift type modes from fluid-type modes. (The question of stabilsty

against anisorrhopic perturbations will not be addressed i1n this study}.

In the following, | will specify the conditions under which a gyroelastic
systcm is isorrhopic. Then | wili proceed to show the system indeed remains so.
Return for a moment to the inceptlion ol the present line of reasoning-the Vlasov
equation in the form (1.12). Again factors of ¢ will be deleted for clarity.

To lowest order,{1.12) portrayed in the current vernacular s

B . = q
e;lp-v,g_(a,+;laz+e£aq)g
-5 -2 gy + Bpyre . .
+(mv+e( mB-r V.+mB-raq+EV'))pLg (150

Gyrophase—average this equation according to Lhe prescription given in (1.42).
Resort to Lhe definition of the operator t (1.36) to resolve the result into the
form of the electric—drilt kinetic equation
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D, =03, Vv, + e%r-n v°B-¥9 - ,% 9.9 - e(&- v;-Br)a'g

e
+ 2 aBo -q3)
eB %1% ~ 99,09
(1.51)

where 6x =8, + 7.V s closely related to the directional derivative along a
meagnetic lield line and D‘ = a' + v‘-\' 18 the operator oi time differentiation
along an electric drift trajectory.

Next deline the quantity

p= 222 . ¢
m
#o (1.52)
and convert ats gradrient
1 [
VP = -BV3 + ';V
Ho {1.53)
by using Anpere’s law (1.5.4) to evaluate V5. The resull is then
w = - JBr
ne t1.54)

As 1t turns oul, 1t s possible to specify a condition ab-inttro that wiil
tnsure that n and 4 will vanish to lowest order identically, f nitially. 1711
procced under this presumption, to be justified presently. But first,
differentiate 2 along an electric drift trajectory and with the help of
Faraday s law (1.5.2) in the form

D, =8B+ v -V8=-VE+ %.-VB =-B8V-v,

{1.55)
deduce that
?
bpP= "B+ D,
Ho m o2
1 a o !
= - - v, + V- 2= + + vB.v/
#OBZV v, v ". Zm m-az_‘z g B-9 E?
e
N0 I
(1.58)
For convenience, define the quantity 7 by
] a a?
7P=—Bz+~2———3—2.
moc
Ho " (1.57)
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and notice that (1.56) can be abbreviatled as

DP+ PV, = (1.58)

where

eqa
7°B-V + -,-aB 31e - vi-Br)
? B (1.59)

Now the quantity ¥g plays a very important role i1n the theory of gyroelastac
systems. This is due to the remarkable fact that f ¥g., J and »n 1anish
everyuwhere ab—inilro, then they vanish 1denlically in time. It should be
emphastized herc that by vanish everphere is meant at  lowest order in the
gyroclastic scaling.

Now separate g according to the following prescription:

=gqg* + g
g(g) = g*(q) + g7(g) 11.60)
where g*(g) = g*(-g) and g~ (g) = -g"(-g) eare the even and odd parts ol g
expressed as a function of parallel momentum. Multiply (1.5.2) by ¢ q. sum over
species and Integrate over momentum varjables ¢ and ¢. When g~ vanmishes, there
then results that

'] ’ 2 *
(& - v,-Br)Z et [ao ag Ltr - g

=Y. fdodq’(Za + 2%y gy
VAR m2 4% Sl
3

(1.81)

It is clear from this relation that if g~ ., Dlg’ and OIB vanish the electric
field parallel to the field lines then also vanishes:

-, a.g*. =0 E - =
(9 NARN:N-) s | v, -87) (1.62)

With this last item in mind, it is easily shown that the initialization

consisting of the following conditions satisfies g =

=0 2
g +0(z%) (1.63.1)

=0+ 0= (1.63.2)



a8=0+0()

{1.63.3)
= ‘
ax‘q 0+ 0te?) (1.63.4)
V°B.Vg = ‘
899 = 0+ 0(:) (1.63.5)

For the moment, assume the system s enclosed by rigid and conducting
boundaries. The electric field £ 1s then perpendicular to the boundary there.
From {1.58) and the 1mitial conditions which assure ¥y =0 at ¢t =0, there
derives

DP+ A Vy, =0

(1.64)
Integrate this relotion over a crossection al constanl z of the bounded system
to {ind
o fardy Lo-farayvw, =fdev=-faxnf=o
€ dy7p_ v, = v, = B-
i R oR or (1.65)
Since ¥ > 0 thus implies that, at ¢ = 0 at least,
DP=0
. (1.66)
so Lhat
Vew, =0
Ve {1.67)
Furthermore, f{rom (1.51),(1.62),(1.63.1)~(1.63.5) and (1.67)., at t =0
Dg=0
9 (1.68)

The commutator of D and ax will be helpful in completing the proof. It is
evaluated as [follows:

[De.ax] =[8, +v,9.03 +7¥]=(D,7~-3r)"V (1.69)

but, since



8,7 = 1(9,(Br) - 0,B) = £(2,£°-0"8 + 19-(v,5))

aT= é(a,(v,a) - V(& - v,-Br}) + V(v.-Br) + BrV-v,_ + 19B-v,

8,7 = 5(B0,v, = v,9-(Br) - V(& = vi-Br) + Vv, -Br + V(BT)"-v,
+ BiV-v, - BV,

8,7 = 0,5, + TV, - v,19.(B7) - [9(Br)-v; - 97(E - v Br)

d,7=0v, - v, -V - éV‘(& - v;-Br)

(1.70)
thus
' L { ]
[p,.0]1=- 57 (& - vi-Br)-V
(1.71)
and by (1.82) and {1.869)
DT = axv' (1.72)

Now apply D, to (1.83.1)-(1.63.5) at ¢t =0. The maintenance of the
condition specified as an initialization hinges on the following argument:
First

D,g” =089 Vv, + J V*B-Vg~ - ,”;axg’ - e{& - l':-B‘r)Oqg'

g
+m—BakB(a" -qd )g* =0

(1.72.1)
since D g~ is odd in q ard by (1.62) and (1.63.1)-(1.83.5); tnen
=0
D‘n {(1.73.2)
by (1.63.1)-{1.63.5); then
! » - -
DeaxB = BXDL,B - EV (8- v,-Br):B =~ BX(BV-VG') =0
(1.73.3)
by (1.62),(1.67) and (1.72); thex
Toe -
Dag= a.D.g — EV (8- v;-Br)-VGg =0
(1.73.4)
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by (1.82),(1.68) and (1.72); and finaily

De(V'B-Vg) = (V'D'B - V‘IQ-VB)-Vg + (VD'g - Vv(Vg)-V'B
=BV Vg =

(B9r,)¥9 =0 (1.73.5)

by (0.17.2) and (1.87). This is sufficienl Lo assure that al ¢ = 0
b (& -vwiBr) =0 (1.74)

and as a finishing touch
D =0
,(#9) (1.75)
To summarize (he argumenti: Chonse at t =0 that g~ =0, a‘g' = 0 and

8 #=0. There resulls thal (& - v:-BT) = 0. Further choose Lhat at ¢t = 0,
V'B-¥g* = 0 so Lhat yg = 0 and V-v, = 0 result. Then as a consequence of these
choices, 1t hoppens thet D'vg = 0. The argument is then iterated. By i1nduction

Dy"(g". m. 8,8, 8.9, V'B-Vg) = 0

{1.786)
for n'! implies
Dy =
TYg) =0 (1.77)
Since all physical quanlilies are representable as analyt.c functions of time

the 1nitialization as specified and all its consequences are self preserving.

Conditions (1.63.1)-(1.63.4) are sutisfied trivially in the two-dimensional
gyroelastic syslem since a.. T and & all vanish identically 1n that case. As
was shown by Newcomb?? the isorrhopic condition in that limit reduces to
(1.63.2) alone. Gyroelastic isorrhopy requires that (at constant z) to lowest
order the magnetic field B and the distribution function g are constant along
the same contours (see fig. 1.)

Condilions (1.63.3) and (1.63.4) are introduced by the additional freedom
allowing smrall variations in the =z direction. These conditions state that
1sorrhopy requires B and g to de constant along magnetic field lines as well as
alc. 1sorrhopes (the intersec’ions of isorrhopic surfaces with a constant
z~: ,ane.) One concludes that in the three~dimensional isorrhopic gyroelastic
svstem (7) the magnetic fie:d lines lie within surfaces of simultaneously
constant B and g and (2' these surfaces move as a comoving network so as fo
proserve the isorrhopy of fhe configuration.

In addition to B and g, any quentily depending solely on B and/or g (such as
p,. the mass density) 1is also constant on an isorrhopic surface. It is thus
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expedient Lo represent any such quanlity as a function of a single variable, say
s, which |abels isorrhopic surfaces. This is the representation I wili choose:
B and g are freely specified definitle functions of s = s(x.z);: s represents the
comoving network of isorrhopic surfaces which evolves according to the dynamics
of ihe system. The quantity s may have physical significance also; for example
it may represent the volume contained within the (clcsed) isorrhopic surface.

Condition (1.63.5) can be expressed deliberately as

*B-Yg = *s.¥s = 0
v°B-Yg = B, g, V°s-Vs (1.78)

Let’s reveamp the equation of motion (1.49.1)-(1.49.3) now, using some more
physically suggestive symbols for the momenlts indicated by the symbols ¢ ) in
the notation introduced with (1.47). Define the quantities

K(s.2) = (%)

(1.79.1)
B(s.z)\M(s,2) = <%26.,1"
(1.79.2)
2
pulsia) = (L)
(1.79.3)
a
p.(s.z) = (; )
(1.79.4)
pa(s.2) = (8 (om)) (1.79.5)

and notice that
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T gegerr — Joeilne
RV = 0 (G0K)

! ceger = oo oery — Toeloe

RV = V(LK) - VK

T gvek = v (9osk )+ Lo
RV = V(TK, ) + LB
T oK = f Ty o L oemee
UK = V(S + LK
;'ZV'V'K = V'V + Z?V°BV'K

(1.80)

With the help of the above definitions and (1.80), the equation of motion
can be cast in the following form:

B®
Vp. + ;) =0
*o (1.81.1)
at lowest order and
ato“ + axp" =0 (1.81.2)
at order ¢ (relative to lowest order) reveal no new information. The system
has been constructed so that these relations are satisfied {identically.)
pD v, — anT - XV's-Vr, — Y V's-W's + W =0 (1.81.3)

at next order (&? relative to lowest order) contains the essential dynamics of
the isorrhopic gyroelastic system. In this last expression we have introduced
Lhe following symbols:

— 2
P =Pt xB (1.82.1)
1
Q= ﬁ'Bé Al P
0 (1.82.2)
X, =~ (MB?)
€ = __2 5
8 (1.82.3)
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(1.82.4)

1
=% - 5(.7,vzs +.?"(VS)Z—Y'(VS)2

- Qrt + pr? — X Tsev, + VM)
(1.82.5)

The quantities X, and ¥_are called the gyroscopic and quasielastic force
coefficients. The gyroscopic force is [first order im the [luid velocity,
Fg = X V*s-Vvr and has been called a reactive viscous force though unlike a
viscous drag it is non-dissipative in nature. The net rate of work done by the

action of the gyroscopic force in a region bounded by an isorrhope 1s given by

Zfd.‘r dy XV's-Veev = fd:t dy V-XV's + ﬁdx'.V‘s xr?

= |dr XV.9°s + XVs-¥°s) = 0
f % (XV-¥ ) (1.83)
The gyroscopic force does no net work; it arises as fluid motion distorts
isorrhopes as a kind of isorrhope rigidity. The gyroscopic force 1s a
consequence of the differential motion of segments of isorrhopes.

The quasielastic force on the other hand depends on the instantaneous stale
of distortion of the comoving network of isorrhopic surfaces, Fq =Y V's-YV°s,
The network exhibits a kind of elasticity.

A closed system of equations describing the behavior of isorrhopic
gyroelastic fluids can now be assembled. By definition, the isorrhopic surfaces
move with the fluid velocity; this is stated

Ds=0
€ (1.84)
The flow field is incompressible; (the isorrhopic condition enforces
incompressibility)
Vv, =0
€ {1.85)

The parallel electric field vanishes identically due also to the isorrhopic
condition, so (1.72) holds; differentiation along an electric drift trajectory
commutes with differentiation along a field line

x'e (1.88)

Self-consistency of the ordering scheme requires that the equation of motion at
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lowest order and order &' (relative to lowest order), (1.81.1) and {1.81.2}, be
salisfied. The equation of motion at the nexl order (¢? relalive to lowest
order} completes the system:
pDv, — QBxT - X;V's-Vve - Y;V‘s-VV's +W% =0 (1.87)

These are six nonlinear partial differential equations in six unknowns:
T ¥,.S and x. The system is closed. The solution however is representation
dependent, the fluid velocity in the isorrhopic gyroelastic system may be
redefined. The velocity of a fluid element is indistinct in so far as all fiud
elements on a given isorrhope are equivalent. Certain velocity lields which
carry fluid points along isorrhopes may be superimposed on the comoving network
without changing the character or form of the dynamics of the system. The
resulting velocity sum is called the representative velocity: Lhe transformation
is a change of represeniation.

This representation dependence 1is familiar in the study of electromagnetic
phenomena. The electric and magnetic fields are components of an entity which
transform covariantly under lorentz transformaticns. Electric and magnetic
forces are representation dependent. Gyroscopic and quasielastic forces are
excmplars of magnetic—like and electric—like forces in this respect.

Changes of represcntation leave the dynamical equations of the system
invariant in form. The force coefficients transform as a single covariant
enlily under changes of representation as do the electric and magnetic ficlds
under Lorentz transformations. The analogy, though not formal, is not entirely
hypothetical. The change of representation is a form of [ocal lorentz
transformation (applied in the Langent bundle of an isorrhopic manifold.) The
generator of the group of such transformations 1s an object called a permutator.

The permulator is a symmelry operator; it leaves 1nvariant the action
inlegral for the isorrhopic system. This 1is its quintessential feature. The
next chapter will examine the Lagrangian of the isorrhopic gyroelastic system
and furlher delail some properties of the group of permutators.
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CHAPTER 2

The Action Principle

The Generalized Lagrangian

On the basis of the previous discussion of representation dependence, all
subscipts _ referring to the particular representation in which the fluid
velocitly is the electric drift velocity are droppped. The generalized
Lagrangian appropriate for the isorrhopic gyroelastic system is then given by

£=~ (p¥’ — Xp-V°s — YV°s:V°s — @r+7)

7
2
(2.1)
There are several illuminating exercizes which can be carried out with the
expression for the Lagrangian in hand. Foremost among these 15 to demonstrate
(by a variational method) that the Euler-Lagrange equation which arises
naturally as a consequence of the minimization of the associated action integral
is the one previously derived by other means, neamely (1.81.3). However, before
a segue jnto the realm of the inscrutable a few words are in order on the
variational notation I will use.

There are two variational operators which will be convenient in various
contexts: & and A. The first of these operators will be referred to as the
Eulerian variation; the second will be referred to as the Lagrangian variation.
The action of either operator is to denote the variation or small change in a
quantity (that on which they act) caused by an infinitesmal virtual displacement
of the sysiem, ¢(x,2,t). The Eulerian variation 8 is a fixed point variation:

-31b-



it denotes the small change induccd by § at a fixed space-time point. The
Lagrangian variation A is the small change induced by ¢ as observed (rom the
vantage of the displaced fluid point. The two operators are related thrcugh

=4 + §-V
¢ (2.2)

it will prove helpful to become familiar wilh a few common identities
regarding the usage of these operators. For example:

Ax=¢

{2.3.1)
av = Dy

¢ (2.3.2)
As =0

(2.3.3)

The virtual displacement does not change the :iabeling of i1sorrhopes. It s

required to be divergenceless:

Vé¢=0

¢ (2.3.4)

There is a certain analogy between the algebra of virtuel displacements
operators and time differentiation operators:
§--8, and a--D. With the further replacement ¢{~—-v the commtation
relations for the two sels of operators art identical. For example

[0.9] =4V -VAa=-W¢-V

(.4.1)
and
AV ] =4V - VA =~VEV
{ ] ¢ (2.4.2)
correspond to (0.17.1) and (0.17.2). It should come as no surprise then, in
view of (1.72), that
AT = 0
X‘ (2.5)
Applying (2.2) to these relations we can find easily that
éx=0
(2.8.1)
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by =Dt — ¢-Vv (2.6.2)
8s == ¢9s (2.6.3)

and
or = 8,& - £-9r (2.6.4)

Now apply the variationsl method to the action integral » straightaway. Write
the action integral

3=f¢rdydzd:.~e

(2.7)
using the generalized lagrangian (2.1). The Euler-Lagrange equation results
frem the requirement that the variation A9 vanish:

A = f dr dy d> dt A X
(2.8)
Calculate the terms in A3 using the above tdenlilies as follows:

17

A z p¥: = pw-Av = pv-D§
17 1 1

A 3 XeTs = 3 (Aw-V*s + v-AV°s) = 3 X(DE-V*s + V°s-Vt-v)
17

A 3 Y(V°s:V*s) = YW°s-AV's = YV*s.V¢-V's
17

A 2 Qr-T = QreAT = Q-r.axf

(2.9)
The varied action integral can be expressed then as

A% = f dr dy dz dt (pwD¢ — ; X(DE-V*s + V's-Vg-v) — Y(V°s-VE-V°s) — Q-r-axf)
(2.10)

An integration by parts may be carried out with the help of the identity

fd.r dy e-Ve'd =_¢d.x'-¢b-c - f dr dy ¢-{V-ab)
(2.11)

The result can be arranged in the form



AF = - f dr dy dz dt (pDv - XV*s-Vy ~ WV*s-WW"s - Q3,7)-¢
+fd.-r oy dz £,¢], +f¢z dy dt £,-¢],
+ f dt dz ﬁ d:'-(V'si;'s + 7L V¢
(2.12)

where the subscriping of £ indicates (partial) differentiation with respect to
the subscript two-vector. The boundary terms ran be made to vanish by imposing
side conditions limiting the class of admissible displacements. Choosing the
boundary to coincide with ar isorrhope and to be fixed these condilions are
expressed as

¢-dx® =0
£ = ¢(t,)

€z,) = tz,) (2.13)

The minimization condition reduces to the vanishing of

AB =~ f dr dy dz dt (pDv — XV*s-Vy - IW*s-V¥*s - Q3 7)+¢
{2.14)

for ¢ sati={ying thc si1de conditions (2.13}, but otherwise arbitrary.

Now we arc prepared to check the Euler-Lagrange equation with the previously
derived equation of motion: substituting the equation of motion {1.81.3) into
(2.14) the variation of the action integral becomes

Aj:fd;dydzdtf-Vx:—fdeydzdtxV-£+fdzdt_‘P'dx'-x£=0
{(2.15)

The Lagrangian (2.1) reproduces the equation of motion. The scalar x containing
the unknown constant of the gyrophase integration is sean to play the role of a
Lagrange multiplier associated with the incompressibility constraint.

There exist certain ¢ which do not satisfy the side conditions (7.13), but

which can be employed 1o unveil constants of the fJmid motion or induce
conservation laws of one sort or another. These ¢ are symmetry operators.
Consider for example an infinitesmal time translation § = —vT of the system

where 7 is a time infinitesmal. The action of a virtual displacement of this
sort on a quantity F can be written

F(t-t) = F(t) — 76, F(t) =F + &F (2.16)

The correspondence 6 <> —1d, is recognized (the time differential operator
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serves as a generator or propagator). The Eulerian variation of the action
integral is then

di=fd.tdydzdldt‘=fd.rdydzdl (—*rd,f):—'rfd.rch_,dz.t'l,

12.17)
But, since 63 = Ad
63=fd.rdyd.zdl&’=fdrdydzdl(.’\t’-£-¢l‘)
=A3+fd.rdydzdlﬂ-£-fdzdl}"dl‘-.i§=ﬂ
(2.18)
the expression (2.17) can be «quated to (2.12). Substituting the symmetiry
operator § = —vr 1n the resuiting equation then representing the differences os
differentials reveals the law of conservation of energy i the isorrhopic
gyvroelastic sylem:
fd.r dy dz (.i’—.f,-v)l, —fd.rdydt (-"’,"‘”, =0
! )2 2
a, d.rdy(-é(pvz+)’(Vs) +Qr?)) +8, [drdyQre=0
OH+ 0T,y =0 12.19)
The time translation operation §¢ = -wr 1s representation dependent; the
conservation law it induces reflects this [act. Return to thi1s 1n a moment;

first turn to the issue of permutation symmetry.

As previously discussed, the permutator 1s the symmetry operator which is
associated with exchange invariance, isrrhopy. Though the exacl form of the
permutator is yet to be determined, we do know already that owing to i1ls being a
symmetry operator, the permutator must leave the action integral invar,ant.

It is essential that the permuted systems be relevantly indistinguishable.
Any distinction concerning the identity of fluid elements must be irrelevant
with regard to the dynamical evolution of the system. The Eulertan variation 4
induced by a permutator ¢ (applied to any quantily relevant to the action) must
therefore vanish.

Owing also to ils being a symmetry operation, ¢ must induce a varsation of
the action integral which vanishes, so in addition to
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bs = - {Vs = 0
Vs = V85 = 0
dr=a0-§Vr=0
oo = D¢ -~ & Vy

12.20}
and &F = 0, siso 83 = A3 = 0,
A short calculation empioving the commtatlion relations
[p9]=~-¥Vev
t2.20.1)
and
[2.v])=~vr¥
x t2.21.2)
alfirms that the <oyrect form for the permulalor iy
=25} Ve
€= ¥ 122

where wis) s an arbitrary function of 5. The permutator i3 a ves tor fieid
whose sntegral  curves are  1sorrhopes. The permutator 18 e anfinitesmel
generator of  the gy oup of permutalions: it permutes the sdentity of adjaent
flund eltements.  The group 10 &8 contihuous group of nfimite dimension. it
an entire function, namely wi{s). 15 necessary 1o specify the gencrator, the
group of permutations i1s noi a Lie group.

Now that an expression of the form o! the permutator s known, the behassor
of the system under changes ol representaliun can be examined o detarl. The
transformat ion

¥ ¥ =v-C=r¥=-ws)Vs 2.2

evokes a change of representation. The calculations leading to the folfowiny
results are straightforward and not dissimilar to those first presented by
Newcomb? "2% with regard to the two—dimensional system.

The generating function w{s) induces the transformation

v - ¥ = v~
X=X =X~ 2m

et - a?
Y X - pu 12.24)

Two important invariants of the above (ransformation are



=x2+.‘)—_‘.= ___x:2+4}»
e pY - @ =@ p (2.25.1)
the gyroelasticity {(gyroelastic modulus) which like any elasticily 1s a
nonnegative quantily, and
o =y - 21‘ Vs - w00 = gt0) o o Xge,
P (2.25.2)

the canonical velocity.

Certain representations are drstinguished by some unique feature and thus
arv raitsed above the sea of anonymity wilh, & name. For oxample the
representation 1n which the gyroscopic force vanishes 1s called the canonical
representation

Y=\ =9 Y= = e v=vl?)
i . 1 .

0 {2.26)

Two representalions related to one another through

. . a XN o,

L=-x,P=r,f=v-="9%
4 (2.27)
are sa)d to be dual to one another. The canonical representastion 1s Ils own

dual .

The characleristic representations are a pair of duals 1n which the
quasielastic force vamishes. For this pair of duals

.\"=.?'=Qt, y=F=0,7=v =y :;QtV’s
ad (2.28)
We will adhere to the notation introduced here for referring to these special

representations.

Since ¢ 1s a symmetry operation it can be shown to induce a conservation law
{as previously time translation symmetry was used to derive the conservation law
for energy). Acting on {2.12) with § = ¢ there results

fﬁwath+ﬁu@mﬁqh
Jaseifam -faw,)

A3 =0

(2.29)

where
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f=f-‘°’~dx.3=fr-d.
{2.30)

Since w(s}) 1s a freely chosen (generating) function. the expression 1n
parentheses in  (2.29) vanishes for each s. The law of conservalion of
circulation in the isorrhopic gyroclastic system cen Lhen be put in differential

form as

] ~-4a =0
ApE) - 8_(Y) (2313

In the two-dimensional system J = 0 and conscanenlly p€ s a constant of
Lthe motion on each isorrhope. Since p 1s obvicusiy a constant since Ds = 0 the
circulation 1s a constant of the molion.

Return to the discussion following (2.19) concerning the representation
dependence of the conservation law induced by a 1ime trunslation symmetry

operation. It 1s easily seen that accommodating the transformation
« g'= ~ 9y -
¢ ¢ ¢ (2. 12)
the law of conservation of energy becomes
aH +91°, =0
¢ 2’ H (2.733.1)
whoere
H =H+ f ds w p€
(2.33.2)
and
Fly=T,+ f ds w @7
(2.33.3)

The action of a change ol representation on the law of conservation of epergy is
simply to add some muitiple of the law of conservation of circulation.
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Ceomelrical Optics

In the geometrical optics limit the study of linear waves i1p the isorrhopic
gyroelastic medium is simpliiied by the local nature of the dispersion relation.
The wave field is made up of locally plane waves which propagale according to

local jaws. ior the local condition to be valid, the medium musl be un:form on
the scale of a wavelength and unchanging during a period of oscillation of the
wave.

Begin by writing the generalized Lagrangian in the characteristic

representation(s) directly as

L = é(pv'z + QévHV's - @r-T)
(2.34)

and in the symmetrized form

= = é(pv’w' - Qr-7)
(2.35)

where v* and »~ are the characteristic representative velociiies delined in
{2.28)}. The equaltion of motion can likewise be symmelrized as

F gt

v -Q@PT+W=0

J D Q X {2.36)

where D* is the operator of time differentiation along a v* 7luid trajectory.
The simplicity of the symmetrized equation of motion here is the reason for the
choice of representation.

To study the behavior of linear waves in the geometrical optics limit the
equation of motion is varied (linearized), then a certain ansatz is taken for ¢,
the displacement or wave field, such that tbe conditions outlined above apply.

Since the operation of Eulerian variation & and V commute, the following

congruency holds:

Fyr —~ = - = - ~
8(pD*v* - Qd,7) &V = — Vo ~ 0 (2.7

Furihermore, since & + §.V = a, the variation of the equalion of motion can be
restated as the congruency



A(pD*v* — anr) — £-V(pD*y - qa‘-r) == 06Uk =-Véx ~ 0

(2.38)
Taktng account of the relation
AdT=2080¢
X o (2.39)
the linearized equation of motion can be seen to salisfy
‘D't - Q.3 E - £-T(pD'w - Q3 T) ~ 0
pD'D*E - Q0,3 & - £-(p Q3,7) (2.40)
In curled form this congruency becomes the equation
. intg - —_ g, Pt _
V-(pD'D'¢ - @0,8.¢ — £-V(pD'¥' ~ QO,7))*= 0 241
since, of coursc, V-V'dx = 0.
Now choose Lhe ansalz for the displacement wave field to have the form
= g* 1y
§ =V (e} (2420
where ¢ 1s a rapidly oscillating phase and .4 s a slowly (in space) svarying

amplitude. To keep Lthe scaling intact, take the phase to be ¢ ~ t/Ae. (This
assures that the wave oscillalions obey the stlaled condiltions for geomelrical
optics to apply., vet they remain far slower Lthan the gyromotion of saingle
particics, so the medium can still be described accurately as gyroelastic.)

Further define canonical wave variables as follows (note these variables are
new and have no*hing whatever to do with variables these symbols have been used
to designate in previous chapters—w is not a generating function):

x = Vp = tuo-uavevector

1

d,¢ = parallel uovevector
w =~ 0 = frequency
o=-Dp=-238,p- V% x=uv-Kv=proper frequency

(2.43)
along with the obvious specializations (see (2.28))
gl% = Pl = u — k-v'?) = canonical proper frequency (2.48.1)
and
ot = D*¢ = w — k-¥* = characleristic proper fre ies
¢ proper frequenc (2.44.2)
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Inserting the ansatz (2.42) into the linearized equation of molion (2.41)
there results (to order 1/e?) the local characteristic eanation (dispersion
relation) in the form

00" = (w — x-v*)(w — x-¥") = Q(L + x-1)?
s (2.45)

The dispersion relation 1is quadratic in @ and therefore is solved by two values
of w, say w, and w_

w, =x-vl? 2+

(2.46)
where
02 = 432— (c-9°s)2 + Q (£ +x-7)?
’ : (2.47)
The so.utions w, restrict to two the possible canonical proper frequenc:es; call
them o!©)

olV=w -xvl? =:0
* * (2.48)

Expressed as

N
D (j.k{.0'?) = (o101 f (x:9°s)) (o' )+ Ly (x-¥°s)) —g (bt +ur)?=0

2 2,
s s (2.49)
it is apparenl thail the dispersion relation (2.45) admits the scaling
D (Me.k|A0?)) = 2D (|x,k],0'°%) =0
( * l 7 ) ”x | g ) (2.50)

so that @ is homogeneous of degree 2. The dispersion relation is a homogeneous
function of its arguments (|x.£{,0¢°)) due to the fact that the gyroelastic
medium is nondispersive to high frequency waves.

It can be shown that homogeneous functions & ({x.£|.q) of degree n conform
so as to satisfy

03 D+Kk-0_ D+ k3, D=nD

a < [ (2.51)
This relation, known as Euler's theorem, can be used to eliminate 8,(e1 D from
the expression for the total derivative of @ with respect to wavevector. This
accomplished, impose the restriction (2.48) to find



)',rv,‘

(6‘0(0),6‘0(0))’,|n;,uga:

+ (1] )4—:—2 (x-V*s)V°s +§ (£ + c-T)T g (£ + -7

(2.52)
From this result it is manifest that
1 L )
5T feef-lv V.1 = |hkf-ju ] =1
(2.53)

The quantity f{k.k{ = {x.£{/0'®), the normal slowness (3-vector}. is closely
related to the usual phase velocity (same direction, reciprocal in magnitude).
The vector |w,Uf = |v .V | is closely related to the group velocily (in a local
resl frame.) The resonance condition (2.53) states that a wave packet moves 1n
resonance with its own wave fronts (as expected i1n a non-dispersive medium.} In
other words, the ray trajectories (space-time trajectories of velocity )vr.V_()
lie wholly within the phase planes (space-time hyperplanes of constant ¢} when
viewed in the local rest frame (in this case the frame moving with the fluid at
the canonical representalive velocity.) The ray constancy of ¢ can be restated
for a frame at rest rclative to a fixed point as

DRg = (9, + Vg = (3, + v!12.V + R0 4 1Fa )y

'
=-w + vt e + L =-001 6192 ¢ .
N s T B t {2.54)
The general ray velocities )vf,Vf’ introduced here can also be recognized as Lhe
)x.ﬁl—space gradients of w. This circumstance will be used shortly to construct
a canonical Hamiltonian wave theory. First let’s step back and take a look al
the global picture thus far.

The propagation of waves in a non-dispersive medium can be described with
Lhe use of an artifice called the ray surface or its dual counterpart, the
normal slowness surface. Points on the ray surface are related in one-to--one
correspondence with tangent planes of the normal slowness surface and
vice-versa. Before proceeding to construct these surfaces a minor reorientation
will prove helpful.

As is clear from {2.52), ray trajectories remain within isorrhopic surfaces.
The natural coordinate basis to which to refer a ray or normal slowness surface
in the isorrhopic gyroelastic system is composed of local tangents to magnetic
field lines and isorrhopes.

To avoid confusion as to which surfaces are being referred to in the
following, tet us agree to refer always to the comoving network of (nested)
isorrhopic surfaces as the isorrhopic manifold 4{, the configuration space of
the gyroelastic system. Refer to the space-time ray surface as the ray conoid
and its dual as the normal slowness conoid.
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Choose the axes of an orthonormal basis (.‘.,) in the tangent space of .t at a
point P, FU(P), to be oriented (to lowest order) as follows: let .. be
directed tangent to the local isorrhope, then performing an infinitesmal
rotation éw = 7° bring .. into alignment with Lhe local magnetic field line.
In this (primed} coordinate system r = 0. Choose v(®} = 0 for simplicity and
the dispersion relation (2.54) evaluates to

QZ= 3_2 (x_v-s)2+g‘,2=(a(0))2

4 ° (2.55)
where &° is lhe wavevector component along e .. This is the equation for the
normal slowness surface in the space dual to JP), }%°.k°{-space at P. Waves
passing through & with wavevectors in a given direction will be moving with
normal! slowness magnitude corresponding to the point on the slowness surface
seliccted by that direction. The normal slowness surface (in the space dual to
U(P)) is on elliptical cylinder whose axis passes through the origin in the
direction L {see figure 2.)

Transforming the expressions for the ray velocities given in (2.52) to the
primed frame it can be shown that
. .} VR)2 -z 2
(e )F OO0 _w® U2,
Q oz e &
——Z(VS)
4p

I

(2.56)

Since {2.53) must be satisfied and since no restriction is placed on (r-ov,).
(vf-oy,) must vanish. The ray surface is therefore an ellipse in the z'-2°
plane in ZU{P) (see figure 3.) Waves passing through £ moving with ray velocity
in a given direction will be moving with ray velocity magnitude corresponding to
the point on the ray surface selected by that direction.

The actual shapes of these surfaces depend on 2. As can be seen in figures
2 and 3 the shapes are symmeirical. In the two-dimensional case dealt with by
Newcomb?'~2? these surfaces become degenerate. On the ray surface, the plus and
minus waves are represented by Lthe two points at the ends of the ray ellipse.
These points correspond to {wo lines on the normal slowness surface. The
notation distinguishing between plus and minus waves simply refers to the two
sides of the surfaces in the three—dimensional case, which is to say that there
exist a continuum of dual characteristic pairs, not just one single pair. The 2
distinction seems somewhat pleonastic in the three—dimensional case, and will
henceforth be dropped.

Geometrical optics can be systematized in Hamitonian formalism with the wave
Hamiltonian function

H=3 (6.4 xz]it) =eevt? +0 -0 (2.57)
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A shor! calculation yields the following canonical equations:

3, 7=D= o
g H=Dz =V
a,¥=-D%
8 2=-D% -
z (2.58)
where we’”ve used (2.52) in Lhe form
VR =2 w
’ ! le. &y (2.59)
and (2,43). Proceed to evaluate Df(& + x+¥) using the previously derived
results
DRr =3 vl 4 (#R - v‘o’)-V'r + 1R r
X 2 (2.60}
ana
9 Vs = V°s-Ur
X (2.61)
The calculalion discloses
DRk + k1) =0
(& +e7) {2.62)

(L + x-T) is a ray constant, as was discovered of the wave phase (2.54) ¢.

An obvious corollary to (2.62) is that the quantity {k + x-7) vanishes
everywherr along a ray trajectory if it vanishes anywhere along that ray
trajeclory.

Ray trajectories remain always within isorrhopic surfaces, so s is also a

ray constant

Ds=o0 {2.63)

A slightly more involved though straightforward calculation reveals yet

another ray constant:

DR(k-V's) =0 (2.64)

The projection of the two-wavevector on the isorrhope (at #) is a ray constant.
Using (2.82), (2.63) and (2.64) it can be shown that

pa=o (2.85)
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and

D=0 (2.66)

as well. By (2.85) the dispersion relation is a ray invariant; by (2.66) the 2z
component of the ray velocity is a ray constant.

To the sel of canonical equalions above, (2.58), should now be udded

8 H=-Dt=-1
(24

8, 7= D% =DPle-¥l?) =0

' (2.67)
A complete prescriplion for evolving the wave field i1s conlained 1n (2.58) and
(2.87).

The curled linearized equation of motion (2.41) with the replacement (2.42)
for the displacemen! field was used Lo derive Lhe dispersion relation (2.48).
The dispersion relation was in fact multiplied by the largest factor,. the phase
considered to be rapidly oscillaling. The next largesl term 1s a conservation

faw:

8, N+ V3.3 =9
' » (2.68)

where the conserved quantily

. 4(0) 2
N 07 (ed) (2.69)

is the density of wave action (quanta) per unil mass. The [lux of wave action

(3) =
{3 = {f VR (2.70)

is composed of wave action carried along at “‘he ray velocily.

Accordingly, the conclusion Lo be drawn is that under the conditions of
geometrical optics (outlined previously) wave action (quanta) can neither be
emitted nor absorbed. A localized perturbalion or wave packet behaves somewhat
like a particile: initially propagating in the neighborhood of a particular ray
trajectory, it will continue to be identified with that ray in perpetuity.
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CHAPTER 3

Motions Of A Cyroelastic Screwpinch

The Equilibria

In previous chapters some properties of a general gyroelastic system were
considered. It was found that a particular class of initialization gives the
gyroelastic system a self-preserving symmeiry called isorrhopy. This symmetry
was associated with certain so-called gyroscopic and quasielastic forces and was
further asserted to cause drift modes of oscillation and fluid modes of
oscillation to decouple one from another. The symmelry operator associated with
isorrhopy, called a permutator, is the generator of a group of infinitesmal
transformations called permutations: finite transformations calied changes of
representation are generated from these permutations.

Transformation properties of the gyroscopic and quasielastic forces under
changes of representation were review:d i! being emphasized that the forces
transform as components of a single covariant entity. This is the reason for
the term gyroelastic. The isorrhopic gyroelastic sy.tem was then made the focus
of attention and a closed system o! equations describing its behavior was
derived.

Next it was asserted that a certain fluid Lagrangian would give rise to the
same closed system of 2quations and by a standard variational technique this was
shown to be the case. Symmetry operations were applied to the action integral
and demonstrated to induce conservation laws. One such symmetry operation was a
permutation of a time translated system.
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Following the specialization of the general nonlinear system to the
tsorrhopic case, an examination of wave propagalion in the geometrical optics

limit was undertaken. The view thus presented was one of a slowly developing
nonlinear system supporting a rapidly oscillating, short wavelength, small
amplitude wave field. To lowest order the wave [(ield is found to behave

according to local conditions fixed by the configuration of the (isorrhopic
gyroscopic,; system.

In Lthis chapter the configuretion is specialized to a particular class of
screwpinch equilibria for the purpose of studying linear global motions and

stability of these equilibria. The system is first linearized and the small
amp!itude Lagrengian is presented in the screwpinch~specialized coordinate
system. The linearized equation of motion is found quite generally to have
singularities over specific ranges of the parameters which map the solution
space calied continua. The solutions in these continua are generalized

functions also called distribulions.

Distributions are linear functionals. Although they are not members of the
Hilbert space of posiible motions of the equilibrium, they do play an essential
role in constructing an invertible integral transform to evolve arbitrary
perturbations of the equilibrium which are possible motions.

, To construct the screwpinch equiiibri- to be studied, ‘ake the isorrhopic
surfaces to be circulsr cylinders, so that s = x2/2 where x 15 a two-vector
directed from t. axis of symmetry. It follows that V°s = x*. Further chooxe
the velocity field to be represented as

=~ ) o
v (s) x 3.1)

where (s) is (topologically) the fluid angular velocity on an isorrhope. It is

evident that 1 transforms under changes of representation according to

s) ~ 0°(s) = s) + ws) (1.2)

and that the system of isorrhopic surfaces does not deform as a result of the
steady flow. The steady state hypothesis, 8, = 0, then requires that the
equilibrium state satisfy

p vVe — X V°s:Vy — Y V's5.W*s - @ axv +Vk =0

v-Vr - axv =0

v-Vs =0

Vov=0 (3.3)



In view of (3.1), the equation of motion for the steady flow» equilibrium
assumes the form

(ofF + X0~ Y) V's-W0°s - @ aT+W =0 3.4

The quantity in parentheses in (3.4} i1s a represeniational i1nvarianti. It can be
evaluated by noting that in the canonical representation (sce (2.26))

Xz g , o)z 4_: L wl0)s — t0)ge

{3.5)
so that
W
(o907 + 30 - ¥) = p(@ 0= T2 ) = o
2p 2p
(3.6)
where the identification v’ = - (1’2* has been made (see {2.28).) Another usefui
representalion 1s the null representation, designated by a subscipt ,  and
defined by the condition (3, = 0. In the null representation 1t 1s found that
X,=20000) ¥y =-p0'0 . v, =0
0 P @ P 0 .7

With this description of the equilibria, let us now turn to an anolyxis of
tne linearized system. The linearized equation of motion lerived presiousiv s
reproduced here as
DDt -QdB8t-¢VpDv -Q3T)+W=0
pODE-QB3¢E - ¢Vip Qo )
For convenience, represent the displacement § 1n terms of 1ls contravariant
componenis a and 8

a=§-Vs=¢§-x
" .
B=¢90=-: ¢x
{1.8)
so that
.__’ - -
¢ = ;5 ox-fx
{3.10)

Using the identities (in the null representalion,
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2=Vs , x° =V's = - 2598
vr=0

_ 1
.’—2_5.

.
2, =- X
[

- =

o

w004 yl0) = p8s vt

(3.11}

{where subscripting refers to partial differentiation with respect to the
subscript) the linearized equation of motion can be developed as

Ax+Ba* +W=0

3.12.1)
where
d= o) a, v00a, -2+ 20 a, -8
E A % 25 %0 = % zs %o TR
H 2, ! . !
—04.':‘_3 LS ‘2_5 a..-2ﬂ.)+31’(2‘s e —ﬂ’”
- _ 0.2
+a (p*0” - Qu?), (122
ind

7 7
B=-p (B, + W (Byy + S ap) + A'°NMB 4 5 a))
1 1 =
+Q (B, +V¥ By +—a)) +20(f_, + = a)))
’ ; sl [RRERT

The symboi v has been 1ntroduced and 1s defined by

T=-vx'
(3.13)
In the gyvroelastic system 1sorrhopy guarantees that 7(#) exists in the tangent
space ZH(P' and this is what inspires the choice (3.13). Also, since in
equilibrium the isorrhopic surfaces are cylinders, v = 0.

The displacement field § 1s required to be divergenceless V-§ = 0, so Lhere
exists a homomorphism represented by

m
E=V¥= —— Jo_+\(2s) ¥ e
V(2 s s
(2s) (3.14)
where ¥ is called the stream function. An identification with (3.10) reveals

the association
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h=-F.%=0 (3.15)

Certain portions of the {inear anaiysis Lhat follows are more conveniently or
succinctly cast in terms of the stream function, other portions will be done 1n
terms of the displacement field or i1ts components. [t should be recognized Lhat
either representation is entirely equivalent to the other.

Curling the linearized equation of motion (3.12.1) to get rid of the
gradient, there results the expression

. H
Z.(2s8.,) =,.‘1'(2—‘a.ﬁ)
{3.16.1)
or equivalently
!
J’(-Zs'lr’.-'#‘) =0 ,;\4!,.4,)
= (:4.16.2)
where . 15 given by an operator relation by
Ary) =-p(r,, +200z v 00z, - 209y - 00y,

2 _ _ 2
+Q (.r“ + 2"1':9 + vxg, 2uy= 2 y.) (3.16.1)

The appropriate small amplitude Lagrangian for the linearized system 15

given by
= L L LI +2 2
L= 50 (25 a; sy - < 2. %% B8, B )
7
+0M7(5 0f - 2Zoa, + 25a3))
1 ! o2 + 2542 7 2
-3 Q (2—S a7 + s@T + Zu(z—-s aa, + 2sf.B + Clﬁ,)
14
+ UZ(Z_S a2 - Zen, + 2sa?))
+ L
- (3.17.1)
where
£ = ! o2
£= (o Pls)),
(3.17.2)
Notice the auxilliary £ satisfies the Euler equation
d a  _ar_
&5, " =0
s (3.18)
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1dentically.

The (small amplitude) action integral is then minimized by sclutions of the
(small ampiitude) Euler equations

dar, doar, 4o doar e,
dz'da, " dt'Ba,’  ds'da, = df da, da (3.19.1)

and

d & d ar

gt a'es) taslep) T aw'ep,) "=
z t s o (13.19.2)

A short calculation expeses the curled linear equation of motion (3.16.1) as no

more than the sum ol derivatives of these Euler equations for a and 8. The

identification made 1x

A =4 _d g,
(3.16.7) = 2(3.19.7) = 5(3.19.2) .
(:1.19.:1)

Since the equitibrium structure 1s independent of (&8.,z,t) this partial
differential equation 1n {s5,0,2,¢) 15 seperable and reducible to four second
order ordinary difflcrential equations. Each of three of these have constant
coefficients and are solved by complex exponentials. The fourth, the equation
in s, will henceforth be referred to as the Fuler equation (though 1t is of

course only one of four.)

The appropriate ansatz for the stream eigenfunction ¥ 1s then a
helical -harmonic complex exponential with an s-dependent amplitude:

¥int = plnl(s) exp(i(kz + md - win't))

(13.20)
Equivalently
tn) = 1 4tn) 4 _ gln) g
ekm - 2s O™ X ﬁkn x
im
= (= yln) (n) i - in)
= (5 ¥ s) x+ (BR)(s)), x°) explilkz +mo ~ w{)1))
(3.21)
is the form of the displacement. Any solution to the partial differential

equation (3.16.2) (or (3.8)) for given boundary conditions and initial
conditions, can be created by a superposition of eigensolutions of the form
(3.20) (or (3.21).) The determination of a proper inner product on this
solution space and related questions will be dealt with later. First we’l)
tackle the Euler equation itself, exploring some of the more intriguing
cloisters of arcane mathematics along the wuy to an integral theorem.
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Inserting (3.20) into (3.16.2) the linear equation of molion for the stream
function amp!litude assumes the form

(), =¥

(3.22.1)
where the coefficient functions f and g are given by
- 2 _ (o) 204~ ) — 2
f = 2s(plw 2m) + m0*07) - Q(k + vm)?) (3.22.2)
and
m? 2 (0) 20+ 2
g=2?(p(m - 2muA) + m*0*07) - Q(k + vm)°)
+ ”dis(p(—a.m“’) + m¥0T) — Q(2kvm + v2m?))
(3.22.3)

and where 0%}, 0%, @, v and p are all functions of s specified by the
particular equilibrium chosen.

Detour for a moment back to the linear equation of motion in the form
(3.12.1) and rewrite that equation for a mode of definite energy {dropping all
atlached subscripts and superscripis k, m, n for simplicity) as

7
p(z—scu—ﬂx’)“ +d'x +Bx* + V=0

or equivalently as

pé,, —FlE) =0 (3.24)

Now follow the eclectiic procedure outlined by Frieman and Rolenberg° for
obtaining an energy integral: multiply (3.24) by ¢V (' indicates complex
conjugate)} and integrale over volume so that there results

-fdsdadzp,;?-e“=m2fd,sawdzp5'-;=-fd,suwdze'~ne)

(3.25)
Noting that
fds dg dz ¢t-Wc =fds d8 dz (V-xt! — «V-¢) =f dz .¢ thedxc = 0 (3;6)
it is seen that there remains the relation
uzfdsd0d2p£7-5=j ds d9 dz (ald’ — g'2s)
WN = &W
(3.27)

._.52_.



where N is a positive definite normalization. The relation (3.27) is a
quadratic form in w which can be reexpressed in terms of the stream
eigenfunction amplitude ¥y as

w? +bw+c=0

(3.28.1)
where
mz
a= f ds p (2sy? + 5 ¥)
(3.28.2)
mz
t;:-fcg(2wﬂamnw’)+¢ﬁé;awm0’+(amm°U,H
(3.28.3)
and
¢
e= | ds (2592mEp1'07 - @k + m)?)

2
+ YA mBp'0” ~ @k + mr)?) + (n%p0°0" - Q2w + m?u?)) )
’ (3.28.4)

It 1s ciear from (3.28.1) that if 0‘®) = 0, «? is a real quantity (if a'?) « o0,
w? may be complex.) An integral theorem for the latter case (canonically
rotating) is thus inherently more complicated than for the former case
(canonically slatic). Notice that the canonical angular frequency Q'°! |s a
representational invariant, so this choice is not arbitrary, but deliberate.

Shear in the canonical velocity profile can cause Helmholtz—tvpe
instabilities and this can be =seen to arise due to the presence of the
derivative in the expession for the coefficient & above. However, a
sufficiently large value of the gyroelastic modulus @ can stabilize such
instabilities.

The superposition of eigenmodes (the integral transform) can be accomplished
by summation over the discrete spectra and integration over the continua for
each «,m. Since all eigenvalues of the spectra for the static equilibria are
confined to the real and imaginary axes, the task of finding them and including
them in the integral transform in that case is simp!ified (over the rotating
equilibrium.) Also, the static case admits to analysis by an energy principle,
which will be presented in succeeding chapters.

The next step towards an integral theorem is to choose a particular
equilibrium to study in detail. The choice is made so as to avoid needless
complexity ye! retaining as many nontrivial features of the general theory as
possible. For example, since one object of the study is to examine the



stability of gyroelastic systems, we should pick an equilibrium with a non—zero
gyroelastic modulus-preferably one which would be unstable in the absence of
gyroelasticity.

It has been shown previously (3.28.1) that 0'°) = 0 complicates the integral
theorem. To avoid possible obfuscation of the central issue (for this exercize)
therefore, choose the equilibrium without canonical rotation. Choose the
material pressure to be isotropic, p, = P, and comparable to B? so that the
equilibrium has a high average f (ratio of material to magnetic pressure.)

1t is well known that without gyroelasticity the Suydam criterion'®-3%

supplies a necessary condition for stability for the columnar pinch. 1In the
notation used in this tome the Suydam criterion 1s given by

d 2. 2d
- nv)<>=- - In
(G mv?>27 ng
(3.29)
According to this condition, if the axial current density is chosen to be
uniform so that v is constant, a finite-f pinch will bz uastable: somewhere @
will be an increasing function of s.

With these considerations in mind the following equilibria are chosen for
closer scrutiny:

The magnetic pressure is to be linear in s

Bﬂﬂ=8ﬁ1-m1—;n53@%ﬂ s<s

B2(s) =Bg s>s

o

o (3.30)

Let the variable s be scaled by s, so that the edge of the plasma is located at
(new variable) s = 7. The material pressure is then determined to be

7
P‘ =P = 5526(7—§)

(3.31)
where f§ is a parameter which can be varied over the range 0 < 8 < 7 and roughly
signifies the average B ratio of the equilibrium. The mass density p is
constant

P =P (3.32)

and the axial current density is also constant, J,, so that v is given by

- o = —Jo
T BN(1A{1-5)) T 2Byuls)

v
(3.33)
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Furthermore, choose the gyroelastic modulus to be constant and the equilibrium
to be stalic so that

+O- — (02 .02 — _ 2
o = (009)2 -2 = -2

(3.34)
where the gyroelastic frequency is defined by
nZ = ;!3 = constant
Po (3.35)

Finally, choose an equilibrium in which there is no circulation so that
nto) = 0.

The Euler equation {3.22.1) can now be written explicilly for this class of
equilibrium, in non-dimensionalized form, as

(fo)e = ¥ (3.36.1)
with the coefficient functions f and g given by
= 2s(e® - @ - (wutt)?
1= 2se® - Q2 - (gut1)?) (5.36.2)
and
2
9= - @ - (a1)?) - €
= (3.36.3)
and where the nondimensionatized variables are defined as follows:
2
@D = Haﬁn = "o s V= fZL : Yy _ eV
m 2B, V(as) ad ) HoPy m2 0 a0
k Q
s=2 ix= et = Q2=
S, kg Wy 7wy
2
uc =1 -
-B(1-s) (3.37)

Equivalently, the Euler equalion can be written as a second order ordinary
differential equation for the radial component of £, ¢-@ = ¢, by using the
incompressibilily constraint. The result is

.
(ft), =gt (3.38.1)

where the coefficient functions f and g (not the same as those given above) are
given by

_ 0c2{,,2 _ 02 _ 2
f=25%" - @ - (eutt)?) (3.38.2)
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mi- 1. 4 2 H 2
9= (% N — Qg ~ (mt1)?) + sx°F
(3.38.3)

The same normalization has been used here as above.

The boundary condition appropriate for the fixed boundary system (plasma in
contact with conducting wall) is that & =0 at the outer boundary and ¢ is
bounded at the origin. The equivalent conditions for ¥ are that y must vanish
both at the origin and at the boundary.

Stripped naked of the trappings tethering it to its physical origin like
tracks in the snow the problem now slips through the portcullis to abstraction
on a mathematical odyssey whose object is the appointed encounter with an
integral theorem.

The Point Spectrum

The Euler equation for the equilibria chosen (referred to henceforth as the
standard case) given by (3.36.1) 1is to be solved on the domain 0 < s < 7 with
the boundary conditions ¥(0) = ¥(7) = 0. Al]l quantities are suitably normalized
according to (3.37) and the normalized signifier is henceforth dropped. If Lhe
coefficient function f vanishes on the interval 0 < s < 7 the Euler equation is
said to be singular and the point{(s) at which this occurs is {are) called
singular point(s). In the event that such points do exist, standard integration
techniques fail and caution must be exercized to arrive at the correct solution.

First. consider the case in which no internal singularities occur. The only
singularity is then at the origin of coordinates s = 0. This point is a regular
singular point and a series solutijon about it may be developed as follows:
Rewrite the Euler equation (3.36.1) in the canonical form

1 )
Voo S P(S) U + Zals) ¥ =0
(3.39)

and take the form of the solution y to be representable by an infinite series of
the form

i=

= i+r
v=) ¥s
1=0 (3.40)
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Near the origin the coefficient functions f and g are given by Lhe known series

i =eo izoo
p=2p,-s" ,q=Zq,-S"
i=0 i=0 (3.41)

Substituling these series into the differential equation results in a recursion
relation for the coefficients of the solution series y,. The zeroth recursion
relation, called the indicial equation, is given by
T(r=1) + p,m + =0
(r=1) + p,r + g4 (3.42)

A

The recursion relation can be developed by induction to give the i*® coefficient

as

i-1

Z Yo, (r=1) +q _,)

- il=0
(r+i)(r+i-1) + (r+i)p, + q,

v, =
(3.43)

The coefficient function series p and ¢ can be expressed in terms of the f
and g series (3.36.2) as

L 2

R

]

“
s

<Q

]

1

[
= iQ

(3.44)

Some algorithms useful in computing the coefficients of the series p and q above
are: The exponent series:

i=on iz

A} N .

3 ez =¥ et
—

i=0 i=0 (3.45.1)
where
i=1
c,=a} ; ¢, = A (in=l+i)a.c
”_‘7"—1aa¢_’_/ il-i
i=1 (3.45.2)

the quotient series:



i=m

5 .
X 1
i 0 =0
e
i=0 (3.468.1)
where
i=1
1
e, =b, - &; -
i=1 (3.46.2)

and lastly the product series:

t

(f ai:r“)(ii? 6,r') = i: c,zt
i=0 i=0

1=

o

(3.47.1)

where

ise (3.47.2)

The series representation of the solution developed about the regular
singular point at s =0 is convergent out to the nearest singularity in the
complex s-plane. Once the solution is known in a neighborhood of the origin a
standard numerical scheme can be employed to integrate the Euler equation
repeatedly for various values of w. A shooling method is devised Lo direcl the
search for values of o {given values of x.m,ﬂ.D:) for which the eigenvalue
equat ion

\0,‘“(5:7 ‘“:m) =0 (3.48)

is satisfied. These values of w comprise the discrete or point spectra for the
equilibrium.

All succeeding discussions of spectra will be referred to a particular two
dimensional space whose coordinates are the normalized axial wavevector or
helicity x for abscissa and the eigenvalue related function

A= 2 _ QZ
v TN (3.49)

for orcdinate. In this space the point spectra are representable as curves or
trajectories. Each value of « selects a spectrum of values of A (for given
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values of m ard 8.} As x is varied continuously through a range of values, each
point in a given spectrum traces out a curve connecting it with points in
neighboring spectra labeled with the same radial and azimuthal mode numbers (see
figs. 4,3.)

Figure 5 depicts the solutions of the Euler equation for chosen values of 8
and «. As the radial and azimuthal mode numbers increase the energy associated
with the displacement becomes localized near a point s,. Refer to this point as
the annihilation point; the reason for the nomenclature will be clarified
presently. Figure 6 graphs the level curves (at constant z) of a few of the
eigensteamfunctions in figure 5. The motion of the fluid is tangent to these
streaml ines.

Figure 4 shows the placement in x-A space of the eigenvalue trajectories
corre~ponding to the three lowest eigenvalues for m=7. Figure 8 is an
enlargement of the area enclosed by the larger box in figure 4. The shaded
regions in figure 4 correspond to the continua- the darker shading .-epresents
the degenerate continua and the lighter shading represents the nc.-degenerate

conlinua.

For given values of # and « a certain critical value A = A, marks the lower

limit of the continuum. For a range of values of A greater than A, ,
A, €A <A, there exist one or more internal singularities of the Euler
equation. In the event that such singularities appear, the specira are no
longer discrete. If only one singularity occurs in the interval (0<s<7) for a

given pair of values (x=-A} then there exists one and »nly one solution to the
Euler equation (at that point in x-A space.) If i..re than one singularity
occurs in the interval (0<s<7} then there exist a number of independent
solutions to the Euler equation for that point in x—-A space—a number equal to
the number of singularities. In this latter case, the generalized function
space s said to be degenerate, of dimension equal to the number of
singularities. The shaded regions in figures 4,8,13 correspond to these
continua— the darker shading covers the degenerate continua and the iighter
shading covers the non-degenerate continua. We will address certain questions
concerning the structure of the point spectra first, then turn to an in depth
examination of the continua.

It is expedient to ascertain the dimension of the nonsingular function space
and the distribution of eigenvalues in the point spectra. Such information can
facilitate the search algorithm. [t will be necessary to properly normalize the
nonsingular eigenfunctions and this too will be done presently.

First, to determine the dimension of the nonsingular eigenfunction space,
examine the behavior of the eigenfunction in the vicinity of the continuum l-.wer
edge, say A = A, — 6\, and near the point s = s, which becomes the singular
peint for A = A, + 6. The number of zeroes of the eigenfunction in this
neighborhood is closely related to the number of eigenfunctions with eigenvalue
A <A, = 6AL
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Rewrite the Euler equation in the form

2
B
(2sa(sWw,), = (zA(s) - Ty
Zs u (3.50)

with
= - 2
Afs) = N = {(xut?) (351)

To clarify the situation. consider three separate but contiguous ranges of «x;
caull them cases I,11 and I11.

Case |:

Examine first the behavior of the Euler solutions near the print s, where

Alsg) = 0 (3.52.1)
and
a(sp) =0 (3.52.2)
so that
17 1
Sg % 1 = E(’ = é})
(3.549)

Such points exist—-s_, is necessarily positive by construction- only in a range of

3
helicities

(3.54)

sdear the conlinuum edge and near & = (s — s,) = 0 the Euler equation has the
form

2 1 2 m?e?
Voo ¥ ¥ = 200 gt T2) v =0+ 0()
@ ¢ (3.55)
The i.adicial equation for the series solulion of ¥ near £ = 0 has the rools
1
ro= E(— 1 = \D)
(3.56}

where
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8

S pK
o (3.57)
(and where s, is given by (3.53).) Solutions of (3.55) are of the form
¥~ e"f(e
S(e) (3.58)

where f(0) is linite.

If Z is negative, 71 is complex and (3.58) becomes infinitely oscillatory
near ¢ = 0. For the range of « (3.54) the entire range ol values of 4 ,»
negative

1-2-2227

g (3.59,
This buing the case, thare are denumerably infinitely many zeroes of ¥ near the
(singular) point s = s, and as many point spectrum ecigenfunctionx. The
continuum {ower edge in the range of helicities x (3.894} 15 1 curte of
geccumulation; s, is called an annihilation point. As A decreases through the
curve of aecumtlalion two singularities (to the right and to the left of \o’
approach one another then touch and vanish. For A below the curve of

accumulalion lherc cxi.l a denumerably infinite set of eigenvalues A.

Figure 7 shows the solutions to .he (reduced rad:ial) Euler equat.on for
values ol «-A chosen so that s, has the value .5. The annihilatior point s
most easily delected for low radial mode number in h gh g equilibria (upprr
right hand corner of [figure 7.) The larger plasma pressure thus lends to

concentrate the displacement energy even for the lowest freguency mode: .
Case [1I:
For the range of helicities

_r
(16)

X < -
(:3.60)

there appears a singularily at s = 0 near the continuum lower edge. Following
the procedure outlined above, the indicial equation is again found to he soived
by roots r given by (3.56) bui with D now given by

2

=1+m? —_—
2 mr (1) + 1

{3.61)

For values of « in the range (3.60) such that


http://nr.tr

(m?+3)
(m!+r)

n(1-6) > -
{3.82)

2 1s again negative and the continuum lower edge 1s agatn a curic of
accumulalion. For m = 7 the curie of accwmlation extends to the right of a
critical (lower bound) helicity (‘(m =71}

{161}

For m > 7 this critical helicity as  less negative. As  larger saluers of
azimuthal mode number m are considered 1t iy found that the critical helicity

approaches closer and closer to the limit

_ H
- !
#) [RNRY]
There all salues of m cause / 1o be negative, as already determined {this pornt

alxo falling within the purview of case 1.)

Bevend (to the left of) the critical helicity for o given m *here are o
finite number of eigenvalues 1n  the point spectrum adjacent to and oelow the

continuum lower edge.
Caxe []i:

Next examine the point a = -7 and the range of a extending to its right H. the
same procedure followed in cases | and [1, 1t 1s found that *he point a = - -
tncluded 1n case | and 1s thus a point of accumulation. The hehavior of the
point spectra 1n the v:i:cinity of this point 1s quite unusual; =0 unusual, tn
fact. that the point has been squelched from the slime of anonvmity and nailed
to notoriety with the name AKAruskal-Shafranot [imit. To lay bare some of the
enigma of this point to scrutiny. transform the Fuler equation using the change
of variables

13.69)
Near ¢ = 0% the Euler eguation :s solved by
: Lt
y=a 10(5) +b ho(z)
{3.66)

hyperbolic Bessel functions which are not osctllatory. However, in the limit as
¢ approaches infinity, the solutions are again infinitely oscillatory. Within a
range which is vanishingly smail, yet nevertheless finite, to the right of
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x = -7, a countably infinite number of eigenvalue trajectories impact the
continuum jower edge. That each trajectory impacts at a different point 1s a
corollary of a general theorem stated simply by Goedbloed and Sakanaka®. In the
interest of completeness 1t 1s reproduced along with i1ts proof below. Let g
satisfy the self-adjoint equetion

/ =
(fL’}_ g¥ (31.67)
with boundary rondttions
p{o)y =yilr)y =0
v v (.1oB)
Define the functinn RE.2.n) by
vivRIwE n)2f) = 0
ting)
wherse o ¢ the rymber of  zeroes of V(i.x’b tn the interval 0 < ~ < R(." ,n) 4
.~ an nereasing function of {radial wode number) n.  For fixed 2%, succe~~ive

ceroe - of the ¢ogenfunction will be labeiled by successively higher values of r

Yhe grem, R(2?.n) s monotomic in w® for nonsingular regions of the spectrun
{point spectra uminterupted by continua.) Thus either

ar aR
5 >0 or ) <0
{.5.69.1)
Proof: Suppose @ ,Hluz = 0. then we could anaivtiically continue R(=?.n) an
the complex P piane nvﬂ; ‘.:5 as
18R
2 = (2 - — o2 - )2 .-
R(?on) = R(zg.n) + 7 6(:1)2135(" wg)c +
(3.70})

Choosting «? = uj + 16% so that w? - ::)2 « 0 we find & real zero of ¢ for

complex =2, contradicing the self-adjotntedness property {all eigenvalues »? are
real.) Now {i1x R to the wall position s = 7: a2 will be monotenic In n.

Corollary ta): No singular (point) subspectrum eigenvalue trajectory wi{x,n)
for fixed n can intersect any other, since by intersecting, w?(x.n) = u?(x,n")
which by the above theorem cannot happen.

Corollary (b): At most one eigenvalue trajectory labelled with fixed n can
intersect the continuum at any fixed x.



The point &« = 0 alone remains uncharacteristic of the spectral properties
unearthed so far. The point « = 0 15 unique. A superficial inspection of the
Euler equation (3.50) reveals the fact that when x vanishes ¥ solves

m2
(A-1){t2sy,), = 2-‘1-)
) a.71)

Any ¥ satisfving the boundary conditions satisfies the differential equalion
trivielly i A =1, Only ecne value of A s allowed. The envire spectrum
shrinks to a point and any function in the Hilbert space (any function of -
sati1sfying the boundary conditions) 1x an eigenfunction The two-dimenzional

case 15 specifired tn this space at a single point!

Il remains to delermine the normalization of the ovoint spectrum
ecigenfunctions.  The inner product can be written immediately in terms of the
displacement vector as

= ~ ¢1 .
N(A") = j ds df dz £7(A )-£(A)) 5.7.2)
With the complex exponential part suiltably normalized this relation can be
rewritten involving only the {vector) amplitudes ¢A)

1

!
s, = [ as €080, = [ @ (60,0 0,07 + (60,)-0,0%)
[} [

(3.7 3)
where o and ®, arc umt vectors in the radial and azimuthe. directions. LUsing
(3.14). (3.73) can then be reexpressed in terms of y(s.A ) (A }

. [ L 2
S = [ ds (3 w20 + 2920
) @ (5,
(3.74)

In addition, y(n) solves the differential equation {3.50) with boundary
conditions (3.48). Now write (3.50) for A = A and for A = A . where v and v’

are not necessarily integers («'*)

1s not necessarily an eigenvalue.) Multiply
the two resulting ordinary differential equations each by the function solving
the other; integrate the difference of the two equations over the s domain to

get



1
[ as tvin, . 3(2sa0, 19, (00), - WA N(sMA, BN, )
o

! mz
- [ as ZAA,) = A, WA, )
0 S

(3.75)
Now 1ntegrate the lcft member of (3.75) by parts and usc the fact that
AlA —MA . )=A - A
') ( v ) v ¥ {3.76)
to find
A
[t -
A, -\ d dv (2sg (A )Y (X)) + A FOAAAL))
= AN WA, WAL = MA W (A A, ) 13 -
Allow one value of A\ to upproach the other. say
A=A =67
v 2 13.78)
and express the relation (:3.77) for v =n, an eigemalue (1.c. inxist the
solution meet the boundary condition.} The resuit s
[‘ Demi 2 m? 2 5 a
[ (293000 + 000 = - 2300 w00 G
13.79)
The normalization constant A'"? s thus found to be
N(A) = - 2(A c+1)? 1y 2
MR = = 208, = (641)2) ¥ (1AL ST
(3.80)

These are quantilies calculated naturally by the algorithm which generates
the eigenfunctions. The nonsingular functions are normalized by dividing them

each by the square root of this constant.
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The Continuum

The Euler equation for the chosen class of equilibria {(the standard case) has
the self-adjoint form (3.50) reproduced here

S (Ca
(zsev,), = (za - Fy y '
(3.81)

where

A(s) = A = (xu(s)+1)?
w?(s) = 1 - B(1-5)

= 2 2
A=et -l {:3.62)
and ull variables have been normalized as prescribed in (3.47). For values of
A, x and 8 such Lhat A does not vanish in the interval 0 ¢ s < 7 the solution ¥
may be generated by simply integrating the ordinary differential equation
(numerically) from s = 0% to s =1 as prescribed in the last section dealing
with the point spectrum ~igenfunctions. it was remarked there also that the set
of ei1genvalues {alues of A for which the fixed boundarv condition (3.48) s
salisfied) might be empty, finite or denumerably infinite depending on the
choice of parameters «. m and f. These sets were called point specira
associlaled with the given equilibrium.

In the event that A(s) vanishes for a value or values of s 1n the range
0 < s < 1 the Euler equation is said to be singular at the point{s) s, where

As)=0 {3.83)

Whereas the Euler equation can be eaisily integrated in the nonsingular case
by sny of a number of standard {numerical) techniques, the singular case 15 a
different matter. In the neighborhood of the singular point(s) slandard
techniques fail miserably, preventing furtheir integration. In this section a
means is developed to overcome this difficulty and illuminate the nature of the
problem solved.

It will prove helpful to recast (3.81) and the boundary conditions as an
equivalent integral equation. It will also be expedient to make the
sut stitution
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»
- o2 .
Y(s,A) = s° y(s,A) (3.64)

which transforms the Euler equation into

( m+1Ay ) = - s"‘(mA + .ﬂ)y

{3.85)

The inner product has a particularly simple representation in terms of y. the
singularity at the origin in ¥ is not presenl in y and the business of
bookkeeping i1n the work ahcad is simplified by this change of variables. These
issues are to be weighed against the risk of confusion «(njected by the
transformation. The author begs the indulgence of the reader i1n this rceard

Integrale (3.85) from the origin Lo some point s, then divide lhe result by
s™*'A(s) and integrate again. The singular point must be treated careful!y ax
follows: 1 f al apy stage 1n the course of the calculation {(1integrulion) o
quantity 1s to be divided by zero, a multiple of a delta function {a
distr:bution with point support) must be added

=P 4y blr)

H
I

Nl

(3.86)

Here o” signifies  Cauchy principle value (1integral) and pu 1s to be determined.
(3.86) 1= QA peneralized function which dentifies a distribution. A
distribution 1s & linear functional, a mapping of functions 1nto (possibly
complex} numbers. That is to say, given a function with certain nice
properties, the distribution is a prescrption for returning a value. =Stractly
speaking (J.86) alene has no meaning—it must be used i1n concert with the process
of 1ntegration to act on functions as a distribution.

The i1ntegral equation for y(s) which results from the above procedure can be

written then as

yls) = fdi y(£)gle) j (m+ld({)

j d¢ y(¢)gl¢) f ¢m+yA({) V‘# (8(s-s ) — 8(1-s.})
r (3.87)

where

gls) =~ s"*’(g A+ ES)

(3.88)



and the Heaviside step function @ has been used. [t is evident from (3.87) that
the nonsingular eigenfunctions solve a homogeneous integral equation of the
Fredholm type. The singular eigensolutions solve an inhomogeneous integral
equation with one or more step—-function-like inhomogeneities. The differential
system is self-adjoint so the kernel in the integral system is symmetric, or
easily symmeirizable.

Near the singularity the asymptotic form of the different:al equation can be
shown to be

(ey,), = hle)y

(3.89)
with the definttion
E=5-—-5
0 (3.90)
On cither side of the singularity then two independent asymptotic solutions have
the Torm
t=w
S\
y, = ac’
1=0 (3.91)
and
iz 1T =oc

N\
y, = in [e} ; act + \ b et
pa— pa—
=0 =0 (3.92)

The Euler solution can thus be represented (asymptolically) near the singular
point by

WAl
yt(e) = oy, + By, = In |ef Z cket + \ abe?
=0 =0 (3.93)

to the (immediate} left of the singular point and by

i=ea 1=z
y(e) = ofy, + gy, = In [e| Z cet + Z afet
i=0 i=0 (3.94)

to the (immediate) right of the singular point.

That an invertible integral transform over the space of eigensolutions
exists is entirely contingent on whether the eigensolutions have the properties
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of distributions. In particular, the inner product of a generalized
(eigen)function with a function in the class of admissible motions of the
system, i.e. in the Hilbert space, must be finite. This condition tis
sufficient to determine the behavior of the singular eigensolutions at the
singularity in so far as Lhe following conditions must obtain (with reference to
(3.93) and (3.94)):

R _ L —
¢y cp, =0

4
R _ gl =
dy —d, =pu

(3.95)

There is a logarithmic singularity and a finite jump in y at the singuiar point.
The behavior of the derivative of y (near the singular poinl) is thus

lim y, =co.‘7’£+y &(e)
€0 (3.96)

That (:3.95) 1s the case can be demonstrated by substiluting y into the integral
equation (3.87) being careful to use y = y, to the teft of the singularity,
y =y, lo the right of the singularily, (3.86) at the singularity and the
boundary condition y(7) = 0.

In the case that oniy one singularity appears in the interval 0 < s < 1, the
value of u 1s determined so that the boundary condition is met simultancously.
The additional freedom thus afforded in the construction of the eigensolution
allows any value of A in the appropriate range to serve equally well as an
eigenvalue. Call this range of A the nondegenerate continuum for reasons which
will become clear shorlly.

The case in which two or more singularities appear in Lhe interval 0 < s < 7
is slightly more elaborate than the case in which only one appears. Since the
boundary condition provides only one condition on the choice of the set of u,
(the size of the finite jumps in the eigensolution at the singular poinls) there
then exists a degeneracy in the function space. More than one eigensolution
corresponds to one eigenvalue. I[f 1there are two singularities there arc lwo
values of u, to be chosen so as to satisfy the boundary condition. The boundary
condition becomes a linear relation in the two values . The number of
singularities corresponds to the number of degrees of freedom in the choice of
the p,. The number of degrees of freedom in the choice of the u is the
degeneracy or dimensionality of the function subspace.

Although any normalized basis spanning the (degenerate) function space
suffices, an orthonormalized basis is most convenient for the purpose of
generating in integral theorem. A procedure for accomplishing this
orthonormalization serves also as a proof of the preceeding statement concerning
the dimensionality of the subspace. The next section is devoted to the
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description of an algorithm for generating the orthonormalized basis in the
nondegenerate and in the degenerate continua.

There are two roots of (3.83) for given values of §, « and A. The roots are

real and equal in the event that A = 0. This occurs along the curve of
accumulation referred to previously. As A increases from zero the two roots
separate— one decreases the other increases. To distinguish between the two

roots refer to the decreasing root as occuring at s = s, and the increasing root

as occuring at s = Sy-

It will be useful to construct solutions to (3.85) according to the
following prescription:
(a) If y has an expansion near a singular point s,

J=e
y(s) =4, jij aj(s—si)j
7=0 j=o j=oo
+ 8,(in |s-s,) Z aj(s—si)j + Z bl(rsl)l)
i=0 =0 (3.97)

(b} and (3.97) holds on both sides of the singular point, then y will be
said to be regular at s,.

Such solutions y are easily generated numerically by finding the
coefficients a. and b, then determining the coefficients 4, and B, by the
behavior of the numerical solution near the singular point. Having done this
Lhe integration is simply continued on the other side of the singularity. These
regular solutions are not eigensolutions; they will be wused to build
eigensolutions.

With this prescription, proceed to construct the distinct solutions y,. y,.
y, with lhe following properties:
yol0) =1 ; y, is regular at s,and s,
y,(s¢s,) =0 ; y,(s,) =7 iy, is regular at s,

Ypls<sy) =0 5 y,(s,) =1

(3.98)

If only one singularity falls within the interval 0 < s </ then only two
distinct solutions, y, and either y, or y,. are required. In what follows,
solutions y will be identified by subscripts if they are regular; all solutions
y are identilied with the value of A uzed in their generation by y(s,A).

The nondegenerate continuum stream eigensolutions are assembled as follows:
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2

¥(s.A) = s%(y,(s.A) + w(A) 8(s-s,) y,(s,A)) = S,y(SJ\)

(3.99)

where i = 7,2 accordiny as whether the singularity is decreasing or increasing
with A as described above, and where

uin) = - bl

(7
¥:(1.2) {3.100)

The degenerate continuum stiream eigensolutions are constructed in similar
manner:

YlsA) = S2yp(s.A) + 4, (A) 8(s=5,) ¥,(5.8) + uy(A) B(s-s,) y,(s.A))

m
s?y(s.\)

[if

(3.i01)

where the superscript : serves to distinguish the members of the basis set in
the degenerate (generalized) function subspace. Also

_y (1) + e (A) y, (1.0
Yp(1.2)

‘pa(A) =
(3.102)

is sutisfied so that ‘y¥(7,A\) = 0 as required. Notice the choice of the values
of the u is not yet uniquely specified. The orthonormalization of the subspace
will provide Lhis specification.

The inner producl (as described in (3.72)-(3.74)) can be expressed in lerms
of y using the identity

m 3
Y, = 2—5y+y,)s
{3.103)

as

1
(B0, YO = [ ds 25710y (s0) 'y, (s.07)
[/
(3.104)
(the * superscript is superf luous in the nondegenerate continuum.)
Differentiating (3.101) with respect to s it is easily establisted that
‘Y (s.A) =y, (s ) + ', (6(s—s, Yy, (s.A) + 8(s-s, )y, (s.\))

+ fy(d(s=s,)y,(s.8) + 8(s=s, )y, (s.A)) (3.108)
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(The values of u and s, are understood to depend on A.) This expression is to
be substituted in (3.104) to determine the u so as to orthoncrmalize the basis.
The calculation is by no means trivial and success exacts close attentlicn.
First consider the case A # A°.

Propitious use of the differential equation (3.85) yields the relation

b
[ as 2m7 y(s0) “y (s
a

m+7
£ ), (sA) THsA) = 80 Ly sAT) (s A 1

(3.106)

T (A-n

for intervals a < s < b in which no singularity of the integrand exists. Taking
note of the facts that

Als;A) =0 (3.107)

and

A(s (A"),A) = Als;,0) = A — A (3.108)
(for ease of notation introduce the abbreviation si(/') = s; a straightforward

though tedious calculation yields the result that ihe inne" product (3.104)

vanishes identically for XA = A’ as expected. The continuum eigensolutions for

different A are mutually orthogonal. In fact, the inner product (3.104) is

ilself a generalized function (of A.A") which defines a distribution with point

support at A = A”; the inner product vinishes on the open set excluding the

point A = A“. The strength of the distribution (the value of its mapping of the

unit function), itself a function of A, is the quantity needed for normalizing

the function space. [t is necessary there fore to evaluate the integral

A, 1
NA;e,07) = f d\’ f‘ds 2s™7 ty (sA) Ty (sA7)
A o
¢ (3.109)

According to the previous discussion, the integral n can be reduced to an
integral over the restricted -ange A — 6A < \” < A + §A where &X is small, and
fixed. Separate the integral over s into pieces which (respectively) include
(exclude) singularities of the integrand. Clearly, the latter vanish for &A
chore~n small enough since the s integration produces only finite results. The
only surviving contributions come from the neighborhood of the singular
point(s):
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A+SA 3,485,
Nie,') = dr” ds 2s™' ty (s,A) Ty (s.A7)
A-dA s,-ds,
A+dA sytds,
+ | dn ds 25”7 ‘y (s\A) *y(s.A0)
A=8Xx  s5,-65, {3.110)

It is crucial to realize the limiting process intended in (3.110) is such as to
insure, for all singular points, that

s; — s’y < [bs,
Is; = sli < I8s,1 (3.111)
so no matter what the value of A chosen, the points s = s, (A) and 5 = 5 (1)

are always included in the s integral. The only remainiig contributions to .V

can be wrilten explicitly as follows:

s, {Avar) s, +4s, 52
dr’ .
MAic, ') = ds, —{ ds 2™ ——01 4 4y ¢y S(s-s, )d(s~-5])
s,(x—ai) ds; ks'-bs, (s=s,){s-s7) o ! '

s,0A+6) S,+bs, .
i dn’ ] (Byp+'1B,,)(By,+ 1B, ,) .
+ ds ds 2s™+! 027 BrZa2\0p™ Betizd oouy u0yes(s—s }E(s—<))
s -1 - B 2 2 2 2
ds; (s-s,)(s-s3) (3.2

s,(A-8)) 5,-85,

Here B, is the coefficient of the logarithmic series in y,, (3.98), at the A
singula:, point, (3.97).
it is a result of the theory of singular integral equations a so known as

the Poincare-Bertrand Theorem, that for ¢ = £/¢ and in the limit as -, §->0:

T+E T4E

dw

T=f T

1

- 2
J ¥ e T

(3.113)

according as ¢{—>0(upper sign) or {->wflower sign). The integrals are understood
in the sense of Cauchy principle value integrals. Adapting this result to
evaluate (3.112) it is found that

m+7
NAieoo) = zp,czs/)\(j—)l\—_’(af,,nz + 4,0 0)

Sm+1

+ \7)2\_.,.1((592+‘/“1312)(302+L BBy 4yt )
(3.114)
In the nondegenerate continuum, (3.114) is simplified by taking 8,, = 0 and
either 5,, =0 or 8,, =0 according to whether the singular point is

respectively decreasing or increasing with A,
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In the nondegenerate continuum, the u, are determined immediately by the
integration algorithm (3.102,. Thus .V(A) can be evaluated directly using these
values as

23V

NN = 07

T + ()
(3.115)
“ae eigensolutions (3.99) are then normalized simply by dividing through by the

square root of N(A).

The degenerate continua subspace eigensolutions are orthonormalized by an
only slightly more complicated calculation. Recall the ‘s  are related linearly
through (3.102). Any choice of ‘n, and ‘‘u, determines ‘w, and *'u,. This then
also sperifies a basis set which spans the subspace. The idea is to choose so
as Lo orlronormalize the basis: this is accomplished by requiring both

N(Ase,o7) = NA) 6(e,e7)
and

NA;e,e) =N,
( ) ( ) (3.117)
wheve 6(¢,¢”) is the Kronccker delta. The first of these requirements assures
the subspace is orthogonal, the second orients the basis so that both elements
have the same norm. Requirements (3.116) and (3.117) comprise an algebraic
system in two uninowns whose solution results in the proper choices for ‘u, and
Ll’.l.".
-k, + V(K k, k%)
My =
1 kz
= 2y2
ky =8,,8,,mY; + 1,1,
ky, = (BZ,nf4+2)Y2 + Y2
2 2 2 2
k, = (82,0482, n%Y2 + Y2

Yo =yo(1,8) , ), =y, (1.8) , 1, =y,(1,A)

m+ 2 VA
c=4. Br VA—1 (_,),,,,,\/xﬂ (VA+7 ) ((VA=7 )22 (1-8) )™ *!
B mer VA S, VA=~ (VA=7) ((VA+7) 22 (1-8) )™+
2537 B 5

(3.118)

Using these values the normalization constant (it i{s the same for both elements
of the basis because of the chosen orientation) N(A) can be evaluated as
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2 B 2
N(A) = zq(:_.’i + 282 (1 - ZJ %) .z @uL;_BLJJL,,
2 2 2 13.119)

The orthonormalization of the degenerate continuum subspace basis s
essentially complete. There remains only to constructl the eigensolutions with
the prescription (3.101) using the values of ‘u, specified by (3.118). then
divide the construct by the square root of A{A). Figures 9-13 show some of the
generalized eigenstreamfunctions. These figures show the inverse tangent of
some mulliple of the actual generalized functions. The multiplicative factos
was chosen (after orthonormalization) for ease of viewing. An  interest'n
featurc of the orthcgonalized degenerate solutions (see figs. 10-11) i: that
Lhey are nearl!y equal (or equal and of opposite sign) i1n the rrzions interior to
and exterior to the singularities. There thus exist motions of the equilibrium
nearly entsrely contained within one of those regions.

A complete and orthonormalized set of generalized functions have now been
defined. Any of the possible motions of the gyroelastic screwpinch (any motion
in the Hilbert space) can be evoived by means of an invertible integra:
transform over the space of funclions elucidated above.

The intcgral Thcorem

Given an initial perturbation £(s,0,2z,0) and 1ts time derivative ¢(~.0.2.0),
find the subsequent motion of the system. Since V-¢§ = 0, represent § ax

E=ve (:3.120)

and restrict attention to the study of the stream function ¢.

First Fourier transform ¢ and expand the resulting Fourier ampl:itude in
eigenstreamfunctions:

! - - .- - . -
pen.0) = 51 [ aremin0” [ azremrtras,0027,0) <Y, (0 W5 0,)
n (3.121)

For the present Lhe sum over nonsingular subspectra ard integrals over relevant
continua is represented symbolically by L.

Next use the orthonormality of the ¥  (s.A ). Deal with a single mode of
definite & and m. From this point on subscripts k& and m are to be understood
attached to every ¥. The following orthonormality conditions apply:
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1

2
fds (5o IS AM(SAL) + 258 (s 0¥, (5.A, D) = 8tn.n)
[]

(3.122
for f\" (An_) members of the point spectrum;
r ma
{ ds (21 VO NS AT+ 2oy (5% (A7) = 8(A-\ )
° [EREAN
for A (A7) members of the nandegenerate continuae;
D s 7 R M ) 2 A gD = BOA BL)
’ (3.124)
fur members  of  the degenerate  continua. An equivalent  expression of  the

orthonormal «tv ol the ¥ can be obtained by integrating the secund terw I parts
in the above inner product integrals. There results

'

mé
I ds gl AL YOS — (2sy (s 1)) = dlnan’)
[’) ZN
{1.125)

for 1the nonsingular eigenfuncltions and analogous expressions for the syngular

ergenfunetons,

Project (13.121) onto an elemenl of the complete set ¥

a1 = N ala ) BOWAL D) = Y alr) dnn’) = alA )
— —r
n n’ (3.126)

Likewise, expressions 1nvolving the singular functions can be constructed.
{Closure can be eslablished by an extension of this calculation.)

Finally, proceed to write the entire expansion itheorem in detail as

S imﬂf ikz
®(s,0,2.t) =z /. e -mdke
met

WS W) ) + [ wsn) B + [ D Cvsh) Cv) + s ) (29.9))
— EI CII

n (3.127)

where C, denotes the nondegenerate continuum and C” denotes the {(doubly)
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degenerate continuum. The integral referred to as 7 in this expresston 1s given

as
2n v
Hownty = [ a0 0 [ @z ¢¥5 (8(5.0.2.0) cos wt + #(s.6,2.0) TE)
° - T (2.128)
The coup-de—grace s administered by simply evaluating
E(~,0,2.1) =V ¢(~.0.:2.t) (1129)
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(1IAPTER -1

Foroo Boundary Laycor Structure
Y Y

The Magne tohydrodynamic Discontnuily

The §inear motions of an  isorrhopic gyroelastic equilibrium with fixed
boundaries were characterized 1n the preceeding chapter. An ainvertible integral
transform over the space of generalized eigenfunctions was deceloped to evolve
arbitrary (admissible}) perturbations of the equiiibrium. It was found that the
presence of (uniform) gyroelasticity 1n the fixed boundary system translates the
spectra of  eigenvalues. This effect one might justifiab!l: call gyroelastic
slabilization. Consequently, the static (nonrotating) fixed btoundary cquilibria
studied can be classified as being gyroelastically stabilrzable; the parameter
Qﬁ. the so called gyroelastic frequency, need only be chosen large enough to
stabilize the eigenmode corresponding to the lowest value of w? (see figure 14.)
1t was found that this lowest value of w? occurs for m = 7 and a value of
helicity « between —=7T/v{(7-8) < x < -1,

The free boundary system is much richer in spectral variation; it exhibits
unique and intriguing properties which could hardly be predicted on the basis of
the fixed boundary results alone. As the fixed boundary constraint is relaxed,
the torpor of the placid spectral pond is shattered by an eruption from the
proximity of the Kruskal-Shafrancv point. For free boundary modes it is found
that the linear behavior {of the columnar screwpinch) for small vacuum gaps
between plasma and wall is dominated by eigenmodes which have no spectral
counterpart in the fixed boundary system.
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In this chapter, the boundary conditions joining the :isorrhopic giroelastic
fluid to a surrounding vacuum arc derived. It (< throuxh this calculation tha®
sceess 15 gained to the global dispersion relation for free boundary motions.

The task 1s accomplished with the aid of a mathematical construct: o
boundary laver whose thickness will be  <ubsequestly allowed to <hrink to an
infinttesmat and whose <tructure s chosen, for comenmence. Fiest choose the
boundary lover to obey the equaticns of ordinary  magactohidrodinami. v (no

gvroelasticity ) lLater, the effecls of finmite vroelast caty w. il be
resnstated The  gyroelastic ordering will be imposed prosentiy, bot not o1 the
out set

[

In the absence of  fingte-angular-momentum=density effect~ the wguat jons of
ordinary magnetohydrodinamie s can be  written asx follows tlor the moment adap!

tandard 4 veclor notation):  Hquylibrium, force balance.

.= Vp [}
Ltwear cod equation of motson
- /"“Je = A= + Jx88 - WV o
"ncompres<sibilily constraint:
Ve=0 [RERS
Ohm™ s law:
OE = 1.Ex8 (4.4)
Maxwell s equoalions:
%l = uodl - '(_2‘5! )
t4.5)
v-im=0 (4.6)
VXOE = 1
iwss (4.7)

and finally
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VoE= ¢

Yo (4.8)

In standard manner. Fourier analyze the linear motion 1n 8.z.t and deal only
with a mode of definite m.k.w by using the ansatz exp{t{mf+kz—t)) for all first
order quantities. (The lincarized equations then relate the amplitudes of the
l1nearized quantities.) 1 will refer to the prececding vector relations (4.2),
(4.4), (4.5) #nd (4.7) by appending subscripts when only a certain component s
referenced.  For  example, | will use (4.2)' to denote the 8-component of the

cquation of motion.

The equilibrium cerrent 1s given by

r
1ol =~ Bley + ~(rh,) e = VB,
(1.9}

where  andicates differentiation with respect to r, radius (Subscripts refer to
components. ) Xtipulating 8, then of course determines Vp also.

The natural  boundary condition al  the plasma—vacuum nterface for the
ithearteed system s that the [first order pressure be continuous across the
{perturbed} 1nterface. For the free boundary systiem this cean be written in the
equivalent forms (set p, = x, = 1)

A(élz+p)=.’.\(éiz)
Ax = AC

A]=0
fax] (4.10)

Circumflex (") will deno'e quantities in the vacuum and square brackets [ ]
surrounding a quantily will denote jumps in the quantity across the
plasma-vacuum interface. The Lagrangian variation operator A, defined in
Chapter {I, retains its original meaning here.

Proceed by first calculating Ax (the Lagrangian pressure variation inside
Lhe perturbed boundary. Then calculate the analogous quantity in the vacuum,
outside Lhe perturbed boundary, Ak. Equating these quantities as in {(4.10) will
result in a relation between the radial component of the displacement and iis
derivative at the boundary : ¢ _(e).¢/(e)

Expanding Ac (from (4.10)) find
Ac = 8-AB + Ap = B (8B,+ ¢ B.) + By(dB,+ ¢ By) + ép + ¢ p’ (.11)

Since, in aquilibrium,
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e Vp + éi) = o -(9-U8)
(4.12)

(4.11) can be expressed as

!
M = b - B3,
r
(4.13)

Now use (4.7)‘, 14.7)! to write 6@ as

o8 = m,(km})t - r(’:‘)'é,'a -8t e,
(4.14)

g clhimnate dp an (4.13) with (4.2)'; dx 1s thus represented by

1 7 . m . .
bk = fw(Bz;("”’o) + kB, - ;Bz)dlz' - 8,88)

+ /%("0‘”" - 6j,8, - &30t ,)

t115)
Next eliminale &) with (4.5)r. celimnate Js With {4.9) and again use {4.7) lo
eliminate {the components of) 68 1n favor of {(the componenis of ) 6€ and 1ty
derivative. In the resulting expression, apply (4.4) to replace SF and linally
replace (ré ) using (4.3). There remains an epiphanous expression of 3 in

which the only infinitesmals appearing are the components of §:

i 2 2
_ i W T oo P 1.2
Moo= BT + £ (k)= o D) - e,
* (4.16)
All quantities in (4.16) are to be evaluated at r = a and as usual we use the

symbol 7 Lo represent T = B,/B,.

It is significant to point oul here that £, has previously notl appeared in
any calculation. That’s alright. Don‘t fret. Eliminate i!. The method
follows along the lines of the preceeding calculation. Eliminate 6p by taking
the proper linear combination of the transverse components of the linearized
equation of motion (4.2)9,(4.2)2. Systematically replace 68 and Lthen 6F as in
the calculation leading to (4.18). The result (evaluated at r = a) is

2
2 (ke ) i u
kY + B (kwm) 2iBk(k4m- )~

Ez = Eﬂ < + fr
m 2 T\ m
Y+ Bz‘r(k-nna)c—z

2
m m 2 T W
a oY+ Brlm)
(4.17)

where the quantity & is defined as



Y= put - B (k)
(4.18)

With (4.17) to express ¢ and neglecting all but the lowest order terms (in the
gyroelastic ordering), {4.16) cen be revamped to become

2

a T U T s
M= -1 = gglput = BIkme)?) ¢ g BI2(kwme) = B €,

{4.19)

where poin the total (eleciromagnetic) mass density

p=p, +

o

{4.20)

Another usceful result can be produced by substituting (1.17) for ¢ n (1.3).
To lowest arder, the result (s the Tamilyar

Loy
£ = et +¢,)
(-£.21)
ax expecred 1n the gyroelastic ordering.

Forging ahead, proceed to calculate AKX, the Lagrangian variation of the
magnetic pressure in the vacuum. Maxwell’s equations must be solved in the
(helically rippled) annular domain between the plasma and the wall. Once having
found the fields in this region, AKX can be evaluated as

A = B-oB =B -(oB + ¢-VB,)

(1.22)
where io 1s the vacuum equilibrium field and 88 solves the wave equation
2 1 a2v:8
(V< - —za')dl =0
c
(4.23)
in the vacuum, subject to the constraint
v-sl=0
(4.24)

The system (4.23),(4.24) admits two classes of solution: (t) thes. in which the
magnetic vector potential 6& is longitudinal, so that 68, = 0 and (2) those in
which the vector potential is purely transverse so that 651 # 0. The wave field
in the annular region is a linear combination of these solutions.

Let

8 = K,(ar) + c I (ar) (4.25.1)
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and

B = Km(a'r) + cof (ar) (3.25.2)

where €y * €y

satisfies

K. and I, are hyperbolic Bessel functions of order m and a

2
2 2 _ @
= k2 -5
a o2
11.26)
The vector potential 6&¢3) 15 then given by
SR = ¢ |68,0] + c,}0.63} 12
wiere the quantities 68 and 64 are defined by
o8 = (_1. Lo+ _1 g'e )Ql(mﬂokz-ul)
ikar T mk 8
(+.28.1)
and
a ! 1{m@+kz-
6A = — Be e metkz-wt])
imax z
(4.28.2)
Defining the quantities
~ T, 1 P i, 1
6b=_;lﬁ."+c;_rﬁ.5'6g=_;1g."+a—r§.9 ,
(4.29.1)
and
a @
B=~p8:68= -~
B io8=_ 8
(4.29.2)

the fixed point variation of the vacuum magnetic field amplitude can be
expressed as

2
oB'3) = c,|ob,68| ~ C—‘ﬁ;a c,}6b*,0|
(4.30)
Maxwell’s equations then yield the fixed point variation of the electric field
s8I as

2
6B =2 (e, 16801 + 5 c,185.08)
(4.31)
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The coeflicients ¢,, c,, ¢, and ¢, are to be determined so as to satisfy
boundary conditions at both a: exterior conducting (rigid) wall bounding the
vacuum region, and at the helically deformed plasma—vacuum 1nterface.

At the conducting wall, r = a and 1t 1s required that

Al 583 = ¢

(4.32)
and
al PDxE = 0
(4.43)
be satisfied. m = e is a umit normal to the wall. A cursory examination of
{1.30) and (1.31) reveals that
aa ) = f'(ca ) =0
flaa,) = §"(aq,) 1)
satisfires (1.32) and (4.33). This determines C4 and €y KO as to render
. K (aa
Blar) = K (ar) - {A——“J { (ar)
m I'(aq,) ™
mow La.36.1)
and
. K _{aa
Blar) = K _(ar) - (alaa,) [ (ar)
m | (o) ™
moow (+.35.2)

as the correct combinations of Bessel! functions to be used.

To get AKX, il is yet necessary to evaluale coefficients ¢, and c,. This can
be done by integrating the equations whose linearized forms are given by (4.4)
and (4.6) across a thin transition layer bounding the plasma al the
plasma-vacuum interface. The result is the requirement that the normal magnetic
field be continuous across the boundary

n(8] =0 (4.36)

and the jump in tangential electric field {due to the motion of the boundary) be
given by

nx<[E] = n-v[B]

(4.37)

These two equations are now varied to give relations which obtain at the actual
(helically cdeformed) interface. From (4.36) there derives

An-[8] + n,-[48] = 0 (4.38;
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and from (4.37) find

A €1 = n, -v8] (4.39)

The perturbed surface normal is obtained by noting

n=—-Vrr ¢ )= e (-1+]) + oaiigfr) + @ikt =, +an

(1.10}

Form the scalar product of (4.38) with the equ:ilibrium magnetic field s,
The requirement that the paralell electric field vanish within the plasma then
gives the result

ByoE, + B6E_ = ~ iwt (B,[B,] - B,[8,]) Al

Fur hermore, by (4.14)}, inside the plasma it is requircd that
m .
68_ = lafrﬁa + k¢ 8,

r

{-1.42)
This in concert with (4.38) puarantees that ocutside the interface
m .
0B, = 1;£r55 + 1~£rﬁz
(1.43)

Equations (4.41) and (4.43) form a simultaneous }linear algebraic system in Lhe
coefficients ¢, and c, whose solution is

2.2
. L gmk
e, = €r§i(~egfg+§z"’")
L1
c, = 1£TE(§aam)
(4.44)
Finally, AE can be written as
R km . k2 2 ‘. 2 ot
st =- ¢ L AT T o) B 22
T8 oa a’a g oc a (3.45)

Enforcing the gyroelastic ordering and also taking the limit ke << 1 for
simplicity, (4.45) reduces further to

2= 5% Fla_ @ el
TR e T (4.46)

where



1+ (a_w)ZM
a

1= (Gwyzm
e (4.47)

Equating the expressions (4.19) and (4.46) as required by (4.10) (first
order pressure balance) the ordinary magnetohydrodynam:ic disp=rsion relation
{(within the gyroelastic ordering, but without gyroelasticity) appears as

o= AR

p p 1
- Islge(pwf—af(umg)f + gr(;%(lﬁmg))) - B2, 72
= 2
= £ B2 T((kml)2- %) - 72l
m a C a .
{4.48)

The Cyroclastic Nliding Diccontinuiiy

The condition (4.48) characterizes the discontinuity at the interface
between an MHD fluid within the gyroelastic ordering and a vacuum. However, we
wish to generalize the condition lo include the effecl o finite gyroelasticity.
To accomplish this, it is necessary to determine the character of a gencral
sliding discontinuity between two different isorrhopic gyroelastic fluids. The
stiding discontinuity allows a relative sliding of mass and fluid on opposite
sides, but not across the discontinuity. 1t coincides with an isorrhope.

Once this lask 1s completed, the trick will be to meld the two types of
discontinuity into a single structure representing the transition layer between
Lhe gyroelastic medium and the vacuum. The result will be a global dispersion
relation for motions of the free boundary gyroelastic screwpinch.

Begin this part of the analysis by projecting the nonlinear equation of

motion (2.36) in the characteristic representation onto a surface normal »

n = ce + g“.z (4.49)

where ® is parallel to the direction of Vs and ¢ is of order ¢ relative to o.
The resull can be cast in the form

Hpey®) — . U< — p D*av® — T =
p D*(nev’) = Q 8 (n1) + nVc - p D*nv’ ~Q AT =0 (4.50)

A discontinuity can be modeled mathematically as a limit. A region of finite
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thickness, a transition layer in which continuous changes occur, 1s caused to
shrink (the properties of adjoining regions being maintained throughout.) The
limit of the process is a discontinuity. Some quatities nterior to the
transition layer remain bounded throughout the procedure, some do not. Lel us
signify thal a variable remains bounded by

F <o
(4.51)

In particuiar, it is evident that the foilowing quantilies fitl the description
of quantities which remain bounded:
s,D's,n,Vn,D*n, 7,0 0,3 @ < > ~
z x (1.52)
We also requite that Lhe zeroth order pressure be continuous across the
discontinuity (sharp boundary effects will be discussed in Appendix {{.} Noting
also that owing to the isorrhopy of the configuration, ma-7 = 0, it cun be shown
from (1.50) thal the quantity
p D' (m-v') + B-Vx < o ~
{1.59)
is also bounded in the transition Ilayer. Since also D'p = 0 and V-v' = @,
(4.53) can be rewritten as
Dt (p(m-v')) + Ve — kVep <
(-1.91)
(within the transition layer.) As an immediate consequence of this, it follows
that

3,(p(nv*)) + V-(vipn-v' + M) <

(4.55)
v differ cnly in their tangential components. Let m-v* = u and integrate
(4.55) across the transition layer to find
2 2
-u +w +[«] =0
o] + w*lp] + [x] {4.56)
The inescapable concusion is that x is continuous across the layer
k}=20
[ ] (4.57)

This relation might be viewed as the gyroelastic generalization of (4.10),
keeping in mind that the « in the two cases are related, but not identical. The
x in (4.57) is given by (1.83.5). To be more precise, x is given by (4.10) to
lowest order (0(£°)); (1.83.5) gives the next towest non-vanishing correction to
k. It belongs to the mystique of the gyroelastic regime that perturbations to
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both contributions to the pressure enter at the same order in the analysis of
the boundary layer structure.

Continue the calculation by projecting the equation of motion (2.36) onto an
isorrhope, noting since

I
o

Tt _ .
[oDv -Q@o 71+ W] (4.58)

then also

Vs [pDvy -QoT]=-Vs[W]=~-9s-V[n] =0
[o @ 0,71 [v] [x] 1.59)
Now vary a slate in which there exists such a sliding discontinuity and examine

the behavior of Lhe variation at the disconlinuity. Since (1.59) holds quite

generally, 1t holds in particular for the varied stale and thus also for the

(Lagrangran) variation of the state:

A(Ves-[(p D*v' - @ axr)]) = A[V's-(p D*v* - @ a‘r)] =0

{1.60)
Making usc of the identities
AV's = V*s-V¢ ; AV -VA =0 : As =0
{4.61)
the linearized jump condition can be expressed as
[, P P ¥ oo, ity -
[V*s-Ve-(p Div Q 6)(1’)] + [V*s-{p DD'¢ - Q aiaxr)] 0 (1.62)
For the case of the steady [low equilibrium considered in chapter [ll, making
use of Lhe obvious condition
n =0 = Vs-
e &) 1.69)
(4.62) can be reduced to the form
¢ [p(e?+ 02~ (@(0))?) + B ((kwm)? — k7))
+ [£,(p((emt )2 m?02) - B*(km)?)] = 0
(4.64;

where all quatities are to be evaluated at r = a.

Since ¢ is continuous it is necessary only Lo distinguish ¢, on the two
sides of the sliding discontinuity. Identify the é, in (4.48) as occuring
outside the discontinuity. ((4.21) is valid on both sides of the discontinuity;
it can be used to eliminate ¢, inside the discontinuity in favor of ¢ and ¢;.)
Finally then, wusing (4.64) in (4.48) the generalized boundary condiiion can be
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written as a condition on the logarithmic derivative of ¢, at (immediately
inside) the surface r = @. The result is

2
, @PlomT Z3) - B (kD)2 (1mT)~2or (mD) )

.

g=" @ T
r p(wzﬂmzﬂﬁ) - Bz(k+mz)2
(4.65)
The boundary condition is to be used as follows: integrate the Euler

equation out to the plasma-vacuum interface and compute the logarithmic
derivative of the Euler solution-its value coincides with that given by the
retation {4.65) in the event that the value of ®* is an eigenvalue (and the

solution is an eigensolution.)

The trajectories thus traced in x—\ space represent the global dispersion
relation, for free boundary motions of the gyroelastiic system. Figures 15 and
16 show results of this calculation. I[n figure 15 the vacuum gap is allowed to
increase from zero producing a range of unstable modes near the
Kruskal-Shafranov point. In this case the speed of light has been taken to be
negligibly large reilative to the Alfven -veed. The fixed boundary (model) pinch

(top pictures) appears to be gyroelasti '' stabilizable only as a consequence
of the fixed boundary model assumptions As ‘he limit of a free boundary system
(ie. for vanishingly small vacuum g. ..« pinch is nol stabilized. In the

latter case the range of wunstable modes shinks to a point at x«=-7. Figure 16
shows that increasing the Alfven speed (relative to the speed of light) gives
rise to (displacement current) eifects which tend to decrease the growth rates
of the unstable modes, though never actually stabilizing them.
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CHAPTER &5

The Emergy Principle

The Columnar Pinch

The equation of motion describing linear motions of a gyroelastic screwpinch
equilibrium was derived in chapter I1l from a small amplitude Lagrangian.
Minimizing the action integral

63 =fdr T {SE 2 gE?) =f dr £¢,87i7) =0

(5.1)
led to Lhe Euler-Lagrange equation
ar ar
(= )' - = =90
at” a
¢ ¢ (5.2)
which can also be written as
) —rgE =0
(rf€7) 9% (5.3)

To get an energy principle for the free boundary system, siuwply form the scalar
product of (5.3) with & ther integrate over the domain. After an integration by
parts this procedure yietds



[ arrser? « rge?y = | et
/] 0

(5.4)
The coefficient functions f and g are given by
= or2((Y ooy @ @k Ty,
£=prG - 00N Sy =2+ D))
(5.5)
and
= (=12 - qtonyz- @ 9k L Tyzy _ L@ oKz,
g = (m*-1)p((2 - 000)2= 25 = 20+ 27) - 7(e()* - Q()) 5o

The class of equilibria chosen previously consisted of the addilional

restrictions:

Py =Py i Q=8%

(5.7)
isolropic (material) pressure,
522 = (0% = constant
e (5.8)
uniform gvroelaslic frequency and
0o = o
(5.9)
zero canonical {angular) velocily. The syslem is thus self adjoint. Lastly,
Lthe equilibrium was chosen to have a uniform curr-rt density. With these
provisos, the coefficient functions f and g can be expressed as
£= () - ) - 32t + Tay2)
m 9 e'm a
(5.10)
and
= (m? Y2 _ g2 2k L Tayz We _ peozikizy.
= (m*-~1 =) -0) -B(u+ -8 ~rlp(=)* - B =
g = (m~1)(p((0)? — 0F) - B2 + 2)7) ~ r(p(3)? - BRA(D)?) o

where u?(r) is the {normalized) profile of magnetic pressure 5%(r) (subscript .
indicates the variable is to be evaluated at the plasma-vacuum boundary = = a.)
Substitute these last expressions into the energy principle (5.4); there then
remains only to make use of the boundary condition deiived in chapter IV to
complete the calculation.
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The analysis of the boundary layer disclosed

ST g = - a%2(a) 12 < azg2n
o ¢(a) (5.12)
where
o) — B2((ewmm) 2 (14T ) - (kD))
A= pmize a a a a
pla?-m?0?) ~ B2(km=)?
e (5.13)

Using A for the logarithmic derivative (of ¢) and owing to the self adjointness
of the system guaranteed by (5.9) it is possible to collect all terms involving
w? (in (5.4).) Dividing through by the multiplier of w? leaves the energy
principle in the anticipated form

2o W)

N(¢.E7) (5.14)
where numerator and denominator are given as
a
oW = f dar r((pmzﬂﬁ + Ei(ku*m%)z)(rzﬁ’z + (m?-1)£2%) - Bikzuz’rfz)
0
2,202 T T T
+ a®¢ 282 (kAm= ) ((ketme ) (74mT }-2m—)
a a a
(5.15)
and
a Bz
N=f dr r{p(r¥e7 % + (M*=1)4%) - p're?) + ?¢l(p, +mY 8)
4 (5.16)

Some general comments might be made here on the nature of the above result.
First, it is clear that N, the normalization, is a positive definite quantity,
as it must be. It follows that for instability (w? < 0) the potential energy
due to the presence of the perturbation ¢, ¥, must be negative. Furthermore,
since the Euler solution minimizes the value of w? any trial function giving
W <0 proves the presence of instability and estimates an upper bound on the
value of w? (for the fastest growing eigenmode.)

Secondly, it can be seen from (5.15) that ary amount of gyroelastic
stabilization can be nullified by simply choosing a trial function such that
¢ =0andm=1. Such a perturbaticn would be a reasonable choice as a trial
function for estimating maximum growth rates. Before analyzing the stability of
the columnar pinch, however, let us digress momentarily to generalize the
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equilibrium slightly so as to include the tubular pinch. An analysis of the
stability of the tubular pinch will then include the columnar pinch as a special
case.

The Tubular Pinch?®

Consider a gyroelastic system in which Py =Py =P and the equilibrium
condition

B &

is salisfied. The geometry is as shown. Take the equilibrium configuration to

(5.17)

obey

B(a;) = B(a,) = B, {5.18)

so thal

pla;) =pla,) =0 (5.19)

Allow an axial current densily Lo flow in Lhe central conduclor as well as in
the plasma sc thal the poloidal magnetic field B, 1s given by

a,
By = By, qQ,; <7 <o,
B,= B,, 5 +8 <r<
s = Pai g ap a, <r<a,
a, a a
By, = (By; &‘ + By (a}) ;2 = By, ;2 a <7
* {5.20)
For convenience of notation, define the following quantities:
B (a, B, .
7, = 7(a,) =éﬂ-(—:—) =B..B.:
o 0 (5.21)
and
Byla,) _ By,
T, = 'r(a,e) =B :B
0 (5.22)
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By a calculation entirely equivalent to that leading to the boundary
condition for the columnar pinch presented in chapter IV, it is found that the
condition which must be satisfied at the inner vacuum—plasma interface is

oy = ey (5.23)
where
8%, = ¢ B2(~ TN, ((ktm—)2~ %) - Tj)
1= 68 mi ( a, cz) a,
e 3 (5.24)
and
, & 2_ 202 2 Tiy2
e, = &g SplePmlZ) - BE(kin)?)
3
2
Qa2 o2 T . 2,7 Tiy _ pell
+ g, (Fpw B,,(Icﬂn;i) )+ BoZ kem ) B,,;i)) 5.25)

The logarithmic derivative of ¢ at r = @, is thus required (for ¢ an eigenmode}
to satisfy

2
oo ZB) = BY((demi) 1ok, B i)

E_; P 7_( i — )
L pw-m202) - B (kam )2
9’ 4 a,
e (5.26)
where
1+ (Cuiyzm
1 £ A, = ————JEL——— € oo
1 = (Gwiyzm
% (5.27)

At the exterior plasma—vacuum interface the mate to (5.26) is given by

z(mTB-lz? — B2({kim—2)2(1+mT )-2m- (k+m=)
w*{pmT, 5 5 (( mag)(ﬂne) a‘,( ”"a,’

)
ple-m?0?) — Bﬁ"kﬁu&g)z
e (5.28)

where



(Gueyem 4 g
1T, = %—— € o
(Gue)em — 1
e (5.29)

By following the procedure outlined previously for generating an energy
principle for the columnar pinch in the form (5.14) the analogous relation for
the tubular pinch can be formed. The result is

o2 = MEE)
N(EE
(¢.¢7) (5.30)
where now the potential energy due to the presence of the perturbation is
ﬂ'
oW = f ar v {(em®0i+ Bf,(mmlxh)z)(rze'h (mP=1)¢%) ~ rBKu?" ¢7)
u. T2 e r
+ aZe2B5(kPm® -5 + T (kim-2)?)
- e
- afgiBglk?m? p — mh (kim1)#)
* t (5.31)
and the normalization i1s
al
N= f dr r(p(r?s 2+ (m*~1)§%) - p'7¢%)
H 2 B 2,2 8
+ altip,+ ’"Te(_fz’) - aiéip, - m 3)
(5.32)

The two funclions u and h in (5.3i) describe the particular equilibrium profiles
chosen as follows: Lhe axial field is to be specified as

B(r) = Bu (5.33)
In order to satisfy (5.18) and (5.19) u must obey
ula;) = ula,) =71 (5.34)
and
< < 1 . < < a
0 < u(r) a, <7 <a, (5.35)

The poloidal field is given by (5.20); this defines h as follows:



B, = Bogfrh(r) a, <7 <a,
[

(5.36)
The only requrements on h{r) are that
Ma) =1 (5.37)
and
et (5.38})

Otherwise, the particular form of h is determined by the choice of axial current
density profile (within the plasma.)

Stability Of The CGyroelastic Screupinch

As discussed earlier in connection with the energy principle for the
columnar pinch, gyroelastic stabilization can be completely nullified by
choosing a rigid body displacement for a trial function, with m = 7. This is
true for the tubular pinch as well. Consider the energy principle (5.30) for
such a displacement to get an estimate of the maximum growth rate to which the
unstable system will be prone. The perturbation potential energy, W, given by
(5.31), can be represented for this trial function as

oW

trial

ul
= f dr r2(- B?k?) g2
a

.

TR W

.
+ aﬁ&fﬂﬁ(kzﬂmz £ + mTe(k+m&3)2)
e

<)

2 T,
- @283 (k*-mP 4 - m)\i(lcm;)z)
T

S

(5.39)
where ¢, will be specified presently.

Two questions arise immediately with regards to (5.39). First, can ¢, and
¢, differ? Secend, can ¢ be constant and meet the boundary conditions? The
second question can be dispensed with easily by choosing a trial function which
meets the boundary conditions differing from constancy only in a thin region of
thickness ¢ near the boundary. The contribution to ¥ from these regions can be
made as sinall as is desired by choosing & small. The boundary contributions
remain unchanged.
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In response to the first query, consider a trial function which is uniferm
on the domains a, < r < e —¢ and a +¢ < 7 < a,, but has a different value on the
two domains, say £, and ¢ . The resultl of substituting this trial function in
(5.39) is a positive contribution at r = a_ of order ¢~'. Clearly, the case
é, =&, = ¢, is least stable. Therefore, choose §p = 7. The energy principle
is then simply

ﬂ.
- ngz f dr r%2°

ay

2 2
+ a2B2(ke-m2Tg + mT, (k4m=)?) — a2B2(k2-m2 4 - mh, (k4m=)?)
a e a tro af i a,
w2 < £ o - S iihed N i
ul
2 2z B 2 B
=) dr p” + l(p + mTeég) - (e~ mAiég)
a, (5.40)
Now select an example. First exeamine the standard columnar pinch case dealt
with (as a fixed boundary system) in chapter III.
Case |
The standard columnar pinch is specified by
P =Py
2 T y2y . 2 = 9g"
=1 -8(1-(- ; = 28+
w BUHZ)?) 5w = %
@, =0 (5.41)
Applying (5.41) to (5.40) there results (withm = 1)
2
T T
k21~ E) - £ + T (kt-2)?
2 2 2
w? g 6wtr1‘nl ___Bio < a, ¢ a,
Niziat  Po 14T B
€p o2
o (5.42)

To find an estimate for the range of k£ for which instability occurs, set the
right hand member of (5.42) to =zero and solve for the two roots k, of the
quadratic. These two roots bound the unstable range of k values (estimated by
the chosen trial function.) It is thus estimated that modes withm = 7 and £ in
the range defined by

Ern o+
k = ___T_LT;( -7z '2_—T*
a1+ 1, =5 .

(5.43)
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are unstable. Clearly, as T  increases without limit the range shrinks to zero
width about the Kruskal-Shafranov point

ka
—_

Te (5.44)

The estimate of maximum growth rate w: occurs [or the value of k minimizing

(5.42)

= ~7

B T
it +1, -5
(5.45)
Evaluating w? there results
22
B 1(1 - &
paz e 2
U2=— 0 e (1_ ,E’
1+T=—g—2 (’re+1—§)
Pa (5.46)

It is significant to notice that as T_ increases (s the outer wall approaches
the plasma-vacuum boundary) &, apprcaches the Kruskal-Shafranov peint ard the
maximum growth rate goes to

%‘.
;C
1
!
o
2
8]
Nz

T,oe 1T,
Po (5.47)

Note that this growth rate is proportional to the parameter 8.
Casell
Let us now turn to the tubular pinch. After an integration by parts (5.40)

becomes

al
2 Bak? f dr ru? - B%%%(aZ - df)
a,

2 2
+ afBg(kzﬂmztj + mTe(k+mI’)2) - afBg(kz—ﬂ?ti - mAi(k+mTi)2)
o < 5 a a? a,
»* Bz
2 vf dr rp + (afmY, + a%mr )-8
o ¢ (5.48)

For simplicity, normalize ihe variables as follows: take
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T a T Q. ka
§= - ;. §, = H = &3 . = —F
£ ¢ {5.49)
and let
.
p,,=deP
s, (5.50)
Define o by
1
f ds uf = a1 - s;)
sy (5.51)
where 0 < a < 7. in terms of these variables, the energy principle for the
tubular pinch, (5.48), assumes the form
2 ac +bc+c
W ——
d
(5.52)
where
a=1-(1-s;)(1-a) + T, + s,(A,~7)
b=2Y +2ns.A;
c=T, 1 +n%s (1))
B2
d=1+ B(T +s.A.)
p e Tt
o (5.53)

Proceeding as before, estimate the minimum value of w?., The value of x for
which Lhis occurs is

Lol b
LI
@ (5.54)
so that w? is given by
b% (T, +ns.A. )2
PR U A P Sl SHLI bk ShL I AT, 25 (N +
2 4q ¢ a(7=s.) + T, + s A, e T 1T F s A H)
7 4+ —2,(T, + s,\;)
B, it
(5.55)

For the tubular pinch w: is not necessarily negative; indeed there do cxist
stabilized cases for regions of the parameter space mapped by n, T_, Av &, 8,

*
and 05.
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APPENDIX 1

The Poincare—Bertrand Theorem

The Plemelj formulae are used in the following derivation. If

Fiz) = - b a0 7o) =

for z not on the contour ¥, then

FH(r) - Fo{(1) = f{7)

Pﬁ)+rh)=é%Owa)G£3
or, equivalently

FHt) =+ % F(r) + é%i ﬁo do f(o) (—L—

o-T)

and

P == 0 s e st

(A1.1)

(A1.2)

(AL.3)

(A1.4)

(AL5)

where the *+ indicates a 1limit is to be taken as the point z (off the contour)
approaches the point 7 (on the contour) from inside (outside) the contour.
Inside and outside are understood as left and right respectively if € is not
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closed. This is equivalent to using the contours €° + €* in the accompanying
figure. If the singularity 2z is on the contour ¥ is understood to be Lhe
contour €° giving the principal part integral.

Define the following functions:

1
¥(z) —lé" d“%o A R pramyy pret (A1.6)

and
1 1
Hz) 2§ do ¥ o elo) o5
(A1.7)
It can be shown that for 2z not on ¥ #(z) = ¥(z) since the singularity at 7 has

been removed. By partial fraclions we write

: 1 B SRR 2y
¥(z) —%" Sl prwes %ﬂ o o) (T~ o)) © # W) (A1.8)

Using the Plemcl] formulae it can be shown Lhat

Y w.1) - ¥ (w.T) = 2rip(w)

(A1.9)
since
F do plo)
W) T
(U—U) (A1.10)
doesn’t « end on the manner in whicii z approaches 7. Aiso
. - & J
V. T) + ¥ (w.7) = 2(c7) ¥ do lw) —
! (o-0)(0-7) (ALL1)
Apply the Plemelj formulae (Al.4) and (Al.5) to (A1.8) thus obtaining
1
YH(t) = + mig*(r,T) + %0 dw yH(w,T) ——
(1) vt (r.7) WleT)
(A1.12)
and
1
- = - iy~ { %0 - ) —
¥o(t) iy, T) + dw Y~ (w,T) =) L3
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Add (A1.12) and {A1.13) and use (A1.9) and (Al.11) to cast the sum as

7

¥(r) + ¥(1) = = 2nip(r) + 240 do §° do plo) (=) (o=}

(A1.14)

From the Plemelj formulae and (A1.7) it is found additionally that

1 7
¢*(t) + b (1) =2 ¥; do ——, aw g(w) ——
(1) + ¢%(7) ooy B e@) oy
{A1.15)
Finally, recognize that since ¢(z) and ¥(z) can be equated so also can the left

hand sides of (Al1.14) and (A1.15). The resul! is the Poincare~Bertrand Theorem

ntg() =0 do § do plw) e o o # d o) o

(AL.16)
No particular restriction has been placed on the contour € in the above. ‘In
general the contribution of each term on the right in (Al.16) will depend on the
parlicular contour chosen. We have a particular contour in mind, however, for

use in determining the normalization constants for the singular generalized
functions of Chapter 1{l. The result is summarized in equation (3.113).

A more modern form of the above theorem can be stated simply in terms of the
4 distribution as

7
do ———— = m28{w—T1)
f (e-0)(0=7) (A1.17)

The advent of distribution theory was indeed an advance in mathematics.
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APPENDIX IT'1

The Sharp Boundary Screupinch

Consider the case of a uniform plasma equilibrium with p(r) = P, inside a
transition layer near the edge of Lhe plasma. In the lransition layer the
pressure is brought smoothly to zero and the fields adjust so as to assure
pressure balance in the equilibrium state. In the absence of gyroelastic
cffects lhe boundary condition is that for an MHD discontinuity such as was
discussed in Chapter IV, namely equation (4.48B).

In the transilion layer {in the sharp boundary model) there exist gradients
in quantities such as p, p, B, K, M and Q so that in general the canonical
velocity v'%" and the syroelastic modulus @ do not vanish. Turner3® uses the
condition thal the e e  slress at either side of the transilion layer balance.
Consider an alternative view in which Ax is to be determined near the oute:r edge
of the transilion layer by integrating the Euler equation through the layer.
Balancing the result with AC (the generalized pressure in the vacuum) will then
provide a dispersion relation. (The result is at variance with Turner’s®® due
to a nonnegligible contribtution to the balance of the e.0, stress.) Thus we
allow for contributions to the stress balance arising due to the presence of the
laver 1tself. This is analogous to allowing for the presence of surface tension
in dealing with a soap film bubble.

The Euler equation 1is as given in Chapter [Il, equations (3.22.1)-(3.22.3).
As the layer is imagined to grow thinner so that the smooth transition of
quantities approaches discontinuous behavior, those quantities proportional to
gradients become large, of order h~' where h is the layer thickness. Those
quantities in this category are specifically nted, ﬂy (thus @) and Q°.

integrating the Euler equation across the transition layer there results the
jump condition

-A2,1-



[76°] = (m=1)a?(= 2ratpl®)) + m2(p0*07) )62 — ?(w[o] - £2[Q1)

(a2.1)
where
a
N H
(palod; = Ef dr pat?)
a-h (A2.2)
and
a
(p*Q™) = % f dr p0*Q”
a-h (A2.3)

Sliding discontinuities of the variety discussed in Chapter IV occurring on
either side of the transition layer annihilate each other (in the absence of
gyroelasticity for r < a-h owing to the uniform pressur¢ equilibrium chosen.)
The solution to the Euler equation for r < ae-h is well known (see Turner®® for
example} and the dispersion relation which obtains is

= 2
m{pw?- B2q?) + B2(q?—?) — B2(§%(1+mT)- k?— 2m T; q - mT ‘:—2>
+ (m2—1 ) (=2 {pQ' %))y + mz(pn*n">)g =0
(A2.4)

where

q=k+m£;q=k4m
(A2.5)

and T was defined in Chapter [V.

There remains only to evaluate {pQ'°}) and (p0*N"). For simplicity, choose
0*0" to vanish within the layer so that ¢ = (ntoryz,

Choosing the gyrophase independent distribution function to be Maxwellian a
short calculation yields the result

h m D
(pﬂ‘”’)—: — 2
2 V(71
a a®e B,v(1-6,) (A2.8)
where
B%(r<a-h)
By,=1 - [
0
. (a2.7)
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Using this expression in (A2.4) yields a dispersion relation in agreement with
that of Pearlstein and Freidberg?’.
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