Gyroelastic fluids *

G. D. Kerbel

By
 GARY DEAN KERBED
 B.S. (Cornell University) 1969
 M.S. (State University of Hew York at Buffalo) 1974

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of DOCTOR SE PHILOSOPHY

ת

Enginccring-Applied Science
in the
GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA
DAVIS
Approved:

Committee in Charge

Deposited in the University Library
Librarian

DEDICATION

To my family:

 אשד פקח עינינו בסצוחיו ;צונו צחרציק נר שא ו־עה ותבונה:

ברוך شחח •• «\%
שחחחינו וקימנו וחניענו צזפן חזח:

ACKNOWLEDGEMENT

I would like to acknowledge those whose efforts on my behall have made possible the completion of this work:

First and foremost 1 wish to thank William Newcomb who served as my thesis advisor, mentor and protagonist and whose monolithic scientific integrity above all else guided this reserch.

Next. I owe a debt of gratitude to Abraham Goldberg for the patience and magnanimity with which he nelped me create a representable dialectic on so many occasions.

Thanks go also to Richard F. Post and G. Donald Chakerita for thesr critical reading of the manuscript.

Further. I would like to thank Art Walstead for many encouragirg discussions during the period of our mutual penance: Paul Renard for his invaluable ciues in dealing with the inscrutable; Ken Struve for teaching me the rudiments of TRIX-RED (the softwnre used to generate this document); and finally Hank Moll and Kelly o'Hare for helping m? resurrect those dead TRIX-RED read TRIX-RED tricks.

This acknowledgement would certainly be incomplete without giving due thanks to the many members of M-Division who provided the s.imulating and provokative environment necessary for personal growth.

$m=1$ 引rliral Zink 尹prturbalian

$m=2$ Zarliral Gink Berturbation

TABLE OF CONTENTS

Abstracl I
Introduction 2
Notation 6
Chapter 1: Description of The Model 10
The Gyroelastic Fluid. 10
The Isorrhopic ©tate. 21
Chapter 2: The Action Principle 31
The Generalized Lagrangian 31
Geometrical Optics 39
Chapter 3: Motions Of A Gyroelastic Screwpinch 46
The Equilibria 45
The Point Spectrum 56
The Continuum 66
The Integral Theorem. 75
Chapter 4: Free Boundary Layer Structure 78
The Magnetohydrodynamic Discontinuity 78
The Gyroelastic Sliding Discontinuity 86
Chapter 5: The Energy Principle 90
The Columnar Pinch 90
The Tubular Pinch. 93
References R. 1
Bibliography B. 1
Appendix I: The Poincare-Bertrand Theorem. Al. 1
Appendix lI: The Sharp Boundary Screwpinch. A2. 1
Figures Contextual

Klank
viii

ABSTRACT

A sludy is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a parlicular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. /sorrhopic equilibria are analyzed within the framework of geometrical optics, iesulting in (local) dispersion relations and ray constants. A general schemn is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium.) Delails of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

INTRODUCTION

The theoretical model is metaphor used as a toal lo represent some bspect of reality. We analyze the model as surrogate to nature. Its succe is gauged in its simplicity and its pertinence. If the model is intractable little can be learned of it. If the model is inapplicable or irrelevant little can be leartied from it.

To assure simplicity we symetrize; to assure relevance we choose a s:mmetrs which persists in accordance with physire' law. The underlying symmetry dealt with in this work is permutation symetry. a concept developed by lewcomb ${ }^{21-? 2}$ who called It isorrhopy.

The presence of a symmetry can be expressed by identifyong its associated infinitesmal symmetry operation. An operaltion which leaves the action irtegral of a Lagrangian system unchanged is a symmetry operation. Noether's theorem states that every such symmetry operation irduces a conservation law for a certain physical quantity; the quantity can be given oncr the Lagrangian is known. For example, translation symmetry gives rise to linear momentum conservation. To find the conserved quantity one has cnly to lind a variation of the action which leaves the action integral invariant, tut does not vanish at the limits of integration. The essential feature o: the exchange invariant or isorrhopic fluid system resides in the invariance of its action integral under symmetry uperations called permutations. A permutation is a virtual displacement which leaves the solution at a ifed space-time point relevantly unaffected. The operation in eifect exchanges the identity of neighboring fluid elements. Neighboring fluid point world lines are not uniquely identified in the isorrhopic fluid.

Chapter 1 is devoted to a discussion of some unique features of isorrhopic gyroelastic systems. Gyroelastic is the term 1 will use to denote the particular scaling regime to which attention is restricted in the present work. Cyroelastic scaling corresponds to what is often referred to in the literature as finite-gyro-radius scaling. However, here the key physical quantity is i. fact not the size of the orbit of a charged particle in magnetic field, but rather the angular momentum associated with its motion. It is this angular
momentum (density) which gives rise to gyroscopic and quasielastic forces in addition to the usual pressure related forces of standard ${ }^{[t D}$.

A rudimentary understanding of the nature of the gyroscopic-quasielastic forces can be gleaned from a graphic though crude analogy. A spinning top rill tend to wobble if disturbed from its equilibrium state. The wobble will tend to occur at a higher frequency the larger the angular momentum of the top (the faster it is spinning.) In analogy with a spring and mas, the angular momentum can be cast in the role of an elasticity in determining the (wobble) frequency. In the gyroelastic fluid, angular momentum is considered a continuum property. It is this angular momentum (density) which gives rise to the property of quasielasticity. In the case of the top, the influence of the presence of angular momentum is to stabilize the motion of the system. The top is prevented from falling over it its angular momentum is large enough. A similar effect exists in the gyroelastic fluid system.

Considerable literature exists on the subject of pinite gyrnradius effects in near theta-pinch or long -thin geometry. 3-5.1t.10-17.2:-22.28-34.36-39 Roberts and Taylor ${ }^{2 \theta}$ were among the earliest researchers to recognize the stabilizing influence connected with the angular momentum of particle gyration in magnetized plasma. Rosenbluth and Simon ${ }^{31}$ in a classic work developed the theory of low -f gyroscopic fluids with plasma flow. In the early 1970's there arose concurrently two approaches to the more general problem dealing with nonuniform magnetic field (long-thin geometry) and high- $\boldsymbol{\beta}$: the Vlasov fluid model developed by Freidberg ${ }^{3-5}$ and the theory of gyroscopic-quasielastic fluids developed by Newcomb ${ }^{21-22}$. Whereas the path used in each approach is substantively similar, the scenery along the way varies greatly. Certain results accessible to the Vlasov fluid model ${ }^{27.30}$ derive also from the theory of gyroelastic systems. (An example is presented in Appendix ll.) This study is an examination of the view at and beyond the periphery of the earlier work by Newcomb ${ }^{22}$ as seen through the orism of that approach.

The starting point for the construction of the model is the Vlasov equation in the adopted scaling. The Lagrangian for the general scale model is developed, then systematically specialized to the isorrhopic case. 'The specialization is in essence an initialization. A system once isorrhopic will evolve so as to remain isorrhopic. The class of isorrhopic sid systems contains equilibria as a subclass. A closed set of equations governing the behavior of isorrhopic gyroelastic systems is presented. Transformation properties of these equations under changes of representation (transformations which continuously permute the identity of fluid elements) are reviewed. The theory is developed in fully nonlinear form.

In chapter II the isorrhopic configuration is examined in the geometrical optics limit. Ray constants and the local dispersion reistion are revealed by a variational technique. A canonical theory of linear waves in the isorriopic gyroelastic system is developed.

In chapter Ill the nonlinear system is linearized. The linearized Euler equation together with lixed boundary conditions then defines the eigensolution space fur a chosen gyroelastic screwpinch equilibrium. The spectrum of eigenvalues is generally composed of discrete spectra and continua which touth at points of accumulation. The Euler equation may become singular over ranges of the paraneters which map the solution space. These ranges then define the continua. Strictly speaking, the singular solutions are not fuactions. but rather generalized functions or distributions.

Distributions are linear functionals. Although not menters of the Hilbert space of possible motions of the equilibrium they play an essential role in the construction of an invertible integral transform to evolve arbitrary perturbations that are pessibie motions.

Once the iniegral theorem is expressed. some of the deteils of the spectru are elaborated. At this point il is shom that fixed boundary equilibria which are normally Suydam unstable in the non-gyroelastie system seem io be stabilizable by gyroclastic effects. In particular. it is seen ihat no Kruskal-Shafranov instability behavior occurs when the eigenaode is convective ([he'inity of perturbation equal to helicity of field lines) near the surface of l. plasma.

In chapter il the boundary condition is generalized to allow frec toundary motions of the gyroctastic screwpinch. The resultant spectra are sluded and compared with those of the fised boundary model. In the limit that the vacum region becomes thin an interesting diserepancy between the lixed and fref boundery models arise: .

In chapter V the boundary condition is used to develop an energy prineiple with which to streamline the study of the stability and stabilizability (through gyroelasticity effects) of a more general screwpinch con!iguration. Whereas in previous chapters the equilibria were columar, now the more general tubular case is irested. Stability criteria are devised and growtr rates arc calculated for some typical systems.

The present work deals with the isorrhopic case. There exists of course also the onisorrhopic case. Though the subject is avoided throughout most of what follows it is tempting to mention briefly the relatinnship between the cases. As indicated, isorrhopy is an initialization. One chooses a set ol initial conditions which oblain ideatically in time. The question of the stability of this configuration to fluid perturbations is addressed in this work. However, the stability of the configuration to perturbations thich violate the isorrhopy of the system are not considered. Such perturbations come under the general heading of drift modes, which are beyond the scope of this analysis. Attention is restricted to the incompressible helical motions of the isorrhopic gyroelastic system.

notatio:

We adopt a notation which is alight modification of that used by
 ordered patr of objects

$$
\begin{equation*}
A^{\prime \prime}=\left|\theta_{\Delta} A\right|=a_{2} \theta_{s}+a_{b} \theta_{b}+A e_{z} \tag{0.1}
\end{equation*}
$$

the first having two components, the recond having one. This is amply a "hard-wired" distanction between perpendicu!ar and parellel with resiect to the direction of the magnetic field. to lomest order, say o. The trarisposilion of
 three-vectors and let

$$
\begin{equation*}
\theta \times \theta_{z}:=a_{y} e_{z}-a_{z} \theta_{y}=e^{a} \tag{0.2}
\end{equation*}
$$

then

$$
\begin{aligned}
& |B, A ; \cdot| B, B \mid=0 \cdot+A B
\end{aligned}
$$

$$
\begin{align*}
& \left.\nabla^{\prime-1} \cdot \mid \cdot, A\right\}=\nabla \cdot a+\partial_{z} \tag{0.3.3}\\
& \nabla^{(3)} \times|\square, A|=\left|\nabla^{*} A-\partial_{2} e^{+} \cdot \nabla \cdot a^{0}\right| \tag{0.5.4}
\end{align*}
$$

$$
\begin{equation*}
(A B \cdot C-C \cdot A)^{(3)}=\left|\left(\theta \cdot \theta^{*}\right) e^{*}+C(B-A \theta),-(B-A \theta) \cdot \theta\right| \tag{0.3.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot \infty=\theta \nabla \cdot \Delta+e \cdot \nabla b \tag{0.3.6}
\end{equation*}
$$

Fo: three-vaciors $A^{(3)}$ and $\boldsymbol{B}^{(3)}$ we write the tensor product $A^{(3)} \mathbf{b}^{(3)}$ as

$$
\begin{equation*}
|0, A| \mid b, B\}=\| \infty, \infty B ; A B, A B \mid\} \tag{0.4}
\end{equation*}
$$

The unit two-tensor can be written as

$$
\begin{equation*}
\underline{1}=\omega_{x} \bullet_{x}+\theta_{y} \theta_{y} \tag{0.5}
\end{equation*}
$$

and the follon:ng identities with regard to tt apply:

$$
\begin{equation*}
0 \cdot 1=1 \cdot a=0 \tag{0.6}
\end{equation*}
$$

$$
\begin{equation*}
a+a^{\circ} a^{\circ}=a \cdot a! \tag{0.7}
\end{equation*}
$$

The antisymetric palt of a two-tensor is

$$
\begin{equation*}
a(a)=a_{x} b_{v}-a_{y} b_{z}=a \cdot b^{*} \tag{0.8}
\end{equation*}
$$

from which derives the useful relation

$$
\begin{equation*}
a b \cdot c-c \cdot a b=c^{\circ}\left(a \cdot b^{*}\right) \tag{0.9}
\end{equation*}
$$

If two two-vector fields differ by the gradient of a scalar field x

$$
\begin{equation*}
a-b=\nabla x \tag{0.10}
\end{equation*}
$$

then and will be said to be congruest

$$
\begin{equation*}
a \sim b \tag{0.11}
\end{equation*}
$$

Likewise, il two two-tensor fields satisfy

$$
\begin{equation*}
\nabla \cdot(\omega-c d)=\nabla \kappa \tag{0.12}
\end{equation*}
$$

then they are said also to be congruent to one another, and the it difference congruent to zero

There derives from these last consideralinns thal

$$
\begin{equation*}
x!\sim 0 \tag{0.14.1}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{\bullet} \nabla^{\circ} \cdot \sim 0 \tag{0.1+.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \nabla x=0 \tag{0.1-1.4}
\end{equation*}
$$

The operator denoting tolal or convaclive :ime differentiation along a flud twotrajectory is written D, so that

$$
\begin{equation*}
D x=v(x, z ; t) \tag{0.15}
\end{equation*}
$$

or, for an arbitrary function $F(x, f)$

$$
\begin{equation*}
D F=\partial_{t} F+\nabla \nabla F \tag{0.1C}
\end{equation*}
$$

The operators D and ∇ to not comr.ite and it can be easily shown that

$$
\begin{equation*}
[\nabla, D]=\nabla D-D \nabla=\nabla \cdot \cdot \nabla \tag{0.17.1}
\end{equation*}
$$

and also that

$$
\begin{equation*}
\left[\nabla^{*}, D\right]=\nabla^{\bullet} D-D \nabla^{*}=\nabla^{*} v \cdot \nabla \tag{0.17.2}
\end{equation*}
$$

An addition, the following symbal: are used throughout the text:

$$
\begin{align*}
& \mathbf{g}^{(3)}=|B \tau, B|=\text { magnetic field } \tag{0.18.1}\\
& E^{(s)}=\{E, \mathscr{S}\}=\text { electric field } \tag{0.18.2}
\end{align*}
$$

$$
\left.g^{(3)}=\mid f, J\right\}=\text { electric current density }
$$

$v^{(3)}=\mid v \cdot I j=f$ fuid velocity
(0.18.4)
$\eta=$ electric charge density
(0.18.5)

CHITTER 1

Dr arriplion of the mode t

The Cyrorlaslu fluid

The g. ding center plasma forms the basis foe our model of apreinvile fluid. Since $;$ intend to examine collisionless plasma behavior phase takes the llasov equation to apply and neglected all transpose. processes and particle correlations. The pyroclastic ordering is entirely characterised ut the following expression of the Vlasovequation:

$$
\begin{align*}
& \varepsilon^{\circ} \frac{B}{m} p^{*} \cdot \nabla_{f} f \\
+ & \varepsilon^{\prime}\left(\left(\frac{p}{m} \cdot \nabla^{\prime}+e\left(-\frac{q}{m} B \tau^{*} \cdot \nabla_{p}+\frac{B}{m} p \cdot T^{0} \partial_{q}+\varepsilon \cdot \nabla_{p}\right)\right) f\right. \\
+ & \varepsilon^{2}\left(\partial_{1}+\frac{q}{m} \partial_{2}+e \delta \partial_{q}\right) f=0
\end{align*}
$$

where

$$
\begin{equation*}
f=f(\mid x, z\}:|p, q| ; t) \tag{1.2}
\end{equation*}
$$

is the one particle distribution function,

$$
\begin{equation*}
p^{(3)}=|p, q| \tag{1.3}
\end{equation*}
$$

is the particle three-momentum and t is a formal expansion (smalturss) parameter. The Viasov equation as wrilten : n (l.1) dictates the ordering of qrantities as

$$
\begin{align*}
& r \sim z \sim \frac{\rho_{0}}{L_{+}}=\frac{\text { gyraradius }}{\text { peryurndicular scale length }} \tag{1.4.1}\\
& \partial_{t} \sim e^{2} \sim \frac{1}{\cap_{s}}=\frac{\text { gyroperiod }}{\text { plama flat time sralt }} \tag{1}\\
&)_{:} \sim x^{L} \sim \frac{\rho_{0}}{l,}=\frac{\text { gyroradius }}{\text { parallel sialt longth }} \tag{1.1.1}\\
& \left|E \sim, f \sim e^{2}\right|=\text { electris fictd } \tag{1.1.1}\\
& ||t \sim 1, B \sim 1|=\text { magne itc field } \tag{1.1.7}
\end{align*}
$$

The set of equations governing the behavior of the gyroelastic flabd is completed with Maxweil's equations which in the adopted notation are wrilten as

$$
\begin{equation*}
\partial_{6}(B T)+\nabla^{*} \mathbb{E}-\partial_{z} E^{\bullet}=0 \tag{1.5.1}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{t} B+\nabla \cdot z^{\circ}=0 \tag{1.5.2}
\end{equation*}
$$

$$
\begin{equation*}
\star_{0} \nabla \cdot \varepsilon+\varepsilon^{2} \quad \chi_{0} \partial_{z} \mathcal{E}=\varepsilon^{2} \eta \tag{1.5.3}
\end{equation*}
$$

$$
\begin{equation*}
\left.\nabla^{*} B-\varepsilon^{2} \partial_{z}\left(B r^{*}\right)=\mu_{0}\right\rfloor+\varepsilon^{2} \mu_{0} x_{0} \partial_{t} E \tag{1.5.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot\left(B T^{*}\right)=\mu_{0} J+\varepsilon^{2} \mu_{0} x_{0} \partial_{t} \mathcal{E} \tag{1.5.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot(B T)+\partial_{z} B=0 \tag{1.5.6}
\end{equation*}
$$

Factors of E are included in (1.5.1)-(1.5.6) to indicate the relatise ordering of terms.

Essentially all the elevant physics necessary to derive an equation of motion lor the gyroelastic system is contained in equations 11.11 und (1.5.1)-(1.5.6). There remuins to derive from this system, in standard form. the law of conservation of momentum

$$
\begin{equation*}
\partial_{i} s^{(3)}+\nabla^{(3)} \cdot \underline{T}^{(3)}=0 \tag{1.6.1}
\end{equation*}
$$

where $\mathbf{g}^{(3)}$ is the tiree-momentum-density

$$
\begin{equation*}
s^{(3)}=|\cdot, s| \tag{1.6.2}
\end{equation*}
$$

and $\boldsymbol{r}^{(3)}$ is the threc-siress tensor

$$
\begin{equation*}
\underline{T}^{(3)}=\|t, T ; u, U\| \tag{1.6.:3}
\end{equation*}
$$

It will prove expedient to separate f into two constituents respectively even and odd in p :

$$
\begin{equation*}
2 f^{+}(p)=(f(p)+f(-p)) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \varepsilon f^{-}(p)=(f(p)-f(-p)) \tag{1.8}
\end{equation*}
$$

The presence of the factor ε in (1.8) will be discussed in more delall below. Now write (1.1), the Vlasov equation, in the form

$$
\begin{equation*}
v(p) f(p)=0 \tag{1.9}
\end{equation*}
$$

where $\mathcal{V}(p)$ is the Vlasov operator as indicated. Since $f(p)$ and $f(-p)$ both solve the Vlasor equation, twa equivalent versions of (1.9) can be displayed as

$$
\begin{equation*}
24(\pm) f(=p)=0 \tag{1.10}
\end{equation*}
$$

Substitution of (1.7) and (1.8) in (1.10) gives

$$
\begin{align*}
& e \frac{B}{m} p \cdot \nabla_{p} f(\pm p)=\varepsilon^{2}\left(\partial_{t}+\frac{q}{m} \partial_{z}+e \mathcal{C} a_{q}\right) f(\pm p) \\
& \quad \pm \varepsilon\left(\frac{p}{m} \cdot \nabla+e\left(-\frac{q}{m} B T^{*} \cdot \nabla_{p}+\frac{p}{m} \cdot B T^{\cdot} \partial_{q}+E \cdot \nabla_{p}\right)\right) f(\pm p) \tag{1.11}
\end{align*}
$$

Far the following calculation factors of will be deleted for clarity. The sum and difference of the two equations represented by (t.11) give the useful relationships

$$
\begin{align*}
\left(A_{s}+\frac{q}{m} \exists_{2} \left\lvert\, f^{\prime}+\frac{P}{m} \cdot \nabla f^{\prime}\right.\right. & =e\left(-\varepsilon \cdot \nabla_{p}+\frac{q}{m} B r^{*} \cdot \nabla_{p}-\frac{p}{m} \cdot B T^{*} d_{q}\right) f^{\prime} \\
& +e\left(\frac{B}{m} p \cdot \nabla_{\bullet}-g Q_{q}\right) f^{\prime}
\end{align*}
$$

Retainang the relativistic form of the particle mass

$$
m^{2}=m_{0}^{2}+(q / c)^{2}+(p / c)^{2}
$$

definc $e_{\mu}^{(3)}$ to be the tolal material three-mompatum density

$$
\begin{equation*}
s_{\mu}^{(u)}=\left\{s_{u} \cdot S_{\mu}\left|=\sum_{2} \int d p d q\right| p, q \mid f_{x}\right. \tag{1.1.1}
\end{equation*}
$$

where 3 denoles the species of particle. Now, to develop an expression of tice conservation of momentum for the gyroelastic system, begin with the defintion:

$$
\begin{equation*}
F^{(3)}=\left\{p, F \left\lvert\, \equiv \sum_{2} \int d p d q\left(\partial_{1}+\left\{\frac{p}{m} \cdot \frac{q}{m}|\cdot| \nabla, \partial_{2}\right\}\right)(\mid p, q\} f_{2}(p, q:())\right.\right. \tag{1.15}
\end{equation*}
$$

It will turn out that the parallel component of inis equation is reducible to a more or less obvious relation whereas the iransverse component embodies the essential dynamical leatures unique to the gyroelastic system. In the interest of completeness the parallel component is kept in the foclowing analysis.

Separating f, into odd and even parts as prescribed above, equat on (1.15) becomes

$$
\begin{align*}
& P=\sum_{2} \int d p d q p\left(\left(\partial_{1}+\frac{q}{m} a_{2}\right) f_{2}+\frac{Q}{m} \cdot \nabla f_{2}\right) \\
& F=\sum_{2} \int d p d q q\left(\left(\partial_{1}+\frac{q}{m} \partial_{2}\right) f_{3}+\frac{p}{m} \cdot \nabla f_{2}\right) \tag{1.16}
\end{align*}
$$

The sum and difference formulae il.11) can now be used to repxpress the righl-hand member of (1.16), leaviag the equation of invion in the form

$$
\begin{align*}
& \sum_{2} \int_{2} d p d q p\left(\left(\partial_{t}+\frac{q}{m} \partial_{z}\right) f_{2}+\frac{p}{m} \nabla f_{2}^{+}\right) \\
& =\prod_{3} \int d p d q p\left(\left(\frac{B}{m} p \cdot \nabla_{0}^{*}-\varepsilon a_{q}\right) f_{2}+\left(-\varepsilon \cdot \nabla_{0}+\frac{q}{m} B r^{*} \cdot \nabla_{0}-\frac{p^{\prime}}{m} \cdot \theta T^{*} \partial_{q}\right) f_{2}^{*}\right) \\
& \underset{i}{V} \int d p d q q\left(\left(\partial_{1}+\frac{q}{m} \partial_{2}\right) f_{s}^{+}+\frac{p}{m} \cdot f_{2}\right) \\
& =\sum_{i} \int d p d q q\left(\left(\frac{B}{m} p \cdot \nabla_{0}^{*}-\delta \theta_{q}\right) f_{s}^{+}+\left(-\varepsilon \cdot \nabla_{p}+\frac{q}{m} B T^{*} \cdot \nabla_{p}-\frac{p}{m} \cdot B T^{*} \partial_{q}\right) f_{2}\right) \tag{1.17}
\end{align*}
$$

Gor a function G which vanishes at the limits of iritegration. on integration by parts gives the result

$$
\begin{equation*}
\int d x d y \omega \cdot \nabla C=-\int d x d y(s \nabla \cdot b+b \cdot \nabla \cdot) C \tag{1.18}
\end{equation*}
$$

(also valid with ∇ replaced by $\left.\nabla^{*}.\right)$ Using this result and noting that the relativistic mass m depends on the particle momentum through (1.13) a short calculation recasts the right-hand member of (1.17) as

$$
\begin{align*}
& f=E \eta+B I^{*}-B T^{*} J \\
& F=E \eta+B \tau^{*} \cdot \boldsymbol{I} \tag{1.19.1}
\end{align*}
$$

where η is the electric charge density, J is the parallelelectric current density and I is the electric two-current density. These sources of the electromagnetic fields are related to the distribution function as follows:

$$
\begin{equation*}
\eta=\sum_{3} e_{3} \int d p d q f_{3} \tag{1.19.2}
\end{equation*}
$$

$$
\begin{equation*}
J=\sum_{2} e_{s} \int d p d q \frac{e}{m} r_{s} \tag{1.19.3}
\end{equation*}
$$

$$
\begin{equation*}
J=\sum_{2} e_{s} \int d p d q \frac{q}{m} f_{2} \tag{1.19.1}
\end{equation*}
$$

Maxwell's equations are now used to free the equation of motion of explicit reference to sources, in lavor of fields. Evaluate En using (1.5.3) to find

$$
\begin{equation*}
E_{\eta}=x_{0}\left(-\nabla \cdot\left(E^{*} E^{0}\right)+\nabla^{E^{2}}+E \nabla \cdot E^{*}+E \theta_{x} E\right) \tag{1.20}
\end{equation*}
$$

where (0.4.6) and (0.8) have been used. Ampere's law (1.5.4) is applied nexi to eッpress H° as

$$
\begin{equation*}
B J^{*}=\frac{1}{\mu_{0}}\left(-\nabla^{2}+B a_{2}(B r)\right)-\gamma_{0}\left(a_{i}\left(E^{-} B\right)+E^{*} \nabla \cdot E^{+}\right) \tag{1.21}
\end{equation*}
$$

Adding these eqpress ons gives

$$
\begin{align*}
E \eta+B J^{\prime}= & \chi_{0}\left(-\nabla \cdot\left(E^{+} E^{\circ}\right)+\nabla \frac{\mathcal{E}^{2}}{2}-\partial_{1}(E B)+E \partial_{z} \mathscr{E}\right) \\
& \frac{1}{\mu_{0}}\left(-\nabla_{-}^{2}+B \partial_{z}(B \tau)\right) \tag{1.22}
\end{align*}
$$

Similarly, $B T^{*} \cdot \boldsymbol{\rho}$ and $\begin{gathered}\text { in } \\ \eta\end{gathered}$ are evaluated resulting in

$$
\begin{equation*}
B \eta+B T^{*} \cdot J=X_{0}\left(-B T^{*} \cdot \partial_{t} E+E \nabla \cdot E+\partial_{z} \frac{G^{2}}{2}\right)+\frac{1}{\mu_{0}}\left(A T \cdot \nabla B-\partial_{z} \frac{(B T)^{2}}{2}\right) \tag{1.23}
\end{equation*}
$$

Finally (1.5.5) is used to represent the parallel current density with the result

$$
\begin{equation*}
-B T^{*} J=-\frac{1}{\mu_{0}}\left(\nabla \cdot\left(I^{2} T^{*} \tau^{*}\right)-\nabla \frac{(B T)^{2}}{2}-B T \partial_{2} B\right)+x_{0} B T^{*} \partial_{1} \mathcal{E} \tag{1.24}
\end{equation*}
$$

wher $=(0.4 .6),(0.10)$ and (1.5 .6) have been applied.
Reintroducing the scaling factor ε into these latter expressions the ecuation of molion can be written in terms of field quantities as

$$
\begin{align*}
& P=\sum_{i} \int d p d q p\left(\varepsilon^{2}\left(\partial_{1}+\frac{q}{m} \partial_{z}\right) f_{i}+\frac{P}{m} \cdot \nabla f_{t}\right) \\
& =\left(-\nabla \cdot \frac{B^{2}}{2 \mu_{0}} \underline{t}\right)+\varepsilon^{2}\left(-\nabla \cdot\left(\frac{B^{2}}{2 \mu_{0}}\left(\tau^{*} \tau^{*}-\tau \tau\right)+\frac{\chi_{0}}{2}\left(E^{*} \mathcal{E}^{0}-E E\right)\right)\right. \\
& \left.+\partial_{2}\left(\frac{1}{\mu_{0}} B^{2} T\right)-\partial_{i}\left(x_{0} E^{-} B\right)\right)+O\left(\varepsilon^{2}\right) \\
& F=\sum_{2} \int d p d q q\left(\left(a_{1}+\frac{q}{m} a_{2}\right) f_{2}+\frac{p}{m} \cdot \nabla f_{2}\right) \\
& =\left(\nabla \cdot \frac{1}{\mu_{0}}\left(B^{2} \tau\right)+\partial_{z_{2}}-\frac{1}{\mu_{0}} B^{2}\right)+O\left(\varepsilon^{2}\right) \tag{1.25}
\end{align*}
$$

In these expressions the relative ordering of the terms irvolving field quantaties is evident on the basis of (1.4.1)-(1.4.5). However. the reason for the expansion of the distribution function consistent with the adopled ordering scheme has not yei been made apparent. Here a plausibility argument will suffice, to be justified a posteriori.

It is implicit in the ordering that guiding centers drift slowly with respect tu the velocity of gyration of a particle. The electric drift two-velority given by

$$
v_{e}=\frac{E}{B}
$$

is clearly $O(\varepsilon)$ on the basis of (1.4.4) and (1.4.5). The part of f antisymmetric in p must then have its lowest order nonvinishing contribution at $O(\varepsilon)$. Take the formal reprosentation of the distribution function as an asymptotic series of the form

$$
\begin{equation*}
f^{+}=f_{0}^{+}+\varepsilon^{2} f_{z}^{+}+\cdots \tag{1.27.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon f^{-}=\varepsilon f_{1}+\varepsilon^{3} f_{3}+\cdots \tag{1.27.2}
\end{equation*}
$$

The fact that the successive terms in these series are smaller by a factor ε^{2} results from the choice of ordering in the Vlasov equation. This can be seen more clearly by the following: Adjusi (1.12) as

$$
\begin{align*}
& \therefore \frac{B}{m} p \cdot \nabla^{*} f^{+}=\varepsilon^{2}\left(\partial_{i}+\frac{q}{m} \partial_{z}+e \varepsilon_{q}\right) f^{+} \\
& \quad+\varepsilon^{2}\left(\frac{p}{m} \cdot \nabla+e\left(-\frac{q}{m} B T^{*} \cdot \nabla_{p}+\frac{p}{m} \cdot B T^{*} \partial_{q}+E \cdot \nabla_{p}\right)\right) f^{-} \tag{:.28.1}
\end{align*}
$$

and

$$
\begin{align*}
& e \frac{B}{m} \rho \cdot \nabla_{\rho} f^{-}=\varepsilon^{2}\left(\partial_{\ell}+\frac{q}{m} \partial_{z}+e \varepsilon \partial_{q}\right) f \\
& \quad+\left(\frac{\mathbb{P}}{m} \cdot \nabla+e\left(-\frac{q}{m} B T^{*} \cdot \nabla_{p}+\frac{P}{m} \cdot B T^{*} \partial_{q}+\varepsilon \cdot \nabla_{p}\right)\right) f^{+}
\end{align*}
$$

The operator p. 5 ; can be written also as

$$
\begin{equation*}
p \cdot \Gamma^{\prime}=\rho \cdot\left(\epsilon_{p} \partial_{p}+\omega_{\theta} \frac{f}{p} \partial_{\theta}\right) \cdot=p \omega_{p} \cdot\left(\omega_{p} \frac{1}{p} \partial_{\theta}-\omega_{\theta} \hat{\partial}_{p}\right)=\partial_{\theta} \tag{1.29}
\end{equation*}
$$

where θ_{p} and θ_{θ} are unit vectors in the two-momentum space. lising this abbreviation and substituting the representations of f given by (t.27.11 am' (1.27.2) inta the Vlasov equation in the form (1.28.1) gives to lowest order the result that

$$
\begin{equation*}
\partial_{\theta} f_{0}^{+}=0 \tag{1.130}
\end{equation*}
$$

The lawesi arder contribution to f is evidently gyrophase independent. Define this gyrophase tadependent component of f as

$$
\begin{equation*}
f_{0}^{+}=g(x, z ; 0, q ; 1) \tag{1.31}
\end{equation*}
$$

where $\sigma=p^{2} / 2$.
The ordering of lerms in the equation of motion (t.25) is now complete. The moments appearing explicitly there are ordered as

$$
\begin{align*}
& f=\sum_{i}^{T} \int d p d q\left(\frac{1}{m} \nabla \cdot p p g_{2}+\varepsilon^{2}\left(\frac{1}{m} \nabla \cdot \rho p f_{Z_{2}}^{+}+\left(\partial_{1}+\frac{q}{m} \partial_{2}\right) p f_{i_{2}}\right)\right) \\
& F=\sum_{i}^{i} \int d p d q\left(\left(\frac{l^{m}}{m} \cdot q p f_{1}^{-}+\left(a_{t}+\frac{q}{m} a_{2}\right) q g_{2}\right)+\varepsilon^{2}\left(\partial_{1}+\frac{q}{m} \partial_{2}\right) q f_{2}^{+}\right) \tag{1.32}
\end{align*}
$$

The standard form (1.6.1) of the equation of motion is apparent in (1.25) and (1.32). The following identifications can thus be made: Including the factors of ε to specify the relative ordering, the components of the equation of motion are

$$
\begin{equation*}
\partial_{t}: \nabla \cdot \underline{t}+\partial_{x} T=0 \tag{1.33.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{z} S+\nabla \cdot u+\partial_{z} U=0 \tag{1.33.2}
\end{equation*}
$$

where

$$
\begin{equation*}
e=\sum_{2} \int d p d q\left(p J_{1}+x_{0}-B\right)+O\left(\varepsilon^{2}\right) \tag{1.34.1}
\end{equation*}
$$

$$
\begin{equation*}
S=\sum_{\frac{i}{2}} \int d p d q\left(q g,+\varepsilon^{2} q f_{2}^{4}\right)+\varepsilon^{2} x_{0} E \cdot \theta r^{*}+O\left(\varepsilon^{*}\right)=S_{\mu}+O\left(\varepsilon^{2}\right) \tag{1.34.2}
\end{equation*}
$$

$$
\begin{aligned}
& t=\sum_{2} \int d p d q \frac{1}{m} p\left(g_{2}+\varepsilon^{2} f_{2}^{+}\right) \\
& \qquad \varepsilon^{2}\left(\frac{B^{2}}{2 \mu_{0}}\left(\tau^{*} \tau^{*}-\tau \tau\right)+\frac{x_{0}}{2}\left(\varepsilon^{*} E^{*}-E E\right)\right)+O\left(\varepsilon^{4}\right)
\end{aligned}
$$

$$
\begin{equation*}
u=T=\sum_{i} \int d p d q \frac{1}{m}\left(m q f_{f}\right)-\frac{1}{\mu_{0}} B^{2} T+O\left(\varepsilon^{2}\right) \tag{1.34.4}
\end{equation*}
$$

$$
U=\sum_{2} \int d p d q \frac{1}{m}\left(q^{2} g_{2}+\varepsilon^{2} q^{2} f_{2}{ }_{2}\right)-\frac{B^{2}}{2 \mu_{0}}+\varepsilon^{2}\left(\frac{(B r)^{2}}{4 \mu_{0}}+\frac{x_{0} E^{2}}{2}\right)+O\left(\varepsilon^{4}\right)
$$

$$
\begin{equation*}
=\sum_{2} \int d p d q \frac{1}{m}\left(q^{2} g_{2}\right)-\frac{B^{2}}{2 \mu_{0}}+O\left(\varepsilon^{2}\right) \tag{1.34.5}
\end{equation*}
$$

The next task toward developing a fluid Lagrangian for the gyroelastic system is to evaluate the gyrophase dependent components of f in (1.27.1). and (1.27.2). This is done order by order, expressing successive corrections to f in terms of (gyrophase dependent) operators on $g(\sigma, q i x, z ; t)$. First, to find f_{j}^{\prime}, use (l.29) to express (1.28.2) at lowest order:

$$
\begin{equation*}
\partial_{\theta} f_{1}=p \cdot \boldsymbol{\theta}^{*} \tag{1.35}
\end{equation*}
$$

Here the gyrophase-independent function is defined as

$$
\begin{equation*}
\omega=\left(-\frac{1}{e B} \nabla^{2}-m v_{q} \partial_{\sigma}+T\left(q \partial_{\sigma}-\partial_{q}\right)\right) g=\mu g \tag{1.38}
\end{equation*}
$$

Since g and are both independent of θ. noting that $\partial_{0}=-\rho^{\circ}$ and $\partial_{\theta} \rho^{*}=-\rho^{*}=p$. tind

$$
\begin{equation*}
p \cdot h^{\circ}=-p^{*} \cdot A=\partial_{\Delta} p \cdot h=\partial_{0}(p \cdot h) \tag{1.37}
\end{equation*}
$$

This equation can be integrated simply to give f_{r}

$$
\begin{equation*}
f_{p}=p \cdot t \tag{1.38}
\end{equation*}
$$

The constant of integration is zero since $f_{;}^{-}$musi be odd inf.
A somewhat more ledious though straight forward calculation gields f_{i}^{*} at next lowest order. The analogue to (1.35) is

$$
\begin{equation*}
p \cdot \nabla_{p}^{*} J_{z}^{+}=-\frac{1}{2}\left(p^{*} p+p p^{*}\right): L A=-\frac{1}{2}\left(p^{*} p+p p^{*}\right): L L g \tag{1.39}
\end{equation*}
$$

Noling again the comarnt proceeding (l.37) there results iroma revision of (1.19) that the θ-derivative of f_{z}^{+}is gisen by

$$
\begin{equation*}
\partial_{\theta} f_{z}^{+}=\partial_{\theta}\left(\frac{1}{4}\left(p p-p^{*} p^{*}\right): L L g\right) \tag{1.40}
\end{equation*}
$$

Again. an integration can be pertormed on sight resulting in

$$
\begin{equation*}
f_{2}^{+}=\frac{1}{4}\left(p p-p^{+} p^{-}\right): k+h \tag{1.41}
\end{equation*}
$$

where $k=L \operatorname{Lg}$. The constant of integration is $k=\mathbb{k}(a . q)$ a function independent of θ, not necessarily zero.

The equation of motion is now expressed as a relation among electromagnetic field quantities and various moments of the lowest order gyrophase-independent distribution function. Further simplification is afforded by performang the angular integrations indicated in (1.34.1)-(1.34.5).

Define the operation of gyrophase-averaging as follows:

$$
\begin{equation*}
(F)_{a v}=\text { gyrophase average of } F=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta F \tag{1.42}
\end{equation*}
$$

then it is obvisus that

$$
\begin{equation*}
\int d p d q F=2 \pi \int d \sigma d q(F)_{a z} \tag{1.43}
\end{equation*}
$$

A few ident:lies 'useful in carrying out the gyrophase integra'ion are

$$
\begin{gather*}
(p)_{a v}=\left(p^{0}\right)_{a v}=0 \tag{1.44.1}\\
(p p)_{a v}=\left(p^{*} p^{0}\right)_{a v}=\sigma \underline{q} \tag{1.4.2}\\
(p g g)_{a v}=(p)_{a v} g=\sigma \underline{g} \tag{1.14.3}\\
\left(\left(p p-p^{*} p^{*}\right): A\right)_{a v}=\left(p p-p^{*} p^{*}\right)_{a v}: t=0 \tag{1.4.4}
\end{gather*}
$$

and finally

$$
\begin{equation*}
\left(p p\left(p p-p^{\circ} p^{*}\right)\right)_{a v}: \underline{t}=2 \sigma^{2} \underline{t}-a^{2}!\operatorname{Tr} t \tag{1.4.4.5}
\end{equation*}
$$

Here $g, m=L g$ and $k=L \lg$ are independent of θ. Furthermore, is a symmetric two-tensor since

$$
\begin{equation*}
a(t)=a(L L g)=1 \cdot L^{*} g=0 \tag{1.45}
\end{equation*}
$$

With these identities, a short calculation yields

$$
\begin{equation*}
\left(\rho f_{f}\right)_{a v}=\left(\rho P \cdot Q_{i}^{\prime}\right)_{a v}=(\Delta p)_{a v} \cdot L g=\sigma L g \tag{1.46.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p p f_{2}^{+}\right)_{a v}=\left(\rho p \frac{1}{4}\left(\rho \rho-p^{*} \rho^{*}\right): \underline{L}\right)_{a v}+(\rho p t)_{a v}=\frac{1}{2} \sigma^{2}\left(L L-\frac{1}{2}(L \cdot L) g+\underline{1} \sigma t\right. \tag{1.46.2}
\end{equation*}
$$

which, together with (1.34.1)-(1.34.5) and (1.33.1)-(1.33.2) comprise the equistion of motion to lowest order.

$$
\begin{equation*}
\mathscr{L},=2 \pi \sum_{3}^{T} \int d \sigma d q \mathscr{L} g, \tag{1.47}
\end{equation*}
$$

wherc \mathscr{L} is an operator. Adapting (1.46.1)-(1.46.2) and indicating th. gyrophage-averaged moments, $\boldsymbol{e}^{(3)}$ and $\underline{\underline{T}}^{(3)}$ in the (ormat (1.34.1)-(1.34.5) can be represented as

$$
\begin{equation*}
\theta=\left(\sigma L+x_{0} E^{*} B\right)+O\left(\varepsilon^{2}\right) \tag{1.+8.1}
\end{equation*}
$$

$$
\begin{equation*}
\therefore=q+O\left(\varepsilon^{2}\right)=S_{u}+O\left(z^{2}\right) \tag{1.48.2}
\end{equation*}
$$

$$
\begin{align*}
t= & \left.\frac{\sigma}{m}+\frac{B^{2}}{2 L_{0}}\right) 1 \\
& +\varepsilon^{2}\left(\sigma ^ { 2 } \left(L L-\frac{1}{4}(L \cdot L)+K_{0}!+\frac{B^{2}}{2_{L} \iota_{0}}\left(T^{*} T^{*}-T T\right)+\frac{K_{O}}{2}(E=E-E E)+O\left(E^{*}\right)\right.\right. \tag{1.48.3}
\end{align*}
$$

$$
T=u=\left(\frac{\sigma q}{\mathrm{~m}} L \quad-\frac{1}{\mu_{0}} B^{2} T\right)+O\left(\varepsilon^{2}\right)
$$

$$
\begin{equation*}
L=\frac{q^{2}}{m} ;-\frac{B^{2}}{2 \mu_{0}}+O\left(\varepsilon^{2}\right) \tag{1.48.5}
\end{equation*}
$$

where \mathcal{K}_{a} appears due to the occurence of a constant of the gyrophase integration. Finally, the equation of motion for the gyroelastic fluid can by expressed in the concise form

$$
\begin{equation*}
\nabla \cdot\left(\left\langle\frac{\sigma}{m}\right\rangle+\frac{B^{2}}{2 \mu_{0}}\right) \underline{!}=0+O\left(\varepsilon^{2}\right) \tag{1.49.1}
\end{equation*}
$$

at lowest order.

$$
\begin{equation*}
\partial_{t}(q)+\nabla \cdot\left(\left\langle\frac{\sigma q}{m}<\right)-\frac{1}{\mu_{0}} B^{2} T\right)+\partial_{z}\left(\left\langle\frac{q^{2}}{m}\right)-\frac{B^{2}}{2 \mu_{0}}\right)=v+O\left(\varepsilon^{2}\right) \tag{1.49.2}
\end{equation*}
$$

at order e' (relatise to lowest order) and

$$
\begin{align*}
\partial_{t}(\prime \sigma L & \left.+\chi_{0} E^{*} B\right) \\
& +\nabla \cdot\left(\frac { \sigma ^ { 2 } } { 2 m } \left(L L-\frac{1}{2}(L \cdot L)\right.\right. \\
& \left.+\frac{B^{2}}{2 \mu_{0}}\left(T^{*} T^{*}-T T\right)+\frac{\lambda_{0}}{2}\left(E^{*} E^{*}-E E\right)+K_{0}!\right) \tag{1.49.3}\\
& +\frac{\sigma g}{m} L-\frac{1}{\mu_{0}}\left(\frac{\left.B^{2} T\right)=0+O\left(c^{2}\right)}{}\right.
\end{align*}
$$

at order $\&^{2}$ (relative to lowest order.)

The Isorrhopic State

To this point in the analysis, no mention has been made of symmetry. The equation of motion outlined above is in fact applicable withoul qualification. However, a crucial jucture in the analysis has been reached. A unique opportunity to simplif! matters has presented itself.

The gencral gyroelastic system may possess a certain symmetry called isorrhopy. In the gyruelastic ordering a system is isorrhopic for all time: the system once isorrhopic remains isorrhopic naturally. Distortions of the network of contours due to motions of the isorrhopic gyroelastic fluid do nol destroy the symmetry. This allows the decoupling of phenomena which involve perturbations of the distribution function along fluid contours from those which do not: drift type modes from fluid-type modes. (The question of stability against anisorrhopic perturbations will not be addressed in this study).

In the following, I will specify the conditions under which a gyroelastic systom is isorrhopic. Then l wili proceed to show the system indeed remains so. Return for a moment to the inception of the present line of reasoning-the Vlasov equation in the form (l.12). Again factors of ε will be deleted for clarity.

To lowest order, (1.12) portrayed in the current vernacular is

$$
\begin{align*}
& e \frac{B}{m} p \cdot \nabla_{\cdot} g=\left(\partial_{t}+\frac{q}{m} \partial_{z}+e \delta \partial_{q}\right) g \\
& \quad+\left(\frac{P}{m} \cdot \nabla+\epsilon\left(-\frac{q}{m} B T^{*} \cdot \nabla_{p}+\frac{P}{m} \cdot B T^{\bullet} \partial_{q}+\varepsilon \cdot \nabla_{p}\right)\right) p \cdot L g \tag{1.50}
\end{align*}
$$

Gyrophase-average this equation according to the prescription given in (1.42). Resort to the definition of the operator $4(1.36)$ to resolve the result into the form of the electric-drift kinetic equation

$$
\begin{align*}
D_{\cdot}=\sigma \partial_{0} \nabla \cdot v_{4} & +\frac{\sigma}{e B^{2} m} \nabla \cdot B \cdot \nabla g-\frac{q}{m} \partial_{k} g-e\left(\theta-v_{e}^{*} \cdot B r\right) \partial_{q} g \\
& +\frac{\sigma}{e B} \partial_{i} B\left(\partial_{q}-q \partial_{a}\right) g \tag{1.51}
\end{align*}
$$

where $\partial_{x}=\partial_{i}+\tau \cdot \Gamma$ is closely related to the directional derivative along a magnetic fielc line and $D_{f}=a_{i}+\omega_{f} \cdot r$ is the operator oi lime differeatiation along an electric drift trajectory.

Next define the quantity

$$
\begin{equation*}
\mu=\frac{B^{2}}{2 \mu_{0}}+\frac{\sigma}{m} \tag{1.52}
\end{equation*}
$$

and convert its gradient

$$
\nabla V^{\prime}=\frac{1}{\mu_{0}} B \nabla B+\frac{0}{m}
$$

by usimg dipere's ldw (1.5 .4) to evaluate ∇b. The result ss then

$$
\begin{equation*}
\nabla I^{\prime}=\eta t-J E r^{\circ} \tag{1.54}
\end{equation*}
$$

As at turns out, it is possible to specify a condition ab-initio that will insure that η and J will vanish to lowest order identically. if initially. $1 \cdot \|$ procced under this presumption, to be justified presently. But first. differentiate f along an electric drift trajectory and wath the nelp of Faraday's law (1.5.2) in the form

$$
\begin{equation*}
D_{e}=\partial_{i} B+v_{e} \cdot \nabla B=-\nabla \cdot E^{*}+\frac{E}{B} \cdot \nabla B=-B \nabla \cdot v_{e} \tag{1.55}
\end{equation*}
$$

deduce that

$$
\begin{align*}
D_{r} P & =\frac{1}{\mu_{0}} B D_{e} B+\frac{\sigma}{m} D_{e} \\
& =-\frac{1}{\mu_{0}} B^{2} \nabla \cdot v_{e}+\nabla \cdot v_{e} \cdot-2 \frac{a}{m}+\frac{\sigma^{2}}{m^{3} c^{2}}+\frac{1}{B^{2}} \nabla^{*} B \cdot \nabla^{\prime} \frac{\sigma^{2}}{e m^{2}} \\
& -\left(E \cdot v_{e}^{*} \cdot B \tau\right) \frac{e \sigma q}{m^{2}} \tag{1.56}
\end{align*}
$$

For convenience, define the quantity γ by

$$
\begin{equation*}
\gamma P=\frac{1}{\mu_{0}} B^{2}+2 \frac{\sigma}{m}-\frac{\sigma^{2}}{m^{3} c^{2}} \tag{1.57}
\end{equation*}
$$

and notice that (1.56) can be abbreviated as

$$
\begin{equation*}
D_{P} P+\gamma P \nabla \cdot \nabla_{p}=\psi \tag{1.58}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\frac{\sigma^{2}}{m^{2} e B^{3}} \nabla^{\cdot} B \cdot \nabla+\frac{2 q \sigma}{m^{2} B} \partial_{x} B-\frac{q \sigma}{m^{2}} \partial_{1}-\frac{e q \sigma}{m^{3} c^{2}}\left(\varepsilon-\nabla_{0}^{*} \cdot \theta \tau\right) \tag{1.59}
\end{equation*}
$$

Now the quantity $\neq g$ plays a very important role in the theory of gyroelastie systems. This is due to the remarkable fact that $\| f$ fog ard f iontsh everymere ab-initio. then they vanish identicalty in time. It should be emphasized here that by ianish everguhere is meant at lowest order in the gyrociustic scaling.

Sow separate g decording to the following prescription:

$$
\begin{equation*}
g(q)=g^{+}(q)+g^{-}(q) \tag{1.60}
\end{equation*}
$$

where $g^{+}(q)=g^{*}(-q)$ and $g^{-}(q)=-g^{-}(-q)$ are the even and odd parts of 9 expressed as a function of parallel momentum. Mulliply (l.5.2) by f. q. sum over species and integrate over momentum variables q and 0 . When g^{-}vanishes. there then results that

$$
\begin{align*}
\left(\mathcal{E}-v_{e}^{*} \cdot B T\right) \sum_{2} & \epsilon^{2} \int d \sigma d q \frac{1}{m}\left(1-\frac{q^{2}}{m^{2} c^{2}}\right) g^{*} \\
& =\sum_{3} e_{3} \int d \sigma d q \frac{1}{m^{2}}\left(q^{2} \partial_{x}+\frac{\sigma-q^{2}}{B} d_{x} B\right)_{3} \tag{1.61}
\end{align*}
$$

It is clear from this relation that if $g^{-}, \partial_{n} g^{*}$ and $\partial \boldsymbol{g}$ vanish the eleciric field parallel to the field lines then also vanishes:

$$
\begin{equation*}
\left(g^{-} \cdot \partial_{x} g^{+}, \partial_{x} B\right)=0 \Rightarrow\left(\mathcal{E}-v_{e}^{*} \cdot B_{T}\right)=0 \tag{1,62}
\end{equation*}
$$

With this last item in mind. it is easily shown that the initualization consisting of the following conditions satisfies $\boldsymbol{\psi g}=0$:

$$
\begin{equation*}
g^{-}=0+O\left(\varepsilon^{2}\right) \tag{1.03.1}
\end{equation*}
$$

$$
\begin{equation*}
\eta=0+O\left(\varepsilon^{4}\right) \tag{1.63.2}
\end{equation*}
$$

$$
\begin{equation*}
a_{x} B=0+O\left(\mathrm{E}^{4}\right) \tag{1.63.3}
\end{equation*}
$$

$$
\begin{equation*}
a_{x} g=0+O\left(z^{1}\right) \tag{1.63.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot B \cdot \nabla g=0+O\left(\varepsilon^{1}\right) \tag{1.63.5}
\end{equation*}
$$

For the moment, assume the system is enclosed by rigid and conducting boundaries. The electric field Eis then perpendicular to tine boundary there. From (1.58) and the initial conditions which assure $\psi=0$ at $t=0$, there derives

$$
\begin{equation*}
D_{2} P+p P \cdot \nabla_{0}=0 \tag{1.64}
\end{equation*}
$$

Integrate this relation over a crossection al constant z of the bounded system to find

$$
\begin{equation*}
D_{\varepsilon} \prime \int_{R} d x d y \frac{1}{\gamma P}=-\int_{R} d x d y \nabla \cdot v_{A}=\int_{\Delta R} d x \cdot v_{\theta}^{*}=-\oint_{O R} d x \cdot \frac{E}{B}=0 \tag{1.65}
\end{equation*}
$$

Since $y^{\prime}>0$ this implics that, at $t=0$ at least,

$$
\begin{equation*}
D_{\cdot} P=0 \tag{1.66}
\end{equation*}
$$

so that

$$
\begin{equation*}
\nabla \cdot v_{e}=0 \tag{1.67}
\end{equation*}
$$

Furthermore, $\{$ rom (1.51).(1.62).(1.63.1)-(1.63.5) and (1.67), at $t=0$

$$
\begin{equation*}
D_{\varepsilon} g=0 \tag{1.68}
\end{equation*}
$$

The commutator of D, and a_{x} will be helpful in completing the prool. It is evaluated as follows:

$$
\begin{equation*}
\left[D_{e}, \partial_{x}\right]=\left[\partial_{i}+\nabla_{e} \cdot \nabla, \partial_{z}+\tau \cdot \nabla\right]=\left(D_{e} T-\partial_{x} \nabla_{e}\right) \cdot \nabla \tag{1.69}
\end{equation*}
$$

but, since

$$
\begin{aligned}
& \partial_{t} T=\frac{1}{B}\left(\partial_{t}(B T)-\tau \partial_{t} B\right)=\frac{f}{B}\left(\partial_{2} E^{*}-\nabla^{*} \mathcal{E}+\tau \nabla \cdot\left(\nu_{\varepsilon} B\right)\right) \\
& \partial_{i} \tau=\frac{T}{B}\left(\partial_{z}\left(v_{e} B\right)-\nabla^{*}\left(E-r_{e}^{*} \cdot B r\right)+\nabla^{c}\left(r_{e}^{*} \cdot \theta \tau\right)+B r \nabla \cdot v_{c}+\tau \nabla B \cdot v_{p}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+B r \nabla \cdot \nabla_{e}-B^{2} \tau \nabla \frac{1}{B} \cdot \nabla_{e}\right) \\
& \partial_{i} \tau=\partial_{2} \tau_{e}+\tau \cdot \nabla v_{i}-\nabla_{e} \frac{T}{B} \nabla \cdot(B r)-\frac{1}{B} \nabla^{*}(B r) \cdot \nabla_{i}^{*}-\frac{1}{B} \nabla^{*}\left(\mathcal{E}-\nabla_{i}^{*} \cdot B r\right) \\
& \partial_{t} \tau=\partial_{x} \varphi_{e}-\nabla_{e} \cdot \nabla \tau-\frac{1}{B} \nabla^{*}\left(\mathcal{B}-\boldsymbol{v}_{e}^{*} \cdot B^{\prime}\right) \tag{1.70}
\end{align*}
$$

thus

$$
\begin{equation*}
\left[D_{e}, \partial_{x}\right]=-\frac{t}{B} \nabla^{*}\left(\delta-\nabla_{*}^{*} \cdot B r\right) \cdot \nabla \tag{1.71}
\end{equation*}
$$

and by (1.62) and (1.69)

$$
\begin{equation*}
D_{f} T=\partial_{x} \nu_{P} \tag{1.72}
\end{equation*}
$$

Now apply $D_{\text {e }}$ to (i.63.1)-(1.63.5) at $t=0$. The maintenance of the condition specified as an initialization hinges on the following argument: First

$$
\begin{align*}
D_{\mathrm{e}} g^{-}=\sigma \partial_{\sigma} g^{-} \nabla \cdot \nabla_{e} & +\frac{\sigma}{e B^{2} m} \nabla^{*} B \cdot \nabla g^{-}-\frac{q}{m} \partial_{x} g^{+}-e\left(\mathcal{E}-\nabla_{\cdot}^{*} \cdot B r\right) \partial_{q} g^{*} \\
& +\frac{\sigma}{m B} \partial_{x} B\left(\partial_{q}-q \partial_{\sigma}\right) g^{+}=0
\end{align*}
$$

since $D_{\mathrm{e}} g^{-}$is odd in q and by (1.62) and (1.63.1)-(1.63.5): then

$$
\begin{equation*}
D_{e} \eta=0 \tag{1.73.2}
\end{equation*}
$$

by (1.63.1)-(1.63.5); then

$$
\begin{equation*}
D_{e} \partial_{x} B=\partial_{x} D_{e} B-\frac{1}{B} \nabla \cdot\left(E-\eta_{e}^{\cdot} \cdot \theta r\right) \cdot B=-\partial_{\chi}\left(B \nabla \cdot v_{e}\right)=0 \tag{1.73.3}
\end{equation*}
$$

by (1.62),(1.67) and (1.72): the:

$$
\begin{equation*}
D_{e} \partial_{x} g=\partial_{x} D_{z} g-\frac{t}{B} \nabla^{*}\left(\mathcal{E}-v_{e}^{*} \cdot B \tau\right) \cdot \nabla g=0 \tag{1.73.4}
\end{equation*}
$$

by (1.62).(1.68) and (1.72); and finally

$$
\begin{align*}
D_{e}\left(\nabla^{*} B \cdot \nabla g\right) & =\left(\nabla^{*} D_{e} B-\nabla^{*} v_{e} \cdot \nabla B\right) \cdot \nabla g+\left(\nabla D_{e} g-\nabla v_{e} \cdot \nabla g\right) \cdot \nabla^{*} B \\
& =-\nabla^{*}\left(B \nabla \cdot \nabla_{e}\right) \cdot \nabla g=0 \tag{1.73.5}
\end{align*}
$$

by (0.17.2) and (t.67). This is sufficient to assure that at $t=0$

$$
\begin{equation*}
D_{f}\left(\mathcal{E}-v_{\varepsilon}^{*} \cdot B r\right)=0 \tag{1.74}
\end{equation*}
$$

and as a finishing touch

$$
\begin{equation*}
D_{p}(\psi g)=0 \tag{1.75}
\end{equation*}
$$

To summarize the argument: Chonse at $t=0$ that $g^{-}=0,0_{,} g^{*}=0$ and $\partial_{i} B=0$. There results that $\left(\mathcal{E}-\nabla_{\cdot}^{*} \cdot B T\right)=0$. Further choose that at $t=0$. $\nabla^{\frac{\gamma}{2}} B \cdot \nabla g^{+}=0$ so that $\psi g=0$ and $\nabla \cdot \nabla_{\text {, }}=0$ result. Then as a consequence of these choices, it happens thet $D_{f} \psi g=0$. The argument is then iterated. By induction

$$
\begin{equation*}
D_{e}^{n-1}\left(g^{-}, \eta, \partial_{x} B, \partial_{x} g, \nabla^{*} B \cdot \nabla g\right)=0 \tag{1.76}
\end{equation*}
$$

for n't implies

$$
\begin{equation*}
D_{\cdot}^{n}(\psi g)=0 \tag{1.77}
\end{equation*}
$$

Since all physical quantities are representable as analytic functions of lame the mitialization as specified and all its consequences are self preserving.

Conditions (1.63.1)-(1.63.4) are sutisfied trivially in the two-dimensional gyroclastic system since ∂_{x}, T and \mathcal{E} all vanish identically in that case. As was shown by Newcomb ${ }^{22}$ the isorrhopic condition in that limit reduces to (1.63.j) alone. Gyroelastic isorrhopy requires that (at constant z) to lowest order the magnetic field B and the distribution function g are constant along the same contours (see fig. 1.)

Conditions (1.63.3) and (1.63.4) are introduced by the additional freedom allowing srall variations in the z direction. These conditions state that isorrhopy requires B and g to 're constant along magnetic field lines as well as alc. isorrhopes (the intersec'ions of isorrhopic surfaces with a constant z-:.ane.) One concludes that in the three-dimensional isorrhopic gyroelastic system (1) the magnetic fie:d lines lie within surfaces of simaltaneously constant B and g and (2^{\prime} these surfaces move as a comoving network so as to proserve the isorrhopy of the configuration.

In addition to B and g, any quentity depending solely on B and/or g (such as ρ_{m}, the mass density) is also constant on an isorrhopic surface. it is thus
expedient to represent any such quanlity as a function of a single variable, say s, which labels isorrhopic surfaces. This is the representation 1 will choose: B and g are freely specified definite functions of $s=s(x . z): s$ represents the comoving network of isorrhopic surfaces which evolves according to the dynamics of ihe system. The quantity s may have physical significance also; for example it may represent the volume contained within the (clcsed) isorrhopic surface.

Condition (1.63.5) can be expressed deliberately as

$$
\begin{equation*}
\nabla^{*} B \cdot \nabla g=B_{s} g_{s} \nabla^{*} s \cdot \nabla s=0 \tag{1.78}
\end{equation*}
$$

Let's revamp the equation of motion (1.49.1)-(1.49.3) now, using some more physicaliy suggestive symbols for the moments indicated by the symbols ; in the notation introduced with (1.47). Define the quantities

$$
\begin{gather*}
K(s, z)=\left\langle\frac{\sigma^{2}}{2 e^{2} m}\right\rangle \tag{1.79.1}\\
B(s, z) M(s, z)=\left\langle\frac{\sigma^{2}}{e} \partial_{\sigma}\right\rangle \tag{1.79.2}\\
P_{11}(s, z)=\left\langle\frac{q^{2}}{m}\right\rangle \tag{1.79.3}\\
P_{+}(s, z)=\left\langle\frac{\sigma}{m}\right\rangle \tag{1.79.4}\\
\rho_{m}(s, z)=\left\langle\partial_{\sigma}(\sigma m)\right\rangle \tag{1.79.5}
\end{gather*}
$$

and notice that

$$
\begin{align*}
& \frac{1}{\bar{B}^{2}} \nabla^{\bullet} \nabla^{*} K=\frac{1}{B} \nabla^{\bullet}\left(\frac{1}{B} \nabla^{\bullet} K\right) \\
& \frac{1}{B^{2}} \nabla^{\bullet} \nabla^{*} K=\nabla^{*}\left(\frac{1}{B^{2}} \nabla^{*} K\right)-{ }^{\boldsymbol{t}} \nabla^{*} \frac{1}{B} \nabla^{*} K \\
& \overline{B^{2}} \nabla^{\bullet} \nabla^{\bullet} K=\nabla^{\bullet}\left(\nabla^{\bullet} s K_{s} \frac{1}{B^{2}}\right)+\frac{1}{B^{3}} \nabla^{\bullet} B \nabla^{\bullet} K \\
& \frac{1}{B^{2}} \nabla^{\bullet} \nabla^{\bullet} K=\nabla^{\bullet} \nabla^{\bullet}\left(\int d K_{\overline{B^{2}}}^{\dagger}\right)+\frac{1}{B^{3}} \nabla^{*} B \nabla^{\bullet} K \\
& \frac{1}{B^{2}} \nabla^{\bullet} \nabla^{*} K=\nabla^{\bullet} \nabla \cdot g+\frac{1}{B^{3}} \nabla^{\bullet} B \nabla^{\bullet} K \tag{1.80}
\end{align*}
$$

With the help of the above definitions and (1.80), the equation of rotion can be cast in the following furm:

$$
\begin{equation*}
\nabla\left(p_{+}+\frac{B^{2}}{2 \mu_{0}}\right)=0 \tag{1.81.1}
\end{equation*}
$$

at lowest order and

$$
\begin{equation*}
\partial_{t} S_{\mu}+\partial_{x} \nu_{\|}=0 \tag{1.81.2}
\end{equation*}
$$

at order f (relative to lowest order) reveal no new information. The system has been constructed so that these relations are satisfied (identically.)

$$
\rho D_{e} \nabla_{e}-Q \partial_{x} T-X_{e} \nabla^{*} s \cdot \nabla v_{e}-Y_{e} \nabla^{*} s \cdot \nabla \nabla^{*} s+\nabla \kappa=0
$$

at next order (ε^{2} relative to lowest order) contains the essential dynamics of the isorrhopic gyroelastic system. In this last expression we have introduced the following symbols:

$$
\begin{equation*}
\rho=\rho_{m}+\chi_{o} B^{2} \tag{1.82.1}
\end{equation*}
$$

$$
Q=\frac{1}{\mu_{0}} B^{2}+p_{\perp}-p_{H}
$$

$$
\begin{equation*}
X_{e}=-\frac{1}{2 B^{2}}\left(M B^{2}\right)_{s} \tag{1.82.3}
\end{equation*}
$$

$$
\begin{equation*}
Y_{e}=-\frac{1}{B^{3}} B_{s} K_{5} \tag{1.82.4}
\end{equation*}
$$

$$
\begin{align*}
\kappa=\mathcal{K}_{\sigma} & -\frac{1}{2}\left(g_{s} \nabla^{2} s+g_{s s}\left(\nabla_{s}\right)^{2}-Y_{e}\left(\nabla_{s}\right)^{2}\right. \\
& \left.-Q T^{2}+\rho r_{e}^{2}-X_{e} \nabla^{*} s \cdot v_{e}+\frac{1}{2} \nabla^{*} \cdot M v_{e}\right) \tag{1.82.5}
\end{align*}
$$

The quantities X_{e} and $Y_{\text {e }}$ are called the gyroscopic and quasielastic lorce coefficients. The gyroscopic force is first order in the fluid velocity, $f_{g}=X \nabla^{*} s \cdot \nabla r$ and has been called a reactive viscous force though unlike a viscous drag it is non-dissipative in nature. The net rate of work done by the action of the gyroscopic lorce in a region bounded by an isorrhope is given by

$$
\begin{align*}
2 \int d x d y X \nabla^{*} s \cdot \nabla v \cdot v & =\int d x d y \nabla \cdot X \nabla^{*} s+\oint d x^{*} \cdot \nabla^{*} s X \nabla^{2} \\
& =\int d x d y\left(X \nabla \cdot \nabla^{*} s+X \nabla s \cdot \nabla^{*} s\right)=0 \tag{1.83}
\end{align*}
$$

The gyroscopic force does no net work: it arises as fluid motion distorts isorrhopes as a kind of isorrhope rigidity. The gyroscopic force is a consequence of the differential motion of segments of isorrhopes.

The quasielastic force on the other hand depends on the instantaneous state of distortion of the comoving network of isorrhopic surtaces, $F_{q}=Y \nabla^{*} s \cdot \nabla \nabla^{*} s$. The network exhibits a kind of elasticity.

Aclosed system of equations describing the behavior of isorrhopic gyroelastic lluids can now be assembled. By definition, the isorrhopic surfaces move with the fluid velocity; this is stated

$$
\begin{equation*}
D_{e} s=0 \tag{1.84}
\end{equation*}
$$

The flow field is incompressible: (the isorrhopic condition enforces incompressibility)

$$
\begin{equation*}
\nabla \cdot v_{e}=0 \tag{1.85}
\end{equation*}
$$

The parallel electric field vanishes identically due also to the isorrhopic condition, so (1.72) holds; differentiation along an electric drift trajectory commutes with differentiation along a tield line

$$
\begin{equation*}
D_{e} T=\partial_{x} v_{e} \tag{1.86}
\end{equation*}
$$

Self-consistency of the ordering scheme requires that the equation of motion at
lowest order and order ε^{\prime} (relative to lowest order), (1.81.1) and (1.81.2). be salisfied. The equation of motion at the next order (ε^{2} relative lo lowest order) completes the system:

$$
\begin{equation*}
\rho D_{e} v_{e}-Q \partial_{\lambda} T-X_{e} \nabla^{*} s \cdot \nabla v_{e}-Y_{e} \nabla^{*} s \cdot \nabla \nabla^{*} s+\nabla \kappa=0 \tag{1.87}
\end{equation*}
$$

These are six nonlinear partial differential equations in six unknowns: τ, ν_{e}, s and κ. The system is closed. The solution however is representation dependent, the fluid velocity in the isorrhopic gyroelastic system may be redefined. The velocity of a fluid element is indistinct in so far as all flutd elements on a given isorrhope are equivalent. Certain velocity ficlds which carry fluid points along isorrhopes may be superimposed on the comoving network without changing the character or form of the dynamics of the system. The resulting velocity sum is called the representative velocity: the transformation is a change of representation.

This representation dependence is familiar in the study of electromagnetic phenomena. The electric and magnetic fields are components of an entity which transform covariantly under lorentz transformations. Electric and mapnetic forces are representation dependent. Gyroscopic and quasielastic forces are excmplars of magnetic-like and electric-like forces in this respect.

Changes of represcntation leave the dynamical equations of the system invariant in form. The force coefficients transform as a single covariant entity under changes of representation as do the electric and magnetic ficlds under Lorentz transformations. The analogy, thugh not formal, is not entirely hypothetical. The change of representation is a form of local Lorentz transformation (applied in the tangent bundle of an isorrhopic manifold.) The generator of the group of such transformations is an object called a permutator.

The permutator is a symmetry operator: it leaves insariant the action inlegral for the isorrhopic system. This is its quintessential feature. The next chapter will exartine the Lagrangian of the isorrhopic gyroelastic system and further detail some properties of the group of permutators.

CHAPTER 2

The Action Principle

The Generalized Lagrangian

On the basis of the previous discussion of representation dependence, all subscipts e referring to the particular representation in which the fluid velocity is the electric drift velocity are droppped. The generalized Lagrangian appropriate for the isorrhopic gyroelastic system is then given by

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}\left(\rho \nabla^{2}-X \nabla \cdot \nabla^{*} s-\nabla^{*} s \cdot \nabla^{*} s-Q T \cdot \tau\right) \tag{2.1}
\end{equation*}
$$

There are several illuminating exercizes which can be carried out with the expression for the Lagrangian in hand. Foremost among these is to demonstrate (by a variational method) that the Euler-Lagrange equation which arises naturally as a consequence of the minimization of the associated action integral is the one previously derived by other means, namely (1.81.3). However, before a segue into the realm of the inscrutable a few words are in order on the variational notation 1 will use.

There are two variational operators which will be convenient in various contexts: δ and Δ. The first of these operators will be referred to as the Eulerian variation; the second will be referred to as the Lagrangian variation. The action of either operator is to denote the variation or small change in a quantity (that on which they acl) caused by an infinitesmal virtual displacement of the system, $f(x, z, t)$. The Eulerian variation δ is a fixed point variation:
it denotes the small change induced by at a fixed space-time point. The Lagrangian variation Δ is the small change induced by as observed from the vantage of the displaced fluid point. The two operators are related thrcugh

$$
\begin{equation*}
\Delta=\delta+\xi \cdot \nabla \tag{2.2}
\end{equation*}
$$

It will prove helpful to become familiar with a few common identities regarding the usage of these operators. For example:

$$
\begin{equation*}
\Delta x=\xi \tag{2.3.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta v=D \xi \tag{2.3.2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta s=0 \tag{2.3.3}
\end{equation*}
$$

The virtual displacement does not change the tabeling of isorrhopes. It is required to be divergenceless:

$$
\begin{equation*}
\nabla \cdot \xi=0 \tag{2.3.4}
\end{equation*}
$$

There is a certain analogy between the olgebra of virtual displacements operators and time differentiation operalors:
$\delta \cdots+\sigma_{\text {, }}$ and $\Delta \cdots D$. With the further replacement $f \rightarrow-\infty$ the commutalion relations for the two sels of operators are identical. For example

$$
\begin{equation*}
[\Delta . \nabla]=\Delta \nabla-\nabla \Delta=-\nabla \xi-\nabla \tag{こ.4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\Delta . \nabla^{\bullet}\right]=\Delta \nabla^{\bullet}-\nabla^{\bullet} \Delta=-\nabla^{\bullet} \xi \cdot \nabla \tag{2.4.2}
\end{equation*}
$$

correspond to (0.17.1) and (0.17.2). It should cone as no surprise then, in view of (1.72), that

$$
\begin{equation*}
\Delta T=\partial_{x} \xi \tag{2.5}
\end{equation*}
$$

Applying (2.2) to these relations we can find easily that

$$
\begin{equation*}
\delta x=0 \tag{2.6.1}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\nabla}=D \xi-\xi \cdot \nabla \tag{2.6.2}
\end{equation*}
$$

$$
\begin{equation*}
\delta s=-\epsilon \cdot \nabla s \tag{2.6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta T=\partial_{X} \xi-\epsilon \cdot \nabla_{T} \tag{2.6.4}
\end{equation*}
$$

Now apply the variational method to the action integral straightaway. Write the action integral

$$
\begin{equation*}
z=\int d x d y d z d t \not x \tag{2.7}
\end{equation*}
$$

using the generalized lagrangian (2.1). The Euler-Lagrange equation results from the requirement that the variation 03 vanish:

$$
\begin{equation*}
\Delta 3=\int d x d y d z d t \Delta \mathscr{L} \tag{2.8}
\end{equation*}
$$

Calculate the terms in $\mathbf{A l}^{\mathbf{3}}$ using the above identilies as follows:

$$
\begin{align*}
& \Delta \frac{1}{2} \rho v^{2}=\rho v \cdot \Delta v=\rho v \cdot D \xi \\
& \Delta \frac{1}{2} X v \cdot \nabla^{*} s=\frac{1}{2}\left(\Delta v \cdot \nabla^{*} s+V \cdot \Delta \nabla^{*} s\right)=\frac{1}{2} X\left(D \xi \cdot \nabla^{\prime} s+\nabla^{*} s \cdot \nabla \xi \cdot v\right) \\
& \Delta \frac{1}{2} Y\left(\nabla^{*} s \cdot \nabla^{*} s\right)=Y \nabla^{*} s \cdot \Delta \nabla^{*} s=Y \nabla^{*} s \cdot \nabla \xi \cdot \nabla^{*} s \\
& \Delta \frac{1}{2} Q T \cdot T=Q T \cdot \Delta T=Q T \cdot \partial_{x} \xi \tag{2.9}
\end{align*}
$$

The varied action integral can be expressed then as

$$
\begin{equation*}
\Delta \xi=\int d x d y d z d t\left(\rho w \mathcal{F}-\frac{1}{2} X\left(D \xi \cdot \nabla^{*} s+\nabla^{*} s \cdot \nabla \xi \cdot v\right)-1\left(\nabla^{*} s \cdot \nabla \xi \cdot \nabla^{*} s\right)-Q \tau \cdot \partial_{x} \xi\right) \tag{2.10}
\end{equation*}
$$

An integration by parts may be carried out with the help of the identity

$$
\begin{equation*}
\int d x d y \cdot \cdot \nabla c \cdot b=\oint d x^{\cdot} \cdot a b \cdot c-\int d x d y c \cdot(\nabla \cdot a b) \tag{2.11}
\end{equation*}
$$

The result can be arranged in the form

$$
\begin{align*}
& \Delta \bar{\nabla}=-\int d x d y d z d t\left(\rho D v-X \nabla^{*} s \cdot \nabla \psi-\gamma \nabla^{\circ} s \cdot \nabla \nabla^{*} s-Q \partial_{2} T\right) \cdot \xi \\
& +\left.\int d x \operatorname{chs}_{y} d x \mathscr{E}_{F} \cdot \xi\right|_{2}+\int d x \text { dy } d t \mathscr{L}_{T} \cdot\left\{\|_{x}\right. \\
& +\int d t d z \oint d x^{*} \cdot\left(\nabla^{*} \mathcal{E}_{\nabla} \cdot s+T \mathscr{L}_{T}\right) \cdot \xi \tag{2.12}
\end{align*}
$$

where the subscriping of \mathcal{L} indicates fpartial) differentiation with respect to the subscript two-vector. The boundary terms ran be made to vanish by imposing side conditions limiting the class of admissible displacements. Choosing the boundary to coincide with ar. isorrhope and to be fixed these conditions are expressed as

$$
\begin{align*}
& \xi \cdot d x^{*}=0 \\
& \xi\left(t_{s}\right)=\xi\left(t_{2}\right) \\
& \xi\left(z_{s}\right)=\xi\left(z_{2}\right) \tag{2.13}
\end{align*}
$$

The matimization condution reduces to the vanishing of

$$
\begin{equation*}
\Delta g=-\int d x d y d z d t\left(\rho D v-X \nabla^{*} s \cdot \nabla v-\nabla^{*} s \cdot \nabla \nabla^{*} s-Q \partial_{\eta} T\right) \cdot \xi \tag{2.14}
\end{equation*}
$$

for ξ satisfying the side conditions (2.13), but otherwise arbitrary.
Now we are prepared to check the Euler-Lagrange equation with the previously derived equation of motion: substitutirg the equation of motion (1.81.3) into (2.14) the variation of the action integral becomes

$$
\begin{equation*}
\Delta:=\int d x d y d z d t \xi \cdot \nabla \kappa=-\int d x d y d z d t \kappa \nabla \cdot \xi+\int d z d t \oint d x^{*} \cdot \kappa \xi=0 \tag{2.15}
\end{equation*}
$$

The Lagrangian (2.1) reproduces the equation of motion. The scalar containing the unknown constant of the gyrophese integration is seen to play the role of a Lagrange multiplier associated with the incompressibility constraint.

There exist certain ξ which do not satisfy the side conditions (\%.13), but which can be empluyed $t o$ unveil constants of the fludd motion or induce conservation laws of one sort or another. These ξ are symmetry operators. Consider for example an infinitesmal time translation $\mathcal{F}=-\boldsymbol{T}$ of the system where T is a time infinitesmal. The action of virtual displacement of this sort on a quantity F can be written

$$
\begin{equation*}
F(t-\tau)=F(t)-\tau \hat{o}_{t} F(t)=F+\delta F \tag{2.16}
\end{equation*}
$$

The correspondence $\delta \Leftrightarrow-\tau \partial_{t}$ is recognized (the time differential operator
serves as a generator or propagator). The Eulerian variation of the action integral is then

$$
\delta z=\int d x d y d z d t d x=\int d x d y d z d t\left(-\tau a_{t} f\right)=-T \int d x d y d z f_{t}
$$

But, since $\delta \boldsymbol{j}=\Delta 3$

$$
\begin{align*}
\delta 3 & =\int d x d y d z d t d x=\int d x d y d: d t(\Delta x-f \cdot \nabla f) \\
& \left.=1 \tilde{1}+\int d x d y d z d t x \vee \cdot \xi-\int d z d t \int d x^{*} \cdot x t=1\right)
\end{align*}
$$

the expression (2.17) can be quated to (2.12). Substituling the symmetry operator $\xi=-T$ in the resulting equation then representing the differences as differentials reveals the law of conservation of energy in the isorrhopic gyroelastic sytem:

$$
\begin{align*}
& \left.\int d r d y d z\left(x-\mathscr{L}_{*} \cdot v\right)\right)_{t}-\int d x d y d t\left(\rho_{v} \cdot v\right) I_{2}=0 \\
& \partial_{t} \int d r d y\left(-\frac{1}{2}\left(\rho v^{2}+\gamma\left(\nabla^{*} s\right)^{2}+Q r^{2}\right)\right)+d_{z} \int d r d y Q r \cdot v=0 \\
& \partial_{t} H+\partial_{z} \Gamma_{n H}=0 \tag{2.19}
\end{align*}
$$

The time translation operation $\xi=-\pi r$ is representation dependent: the conservation law it induces reflects this lact. Returs to this in a mont: first turn to the issue ol permutation symmetry.

As previously discussed. the permutator is the symmetry operalor which is associated with exchange invariance, isrrhopy. Though the exact form of the permutator is yet to be determined, we do know already that owing to its being a symetry operator, the permutator must leave the action integral invar, ant.

It is essential that the permuted systems be relevantly indistinguishable. Any distinction concerning the identity of flusdelements must be irrelevant with regard to the dynamical evolution of the system. The Eulertan vartation d induced by a permutator ζ (applied to any quantity relevant to the action) must therefore vanish.

Owing also to its being a symmetry operation, ζ must induce a variation of the action integral which vanishes, so in ardition to

$$
\begin{align*}
& \delta s=-\zeta \cdot \nabla s=0 \\
& \delta \nabla^{\prime} s=\nabla^{\circ} \partial_{S}=0 \\
& \delta \tau=\partial_{S} \zeta-\zeta \cdot \nabla T=0 \\
& \delta \nabla=D \zeta-\zeta \cdot \nabla_{V}
\end{align*}
$$

and $\Delta f=0, y \sin \delta 3=12=0$.
A shor falculation emplosine the commutalion relations

$$
\begin{equation*}
\left[0 . \nabla^{*}\right]=-\nabla^{\cdot} \cdot \nabla \tag{2.21.1}
\end{equation*}
$$

and

$$
\left[0_{i} . \nabla^{*}\right]=-\nabla^{*} \tau . \nabla
$$

affirms that lhe soiret form for the permutator is

$$
\zeta=\dot{-}\{s) \nabla^{*} *
$$

where al $)$ is an arbatrary function of s. The pertatator is awtor fiald whone mingrat curies are isorrhopes. The permatator is the motmanmal generator of live z nup of permutations: it permutes the identils of asjamest
 an entire function, namely wish. is necessary to specify the eenerator, the group of permutations is not a Lie group.

Now that an expression of the form of the permutator is known. the behos ior of the system under changes of representation can be exmmed in detait. The transformations

$$
v \cdot v=\psi-\zeta=-\omega(s) \nabla^{*} s
$$

evokes a change of representalion. The calculations leading to the followink results are straightorward and not dissimilar to those first presented by Newcomb ${ }^{2 i-22}$ with regard to the two-dimensional system.

The generating function $w(s)$ induces the transtormation

$$
\begin{align*}
& v \rightarrow V^{*}=v-\omega V^{*} s \\
& X \rightarrow X^{*}=X-2 \rho \omega^{\prime} \\
& Y \rightarrow Y^{*}=Y+\omega X-\rho \alpha^{2} \tag{:2.24}
\end{align*}
$$

Two important invariants of the above transformation are

$$
\begin{equation*}
=X^{2}+4 \rho Y \rightarrow Y^{\prime}=X^{2}+4 \rho Y^{\prime} \tag{2.25.1}
\end{equation*}
$$

the gyroelasticity (gyroelastic modulus) which like any elasticity is a nonnegative quantity, and

$$
\begin{equation*}
\nabla^{(0)}=\nabla-\frac{X}{2 \rho} \nabla^{*} s \rightarrow \nabla^{(0)}=r^{(0)}=r-\frac{X^{\prime}}{2 \rho} \nabla^{*} s \tag{2.25.2}
\end{equation*}
$$

the canonical velocity.
Certain representations are distinguished by some unique feature and thus are ralsed above the sea of anonymity witt. a name. For oxample the representation in which the gyroscopic force vanishes is called the canonical representallor

$$
\begin{equation*}
x=x^{(0)}=0, Y=y^{(0)}=\frac{t}{4 p}, v=v^{(0)} \tag{2.26}
\end{equation*}
$$

Two representations related to one another through

$$
\begin{equation*}
r=-X, \gamma=\gamma, \hat{\nabla}=\nabla-\frac{X}{\rho} \nabla^{\cdot} s \tag{2.27}
\end{equation*}
$$

are said to be dual to one another. The canonical representation is its own dual.

The characteristic representalions are a par of duals in which the quastelastic force vanishes. For this pair of duals

$$
\begin{equation*}
x^{\prime}=\rho^{\mu}=\psi^{\frac{1}{2}}, \gamma^{2}=\rho^{\prime}=0, \hat{\mathbf{v}}^{2}=r^{3}=v^{(0)}: \frac{\varphi^{\frac{1}{2}}}{2 \rho} \Gamma^{0} \tag{2.28}
\end{equation*}
$$

Ne will adhere to the notation introduced here for referring to these special representations.

Since ζ is a symmetry operation it can be shown to induce a conservation law las previously time translation symmetry was used to derive the conservation law for energy). Acting on (2.12) with $\}=\{$ there results

$$
\begin{align*}
\Delta:=0 & =\int d x d y d z \mathscr{L}_{V} \cdot \zeta l_{t}+\int d x d y d t \mathscr{L}_{T} \cdot \zeta l_{z} \\
& =-\int d s=\left(\int d z \rho|\ell|_{t}-\left.\int d t Q \nmid\right|_{z}\right) \tag{2.29}
\end{align*}
$$

where

$$
\begin{equation*}
r=\int v^{(0)} \cdot d x \cdot g=\int x \cdot d x \tag{2.30}
\end{equation*}
$$

Since $\dot{(1}$ s) is a freely chosen (generating) function, the expression in parentheses in (2.29) vanishes for each s. The law of conservation of circu!ation in the isorrhopic gyroclastic system can then be put in differential form as

$$
\begin{equation*}
\partial_{1}(\rho G)-\partial_{2}(\theta g)=0 \tag{2.31}
\end{equation*}
$$

In the two-dimensional system $g=0$ and conscomently pre is a constant of the motion on each isorrhope. Since ρ is obvicusty a constant since $D s=0$ the rirculation is a constant of the motion.

Retura to the discussion following (2.19) concerning the representatime dependence of the conservation law induced by atime translation sumeta operiation. Il is easily seen that accommodalitig the transfurmation

$$
\begin{equation*}
\xi \cdot \xi^{\prime}=-v-\xi \tag{2.12}
\end{equation*}
$$

the lan of ronseriation of energy becomes

$$
\begin{equation*}
\partial_{t} H^{\prime}+\partial_{2} I_{H}^{\prime \prime}=0 \tag{2.33.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H^{\prime}=H+\int d s \omega \rho E \tag{2.33.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{: H}=\Gamma_{t H}+\int d s \omega Q^{g} \tag{2.33.3}
\end{equation*}
$$

The action of a change of representation on the law of conservation of energy is simply to add some multiple of the law of conservation of circulation.

Geometrical Optics

In the geometrical optics limit the study of linear waves in the isorrhopic gyroelastic medium is simpliifed by the local nature of the dispersion reiation. The wave field is made up of locally plane waves winch propagate according to local laws. for the local condition to be valid, the medium must be uniform on the scale of a wavelength and unchanging during a period of oscillation of the wave.

Begin by writing the generalized Lagrangian in the characteristic representation(s) directly as

$$
\begin{equation*}
f^{n}=\frac{1}{2}\left(\rho v^{2}+\nabla^{\frac{1}{2}} v^{1} \cdot \nabla^{\cdot} s-Q T \cdot \tau\right) \tag{2.34}
\end{equation*}
$$

and in the symmetrized form

$$
\begin{equation*}
\mathscr{L}^{+}=\mathscr{L}^{-}=\frac{1}{2}\left(\rho v^{+} \cdot v^{-}-Q T \cdot T\right) \tag{2.35}
\end{equation*}
$$

where v^{*} and $\mathbf{~}^{-}$are the characteristic representative velocities de:ined in (2.28). The equation of motion can likewise be symmetrized as

$$
\begin{equation*}
\rho D^{\mp} \mathbf{v}^{ \pm}-Q O_{x} T+\nabla \kappa=0 \tag{2.36}
\end{equation*}
$$

where D^{2} is the operator of time differentiation along a \boldsymbol{v}^{*} fluid trajectory. The simplicity of the symmetrized equation of motion here is the reason for the choice of representation.

To study the behavior of linear waves in the geometrical optics limit the equation of motion is varied (linearized), then a certain ansatz is taken for f, the displacement or wave field, such that the conditions outlined above apply.

Since the operation of Eulerian variation δ and ∇ commute, the following congruency holds:

$$
\begin{equation*}
\delta\left(\rho D^{\mp} \nabla^{ \pm}-Q \partial_{\chi} T\right)=-\delta \nabla \kappa=-\nabla \delta \kappa \sim 0 \tag{2.37}
\end{equation*}
$$

Furthermore, since $\sigma+\xi \cdot \nabla=\Delta$, the variation of the equation of motion can be restated as the congruency

$$
\begin{equation*}
\Delta\left(\rho D^{F} r^{ \pm}-Q \partial_{x} \tau\right)-\xi \cdot \nabla\left(\rho D^{F} v^{2}-Q \partial_{x} \tau\right)=-\delta \nabla_{x}=-\nabla \delta \kappa \sim 0 \tag{2.38}
\end{equation*}
$$

Taking account of the relation

$$
\begin{equation*}
\Delta \partial_{k} T=\partial_{x} \partial_{k} \xi \tag{2.39}
\end{equation*}
$$

the linearized equation of motion can be seen to satisfy

$$
\begin{equation*}
\rho D^{x} D^{ \pm} \xi-Q \partial_{x} \partial_{x} \xi-\xi \cdot T\left(\rho D^{x} v^{ \pm}-Q \partial_{x} \tau\right) \sim 0 \tag{2.40}
\end{equation*}
$$

In curled form this congruency becomes the equation

$$
\begin{equation*}
\nabla \cdot\left(\rho D^{y} D^{t} \xi-Q \partial_{x} \partial_{x} \xi-\xi \cdot \nabla\left(\rho D^{F} v^{2}-Q \partial_{x} T\right)\right)=0 \tag{2.+1}
\end{equation*}
$$

since, of coursc, $\nabla \cdot \nabla^{\circ} \delta \kappa=0$.
Now choose the ansalz for the displacement wave field to have the form

$$
\xi=\nabla^{\cdot}\left(A_{f^{\prime}}{ }^{\prime}\right)
$$

where fis a rapidly oscillating phase and as a slowly (in space) barsing ampliture. To keep the scaling intact, take the phase to be $\sim \sim 1 / \mathrm{Le}$. (This assures that the wave oscillations obey the stated conditions for geomelrical optics to apply, ywi they remain far slower than the gyromotion of single particles. so the medium can still be described accurately as gyroelastic.)

Further define canonical wave variables as follows (note these variables are new and have no'hing whatever to do with variables these symbols have been used to designate in previous chapterst ω is not a generating function):

$$
\begin{align*}
& \kappa=\nabla_{\varphi}=\text { huo-uavevector } \\
& k=\partial_{2} \varphi=\text { parallel umevector } \\
& \omega=-\partial_{t} \varphi=\text { frequency } \\
& \sigma=-D_{\varphi}=-\partial_{t} \varphi-\nabla \varphi \cdot \kappa=\omega-\kappa \cdot v=\text { proper frequency } \tag{2.43}
\end{align*}
$$

along with the obvious specializations (see (2.28))

$$
\begin{equation*}
\sigma^{(0)}=-D^{(0)} \varphi=\omega-\kappa \cdot r^{(0)}=\text { crononical proper frequency } \tag{2.44.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{ \pm}=-D^{ \pm} \varphi=\omega-\kappa \cdot v^{2}=\text { characteristic proper frequencies } \tag{2.44.2}
\end{equation*}
$$

Inserting the ansatz (2.42) into the linearized equation of motion (2.41) there results (to order $1 / \varepsilon^{2}$) the local characteristic entulion (dispersion relation) in the form

$$
\begin{equation*}
\sigma^{+} \sigma^{-}=\left(\omega-\kappa \cdot v^{+}\right)\left(\omega-\kappa \cdot v^{-}\right)=\frac{Q}{\rho}(t+\kappa \cdot \tau)^{2} \tag{2.45}
\end{equation*}
$$

The dispersion relation is quadratic in ω and therefore is solved by two values of ω, say ω_{+}and ω_{-}

$$
\begin{equation*}
\omega_{ \pm}=\kappa \cdot r^{(0)} \pm \Omega \tag{2.46}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega^{2}=\frac{Q}{4 \rho^{2}}\left(\kappa \cdot \nabla^{*} s\right)^{2}+\frac{Q}{\rho}(k+\kappa \cdot \tau)^{2} \tag{2.47}
\end{equation*}
$$

The soiations ω_{2} restrict to two the possible canonical proper frequenc:es; call them $\sigma^{(0)}$

$$
\begin{equation*}
\sigma_{1}^{(0)}=\omega_{ \pm}-\kappa \cdot v^{(0)}= \pm \Omega \tag{2.48}
\end{equation*}
$$

Expressed as

$$
\begin{equation*}
S\left(|\kappa, k| \cdot \sigma^{(0)}\right)=\left(\sigma^{(0)}-\frac{\frac{(}{}_{\frac{1}{2}}^{2}}{2 \rho}\left(\kappa \cdot \nabla^{*} s\right)\right)\left(\sigma^{(0)}+\frac{\varphi^{\frac{1}{2}}}{2 \rho}\left(\kappa \cdot \nabla^{*} s\right)\right)-\frac{Q}{\rho}(k+\kappa \cdot \tau)^{2}=0 \tag{2.49}
\end{equation*}
$$

it is apparent that the dispersion relation (2.45) admits the scaling

$$
\begin{equation*}
\mathscr{D}\left(\lambda|\kappa, k|, \lambda \sigma^{(0)}\right)=\lambda^{2} D\left(\left\{\kappa, k \mid, \sigma^{(0)}\right)=0\right. \tag{2.50}
\end{equation*}
$$

so that \mathscr{D} is homogeneous of degree 2 . The dispersion relation is a homogeneous function of its arguments $\left(|\alpha, k|, \sigma^{(0)}\right)$ due to the fact that the gyroelastic medium is nondispersive to high frequency waves.

It can be shown that homogeneous functions $\mathscr{D}(\{\kappa, k \mid, \sigma)$ of degree n conform so as to satisty

$$
\begin{equation*}
\sigma \partial_{\sigma} \mathscr{D}+\kappa \cdot \partial_{\kappa} \mathscr{D}+\kappa \partial_{i} \mathscr{D}=n \mathscr{D} \tag{2.51}
\end{equation*}
$$

This relation, known as Euler s theorem, can be used to eliminate $\partial_{a}{ }^{\prime}, \mathcal{D}$ from the expression for the total derivative of \mathcal{D} with respect to wavevector. This accomplished, impose the restriction (2.4日) to find

$$
\begin{align*}
\left\{V_{\tau}, V_{t}\right\} & \left.=\left(\partial_{\kappa} \sigma^{(0)}, \partial_{k} \sigma^{(0)}\right) \ell_{\sigma}(0)=\sigma!0\right) \\
& = \pm \frac{1}{\Omega}\left\{\frac{Q}{4 \rho^{2}}\left(\kappa \cdot \nabla^{*} s\right) \nabla^{*} s+\frac{Q}{\rho}(k+\kappa \cdot T) T \cdot \frac{Q}{\rho}(K+\kappa \cdot T)\right\} \tag{2.52}
\end{align*}
$$

From this result it is manifest that

$$
\begin{equation*}
\left.\left.\left.\frac{1}{\sigma^{(0)}}\{x, \notin\} \cdot \right\rvert\, v_{ \pm}, v_{ \pm}\right\} \equiv|n, k| \cdot \mid v, L\right\}=1 \tag{2.53}
\end{equation*}
$$

The quantity $\{k, k\} \equiv\left\{\kappa, k \mid / \sigma^{(0)}\right.$, the normal slowness (3-vector), is closely related to the usual phase velocity (same direction, reciprocal in magnitude). The vector $\mid \mu, U\} \equiv\left|v_{ \pm}, V_{i}\right|$ is closely related to the group velocity (in a local rest frame.) The resonance condition (2.53) states that a wave packet moves in resonance with its own wave fronts (as expected in a non-dispersive medium.) in other words, the ray trajectories (space-time trajectories of velocity $\mid \boldsymbol{v}, \mathrm{l}^{\prime}$, \mid) lie wholly within the phase planes (space-time hyperplanes of constant f) when viewed in the local rest frame (in this case the frame moving with the fluid at the eanonical representative velocity.) The ray constancy of can be restated for a frame at rest relative to a fixed point as

$$
\begin{align*}
D_{:}^{R} \varphi=\left(\partial_{1}+\nabla_{t}^{R} \cdot \nabla\right)_{\varphi} & =\left(\partial_{t}+v^{(0)} \cdot \nabla+v_{z}^{R} \cdot \nabla+V_{t}^{R} \partial_{z}\right) \varphi \\
& =-\omega_{i}+v^{(0)} \cdot \kappa+v_{t}^{R} \cdot \kappa+V_{t}^{R} k=-\sigma_{t}^{(0)}+\sigma_{t}^{(0)}=0
\end{align*}
$$

The general ray velocities $\left.\mid v_{z}^{R}, V_{z}^{R}\right\}$ introduced here can also be recognized as the $\{\kappa, k \mid$-space gradients of ω. This circumstance will be used shortly to construct a canonical Hamiltonian wave theory. First let's step back and lake a look at the global picture thus far.

The propagation of waves in a non-dispersive medium can be described with the use oi an artifice called the ray surface or its dual counterpart, the normal slowness surface. Points on the ray surface are related in one-to-one correspondence with tangent planes of the normal slowness surface and vice-versa. Before proceeding to construct these surfaces a minor reorientation will prove helpful.

As is clear from (2.52), ray trajectories remain within isorrhopic surfaces. The natural coordinate basis to which to refer a ray or normal slowness surface in the isorrhopic gyroelastic system is composed of local tangents to magnetic field lines and isorrhopes.

To avoid confusion as to which surfaces are being referred to in the following, let us agree to refer always to the comoving network of (nested) isorrhopic surfaces as the isorrhopic manifold \mathcal{M}, the configuration space of the gyroelastic system. Refer to the space-time ray surface as the ray conoid and its dual as the normal slowness conoid.

Choose the axes of an orthonormal basis $\left(\theta_{i}.\right)$ in the tangent space of \mathcal{H} al a point $\mathscr{P}, \mathcal{G u}(\mathscr{P})$, to be oriented (to lowest order) as follows: let \boldsymbol{C}_{f}. be directed tangent to the local isorrhope, then performing an infinitesmal rotation $\delta \omega=\boldsymbol{T}^{*}$ bring \boldsymbol{e}_{2}. into alignment with the local magnetic field line. In this (primed) coordinate system $t=0$. Choose $\boldsymbol{v}^{(0)}=0$ for simplicity and the dispersion relation (2.54) evaluates to

$$
\begin{equation*}
\Omega^{2}=\frac{Q}{4 \rho^{2}}\left(\kappa \cdot \nabla^{4} s\right)^{2}+\frac{Q}{\rho} k^{-2}=\left(a^{(0)}\right)^{2} \tag{2.55}
\end{equation*}
$$

where l, is the wavevector component along $\bullet_{2} \ldots$ This is the equation for the normal slowness surface in the space dual to $\mathscr{H} \mathscr{(P)} \mathcal{P})$. $\mathcal{B}^{\prime}, \boldsymbol{k}^{\prime} \mid$-space at \mathcal{P}. Waves passing through \mathscr{P} with wavevectors in a given direction will be moving with normal slowness magnitude corresponding to the point on the slowness surface selccted by that direction. The normal slowness surface (in the space dual to $\mathscr{H}(\mathcal{P}))$ is an elliptical cylinder whose axis passes through the origin in the direction b_{y} (see figure 2.)

Transforming the expressions for the ray velocilies given in (2.52) to the primed frame it can be shown that

$$
\begin{equation*}
\frac{\left(v_{+}^{R} \cdot e^{2}\right)^{2}}{\frac{(1}{4 \rho^{2}}\left(\nabla^{*} s\right)^{2}}+\frac{\left(v^{R}\right)^{2}}{\frac{Q}{\rho}} \equiv \frac{u^{-2}}{a^{2}}+\frac{U^{\prime 2}}{w^{2}}=1 \tag{2.56}
\end{equation*}
$$

Since (2.53) must be satisfied and since no restriction is placed on ($\left.6 \cdot 0_{y}.\right)$, $\left(v_{ \pm}^{R} \cdot \epsilon_{v}\right.$,) must vanish. The ray surface is therefore an ellipse in the $x^{\prime}-z^{\prime}$ plane in $\mathscr{Z} \not \mathcal{P}$) (see figure 3.$)$ Waves passing through \mathscr{P} moving with ray velocity in a given direction will be moving with ray velocity magnitude corresponding to the point on the ray surfare selected by that direction.

The actual shapes of these surfaces depend on \mathscr{P}. As can be seen in figures 2 and 3 the shapes are symmetrical. In the two-dimensional case dealt with by Newcomb ${ }^{21-2 \pi}$ these surfaces become degenerate. On the ray surface, the plus and minus waves are represented by the two points at the ends of the ray ellipse. These points correspond to two lines on the normal slowness surface. The notation distinguishing between pius and minus waves simply refers to the two sides of the surfaces in the three-dimensional case, which is to say that there exist a continum of dual characteristic pairs, not just one single pair. The \pm distinction seems somewhat pleonastic in the three-dimensional case, and will henceforth be dropped.

Geometrical optics can be systematized in Hamitonian formalism with the wave Hamiltonian function

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}(\{\kappa, t|;| x, z\} ; t)=\kappa \cdot v^{(0)}+\Omega-\omega \tag{2.57}
\end{equation*}
$$

A shor: calculation yields the following canonical equations:

$$
\begin{align*}
& \partial_{z} \mathcal{H}=D^{R} x=v^{R} \\
& \partial_{k} \mathscr{H}=D^{R} z=v^{R} \\
& \partial_{z} \mathscr{H}=-D^{R} \boldsymbol{K} \\
& \partial_{z} \mathscr{H}=-D^{R} \boldsymbol{L} \tag{2.58}
\end{align*}
$$

where we've used (2.52) in the form

$$
\begin{equation*}
\left.\mid v^{R}, v^{R}\right\}=\partial_{|a, 4|^{\omega}} \tag{2.59}
\end{equation*}
$$

and (2.43). Proceed to evaluate $D^{R}(K+\kappa \cdot T)$ using the previously derived results

$$
\begin{equation*}
D^{R} \tau=\partial_{\chi} v^{(0)}+\left(\nabla^{R}-\nabla^{(0)}\right) \cdot \nabla T+V^{R} \partial_{z} T \tag{2.60}
\end{equation*}
$$

anc

$$
\begin{equation*}
\partial_{x} \nabla^{*} s=\nabla^{*} s \cdot \nabla T \tag{2.61}
\end{equation*}
$$

The calculalion discloses

$$
\begin{equation*}
D^{R}(k+\kappa \cdot \tau)=0 \tag{2.62}
\end{equation*}
$$

$(k+\kappa \cdot \tau)$ is a ray constant, as was discovered of the wave phase (2.54) φ.
An obvious corollary to (2.62) is that the quantity $(k+\kappa \cdot T)$ vanishes everywher along a ray trajectory if it vanishes anywhere along that ray trajectory.

Ray trajectories remain always within isorrhopic surfaces, so s is also a ray constant

$$
\begin{equation*}
D^{R} s=0 \tag{2.63}
\end{equation*}
$$

A slightly more involved though straightforward calculation reveals yet another ray constant:

$$
\begin{equation*}
D^{R}\left(\kappa \cdot \nabla^{*} s\right)=0 \tag{2.64}
\end{equation*}
$$

The projection of the two-wavevector on the isorrhope (at \mathscr{P}) is a ray constant. Using (2.62), (2.63) and (2.64) it can be shown that

$$
\begin{equation*}
D^{R} \Omega=0 \tag{2.65}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{R} V^{R}=0 \tag{2.66}
\end{equation*}
$$

as well. By (2.65) the dispersion relation is a ray invariant; by (2.66) the z component of the ray velocity is a ray constant.

To the set of canonical equations above, (2.58), should now be added

$$
\begin{align*}
& \partial_{\omega} \mathscr{H}=-D^{R} t=-1 \\
& \partial_{t} \mathscr{H}=D^{R} \omega=D^{R}\left(\kappa \cdot \nabla^{(0)}\right)=0 \tag{2.67}
\end{align*}
$$

A complete prescription for evolving the wave field is conlained in (2.58) and (2.67).

The curled linearized equation of motion (2.41) with the replacement (2.42) for the displacement field was used to derive the dispersion relation (2.48). The dispersion relation was in fact multiplied by the largest factor. the phase considered to be rapidly oscillating. The next largest term is a conservation Jaw:

$$
\begin{equation*}
\partial_{1} \mathcal{N}+\nabla^{(3)} \cdot \Gamma_{\mathcal{N}}^{(3)}=0 \tag{2.68}
\end{equation*}
$$

where the conserved quantity

$$
\begin{equation*}
\mathcal{N}-\sigma^{(0)}(x d)^{2} \tag{2.69}
\end{equation*}
$$

is the density of wave action (quanta) per unit mass. The flux of wave action

$$
\begin{equation*}
\Gamma_{\mathcal{N}}^{(3)}=\left\{\boldsymbol{r}^{R}, V^{R}\right\} \mathcal{N} \tag{2.70}
\end{equation*}
$$

is composed of wave action carried along at the ray velocity.
Accordingly, the conclusion to be drawn is that under the conditions of geometrical optics (outlined previously) wave action (quanta) can neither be emitted nor absorbed. A localized perturbation or wave packet behaves somewhat like a particle: initially propagating in the neighborhood of a particular ray trajectory, it will continue to be identified with that ray in perpetuity.

Blark

$$
-45 b
$$

CHAPTER 3

Motions Of A Gyroelastic Screwpinch

The Equilibria

In previous chapters some properties of a general gyroelasitc system were considered. It was found that a particular class of initizlization gives the gyroelastic system a self-preserving symmelry called isorrhopy. This symmetry was associated with certain so-called gyroscopic and quasielastic forces and was further asserted to cause drift modes of oscillation and fluid modes of oscillation to decouple one from another. The symmelry operator associated with isorrhopy, called a permutator, is the generator of a group of infinitesmal transformations called permutations: finite transformations calied changes of representation are generated from these permutations.

Transformation properties of the gyroscopic and quasielastic forces under changes of representation were review?d it being emphasized that the forces transform as components of a single covariant entity. This is the reason for the term gyroelastic. The isorrhopic gyroelastic sy item was then made the focus of attention and a closed system of equations describing its behavior was derived.

Next it was asserted that a certain fluid Lagrangian would give rise to the same closed system of aquations and by a standard variational technique this was shown to be the case. Symmetry operations were applied to the action integral and demonstrated to induce conservation laws. One such symmetry operation was a permutation of a time translated system.

Following the specialization of the general nonlinear system to the isorrhopic case, an examination of wave propagation in the geometrical optics limit was undertaken. The view thus presented was one of a slowly developing nonlinear system supporting a rapidly oscillating, short wavelength. small amplitude wave field. To lowest order the wave field is found to behave according to local conditions fixed by the configuration of the lisorrhopic gyroscopic, system.

In this chapter the configure:ion is specialized to a particular class of screwpinch equilibria for the purpose of studying linear global motions and stability of these equilibria. The system is first linearized and the small amplitude Lagrengian is presented in the serewpinch-specialized coordinate system. The linearized equation of motion is found quite generally to have singularities over specific ranges of the paraneters which map the solution space calied continua. The solutions in these continua are generalized functions also called distribulions.

Distributions are linear functionals. Although they are not members of the Hilbert space of posiable motions of the equilibrium, they do play an essential rale in constructing an invertible integral transform to evolve arbitrary perturbalions of the equilibrium which are possible motions.

To construct the screwpinch equitibri- to be studied, lake the isorrhopic surfaces to be circular cylinders, so that $s=x^{2} / 2$ where x is a two-vector directed from t e axis of symmetry. It follows that $\nabla^{\circ} s=x^{*}$. Further choose the velocity field to be represented as

$$
\begin{equation*}
v=-\Omega(s) x^{*} \tag{3.1}
\end{equation*}
$$

where $\Omega(s)$ is (topologically) the fluid angular velocity on an isorrhope. It is evident that \cap transforms under changes of representation according to

$$
\begin{equation*}
\Omega(s) \rightarrow \Omega^{\prime}(s)=\Omega(s)+\omega(s) \tag{3.2}
\end{equation*}
$$

and that the system of isorrhopic surfaces does not deform as a result of the steady flow. The steady state hypothesis, $a_{t}=0$, then requires that the equilibrium state satisfy

$$
\begin{align*}
& \rho \mathbf{v} \cdot \nabla \mathbf{v}-X \nabla^{\bullet} s \cdot \nabla \mathbf{v}-Y \nabla^{*} s \cdot \nabla \nabla^{*} s-Q \partial_{x} \tau+\nabla \kappa=0 \\
& \mathbf{v} \cdot \nabla \boldsymbol{\nabla} \boldsymbol{r}-\partial_{\chi} \mathbf{v}=0 \\
& \mathbf{v} \cdot \nabla \mathrm{\nabla}=0 \\
& \nabla \cdot \boldsymbol{v}=0 \tag{3.3}
\end{align*}
$$

In view of (3.1). the equation of motion for the steady flow equilibrium assumes the form

$$
\begin{equation*}
\left(\rho \Pi^{2}+X n-Y\right) \nabla \cdot s \cdot \nabla \nabla^{\circ} s-Q \partial_{x} T+\nabla k=0 \tag{3.4}
\end{equation*}
$$

The quantity in parentheses in (3.4) is a representational invariant. it can be evaluated by noting that in the canonical representation (sce $\mathbf{1 2 . 2 6 1)}$

$$
\begin{equation*}
x^{(0)}=0 \cdot r^{(0)}=\frac{0}{40} \cdot v^{(0)}=-n^{(0)} z^{0} \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\rho \Omega^{2}+\lambda n-Y\right)=\rho\left(\Omega^{(0)}-\frac{\left(n^{\prime}\right)}{2 \rho}\right)\left(\Omega^{(0)}+\frac{2}{2 \rho}\right)=\rho \Omega^{+} \Omega^{-} \tag{3.6}
\end{equation*}
$$

where the identification $\mathbf{F}^{\prime}=-n^{\prime \prime} \boldsymbol{m}^{\circ}$ has been made (see (2.28).) mother useful representation is the nult representation, designated by a subserpt o and defined by the condition $n_{0}=0$. In the null representation it is found that

$$
\begin{equation*}
x_{0}=2 \rho n^{(0)}, \gamma_{0}=-p n^{+} n^{-}, \nabla_{0}=0 \tag{3.7}
\end{equation*}
$$

With this description of the equilibria. let us now turn to an arialysis of Ine linearized system. The linearized equation of motion terised presiously is reproduced here as

$$
\begin{equation*}
\rho D^{2} D^{x} \xi-Q \partial_{k} \partial_{k} \xi-\xi \cdot \nabla\left(\rho D^{2} v^{2}-Q \partial_{v} T\right)+\nabla \kappa=0 \tag{3.8}
\end{equation*}
$$

For convenience, represent the displacement t in terms of its contravartant components α and β

$$
\begin{align*}
& a=\xi \cdot \nabla s=\xi \cdot x \\
& \beta=\xi \cdot \nabla \theta=-\frac{1}{2 s} \xi \cdot \pi^{*} \tag{3.9}
\end{align*}
$$

so that

$$
\begin{equation*}
\xi=\frac{1}{2 s} a x-\beta x^{x} \tag{3.10}
\end{equation*}
$$

Using the identities (in the null representation,

$$
\begin{align*}
& x_{i}=v=0 \\
& x_{s}=\frac{1}{2 s} x \\
& x_{g}=-\boldsymbol{m}^{*} \cdot x_{00}=\boldsymbol{x}^{*}=-\pi \\
& v_{0}^{(0)}+v^{(0)}=\omega^{0}+\nabla^{0}=0
\end{align*}
$$

(where subscripting refers to parital differentiation with respect to the subscript) the linearized equation of motion can be developed as

$$
\begin{equation*}
A x+\mathcal{B} x^{*}+\nabla x=0 \tag{'3.12.1}
\end{equation*}
$$

where

$$
\begin{align*}
N= & \rho\left(\frac{1}{2 s} a_{21}+\Omega^{+} a^{-}\left(\frac{1}{2 s} a_{81}-2 \beta_{0}\right)+2 n^{(0)}\left(\frac{1}{2 s} a_{i \theta}-\beta_{i}\right)\right) \\
& -Q\left(\frac{1}{2 s} a_{2}+1^{2}\left(\frac{1}{2 s} \alpha_{0,}-2 \beta_{0}\right)+2\left(\frac{1}{2 s} a_{20}-\beta_{2}\right)\right) \\
& +a\left(\rho \cap^{+} n^{-}-a_{1}{ }^{2}\right)
\end{align*}
$$

nd

$$
\begin{align*}
& \beta=-\rho\left(\beta_{1}+\Omega^{+} \Omega^{-}\left(\beta_{00}+\frac{1}{s} \alpha_{0}\right)+2 n^{(0)}\left(\beta_{i 0}+\frac{1}{2_{5}} \alpha_{t}\right)\right) \\
& +Q\left(\beta_{z i}+\nu^{2}\left(\beta_{\theta \theta}+\frac{1}{s} a_{\theta}\right)+2 \nu\left(\beta_{z \theta}+\frac{1}{2 s} a_{z}\right)\right)
\end{align*}
$$

The symboi v has been introduced and is defined by

$$
\begin{equation*}
T=-v x^{*} \tag{3.13}
\end{equation*}
$$

In the gyroelastic system isorrhopy guarantees that $\boldsymbol{T}(\mathcal{P})$ exisis in the langent space $\operatorname{Su}^{(P i}$ and this is wat inspires the choice (3.13). Also. since in equilibrim the isorrhopic surfaces are cylinders. $\nu_{z}=0$.

The displacement field f is required to be divergenceless $\nabla \cdot \xi=0$. so there exists a homomorphism represented by

$$
\begin{equation*}
\xi=\nabla^{*} \Psi=\frac{m}{\sqrt{(2 s)}} \psi_{s}+v(2 s) \Psi_{s} \omega_{\theta} \tag{3.14}
\end{equation*}
$$

where ψ is called the stream function. An identification with (3.10) reveals the association

$$
\begin{equation*}
\Psi_{s}=-\beta \cdot \Psi_{\theta}=a \tag{3.15}
\end{equation*}
$$

Certain portions of the linear analysis that follows are more conventently or succinctly cast in terms of the stream function, other portions will be done in terms of the displacement field or its components. It should be recognized that either representation is entirely equivalent to the other.

Curling the linearized equation of motion (3.12.1) to get rid of the gradient, there results the expression

$$
\begin{equation*}
\left.J,(2 \times \beta .-a)=I, \frac{1}{2} a, \beta\right) \tag{3.16.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
i_{s}\left(-2 \psi_{s},-\psi_{\theta}\right)=J_{\theta}\left(\frac{1}{2 s} \psi_{\theta},-\psi_{s}\right) \tag{3.16.2}
\end{equation*}
$$

where. A sinen by aft operator relation by

$$
\begin{align*}
\Lambda(x, y)= & -\rho\left(x_{t i}+2 \Omega^{(0)} x_{t \theta}+\Omega^{+} \Omega^{-} x_{\theta \theta}-2 \Omega^{(0)} y_{t}-\Omega^{+} \Omega^{-} y_{\theta}\right) \\
& +Q\left(x_{z 2}+2 \nu x_{z \theta}+\nu^{2} x_{\theta \theta}-2 \nu y_{z}-\nu^{2} y_{\theta}\right) \tag{3.16.:1}
\end{align*}
$$

The appropriate small amplitude Lagrangian for the lineaited system is guven by

$$
\begin{align*}
f= & \frac{1}{2} \rho\left(\frac{1}{2 s} a_{t}^{2}+2 s \beta_{t}^{2}-2 \sum_{1}^{1} 0\right)\left(\frac{1}{2} a_{\theta} a_{t}+2 s \beta_{\theta} \beta_{t}+2 a \beta_{t}\right) \\
& \left.+\Omega^{+} ?-\left(\frac{1}{2 s} a_{\theta}^{2}-2 a a_{s}+2 s a_{s}^{2}\right)\right) \\
& -\frac{1}{2} Q\left(\frac{1}{2 s} a_{z}^{2}+2 s \beta_{z}^{2}+2 \nu\left(\frac{1}{2 s} \alpha_{\theta} a_{z}+2 s \beta_{\theta} \beta_{z}+2 a \beta_{z}\right)\right. \\
& \left.+\nu^{2}\left(\frac{1}{2 s} a_{\theta}^{2}-2 a a_{s}+2 s a_{s}^{2}\right)\right) \tag{3.17.1}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{\mathscr{L}}=\left(\frac{1}{4 s} a^{2} P(s)\right)_{s} \tag{3.17.2}
\end{equation*}
$$

Notice the auxilliary $\underset{\sim}{\mathscr{P}}$ satisfies the Euler equation

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{\partial \mathscr{L}}{\partial a_{s}}\right)-\frac{\partial \mathscr{L}}{\partial \alpha}=0 \tag{3.18}
\end{equation*}
$$

identically.
The (small amplitude) action integral is then minimized by solutions of the (small amplitude) Euler equations
und

A short calculation expuses the curied linear equation of motion (3.16.1) as no more than the sum of derivatives of these Euler equations for and f. The identification made is

$$
\begin{equation*}
(3.16 .1)=\frac{d}{d \theta}(3.19 .1)-\frac{d}{d s}(3.19 .2) \tag{:1.19.:1}
\end{equation*}
$$

Since the equitibrium structure is independent of (θ, z, t) this partial differentifilequation in (s, θ, z, t) is seperable and reducible to four second order ordisary differintial equations. Each of three of these have constant cofflcients and are solved by complex exponentials. The fourth, the equetion in s, will henceforth be referred to as the Euler equation (though it is of course only one of four.)

The appropriate ansatz for the stream eigenfunction ψ is then a helical flarmonic complex exponential with an s-dependent amplitude:

$$
\begin{equation*}
\psi_{k m}^{(n)}=\psi_{k m}^{(n)}(s) \exp \left(i\left(k z+m \theta-\omega_{k m}^{(n)} t\right)\right) \tag{3.20}
\end{equation*}
$$

Equivalent!y

$$
\begin{align*}
\xi_{k m}^{(n)} & =\frac{1}{2 s} \alpha_{k m}^{(n)} x-\beta_{k m}^{(n)} x^{*} \\
& =\left(\frac{i m}{2 s} \psi_{k m}^{(n)}(s) x+\left(\psi_{k m}^{(n)}(s)\right)_{s} x^{*}\right) \exp \left(i\left(k z+m \theta-w_{k m}^{(n)}()\right)\right. \tag{3.21}
\end{align*}
$$

is the form of the displacement. Any solution to the partial differential equation (3.16.2) (or (3.8)) for given boundary conditions and initial conditions, can be created by a superposition of eigensolutions of the form (3.20) (or (3.21).) The determination of a proper inner product on this solution space and related questions will be dealt with later. First we'll tackle the Euler equation itself, exploring some of the more intriguing cloisters of arcane mathematics along the why to an integral theorem.

Inserting (3.20) into (3.16.2) the linear equation of motion for the stream function amplitude assumes the form

$$
\begin{equation*}
\left(f \psi_{s}\right)_{s}=g \psi \tag{3.22.1}
\end{equation*}
$$

where the coefficient functions f and g are given by

$$
\begin{equation*}
f=2 s\left(\rho\left(\omega^{2}-2 m \omega \Omega^{(0)}+m^{2} \Omega^{+} \Omega^{-}\right)-Q(k+\imath m)^{2}\right) \tag{3.22.2}
\end{equation*}
$$

and

$$
\begin{align*}
g= & \frac{m^{2}}{2 s}\left(\rho\left(\omega^{2}-2 m \omega \Omega^{(0)}+m^{2} \Omega^{+} \Omega^{-}\right)-Q(k+u m)^{2}\right) \\
& +\frac{d}{d s}\left(\rho\left(-2 m \omega \Omega^{(0)}+m^{2} \Omega^{+} \Omega^{-}\right)-Q\left(2 k u m+v^{2} m^{2}\right)\right) \tag{3.22.3}
\end{align*}
$$

and where $\Omega^{(0)}, \Omega^{*}, Q, \nu$ and ρ are all functions of specified by the particular equilibrium chosen.

Detour for a moment back to the linear equation of motion in the form (3.12.1) and rewrite that equation for a mode of definite energy (dropping all attached subscripts and superscripts k, m, n for simplicity) as

$$
\begin{equation*}
\rho\left(\frac{1}{2 s} \alpha x-\beta x^{*}\right)_{t t}+A^{\prime} x+\mathscr{B}^{\prime} x^{*}+\nabla \kappa=0 \tag{3.2:3}
\end{equation*}
$$

or equivalently as

$$
\begin{equation*}
\rho \xi_{t,}-F(\xi)=0 \tag{3.24}
\end{equation*}
$$

Now follow the eclectic procedure oullined by Frieman and Rotenberg ${ }^{6}$ for obtaining an energy integral: multiply (3.24) by $\xi^{\dagger}\left(^{\dagger}\right.$ indicates complex conjugate) and integrate over volume so that there results

$$
\begin{equation*}
-\int d s d \theta d z \rho \xi^{\dagger} \cdot \xi_{t t}=\omega^{2} \int d s d \theta d z \rho \xi^{\dagger} \cdot \xi=-\int d s d \theta d z \xi^{1} \cdot F(\xi) \tag{3.25}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\int d s d \theta d z \xi^{\dagger} \cdot \nabla \kappa=\int d s d \theta d z\left(\nabla \cdot \kappa \xi^{\dagger}-\kappa \nabla \cdot \xi\right)=\int d z \oint \xi^{\dagger} \cdot d x^{*} \kappa=0 \tag{3.26}
\end{equation*}
$$

it is seen that there remains the relation

$$
\begin{align*}
& \omega^{2} \int d s d \theta d z \rho \xi^{\dagger} \cdot \xi=\int d s d \theta d z\left(a^{\dagger} d^{\dagger}-\beta^{\dagger} 2 s\right) \\
& \omega^{2} N=\delta W \tag{3.27}
\end{align*}
$$

where N is a positive definite normalization. The relation (3.27) is a quadratic form in ω which can be reexpressed in terms of the stream eigenfunction amplitude ψ as

$$
\begin{equation*}
a \omega^{2}+b \omega+c=0 \tag{3.28.1}
\end{equation*}
$$

where

$$
\begin{gather*}
a=\int d s \rho\left(2 s \psi_{s}^{2}+\frac{m^{2}}{2_{s}} \psi^{2}\right) \tag{3.28.2}\\
b=-\int d s\left(2 s \psi_{s}^{2}\left(2 m p \Omega^{(0)}\right)+\psi^{2}\left(\frac{m^{2}}{2_{s}} 2 \pi \rho \Omega^{(0)}+\left(2 m p \Omega^{(0)}\right)_{s}\right)\right) \tag{3.28.3}
\end{gather*}
$$

and

$$
\begin{align*}
r=\int d s & \left(2 s \psi_{s}^{2}\left(m^{2} \rho \Omega 1^{+} \Omega^{-}-Q(k+m \nu)^{2}\right)\right. \\
& \left.+\psi^{2}\left(\frac{m^{2}}{2 s}\left(m^{2} \rho \Omega \Omega^{+} \Omega^{-}-Q(k+m \nu)^{2}\right)+\left(m^{2} \rho \Omega^{+} \Omega^{-}-Q\left(2 m \nu k+m^{2} \nu^{2}\right)\right)_{s}\right)\right) \tag{3.28.4}
\end{align*}
$$

It is ciear from (3.28.1) that if $\Omega^{(a)}=0 . \dot{L}^{2}$ is a real quantity (if $\Omega^{(0)} \times 0$. ω^{2} may be complex.) An integral theorem for the latter case (canonically rotating) is thus inherently more complicated than for the former case (canonically slatic). Notice that the canonical angular frequency $\Omega^{(0)}$ is a representational invariant, so this choice is not arbitrary, but deliberate.

Shear in the canonical velocity profile can cause Helmholtz-type instabilities and this can be seen to arise due to the presence of the deriyative in the expession for the coefficient b above. However, a sufficiently large value of the gyroelastic modulus can stabilize such instabilities.

The superposition of eigenmodes (the integral transform) can be accomplished by summation over the discrete spectra and integration over the continua for each κ, m. Since all eigenvalues of the spectra for the static equilibria are confined to the real and imaginary axes, the task of finding them and including them in the integral transform in that case is simplified (over the rotating equilibrium.) Also, the static case admits to analysis by an energy principle, which will be presented in succeeding chapters.

The next step towards an integral theorem is to choose a particular equilibrium to study in detail. The choice is made so as to avoid needless complexity yet retaining as many nontrivial features o! the general theory as possible. For example, since one object of the study is lo examine the
stability of gyroelastic systems, we should pick an equilibrium with a non-zero gyroelastic modulus-preferably one which would be unstable in the absence of gyroelasticity.

It has been shown previously (3.28.1) that $\Omega^{(0)} \neq 0$ complicates the integral theorem. To avoid possible obfuscalion of the central issue (for this exercize) therefore, choose the equilibrium without canonical rotation. Choose the material pressure to be isotropic. $p_{1}=p_{1}$, and comparable to B^{2} so that the equilibrium has a high average β (ratio of material to magnetic pressure.)
lt is well known that without gyroelasticity the Suydam criterion'9.35 supplies a necessary condition for stability for the columar pinch. In the notation used in this tome the Suydam oriterion is given by

$$
\begin{equation*}
\left(\frac{d}{d s} \ln \nu\right)^{2}>\frac{2}{s} \frac{d}{d s} \ln Q \tag{3.29}
\end{equation*}
$$

According to this condition, if the axial current density is chosen to be uniform so that ν is constant, a finite- $\boldsymbol{\beta}$ pinch will be unstable: somewhere Q will be an increasing function of s.

With these considerations in mind the following equilibria are chosen for closer scrutiny:

The magnetic pressure is to be linear in s

$$
\begin{array}{ll}
B^{2}(s)=B_{0}^{2}\left(\gamma-\beta\left(1-\frac{s}{s_{0}}\right)\right) \equiv B_{0}^{2} u^{2}(s) & s<s_{0} \\
B^{2}(s)=B_{0}^{2} & s>s_{0} \tag{3.30}
\end{array}
$$

Let the variable s be scaled by s_{0} so that the edge of the plasma is located at (new variable) $s=1$. The material pressure is then determined to be

$$
\begin{equation*}
p_{\dagger}=p_{\|}=\frac{1}{2} B_{0}^{2} \beta(1-\underline{s}) \tag{3.31}
\end{equation*}
$$

where β is a parameter which can be varied over the range $O<\beta<1$ and roughly signifies the average β ratio of the equilibrium. The mass density ρ is constant

$$
\begin{equation*}
\rho=\rho_{0} \tag{3.32}
\end{equation*}
$$

and the axial current density is also constant, J_{0}, so that v is given by

$$
\begin{equation*}
\nu=\frac{J_{0}}{2 B_{0} v(1-\beta(1-s))} \equiv \frac{J_{0}}{2 B_{0}^{u(s)}} \tag{3.33}
\end{equation*}
$$

Furthermore, choose the gyroelastic modulus to be constant and the equilibrium to be stalic so that

$$
\begin{equation*}
\Omega^{+} \Omega^{-}=\left(\Omega^{(0)}\right)^{2}-\Omega_{g}^{2}=-\Omega_{g}^{2} \tag{3.34}
\end{equation*}
$$

where the gyroelastic frequency is defined by

$$
\begin{equation*}
n_{g}^{2}=\frac{Q}{4 \rho_{0}^{2}}=\text { constant } \tag{3.35}
\end{equation*}
$$

Finally, choose an equilibrium in which there is no circulation so that $n^{(0)}=0$.

The Euler equation (3.22.1) can now be written explicitly for this class of equilibrium, in non-dimensionalized form, as

$$
\begin{equation*}
\left(f \psi_{s}\right)_{s}=g \psi \tag{3.36.1}
\end{equation*}
$$

with the coefficient functions f and g given by

$$
\begin{equation*}
f=2 s\left(\omega^{2}-\Omega_{s}^{2}-(\kappa u+1)^{2}\right) \tag{3.36.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\frac{m^{2}}{2 S}\left(\omega^{2}-\underline{\Omega}_{g}^{2}-(\underline{\kappa} u+1)^{2}\right)-\frac{\kappa \beta}{u} \tag{3.36.3}
\end{equation*}
$$

and where the nondimensionalized variables are defined as follows:

$$
\begin{align*}
& \frac{k_{o}}{m}=\frac{\mu_{0} J_{a}}{2 B_{0}}=\frac{\tau_{0}}{V(2 s)} ; V_{a 0}^{2}=\frac{B_{0}^{2}}{\mu_{0} \rho_{0}} ; \frac{\omega_{0}}{m}=k_{0} V_{a 0} \\
& \underline{s}=\frac{s}{s_{0}} ; \kappa=\frac{\kappa}{k_{0}} ; \underline{\omega}^{2}=\frac{\omega^{2}}{\omega_{0}^{2}} ; \underline{Q}_{g}^{2}=\frac{\Omega_{-}^{2}}{\omega_{0}^{2}} \\
& u^{2}=1-\beta(1-\underline{s}) \tag{3.37}
\end{align*}
$$

Equivalently, the Euler equation $c a n$ be written as a second order ordinary differential equation for the radial component of $\xi, \xi \cdot \bullet_{s}=\xi$, by using the incompressibility constraint. The result is

$$
\begin{equation*}
\left(f \xi_{s}\right)_{s}=g \xi \tag{3.38.1}
\end{equation*}
$$

where the coefficient functions f and g (not the same as those given above) are given by

$$
\begin{equation*}
f=2 \Sigma^{2}\left(\varepsilon^{2}-\Omega_{g}^{2}-(\kappa u+1)^{2}\right) \tag{3.38.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\left(\frac{m^{2}-1}{2}\right)\left(\omega^{2}-Q_{g}^{2}-(\kappa \alpha+1)^{2}\right)+s \kappa^{2} \beta \tag{3.38.3}
\end{equation*}
$$

The same normalization has been used here as above.
The boundary condition appropriate for the fixed boundary system (plasma in contact with conducting wall) is that $\xi=0$ at the outer boundary and ξ is bounded at the origin. The equivalent conditions for ψ are that ψ must vanish both at the origin and at the boundary.

Stripped naked of the trappings tethering it to its physical origin like tracks in the snow the problem now slips through the portcullis to abstraction on a mathematical odyssey whose object is the appointed encounter with an integral theorem.

The Point Spectrum

The Euler equation for the equilibria chosen (referred to henceforth as the standard case) given by (3.36.1) is to be solved on the domain $0<s=1$ with the boundary conditions $\psi(0)=\psi(1)=0$. All quantities are suitably normalized according to (3.37) and the normalized signifier is henceforth dropped. If the coefficient function f vanishes on the interval $0<s<t$ the Euler equation is said to be singular and the point(s) at which this accurs is (are) called singular point(s). In the event that such points do exist, standard integration techniques fail and caution must be exercized to arrive at the correct solution.

First, consider the case in which no internal singularities occur. The only singularity is then at the origin of coordinates $s=0$. This point is a regular singular point and a series solution about it may be developed as follows: Rewrite the Euler equation (3.36.1) in the canonical form

$$
\begin{equation*}
\psi_{s}+\frac{1}{s} p(s) \psi_{s}+\frac{1}{s^{2}} q(s) \psi=0 \tag{3.39}
\end{equation*}
$$

and take the form of the solution ψ to be representable by infinite series of the form

$$
\begin{equation*}
\psi=\sum_{i=0}^{i=\infty} \psi_{i} s^{i+r} \tag{3.40}
\end{equation*}
$$

Near the origin the coefficient functions f and g are given by the known series

$$
\begin{equation*}
p=\sum_{i=0}^{i=\infty} p_{i} s^{i}, q=\sum_{i=0}^{i=\infty} q_{i} s^{i} \tag{3.41}
\end{equation*}
$$

Substituting these series into the differential equation results in a recursion relation for the coefficients of the solution series ψ_{i}. The zeroth recursion relation, called the indicial equation. is given by

$$
\begin{equation*}
r(r-1)+p_{0} r+q_{0}=0 \tag{3.42}
\end{equation*}
$$

The recursion relation can be developed by induction to give the $i^{t h}$ coefficient us

$$
\begin{equation*}
\dot{\psi}_{:}=-\frac{\sum_{l=0}^{i-1} \psi_{l}\left(p_{1-l}(r-l)+q_{1-l}\right)}{(r+i)(r+i-1)+(r+i) p_{0}+q_{0}} \tag{3.43}
\end{equation*}
$$

The coefficient function series p and q can be expressed in terms of the f and g series (3.36.2) as

$$
\begin{equation*}
p=s \frac{f_{s}}{f}, q=-s^{2} \frac{g}{f} \tag{3.44}
\end{equation*}
$$

Some algorithms useful in computing the coefficients of the series p and q above are: The exponent series:

$$
\begin{equation*}
\left(\sum_{i=0}^{i=\infty} \alpha_{i} x^{i}\right)^{n}=\sum_{i=0}^{i=\infty} c_{i} x^{i} \tag{3.45.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=a_{0}^{n} ; c_{i}=\frac{1}{l a_{0}} \sum_{i=1}^{i=1}(i n-l+i) a_{i} c_{l-i} \tag{3.45.2}
\end{equation*}
$$

the quotient series:

$$
\begin{equation*}
\sum_{i=0}^{i=\infty} b_{i} x^{i} a_{i} x^{i=0}=\frac{1}{a_{0}} \sum_{i=0}^{i=\infty} c_{i} x^{i} \tag{3.46.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{t}=b_{i}-\frac{t}{a_{0}} \sum_{i=1}^{i=1} c_{t-i} a_{i} \tag{3.46.2}
\end{equation*}
$$

and lastly the product series:

$$
\begin{equation*}
\left(\sum_{i=0}^{i=\infty} a_{i} x^{i}\right)\left(\sum_{i=0}^{i=\infty} b_{i} x^{2}\right)=\sum_{i=0}^{i=\infty} c_{i} x^{i} \tag{3.47.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{t}=\sum_{i=0}^{i=l} a_{i} b_{t-i} \tag{3.47.2}
\end{equation*}
$$

The series representation of the solution developed about the regular singular point at $s=0$ is convergent out to the nearest singularity in the complex s-plane. Once the solution is known in a neighborhood of the origin a standard numerical scheme can be employed to integrate the Euler equation repeatedly for various values of ω. A shooting method is devised to direct the search for values of ω (given values of $\kappa, m, \beta, \Omega_{g}^{2}$) (or which the eigenvalue equation

$$
\begin{equation*}
\psi_{k \mathrm{~m}}\left(\mathrm{~s}=1, \omega_{k \mathrm{~m}}^{n}\right)=0 \tag{3.48}
\end{equation*}
$$

is satisfied. These values of ω comprise the discrete or point spectra for the equilibrium.

All succeeding discussions oi spectra will be referred to a particular two dimensional space whose coordinates are the normalized axial wavevector or helicity κ for abscissa and the eigenvalue related function

$$
\begin{equation*}
\lambda=\omega^{2}-\Omega_{g}^{2} \tag{3.49}
\end{equation*}
$$

for orcinate. In this space the point spectra are representable as curves or trajectories. Each value of x selects a spectrum of values of λ (for given
values of m ard β.) As κ is varied continuously through a range of values, each point in a given spectrum traces out a curve connecting it with points in neighboring spectra labeled with the same radial and azimuthal mode numbers (see !igs. 4,3.)

Figure 5 depicts the solutions of the Euler equation for chosen values of β and κ. As the radial and azimuthal mode numbers increase the energy associated with the displacement becomes localized near a point s_{0}. Refer to this point as the annihilation point; the reason for the nomenclature will be clarified presently. Figure 6 graphs the level curves (at constant z) of a few of the eigensteamfunctions in figure 5. The motion of the fluid is tangent to these streamlines.

Figure 4 shows the placement in $\kappa-\lambda$ space of the eigenvalue trajectories corre-ponding to the three lowest eigenvalues for $m=1$. Figure 8 is an enlargement of the area enclosed by the larger box in figure t. The shaded regions in figure 4 correspond to the continua- the darker shading epresents the degenerace continua and the lighter shading represents the nca-degenerate continua.

For given values of β and κ a certain critical value $\lambda=\lambda_{L}$ marks the lower limit of the continuum. For a range of values of λ greater than λ_{L}, $\lambda_{L}<\lambda<\lambda_{U}$, there exist one or more internal singularities of the Euler equation. In the event that such singularities appear, the spectra are no longer discrete. If only one singularity occurs in the interval ($0<s<1$) for a given pair of values ($\kappa-\lambda$) then there exists one and mly one solution to the Euler equation (at that point in $\kappa-\lambda$ space.) If t. re than one singularity occurs in the interval ($0<s<1$) then there exist a number of independent solutions to the Euler equation for that point in $\kappa-\lambda$ space-a number equal to the number of singularities. In this latter case, the generalized function space is said to be degenerate, of dimension equal to the number of singularities. The shaded regions in figures $4.8,13$ correspond to these continua- the darker shading covers the degenerate continua and the lighter shading covers the non-degencrate continua. We will address certain questions concerning the structure of the point spectra first, then turn to an in depth examination of the continua.

It is expedient to ascertain the dimension of the nonsingular function space and the distribution of eigenvalues in the point spectra. Such information can facilitate the search algorithm. [t will be necessary to praperly normalize the nonsingular eigenfunctions and this too will be done presently.

First, to determine the dimension of the nonsingular eigenfunction space, examine the behavior of the eigenfunction in the vicinity of the continum lower edge, say $\lambda=\lambda_{L}-\delta \lambda$, and near the point $s=s_{0}$ which becomes the singular point for $\lambda=\lambda_{L}+\delta \lambda$. The number of zeroes of the eigenfunction in this neighborhood is closely related to the number of eigenfunctions with eigenvalue $\lambda<\lambda_{L}-\delta \lambda$.

Rewrite the Euler equation in the form

$$
\begin{equation*}
\left(2 s \Delta(s) \psi_{s}\right)_{s}=\left(\frac{m^{2}}{2 s} \Delta(s)-\frac{\alpha \beta}{u}\right) \psi \tag{3.50}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta(s) \equiv \lambda-(x u+1)^{2} \tag{3.51}
\end{equation*}
$$

To clarify the situation. consider three separate but conliguous ranges of κ : call them cases 1.11 and 111 .

Case 1:

Examine first the behavior of the Euler solutions near the point s_{0} where

$$
\begin{equation*}
\Delta\left(s_{0}\right)=0 \tag{3.52.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{s}\left(s_{0}\right)=0 \tag{3.52.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
s_{a}=\gamma-\frac{1}{\beta}\left(1-\frac{1}{\kappa^{2}}\right) \tag{3.53}
\end{equation*}
$$

Such points exist-s, is necessarily positive by construction- only in a range of helicities

$$
\begin{equation*}
-\frac{1}{\sqrt{(1-\beta)}}<\kappa<-1 \tag{3.54}
\end{equation*}
$$

Near the conlinuum edge and near $\varepsilon=\left(s-s_{0}\right)=0$ the Euler equation has the form

$$
\begin{equation*}
\psi_{c \varepsilon}+\frac{2}{\varepsilon} \psi_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(-\frac{2}{s_{o}^{\beta \kappa^{2}}}+\frac{m^{2} \varepsilon^{2}}{4 s_{o}^{2}}\right) \psi=0+O(\varepsilon) \tag{3.55}
\end{equation*}
$$

The indicial equation for the series solution of ψ near $\varepsilon=0$ has the roots

$$
\begin{equation*}
r=\frac{1}{2}(-1 \pm \mathscr{D}) \tag{3.56}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{D}=1-\frac{8}{s_{0} 8 \kappa^{2}} \tag{3.57}
\end{equation*}
$$

(and where s_{o} is given by (3.53).) Solutions of (3.55) are of the form

$$
\begin{equation*}
\Psi \sim \varepsilon^{r} f(\varepsilon) \tag{3.58}
\end{equation*}
$$

where $f(O)$ is finite.
If \mathscr{L} is negative, T is complex and (3.58) becomes anfinitely oscallators near $\varepsilon=0$. For the range of $\kappa(3.54)$ the entare range of values of f, , negative

$$
1-\frac{8}{\beta}>\mathcal{D} \geq-7
$$

This bing the case, thare are denumerably infinitely many zeroes of near the (singular) point $s=s_{0}$ and as many point spectrum etgenfunctions. The continum lower edge in the range of helicities κ (3.54) is a curtu uf occuraulation: s_{o} is called an annihilation point. As decreases through the curve of accumalation two singularities (to the right and to the left of ${ }^{0}$) approach one another then touch and vanish. For λ below the rurir of accumulal ion therc ext.it a denumerably infinite set of eigenvalues λ.

Figure 7 shows the solutions to the (reduced radial) fiuler equation for values of $k-\lambda$ chosen so that s_{0} has the value. 5 . The annihilation point is most easily delected for low radial mode number in h gh equilibria lapprip right hand corner of figure 7.) The larger plasma pressure thus tends io concentrate the displacement energy even for the lowest frequency mode:.

Case 11:

For the range of helicities

$$
\begin{equation*}
\kappa<-\frac{1}{(1-\beta)} \tag{3.60}
\end{equation*}
$$

there appears n singularity at $s=0$ near the continum lower edge, Following the procedure outlined above, the indicial equation is again found to te solved by roots r given by (3.56) bui with D now given by

$$
\begin{equation*}
\mathscr{D}=1+m^{2}+\frac{2}{\kappa \sqrt{(1-\beta)}+1} \tag{3.61}
\end{equation*}
$$

For values of κ in the range (3.60) such that

$$
\begin{equation*}
n(1-p)>-\frac{\left(m^{2}+3\right)}{\left(m^{2}+1\right)} \tag{3.62}
\end{equation*}
$$

D is again negative and the continum lower edge is again a curir of accumalation. For $m=1$ the rurif of acciontation extends to the rieht of a critical (lower bound) helicity $x_{f}(m=1)$

$$
\begin{equation*}
n_{c}(m=1)=-\frac{2}{\sqrt{1-\beta})} \tag{16.81}
\end{equation*}
$$

For $m>$, this ritical helisity is less negatite is larker balurs of alimuthal mode number m are considered $1 t$ in found that the critidal hellull approaches closer and closer to the lamit

$$
n=-\frac{1}{\mid(\vec{f} \mid}
$$

There all salues of m cause f to be negative, as alreadt determatid lifi- potht alson fallame withan the purview of case 1.)

Hesond (to the left off the critical helicit for atien m fhert ire a finte number of eigenvalues in the point spectrum adjacent to and ew iom the contmum lower edge.

Case 11:

Wi examine the point $A=-1$ and the range of extending to its rieht H. the sithe procedure followed in cases I and 11, is is found that the poirt: a $=-$. . meluded in case $!$ and is thus a point of accumulation. The behavior of the point spectra in the sicinity of this point is quite unusual: so unusuat, in fact. That the point has been squelched from the slame of anonsmits and anderd to notoriety with the name kruskal-Ehafranot lamit. To las bare some of the ealgma of this point to scrutiny. transform the Euter equation wing the change of variables

$$
\begin{equation*}
\varepsilon=\frac{s-1}{a+1} \tag{3.65}
\end{equation*}
$$

Near $\varepsilon=0^{+}$the Euler equation is solved by

$$
\begin{equation*}
\psi=a I_{0}\left(\frac{z}{2}\right)+b k_{0}\left(\frac{t}{2}\right) \tag{3.66}
\end{equation*}
$$

hyperbolic Bessel functions which are not oscillatory. However. in the limat as \& approaches infinity. the solutions are again infinitely oscillatory. Within a range which is vanishingly small, yet nevertheless finite. to the right of
$x=-1$, a countably infinite number of eigenvalue trajectories tmpact the continum lower edge. That each trajectory inpacts at a different point is a corollary of a general theorem stated simply by Goedbloed and Sakanaka. In the interest of completeness it is reproduced along with its prool below. Let sat:sty the self-adjoint equation

$$
\begin{equation*}
(f t,)_{0}=g \psi \tag{1.3.67}
\end{equation*}
$$

with boundary ronditions

$$
\begin{equation*}
\psi(0)=\psi(t)=0 \tag{1.6H}
\end{equation*}
$$

(2.f:ne the functinn $R\left(\sim^{2} . n\right.$) bs

$$
U\left(N=R\left(\dot{x}^{2}, n\right), i^{2}\right)=0
$$

 atoe. of :he refenfuntion will be labelled by surcess:uelt higher walues of \cdot

$$
\begin{equation*}
\frac{\partial R}{\partial x^{2}}>0 \text { or } \frac{\partial K}{\partial R^{2}}<0 \tag{1.69.1}
\end{equation*}
$$

Proof: suppose $\sigma_{-}, H l_{-1}^{2}=0$, then we could analytically contimue $H\left(a^{2}, n\right)$ (II the complex $\alpha^{2} p i a n e$ near $-2 a_{0}^{2}$

$$
R\left(\dot{i}^{2}, n\right)=R\left(\dot{\varkappa}_{0}^{2}, n\right)+\frac{1}{2} \frac{\partial^{2} R}{\partial\left(\dot{z}^{2}\right)^{2}} l_{-1}^{1}\left(\dot{w}^{2}-\dot{x}_{0}^{2}\right)^{2}+\cdots
$$

Choosing $\dot{x}^{2}=\ddot{\omega}_{o}^{2}+1 \delta^{2}$ so that $\left(\alpha^{2}-\dot{x}_{o}^{2}\right)^{2}<0$ we find a real zero of for complex \mathcal{F}^{2}. contradicine the self-adjotntedness property fall eigenvalues \dot{z}^{2} are real.) Now $f 1 \times R$ to the wall position $s=1: \dot{x}^{2}$ will be monotonic in π.

Corollary (a): So singular (point) subspectrum eigenvalue trajectory $w^{2}(n, n)$ for fixed n can intersect any other, since by intersecting, $\omega^{2}(x, n)=\omega^{2}\left(x, n^{\prime}\right)$ which by the above theorem cannot happen.

Corollary (b): at most one eigenvalue trajectory labelled with fixed n can intersect the continum at any fixed a.

The point $x=0$ alone remains uncharacteristic of the spectral properties unearthed so far. The point $x=0$ is unique. A superficial inspection of the Euler equation (3.50) reveals the fact that when \boldsymbol{x} vanishes $\#$ solves

$$
\begin{equation*}
(\lambda-t)\left(\left(2 s \psi_{s}\right)_{s}=\frac{m^{2}}{2 \mathrm{~s}} \psi\right) \tag{3.71}
\end{equation*}
$$

Any ψ satisfying the boundary conditions satisfies the differeatial equalion irimislly if $A=1$. Only ene value of λ is allowed. The ettire spertrum shrinks to a point and any function in the litbert space fatis fuaction of , siatisfying the boundary conditions) is an eigenfunction The tmo-dimensionasi rase is specified in this space at a single point!

It remains to delermine the normalitation of the voint spectram eisenfinctions. The inner product can be wititen immediately in terms of the displarement vertor as

$$
\begin{equation*}
x\left(\lambda_{n}\right)=\int d s d \theta d z \xi^{\top}\left(\lambda_{n}\right) \cdot \xi\left(A_{n}\right) \tag{3.72}
\end{equation*}
$$

With the complex exponential part suttably normalized this relation can be rewritten thoolving only the (vector) amplitudes ($\boldsymbol{\mu}_{n}$)

$$
\begin{equation*}
\left.\Delta\left(\lambda_{n}\right)=\int_{0}^{1} d s\left(\xi \lambda_{n}\right) \cdot \xi\left(\lambda_{n}\right)=\int_{0}^{1} d s\left(\left(\xi \mid \lambda_{n}\right) \cdot \theta_{s}\right)^{2}+\left(\xi\left(\lambda_{n}\right) \cdot \theta_{\theta}\right)^{2}\right) \tag{:1.73}
\end{equation*}
$$

where e, and θ_{θ} are unit vectors in the radial and azimuthe dirertions. Ising $(3.14),(3.73)$ can then be reexpressed in terms of $\forall\left(s, A_{n}\right) \forall\left(\lambda_{n}\right)$

$$
\begin{equation*}
V\left(\lambda_{n}\right)=\int_{0}^{3} d s\left(\frac{m^{2}}{2 s} \psi^{2}\left(\lambda_{n}\right)+2 s \psi_{s}^{2}\left(\lambda_{n}\right)\right) \tag{3.74}
\end{equation*}
$$

In addition. $\psi(\pi)$ solves the differential equation (3.50) with boundar: conditions (3.48). Now write (3.50) for $\lambda=\lambda_{\nu}$ and for $\lambda=\lambda_{\nu}$. where v and v. are not necessarily integers ($G^{(+)}$is not necessarily an eigensalue.) Multiply the two resulting ordinary differential equations each by the function solving the other: integrate the difference of the two equations over the s domain to get

$$
\begin{align*}
\int_{0}^{1} d s & \left.\left(\psi i \lambda_{\nu} \cdot\right)\left(2 s \Delta\left(\lambda_{v}\right) \psi_{s}\left(\lambda_{\nu}\right)\right)_{s}-\psi\left(\lambda_{v}\right)\left(s s\left(\lambda_{v} \cdot\right) \psi\left(\lambda_{\nu} \cdot\right)\right)_{s}\right) \\
& =\int_{0}^{1} d s \frac{m^{2}}{2 s}\left(\Delta\left(\lambda_{v}\right)-\Delta\left(\lambda_{\nu} .\right) \psi\left(\lambda_{v}\right) \psi\left(\lambda_{v} .\right)\right. \tag{3.75}
\end{align*}
$$

Now integrate the left member of (3.75) by parts and use the fact that

$$
s\left(\lambda_{2}\right)-s\left(\lambda_{L} .\right)=\lambda_{i}-\lambda_{i}
$$

to finci

$$
\begin{align*}
\left(\lambda_{v}\right. & \left.-\lambda_{v}\right) \int_{0}^{i} \alpha\left(2 s \psi_{s}\left(\lambda_{v}\right) \psi_{s}\left(\lambda_{n}\right)+\frac{m^{2}}{\langle s} \psi\left(\lambda_{v} \cdot \psi\left(\lambda_{n}\right)\right)\right. \\
& \therefore\left(3\left(\lambda_{1}\right) \psi_{s}\left(\lambda_{\psi}\right) \psi\left(\lambda_{n}\right)-3\left(\lambda_{n}\right) \psi_{s}\left(\lambda_{n}\right) \psi\left(\lambda_{\psi}\right)\right) I,=\sigma
\end{align*}
$$

Allow one value of ther to heach the other. say

$$
\begin{equation*}
\lambda_{\nu}-\lambda_{\nu}=\delta L^{2} \tag{13781}
\end{equation*}
$$

 solution meet the boundary condition.) The result is

$$
\begin{equation*}
\left.\int_{0} d s\left(2 \sim \psi^{2}\left(\lambda_{n}\right)+\frac{m^{2}}{2} \psi^{2}\left(\lambda_{n}\right)\right)=-23\left(\lambda_{n}\right) \psi_{s}\left(\lambda_{n}\right) \frac{\partial}{\partial \lambda} \psi\left(\lambda_{n}\right)\right), \tag{3.79}
\end{equation*}
$$

The normialization constant $A^{(n)}$ is thus found to be

$$
\begin{equation*}
\forall\left(\lambda_{n}\right)=-2\left(\lambda_{n}-(\kappa+1)^{2}\right) \psi_{s}\left(1, \lambda_{n}\right) \frac{\partial}{\partial \lambda} \psi\left(1, \lambda_{n}\right) \tag{3.80}
\end{equation*}
$$

These are quantities calculated naturally by the algorithm which generites the eigenfunctions. The nonsingular functions are normalized by dividing them each by the square root of this constant.

The Continurm

The Euler equation for the chosen class of equilibria (the standard case) has the self-adjoint form (3.50) reproduced here

$$
\begin{equation*}
\left(2 s \Delta \psi_{s}\right)_{s}=\left(\frac{m^{2}}{2 s} \Delta-\frac{\kappa \beta}{u}\right) \psi \tag{3.81}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta(s)=\lambda-(\alpha u(s)+1)^{2} \\
& u^{2}(s)=1-\beta(1-s) \\
& \lambda=\omega^{2}-n_{g}^{2} \tag{:3.H:}
\end{align*}
$$

and a!l variables have been normalized as prescribed in (3.i3) for values of λ, π and β such that Δ does not vanist in the interval $0 \leqslant s<1$ the solutıon ψ may be generated by simply integrating the ordinary differential equation (ndmerically) from $s=0^{+}$to $s=1$ as prescribed in the last section dealing with the point spectrum eigenfunctions. it was remarked there also that the sel of eigenvalues falues of λ for which the fixed boundary condition (i, 48) is sialisfied) might be empty, finite or denumerably infinite depending on the chotec of parameters κ, m and β. These sets were called pount spectra assorjaled with the given equilibrium.

In the event that $\Delta(s)$ vanishes for a value or values of s in the range $0<s<1$ the Euler equation is said to be sungular at the point(s) s, where

$$
\begin{equation*}
\Delta\left(s_{i}\right)=0 \tag{3.8:3}
\end{equation*}
$$

Whereas the Euler equation can be eaisily integrated in the nonsingular case by any of a number of standard (numerical) techniques, the singular case is a different matter. In the neighborhood of the singular point(s) standard techniques fail miserably. preventing furthei integration. In this section a means is developed to overcome this difficulty and illuminate the nature of the problem solved.

II will prove helpful to recast (3.81) and the boundary conditions as an equivalent integral equation. It will also be expedient to make the sutstitution

$$
\begin{equation*}
\psi(s, \lambda)=s^{\frac{\square}{2}} y(s, \lambda) \tag{3.8.4}
\end{equation*}
$$

which transforms the Euler equation into

$$
\begin{equation*}
\left(2 s^{m+i} \Delta y_{s}\right)_{s}=-s^{m}\left(m s_{s}+\frac{\kappa \beta}{u}\right) y \tag{3.85}
\end{equation*}
$$

The inner product has a particularly simple representation in terms of y. the singularity at the origin in ψ is not present in y and the business of bookkeeping in the work ahcad is simplified by this change of variables. These issues are to be weighed against the risk of confusion injected by the transformation. The author begs the indulgence of the reader in this regard

Integrate (3.85) from the origin to some point s, thet divide the result b $s^{m+1} \Delta(s)$ and integrate again. The singular point must be treated carefalis as follows: if at any stage in the course of the calculation (interalion) , quantity is to be divided by zero, a multiple of a delta function la distr!bution with point support) must be added

$$
\begin{equation*}
\frac{I}{x}=\mathscr{P} \frac{I}{x}+\mu \delta(x) \tag{:1.Hfi}
\end{equation*}
$$

Here simafies (amehy pramiple value (integral) and μ is to be determined. (3.86) is a generalized function which identifies a distribulion. A distribution is a linear functional, a mapping of functions into (possibls complex) numbers. That is to say, given a function with certan mice properties, the distribution is a prescrption for returing a value. strictly speaking (3.86) alene has no meaning-it must be used in concert with the process of integration to act on functions as a distribution.

The integral equation for $y(s)$ which results from the above procedure can be written then as

$$
\begin{align*}
y(s)= & -\int_{0}^{s} d \xi y(\xi) g(\xi) \int_{s}^{1} \frac{d \zeta}{\zeta^{m+\eta} \Delta(\zeta)} \\
& -\int_{s}^{1} d \xi y(\xi) g(\xi) \int_{\xi}^{1} \frac{d \zeta}{\zeta^{m+i} \Delta(\zeta)}+\sum_{1} \mu_{i}\left(\theta\left(s-s_{1}\right)-\theta\left(1-s_{1}\right)\right) \tag{3.87}
\end{align*}
$$

where

$$
\begin{equation*}
g(s)=-s^{m+1}\left(\frac{m}{2} \Delta_{s}+\frac{\kappa \beta}{z u}\right) \tag{3.88}
\end{equation*}
$$

and the Heaviside step function θ has been used. It is evident from (3.87) that the nonsingular eigenfunctions solve homogeneous integral equation of the Fredhalm type. The singular eigensolutions solve an inhomogeneous integral equation with one or more step-function-like inhomogeneities. The differential system is self-adjoint so the kernel in the integral system is symmetric, or easily symmeirizable.

Near the singularity the asymptotic form of the differential equation can be shown to be

$$
\begin{equation*}
\left(\varepsilon y_{\varepsilon}\right)_{\varepsilon}=h(\varepsilon) y \tag{3.89}
\end{equation*}
$$

with the definition

$$
\begin{equation*}
\varepsilon=s-s_{0} \tag{3.90}
\end{equation*}
$$

On eather side of the singularity then two independent asymptotic solutions have the lorm

$$
\begin{equation*}
y_{1}=\sum_{i=0}^{i=\infty} a_{i} \varepsilon^{i} \tag{3.91}
\end{equation*}
$$

and

The fiuler solution can thus be represented (asymptotically) near the singular ponnt by

$$
\begin{equation*}
y^{L}(\varepsilon)=a^{L} y_{1}+\beta^{L} y_{2}=\ln |\varepsilon| \sum_{i=0}^{i=\infty} c_{2}^{L} \varepsilon^{2}+\sum_{i=0}^{i=\infty} \alpha_{i}^{L} z^{2} \tag{3.93}
\end{equation*}
$$

to the (immediate) left of the singular point and by

$$
\begin{equation*}
y^{R}(\varepsilon)=\alpha^{R} y_{1}+\beta^{R} y_{z}=\ln |\varepsilon| \sum_{i=0}^{i=\infty} c_{i}^{R} \varepsilon^{i}+\sum_{i=0}^{2 x \infty} d_{i}^{R} \varepsilon^{i} \tag{3.94}
\end{equation*}
$$

to the (immediate) right of the singular point.
That an invertible integral transform over the space of eigensolutions exists is entirely contingent on whether the eigensolutions have the properties
of distributions. In particular, the inner product of a generalized (eigen)function with a function in the class of admissible motions of the system, i.e. in the Hilbert space, must be finite. This condition is sufficient to determine the behavior of the singular eigensolutions at the singularity in so far as the following conditions must obtain (with reference to (3.93) and (3.94)):

$$
\begin{align*}
& c_{0}^{R}-c_{0}^{L}=0 \\
& d_{0}^{R}-d_{0}^{l}=\mu \tag{3.95}
\end{align*}
$$

There is a logarithmic singularity and a finite jump in y at the singular point. The behavior of the derivative of y (near the singular point) is thus

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} y_{\varepsilon}=c_{0} \mathscr{P} \frac{1}{\varepsilon}+\mu \delta(\varepsilon) \tag{3.96}
\end{equation*}
$$

That (3.95) is the case can be demonstrated by substituting y into the integral equation (3.87) being careful to use $y=y_{L}$ to the left of the singularity, $y=y_{k}$ to the right of the singularity, (3.96) at the singularity and the boundary condition $y(1)=0$.

In the case that only one singularity appears in the interval $0<s<1$, the value of μ is delermined so that the boundary condition is met simultancously. The additional freedom thus afforded in the construction of the eigensolution allows any value of λ in the appropriate range to serve equally well as an eigenvalue. Call this range of λ the nondegenerate continum for reasons which will become clear shorlly.

The case in which two or more singularities appear in the interval 0 \& s is sightly more elaborate than the case in which only one appears. Since the boundary condition provides only one condition on the choice of the set of μ_{1} (the size of the finite jumps in the eigensolution at the singular points) there then exists a degeneracy in the function space. More than one eigensolution corresponds to one eigenvalue. If there are two singularities there are two values of μ_{i} to be chosen so as to satisfy the boundary condition. The boundary condition becomes a linear relation in the two values. The number of singularities corresponds to the number of degrees of freedom in the choice of the μ_{i}. The number of degrees of freedom in the choice of the μ_{i} is the degeneracy or dimensionality of the function subspace.

Although any normalized basis spanning the (degenerate) function space suffices, an orthonormalized basis is most convenient for the purpose of generating in integral theorem. A procedure for accomplishing this orthonormalization serves also as a proof of the preceeding statement concerning the dimensionality of the subspace. The next section is devoted to the
description of an algorithm for generating the orthonormalized basis in the nondegenerate and in the degenerate continua.

There are two roots of (3.83) for given values of β, κ and λ. The roots are real and equal in the event that $\lambda=0$. This occurs along the curve of accumalation relerred to previously. As λ increases fromzero the two roots separate- one decreases the other increases. To distinguish between the two roots refer to the decreasing root as occuring at $s=s$, and the increasing root as occuring at $s=s_{2}$.

It will be useful to construct solutions to (3.85) according to the following prescription:
(a) If y has an expansion near a singular point s_{i}

$$
\begin{align*}
y(s)=A_{i} & \sum_{j=0}^{j=\infty} a_{j}\left(s-s_{i}\right)^{j} \\
& +B_{i}\left(\ln \left|s-s_{i}\right| \sum_{j=0}^{j=\infty} a_{j}\left(s-s_{i}\right)^{j}+\sum_{j=0}^{j=\infty} b_{j}\left(s-s_{i}\right)^{j}\right) \tag{3.97}
\end{align*}
$$

(b) and (3.97) holds on both sides of the singular point. then y will be said to be regular at s_{i}.

Such solutions y are easily generated numerically by finding the coefficients a_{k} and b_{k} then determining the coefficients A_{i} and B_{i} by the behavior of the numerical solution near the singular point. Having done this the integration is simply continued on the other side of the singularity. These regular solutions are not eigensolutions; they will be used to build eigensolutions.

With this prescription, proceed to construct the distinct solutions y_{0}, y_{1}, y_{2} with the following properties:

$$
\begin{align*}
& y_{0}(0)=1 ; y_{0} \text { is regular at } s_{1} \text { and } s_{2} \\
& y_{1}\left(s<s_{1}\right)=0 ; y_{1}\left(s_{1}\right)=1 ; y_{1} \text { is regular at } s_{2} \\
& y_{2}\left(s<s_{2}\right)=0 ; y_{2}\left(s_{2}\right)=1 \tag{3.98}
\end{align*}
$$

If only one singularity falls within the interval $0<s<1$ then only two distinct solutions, y_{0} and either $y_{\text {, }}$ or y_{z}, are required. In what follows, solutions y will be identified by subscripts if they are regular; all solutions y are identilied with the value of λ used in their generation by $y(s, \lambda)$.

The nondegenerate continuum stream eigensolutions are assembled as follows:

$$
\begin{equation*}
\psi(s, \lambda)=s^{\frac{k}{2}}\left(y_{0}(s, \lambda)+\mu(\lambda) \theta\left(s-s_{i}\right) y_{i}(s, \lambda)\right)=s^{\frac{3}{2}} y(s, \lambda) \tag{3.99}
\end{equation*}
$$

where $i=1,2$ according as whether the singularity is decreasing or increasing with λ as described above, and where

$$
\begin{equation*}
\mu(\lambda)=-\frac{y_{0}(1, \lambda)}{y_{i}(1, \lambda)} \tag{3.100}
\end{equation*}
$$

The degenerate continuum stream eigensolutions are constructed in similar manner:

$$
\begin{align*}
{ }^{\prime} \psi(s, \lambda) & =s^{\frac{\pi}{2}}\left(y_{0}(s, \lambda)+{ }^{\prime} \mu_{1}(\lambda) \Theta\left(s-s_{1}\right) y_{1}(s, \lambda)+{ }^{\prime} \mu_{2}(\lambda) \theta\left(s-s_{2}\right) y_{2}(s, \lambda)!\right. \\
& =s^{\frac{\pi}{2}} \mathfrak{\prime} y(s, \lambda) \tag{3.101}
\end{align*}
$$

where the superscript t serves to distinguish the members of the basis set in the degenerate (generalized) function subspace. Also

$$
\begin{equation*}
\mu_{2}(\lambda)=-\frac{y_{-}(1, \lambda)+{ }^{i} \mu_{1}(\lambda) y_{1}(1, \lambda)}{y_{2}(1, \lambda)} \tag{3.102}
\end{equation*}
$$

is sulisfied so that ${ }^{\prime} \psi(1, \lambda)=0$ as required. Notice the choice of the values of the μ is not yet uniquely specified. The orthonormalization of the subspace will provide this specification.

The inner product (as described in (3.72)-(3.74)) can be expressed in terms of y using the identity

$$
\begin{equation*}
\psi_{s}=\left(\frac{m}{2 s} y+y_{s}\right) s^{\frac{m}{2}} \tag{3.103}
\end{equation*}
$$

as

$$
\begin{equation*}
\left({ }^{\prime} \psi(\lambda),{ }^{\prime} \psi\left(\lambda^{\prime}\right)\right)=\int_{0}^{1} d s 2 s^{m+1} y_{s}(s, \lambda) \cdot y_{s}\left(s, \lambda^{\prime}\right) \tag{3.104}
\end{equation*}
$$

(the ' superscript is superfluous in the nondegenerate continumm.) Differentiating (3.101) with respect to s it is easily established that

$$
\begin{align*}
{ }^{\prime} y_{s}(s, \lambda)=y_{0 s}(s, \lambda) & +{ }^{'} \mu_{1}\left(\delta(s-s,) y_{1}(s, \lambda)+\theta\left(s-s_{1}\right) y_{1}(s, \lambda)\right) \\
& +{ }^{'} \mu_{2}\left(\delta\left(s-s_{2}\right) y_{2}(s, \lambda)+\theta\left(s-s_{2}\right) y_{2 s}(s, \lambda)\right) \tag{3.105}
\end{align*}
$$

(The values of μ and s_{i} are understood to depend on λ.) This expression is to be substituted in (3.104) to determine the μ so as to orthonormalize the basis. The calculation is by no means trivial and success exacts close attention. First consider the case $\lambda \neq \lambda^{\prime}$.

Propitious use of the differential equation (3.85) yields the relation

$$
\begin{align*}
\int_{a}^{b} d s 2 s^{m+1} & \prime y_{s}(s, \lambda) ' \\
\prime & y_{s}\left(s, \lambda^{\prime}\right) \\
& =\frac{2 s^{m+1}}{\left(\lambda-\lambda^{\prime}\right)}\left(\Delta(\lambda)^{\prime} y_{s}(s, \lambda) '^{\prime} y\left(s, \lambda^{\prime}\right)-\Delta\left(\lambda^{\prime}\right) \cdot y_{s}\left(s, \lambda^{\prime}\right) ' y(s, \lambda)\right) \int_{a}^{0}
\end{align*}
$$

for intervals $a<s<b$ in which no singularity of the integrand exists. Taking note of the facts that

$$
\begin{equation*}
\Delta\left(s_{i}, \lambda\right)=0 \tag{3.107}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(s_{i}\left(\lambda^{\prime}\right), \lambda\right)=\Delta\left(s_{i}^{\prime}, \therefore\right)=\lambda-\lambda^{\prime} \tag{3.108}
\end{equation*}
$$

(for ease of notation introduce the abbreviation $s_{i}\left(,^{\prime}\right) \equiv s_{i}^{\prime}$ a straightforward though tedious calculation yields the result that the inne: product (3.104) vantshes identically for $\lambda=\lambda^{\prime}$ as expected. The continum eigensolutions for different λ are mutually orthogonal. In fact, the inner product (3.104) is itself a generalized function (of $\lambda \cdot \lambda^{\prime}$) which defines a distribution with point support at $\lambda=\lambda^{\prime}$; the inner product venishes on the open set excluding the point $\lambda=\lambda^{\prime}$. The strength of the distribution (the value of its mappiag of the unit function), itself a function of λ, is the quantity needed for normalizing the function space. It is necessary there fore to evaluate the integral

$$
\begin{equation*}
N\left(\lambda ; \iota, \iota^{\prime}\right)=\int_{\lambda_{L}}^{\lambda_{L}^{u}} d \lambda^{\prime} \int_{0}^{1} d s 2 s^{m+1}{ }^{t} y_{s}(s, \lambda){ }^{\prime} y_{s}\left(s, \lambda^{\prime}\right) \tag{3.109}
\end{equation*}
$$

According to the previous discussion, the integral n can be reduced to an integral over the restricted ange $\lambda-\delta \lambda=\lambda<\lambda+\delta \lambda$ where $\delta \lambda$ is small, and fixed. Separate the integral over s into pieces which (respectively) include (exclude) singularities of the integrand. Clearly, the latter vanish for $\delta \lambda$ chorn small enough since the s integration produces only finite results. The only surviving contributions come from the neighborhood of the singular point(s):

$$
\begin{align*}
N\left(\lambda ; \iota, \iota^{\prime}\right) & =\int_{\lambda-\delta \lambda}^{\lambda+\delta \lambda} d \lambda^{\prime} \int_{s_{1}-\delta s,}^{s,+\delta s,} 2 s^{m+\prime} ' y_{s}(s, \lambda) y^{\prime} y_{s}\left(s, \lambda^{\prime}\right) \\
& +\int_{\lambda-\delta \lambda}^{\lambda+\delta \lambda} d \lambda^{\prime} \int_{s_{2}-\delta s_{2}}^{s+\delta s_{2}} d s s^{m+\prime} y_{s}(s, \lambda) y^{\prime} y_{s}\left(s, \lambda^{\prime}\right) \tag{3.110}
\end{align*}
$$

It is crucial to realize the limiting process intended in (3.110) is such as to insure, for all singula: points, that

$$
\begin{equation*}
\left|s_{i}-s_{i}^{\prime} i<\| \delta s_{i}\right| \tag{3.111}
\end{equation*}
$$

so no matter what the value of $\delta \lambda$ chosen, the points $s=s_{i}(\lambda)$ and $s=s_{i}\left(\lambda^{\prime}\right)$ are always included in the s integral. The only remaining contributions to N can be written explicitly as follows:

$$
\begin{align*}
& +\int_{s_{2}(\lambda-\delta \lambda)}^{s_{2}(\lambda+\delta \lambda)} d s_{2} \frac{d \lambda^{\prime}}{d s_{2}^{\prime}} I_{\lambda} \int_{s_{2}+\delta s_{2}}^{s_{2}+\delta s_{2}} d s^{m+1} \frac{\left(B_{a 2}+^{4} \mu_{1} B_{12}\right)\left(B_{02}+^{\prime} \mu_{1}^{\prime} B_{12}\right)}{\left(s-s_{2}\right)\left(s-s_{2}^{\prime}\right)}+{ }^{4} \mu_{2}{ }^{\prime} \cdot \mu_{2}^{\prime} \delta\left(s-s_{2}\right) \delta\left(s-z_{2}^{\prime}\right) \tag{3.112}
\end{align*}
$$

Here $B_{i j}$ is the coefficient of the logarithmic series in y_{i}, (3.98), at the $j^{\text {th }}$ singula point. (3.97).
it is a result of the theory of singular integral equations a so known as the Poincare-Bertrand Theorem, that for $\zeta=\varepsilon / \xi$ and in the limit as , $\xi \rightarrow 0$:

$$
\begin{equation*}
\int_{\tau-t}^{T+t} d \omega \int_{T-\varepsilon}^{T+\varepsilon} d \sigma \frac{1}{(\sigma-\tau)(\omega-\sigma)}= \pm \pi^{2} \tag{3.113}
\end{equation*}
$$

according as $\zeta \rightarrow 0$ (upper sign) or $\zeta^{->0}($ lower sign). The integrals are understood in the sense of Cauchy principle value integrals. Adapting this result to evaluate (3.112) it is found that

$$
\begin{align*}
& N\left(\lambda: \iota, \iota^{\prime}\right)=2 \beta \kappa^{2} \sqrt{\lambda}\left(\frac{s_{1}^{m+1}}{\sqrt{\lambda-1}}\left(B_{0,}^{2}, \pi^{2}+{ }^{\prime} \mu,{ }^{\prime} \mu,\right)\right. \\
& \tag{3.114}\\
& \quad+\frac{s_{2}^{m+1}}{\sqrt{\lambda+1}}\left(\left(B_{n 2}+{ }^{\prime} \mu, B_{12}\right)\left(B_{02}+{ }^{\prime} \mu_{1} B_{12}\right) \pi^{2}+{ }^{\prime} \mu_{2}{ }^{\prime} \mu_{2}\right)
\end{align*}
$$

In the nondegenerate continuum, (3.114) is simplified by taking $\theta_{12}=0$ and either $B_{o z}=0$ or $B_{o,}=0$ according to whether the singular point is respectively decreasing or increasing with λ.

In the nondegenerate continum, the μ_{i} are determined immediately by the integration algorithm (3.10.). Thus $V(\lambda)$ can be evaluated directly using these values as

$$
\begin{equation*}
N(\lambda)=\frac{2 \beta \kappa^{2} \sqrt{V}}{\sqrt{ } \lambda \mp 1} s_{i}^{m+1}\left(B_{0 i}^{2} \pi^{2}+\left(\frac{y_{\rho}(1, \lambda)}{y_{i}(1, \lambda)}\right)^{2}\right) \tag{3.115}
\end{equation*}
$$

Fie eigensolutions (3.99) are then normalized simply by dividing through by the square root of $N(\lambda)$.

The degenerate continua subspace eigensolutions are orthonormalized by an only slightly more complicated calculation. Recall the ' μ, are related linearly through (3.102). Any choice of ' μ, and ' μ_{1} determines ' μ_{2} and ' μ_{2}. This the also sperifies a basis set which spans the subspace. The idea is to choose so as to ortnonormalize the basis: this is accomplished by requiring both

$$
\begin{equation*}
N\left(\lambda ; \iota, \iota^{\prime}\right)=N(\lambda) \delta\left(\iota, \iota^{\prime}\right) \tag{3116}
\end{equation*}
$$

and

$$
\begin{equation*}
N(\lambda ; \iota, \iota)=N\left(\lambda ; \iota^{\prime}, \iota^{\prime}\right) \tag{3.117}
\end{equation*}
$$

where $\delta\left(\iota, \iota^{\prime}\right)$ is the Kronecker delta. The first of these requirements assures the subspace is orthogonal, the second orients the basis so that both elements have the same norm. Requirements (3.116) and (3.117) comprise an algebraic system in two unknowns whose solution results in the proper choices for ' μ, and ${ }^{\prime}{ }^{\prime} \mu$,

$$
\begin{align*}
& \mu_{1}=\frac{-k_{1} \pm V\left(k_{2} k_{3}-k_{1}^{2}\right)}{k_{2}} \\
& k_{1}=B_{02} B_{12} \pi^{2} Y_{2}^{2}+Y_{0} Y_{t} \\
& k_{2}=\left(B_{12}^{2} \pi^{2}+i_{i}^{\sim}\right) Y_{z}^{2}+Y_{,}^{2} \\
& k_{3}=\left(B_{0,}^{2} C+B_{02}^{2}\right) \pi^{2} Y_{Z}^{2}+Y_{0}^{2} \\
& Y_{o}=y_{0}(1, \lambda), \gamma^{\prime}=y_{1}(1, \lambda), \vdots_{2}=y_{2}(1, \lambda) \\
& C \equiv \frac{A}{B}=\frac{z s_{1}^{m+1} \beta \kappa^{2} \frac{\sqrt{ } \lambda}{\sqrt{\lambda-1}}}{2 s_{2}^{m+1} \beta \kappa^{2} \frac{\sqrt{\lambda}}{\sqrt{\lambda+1}}}=\left(\frac{s_{1}}{s_{2}}\right)^{m+1} \frac{\sqrt{ } \lambda+1}{\sqrt{\lambda-1}}=\frac{(\sqrt{ } \lambda+1)\left((\sqrt{ } \lambda-1)^{2}-\kappa^{2}(1-\beta)\right)^{m+1}}{(\sqrt{ } \lambda-1)\left((\sqrt{ } \lambda+1)^{2}-\kappa^{2}(1-\beta)\right)^{m+1}} \tag{3.118}
\end{align*}
$$

Using these values the normalization constant (it is the same for both elements of the basis because of the chosen orientation) $N(\lambda)$ can be evaluated as

$$
\begin{equation*}
N(\lambda)=2 A\left(\frac{k_{3}}{k_{2}}+\pi^{2}\left(B_{0,}^{2}\left(1-\frac{\gamma_{2}^{2}}{k_{2}} \frac{A}{B}\right)+\frac{B}{A} \frac{\left(B_{a 2} Y_{1}-B_{12} Y_{0}\right)^{2}}{k_{2}}\right)\right) \tag{3.119}
\end{equation*}
$$

The orthonormalization of the degenerate continum subspace basis is essentially complete. There remains only to construct the eigensolutions with the prescription (3.101) using the values of ${ }^{\prime} \mu$, specified by (i3.ll日). then divide the construct by the square root of $N(\lambda)$. Figures $9-13$ show some of the generalized eigenstreamfunctions. These figures show the unverse tangent of some multiple of the actual generalized functions. The multiplaciatise factor was chosen (after orthonormalization) for ease of viewing. An interestin featurc of the orthegonalized degenerate solutions (see figs. lo-it) : that they are nearly equal (or equal and of opposite sign) in the razions interior to and exterior to the singularities. There thus exist motions of the equilitrium nearly entirely contained within one of those regions.

A complete and orthonormalized set of generalized functions hat now bern defined. Ang of the possible motions of the gyroelastic serewpinch fam motim In the lifbert space) can be evolved by means of an anverible inter:it trinsform ober the space of functions elucidated above.

The indegral Theorem

Given an inttial perturbation $\xi(s, 0, z, 0)$ and $1 t s$ time derivative $\{(, 0, z, 0)$, find the subsequent motion of the system. Since $\nabla-\xi=0$. represent f is

$$
\begin{equation*}
\xi=\nabla^{*} \Phi \tag{3.120}
\end{equation*}
$$

and restrict attention to the study of the stream lunction ϕ.
First Fourier transform Φ and expand the resulting fourier amplitude it: eigenstreamfunctions:

$$
\begin{equation*}
\varphi_{k m}(s, 0)=\frac{1}{2 \pi} \int d \theta^{\prime} e^{-i m \theta^{\prime}} \int d z^{\prime} e^{-2 k z^{\prime}} \Phi\left(s, \theta^{\prime}, z^{\prime}, 0\right)=\sum_{n} a_{k m}\left(\lambda_{n}\right) \psi_{k m}\left(s, \lambda_{n}\right) \tag{3.121}
\end{equation*}
$$

For the present the sum over nonsinguler subspectra ant integrals over relevant continua is represented symbolically by Σ.

Next use the orthonormality of the $\psi_{k m}\left(s, \lambda_{n}\right)$. Deal with a single mode of definite k and m. From this point on subscripts k and m are to be understood attached to every ψ. The following orthonormality conditions apply:

$$
\begin{equation*}
\int_{0}^{1} d s\left(\frac{m^{2}}{2 s} \psi\left(s, \lambda_{n}\right) \psi\left(s, \lambda_{n}\right)+2 s \psi_{s}\left(s, \lambda_{n}\right) \psi_{s}\left(s, \lambda_{n}\right)\right)=\delta(n, n) \tag{3.122}
\end{equation*}
$$

for $\lambda_{n}\left(\lambda_{n}\right)$ members of the point spectrum;

$$
\begin{equation*}
\int_{0}^{1} d,\left(\frac{m^{2}}{2}, 4(n, \lambda) \psi(, \cdot \lambda)+2 \pi,(s, \lambda) \psi,(,, \lambda)\right)=\delta(\lambda-\lambda) \tag{1.12:3}
\end{equation*}
$$

fi, A (λ ' 1 member: of the mindegenerate conlanad:
for smember: of the degenerate continua. An equasalent errewsion of the orthonormalits of the ψ can be obtaned by integratime the sectind terni fart in the abose inner product integrals. There results

$$
\int_{0}^{1} a-\psi\left(-\lambda_{n}\right)\left(\frac{m^{2}}{2 s} \psi\left(\cdots, \lambda_{n}\right)-\left(2.2 \psi_{s}\left(\cdots, \lambda_{n}\right)\right)_{s}\right)=\delta(n, n)
$$

(3.120,
for the honsimgular eigenfunctions and analogous expressions for the shaylar -agenflane tons.

Project (3.121) onto an clement of the complete set ψ

$$
\begin{equation*}
\left(\varphi \cdot \psi\left(\lambda_{n}\right)\right)=\sum_{n} a\left(\lambda_{n} \cdot\right)\left(\psi\left(\lambda_{n}\right), \psi\left(\lambda_{n} \cdot\right)\right)=\sum_{n} a\left(\lambda_{n} \cdot\right) \delta\left(n, n^{\prime}\right)=a\left(\lambda_{n}\right) \tag{1.126}
\end{equation*}
$$

Likewise, expressions invalving the singular functions can be constructed. (Closure can be established by an extension of this calculation.)

Finally, proceed to write the entire expansion theorem in detall as

$$
\begin{gather*}
\phi(s, \theta, z, t)=\frac{1}{4 \pi^{2}} \sum_{m=1}^{m=\infty} e^{i m \theta} \int_{-\infty}^{+\infty} d k e^{i k z} \\
\times\left(\sum_{n} \psi\left(s, \lambda_{n}\right)(\psi, \mathscr{F})+\int_{C_{1}} d \lambda \psi(s, \lambda)(\psi, \mathcal{F})+\int_{C_{H}} d \lambda\left({ }^{1} \psi(s, \lambda)\left({ }^{1} \psi, \mathcal{F}\right)+{ }^{2} \psi(s, \lambda)\left({ }^{2} \psi, \mathcal{F}\right)\right)\right. \tag{3.127}
\end{gather*}
$$

where C_{t} denotes the nondegenerate continum and $C_{i,}$ denotes the (doubly)
degenerate continum. The integral referred to as \boldsymbol{j} in this expression is given as

$$
\begin{equation*}
f(x, i(\lambda) t)=\int_{0}^{2 \pi} r \theta, \operatorname{m\theta } \int_{-\infty}^{+\pi} d z t^{k z}\left(\phi(s, \theta, z, 0) \cos \dot{\theta} t+\dot{\phi}(s, \theta, z, 0) \frac{\sin \dot{-1} t}{\dot{\theta}}\right) \tag{3.128}
\end{equation*}
$$

rtar , oup-dr-terace as admanastered by simplyebaluating

$$
\xi(, 0, \approx, t)=\nabla^{\bullet} \Phi(,, 0,2, t)
$$

(MLPMLM .t

Frer Bommderey liayrr ítrurturr

The Watifur tohydrodynamir Divrontemulty

The linear motions of an isorrhopic gyroclastic equilibritam with fixid boundaries were characterized in the preceeding chapter. An minertible unteral transform over the space of generalized eigenfunctions was de eloped to cbolve arbitrary (admassible) perturbations of the equilibrium. It was found that the prescnce of (uniform) gyroelasticity in the fixed boundary system transiates the spectra of eıgenvalues. This effect one might jusilfiabl: call pyroelastic stabilization. Consequently, the static (nonrotating) fixed toundary rquilibria studied can be classified as being gyroelastically stabilizable: the parameter Ω_{g}^{2}, the so called gyroelastic frequency, need only be chosen large enough to stabilaze the eigenmode corresponding to the lowest value of ω^{2} (see figure l4.) If was found that this lowest value of ω^{2} occurs for $m=1$ and a value of helacity κ between $-1 / N(1-\beta)<\kappa<-1$.

The free boundary system is much richer in spectral variation; it exhibits unique and intriguing properties which could hardly be predicted on the basis of the fixed boundary results alone. As the fixed boundary constraint is relaxed. the torpor of the placid spectral pond is shattered by an eruption from the proximity of the Kruskal-Shafrancy point. For free boundary modes it is found that the linear behavior (of the columnar screwpinch) for small vacuum gaps between plasma and wall is dominated by eigenmodes which have no spectral counterpart in the fixed boundary system.

In this chapter, the boundary conditions joining the isorrhopic arorlastic fluid to a surrounding vacuum arc derived. it is through this salculation thas: access is gatned to the global dispersion retation for frec boundary motions.

The task is accomplished with the ad of athematacal construt: a bounclary lisuer whose tharkness will be subseqursily allowed to shrink to an

 011 : $5 \cdot 1$.

$$
f \times \nabla=\nabla p
$$

$$
-x_{2}^{2} \xi=\delta f x \theta+f \times \delta \theta-\delta \nabla p
$$

'H6 0mpreselbilal, comstratat:

$$
\nabla \cdot \xi=0
$$

Ohum's law:

$$
\begin{equation*}
\delta E=1 \omega\} \times \tag{.4.1}
\end{equation*}
$$

Maxwell': aguations:

$$
\begin{equation*}
\nabla \times \delta \delta=\mu_{0} \delta t-\frac{\ddot{i}_{-}}{c_{2}} \delta E \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \cdot \delta=0 \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\nabla \times \delta E=i \omega \delta \tag{4.7}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\nabla \cdot \delta E=\frac{t}{x_{0}} \tag{4.8}
\end{equation*}
$$

In standard manner. Fourier analyze the linear motion in $\theta . z i$ and deal only with a mode of definite m.k.a by using the ansatz fxpli(m日+kz-if)l for all first order quantities. (The lanearized equations then relate the amplitudes of the Inearized quantities.) 1 will refer to the preceeding vector relations (4.2), (4.4). (4.5) and (4.7) by ispperding subseripts when only a certan component is referenced. for example. 1 will use (4.2), to denote the e-iomponent of the equation of motion.

The equilibriun corrent is given by

$$
\begin{equation*}
\mu_{0} f=-B_{x} \theta_{\theta}+\frac{t}{r}\left(r \beta_{\theta}\right) \theta_{z}=\nabla \times D_{0} \tag{.1.9}
\end{equation*}
$$

Wherc undicates differentiation with respect tor, radius fiubseripts refer to (omponents.) Stipulating E then of course determines Dp also.

The natural boundary condition at the plasma-vacium interface for the inmearided sisstem is that the first order pressure be contimuons across the (perturbed) interface. For the free boundary system this can be written the the rquivialont forms (set $\mu_{0}=\lambda_{0}=1$)

$$
\begin{align*}
& \Delta\left(\frac{1}{2} \sigma^{2}+p\right)=\Delta\left(\frac{1}{2} \sigma^{2}\right) \\
& \Delta \kappa=\Delta \hat{\kappa} \\
& {[\Delta x]=0} \tag{4.10}
\end{align*}
$$

Circumflex (${ }^{-}$) will deno'e quantities in the vacuum and square brackets [] surrounding a quantily will denote jumps in the quantity across the plasma-vacum interface. The Lagrangian variation operator Δ, defined in Chapter II. retains its original meaning here.

Proceed by first calculating $\Delta \kappa$ (the iagrangian pressure variation inside the perturbed boundary, Then calculate the analogous quantity in the vacuum, outside the perturbed bousdary, $\Delta \hat{x}$. Equating these quantities as in (4.10) will result in a relation between the radial component of the displacement and its derivative at the boundary: $\xi_{r}(\alpha) . \xi_{r}^{\prime}(\alpha)$

Expanding $\Delta \kappa$ (from (4.10)) find

$$
\begin{equation*}
\Delta c=\theta \cdot \Delta B+\Delta p=B_{z}\left(\delta B_{z}+\xi_{r} B_{z}^{\prime}\right)+B_{\theta}\left(\delta B_{\theta}+\xi_{r} B_{\theta}^{\prime}\right)+\delta p+\xi_{r} p^{\prime} \tag{4.11}
\end{equation*}
$$

Since, in equilibrium,

$$
\begin{equation*}
e_{r} \cdot \nabla\left(p+\frac{1}{2} \sigma^{2}\right)=\theta_{r} \cdot(\theta \cdot \nabla \Delta) \tag{4.12}
\end{equation*}
$$

(4.11) can be expressed as

$$
\begin{equation*}
\Delta x=\delta \kappa-\frac{t}{r} B_{\theta}^{2} t \tag{1.1.3}
\end{equation*}
$$

Now use (4.7). (4.7), to write $\delta 0$ as

$$
\begin{equation*}
\delta \theta=L B_{z}\left(k+m \frac{T}{r}\right) \xi-r\left(\frac{B_{g}}{r}\right)^{\prime} \xi_{r} a_{\theta}-B_{r}^{r} \xi_{r} \theta_{z} \tag{1.1.14}
\end{equation*}
$$

$$
\begin{gather*}
\delta \kappa=\frac{1}{w}\left(B_{z} \frac{1}{r}\left(r \delta E_{\theta}\right)+2\left(k J_{\theta}-\frac{m_{r}}{r} A_{z}\right) \delta H_{r}-B_{\theta} \delta E_{z}^{\prime}\right) \\
+\frac{1}{k}\left(J_{\theta} \delta B_{r}-\delta j_{r} B_{\theta}-\omega^{2} \rho \xi_{z}\right)
\end{gather*}
$$

Next eliminate δ_{j}, with (4.5), eliminate J_{0} with (4.9) and agatn use (4.7) lo eliminale (the components of) be in favor of (the components of) be and its derivative. In the resulting expression, apply (4.4) to replace de and tinally replace ($r \xi_{r}$) using (4.3). There remains an epiphanous expression of in in which the only infinitesmals appearing are the components of $\xi:$

$$
\begin{equation*}
\left.\Delta \kappa=\frac{i}{k} B_{z}^{2}\left(\xi_{\theta} \omega_{c^{\top}}^{\omega^{2}}+\xi_{z}\left(k+\frac{\tau}{a}\right)^{2}-\frac{\rho \omega^{2}}{B_{x}^{2}}\right)\right)-\frac{1}{a} B_{\theta}^{2} \xi_{r} \tag{4.16}
\end{equation*}
$$

All quantities in (4.16) are to be evaluated at $r=a$ and as usual we use the symbol τ to represent $\tau=B_{B} / B_{z}$.

It is significant to point out here that ξ_{z} has previously not appeared in any calculation. That's alright. Don't fret. Eliminate i:. The method follows along the lines of the preceeding calculation. Eliminate δp by taking the proper linear combination of the transverse components of the linearized equation of motion (4.2),$(4.2)_{z}$. Systematically replace δ and then δE as in the calculation leading to (4.16). The result (evaluated at $r=a$) is

$$
\begin{equation*}
\xi_{z}=\xi_{\theta} \frac{k y+B_{z}^{2}\left(k+m \frac{T}{a}\right) \frac{\omega^{2}}{c^{2}}}{\frac{m}{a} y+B_{z}^{2} T\left(k+m \frac{T}{a}\right) \frac{\omega^{2}}{c^{2}}}+\xi_{r} \frac{2 i B_{z}^{2} k\left(k+\frac{\pi}{a}\right) \frac{T}{a}}{\frac{m}{a} y+B_{z}^{2} \tau\left(k+m \frac{T}{a} \frac{\omega^{2}}{c^{2}}\right.} \tag{4.17}
\end{equation*}
$$

where the quantity \boldsymbol{y} is defined as

$$
\begin{equation*}
y=\rho \omega^{2}-B_{2}^{2}\left(k+\frac{\tau}{\mathrm{a}}\right)^{2} \tag{4.18}
\end{equation*}
$$

With (4.17) to express ξ_{x} and neglecting all but the lowest order ierms (in the gyroelastic ordering), (4.16) can be revamped to become

$$
\begin{equation*}
\dot{i}=-1 \frac{a}{m} \xi_{g}\left(\rho s^{2}-B_{z}^{2}\left(k+\frac{T}{a}\right)^{2}\right)+\xi_{r} B_{z}^{2} 2_{m}^{T}\left(k+m \frac{T}{a}\right)-H_{z a}^{2} T^{2} \xi_{r} \tag{4.19}
\end{equation*}
$$

where ρ in the total (electromagnetic) mass density

$$
\begin{equation*}
\rho=\rho_{m}+\frac{B_{-}^{2}}{c^{2}} \tag{4:20}
\end{equation*}
$$

 la loncos arder. the result is the familar

$$
\begin{equation*}
\xi_{\theta}=\frac{i}{m}\left(\alpha \xi_{r}^{\prime}+\xi_{r}\right) \tag{4,21}
\end{equation*}
$$

as experied in the gyroelastic ordering.
Forging ahead, proceed to calculate $\Delta \hat{x}$, the Lagrangian variation of the magnetic pressure in the vacuum. Maxwell's equations must be solved in the (helicially rippled) annular domain between the plasma and the wall. Once having found the ficlds in this region, $\Delta \bar{x}$ can be evaluated as

$$
\begin{equation*}
\Delta \hat{\kappa}=\hat{\theta} \cdot \Delta \hat{\theta}=\hat{\theta}_{0} \cdot\left(\delta \hat{B}+\xi \cdot \hat{\nabla}_{0}\right) \tag{4.22}
\end{equation*}
$$

where \hat{B}_{0} is the vacuum equilibrium field and δ solves the wave equation

$$
\begin{equation*}
\left(\nabla^{2}-\frac{1}{c^{2}} \partial_{t}^{2}\right) \delta==0 \tag{4.23}
\end{equation*}
$$

in the vacuum, subject to the constraint

$$
\begin{equation*}
\nabla \cdot \delta \mathrm{D}=0 \tag{4.24}
\end{equation*}
$$

The system (4.23), (4.24) admits two classes of solution: (1) thos in which the magnetic vector potential $\delta \hat{A}$ is longitudinal, so that $\delta B_{z}=0$ and (2) those in which the vector potential is purely transverse so that $\delta \hat{B}_{z} \neq 0$. The wave field in the annular region is a linear combination of these solutions.

Le t

$$
\begin{equation*}
\beta=K_{m}(\alpha r)+c_{0} I_{m}(\alpha r) \tag{4.25.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=K_{m}(\alpha \tau)+\underline{c}_{0} I_{m}(a r) \tag{4.25.2}
\end{equation*}
$$

where $c_{0} \neq c_{0}, K_{m}$ and I_{m} are hoperbolic Bessel functions of ordir m and a salisfies

$$
a^{2}=k^{2}-\frac{\omega^{2}}{c^{2}}
$$

The vector potential $\delta \hat{\boldsymbol{A}}^{(3)}$ is then given by

$$
\begin{equation*}
\left.\delta \hat{\mathrm{A}}^{(3)}=c_{1} \mid \delta \widehat{a}, 0\right\}+c_{2}\{0 . \delta \hat{A}\} \tag{4.27}
\end{equation*}
$$

wiere the quantitirs $\delta \hat{B}$ and $\hat{\delta} \widehat{A}$ are defined by

$$
\delta \hat{\theta}=\left(\frac{1}{i k \alpha \tau} \beta \omega_{r}+\frac{1}{m k} \beta^{\prime} \omega_{\theta}\right) e^{i(m \theta+k z-w i)}
$$

and

$$
\begin{equation*}
\delta \hat{A}=\frac{1}{i m a} \beta e_{2} \epsilon^{\prime(m \theta+k z-\omega t)} \tag{4.28.2}
\end{equation*}
$$

Defining the quantities

$$
\begin{equation*}
\delta \hat{b}=-\frac{i}{m} \beta^{\prime} \omega_{r}+\frac{1}{\alpha r} \beta \bullet_{\theta} ; \delta \hat{b}=-\frac{i}{m} \beta^{\prime} \bullet_{r}+\frac{1}{a r} \beta e_{\theta} \tag{4.29.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \hat{B}=\frac{a}{k m} \beta ; \delta \hat{B}=\frac{\alpha}{k m} \beta \tag{4.29.2}
\end{equation*}
$$

the fixed point variation of the vacuum magnetic field amplitude can be expressed as

$$
\begin{equation*}
\delta \hat{\hat{b}^{(3)}}=c,\left\{\delta \hat{\mathbf{B}}, \delta \hat{\beta} \left\lvert\,-\frac{\omega^{2}}{c^{2} \alpha^{2}} c_{2}\left\{\delta \hat{b}^{*}, 0\right\}\right.\right. \tag{4.30}
\end{equation*}
$$

Maxwell's equations then yield the fixed point variation of the electric field of(3) as

$$
\begin{equation*}
\delta E^{(3)}=\frac{\omega}{k}\left(c,\left\{\delta \hat{\mathbf{B}}^{+}, 0\right\}+\frac{k^{2}}{\alpha^{2}} c_{2}|\delta \hat{b}, \delta \hat{B}|\right) \tag{4.31}
\end{equation*}
$$

The coefficients c_{1}, c_{2}, c_{0} and c_{0} are to be determined so as to satisfy boundary conditions at both a: exterior conducting (rigid) wall bounding the vacuum region, and at the helically deformed plasma-vacuum interface.

At the conducting wall, $r=a$ and it is required that

$$
\begin{equation*}
n^{(3)} \cdot \delta \tilde{\Omega}^{(3)}=0 \tag{4.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{n}^{(3)} \times \delta \hat{\mathbf{E}}^{(3)}=0 \tag{4.3;3}
\end{equation*}
$$

be satisfied. $m=e^{\text {e }}$ is a init normal the wall. A cursory exammation of (.1.30) and (t.31) reveats that

$$
\begin{equation*}
\beta\left(c a_{u}\right)=\beta^{\prime}\left(c a_{u}\right)=0 \tag{+.3.4}
\end{equation*}
$$

viatisfies (1.32) and (4.33), Thas determanes c_{0} and c_{0} so as to render

$$
\begin{equation*}
\beta(\alpha r)=K_{\mathrm{m}}(\alpha r)-\frac{K_{\mathrm{m}}^{\prime}\left(\alpha \alpha_{w^{\prime}}\right)}{l_{\mathrm{m}}^{\prime}\left(\alpha \alpha_{w}\right)} /_{\mathrm{m}}(\alpha r) \tag{4.35.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(a r)=K_{m}(\alpha r)-\frac{K_{\mathrm{m}}\left(a \alpha_{w}\right)}{l_{m}\left(\alpha \alpha_{w}\right)} l_{m}(\alpha r) \tag{4.35.2}
\end{equation*}
$$

as the correct combinations of Bessel functions to be used.
To get $\Delta \hat{n}$, it is yet necessary to evaluate coefficients $c_{\text {; }}$ and c_{2}. This con be done by integrating the equations whose linearized forms are given by (4.4) and (4.6) across a thin transition layer bounding the plasma at the plasna-vacuum interface. The result is the requirement that the normal magnetic field be continuous across the boundary

$$
\begin{equation*}
n \cdot[B]=0 \tag{4.36}
\end{equation*}
$$

and the jump in tangential electric field (due to the motion of the boundary) be given by

$$
\begin{equation*}
n \times[E]=n \cdot v[B] \tag{4.37}
\end{equation*}
$$

These two equations are now varied to give relations which obtain at the actual (helically celormed) interface. From (4.36) there derives

$$
\begin{equation*}
\Delta n \cdot[\varepsilon]+n_{0} \cdot[\Delta \cdot]=0 \tag{4.38}
\end{equation*}
$$

and from (4.37) find

$$
\begin{equation*}
n_{0} \times[\leq \leq]=n_{0} \cdot v[s] \tag{4.39}
\end{equation*}
$$

The perturbed surface normal is obtained by noting

$$
\begin{equation*}
n=-\nabla\left(r-\tau_{0}-\xi_{r}\right)=e_{r}\left(-1+\xi_{r}\right)+e_{\theta}\left(i \frac{m}{\pi} \xi_{r}\right)+e_{z} i k \xi_{r}=r_{0}+j n \tag{4.40}
\end{equation*}
$$

Form the scalar product of (4.39) with the equilibrium magnetic field A_{0}. The requirement that the paralell electric field vanish within the plasma then gives the result

$$
\begin{equation*}
B_{\theta} \delta E_{\theta}+B_{z} \delta E_{z}=-i \omega \xi_{\tau}\left(B_{z}\left[B_{\theta}\right]-B_{\theta}\left[H_{z}\right]\right) \tag{4.41}
\end{equation*}
$$

Fur hermore, by (4.14), inside the plasma it is required that

$$
\begin{equation*}
\delta B_{r}=i \frac{m}{\alpha} \xi_{r} B_{\theta}+i \kappa \xi_{\tau} B_{z} \tag{4.42}
\end{equation*}
$$

This in concert with (4.38) guerantees that outside the interface

$$
\begin{equation*}
\delta \widehat{B}_{r}=i \frac{m}{r} \xi_{r} \hat{B}_{\theta}+i \ddot{B}_{\tau} \hat{B}_{z} \tag{4.43}
\end{equation*}
$$

Equations (4.41) and (4.43) form a simultaneous linear algebraic system in the coefficients c, and c_{2} whose solution is

$$
\begin{align*}
& c_{1}=-\xi_{r} \frac{1}{\beta}\left(\theta_{\theta} \frac{m^{2} k^{2}}{\alpha^{2} \alpha}+B_{z} k m\right) \\
& c_{2}=i \xi \frac{1}{\beta}\left(\delta_{\theta} a m\right) \tag{4.44}
\end{align*}
$$

Finally, $\Delta \hat{\kappa}$ can be written as

$$
\begin{equation*}
\Delta \hat{x}=-\xi_{r} S_{2}^{2}\left(\frac{\beta}{\beta^{\prime}}\left(\hat{\tau}^{2} \frac{k m}{a a}+\hat{\tau}^{2} k^{2} \frac{m^{2}}{a^{3} a^{2}}+\alpha\right)-\frac{\beta^{\prime}}{\beta} \hat{\tau}^{2} \frac{\alpha^{2}}{\alpha c^{2}}+\hat{\tau}^{2} \frac{t}{\alpha}\right) \tag{4.45}
\end{equation*}
$$

Enforcing the gyroelastic ordering and also taking the limit $k a_{w} \ll 1$ for simplicity. (4.45) reduces further to

$$
\begin{equation*}
\Delta \hat{\kappa}=\xi_{r} B_{z}^{2}\left(\frac{a}{m} \Upsilon\left(\left(k+m \frac{\hat{\gamma}}{\alpha}\right)^{2}-\frac{\omega^{2}}{c^{2}}\right)-\hat{\uparrow}^{2} \frac{1}{a}\right) \tag{4.46}
\end{equation*}
$$

where

$$
\begin{equation*}
r=-\frac{1+\left(\frac{a_{w}}{a}\right)^{2 m}}{1-\left(\frac{a_{w}}{a}\right)^{2 m}} \tag{4.47}
\end{equation*}
$$

Equating the expressions (4.19) and (4.46) as required by (4.10) (first order pressure balance) the ordinary magnetohydrodynamic dispersion relation (within the gyroelastic ordering, but without gyroelasticity) appears as

$$
\begin{gather*}
\Delta i=\Delta \hat{i} \\
-\frac{a}{i_{m} \xi_{\theta}}\left(\rho \omega^{2}-B_{z}^{2}\left(k+m \frac{T}{a}\right)^{2}+\xi_{r}\left(2 \frac{T}{m}\left(k+m \frac{T}{a}\right)\right)\right)-B_{z}^{2} \xi_{r} T^{2} \frac{1}{a} \\
=\xi_{r} \hat{B}_{z}^{2}\left(\frac{a}{m} \Upsilon\left(\left(k+m_{a}^{T}\right)^{2}-\frac{\omega^{2}}{c^{2}}\right)-\hat{T}^{2} \frac{1}{\alpha}\right) \tag{4.48}
\end{gather*}
$$

The Gyroclastic slidirig Discontimuity

The condition (4.48) characterizes the discontinuity at the interface between an MHD fluid within the gyroelastic ordering and a vacuum. However, we wash to generalize the condition to include the effect o: finite gyroclasticity. To accomplish this, it is necessary to determine the tharacter of a gencral sliding discontinuity between two different isorrhopic gyroelastic fluids. The sliding discontinuity allows a relative sliding of mass and fluid on opposite sides, but not across the discontinuity. It coincides with an isorrhope.

Once this task is completed, the trick will be to meld the two types of discontinuity into a single structure representing the transition layer between the gyroelastic medium and the vacuum. The result will be a global dispersion relation for motions of the free boundary gyroelastic screwpinch.

Begin this part of the analysis by projecting the nonlinear equalion of motion (2.36) in the characteristic representation onta a surface normal n

$$
\begin{equation*}
n=\sigma \bullet+\zeta \bullet_{z} \tag{4.49}
\end{equation*}
$$

where - is parallel to the direction of ∇s and ζ is of order ε relative to σ. The result can be cast in the form

$$
\begin{equation*}
\rho D^{ \pm}\left(n \cdot v^{\mp}\right)-Q a_{x}(n \cdot \tau)+n \cdot \nabla_{c}-\rho D^{ \pm} n \cdot v^{\mp}-Q \partial_{x} n \cdot T=0 \tag{4.50}
\end{equation*}
$$

A discontinuity can be modeled mathematically as a limit. A region of finite
thickness, a transition layer in which continuous changes occur, is caused to shrink (the properties of adjoining regions being maintained throughout.) The limit of the process is a discontinuity. Some quatities interior to the transition layer remain bounded throughoul the procedure, some do not. Lel us signify thal a variable remains bounded by

$$
\begin{equation*}
F<\infty \tag{4.51}
\end{equation*}
$$

In particular, it is evjdent that the following quantifies fit the description of quantilies which remain bounded:

$$
\begin{equation*}
s, D^{*} s, n, \nabla n, D^{ \pm} n, \tau, \partial_{2} n, \partial_{k} n<\infty \tag{-1.52}
\end{equation*}
$$

We also requit: that the zeroth order pressure be continuous across the discontinuity (sharp boundary effects will be discussed in Appendix fl.) Notine also that owing to the isorrhopy of the configuration, $\boldsymbol{H}-\boldsymbol{T}=0$, it cian br shown from (4.60) that the quantity

$$
\begin{equation*}
\rho D^{1}\left(n \cdot v^{+}\right)+m \cdot \nabla \kappa<\infty \tag{4.5:3}
\end{equation*}
$$

is also bounded in the transition layer. Since also $D^{2} \rho=0$ and $\nabla \cdot \mathbf{r}^{2}=0$. (4.53) can be rewritton as

$$
D^{ \pm}\left(\rho\left(n \cdot \mathbf{v}^{\top}\right)\right)+\nabla \cdot n_{\kappa}-\kappa \nabla \cdot n<\infty
$$

(within the transition layer.) As an immediate consequence of this, it follows that

$$
\begin{equation*}
\partial_{t}\left(\rho\left(\boldsymbol{n} \cdot \mathbf{v}^{\mp}\right)\right)+\nabla \cdot\left(v^{2} \rho \boldsymbol{n} \cdot \mathbf{v}^{\mp}+n \kappa\right)<\infty \tag{4.55}
\end{equation*}
$$

$v^{ \pm}$differ caly in their tangential components. Let $n \cdot v^{2}=u$ and integrate (4.55) across the transition layer to find

$$
\begin{equation*}
-u^{2}[\rho]+u^{2}[\rho]+[\kappa]=0 \tag{4,56}
\end{equation*}
$$

The inescapable concusion is that κ is continuous across the layer

$$
\begin{equation*}
[\kappa]=0 \tag{4.57}
\end{equation*}
$$

This relation might be viewed as the gyroelastic generalization of (4.10). keeping in mind that the κ in the two cases are related, but not identical. The κ in (4.57) is given by (1.83.5). To be more precise, κ is given by (4.10) to lowest order $\left(O\left(\varepsilon^{0}\right)\right) ;(1.83 .5)$ gives the next lowest non-vanishing correction to κ. It belongs to the mystique of the gyroelastic regime that perturbations to
both contributions to the pressure enter at the same order in the analysis of the boundary layer structure.

Continue the calculation by projecting the equation of motion (2.36) onto an isorrhope, noting since

$$
\begin{equation*}
\left[\rho D^{x} r^{1}-Q \partial_{k} T+\nabla_{n}\right]=0 \tag{4.58}
\end{equation*}
$$

then also

$$
\begin{equation*}
\nabla^{*} s \cdot\left[\rho D^{2} r^{*}-Q \partial_{\star} \tau\right]=-\nabla^{*} s \cdot\left[\nabla_{i}\right]=-\nabla^{*} s \cdot \nabla[\kappa]=0 \tag{4.59}
\end{equation*}
$$

Now vary a state in which there exists such a sliding discontinuity and examine the behavior of the variation at the discontinuity. Since (4.59) holds quite generally, it holds in particular for the varied state and thus also for the (Lagrangtan) variation of the state:

$$
\begin{equation*}
د\left(\nabla^{*} s \cdot\left[\left(\rho D^{ \pm} r^{2}-Q \partial_{x} \tau\right)\right]\right)=\Delta\left[\nabla^{*} s \cdot\left(\rho D^{ \pm} r^{+}-\dot{Q} \partial_{i} \tau\right)\right]=0 \tag{-4.60}
\end{equation*}
$$

Making usc of the identities

$$
\begin{equation*}
\Delta \nabla^{*} s=\nabla^{*} s \cdot \nabla \xi ; \Delta \nabla-\nabla \Delta=0 ; \Delta s=0 \tag{4.61}
\end{equation*}
$$

the linearized jump condition can be expressed as

$$
\begin{equation*}
\left[\nabla^{*} s \cdot \nabla \xi \cdot\left(\rho D^{2} v^{F}-Q \partial_{x} \tau\right)\right]+\left[\nabla^{*} s \cdot\left(\rho D^{*} D^{7} \xi-Q \partial_{x} \partial_{x} \tau\right)\right]=0 \tag{4.62}
\end{equation*}
$$

For the case of the steady flow equilibrium considered in chapter lll, making use of the obrious condition

$$
\begin{equation*}
n \cdot[\xi]=0=\nabla s \cdot[\xi] \tag{4.63}
\end{equation*}
$$

(4.62) can be reduced to the form

$$
\begin{align*}
& \frac{i}{m^{\prime}}\left[\rho\left(\omega^{2}+m^{2} \Omega_{g}^{2}-\left(\omega-\Omega^{(0)}\right)^{2}\right)+B^{2}\left(\left(k+m \frac{\tau}{a}\right)^{2}-k^{2}\right)\right] \\
& \quad+\left[\xi_{\theta}\left(\rho\left(\left(\omega-m \Omega^{(0)}\right)^{2}-m^{2} \Omega_{g}^{2}\right)-B^{2}\left(k+m_{a}^{\top}\right)^{2}\right)\right]=0 \tag{4.64}
\end{align*}
$$

where all quatities are to be evaluated at $r=\alpha$.
Since ξ_{r} is continuous it is necessary only to distinguish ξ_{g} on the two sides of the sliding discontinuity. Identify the ξ_{θ} in (4.48) as occuring outside the discontinuity. ((4.21) is valid on both sides of the discontinuity; it can be used to eliminate ξ_{θ} inside the discontinuity in favor of ξ_{r}, and ξ_{τ}^{\prime}.) Finally then, using (4.64) in (4.48) the generalized bnundary condition can be
written as a condition on the logarithmic derivative of ξ_{r} at (immediately inside) the surface $r=a$. The result is

$$
\begin{equation*}
\frac{\xi_{r}^{\prime}}{\xi_{r}}=-\left(\frac{1}{a}\right) \frac{\omega^{2}\left(\rho+m \tau \frac{B^{2}}{c^{2}}\right)-B^{2}\left(\left(k+m \frac{\tau}{a}\right)^{2}(1+m \gamma)-2 \frac{m_{a}^{2}}{a}\left(k+\frac{\tau}{a}\right)\right)}{\rho\left(\omega^{2}-m^{2} \Omega_{g}^{2}\right)-B^{2}\left(k+m \frac{\top}{a}\right)^{2}} \tag{4.65}
\end{equation*}
$$

The boundary condition is to be used as follows: integrate the Euler equation out to the plasma-vacum interface and compute the logarithmic derivative of the Euler solution-its value coincides with that given by the relation (4.65) in the event that the value of ω^{2} is an eigenvalue (and the solution is an eigensolution.)

The trajectories thus traced in $\kappa-\lambda$ space represent the global dispersion relation, for free boundary motions of the gyroelastic system. Figures 15 and 16 show results of this calculation. [n figure 15 the vacuum gap is allowed to increase from zero producing a range of unslable modes near the Kruskal-Shafranov point. In this case the speed of light has been taken to be negligibly large relative to the Alfven zoeed. The fixed boundary (model) pinch (top pictures) appears to be gyroelasti ' ' stabilizable only as a consequence of the fixed boundary model assumptions ts 'he limit of a free boundary system (ie. for vanishingly small vacuum 5. \therefore. pinch is not stabilized. In the latter case the range of unstable modes shinks to a point at $\kappa=-1$. Figure 16 shows that increasing the Alfven speed (relative to the speed of light) gives rise to (displacement current) eifects which tend to decrease the growth rates of the unstable modes, though never actually stabilizing them.

CHAPTER 5

The Energy Principle

The Columnar Pinch

The equation of motion describing linear motions of a gyroelastic screwpinch equilibrium was derived in chapler lll from a small amplitude Lagrangian. Minimizing the action integral

$$
\begin{equation*}
\delta \pi=\int d r r\left(f \xi^{\prime 2}+g \xi^{2}\right)=\int d r \mathscr{L}\left(\xi, \xi^{\prime} ; r\right)=0 \tag{5.1}
\end{equation*}
$$

led to the Euler-Lagrange equation

$$
\begin{equation*}
\left(\frac{\partial \mathscr{L}}{\partial \xi^{\prime}}\right)^{\prime}-\frac{\partial \mathscr{L}}{\partial \xi}=0 \tag{5.2}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
\left(r f \xi^{\prime}\right)^{\prime}-r g \xi=0 \tag{5.3}
\end{equation*}
$$

To get an energy principle for the free boundary system, siaply form the scalar product of (5.3) with ξ ther integrate over the domain. After an integration by parts this procedure yields

$$
\begin{equation*}
\int_{0}^{a} d r\left(r f \xi^{\prime 2}+r g \xi^{2}\right)=\left.\right|_{0} ^{a} r f \xi^{\prime} \xi \tag{5.4}
\end{equation*}
$$

The coefficient functions f and g are given by

$$
\begin{equation*}
f=\rho r^{2}\left(\left(\frac{\omega}{m}-\Omega^{(0)}\right)^{2}-\frac{\Phi}{4 \rho^{2}}-\frac{Q}{\rho}\left(\frac{k}{m}+\frac{T}{r}\right)^{2}\right) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\left(m^{2}-1\right) \rho\left(\left(\frac{\omega}{m}-\Omega^{(0)}\right)^{2}-\frac{Q}{4 \rho^{2}}-\frac{Q}{\rho}\left(\frac{k}{m}+\frac{\tau}{r}\right)^{2}\right)-r\left(\rho\left(\frac{\omega}{m}\right)^{2}-Q\left(\frac{k}{m}\right)^{2}\right)^{\prime} \tag{5.6}
\end{equation*}
$$

The class of equilibria chosen previously consisted of the additional restrictions:

$$
\begin{equation*}
p_{\Perp}=p_{\dagger} ; Q=B^{2} \tag{5.7}
\end{equation*}
$$

isotropic (material) pressure,

$$
\begin{equation*}
\frac{(\Phi)}{4 \rho^{2}}=\Omega_{g}^{2}=\text { constant } \tag{5.8}
\end{equation*}
$$

uniform gyroelastic frequency and

$$
\begin{equation*}
\varepsilon_{2}(0)=0 \tag{5.9}
\end{equation*}
$$

zero canonical (angular) velocity. The system is thus self adjoint. Lastly, the equilibrium was chosen to have a uniform currat density. With these provisos, the coefficient functions f and g can be expressed as

$$
\begin{equation*}
f=r^{2}\left(\rho\left(\left(\frac{\omega}{m}\right)^{2}-\Omega_{g}^{2}\right)-3_{a}^{2}\left(\frac{k}{m} u+\frac{\tau_{a}}{a}\right)^{2}\right) \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\left(m^{2}-1\right)\left(\rho\left(\left(\frac{\omega}{m}\right)^{2}-\Omega_{g}^{2}\right)-B_{a}^{2}\left(\frac{k}{m} u+\frac{\top}{a}\right)^{2}\right)-r\left(\rho\left(\frac{\omega}{m}\right)^{2}-B_{a}^{2} u^{2}\left(\frac{k}{m}\right)^{2}\right) \tag{5,11}
\end{equation*}
$$

where $u^{2}(r)$ is the (normalized) profite of magnetic pressure $B^{2}(r)$ (subscript indicates the variable is to be evaluated at the plasma-vacuum boundary $r=a$.) Substitute these last expressions into the energy principle (5.4); there then remains only to make use of the boundary condition delived in chapter iV to complete the calculation.

The analysis of the boundary layer disclosed

$$
\begin{equation*}
-\left.\right|_{0} ^{a} r^{3} \xi \xi^{\prime}=-a^{3} \xi^{2}(a) \frac{\xi^{\prime}(a)}{\xi(a)}=a^{2} \xi^{2} \Lambda \tag{5.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\frac{\omega^{2}\left(\rho+m T \frac{B_{a}^{2}}{c^{2}}\right)-B_{a}^{2}\left(\left(k+\pi \frac{\tau}{a}\right)^{2}(1+m \Upsilon)-2 \frac{m}{a} \tau\left(k+\pi \frac{\tau}{a}\right)\right)}{\rho\left(\omega^{2}-m^{2} \Omega_{g}^{2}\right)-B_{a}^{2}\left(k+m \frac{\tau}{a}\right)^{2}} \tag{5.13}
\end{equation*}
$$

Using A for the logarithmic derivative (of ξ) and owing to the self adjointness of the system guaranteed by (5.9) it is possible to collect all terms involving ω^{2} (in (5.4).) Dividing through by the multiplier of ω^{2} leaves the energy principle in the anticipated form

$$
\begin{equation*}
\omega^{2}=\frac{\delta W\left(\xi, \xi^{\prime}\right)}{N\left(\xi, \xi^{\prime}\right)} \tag{5.14}
\end{equation*}
$$

where numerator and denominator are given as

$$
\begin{align*}
\delta W=\int_{0}^{a} d r & r\left(\left(p m^{2} \mathrm{Q}_{g}^{2}+B_{a}^{2}\left(k u+\frac{m_{a}}{\top}\right)^{2}\right)\left(r^{2} \xi^{\prime 2}+\left(m^{2}-1\right) \xi^{2}\right)-B_{a}^{2} k^{2} u^{2} r \xi^{2}\right) \\
& +a^{2} \xi_{a}^{2} B_{a}^{2}\left(k+m_{a}^{\tau}\right)\left(\left(k+\frac{\tau}{a}\right)(1+m \Gamma)-2 m_{a}^{\top}\right) \tag{5.15}
\end{align*}
$$

and

$$
\begin{equation*}
N=\int_{0}^{a} d r r\left(\rho\left(r^{2} \xi^{2}+\left(m^{2}-1\right) \xi^{2}\right)-\rho^{\prime} r \xi^{2}\right)+a^{2} \xi_{a}^{2}\left(\rho_{a}+m r \frac{B^{2}}{c^{2}}\right) \tag{5.16}
\end{equation*}
$$

Some general comments might be made here on the nature of the above result. First, it is clear that N, the normalization, is a positive definite quantity, as it must be. It follows that for instabilily ($\omega^{2} \leqslant 0$) the potential energy due to the presence of the perturbation ξ. W, must be negative. Furthermore, since the Euler solution minimizes the value of ω^{2} any trial function giving $\omega^{2}<0$ proves the presence of instability and estimates an upper bound on the value of ω^{2} (for the fastest growing eigemmode.)

Secondly, it can be seen from (5.15) that ary amount of gyroelastic stabilization can be nullified by simply choosing a trial function such that $\xi^{\prime}=0$ and $m=1$. Such a perturbation would be a reasonable choice as a trial function for estimating maximum growth rates. Before analyzing the stability of the columnar pinch, however, let us digress momentarily to generalize the
equilibrium slightly so as to include the tubular pinch. An analysis of the stability of the tubular pinch will then include the columar pinch as a special case.

The Tubular Pinch ${ }^{25}$

Consider a gyroelastic system in which $p_{t}=p_{\#}=p$ and the equilibrium condition

$$
\begin{equation*}
p+\frac{1}{Z^{2}} p^{2}=\frac{1}{\not Z} b_{0}^{2} \tag{5.17}
\end{equation*}
$$

is salisfied. The geometry is as shown. Take the equilibrium configuration to obey

$$
\begin{equation*}
B\left(a_{i}\right)=B\left(a_{e}\right)=B_{o} \tag{5.18}
\end{equation*}
$$

so thal

$$
\begin{equation*}
p\left(a_{i}\right)=p\left(a_{e}\right)=0 \tag{5.19}
\end{equation*}
$$

Allow an axial current densily lo flow in the central conductar as well as in the plasma so that the poloidal magnetic field B_{θ} is given by

$$
\begin{array}{ll}
B_{s}=B_{\theta i} \frac{a_{i}}{r} & a_{w i}<r<a_{i} \\
B_{\theta}=B_{\theta i} \frac{a_{i}}{r}+B_{\theta p} & a_{i}<r<a_{e} \\
B_{\theta}=\left(B_{\theta i} \frac{a_{i}}{a_{e}}+B_{\theta p}\left(a_{e}\right)\right) \frac{a_{e}}{r}=B_{\theta e} \frac{a_{e}}{\tau} & a_{e}<r \tag{5.20}
\end{array}
$$

For convenience of notation, define the following quantities:

$$
\begin{equation*}
\tau_{i} \equiv T\left(a_{i}\right)=\frac{B_{g}\left(\alpha_{i}\right)}{B_{0}}=\frac{B_{\theta i}}{B_{0}} \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{e} \equiv \tau\left(a_{e}\right)=\frac{B_{\theta}\left(a_{e}\right)}{B_{0}}=\frac{B_{A g}}{B_{a}} \tag{5.22}
\end{equation*}
$$

By a calculation entirely equivalent to that leading to the boundary condition for the columnar pinch presented in chapter IV, it is found that the condition which must be satisfied at the inner vacuum-plasma interface is

$$
\begin{equation*}
\Delta \hat{x}_{i}=\Delta \kappa_{i} \tag{5.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \hat{\kappa}_{i}=\xi_{i} B_{0}^{2}\left(-\frac{a_{i}}{m} \lambda_{i}\left(\left(k+m \frac{\tau_{i}}{a_{i}}\right)^{2}-\frac{\omega^{2}}{c^{2}}\right)-\frac{\tau_{i}^{2}}{a_{i}}\right) \tag{5.24}
\end{equation*}
$$

and

$$
\begin{align*}
& \Delta \kappa_{i}=\xi_{i} \frac{a_{i}^{2}}{m^{2}}\left(\rho\left(\omega^{2}-m^{2} \Pi_{g}^{2}\right)-B_{0}^{2}\left(k+m_{i} \frac{a_{i}}{a_{i}}\right)^{2}\right) \\
& \left.+\xi_{i}\left(\frac{a_{i}}{m^{2}}\left(\mu \omega^{2}-B_{o}^{2}\left(k+m_{a_{i}}^{\boldsymbol{\tau}_{i}}\right)^{2}\right)+B_{o}^{2} 2^{\tau_{i}}\left(k+\frac{\tau_{i}}{a_{i}}\right)-B_{o}^{2}{ }_{a_{i}}^{\alpha_{i}^{2}}\right)\right) \tag{5.25}
\end{align*}
$$

The logarithmic derivative of ξ at $r=a_{i}$ is thus required (for ξ an eigenmode) to satisfy
where

$$
\begin{equation*}
1 \leqslant \lambda_{i}=\frac{1+\left(\frac{a_{w i i}}{a_{i}}\right)^{2 m}}{1-\left(\frac{a_{w i}}{a_{i}}\right)^{2 m}} \leqslant \infty \tag{5.27}
\end{equation*}
$$

At the exterior plasma-vacuum interface the mate to (5.26) is given by
where

$$
\begin{equation*}
1 \leqslant \mathrm{~T}_{e}=\frac{\left(\frac{a_{w e}}{a_{p}}\right)^{2 m}+1}{\left(\frac{a_{w e}}{a_{e}}\right)^{2 m}-1} \leqslant \infty \tag{5.29}
\end{equation*}
$$

By following the procedure outlined previously for generating an energy principle for the columar pinch in the form (5.14) the analogous relation for the tubular pinch can be formed. The result is

$$
\begin{equation*}
\omega^{2}=\frac{\delta W\left(\xi, \xi^{\prime}\right)}{N\left(\xi, \xi^{\prime}\right)} \tag{5.30}
\end{equation*}
$$

where now the potential energy due to the presence of the perturbation is

$$
\begin{align*}
& \delta W=\int_{a}^{a} d r r\left(\left(\rho m^{2} \Omega_{g}^{2}+B_{0}^{2}\left(k u+m_{a}^{\top}-\frac{a_{e}}{2} h\right)^{2}\right)\left(r^{2} \xi^{\prime 2}+\left(m^{2}-1\right) \xi^{2}\right)-r B_{0}^{2} k^{2} u^{2} \xi^{2}\right) \\
& +a_{e}^{2} \xi_{e}^{2} B_{0}^{2}\left(k^{2}-m^{2}{\frac{a_{p}^{p}}{2}}_{a_{p}^{2}}+m \Upsilon_{e}\left(k+m_{a_{e}}^{\top}\right)^{2}\right) \\
& -a_{i}^{2} \xi_{i}^{2} B_{0}^{2}\left(k^{2}-m^{2} \frac{\alpha_{i}^{2}}{a_{i}^{2}}-m \lambda_{i}\left(k+m \frac{a_{i}}{a_{i}}\right)^{2}\right) \tag{5.31}
\end{align*}
$$

and the normalization is

$$
\begin{align*}
N= & \int_{a_{i}}^{a} d r r\left(\rho\left(r^{2} \xi^{\prime} \alpha^{2}+\left(m^{2}-1\right) \xi^{2}\right)-\rho^{\prime} r \xi^{2}\right) \\
& +a_{e}^{2} \xi_{e}^{2}\left(\rho_{e}+m r e_{e^{2}}^{B_{0}^{2}}\right)-a_{i}^{2} \xi_{i}^{2}\left(\rho_{i}-m \lambda \frac{B_{i}^{-}}{-2}\right) \tag{5.32}
\end{align*}
$$

The two funclions u and h in (5.3i) describe the particular equilibrium profiles chosen as follows: the axial field is to be specified as

$$
\begin{equation*}
B(r)=B_{0} u \tag{5.33}
\end{equation*}
$$

In order to satisfy (5.18) and (5.19) u must obey

$$
\begin{equation*}
u\left(a_{i}\right)=u\left(a_{e}\right)=1 \tag{5.34}
\end{equation*}
$$

and

$$
\begin{equation*}
0<u(r)<1 \quad a_{i}<r<a_{e} \tag{5.35}
\end{equation*}
$$

The poloidal field is given by (5.20); this defines h as follows:

$$
\begin{equation*}
B_{\theta}=B_{0_{a_{e}}}^{\boldsymbol{T}_{e}} r h(r) \quad a_{i}<r<a_{e} \tag{5.36}
\end{equation*}
$$

The only requrements on $h(r)$ are that

$$
\begin{equation*}
h\left(a_{e}\right)=1 \tag{5.37}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(a_{i}\right)=\frac{\tau_{i} a_{e}}{\tau_{e} a_{i}} \tag{5.38}
\end{equation*}
$$

Otherwise, the particular form of h is determined by the choice of axial current density profile (within the plasma.)

Stability of The Gyroelastic Screupinch

As discussed earlier in connection with the energy principle for the columnar pinch, gyroelastic stabilization can be completely nullified by choosing a rigid body displacement for a trial function, with $m=1$. This is true for the tubular pinch as well. Consider the energy principle (5.30) for such a displacement to get an estimate of the maximum growth rate to which the unstable system will be prone. The perturbation potential energy, W, given by (5.31), can be represented for this trial function as

$$
\begin{align*}
& \delta W_{t r i a l}=\int_{a,}^{a} d r r^{2}\left(-B^{2} k^{2}\right) \xi_{0}^{2} \\
& +\alpha_{e}^{2} \xi_{e}^{2} B_{o}^{2}\left(k^{2}-m^{2} \frac{\tau_{-}^{2}}{a_{e}^{2}}+m \Gamma_{e}\left(k+m_{a_{e}}^{\top}\right)^{2}\right) \\
& -a_{i}^{2} \xi_{i}^{2} B_{o}^{2}\left(k^{2}-m^{2} \frac{\tau_{i}^{2}}{a_{i}^{2}}-m \lambda_{i}\left(k+m_{i}^{\tau_{i}}\right)^{2}\right) \tag{5.35}
\end{align*}
$$

where ξ_{0} will be specified presently.
Two questions arise immediately with regards to (5.39). First, can ξ_{i} and ξ_{e} differ? Second, can ξ be constant and meet the boundary conditions? The second question can be dispensed with easily by choosing a trial function which meets the boundary conditions differing from constancy onty in a thin region of thickness ε near the boundary. The contribution to W from these regions can be made as sinall as is desired by choosing ε small. The boundary contributions remain unchanged.

In response to the first query, consider a trial function which is uniform on the domains $a_{i}<r<\alpha_{s}-t$ and $\alpha_{s}+\varepsilon<r<\alpha_{e}$, but has a different value on the two domains, say ξ_{i} and ξ_{c}. The result of substituting this trial function in (5.39) is a positive contribution at $r=\alpha_{s}$ of order a^{-1}. Clearly, the case $\xi_{0}=\xi_{i}=\xi_{e}$ is least stable. Therefore, choose $\xi_{a}=i$. The energy principle is then simply

$$
\begin{aligned}
& -B_{o}^{2} k^{2} \int_{a_{i}}^{a_{i}} d r r^{2} u^{2}
\end{aligned}
$$

Now select an example. First examine the standard columnar pinch case dealt with (as a fixed boundary system) in chapter III.

Case I

The standard columnar pinch is specified by

$$
\begin{align*}
& \rho=\rho_{0} \\
& u^{2}=1-\beta\left(1-\left(\frac{r}{a_{e}}\right)^{2}\right) ; u^{2 \cdot}=3 \beta \frac{r}{a_{e}^{2}} \\
& a_{i}=0 \tag{5.41}
\end{align*}
$$

Applying (5.41) to (5.40) there results (with $m=1$)

$$
\begin{equation*}
\omega^{2} \leqslant \frac{\delta W_{1 r i a l}}{N_{t r i a l}}=\frac{B_{D}^{2}}{\rho_{0}} \frac{k^{2}\left(1-\frac{\beta}{2}\right)-\frac{\tau_{e}^{2}}{a_{e}^{2}}+\Upsilon_{e}\left(k+\frac{\tau_{e}}{a_{e}}\right)^{2}}{1+\Upsilon_{e} \frac{B_{0}^{2}}{\rho_{0} c^{2}}} \tag{5.42}
\end{equation*}
$$

To find an estimate for the range of k for which instability occurs, set the right hand member of (5.42) to zero and salve for the two roots $k_{ \pm}$of the quadratic. These two roots bound the unstable range of k values (estimated by the chosen trial function.) It is thus estimated that modes with $m=1$ and k in the range defined by

$$
\begin{equation*}
k_{*}=\frac{\tau_{e} \Upsilon_{e}}{a_{e}\left(1+\Upsilon_{e}-\frac{\beta}{2}\right)}\left(-1 \pm \frac{\left(\frac{\beta}{2}\left(\Upsilon_{e}-1\right)+1\right)^{\frac{1}{2}}}{\Upsilon_{e}}\right) \tag{5.43}
\end{equation*}
$$

are unstable. Clearly, as r_{ρ} increases without limit the range shrinks to zero width about the Kruskal-Shafranov point

$$
\begin{equation*}
\frac{k a_{e}}{\tau_{e}}=-1 \tag{5.44}
\end{equation*}
$$

The estimate of maximum growth rate ω_{m}^{2} occurs for the value of k minimizing (5.42)

$$
\begin{equation*}
k_{m}=-\frac{\tau_{e} \tau_{e}}{u_{e}\left(1+\Upsilon_{e}-\frac{\beta}{2}\right)} \tag{5.45}
\end{equation*}
$$

Evaluating ω_{m}^{2} there results

$$
\begin{equation*}
\left.\omega_{m}^{2}=-\frac{{\frac{B_{0}}{2} T_{e}^{2}}_{\rho_{0}^{2} a_{e}^{2}}^{1+\Upsilon_{e} \frac{B_{0}^{2}}{\rho_{0} c^{2}}}\left(1-\frac{\Upsilon_{e}\left(1-\frac{\beta}{2}\right)}{\left(\Upsilon_{e}+1-\frac{\beta}{2}\right)}\right), ~(1)}{1+\frac{1}{2}}\right) \tag{5.46}
\end{equation*}
$$

It is significant to notice that as $\Upsilon_{\text {e }}$ increases (is the outer wall approaches the plasma-vacuum boundary) k_{m} approaches the Kruskal-Shafranov point ard the maximum growth rate goes to

$$
\begin{equation*}
\lim _{r_{0}+\infty} \omega_{m}^{2}=-\frac{\frac{B_{Q}^{2} \tau_{0}^{2}}{\rho_{0} a_{e}^{2}}}{1+\tau_{e} \frac{B_{0}^{2}}{\rho_{0} c^{2}}} \frac{\beta}{2} \tag{5.47}
\end{equation*}
$$

Note that this growth rate is proportional to the parameter β.

Casell

Let us now turn to the tubular pinch. After an integration by parts (5.40) becomes

$$
\begin{aligned}
& 2 B_{0}^{2} k^{2} \int_{a_{i}}^{a_{i}} d r r u^{2}-B_{0}^{2} k^{2}\left(a_{e}^{2}-a_{i}^{2}\right)
\end{aligned}
$$

For simplicity, normalize ihe variables as follows: take

$$
\begin{equation*}
s=\frac{r^{2}}{a_{e}^{2}} ; s_{i}=\frac{a_{i}^{2}}{a_{e}^{2}} ; \eta=\frac{\tau_{e} a_{i}}{\tau_{i} a_{e}} ; \kappa=\frac{k a_{e}}{\tau_{e}} \tag{5.49}
\end{equation*}
$$

and let

$$
\begin{equation*}
\rho_{0}=\int_{s,}^{1} d s \rho \tag{5.50}
\end{equation*}
$$

Define $\boldsymbol{\alpha}$ by

$$
\begin{equation*}
\int_{s_{i}}^{1} d s u^{2}=\alpha\left(1-s_{i}\right) \tag{5.51}
\end{equation*}
$$

where $0<a<1$. In terms of these variables, the energy principle for the tubular pinch, $(5,48)$, assumes the form

$$
\begin{equation*}
\omega^{2} \leqslant \frac{a \kappa^{2}+b \kappa+c}{d} \tag{5.52}
\end{equation*}
$$

where

$$
\begin{align*}
& a=1-\left(1-s_{i}\right)(1-\alpha)+T_{e}+s_{i}\left(\lambda_{i}-1\right) \\
& b=2 T_{e}+2 \eta s_{i} \lambda_{i} \\
& c=\Upsilon_{e}-1+\eta^{2} s_{i}\left(1+\lambda_{i}\right) \\
& d=1+\frac{B_{D}^{2}}{\rho_{0}}\left(T_{e}+s_{i} \lambda_{i}\right) \tag{5.53}
\end{align*}
$$

Proceeding as before, estimate the minimum value of ω^{2}. The value of κ for which this occurs is

$$
\begin{equation*}
\kappa_{\mathrm{m}}=-\frac{b}{2 a} \tag{5.54}
\end{equation*}
$$

so that ω_{m}^{2} is given by

$$
\begin{equation*}
\omega_{m}^{2}=\frac{-\frac{b^{2}}{4 a}+c}{d}=\frac{-\frac{\left(\Upsilon_{e}+\eta s_{i} \lambda_{i}\right)^{2}}{a\left(1-s_{i}\right)+\Upsilon_{e}+s_{i} \lambda_{i}}+\Upsilon_{e}-1+\eta^{2} s_{i}\left(\lambda_{i}+1\right)}{1+\frac{B_{0}^{2}}{\rho_{0} c^{2}}\left(\Upsilon_{e}+s_{i} \lambda_{i}\right)} \tag{5.55}
\end{equation*}
$$

For the tubular pinch ω_{m}^{2} is not necessarily negative; indeed there do exist stabilized cases for regions of the parameter space mapped by $\eta, \tau_{i}, \lambda_{i}, \alpha_{,} s_{i}$ and Π_{g}^{2}.

REBROENCES

1. I.B.Bernsiein, E.A.Frieman. M.D.Kruskal, and R.M.Kulsrud, Proc. Roy. Soc. A244 (1958), 17.
2. K. H.Case, Ann. Phys. 7 (1959), 349.
3. J.P.Freidberg, Phys. Fluids 13 (1970). 1812.
4. J.P.Freidberg, Phys. Fluids 15 (1972), 1102.
5. J.P.Freidbe, ex J.A.Wesson, Phys. Fli: ${ }^{\text {d }}$ ds 13 (1970), 1009.
6. E.Frieman and M.Rotenberg, Rev. Mod. Phys. 32 (1960), 898.
7. J.P.Goedbloed, Physica 53 (1971), 501.
8. J.P.Goedbloed, Phys. Fluids 1 e (1973), 1927.
9. J.P.Goedbloed and P.H.Sakanaka, CCO-3C77-29, AF-70 (1973).
10. A.N.Kaufman. Phys, Fluids 3 (1950), $5!0$.
11. N.A.Krall and L.D.Pearlstein, in Plasma Physies and Controlled Nuclear Fusion Resenrch : (IAEA, Vienna, 1966), 735.
12. M.Kruskal, J. Math. Phys. 3 (1962), 806.
13. M.Kruskal ar M.Schwarzchild. Proc. Roy. Soc 223A (1954), 348.
14. M.K"uskal and .Tuek, Proc. Roy. Soc. 245A (1958). $22,2$.
15. L.Landau, J. rhys. U.S.S.R. 10 (1946), 25.
16. H.R.Lewis and K.R.Symon, J. Math. Phys. 20 (1979), 413.
17. H.R.lewis and L.Turner, Nuc. Fusian 16 (1976), 993.
18. W.A.Newcomb, Aran. Phys. 3 (1958), 347.
19. W. h. Newcomb, Ann. Phys. 10 (1960), 232.
20. W.A.Nevcomb, a "Dynarics of Fluids and Plasmas" (S.l.Pai, Ed.). p. 405 Acadenic Press, New York (1966)
21. W.A.Newcomb, n: '. Phys. 72 (1972), 29.
22. W.A.Newcomb, Ana: Phys. 81(1973), 231.
23. W.A.New:omb, 'Notes On Magne Lohydrodynamies" unpublished.
24. W.A.Newcomb "Nates On Guiding Center Theory" unpublished.
25. W.A.Newc Jmb and A.N.Kaufman, Phys. Fluids 4 (1961), 314.
26. L.D.Pearlstein and N.A.Krall, Phys. Fluids 9 (1966), 2231.
27. L.D.Pearlstein and J.P.Freidberg, Phys. Fluids 21 (1978), 1218.
28. K.V.Roberts and J.b.Taflor. Phys. Rev. Letters 8 (1962;, 197.
29. D.C.Robinson, Plasma Physics 13 (1371), 439.
30. M.N.Rosenbluth, N.A.Krall, and N.Rostoker, Ahcl. Susion, Suppl. Pt. 1 (1962), 143.
31. M.N.Rosenbiuth and A.Simon, Fiys. Fluids 8 (1965), 1300.
32. C.E.Seyler, Phys. Fluids 22 (1979), 2324.
33. C.E.Seyler and J.P.Freidberg, Phys. Fluids 23 (1980), 331.
34. V.D.Shafranov, Zh. Tekh. Fiz. 40 (1970). 241; (Sou. Phys. Tech. Phys. 15 (1970), 175.)
35. B.R.Suydam, in Proceedings of The Second Intemational Conference on The Peaceful'ses of Atomic Energy 31 (1958). 157.
36. R.J.Tayler, Proc. Phys. Soc. B70 (1957), 31.
37. R.J.Tayler, Proc. Phys. Soc. B70 (1957), 1049.
38. L.Turner, Phys. Fluids 20 (1977), 654.
39. L.Turner, Phys. Fluids 20 (1977), 662.
40. N.G.VanKampen, Physica 21 (1955), 949.

BIBLIOGR4PHY

B1. E.Hille, Lectures On Ordinary Differential Equations, Addison-Wesley, London (1969).

B2. E.L.Ince, Ordinary Differential Equations, Dover, New York (1944).
B3. S.G.Mikhlin, Integral Equations, Pergamon Press, New York (1957).
B4. N.l.Muskhelishvili, Singular Integral Equations, Noordhcff, Groningen (1953) .

B5, B.W.Roos, Analytic Functions and Distributions in Physics and Engineering, Wiley, New York (1969).
B6. L.Schwartz, Mathematics For The Physical Sciences, Hermann, Paris (1966).

Blank

$$
-2
$$

APPENDIX I

The Poincare-Bertrand Theorem

The Plemelj formulae are used in the following derivation. If

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \oint d \sigma f(\sigma) \frac{1}{(\sigma-z)} \tag{A1.1}
\end{equation*}
$$

for 2 not on the contour \mathscr{C}, then

$$
\begin{equation*}
F^{+}(\tau)-F^{-}(\tau)=f(\tau) \tag{A1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{+}(\tau)+F^{-}(\tau)=\frac{1}{\pi i} \mathfrak{b}^{0} d \sigma f(\sigma) \frac{1}{(\sigma-\tau)} \tag{Al.3}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
F^{+}(\tau)=+\frac{1}{2} f(\tau)+\frac{1}{2 \pi i} \oint^{\circ} d \sigma f(\sigma) \frac{1}{(\sigma-\tau)} \tag{A1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{-}(\tau)=-\frac{1}{2} f(\tau)+\frac{1}{2 \pi i} \oint^{0} d \sigma f(\sigma) \frac{1}{(\sigma-\tau)} \tag{A1.5}
\end{equation*}
$$

where the \pm indicates a limit is to be taken as the point z (off the contour) approaches the point T (on the contour) from inside (outside) the sontour. Inside and outside are understood as left and right respectively if G is not
closed. This is equivalent to using the contours $\mathscr{C}^{0}+\mathscr{C}^{\ddagger}$ in the accompanying figure. If the singularity z is on the contour \mathscr{C} is understood to be the contour \mathscr{C}^{0} giving the principal part integral.

Define the following functions:

$$
\begin{equation*}
\Psi(z)=\oint^{0} d \omega \oint^{0} d \sigma \varphi(\omega) \frac{1}{(\omega-\sigma)(\sigma-z)} \tag{A1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(z)=\oint^{0} d \sigma \frac{1}{(\sigma-z)} \mathfrak{\xi}^{0} d \omega \varphi(\omega) \frac{1}{(\omega-\sigma)} \tag{A1.7}
\end{equation*}
$$

It can be shown that for z not on $\mathcal{G} \Phi(z)=\Psi(z)$ since the singularity at τ has been removed. By partial fraclions we write

$$
\begin{equation*}
\left.\Psi(z)=\xi^{0} \cdot \frac{1}{(\omega-z)}\right\}^{0} d \sigma \rho(\omega)\left(\frac{1}{(\sigma-z)}-\frac{1}{(\sigma-\omega)}\right)=\oint^{0} d \omega \psi(\omega, z) \frac{1}{(\omega-z)} \tag{A1.B}
\end{equation*}
$$

Using the Plemelj formulae it can be shown that

$$
\begin{equation*}
\psi^{+}(\omega, \tau)-\psi^{-}(\omega, \tau)=2 \pi i \varphi(\omega) \tag{A1.9}
\end{equation*}
$$

since

$$
\begin{equation*}
\oint d \sigma \varphi(\omega) \frac{1}{(\sigma-\omega)} \tag{A1.10}
\end{equation*}
$$

doesn't, pad on the manner in whica z approaches τ. Aiso

$$
\begin{equation*}
\psi^{+}(\omega, \tau)+\psi^{-}(\omega, \tau)=2(c-\tau) \oint^{0} d \sigma \varphi(\omega) \frac{1}{(\omega-\sigma)(\sigma-\tau)} \tag{A1.|1}
\end{equation*}
$$

Apply the Plemelj formulae (A1.4) and (A1.5) to (A1.8) thus obtaining

$$
\begin{equation*}
\Psi^{+}(t)=+\pi i \psi^{+}(\tau, \tau)+\oint^{0} d \omega \psi^{+}(\omega, \tau) \frac{1}{(\omega-\tau)} \tag{A1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{-}(t)=-\pi i \psi^{-}(\tau, T)+\oint^{0} d \omega \psi^{-}(\omega, T) \frac{1}{(\omega-\tau)} \tag{A1.13}
\end{equation*}
$$

Add (A1.12) and (A1.13) and use (A1.9) and (A1.11) to cast the sum as

$$
\begin{equation*}
\Psi^{+}(\tau)+\Psi^{-}(\tau)=-2 \pi^{2} \varphi(\tau)+2 \mathfrak{\delta}^{0} d \omega \mathfrak{C}^{\circ} 0 d \sigma \varphi(\omega) \frac{1}{(\omega-\sigma)(\sigma-\tau)} \tag{A1.14}
\end{equation*}
$$

From the Plemelj formulae and (A1.7) it is found additionally that

$$
\begin{equation*}
\phi^{+}(\tau)+\phi^{-}(\tau)=2 \oint^{\circ} d \sigma \frac{1}{(\sigma-\tau)} \oint^{\infty} d \omega \varphi(\omega) \frac{1}{(\omega-\sigma)} \tag{A1,15}
\end{equation*}
$$

Finally, recognize that since $\phi(z)$ and $\Psi(z)$ can be equated so also can the left hand sides of (A1.14) and (A1.15). The result is the Poincare-Bertrand Theorem

$$
\begin{equation*}
\pi^{2} \varphi(\cdot)=\oint^{0} d \omega \oint^{0} d \sigma \varphi(\omega) \frac{1}{(\omega-\sigma)(\sigma-\tau)}-\oint^{0} d \sigma \frac{1}{(\sigma-\tau)} \oint^{0} d \omega \varphi(\omega) \frac{1}{(\omega-\sigma)} \tag{Al.16}
\end{equation*}
$$

No particular restriction has been placed on the contour G_{f} in the above. In general the contribution of each term on the right in (A1.16) will depend on the particular contour chosen. We have a particular contour in mind, however, for use in determining the normalization constants for the singular generalized functions of Chapter 1!1. The result is summarized in equation (3.113).

A more modern form of the above theorem can be stated simply in terms of the δ distribution as

$$
\begin{equation*}
\int d \sigma \frac{1}{(\omega-\sigma)(\sigma-\tau)}=\pi^{2} \delta(\omega-\tau) \tag{A1.17}
\end{equation*}
$$

The advent of distribution theory was indeed an advance in mathematics.

APPENDIX 11

The Sharp Boundary Screupinch

Consider the case of a uniform plasma equilibrium with $p(r)=p_{o}$ inside a transition layer near the edge of the plasma. In the transition layer the pressure is brought smoothly to zero and the fields adjust so as to assure pressilie balance in the equilibrium state. In the absence of gyroelastic effects the boundary condition is that for an MHD discontinuity such as was discussed in Chapter IV, namely equation (4.48).

In the transition layer (in the sharp boundary model) there exist gradients in quantities such as ρ, p, B, K, M and Q so that in general the canonical velocity $\mathbf{~}^{(0)}$ and the fyroelastic modulus \mathbb{Q} do not vanish. Turner ${ }^{3}$. uses the condition that the $\bullet_{r} \oplus_{r}$ stress at either side of the transition iayer balance. Consider an alternative view in which Δx is to be determined near the outet edge of the transition layer by integrating the Eules equation through the layer. Balancing the result with $\Delta \hat{k}$ (the generalized pressure in the vacuum) will then provide a dispersion relation. (The result is at variance with Turner's ${ }^{38}$ due to a nonnegligible contribution to the balance of the ${ }_{\theta} \theta_{\theta}$ stress.) Thus we allow for contributions to the stress balance arising due to the presence of the layer itself. This is analogous to allowing for the presence of surface tension in dealing with a soap film bubble.

The Euler equation is as given in Chapter IIl, equations (3.22.1)-(3.22.3). As the layer is imagined to grow thinner so that the smooth transition of quantities approaches discontinuous behavior, those quantities proportional to gradients become large, of order $h^{-\dagger}$ where h is the layer thickness. Those quantities in this category are specifically $\Omega^{(0)}, \Pi_{g}(t h u s Q)$ and Q^{\prime}.

Integrating the Euler equation across the transition layer there results the fwnp candition

$$
\begin{equation*}
\left[f \xi^{\prime}\right]=\left(m^{2}-1\right) a^{2}\left(-2 m \omega\left(\rho \Omega^{(0)}\right)+m^{2}\left(\rho \Omega^{+} \Omega^{-}\right)\right) \xi \frac{h}{a}-a^{2}\left(\omega^{2}[\rho]-k^{2}[Q]\right) \tag{AZ.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\rho \Omega^{(0)}\right\rangle=\frac{1}{n} \int_{a-n}^{a} d r \rho \Omega^{(0)} \tag{AZ.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\rho \Omega^{+} \Omega^{-}\right\rangle=\frac{1}{h} \int_{a-h}^{a} d r \rho \Omega^{+} \Omega^{-} \tag{AZ.3}
\end{equation*}
$$

Sliding discontinuities of the variety discussed in Chapter $1 V$ occurring on either side of the transilion layer annihilate each other (in the absence of gyroelasticity for $r<a-h$ owing to the uniform pressuri equilibrium chosen.) The solution to the Euler equation for $r<a-h$ is well known (see Turner ${ }^{38}$ for example) and the dispersion relation which obtains is

$$
\begin{align*}
m\left(\rho \omega^{2}-\right. & \left.B^{2} q^{2}\right)+B^{2}\left(q^{2}-k^{2}\right)-\hat{B}^{2}\left(\hat{q}^{2}(1+m \mathrm{~T})-k^{2}-2 m \frac{\hat{\tau}}{a} q-m \Upsilon \frac{\omega^{2}}{c^{2}}\right) \\
& +\left(m^{2}-1\right)\left(-2 m \omega\left\langle\rho \Lambda^{(0)}\right\rangle+m^{2}\left\langle\rho \Omega \Omega^{+} \Lambda^{-}\right\rangle\right) \frac{h}{\alpha}=0 \tag{A2.4}
\end{align*}
$$

where

$$
\begin{equation*}
q=k+m \frac{\tau}{\alpha} ; \hat{q}=k+m \frac{\hat{\tau}}{\alpha} \tag{A2.5}
\end{equation*}
$$

and Υ was defined in Chapter IV.
There remains only to evaluate $\left(\rho \Omega^{(0)}\right.$) and ($\rho \Omega^{+} \Omega^{-}$). For simplicity, choose $\Omega^{+} \Omega^{-}$to vanish within the layer so that $\Omega_{\mathrm{c}}^{2}=\left(\Omega^{(0)}\right)^{2}$.

Choosing the gyrophase independent distribution function to be Maxwellian a short calculation yields the result

$$
\begin{equation*}
\left\langle\rho \Omega^{(0)}\right\rangle \frac{h}{a}=\frac{m}{2 \alpha^{2} e} \frac{p_{0}}{B_{a} \sqrt{V}\left(1-\beta_{0}\right)} \tag{A2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{0}=1-\frac{B^{2}(r<a-h)}{B_{0}^{2}} \tag{AL.'7}
\end{equation*}
$$

Using this expression in (A2.4) yields a dispersion relation in agreement with that of Pearlstein and Freidberg ${ }^{27}$.

ISORRHOPIC FLUID CONTOURS

contours of con-
stant B

ANISORRHOPIC FLUID CONTOURS

Ancmal Blowness Surfare
in the space duad to $\operatorname{sM}(\mathcal{P})$

$$
\begin{aligned}
& a^{2}=\varphi\left(\nabla^{*} s \nabla^{*} s\right) / 4 \rho^{2} \\
& b^{2}=Q / \rho
\end{aligned}
$$

Tinay gurfare

in the phace $\mathscr{\mathcal { M }}(\mathcal{P})$

FIGURE 3

Global \$ispersion iRplation

Fiqure 4

(Glotal Wispersion IRelation

Figupe 8

gingular itigentstreamfuntion (nondegenerate) picupe 12

Glahal \$ispersian Relation
Continuatof A Fixed Toundary Gyrortastir Ocrewpinch

Shintum (Gyroflastirity for stabilization

Figure 14

(flobal 3ispersion Relation

3res ©aunbury Mations Of The Gyroplastir Brrewpinrh
flquide 16

Wuhular Grrewpinth Gramptry
ficure 17

信ainrare-ilaprtrand Uhporpm contours in the σ-plane used in Appendix I figure 1 :

