LBL-7088

DESCRIPTION, FIELD TEST AND DATA ANALYSIS OF A CONTROLLED-SOURCE EM SYSTEM (EM-60)

H.F. Morrison¹, N.E. Goldstein², M. Hoversten¹, G. Oppliger¹, and C. Riveros²

Department of Materials Science and Mineral Engineering Engineering Geosciences University of California Berkeley, California 94720

1

² Earth Sciences Division Lawrence Berkeley Laboratory Berkeley, California 94720

> NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or infringe privately owned rights.

> > October 1978

Work performed for the U.S. Department of Energy Division of Geothermal Energy, under Contract W-7405-ENG-48

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

- -- --

- ---

7

\$

ł

		Page
INTR	ODUCTION	1
۱.	THE EM-60 TRANSMITTER	5
	List of Figures	7
	The Transmitter Magnetic Dipole Moment Field Tests	9 16 17
11.	A MICROPROCESSOR-BASED RECEIVER FOR THE EM-60 SYSTEM	21
	List of Figures	23
	List of Tables	24
	A Receiver for an EM Prospecting System An Adaptable Receiver Design Simple Operation High Accuracy Phase Measurements Relative Phase Measurements	25 33 33 39 41
	Signal Processing	42
	Operations	44
	Systems Programs Stored Parameters Control Keys Mode and Control Switches Diagnostic Warning Codes Memory Test and Memory Error Codes	44 51 51 53 53
	Phase Polarity Conventions	53
	The Transform Phase Signs Phase Relative to Channel 1	53 53 56
	Development System	56
	Appendix A: A System Program for a 6-Channel EM Receiver	57
	Appendix B: Circuit Drawings and Board Layouts for the Microcomputer Signal Processor	101

i

Table of Contents (continued)

· —

.

4

III. GRASS VALLEY FIELD TEST	115
List of Figures	117
Survey Plan Instrumentation and Procedures Method of Interpretation Inversion Algorithm Statistical Evaluation of a Model Combined Data Interpretation Survey Results	119 119 123 124 126 129 130
Appendix A: Tabulation of Results	145
REFERENCES	149

ii

INTRODUCTION

Electrical and electromagnetic (EM) techniques have been shown to be useful for delineating either the gross geological structure or the reservoir region of some convective geothermal systems. This application is based on the relationship between the bulk resistivity of the reservoir region and a complex function involving, among other things, temperature, type and concentration of ionic species, presence of a gas phase, effects from conducting sulfide or clay minerals, and fracture permeability. It has been noted in the literature that liquid-dominated geothermal systems exhibit a lower resistivity than surrounding rocks for several possible reasons: (a) increased ion mobility; (b) a higher concentration of ions; and (c) increased permeability and/or porosity. However, there is evidence that some geothermal reservoirs exhibit higher bulk resistivity than surrounding rock because of a vapor phase (The Geysers) or a porosity loss caused by secondary minerals (Cerro Prieto).

Of the techniques available to determine subsurface resistivities, dc resistivity has been the most widely used, but the magnetotelluric (MT) method has also been used in both reconnaissance and detailed studies; and several controlled-source EM techniques have been tried as well (Keller and Rapolla, 1976; Harthill, 1976; Jackson and Keller, 1972; Ghosh and Hallof, 1973; and Keller, 1970).

In the LBL/U.C. Berkeley evaluation of geophysical techniques for geothermal exploration, a successful test was made in Grass Valley, Nevada, of a prototype frequency-domain EM system (Jain and Morrison, 1976; Jain, 1978). These experiments showed that the EM soundings gave interpreted results that compared well with those from dipole-dipole dc resistivity surveys. Based on the need for continued development and demonstration of a field-worthy system (Ward, 1978), and supported through the Department of Energy/Division of Geothermal Energy's Exploration Technology Program, LBL and U.C. Berkeley have developed the EM-60 system, the number related to the 60 kW output of the motor generator used. The system, easily expandable to include time-domain measurements, is designed for use with a large moment, horizontal-coil transmitting antenna. This choice was based on the need to overcome a number of problems encountered in dc resistivity, MT and existing controlled-source EM systems:

- Because no ground contact is needed, the system is better suited to areas where the contact resistances are high, such as sand-covered desert regions or talus slopes on mountains.
- (2) A magnetic field detector can be used, thus eliminating the need for long wires, other than the transmitter coil, to be laid out and retrieved.
- (3) The transmitter can be installed at a convenient location, an especially helpful feature in terrain where access is limited, and a survey around the transmitter site is conducted by moving the receiver only.
- (4) Vertical resistivity soundings are made by varying frequency, not transmitter-receiver separation as in dc resistivity, thus avoiding interpretational difficulties introduced by lateral inhomogeneities.
- (5) By generating an EM field over a broad frequency range $(103 \text{ Hz to as low as } 10^{-3} \text{ Hz})$, the sounding curves provide both good resolution of the near-surface as well as depth penetration to basement.
- (6) The system would not depend on natural field activity, and would therefore provide reliable data in bands where the absence of natural signal often leads to incomplete MT data.

Despite considerable interest in higher frequency EM techniques for mineral exploration throughout much of the world, and for low-frequency EM techniques for petroleum exploration in Russia (Vanyan, 1967; Smith, 1963), surprisingly little work on EM soundings have been done in western countries. Compared to the rapid technological advances in seismic reflection, for example, developments in EM techniques have been slow. The difficulty in interpreting EM results even for simple geological settings,

problems in generating and measuring the low-frequency magnetic fields, and field problems associated with laying out and retrieving long heavy wires, have discouraged efforts to employ EM techniques, even in areas where seismic and other techniques are not useful.

This report, divided into three sections describing the transmitter, the receiver and data interpretations, should show that we have made significant technical advances toward the development of a large moment EM system employing a magnetic dipole source. Hopefully, the system will have practical application in geothermal and other surveys.

I. THE EM-60 TRANSMITTER

ě

.

LIST OF FIGURES

. . . .

Page

Figure l.	The EM-60 in operation in Grass Valley, Nevada. (XBL 789-12515)	10
Figure 2.	A general block diagram of the EM-60 transmitter section. (XBL 788-2663)	12
Figure 3.	The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave rectifier at left. (CBB 788-8381)	13
Figure 4.	Rear of transmitter truck showing the electronics box (top) and crate (bottom) swung out for operations. A 4/0 cable is being attached for tests. (CBB 781-953)	14
Figure 5.	Fundamental period is set at the remote control box which also monitors transmitter operations. (CBB 781-957)	15
Figure 6.	Theoretical and observed dipole moments over the 10 ⁻³ to 10 ³ Hz frequency range for a circular loop of #6 cable. (XBL 788-2664A)	20

This section gives a brief description of the EM-60 transmitter, its general design and the considerations involved in the selection of a practical coil size and weight for routine field operations. The transmitter was designed with several criteria in mind:

- (a) The system should provide a large magnetic moment, greater than 10^6 MKS at low frequencies,
- (b) The system must operate reliably under adverse field conditions with a small field crew,
- (c) The system must be both safe and easy to operate; and
- (d) The system should be relatively inexpensive so that copies or similar systems may be replicated at a reasonable cost.

Except for the last point, for which we have no basis for judgment or comparison, all the criteria seem to have been met. The transmitter is operated by one man; however, laying out and retrieving the horizontal loop antenna requires a larger crew, the exact number of which would depend on loop weight, geometry and terrain, etc. Electronic schematics and mechanical drawings are not presented here, but are available. The key design feature of the transmitter is the transistorized switching arrays which permit rapid switching of large currents into the loop.

The Transmitter

The EM-60 system is powered by a Hercules gasoline engine linked to an aircraft 60kW, 400 Hz, 3¢ alternator. These two components form the motor generator (MG) set, and are mounted in the back of a Dodge one-tonchassis, four-wheel-drive truck (Figure 1). Truck and motor-generator set were selected, in part, on the basis of availability of these components at LBL. The output is full-wave rectified and capable

(XBL 789-12515)

of providing ±150 volts, 400 amp to an external load which is a horizontal coil (Figure 2). The block diagram, Figure 2, shows that the direction of current flow through the coil is controlled by one of two transistors. These are actually parallel arrays of 6 to 60 transistors mounted modularly in a box called the "crate" (Figure 3). The crate also houses the full-wave rectifier.

Transistor modules are interchangeable, each consisting of a heat sink and fan to enhance heat dissipation. With 18 to 20 of the modules in place, up to 400 amp may be delivered to the coil. Above the crate is the electronics rack. This houses the amplifiers used to control the transistors in the crate (Figure 4). During travel and storage, crate and electronics boxes are carried internally, protected by a snug-fitting cover attached to the rear of the truck. During operations both are swung away for cooling and easier access.

Separate from the transmitter truck, but connected to it by cable, is the remote control box (Figure 5). This contains a crystal-controlled oscillator and dividers, so that a fundamental period of from 10^{-3} to 10^{3} can be selected. On the panel of the control unit are range and thumbwheel switches for selecting the fundamental period, as well as controls and indicator lights for the transmitter. The remote box may be taken 100-150 feet from the transmitter truck where the motor-generator noise level is lower. It was found, however, that the noise level drops off rapidly away from the truck, even when the louvered side panels are removed.

The operating frequency, f_0 , the inverse of the selected period, is amplified at the truck and used to turn the switching transistors on and off via the array driver chassis. Since isolation between the load voltages and the truck chassis is desirable, optical couplers link the array driver to the control signals. For the same reason, separate floating voltages are provided for the array driver. The crate controller links the truck to the remote box and houses the control electronics. These chassis are in the upper rack (Figure 4).

XBL 788-2663

(CBB 788-8381)

The crate with its cover removed, showing the modular arrays of transistor switches and the full-wave recti-Figure 3. fier at left.

(CBB 781-953)

Figure 4. Rear of transmitter truck showing the electronics box (top) and crate (bottom) swung out for operations. A 4/0 cable is being attached for tests.

(CBB 781-957)

Figure 5. Fundamental period is set at the remote control-box which also monitors transmitter operations.

Magnetic Dipole Moment

For electromagnetic surveys it is usual to desire the largest moment, M, practical or possible. By definition:

$$M = NIA$$
(1)

where

N = number of turns, I = current in amperes, and A = coil area in meters².

The current, I, defined by Ohm's Law is:

$$1 = \frac{V}{Z} , \qquad (2)$$

and depends on the voltage, V, from the rectifiers and the impedance, Z, of the loop.

The EM-60 is a square-wave voltage generator, switching between +150 and -150 volts. At low frequencies, the inductive nature of the coil can be ignored and the moment can be given as

$$M = \frac{NVA}{R} , \qquad (3)$$

where V is ± 150 volts, and R is the resistance of the coil.

Coil resistance is given as:

$$\mathbf{R} = \rho \mathcal{L} \tag{4}$$

where ρ is the resistance per unit length of wire, and ℓ is the total length of wire in the coil. For a circular coil the area, A, may be expressed in terms of the coil length as

$$A = \frac{\ell^2}{4\pi N^2} \quad . \tag{5}$$

Substituting equations 4 and 5 into equation 3, the dipole moment is given in terms of the wire parameters useful in planning a field survey,

$$M = \frac{V\ell}{4\pi\rho N}$$
(6)

This shows that the maximum moment from a given length of wire is produced using only one turn. However, in many field situations, terrain, vegetation, and/or water may dictate the use of smaller area, multi-turn coils. Also important in surveys are the total weight of wire that can be brought into the field and the amount of current that may safely be carried through the wire. Higher currents than those recommended can sometimes be used so long as the heating effects do not pose a fire hazard or create other problems; e.g., a hot wire melting into ice would be difficult to retrieve.

For several wire sizes that have been used or considered for use with the EM-60, we list in Table 1 the minimum wire length considered safe. For these lengths heating is only slightly detectable by hand. Table 1 also shows the corresponding weights for the minimum lengths. Initially, we contemplated using a 4/0 welding cable to realize the 400 amp capability of the EM-60. This would require laying out and retrieving at least 4 km of cable weighing 4000 kg, not an insignificant task for men and machines. Because LBL does not have field equipment to handle cable of this length and weight, and because the parameters are antithetical to a cost-effective exploration method, field tests and surveys have been conducted with shorter lengths of the smaller #10 and #6 cables. Therefore, the EM-60 has been operated well below its full capability, delivering typically ±63 amperes to the coil.

Field Tests

The EM-60 was given its first full-scale field test in Grass Valley, Nevada during July 1978. The site was chosen because previous electrical and electromagnetic surveys along established geophysical lines had provided us with a subsurface electrical model against which the EM-60 results could be compared. The terrain is flat and open, making loop

TABLE 1

DESIGN CONSIDERATIONS FOR THE EM-60 TRANSMITTER COIL

		WIRE S	IZE	· · · · ·
PARAMETER	10	6.	2	4/0
Wire resistance/km (/km)	3.28	1.30	.513	.160
Weight (kg/km)	49	118	299	955
Mlnimum coil length to prevent excessive heating (km)	1.8	2.3	3.3	4.2
Minimum coil weight ⁽¹⁾ to prevent excessive heating (kg)	86	273	972	4000
Current carrying capacity of minimum length cable (amps)	25	50	90	225

(1) Weight does not include weight of insulation.

 \sim

handling easy. The coil used consisted of four turns of #6 wire, 100m in diameter and 1372m in total length. The 115m of cable not used in the loop provided pigtails to the transmitter truck. Figure 6 shows a comparison of calculated dipole moments for various turn-area combinations and the measured moment for the coil used in Grass Valley. The dipole moments are calculated on the basis of 126 amp peak-to-peak delivered to the coils at low frequency. Depending on coil diameter and number of turns, a cut-off frequency exists above which the dipole moment declines because of the inductive reactance. In practice the measured dipole moment did not quite follow the theoretical curves above the cut-off frequency. This is because the load, due to its reactive nature, caused the motor-generator to labor less at higher frequencies, thus increasing the effective power input to the loop.

Current in the coil was monitored by means of a 0.010, 0.1 percent shunt resistor. This shunt also provided the reference voltage carried to channel 1 of the receiver by means of a twisted pair of wires. The reference voltage served as the current amplitude and phase reference at the microprocessor-based receiver described in Section II of this report.

Except for refueling operations, the transmitter operated continuously and without failure during the five days of field operations. During this time the ambient temperature exceeded 42°C in the shade, and the longest continuous run was nine hours.

XBL 788-2664A

Figure 6. Theoretical and observed dipole moments over the 10^{-3} to 10^3 Hz frequency range for a circular loop of #6 cable.

II. A MICROCOMPUTER-BASED RECEIVER FOR THE EM-60 SYSTEM

-`

ĵ

-- -

-

Ŧ

-

LIST OF FIGURES

- -

Figure l.	A low frequency electromagnetic prospecting system. (XBL 786-2575)	26
Figure 2.	EM receiver station. (XBL 786-2576)	27
Figure 3.	Liquid Crystal Display Format.	29
Figure 4.	System hardware structure for M6800 microcomputer signal processor. (XBL 786-2578)	34
Figure 5.	Maximum phase error using 16-bit fixed point constants. Fortran simulation of micro-computer arithmetic.	40
Figure 6.	M6800 microcomputer signal processor. (CBB 7810-13519)	43
Figure 7.	Simplified program structure for M6800 micro- computer signal processor.	45
Figure 8.	LCD and keypad interface. (XBL 7810-11974)	103
Figure 9.	Digital to analog converter. (XBL 7810-11975)	104
Figure 10.	Interface board layout. (XBL 7810-11976)	105
Figure ll.	Programmable sample and cycle timer. (XBL 7810-11977)	106
Figure 12.	Programmable sample and cycle timer board layout. (XBL 7810-11978)	107
Figure 13.	Data acquisition board. (XBL 7810-11979)	108
Figure 14.	Data acquisition board layout. (XBL 7810-11980)	109
Figure 15.	2K RAM section on memory board. (XBL 7810-11981)	110
Figure 16.	5K EPROM section on memory board. (XBL 7810-11982)	111
Figure 17.	Memory board layout. (XBL 7810-11983)	112
Figure 18.	CPU board. (XBL 7810-11984)	113
Figure 19.	(PIL board layout $(XBI 7810-11973)$	114

- -

- - -

-- -

-

-

- - -

LIST OF TABLES

Page

Table 1.	Thermal Printer Output Format	30
Table 2.	Chart Recorder and Oscilloscope Display	31
Table 3.	Receiver Specifications	32
Table 4.	M6800 Signal Processor Backplane	35
Table 5.	M6800 Microcomputer Signal Processor Special Features	36
Table 6.	Computer Selection of Number of Points per Cycle and Analog to Digital Conversion Word Size	37
Table 7.	Receiver Operation Procedure	38
Table 8.	System Programs	46
Table 9.	Numerical Control Parameters and Stored Transform Results	47
Table 10.	Other Stored Parameters	48
Table 11.	Control Keys	49
Table 12.	Mode Switches	50
Table 13.	Control Switches	52
Table 14.	Warning Codes	54
Table 15.	Memory Error Codes	55

A Receiver for an EM Prospecting System

This section describes a programmable, multichannel, multi-frequency, phase-sensitive receiver. The receiver was designed and built in the Engineering Geoscience Group, Department of Materials Science and Mineral Engineering, U.C. Berkeley, as part of a Lawrence Berkeley Laboratory project to develop for geothermal exploration, a large-moment electromagnetic prospecting system. The transmitter for this system, described in the previous section, consists of a 60-kw motor-generator, powertransister switching circuitry and a horizontal loop antenna. At a receiver station the magnetic fields are detected by means of a 3component SQUID magnetometer. The signals are then conditioned by a set of amplifier-filters, and processed by the microcomputer-controlled frequency-domain receiver (Figures 1 and 2). The electric field component may also be detected and processed if so desired. Field tests at Grass Valley, Nevada, described in the following section, showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. Transmitter-receiver separations of 1 to 2 km were used with transmitter moments of about 2×10^{6} MKS.

Measurements at frequencies below 0.1 Hz were made, but the statistical error grows larger with decreasing frequency because of the rapidly worsening signal-to-noise ratio. The noise is geomagnetic fluctuations, the spectrum of which varies approximately as 1/f. Although the receiver is designed for frequencies to 10^{-3} Hz (1000 second period), obtaining useful information below 10^{-1} Hz would depend on longer averaging times and larger primary fields than used during tests. Low frequency information might also be obtained by means of a magnetic gradiometer detector to cancel common geomagnetic noise.

A low frequency electromagnetic prospecting system

XBL 786-2575

Figure 1. A low frequency electromagnetic prospecting system.

XBL 786-2576

Figure 2. EM receiver station.

The field tests showed it was practical to analyze the first 4 odd harmonics (1, 3, 5 and 7) in the transmitted square-wave at one time. This reduces the number of frequency changes at the transmitter to only one per decade for frequencies below 100 Hz. In tests, overlapping spectral estimates were obtained from closely-spaced fundamental and harmonic frequencies, and the comparisons were good.

Through the keypad the operator is able to set the parameters controlling the signal processing, such as:

- a) Period of the fundamental current waveform.
- b) The maximum number of odd harmonics of the waveform, up to 16, to be measured.
- c) The number of cycles of the signal to be averaged prior to Fourier decomposition.
- d) The number of input channels (up to 6; e.g., 3 magnetic and 2 telluric and a reference from the transmitter).

Amplitude and phase information at each harmonic can be displayed sequentially on the receiver's five-digit LCD (Figure 3). However, it is more efficient to record the data on the optional six-column thermal printer. Table I gives an example of the thermal printer output format. In addition, the operator may call routines which display the stored wave forms on an oscilloscope, or sequentially dump them to a chart recorder. Descriptions and examples of chart recorder and oscilloscope displays are given in Table 2.

Table 3 lists the receiver's basic specifications and special features.

Figure 3. Liquid Crystal Display Format.

_ _ _

TABLE 1

THERMAL PRINTER OUTPUT FORMAT

			•	STATION NO.
		ก์กับ	<u></u>	RUN NO.
		in -	-	NO. OF CYCLES AVERAGED (EXPONENT OF 2)
		1.0 I -		PERIOD IN MILLISECONDS
		01		HARMONIC NO.
		3849.3 -		AMPLITUDE IN MILLIVOLTS OR REAL
CH 1		29095-		PHASE IN DEGREES OR IMAGINARY
		3849.0 -		AMP or REAL
CH 2				PHASE or IMAG
				AMP or REAL
<u></u>			<u></u>	PHASE or IMAG
CH 3	,	3849.0 -		AMP or REAL
СН 4		.0 0 3 3 🔄		PHASE or IMAG
		3849.3 _	· · · · · · · · · · · · · · · · · · ·	AMP or REAL
CH 5		.0044		PHASE or IMAG
		3849.6 -		AMP or REAL
СН 6		.0056 _		PHASE or IMAG

 When the rectangular mode is used, the in-phase or real part replaces amplitude and the quadrature or imaginary part replaces phase. Note that the real and imagniary parts are not scaled by the constant 1.19266 to obtain millivolts and are not phase corrected for the sampling skew. See Table 10 key no. 1.

TABLE 2

CHART RECORDER AND OSCILLOSCOPE DISPLAY

Example of a chart recorder dump of six channels of a digitally stored sinewave at 16 points per cycle. Paper moved to left.

CHART AND SCOPE DISPLAY

Output voltage range	+/- 5 volts	
Digital to analog conversion resolution	8 bits (39.6mvolts/bit)	

dump

CHART RECORDER DISPLAY	
Points per cycle	Time required for
64	14 seconds
16	4.2 seconds
4	1.8 seconds

OSCILLOSCOPE DISPLAY

Points per cycle	Refresh rate	Display time window
64	45 HZ	22 m sec
16	150 HZ	6.7 m sec
4	350 HZ	2.9 m sec
RECEIVER SPECIFICATIONS

 1.01×10^{-3} Hz to 1.0 KHz FREQUENCY RANGE (990 sec to 1.0 msec) Better than 0.05 degrees PHASE ACCURACY Up to 2¹⁵ cycles NUMBER OF CYCLES AVERAGED 1.0 KHz to 101 Hz: 4 pts/cycle 100 Hz to 13 Hz: 16 pts/cycle NUMBER OF POINTS SAMPLED PER CYCLE PER CHANNEL 12.5 Hz to 0.00101 Hz: 64 pts/cycle Up to 32, 8, or 2 harmonics for 64, 16, or NUMBER OF HARMONICS 4 pts cycle, respectively ANALOG INPUTS Six single-ended or differential channels CONFIGURATION + 5V signal voltage INPUT VOLTAGE 12 bits binary ANALOG TO DIGITAL CONVERSION RESOLUTION 7.68 MHz, TTL internal or external, SYNCHRONIZATION SIGNAL switch selectable Phases of harmonics in the channel 1 PHASE REFERENCE waveform serve as phase references for channels 2 to 6 16 and 4 pts/cycle (8 bit data resolution) DETECTION ALGORITHM i. acquire 8 cycles of data ii. stack data, repeat i A i. sine and cosine transform stacked data 16 and 64 pts/cycle (12 bit data resolution) i. acquire and stack data continuously ii. sine and cosine and transform stacked data Amplitudes, phases, number of cycles averaged, QUANTITIES OUTPUT harmonic number, period of fundamental, station no.., and run no. 5 digit LCD and 6 column thermal printer DATA OUTPUT FORM 10-15 watts POWER CONSUMPTION INTERNAL BATTERY LIFE 8-10 hours continuous 9 x 16 x 16 inches, 35 lbs. SIZE AND WEIGHT

An Adaptable Receiver Design

Although the instrument was designed as a specialized receiver for a particular EM system, it has a general structure adaptable to many signal processing tasks in geophysics. Perhaps the most important feature of this structure is programmability. This feature allows one to modify the function of the instrument through a programming change rather than by time-consuming hardware modifications.

The receiver's hardware is also designed for flexibility. The hardware is organized around a backplane bus containing the address, data, and control lines for the microcomputer (Figure 4 and Table 4). The chassis has eight circuit-card slots connected to this bus. Five slots are used in the present system; the other three may be used for system expansion; e.g., additional memory, special control boards, or analog filter circuits.

These features, combined with the instrument's calculator-like operation and portability, make it extremely promising as a general purpose receiver for exploration geophysics.

At present, a time-domain EM program is under development for the receiver, and other program additions are being considered.

Simple Operation

The receiver is simple to operate. When power is turned on or the reset switch is activated, the receiver automatically performs self-test routines and initializes all control parameters to bring itself to an operational state (Table 5). The program automatically selects the optimal number of points per cycle and analog to digital conversion word sizes for data acquisition operations (Table 6). Although the user has the option to select several control switches and parameters to increase the efficiency of the signal processing operations, the operator is required only to set the period and the number of cycles of waveform to be averaged, and call a signal processing routine. Table 7 gives a list of the steps the operator follows. These procedures will be discussed in more detial in following sections.

DATA, ADDRESS AND CONTROL BUS

XBL786-2578

Figure 4. System hardware structure for M6800 microcomputer signal processor.

M6800 SIGNAL PROCESSOR BACKPLANE

PIN NO	. NAME
1	-15 ^V
2	-15 ^V
3	+15 ^V
4	+15 ^V
5	o ^v
6	o ^v
7	+5 ^v
8	+5 ^v
9	AØ (LSB)
10	Al
11	A2
12	A3
13	A4
14	A5
15	A6
16	A7
17	A8
18	A9
19	A10
20	A11
21	A12
22	A13
23	A14
24	A15
25	DØ (LSB)
26	D1
27	D2
28	D3

j,

.)

PIN NO	NAME
29	D4
30	D5
31	D6
32	D7
33	
34	
35	
36	
37	
38	
39	NMT
40	IRQ
41	ø2
42	VMA
43	R/W
44	Øl
45	RST
46	HALT
47	
48	300 BAUD (x16)
49	PAGE ØØ
50	PAGE FF
51	+5 ^V
52	+5 ^V
53	o ^v
54	0 ^V
55	-9 ^v
56	-9 ^v

M6800 MICROCOMPUTER SIGNAL PROCESSOR

SPECIAL FEATURES

.

- I. VERSATILE CONTROL ROUTINES ALLOW AUTOMATIC CALCULATION AND PRINTOUT OF SINGLE OR SELECTED GROUPS OF HARMONICS (E.G. ODD HARMONICS, 15TH THROUGH 1ST).
- II. CHART RECORDER DUMP OF STORED SIGNALS.
- III. OSCILLOSCOPE DISPLAY OF STORED SIGNALS.
- IV. VOLT METER FUNCTION DISPLAYS VOLTAGE ON SELECTED CHANNEL IN MILLIVOLTS. THIS ROUTINE IS USED TO SET GAIN LEVELS. THE SYSTEM SUPPLY VOLTAGE MAY BE CHECKED BY EXAMINING THE VOLTAGE ON CHANNEL 7.
- V. MAXIMUM VALUE FUNCTION FINDS MAXIMUM VALUE ON EACH OF THE STORED WAVEFORMS AND DISPLAYS VALUE IN MILLIVOLTS.
- VI. AUDIO TRANSDUCER ALERTS OPERATOR TO COMPLETION OF LONG SIGNAL AVERAGING OPERATIONS.
- VII. AUTOMATIC SYSTEM TEST ROUTINES:
 - A) TESTS 2K OF DATA STORAGE MEMORY (RAM) IDENTIFYING ANY DEFECTIVE MEMORY CHIP (16 OF THESE).
 - B) TESTS 4K OF PROGRAM STORAGE MEMORY (ROM) IDENTIFYING DEFECTIVE ROM CHIP (4 OF THESE).
 - C) TESTS FOR PRESENCE OF TIMING SIGNALS: CHECKS RATIOS OF SAMPLE TO CYCLE PULSES AT EACH OF 4, 16, AND 64 POINTS PER CYCLE: DISPLAYS ERROR-IDENTIFYING-CODES IF ERRORS ARE DETECTED.
 - D) WRITES TEST SQUARE WAVE INTO MEMORY FOR CHECK OUT OF TRANSFORM ROUTINES.
 - E) TESTS LIQUID CRYSTAL DISPLAY AND PRINTER.

COMPUTER SELECTION OF NO. OF POINTS PER CYCLE AND ANALOG TO DIGITAL CONVERSION WORD SIZE.

POINTS PER CYCLE PERIOD RANGE

64	990 sec THROUGH 80 msec (0.00101 HZ) (12.5 HZ)
16	79 msec THROUGH 10 msec (12.658 HZ) (100 HZ)
4	9.0 msec THROUGH 1.0 msec (111.11 HZ) (1.0 KHZ)

ANALOG TO DIGITAL PERIOD RANGE

1

12 BIT WORDS	990 sec THROUGH 20 sec (0.00101 HZ) (50 HZ)
8 BIT WORDS	19 msec THROUGH 1.0 msec (52.63 HZ) (1.0 KHZ)

. _ . . _ . . .

RECEIVER OPERATION PROCEDURE

- Part 1 Set Control Switches and Connect Cables
 - . Select internal or external 12 volt power source.
 - . Turn receiver power on.
 - . Select internal or external SYNC (7.68 MHZ).
 - . Put run/load switch in run position.
 - . Place mode switches in selected positions.
 - . Press test switch on printer, before connecting printer.
 - . Connect printer, turn printer power on.
 - . Connect input and output cables.

Part 2 System Test

- . Press reset system test.
- . Look for error codes and examine checksums.

(see section on system test)

Part 3 Set Parameters

- . Enter Period: Press (PER), (NO.), (NO.), (NO.), (LCK PER)
- . Enter Harmonic No.: Press (HRM), (NO.), (NO.), (RTN)
- . Enter No. of Cyc. Avg.: Press (NO.CYC), (NO.), (NO.), (RTN)
- . Enter No. of Channels: Press (NO.CHL), (NO.), (NO.), (RTN)
- . Enter Station No.: Press (MEM), (2), (NO.), (NO.), (RTN)

Part 4 Call System Programs

- . Call volt meter routine for each channel and set gains. Press (RUN), (VLT), (NO.).
- . Call one of the acquisition routines e.g. (RUN), (A1)
- . Call scope display routine (RUN), (OSC), (1)

or call chart display routine (RUN), (CHT)

High Accuracy Phase Measurements

The receiver was designed to make high accuracy phase and amplitude measurements under conditions of low signal-to-noise ratios. High accuracy measurements are particularly important for electromagnetic soundings at frequencies below about 10 Hz, where phase accuracies of 0.1 degree may be required to invert the soundings reliably.

The phase accuracy obtained from a given sinusoidal waveform, excluding aliasing, is a function of the signal or data resolution, the number of points per cycle, and the precision of the transform arithmetic. Figure 5 shows the maximum phase error that can be expected with a given resolution and number of points per cycle. If the signalto-noise level of the measured signal is known, Figure 5 may be used to estimate the number of times the waveform must be stacked to obtain a given phase accuracy. One may assume $N^{-\frac{1}{2}}$ reduction of noise.

Under favorable signal-to-noise conditions, exceptionally accurate phase measurements may be made. For example, laboratory tests have shown the receiver capable of measuring relative phases with accuracies better than 0.002 degree below 12.5 Hz, 0.006 degree below 100 Hz, and 0.05 degree below 1000 Hz.

The periods of the harmonics in the stacked waveforms correspond exactly to those analyzed by the sine and cosine transform routine, by definition of the harmonic content of a periodic waveform. This precise matching of waveform periods eliminates spectral smearing resulting from the finite data lengths, and makes the high accuracy phase measurements possible.

XBL 7811 - 2180

,

Relative Phase Measurements

The receiver operates as an independent unit, in the sense that it does not depend on control signals from the transmitter. The transmitter and receiver run asynchronously; each unit is driven by a separate crystal clock, having a frequency accuracy requirement of only 10 ppm. Phase measurements relative to the transmitter current are made by processing the transmitter current waveform (on channel 1) along with the magnetic field signals (on the other channels). The receiver then computes phase relative to the transmitter current by subtracting the calculated phase of the transmitter current from that of the other channels' phases. Any signal can be put on channel 1 to act as the phase reference for the other 5 channels.

The receiver acts as a narrow-band digital filter. The accuracy of the filter's center frequency is related directly to the accuracy of the clock controlling the signal-sampling circuitry. The sharpness or selectivity of the filter increases with the number of cycles averaged. If the receiver and transmitter clocks are not locked together, the transmitter and receiver will be operating at slightly different frequencies. This difference in frequencies puts a restriction on how sharp the receiver's digital filter may be made before the transmitted signal begins to be filtered out. Using clocks of 10 ppm accuracy, several thousand cycles of transmitter signal may be averaged with no detrimental effects due to filter selectivity.

It is also possible to lock the transmitter and receiver clocks together through the external 7.68 MHz clock input on the receiver. This requires telemetering the transmitter clock signal to the receiver but allows unrestricted stacking of the waveforms.

Frequency domain EM soundings can be made with the receiver in two ways. One approach involves the normalization of the phase and amplitude spectra of the magnetic field by the spectra of the transmitter current. This method requires that the voltage across a shunt resistor in the transmitter loop be brought to channel 1 of the receiver via a twisted pair of wires. These wires are the only physical connection between the transmitter and receiver, and provide an absolute phase and amplitude reference for the system. The second approach eliminates the need for a current reference from the transmitter by analyzing phase and amplitude relations between the vertical and horizontal magnetic fields, which define a polarization ellipse. The essential information on earth conductivity structures is contained in EM soundings produced by either the transmitter current reference or polarization ellipse approaches.

SIGNAL PROCESSING

Table 3 lists the principal features of the receiver, which is built around the M6800 microprocessor. The simplified program structure is shown in Figure 6, and the hardware structure is shown in Figure 4. A multichannel, 12-bit analog-to-digital conversion module is used to sequentially sample six channels of electrical signals. The sampled waveforms from each of the channels are stacked in memory to improve the signal-to-noise ratio, then normalized by the number of cycles averaged. The discrete Fourier transform is then obtained using a table of 16-bit sine and cosine constants and a software multiply routine using 16-bit fixed point operands and producing 32-bit products. In-phase and quadrature results from the transform are converted to phase (in degrees) and amplitude (in millivolts) using a CORDIC rotation method. Next, the phase-shift errors introduced by the sequential sampling of the six channels are corrected, and the phase of channel 1 is subtracted from the phases of channels 2 through 6. Thus, phases for signals on channels 2 through 6 are all relative to the phase of the signal on channel 1. The binary results of the processing are converted to BCD and printed out on a thermal printer. Table 1 gives

Figure 6. Simplified program structure for M6800 microcomputer signal processor.

an example of the output format from the thermal printer. In this case, a common signal was entered onto all six channels. Amplitudes agree to within ± 0.3 millivolts, and the maximum phase error, on channel 6, is 0.0056 degrees (.0977 milliradians).

OPERATIONS

Table 5 lists special features of the receiver. In addition to the keypad accessible signal processing, waveform display and utility routines, the receiver contains a system test routine designed to test vital sections of system hardware. The system test routine is automatically called when the receiver is powered up and each time the reset switch is pressed. The automatic test programs are listed in Table 5, Sections VII A-E.

Systems Programs

The receiver, shown in Figure 6, has ten keypad accessible system programs which allow the operator to control the instrument's function. These programs are called by pressing the RUN key followed by the number key corresponding to the selected program. The key symbols and programs are defined in Table 8.

Stored Parameters

Three types of stored values may be accessed from the keypad: (1) operator-set control parameters, e.g., number of cycles averaged; (2) program-set parameters that may be examined by the operator, e.g., number of points per cycles; (3) signal processing results, e.g., phase and amplitude. The more frequently used parameters have been assigned separate control keys for faster access; less frequently used parameters are read by pressing MEM, then the number key associated with the particular parameter. Key symbols and parameter descriptions are given in Tables 9 and 10.

(CBB 7810-13519)

Figure 7 M6800 microcomputer signal processor.

SYSTEM PROGRAMS

Key Symbol	The RUN key followed by the program key number given on left calls ^A the following programs:
1 A1	Acquires a set of signals at the selected period and averages the selected number of cycles; then transforms and prints <u>a</u> single harmonic defined by HRM.
4 AEO	Acquires signals as the above program. Then transforms and prints every other harmonic beginning with HRM down through the first harmonic.
7 AAL	Acquires signals as above program. Then transforms and prints <u>all</u> harmonics beginning with HRM down through the first harmonic.
2 T 1	Transforms and prints one harmonic defined by HRM.
5 TEO	Transforms and prints every other harmonic beginning with HRM down through the first harmonic.
8 TAL	Transforms and prints <u>all harmonics</u> beginning with HRM down through the first harmonic.
6 СНТ	Dumps 6 channels of stored signals to chart recorder. See display format note. The keypad is not functional during this dump.
0 OSC	When followed by a number key (1 to 6), displays 6 channels of stored signals on oscilloscope. Scope trigger is posi- tioned in front of channel's data corresponding to previously entered number. Trigger position may be changed any number of times. Exit by pressing RTN. (Refresh rate is 45Hz).
6 MA X	When followed by a number key (1 to 6), for channel number, displays voltage (in millivolts) present on selected channel. The sampling frequency is 6 times the number of points per cycle.
	Channel seven is internally connected to the +5V supply line. Exit this routine by pressing RTN.
RTN	No program is called. Returns control to operating system.

x

46

_ _ _ _ _ _

47

TABLE 9

NUMERICAL CONTROL PARAMETERS AND

STORED TRANSFORM RESULTS.

Key Symbol

HRM Harmonic Number

- -

.

Range 01 through (PTS/CYCLE)/2. RTN closes location.

NO. CYC

NO.

CHL

Number of Cycles Averaged

Raises 2 to power entered. Range: 2⁰ through 2¹⁵ or 1 through 32,768 RTN displays in decimal the number of cycles averaged and closes the location.

PER <u>Period</u> in milliseconds

e.g. 1.2 $3 = 1.2 \times 10^3$ msec

No leading zeros; do not enter decimal point (range 9.9 5 through 1.0 0). Period set by following entry of 3 digits by $\frac{LCK}{PER}$. RTN results in no change in period and closes location.

Number of Channels

Range: 1 through 6 Limits number of channels put through polar conversion and printing. RTN closes location.

AMP <u>Amplitude</u> and <u>Phase</u> or (real and imaginary) REL

when this key is followed by a number 1 through 6 (Channel No.) and display shows value for that channel. PHS IMG

OTHER STORED PARAMETERS

The MEM key followed by no. key accesses the following: key no.

0 Points per cycle. 64, 16 or 4. Set by program. Function of period.

Phase correction. Phase shift due to sampling time skew. Should be subtracted from channel N as (N -1) (PHASE COR) when using rectangular mode. Set by program. Function of harmonic and PTS/CYC.

- 2 <u>Station number</u>. Operator set. A two digit value with range of 00 through 99.
- 3 <u>Run number</u>. Operator set and program incremented each time a new set of data is acquired. A two digit value with range of 00 through 99.
- <u>Phase accuracy control</u> for rectangular to polar conversion.
 Range 03 to 06. Parameter is initialized to 04.
 04 produces 0.014 degree accuracy with a maximum calculation time of 2 sec/channel.

06 produces 0.0035 degree accuracy with a maximum calculation time of 8 sec/channel.

CONTROL KEYS

Key Symbol

RUN Key calls one of ten programs defined by number keys. A See Table V for the list of system programs.

RTN Closes open parameter locations; and for system programs OSC, MAX, and VLT it returns control to the operating system.

LCK Sends entered period to programmable sample timing board. PER

RUN B When followed by key no. 0 causes program to jump to next page of memory. This page is optional and user defined. System control or diagnostic programs may be placed on this page to extend the degree of specialization of this system, e.g., an IP program computing percent frequency effect.

MODE SWITCHES

1 RECT or POLAR

Selects mode in which transformed values will be presented. (Note: Rectangular mode values are not phase corrected for sampling skew and are not scaled by the constant (1.192659) to obtain values in millivolts per root HZ. Polar values <u>have</u> all corrections applied.) This switch is read by program at the end of the SIN-COS transform routine.

2 WAIT FOR CYCLE PULSE

Causes acquisition routines to wait for the beginning of next cycle before starting data acquistion. It is useful when working with periods greater than about 2 seconds, in that when deactivated it eliminates the waiting period before the beginning of the next cycle. This switch is read by the program for periods greater than 20ms (50HZ) only. Acquisition routines with smaller periods always wait for the cycle pulse.

3 REPEAT

Causes any of the three data acquisition routines to repeat their processing and printing operations until the switch is turned off. Also causes the system test routine to be repeatedly called.

4 DATA PROJECT

Prevents accidental overwriting of data sets in memory. The acquisition routines read this switch before acquiring new data sets.

During operations, the numerical control parameters (Part 3, Table 7) must be entered correctly, but not necessarily in a particular order. Table 9 provides detailed descriptions and examples of how the variables must be entered. Table 10 lists other stored parameters. The number of points-per-cycle sampled and phase corrections are set up by the program, but these values may be examined by the operator through the keypad. The phase accuracy control determines the accuracy of the rectangularto-polar conversion, and is preset automatically during system initialization. The only parameters that the operator may wish to change are the station number and the run number, which are used for data identification on the printer. The run number may be initialized to 0 each time transmission of a new fundamental period begins. After each averaging operation the run number will be automatically incremented.

Control Keys

There are four control keys. Two of these are used to call programs and the other two close memory locations after values have been entered. The control keys are described in Table 11.

Mode and Control Switches

There are four mode switches located in the upper left corner of the receiver front panel. These switches provide the following options; (1) rectangular or polar formats for the Fourier transform results; (2) waiting or not waiting for the beginning of the next waveform cycle before acquiring new data; (3) repeating the data collection and processing procedures or stopping after one operation; and, (4) protecting the waveforms stored in memory from being over-written or normal memory operation. These switches are described in Table 12.

In addition, there are four control switches in the center of the front panel (Table 13). Left to right the switches are used to: (1) select regular operation (RUN) or a program loading mode; (2) interrupt an executing program; (3) reset and test the system; and, (4) select internal or external synchronization clocks.

CONTROL SWITCHES

RESET - SYSTEM TEST

Momentary contact causes instrument to begin the system test sequence, testing memory and timing and initializing all system parameters. (See system test routine description.)

INTERRUPT

Momentary contact will interrupt and terminate the execution of any program. Control is given back to the operating system, parameters are not effected.

RUN/LOAD

Selects one of two sets of RESET and INTERRUPT vectors. <u>RUN</u> is the standard set for system operation. The load set corresponds to the Motorola MIKBUG vector set. If a MIKBUG oriented TTY interface board is present, programs may be loaded into memory and examined when this switch is in the load position. This switch has the potential to be used to select between two operating systems.

SYNC INT/EXT

Selects between internal and external 7.6800 MHz clocks for data sampling timing.

Diagnostic Warning Codes

Diagnostic warning codes are provided to aid the operator in identifying incorrectly set parameters or system malfunctions. When an error is detected, the appropriate warning code is displayed on the two leastsignificant digits of the display; and in most cases, the program is then halted, disabling the keypad. When the displayed code corresponds to an improperly set parameter, the parameter may be re-entered after the interrupt switch is pressed. The warning codes are defined in Table 14.

Memory Test and Memory Error Codes

As part of the system test routine, the data and program memories are checked for errors. If a data memory (RAM) error is found, the program halts and a code identifying the defective chip is displayed. (See the RAM error codes in Table 15). The program memory (PROM) test routine sequentially calculates and displays a checksum for each of the 1K PROM chips. Comparison of the displayed checksums with the correct values given in Table 15 allows identification of defective chips. (See the Memory Board Layout drawing, Figure 17, for chip locations.)

PHASE POLARITY CONVENTIONS

The Transform

Signals are SINE and COSINE transformed using an $l^{-i\omega t}$ convention (i.e. -sinwt for sine transform and coswt for cosine transform).

Phase Signs

If a wave crest arrives prior to the crest of another wave of zero phase, the former wave is defined to have a positive phase advance.

WARNING CODES

H1 Illegal number of cycles averaged

H2 Illegal harmonic number

H3 Illegal period

H6 Waiting for cycle pulse

H7 Waiting for sample pulse group

H8 Incorrect ratio of sample to cycle pulses

HH Incorrect use of AMP or PHS keys

MEMORY ERROR CODES

RAM ERROR	CODES
FORMAT:	A0105
	$\int \frac{1}{4} K$ no. of MEM (1 to 8)
	Bad bit no. (1 to 8)
4K no. 1	to 4 for 1st K
łK no. 5	to 8 for 2nd K

PROM CHECK SUMS

Each checksum is displayed for 1 sec. 1PP 6 2PP-P 3PP5L 4PP1P Check sum symbols K no. of 1K PROM chips

Phase Relative to Channel 1

The computed phase on channels 2 through 6 are relative to channel 1 phase; that is, channel 1 phase is subtracted from the phases on the other channels.

The phase on channel 1 is measured relative to the beginning of the cycle pulse. This pulse has a precision period matching that of the transmitter, but the two are asynchronous.

DEVELOPMENT SYSTEM

Programs for this system were developed using a CDC COMPASS-based cross assembler, written by John Wood, Lawrence Berkeley Laboratory computer consultant. The source program was written and edited in the Geoscience Engineering Laboratory on a ADM-3 CRT Terminal using the NETED interactive editing program. After assembly the machine code was written onto a cassette tape and loaded into the development hardware for debugging. The development hardware consists of the EM receiver with an extra RAM memory board to simulate PROM and a teletype interface board with a MIKBUG operating system. APPENDIX A

A SYSTEM PROGRAM FOR A 6-CHANNEL EM RECEIVER

e,

·

•

IDENT CAR, BEGIN SST M6800

*********** RECEIVER*********

** ** PURPOSE - COMPLETE SYSTEM PREGRAM FOR A 5 CHANNEL EM RECEIVER ** ## STACKS 6 CHANNELS OF SIGNALS, SINE AND COSINE TRANSFORMS ¥# ## ANY HARMCNIC IN SIGNALS, OUTPUTS AMPLITUDES IN MILLIVOLTS ** AND PHASES RELATIVE TO CHANNEL ONE IN DEGREES ** ** GARY L OPPLIGER , ENGINEERING GEOSCIENCE GROUP **#**¥ AUTHOR ** ## UNIV. CF CAL BERKELEY. ## VERSION - 2.0 JULY 12, 1978 **

BEGIN EQU 0=8000

**** PIA ADRS DEFINITIONS ****

EFFE4 *	LCD AND FRINTER PIAS
EFFE5 +	
EFFE6 +	
=FFE7 •	
EFFE8 •	
=FFE9 •	
=FFEA •	
FFEB +	
=FFEC •	KEYPAD AND MODE
=FFED •	
FFEE *	SWITCH FIA
=FFEF +	• • -
=FF08 *	TIMER PIA
=FF09 +	
=FFOA +	
=FF08 •	
=FF0C •	ADC PIA
=FFOD *	
=FFOE +	
	EFFE4 EFFE5 EFFE6 EFFE7 EFFE9 EFFE9 EFFE8 EFF508 EFF68

PROGRAM STACK LOCATION***

STACKP EQU 0=14F BOTTOM OF PROGRAM STACK (100 THROUGH 14F)

******VARIABLE CEFINITIONS******

FLAG12	EQU	0 = 49	1 BYTE EQ 1 IF 12 BIT ADC WORDS ARE USEC
DATAB	EQU	$0 \equiv 4A$	2
PSHBOT	EQU	0 = 4C	2
DTPTCH	EQU	0 = 4 E	1 THIS VALUE HUST LEAD PTCYCH
PICYCH	EQU	0 = 4F	1
VAR	EQU	0 = 50	SETS LOCATION OF BLOCK OF VARIABLES IN RAM
CYCAVG	EQU	VAR	1 BYTE
NCYCLE	EQU	VAR+1	2 BYTES
PTSCYC	EQU	VAR+3	1
HEMNIC	EQU	VAR+4	1
CNTINC	EQU	VAR+5	1
CNLPPT	EQU	VAR+6	1
NCHPR	EQU	VAR+7	1
NOSHE	FOU	VAR+8	1

VAR+9 VAR+11 VAR+13 STORAR TAELEP VAR+15 VAR+19 VAR+20 VAR+22 VAR+22 VAR+22 VAR+24 VAR+28 VAR+31 VAR+31 VAR+31 VAR+31 VAR+32 VAR+31 VAR+32 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+31 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+31 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+32 VAR+31 VAR+32 VAR+31 VAR+32 VAR+31 VAR+31 VAR+32 VAR+31 VAR+32 VAR+31 VAR+32 VAR+32 VAR+31 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+34 VV VV+1 VV+8 VV+8 VV+1 VV+1 VV+1 VV+1 V	2 2 2 2 2 2 2 2 2 2 4 1 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+11 VAR+13 STORAR TA ELEP VAR+15 VAR+17 VAR+19 VAR+20 VAR+20 VAR+22 VAR+22 VAR+22 VAR+22 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+32 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+32 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+32 VAR+31 VAR+32 VAR+31 VAR+32 VAR+32 VAR+31 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+32 VAR+34 VV VV+1 VV+8 VV+8 VV+1 VV+1 VV+1 VV+1 V	2 2 3 4 1 2 2 4 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+11 VAR+13 STORAR TAELEP VAR+15 VAR+17 VAR+19 VAR+20 VAR+22 VAR+22 VAR+22 VAR+24 VAR+28 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+31 VAR+32 VAR+31 VAR+32 VAR+33 VAR+34 VV VV+11 VV+5 VV+6 VV+15 VV+16 VV+11 VV+12 VV+11 VV+12 VV+11 VV+12 VV+11 VV+12 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+31 VAR+31 VAR+32 VAR+31 VAR+32 VAR+32 VAR+32 VAR+31 VAR+32 VV+1 VV+2 VV+1 VV+1 VV+1 VV+1 VV+1 VV+	2 2 3 4 1 2 2 4 1 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+13 STORAR TAELEP VAR+15 VAR+17 VAR+19 VAR+20 VAR+22 VAR+22 VAR+24 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+29 VAR+31 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+11 VV+5 VV+6 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+10 VV+11 VV+12 OIE11	2 BYTES 2 2 2 1 2 2 4 1 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
STORAR TAELEP VAR+15 VAR+17 VAR+19 VAR+20 VAR+22 VAR+22 VAR+28 VAR+28 VAR+28 VAR+28 VAR+28 VAR+29 VAR+31 VAR+32 SRTCH3 VAR+32 SRTCH3 VAR+32 SRTCH3 VAR+34 VAR+34 VV VV+1 VV+1 VV+5 VV+6 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 OEE1	2 BYTES 2 2 1 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
TA ELÉP VAR+15 VAR+17 VAR+17 VAR+19 VAR+20 VAR+21 VAR+22 VAR+22 VAR+24 VAR+28 VAR+28 VAR+21 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+11 VV+2 VV+3 VV+4 VV+5 VV+6 VV+7 VV+8 VV+9 VV+11 VV+12 0 = E1	2 2 1 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+15 VAR+17 VAR+19 VAR+20 VAR+22 VAR+22 VAR+24 VAR+28 VAR+28 VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH2 SRTCH2 SRTCH3 VAR+34 VAR+34 VAR+34 VV VV+1 VV+1 VV+5 VV+6 VV+7 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	2 2 1 2 2 4 1 2 2 4 1 1 1 1 1 1 1 1 1 1
VAR+17 VAR+19 VAR+20 VAR+22 VAR+24 VAR+28 VAR+28 VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH2 SRTCH2 SRTCH2 SRTCH3 VAR+34 VAR+34 VV VV+1 VV+1 VV+5 VV+6 VV+7 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	2 1 2 4 1 2 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+19 VAR+20 VAR+22 VAR+24 VAR+28 VAR+28 VAR+31 VAR+32 SRTCH2 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	1 2 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+20 VAR+22 VAR+24 VAR+28 VAR+29 VAR+31 VAR+32 SRTCH3 VAR+33 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+5 VV+6 VV+7 VV+6 VV+10 VV+11 VV+12 0 = E1	2 2 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+22 VAR+24 VAR+28 VAR+28 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	2 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+24 VAR+28 VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	MS * SCRATCH AREA 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+28 VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 E E 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+29 VAR+31 VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	2 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+ 31 VAR+ 32 SRTCH2 SRTCH3 VAR+ 33 VAR+ 34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+7 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	1 1 1 1 1 1 1 1 1 1 1 1 1 1
VAR+32 SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	1 1 1 1 1 1 MS * SCRATCH AREA * FOR BINBCD LS * MS * UNSIGNED BINARY INPUT • MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT • FORMAT- 08 76 54 32 * LS * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
SRTCH2 SRTCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	1 1 1 1 MS * SCRATCH AREA * FOR BINBCD LS * MS * UNSIGNED BINARY INPUT • MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT • FORMAT- 38 76 54 32 * LS * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
SR TCH3 VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	1 1 MS * SCRATCH AREA * FOR BINBCD LS * MS * UNSIGNED BINARY INPUT * MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT * FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VAR+33 VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	1 MS * SCRATCH AREA * FOR BINBCO LS * MS * UNSIGNED BINARY INPUT * MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT * FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VAR+34 VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+7 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	MS * SCRATCH AREA * FOR BINBCD LS * MS * UNSIGNED BINARY INPUT • MAX• OF 23 BITS LS * MS * DECIMAL OUTPUT • FORMAT- 08 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV VV+1 VV+2 VV+3 VV+4 VV+5 VV+6 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+11 VV+12 0 = E1	MS * SCRATCH AREA * FOR BINBCD LS * MS * UNSIGNED BINARY INPUT • MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT • FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV VV+1 VV+2 VV+3 VV+5 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+11 VV+12 0 = E1	HS + SCRATCH AREA + FOR BINBCD LS + HS + UNSIGNED BINARY INPUT • MAX. OF 23 BITS LS + HS + DECIMAL OUTPUT • FORMAT- 38 76 54 32 + LS + SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+1 VV+2 VV+3 VV+5 VV+6 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+11 VV+12 0 = E1	<pre>* FOR BINBCD LS * MS * UNSIGNED BINARY INPUT</pre>
VV+2 VV+3 VV+4 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+11 VV+12 0 = E1	LS * HS * UNSIGNED BINARY INPUT * MAX. OF 23 BITS LS * HS * DECIMAL OUTPUT * FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+3 VV+4 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	HS # UNSIGNED BINARY INPUT
VV+4 VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0 = E1	 MAX. OF 23 BITS LS * MS * DECIMAL OUTPUT FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+5 VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+11 VV+12 0=E1	LS * NS * DECIMAL OUTPUT * FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+6 VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0=E1	NS * DECIMAL OUTPUT * FORMAT- 38 76 54 32 * LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+7 VV+8 VV+9 VV+10 VV+11 VV+12 0=E1	 FORMAT- 38 76 54 32 LS * SCRATCH MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+8 VV+9 VV+10 VV+11 VV+12 0=E1	* LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+9 VV+10 VV+11 VV+12 0=E1	LS * SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+10 VV+11 VV+12 0=E1	SCRATCH 1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+11 VV+12 0=E1	1 MS BYTE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+11 VV+12 0=E1	1 HS BITE PHASE COR IN BINARY 2 2 LS BYTES 4 BYTES
VV+12 03E1	2 2 LO UTICO 4 BYTES
OEE1	4 87165
UEE5	1 BYTE FTS/C/C IN BCD
0350	2 BYTES NO. OF TIMES ACQUS1 IS CALLED
0 = E 8	1 HARNCNIC NJ. STORAGE LOCATION
03E9	1 BYTE
OEEA	1
0 = EB	1
DEEC	1
0=ED	2
NEFF	1 VARTARLE FOR CONTROLITING ACCURACY OF ARCIAN FN.
0 2 5 0	2 HALDS ADD AF PEAL MALLE
U=FV 0=50	C TULUD HURD UF REAL VALUE
U = F Z	C RULUS AUKS OF IMAG VALUE
0 = F 4	I ULVIDE BY TEN FLAG (MOVE DECIMAL POINT LEFT)
OEF5	1 CHANNEL ND.
0 3 F 6	1 QUADRANT NO.
NS OF RAM ST	ORAGE AREAS ***
ARFA (150 T	HR0116F 1FF) ##
	The second se
0 2 0 0 0 0	START OF RAM
0 = 07FF	ENE OF RAM 2K REQUIRED
0=98	24 BYTES
0=80	24 BYTES
0200	ST BALLS
0 = 00	ET DITES 26 RYTEC
U = CO	
	0 = F2 0 = F4 0 = F5 0 = F6 NNS OF RAM ST AREA (150 1 0 = 0000 0 = 07FF 0 = 98 0 = 80 0 = 80 0 = C8

60

DATA + DATA + USED + COLLE DPSHT	EQU IS BEGIN When 4 P Ction Ar Equ	0=0200 NING CF DATA TS/CYC ARE S EA. DPSHT AN DATA+384	1536 BYTES ENDS AT 07FF STACKING AREA. ONLY THE FIRST 96 BYTES ARE ** TACKED THE REMAINDER IS USED AS 4 DATA ** D DFSHB DEFINE COLLECTION AREA ** TOP OF DATA STACK USED WITH 4,16 PTS/CYC
** PERIO	D TO FTS	CYC AND ACC	WORD SIZE NAP
TT FUR M	TN 330 K	HZ CPU CLUCK	
20	EQU	0200	
	EUU	0510	TING (END INTERIOR
E1	EQU	0210	
_CC1	EQU	0200	
EC COD	EQU	U=1U 0=40	
57	EQU	0-10	
E3 007	EQU	0 2 0 0	T U 4 PISZUTU # 4 0 SUDDT DEDTOD 17NTT
663 E/	EQU	0=10	- 100 SUDKI FERIOO CUTOEE
C4	EQU	0 = 20	
664	EQU	0=20	
	ORG	BEGIN	
	JMP	MASTER	INTP +
	JMP	NASTER	SWT • RESET AND INTERRUPT VECTORS
	JNP	MASTER	NFI Ø
	JHP	RESETS	RESET .
++ TABLE	USED BY	ROUTINE FUN	EACH ROUTINE CORPESPONDS TO A KEY NO. **
RUNTAB	JHP	OSCDIS	RUND DISPLAY DATA ON SCOPE
	JMP	ATPONE	RUN1 ACQUIRE, TRANS, PRINT ONE PARPONIC
	JMP	SINCOS	RUNZ SIN AND COS TRANSFORM ROUTINE
	JMP	CHARTD	RUN3 DUMP DATA ON CHART PAPER
	JMP	ATPEVO	RUN4 ACQUIRE, TRANS, PRINT EVERY OTHER HARMONIC
	JNP	PRTEVO	RUNS PRINT EVERY OTHER HARMONIC
	JMP	MAXSGN	RUNG FIND MAXIMUM SIGNAL
	JHP	ATPALL	RUN7 ACQUIRE, TRAMS, PRINT ALL HARMONIC
	JMP	PRTALL	RUNB PRINT ALL HARMONICS
	JMP	VOLTHT	RUN9 MAKES DEVICE A VOLT METER
RESETS	LDS	(STACKP	RESET STACK POINTER TO PROGRAM STACK LOCATION
	LDX	18=FFF4	+ SET TIMER PTA
	STX	PIAA4	
	STX	PIAB4	
	CLRB		B FLAG SET, RESULTS IN BRANCH TO SYSTST
	er a	IN 2S1	
INZSYS	LDAB	[01	B FLAG SET, PREVENTS BRANCH TO SYSTST
	CLR	CPIAA1	
	CLR	CPIA61	
	CLR .	CPIAA2	
	CLR	CPIAB2	
	CLR	CPIAA3	
	CLR	CPIA83	
	CLR	CPIAA5	
	CLR	CPIA85	and the second
INZS1	LDX	LOECOF4	* SET KEYPAD PIA PA6-PA7 ARE OUTFUTS
	STX	PIAA3	* PAO-PAS ARE INPUTS FOR COLUMNS
	LDX	LOEOFF4	PB0-PB3 ARE DUTPUTS FOR ROWS
	SIX	PIAB3	• PB5-PB7 ARE INPUTS FOR MODE SWITCHES
	STX	PIAA5	T SET ADC PIA
	LDX	C0=00F4	PAD-PA4 ARE OUTPUTS
	STX	PIABS	₱ PB0-PB7 ARE INFUTS

	LDX	COEFFF4	* SET LOC FIAS
	STX	PIAA1	• CB2 IS SET HIGH
	STX	PIAB1	
	STX	PIAA2	
	LDX	(OEF7FC	• MAKE PB3 AN INPUT FOR PRINTER
	STX	PIAB2	+ ALL OTHERS ARE DUIPUIS
	CLR	PIABZ	• ASSURES PRINTER PUWER IS UPP •
	1518	* ** 700	T TE CON OPINON TO EVETEN TEST
	ENE	INISZ	THE LUU DRANCH IN STSTER TEST
TN753	ICD ICD	515151 CI 8015	CIEAR DISPLAY
THESE	DIC	ULKUIJ	CEERN DISTERT
	ni J		
** SYSTEM	TEST	CHECKS 2K	RAM AND 4K ROM, WRITES SQUAREWAVE INTO MEM **
SYSTST	BRA	RAMCK	BRANCH TO RAM CHECK
RAMETN	JSR	TIMERT	DO TEST OF SAMPLE AND CYCLE PULSES
	JSR	TEST83	• READ SWITCH 3
	ENE	SYSTST	• IF SET REPEAT RAM AND PULSE TESTS
	LDAA	10=CC	• SET UP LCD AS XPPXX TO INDICATE PROM
	STAA.	PIAB1	• PLACE PP IN DIGITS 3 AND 4
	CLRB		
	LDX	LBEGIN	BEEINNING UF RUM
	STX	DATPT	DRATE CHECK CHM ON TH OF PROM
PROMLP	JSK	PRUNCK	TAID AV OUTE COUNTED
	STAA	PTAAI	PLACE CHECK SUM IN LOWEST 2 CIGIIS ON LCD
	STAR	PTAA2	PLACE CHIP NO. IN 5TH DIGIT POSITICN ON LCD
2	LDX	10=FF02	
	JSR	DELAY3	DELAY OF 900000 MACHINE CYCLES FER CALL
	CNPB	£04	IF CHIP NO. EQU 4 QUIT PROM CHECK
	BNE	PROMLP	
	JSR	LDHEM	LOAD MEMORY WITH SQUAREWAVE FOR TESTS
	LDAA	C0288	• LOAD8.8.8.8.8 INTO LCD
	STAA	PIAA1	* TO TEST ALL LCD SEGMENTS
	STAR	PIAB1	
	LDAP	LDEF8	*
	STAA	PIAA2	
	LUAA	10203	*
	JI AA	PLADZ	PRINTED DOWER ON
	ICD	DDNT	+ PRINT - A.R.R.R.R.R
	JSR	PRNT	* TWICE
	JSR	PWROFF	PRINTER POWER OFF
	JSR	INZVAR	INITIALIZE VARIAELES
	JNP	CKLOCP	TESTS COMPLETE GO TO MAIN PROGRAM
** ROTATIN	NG BIT F	RAM TEST	ROUTINE DOES NOT USE RAM STORAGE **
44 IF A 8/	AD LOCA	TION IS FOUL	NO FRUGRAM HALIS AND LCD DISPLAYS
** A IN 5	IN DIGI'	I IC INUICA	IL KAMA SII NUALI + SI IN SKU DIG YY
PANOK	ARIEK K	NU. IN IST	LIG (1 - 8), FURMAL AUDUZ TT
RATUN		LKAN31K	E CHILDH OF DIART OF CHECK 4 DIARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	5T & A		- UISELAI (MAAMAA) UN LUU 8
	STAA	PTAB1	*
		[0=00	*
	STAA	PIAA2	•
SHF 1ST	CLR	00.X	* WRITE ZEROS INTO MEM
	LDAA	00,X	
	BNE	BACBIT	# IF NOT ZERO BAD BIT
	INCA		SET ACCA TO 1

	STAA	00,X	
	CMPA	00.X	COMPARE ACC A WITH MEMORY LOCATION
	BNE	BADBIT	IF NOT EQU BRANCH TO BAD BIT
RANLP	ASLA		•
	ASL	00.X	SHIFT BITS
	CHPA	00.X	COPPARE ACC A WITH MEMORY LOCATION
	BNE	BADBIT	IF NOT EQU BRANCH TO BAD BIT
	TSTA		• TEST FOR BIT IN 8 POSITION
	BPL	RAMLP	• IF FOUND INC INDEX.TEST NEXT BYTE
	INX		- · · · · · · · ·
	CPX	[RAMENC+1	ADRS OF LAST BYTE TO BE TESTED +1
	ENE	SHFTST	IF NOT LAST BYTE. TEST NEXT BYTE
	JMP	RAMRTN	BRANCH SERVES FN SIMILAR TO RTS
BADBIT	CLRB		•
TSTLP1	INCB		DETERMINE BIT POSITION OF BAC BIT
	LSRA		•
	ENE	TSTLP1	
	STX	PIAA1	STORE INDEX IN LCD. HS BYTE GOES IN DIG 1.2
	LDAA	(0=F4	• LS BYTE WENT INTO CONTROL REG
	STAA	CPIAA1	• RESTORE CONTROL REG
	INC	PIAA1	INC CIG 1 TO CREATE 1/4 K NO.
	STAB	PIAB1	• WRITE BIT NO. IN DIGITS 3 AND 4.
RAMSLF	8R A	RAHSLF	HALT THE COMPUTER
	CHECK	CALCULATES A	CHECKSIM EOD 1K DE DON - 77
DEDMCK		CRECOERIES A	DIECKSON FOR IN OF ROT
r Kulluk		SPTCH1 A1	
	CLRA	SK IGHA 14	
PENIP	IDX	DA TP T	
	400A	00.1	
	TNX		
	STX	DATPT	
	LDX	SRTCH1	
	INX		
	STX	SRTCH1	
	CPX	C0=0400	• CHECK FOR 1000TH TIME THROUGH LCCP
	BNE	PRMLP	*
	RTS		

** TIMER SAMPLE AND CYCLE PULSE TEST TESTS RATIO CF SAMPLE/CYCLE PULSES ** ** FOR 64, 16, AND 4 FTS PER CYCLE DISPLAYS HE WHEN WAITING FCR CYCLE ** ** PULSE, DISPLAYS H7 WHEN WAITING FOR SET OF SAMPLE PULSES, DISPLAYS H8 单 卒 ** AND HALTS PREGRAM IF RATIO OF SAMPLE TO CYCLE PULSES IS IN EFROR ** TIMERT LDAA (0=25 PERIOD COEF. 2.5 CLRB PEFIOD EXPONENT ED MSEC SICRE PEFIOD SET COUNTERS SET RATIO SAMP/CYC +1 FOR THIS PERIOD 8SR STRPER I DY 125

LUA		JET KATAV JANEFOTO TI TOK INIJ PERIOD
8SR	RATIOT	DO RATIO TEST
LDAA	CO = 40	PEFIOD COEF. 4.0
LDAB	(0 <u></u> <u></u> 10	PEFIOD EXP. E1
BSR	STRPER	STORE PERIOD SET COUNTERS
LDX	(97	SET RATIO AS ABOVE
BSR	RATIOT	DC RATIO TEST
LDAA	[0=2C	PERIOD CCEF. 2.0
TAB		PERIOD EXP E2 5HZ
ESR	STRPER	STCRE PEFICD
LDX	[385	SET RATIO
BSR	RATIOT	DO RATIO TEST
RTS		
	BSR LDAB ESR LDX BSR LDX ESR LDX ESR RTS	BSR RATIOT LDAA [0=40 LDAB [0=10 BSR STRPER LDX [97 BSR RATIOT LDAA [0=20 TAB BSR STRPER LDX [385 BSR RATIOT RTS

** STORES PERIOD AND SET PRE ANI POST COUNTERS ** STRPER STAA PIAA4 SET PERIOD COFF.

Ē,

	STAB JSR RTS	PIAB4 PRDSET	SET PERIOD EXP. Set pre and post counters and pts/cyc
++ TEST	OF RATIO	OF SAMPLE	TO CYCLE PULSES **
RATIOT	STX	SRTCH6	STORE IDEAL RATIO NO.
	JSR	CLRDIS	CLEAR LCD DISPLAY
	LDX	[0000]	SET RATIO COUNTER TO ZERO
	LDAB	PIAB4	CLEAR CYCLE PULSE BY READING PIA
	LDAB	PIAB5	CLEAR SAMPLE PULSE
	LDAB	(0 = 86	* WAITING FOR CYCLE PULSE
	STAB	PIAA1	+ PUT HE ON LCD
TTLP1	LDAA	CPIA84	• WAIT FOR CYCLE PULSE
	EPL	TTLP1	
	LDAB	PIAB4	CLEAR CYCLE PULSE
	INC	PIAA1	PUT H7 ON LCD. WAITING FOR SET OF SAMPLE PULSES
TTLP2	LDAA	CPIA85	HAIT FOR SAMPLE PULSE
	BPL	TTLP2	
	LDAB	PIA85	CLEAR SAMPLE PULSE
	INX		INC RATIO COUNTER
	LDAA	CPIA84	LOOP BACK UNTIL CYCLE PULSE IS FOUND
	BPL	TTLP2	 * A second s
	CPX	SR TCH6	COMPARE RATIO COUNT WITH IDEAL VALUE
	EE Q	TTOK	IF EQUAL RETURN
	INC	PIAA1	PUT H8 ON LCD TO INDICATE RATIO EFROR
TTHALT	BRA	TTHALT	
TTOK	JSR	CLEDIS	CLEAR LCD
	RTS		

** LOAD N	1EMORY	WITH +5,-5 VO	LT SQUAREWAVE FOR TEST **
++ SINGLE	CHNL	PATTERN IS 2	HIGH.8 LOW.8 H.8 L.ETC FOR 64 PTS **
LDNEM	LDX	[1536	NO. BYTES TO BE CLEARED
	STX	SRTCH1	
	LDX	(DATA	START OF SECTION TO BE CLEARED
	JSR	CLRM2	CLEAR MEHORY
	LDX	[DATA	DEFINE STARTING ADRS
	LDAB	[12	FCR FIRST PARTIAL CYCLE
	BRA	LDH2	START PARTIAL CYCLE
LDN1	LDAB	[48	6CH#8PTS=48 SET COUNTER FOR 8 +5V POINTS
LDM2	LDAA	[0=7F	+5 VOLTS
	STAA	00,X	LCAD VALUE IN MEMORY
	CPX	[DATA+1532	COPPARE WITH LAST LOCATION
	BEQ	LDMOUT	IF EQU RTS
	JSR	INX4	SELECT NEXT LOCATION (INX 4 TIMES)
	DECB		DEC COUNTER
	ENE	LDM2	IF NOT D STORE ONE MORE +5V VALUE
·	LDAA	[0 = 8 0	-5V
	LDAE	[48	SET COUNTER FOR 8 -5V POINTS
LDM3	STAA	00+X	STORE -5V VALUE
	JSR	INX4	SELECT NEXT VALUE
	DECB		DEC COUNTER
	ENE	LDM3	IF NOT O STORE ON MORE -5V VALUE
	8R A	LDM1 DO	NEXT +5 CYCLE
LDHOUT	RTS		

** INITI	ALIZE V	ARIAELES	44	
INZVAR	LDAA	[0 <u>=</u> 9C	NO. OF BYTES TO BE CLEARED	
	LDX	(0≘0050	START OF SECTION TO BE CLEARE	0

-

	JSR INC INC LDAA STAA JSR LDAA STAA RTS	CLRHEM HARM10 HRMNIC NCYCLE+1 [4 ROTACC PRDSET [0=06 NCHPF	CLEAR MEHORY SET ARCTAN FN ACCURACY SET FTS/CYC AND PRE AND POST COUNTERS * • SET NO. CF CHANNELS OPERATED ON
** 100K 1 Keyo	FOR ANY	PRESSED KEY	IF FOUND ACC A IS A NONZERO VALUE ** 2 (Machine cycles)
	STAA	PIAB3	5
	LDAA	PIAA3	4
	COMA		2
	ANDA	[0=3F	2
	RTS		5
** DELAY	ROUTINE	0	
DEL AVI		En=1:462	ODECET DELAV 87278 CVCLEC
DEL AV3	STY	CD 11402	- FREDER DEERI DIEID GIGEED
DEL AY2	DEC	SRTCH2	
	BNE	DI YI PI	
	RIS		
DLYLP1	DEC	SR TCH3	
	EE Q	DELAY2	
	BRA	DLYLP1	
	RTS		
** CHECKS	S FOR RE	LEASE OF IRES	SSEC KEY ++
RELESE	CLRA		
	STAA	PIAB3	ROW
RELLP1	LDAA	PIAA3	COLUMN
	COMA		
·	ANDA	[0]=3F	
	UNE	RELLP1	
	BIC	DELATI	ABOUT YO MILLISEC DELAY FOR KEY DEBOUNCE
	612		
			
TH SOUNDS	BEEPER	FOR 8518 CYC	LES ##
BEEP	LDAA	I O EF C	BRING LINE CB2 HIGH FOR BEEPER
	STAA	CPIAB3	
	LDX	[0=0462	
	USR	UELAY3	T DELAY

LDAA [0=F4 + STAA CPIA83 • BRING C82 LOW FOR BEEPER OFF RTS +* ACTIVATE ONE ROW ON KEYPAD, TEST COLUMNS FOR RESPONSE **
LDTST STAA PIAB3 ACTIVATE ROW
LDAA PIAA3 READ COLUMN
INCB
COMA
ANDA [0]3F
RTS

** INTERP	RET	PRES	SED	KEY	- ##
INTP	ASL	.9			
	ASL	.8			
	ASL	.8			
	BSR	2	DELA	¥1	
	DEC	:B			
	LOX	ľ	10=F	901	
	STX	Č.	SRTC	H2	
L00P1	INC		SR TC	HZ	
	EEG	1	ERR		
	INC	8			
	CMF	Δ	SRTC	H3	
	PEC	,	END		
	ASL		SRTC	нз	•
	BRA		LOCP	1 .	
ERR	NOP	,			
	BRA		RWSL	CT	
END	BSR	2	BEEP		
	TST	8			
	RTS	-			

MASTER ROUTINE FOR SCANNING KEYPAD ## SCNKEY **BSR** RELESE LDAB (DEFF RWSLCT LDAA 1030E 6SR LDTST 8G T INTP LDAA 1020D BSR LDTST BGT INTP LDAA (0<u>2</u>08 **BSR** LDTST 8G T INTP LDAA (0E07 **BSR** LDTST **egt** INTP **BRA** RWSLCT RTS

** CLEAR LIQUID CRYSTAL DISFLAY ** CLRDIS LDAA (0EFF STAA PIAA1 STAA PIAB1 LDAA (0E0F

66

i

STAA LDAA ANDA STAA

ŗ

PIAAZ • SAVE PRINTER CONTROLS MAY 14 78 PIAB2 (OEFC . PIAB2 RTS

** DISPLAYS A NO. ON LSD OF LCD WITHOUT AFFECTING OTHER VALUES ** LCD1 LDAB PIAA1 ANDB 10=F0 ANDA (030F ABA PIAA1 STAA ANDA (030F RTS

CONVERT	KEY C	ODE NO.	TC DECIPAL VALUE 0+9 **	
CD	CMPB	00,X	CCIPARE KEYCODE WITH TABLE CODE	Ξ
	ENE	SCLP	IF THEY ARE EQUAL LOAD COUNTER	ER
	LDAA	SR TCH3	* INTO ACC A AS BCE VALUE	
Ρ	INX		POINT INDEX TO NEXT CODE	
	DEC	SR TCH 3	DEC COUNTER	
	RTS			
	CONVERT CD P	CONVERT KEY C CD CMPB BNE LDAA P INX DEC RTS	CONVERT KEY CODE NO. CD CMPB 00,X BNE SCLP LDAA SRTCH3 P INX DEC SRTCH3 RTS	CONVERT KEY CODE NO. TC DECIPAL VALUE 0-9 ** CD CMPB 00,X CCPARE KEYCODE WITH TABLE CODE BNE SCLP • IF THEY ARE EQUAL LOAD COUNTE LDAA SRTCH3 * INTO ACC A AS BCC VALUE P INX POINT INDEX TO NEXT CODE DEC SRTCH3 • DEC COUNTER RTS

** KEYPAD	CODE	CONVERSION	TABLE	·##
CONV1	CON	DECA	9	
	CON	0=09	8	
	CON	0 <u>=</u> 08	7	
	CON	0112	6	
	CON	0=11	5	
	CON	0=10	4	
	CON	0 Ξ1 Α	3	
	CON	0119	2	
	CON	0=18	1	
	CON	0201	0	

++ MASTER	POUTINE	E FOR KEY	CCDE	10 DI	ECINAL	CON VERSION	**
NCODE	LDAA	t0=09					
	STAA	SRTCH3					
	LDAA	£0388					
	LDX	[CONV1	KE	YPAD	CODE	CONVERSION	TABLE
NCLP	JSR	TSTCD					
	BMI	ENDL					
	BRA	NCLP					
ENDL	RTS						

## SELEC	TS 1 OF	10 SUBROUTIN	VES THAT MAY BE CALLED **
RUN	BSR	CLEDIS	
	BSR	SCNKEY	* LOOK FOR NO. ENTERED ON KEYPAD
	8SR	NCODE	•
	CMPA	10298	IF A NUMBER IS NOT FOUND RETURN
	BE Q	RNOUT	
	BSR	LCD1	DISFLAY ON LCD
	LDX	TRUNTAR-3	RUN TARLE -3
RNLP RNOUT	INX INX DECA BPL JSR LDAB STAB RTS	RNLP 00,X 10=F4 CPIAA2	ACC A IS COUNTER SELECTOR Call Selected Run Routine * Turn off open register indicator *
--	--	--	--
++ CONTRI CKTAB	OL KEY JHP JMP JMP JMP JMP JMP JMP JMP	JUMP TABLE #4 RUNB HRMSLT MEN RUN NCHNLS PER CYC CDUM AMP PHS	D EQUIVALENT KEY NO. 1 2 3 4 5 6 7 8 9
CDUM	RTS		
** THIS I MASTER CONKEY CKLOOP	LDS JSR JSR JSR CMPA BNE SUBB JSR CMPA BEQ LDAB STAB LDX BSR BRA	MASTER CONTRO [STACKP INZSYS SCNKEY NCODE [03BB CKLOOP [03BB CKLOCP [03FC CPIAA2 [CKTAB-3 RNLP CKLOOP	LLCOP FOR THE PROGRAM ** SET STACK POINTER TO PROGRAM STACK LOCATION • TUPN ON CPEN REGISTER INDICATOR * CONTROL KEY JUMP TABLE -3
** DISPLA DISPER	YS PER LDAA StAA LDAA ANDA LSRA LSRA LSRA LSRA ADDA STAA STAA RTS	IOD FORMAT - PIAA4 PIAB1 PIAB4 (0=79 (0=f0 PIAA1 (0=4f PIAA2	(8 8 1.2 8 3) 8 = 9LANK **

68

.

٩

¥

÷

** SUBROU	TINES	STDIG1 AND	STDIG2	-	STORE	DIGITS	1	AND	2	##
STDIG1	LDAB	(O EOF								
	ANDB	0,X								
	ØSR	SHFL4								
	ER A	SAME								
STDIG2	LDAB	[OEFO								
	ANDB	0 . X								
SANE	ABA									
	STAA	0.X								
	JSR	SCNKEY								
	RTS									

++ LOAD	PERIOD	DISPLAYED	ON	LCD	TO	TIMER	**
LDPER	LDAA	PIAB1					
	STAA	PIAA4					
	LDAB	PIAB4					
	ANDB	[0=8F					
	LDAA	PIAA1					
	ANDA	[0=07					
	JSR	SHFL4					
	ABA						
	STAA	PIAB4					
LDP1	BSR	DISPER					
	RTS						

++ ALLOWS	ENTER	ING AND EXA	MINATION OF PERIOD **
PER	JSR	CLEDIS	CLEAF LCD
	8SR	DISPER	
	JSR	SCNKEY	
	BE Q	TOCK	
	JSR	NCCDE	
	LDX	[PIAB1	
	JSR	STCIG1	
	BE Q	TOCK	
	JSR	NCODE	
	LDX	[PIA81	·
	JSR	STDIG2	
	BEO	TOCK	
	JSR	NCCDE	
	LDX	[PIAA1	
	JSR	ST CIG2	
	8E Q	TOCK	
	CMPB	t 0 = 0 5	
	ENE	TOCK	
	ESR	LDPER	
	BSR	PRDSET	SET PTS/CYC AND PRE AND POST COUNTERS
TOCK	JSR	DISPER	
-	RTS		
PRDSET	JSR	PISSET	SELECT NO. PTS/CYC
	JSR	PTSCON	SET PTS/CYC CONTROL BITS ON TIMER BOARD
	LDAA	PTSCYC	* CONVERT TO BCD

JSR BNBCC2 Staa Ptcy10 Rts

SHFL4

ASLA ASLA ASLA ASLA RTS

** DISPLAY ON LCD NO. OF CYCLES TO BE AVERAGED ** DISCYC LDAB CYCAVG JSR DISDG2 RTS

++ MANA GE	S DI SPL	AY AND	ENTRY	CF	NO.	0F	CYCLES	TO	BE	AVERAGED ##
CYC	BSR	DISCY	C							
	JSR	SCNKE	Υ							
	BEQ	LASTO	1							
STROV1	JSR	NCCDE								
	LDX	IPIAB	1							
	LDAB	(0=FF								
	STAB	0.X			•					
	JSR	STOIG	1							
	EE Q	LASTD	1							
	JSR	NCCDE								
	LDX	(PIAB	1							
	JSR	STEIG	2							
	ee Q	LASTD	1							
	BRA	STROV	1							
LASTD1	LDAA	PIAB1	· · .							
	STAA	CYCAV	G							
	esr	DISCY	C							
	8SR	SETCK	T							
	RTS									

++ SET	NO. OF	CYCLES TO	8E	AVERAGED	IN	81 (NARY	r -##				
SETCNT	CLRB	3										
	LDAA	CYCAVG										
	CHPA	COE15										
	BHI	ERROR1										
	CMPA	LOEOF										
	BLE	SKIP										
	LDAB	B COEDA										
	ANDA	(0=0F										
SKIP	ABA	_										
	e sr	SETCN2										
	JSR	CYCDEC		CCCNVER	RT I	łC.	OF	CYCLES	TO	BCD	AND	CISPLAY
	RTS											
ERROR1	LDAB	COEB1										
	STAB	PIAB1										
	RTS											

4

#

#

SETCNZ	LDX	C0=0001
	STX	NCYCLE
SLOOP	DECA	
	eni	RTN
	ASL	NCYCLE+1
	ROL	NCYCLE
	8R A	SLCOP
RTN	RTS	

** DISPLA	AY ANPL	ITUDE AND	FHA SE	**		
AMP	LDX	(AMPSTR				
	STX	SRTCH1				
	ERA	AP1				
PHS	LDX	CPHSSTR				
	STX	SRTCH1				
AP1	JSR	CLEDIS				
	JSR	SCNKEY				
	JSR	NCCDE				
	CMPA	(0=8B				
	ENE	AP2				
	STAA	PIAA1				
	BRA	APOUT				
AP2	DECA					
· ·	BHI	APOUT				
	CMPA	10=05				
	BGT	APOUT				
	ASLA					
	ASLA					
	ADDA	SRTCH1+1				
	STAA	SRTCH1+1				
	BCC	AP3	۲	ADDED	APRIL	22.78
	INC	SR TCH1	۲			
AP3	LDX	SRTCH1				
	BSR	LCCDIS				
APOUT	RTS					

RTS

CMPA

ANF

** LOAD	LCD WITH	4 BYTES	POINTED	AT	BY INDEX	44			
LCODIS	LDA/	3,X							
	STAA	PIAA1							
	LDA4	02.X							
	STAA	PIAB1							
	LDAA	01.X							
	STAA	PIAAZ							
	LDAA	00.X							
	ANDA	[0=03	•	SAVE	PRINTER	CONTROLS	MAY	14	78
	LDAB	PIAB2	#						
	ANDB	LO EF C	•						
	ABA		#						
	STAA	PIAB2							

** MANAGES PAFAMETERS ACCESSED THROUGH MEN KEY ** MEM JSR CLRDIS **JSR** SCNKEY # * DECODE KEY **JSR** NCODE ANDA (0=0F

€0Ξ00 M.J1

- -

		D1 3P 10	UISPERT FISTOR
<u>u</u> j <u></u>	ANE	NJ2	
	JMP	DISPHC	DISPLAY PHASE CORRECTION
H.12	CMPA	[0=02	
	BNE	MJ3	
	JNP	STATNO	
MJ3	CMPA	C 0 = 0 3	
	BNE	MJ4	
	JMP	RUNNO	
MJ4	CMPA	C O = O 4	
	BNE	MJ5	
	JHP	CROTAC	ROUTINE TO SET ROTATION ACCURACY
MJ5	RTS		
++ DISP LAY	Y POINT	S PER CYCLE	••
DISPIC	JSR	CLEDIS	
	LDAA	PTCY10	OTCOLLY DOTUTE / CYCLE
	SIAA	PIAAI	ULSPLAT PUINTS / CTCLE
	RIS		
++ DISPLAN	ISP ISP	UN NU. AND RU	$IN NU \bullet FURMAI = (XX XX) + $
DELNKN		NCTN	LOAD STATTEN NO.
		113111	EQUE STRIZER REF
	JSR	RORBA	CIRCULATE ACC B INTO ACC A RIGHT ROTATION
	ORAA	r 0=0F	BLANK DIGIT NO 3
	STAA	PIAB1	LOAD DIGITS 3 AND 4 INTO LCD
	STAB	PIAA2	LCAD DIGIT 5 AND DECIMAL PTS INTO LCD
	LDAA	NRUN	* DISPLAY RUN NO. ON DIGITS 1 AND 2
	STAA	PIAA1	•
	RTS		
** DISPLAN	IS NO.	OF CYCLES TO	BE AVERAGED IN BCD FORM **
CYCDEC	LDX	NCYCLE	* CONVERT NCYCLE TO 5 DIGIT BCD VALUE
	STX	02	D1 IS LS BYTE
	CLR	03	CLEAR MS BYTE
	JSR	BINBCD	CONVERT TO BOD
	JSK	CLRUIS	LEAR DISPLAT
	LUAA STAA		TO 1 CD 2 1 2 DICI 12
	JOAA .	CU12	NEXT 2 DIGITS
	STAA	PTAR1	TOLCD
	1044	01173	NS DIGTT
	STAA	PTAA2	TOLCD
	RTS		
	-		· ·

	LENCIND Dotne ai	NU SINE CUNS	PONSTANTS, WITH OVEDLADDING SETS OF SA OOS
A AND CA	1700 IUKI 270 2 21	C - OU C DI IC Viante constants	. CONSTANTS, WITH OVERGAPPING SETS OF 04 105
- ANU 04 3	91W C 8.	TTE CONSTANTS	••
COSTOP	CON	027F,02FF,03	7F,0261,027D,0289,027A,027C
	CON	0=76.0=41.0	70,0 = E 2,0 = E4,0 = 6 D,0 = 62,0 = F 1
	CON	0=5A,0=82,0=	51,0=33,0=47,0=1C,0=3C,0=56
	CON	0=30,0=F8,0=	25,0228,0218,02F9,020C,028C
SINTOP	CON	0200.0200.03	F3.0 =74.0 = E7.0 = 07.0 = DA.0 = D8

	CON	0 = CF , 0 = 0 5 , 0 = C 3 , 0 = AA , 0 = CB , 0 = E 4 , 0 = AE , 0 = CD
	CON	0=A5.0=7E.0=9D.0=0F.0=95.0=93.0=8F.0=1E
	CON	0 389,0 38F, (385,0 384,0 382,0 377,0 380,0 39F
	CON	0 = 80,0 = 01,0 = 80,0 = 9F,0 = 82,0 = 77,0 = 85,0 = 84
	CON	0 = 89,0 = 8F,0 = 8F,0 = 1E,0 = 95,0 = 93,0 = 9D,0 = 0F
	CON	0=A5,0=7E,C=AE,0=CD,0=88,0=E4,0=C3,0=AA
	CON	0=CF,0=05,0=DA,0=D8,0=E7,0=07,0=F3,0=74
	CON	0 200,0 200,0 20C,0 28C,0 218,0 2F9,0 225,0 228
	CON	0=30,0=F8,0=3C,0=56,0=47,0=1C,0=51,0=33
	CON	0=5A,0=82,0=62,0=F1,0={A,0=6D,0=70,0=E2
	CON	0=76,0=41,0=74,0=7C,0=7D,0=89
CO \$80 T	CON	0 = 7F, 0 = 61
	CON	0 =7F,0 =FF,0 =7F,0 =61,0 =7D,0 =89,0 =7A,0 =7C
	CON	0=76,0=41,0=70,0=E2,0=64,0=60,0=62,0=F1
	CON	0 = 5A, 0 = 8 2, 0 = 51, 0 = 33, 0 = 47, 0 = 1 C, 0 = 3C, 0 = 56
	CON	0=30,0=FB,0=25,0=28,0=18,0=F9
SINBOT	CON	0 = 0 C , 0 = 8 C

++ MASTER	ROUTIN	E FOR DOING	SINE AND COSINE TRANSFORMS **
SINCUS	LUX		START OF STORAGE AREA FOR STACKED SIGNALS
	SIX	DATPI	POINTER TO SIGNALS
	LOX	LSTARTC	START OF MEM SECTION TO BE CLEARED
	LDAA	(0=30	NO. OF BYTES TO BE CLEARED IS 48
	JSR	CLRMEM	CLEAR STORAGE AREA FOR TRANS RESULTS
	LDX	ESTARTC	DEF. STORAGE AREA FOR
	STX	STORAR	COS TRANS RESULTS
	LDX	[COSTOP	4
	STX	TAELEP	DEFINE TOP AND BOTTOM
	LDX	[COSBOT	# OF TRANS CON TABLE
	STX	TAELEB	FOR COS TRANS
	BSR	TRNSFM	DO COS TRANS
	ΓDΧ –	[DATA	
	STX	DA TP T	
	LDX	ESTARTS	DEF. STORAGE AREA FOR
	STX	STORAR	SIN TRANS RESULTS
	LDX	ESINTOP	4
	STX	TAELEP	* SAME
	LDX	[SINBOT	# FOR SIN TRANS
	STX	TAELEB	4
	BSR	TRNSFM	DC SIN TRANS
	JSR	PHSCCR	CALCULATE PHASE CORRECTION
	CĻR	DIVTEN	SET DIVIDE BY 10 FLAG TO ZERO
	JSR	TEST81	TEST SWITCH 1
	8N E	RECT	IF ON SKIP RECT TO POLAR CONVERSION
	JSR	POLAR	CONVERT TO POLAR COORDINATES
	INC	DIVTEN	SET DIVIDE BY TEN FLAG TO 1
FECT	LDX .	[PHSSTP	
	STX	BCCOUT	+
	LDX	[STARTS	
	STX	BNIN	
	JSR ·	CNVRT	BINARY TO BCD FOR SINE
	CLR	DIVTEN	CLEAR DIVICE BY 10 FLAG
	LDX	CAMPSTR	IDENTIFY OUTPUTS AND INPUTS
	STX	BCCOUT	e 🖶 👘 👘
	LDX	[STARTC	• • · · · · · · · · · · · · · · · · · ·
	STX	BNIN	+
	JSR	CNVRT	BINARY TO BCD FOR COSINE
	JSR	MPRINT	*
NOOP	DIC		

** PERFOR	MS SINE	OR CCSINE	TRANSF CRM ++	
TRNSFM	JSR	CONTRL	SET COUNTER INCREMENT (CNTINC) AND SET	CNLPPT
	ØSR	LOAD	TAELEP TO ACC + BACK SET	
	SUBB	CNTINC	• TABLE	
	SBCA	C G = O O	* POINTER	
	esR	STCRE	ACC TO TABLEP •	
TRNLP	BSR	LOAD	TAELEP TO ACC + ADVANCE	
	ADDB	CNTINC	• TABLE	
	ADCA	r n = n n	POINTER	
	BSB	STORE	ACC TO TABLEP *	
		TARIER	PECET	
	INAR	TABLED	• CONSTANT	
	SURD	TAELEDIA	A DOTATED	
	5000	TACLEPTI	A TE	
	SOCA	TREEF	A COCATED	
	803	TRN1	THAM	
P DALA	BRA	IRNZ	A DECET A FAID OF	
TRN1	BSK	LUAU	THE REAL	
	SOBB	10280		
	SBCA	[0200	• POINTER •	
	BSR	STORE	• •	
TRN2	JSR	SETMLT	SET UP AND MULTIPLY	
	DEC	CNLPPT		
	ENE	TRNLP		
	JSR	NOFM	NORMALIZE TRANS RESULTS FOR 64,16,4 PTS	/CYC
	RTS			

÷

7

\$

## SETS	SIZE FOR	COUNTER INCREMENT	FOR USE	IN	SELECTING	CONSTANTS	##
** FROM	SINE AND	COSINE TABLE.					##
CONTRL	LDAA	PTSCYC					
	STAÅ	CNLPFT					
	JSR	HRMCK					
	LDAA	PTSCYC					
	LDAB	[0=40					
LP1	LSRA						
	LSRB						
	CHPA	5 0 E 0 2					
	ene	LP1					
	LDAA	HRMNIC					
LPZ	CMPB	(0=01					
	8E Q	OUT					
	ASLA						
	LSRB						
	BRA	LP2					
001	STAA	CNTINC					
	RTS						

** LOAD POINTER INTO ACC A AND B LOAD LDAA TAELEP LDAB TAELEP+1 RTS ** STORES ACC A AND B INTO POINTER ** STORE STAA TABLEP STAB TAELEP+1 RTS

** SETS	UP AND	MULTIPLIES	DATA FOR 6 CHANNELS **
SETHLT	LDX	STORAR	RESET POINTER TO TRANSFORM STACK TC
	STX	STRPT	POINT AT CH 1 SIN OR COS.
	LDX	TAELEP	LOAD ADRS OF CONSTANT
	LDX	00+X	* LOAD CONSTANT INTO MULTIPLICAND FOSITION
	STX	XX	• (NOT DESTROYED AFTER MULTIPLY)
	LDAA	C 0 3 0 6	SET CHANNEL COUNTER
	STAA	CHCNT	•
CHANLP	ESR	DATSET	
	JSR	MULT16	
	BSR	EXPSHF	
	8SR	ADTFSK	
	DEC	CHCNT	♣
	ENE	CHANLP	DEC CHANNEL COUNTER
	RTS		

*** SUBROUTINE	ADD. TO	TRANSFORM STACK +++
ADTESK LOX	STPPT	LCAD STORAGE AREA POINTER
LDAA	U+3	
ADDA	3•X	
STAA	3•X	
LDAA	U+2	
ADCA	2.X	
STAA	2.X	
LDAA	U+1	
ADCA	1 . X	
STAA	1.X	
LDAA	U	
ADCA	0 , X	•
STAA	0, X	
JSR	INX4	SET ADRS OF STORAGE AREA POINTER TO NEXT CH
STX	STRPT	
RTS		
BE CET UN DATA	31A3 11C C/	

++ SET	UP	DATA	VALUE FOF	NULTIPLY **
DATSET		LDX	DATPT	LCAD ADRS OF STACKED DATA
		LDX	00,X	* PUT DATA FROM CH N (MS 16 BITS) INTO
		STX	Y	MULTIPLIER POSITION FOR SUB MULT16
		LDX	DATPT	RELOAD ADRS OF STACKED DATA
		JSR	INX4	POINT INDEX AT DATA FOR NEXT CH (N+1)
		STX	DATPT	STORE ADRS OF NEXT DATA VALUE
		RTS		

** EXPAND PRODUCT OF FULTIPLY BY SHIFTING TO RIGHT ** ****** THIS MAKES ROOM FOR STACKING 64 VALUES EXPSHF LDAB [0:05 ASR U SHFLP U+1 FOR ROR U+2 ROR U+3 DECB BNE SHFLP RTS ** ROUTINE CLEARS UNLIMITED SECTIONS OF MEM ** ** INDEX MUST CONTAIN STARTING ADRS . ** SRTCH1 MUST BE NO. OF BYTES TO BE CLEARED. DATPT CLRM2 STX DATPT CLRMLP LDX CLR 00,X INX STX DATPT SRTCH1 LDX DEX SRTCH1 STX ENE CLRMLP RTS ** INDEX MUST CONTAIN STARTING ADRS / ACC A MUST CONTAIN NO. OF BYTES TO ** BE CLEARED. CLRMEM CLR 00,X INX DECA DEC COUNTER ENE CLEMEN LOOF RTS ** SELECTS MAXIMUM FOINTS PER CYCLE POSSIBLE ** PIAA4 * PTSSET LDAF CMP4 (OEOA * BCS PTSERR LEADING ZERD FOUND ERROR LDAA (E0 LDAG CC0 **BSR** COMPAR * BMI PTS64 BRA • PERIOD TOO LARGE PTSERR PTS64 LDAA **(**64 PTSCYC STAA * LDAN . **[E1**] LDA9 [CC1 * BSR COMPAR . BMI PTS16 BRA SETFL 64 HIS/CYC PTS16 LDA4 [16 . STAA PTSCYC # LDAA **[E2**] # LDAB [CC2 **BSR** COMPAR BHI PTS4 **BRA** 16 PTS/CYC STF12 PTS4 LDAA 14 STAA FTSCYC LDAA (E3 ٠ LDAB [CC3 #

++ NEXT 6 ++ FLAG12 STF12	BSR BHI Lines Is Cle LDX STX LDX STX	COMPAR PTSERR SET UP FOR 1 AREC IE 8 E [0=8060 DTFTCH [DPSHT+768 PSHBCT	 PERIOD TOO SMALL PTS/CYC. THESE VALUES WILL BE USED IF ** IT ADC WORD SIZE IS USED ** 128. 96 DEC OR 80. 60 HEX DTPTCH. PTCYCH DEFINE BOTTOM OF DATA COLLECTION AREA
• NEXT SI	STX LDAA CMPA BEQ K LINES	DATAB DATAB (16 PTSCYC SETFL FOF 4 PTS/C	 BOTTON OF STACKING AREA IF PISCYC = 16 SKIP NEXT SECTION YC WITH 8 BIT ADC WORDS •
	LDX STX LDX STX LDX STX	(0=2618 DTFTCH (DFSHT+192 PSHB0T (DATA+92 DATAB	32, 24 DEC OR 20, 18 HEX DTP TCH, PTCYCH * DEFINE BOTTOM OF DATA COLLECTION AREA • BOTTOM OF STACKING AREA
SETFL	CLR LDAA LDAB ESR ENI	FL AG12 IE4 ICC4 COMPAR ADC8	CLEAR FLAG FOR 8 BIT ADC WORDS 50HZ CHANGE OVER POINT
ADC8 PTSERR	RTS LDAB JSR	LOBB ERROR	DISPLAYS H3

++ COMPA	RE PERI	0DS **	
COMPAR	STAA	EXPA	· · ·
	STAB	COEB	
	LDAA	PIAB4	READ EXP
	ANDA	[0=70	
	CMPA	EXPA	
	BHI	GTHAN	ACC > M
	BCS	LTHAN	ACC < M
	LDAA	PIAA4	READ COEF
	CHPA	COEB	
	EHI	GTHAN	ACE > M
	BCS	LTHAN	ACC . M
	CLRA		* EQUAL
	RTS		
LTHAN	LDAA	06203	• LESS THAN
	RTS		
GTHAN	LDAA	[0≘01	* GREATER THAN
	RTS		
	175 19/	NCEADN GEC	III TS EAR GA AG AR AR ADATATS ADATA S AN
NOPH		ANDEVEN KED	ULIS FUR 049 109 UK 4 PUININ/UTULE **
	LDAA	DTSOVO	•
	CMOA	F13010	- #
	UNTA	トレニサリ	•

UNTA LUE	4U T				
BEQ NRE	ND + 6 4	PTS/CYC US	SED NORMALI	ZATICN NCT	NEECED
ASLA	• [DETERMINE	NO. OF SHIFTS	S	
BNI NOR	M1 * N	EEDED TO	NORMALIZE		

NORMO

	INCB		TRANSFIRMED VALUES,
	er A	NORMO	• STORE NO. IN NOSHF.
NORM1	STAB	NOSHF	
		STORAR	SET CH COUNTER
NI 0021	LUTE	NOSHE	I CAD NO. DE SHIFT COUNTER
NLOOP2	ese	SHIFTL	4 BYTE TIMES 2 MULT.
	DECB		DEC NO. OF SHIFTS COUNTER
	e ne	NLCOP2	
	JSR	INX4	SET INDEX TO NEXT VALUE IN DATA SET
	DECA		DEC CHANNEL COUNTER
	ENE	NLCOP1	
NREND	HL2		
SHIFTL	ASL	3.X	
	ROL	2•X	
	ROL	1,X	
	RUL	U y A	
	NI J		
AA 0000501			DTCDIAVACIE EODM HH
TT CUNVER	I DINAR'	I RESULIS IL	UISPEATABLE FURH
	STAA	CHENT	
CNVLP	ESR	BCCCON	
	TST	DIVTEN	TEST DIVID BY TEN FLAG
	BEQ	SKIPHV	
	JSR	MVDEC	MOVE DECIMAL PT.
SKIPMV	JSR	INX4	POINT TO NEXT SET OF DECIMAL OUTFUT LOCATIO
	SIX	BCDUUT	A DOTHT TO NEVT SET OF DINADY
			TUDIT IC NEXT SET OF DINART
	STY	BNTN	A TREDI CCATIONS
	DEC	CHCNT	
	ENE	CNVLF	LOOP 6 TIMES
	RTS		
** MAIN RO	DUTINE P	REPARES BINA	RY DATA FOR DISPLAY AS BCD VALUES **
BCDCON	BSR	BCDPT1	DO PART 1
	BJK BIC	BCLP 12	DU PART 2
	KI3		
PREPARE	S BINAN	ACCOLA	DISFLAY AS SIGNED 4 DIGIT BCD VALUE **
80002	LUVU LUVU	112	O PART 1 O SHTET & BYTES 12 BTTS DTCHT
	ECRU ESR	SHRLE	A
	LDAA	to zo F	* BLANK LEADING ZERO
	STAA	01,X	AND ALL DECIMALS
	LDAA	SRTCH2	*
	STAA	00 • X	* LOAD SIGN
	LDAA	02.X	BLANK SECOND ZERO IF PRESENT
	BITA	LUEFO	▼
		0.001 10=E0	• •
	STAA	12.X	
BCOUT	RTS		FCRMAT (- XXXX)

ŝ

۲,

4

6

BCOUT

****** CONVERTS BINARY DATA TO BCD FOR DISPLAY (PART 1) ****** BCOPT1 CLRS NC MINUS SIGN . LDX BNIN LDAA ٠ LOAD BINARY DATA, 4TH BYTE NOT USED 02.X STAA D1 ***LS BYTE** 01.X LDAA STAA ð D2 ۲ LDAA 00,X 03 STAA ***NS BYTE** BPL POSIT TEST FOR NEG BINARY VALUE NEGATE NEG BINARY VALUE COM D3 COM 02 COM 01 • COE02 SET NEGATIVE SIGN LDAB SAVE FOR LATER POSIT STAB SRTCH2 BINARY TO ECD ROUTINE JSR BINBCC LDX BCCOUT LDAA OUT1 LSD STAA 03.X . STORE DECIMAL RESULTS # LDAA OUT2 ۲ STAA 02.X . LDAA OUT3 STAA . 01,X LDAA CO=40 SET 3FD DECIMAL (X X.X X X) LDAB OUT4 . ANDB (050F . STAB 00.X MSD RTS ** CONVERTS BINARY DATA TO BCD FOR DISPLAY (PAPT 2) ** BCDPT2 ENE ELARG * NO LEADING ZERO LDAB 01.X . ¥ ANDB (0=F0 • NEXT DIGIT IS NOT A ZERO - BRANCH BNE EMED LDAB 4 01,X ANDB 10 20 F ¥ BNE NOZERO TEST FOR LEADING ZERO **CRA8** (010F # BLANK LEADING ZERO STAE 01.X . NOZERO BRA BSML SHALLEST NO. SHIFT RIGHT BLARG **e**sr SHR44 LSRA SHIFT DECIMAL BNED **BSR** SHR44 LSRA SHIFT DECIMAL BSML ORAA 01.X STAA 01.X ADD DECIFAL POINT LDAA SRTCH2 STAA 00.X LOAD SIGN RTS SHR44 LDAB (0±04 SHIFT 4 BYTES 4 PLACES RIGHT SHRLP LSR 00,X ROR 01,X FOR 02,X ROR 03,X DECB BNE SHRLP RTS

** CALCULATES PHASE CORRECTION IN TENTHOUSANDTHS OF DEGREES **

++ DUE Phscor	TO	TIME LDAB LDAA	SAMPLING (0=40 PTSCYC	SKEW	••
PHLP		LSRB	10-01		
		ENE	PHLP		
		LOAA	HRMNIC		
		STAA	¥+1		- LOAD NARMONTO NO. TNTO MULTTREY ROSTITON
		STAR	¥X+1		- FORD HARMONIC HOS THIS HOFIT'S LOSTITUM
		CLR	XX		
		JSR	MULT16		
		LDX	U+2 Y		
		LDX	(0=249F	•	• LOAD CONSTANT FOR MULTIPLY (0.9375 DEGREES)
		STX	XX		
		JSR	MULT16		
		STX	PHS2		
		LDAA	U+1		
		STAA	PH S1		
		LDX	[PHS1		* CONVEPT BINARY PHASE TO BCD
		STX	BNIN		
		LDX	[PHS10		
		STX	BCCOUT		
		J2K	BULUN		NOVE DECTNAL (1/10) DECHUTS ARE IN DEGREES
		RTS			HOVE DEGIMAL (1/10/ RESOLITS ARE 10 DEGREES
MVDEC		LDAA	61.,X		ROUTINE HOVES DECIMAL PT TO LEFT
		ANDA	[0=F0		
		ASLA	- · · ·		MOVE DEC PT LEFT
		LDAB	01,X		
		ANUB	CU EU F		* KECUMBINE
		STAA	01.X		RELOAD DECIMAL PT
		RTS			
DISPHC		LDX	[PHS10		DISPLAY PHASE CORRECTION
		JSR RTS	LCDDIS		

.

++ HARYO	NIC SIZE	CHECK **
HRMCK	LDAB	HRMNIC
	LDAA	PTSCYC
	LSRA	
	CBA	
	800	HR HOK1
	LDAB	(0=B2
	JSR	ERROR
HRMOK1	RTS	

- - - - -

++ DIS	SPLAYS ERROR	SYMBOL	(ACCB)	AND	HALTS	PROGRAM	##
ERROR	JSR	CLRDIS					
	STAB	PIA81					
ESELF	8R A	ESELF					
	RTS						

** ENTER	HARMONI	C NO.	44				
HRMSLT	LDAB	HAFM10					
	JSR	DISDG2					
	JSR	EN TOS2					
	STAA	HARM10					
	TAB						
	JSR	DI SDG2					
	JSR	BCCBN2					
	STAB	HRMNIC					
	JSR	HRMCK					
	JSR	PHSCOR		CALCU	LATE	PHA SE	CORRECTION
	RTS						

** DISPLAYS THO DIGITS IN ACC E ON LCD FORMAT (E B O 2.8 B) E=ELANK ** DISDG2 JSR CLELIS STAB PIAB1 LDAA [OE2F STAA PIAA2 RTS

** CONVERTS 2 DIGIT BCD VALUE IN ACCE TO 8 BIT BINARY VALUE IN E ** BCDBN2 TBA ANDB 1030F LERA LS 1 LSKA LSRA BE Q BCCRTS BCOLP ADDB (O E O A DECA BCELF BNE BCORTS RTS

** ENTERS AND DISPLAYS TWO CIGIIS ** ENTDS2 JSR SCNKEY • 8E Q LASTOG STROVR JSR NCCDE LDX [PIA81 LDAB LOEFF STAB 0,X JSR STDIG1 **BEQ** LASTCG NCCDE **JSR** LDX [PIAE1 **JSR** STCIG2 PF Q LASTEG

81

LASTOG	BRA LDAA Rts	STROVR PIAB1	
* ROUTINE PTSCON	SETS LDAB LDAA CMPA BCS LDAB	THE PRE AND (0=00 (0=10 PTSCYC FCSET (0=04	FOST COUNTERS ON TIMING BOARD • 64 PTS CONTROL BITS = 16 PTS/CYC (64) 16 PTS CONTROL BITS
PCSET	CHPA EEQ LDAE LDAA ANDA ABA STAA ETS	PTSCYC PCSET (0:08 PIA84 (0::F3 PIA84	<pre>(16) 4 PTS CONTROL BITS • SAVE OTHER BITS * AND ADD PTS/CYC • CONTPOL BITS * (CONTROL BITS ARE 82,83)</pre>
++ DISPL	AYS AN	D ALLOWS ENT	ERING OF ROTACC **
** CONTROL	S ARC	TAN ACCURACY	TABLE FOLLOWS **
PA ROTACC	= 3 R	ESULTS IN .0	18 DEG ACCURACY, TIME 1 SEC CHAN. **
CROTAC		ESULIS IN .U	JITS DEG AUGURAUT, TIME ID SELVUNAN V
	BSR	DIS2	
	LDAB	ROTACC	
	CMPB	C 0 = 0 2	
		50±03	
CROT1	CMPB	r0=07	
	BLS	CROT2	
	LDAB	(OE07	
CR012	STAB JSR RTS	ROTACC CISDG2	
* DISPLAYS NCHNLS	S AND LDX BSR	ALLOWS ENTER (NCHPR DIS2	ING CF CHANNEL NO T LOAD ADRS OF NO. OF CH OPERATED ON AND PPINTER
	LDAA	NCHPR	
	DECH	105	TEST FOR CH NO. OUTSIDE RANGE OF 1 TO 6
	RHT		- ▼
	RTS	1011200	OK WITHIN FANGE
N CHLD6	LDAB	(06	OUTSIDE RANGE LUAD IN 6
	STAB RTS	NCHPR	
* DISPLAYS	AND	ALLOWS ENTER	ING OF STATION NO.
STATNO	LDX	ENSTN	* LOAD ADRS OF STATION NO.
	BSR Rts	DIS2	DISPLAY AND ENTER VALUES

,

¥

ESR DISZ RTS

** GENERAL	ROUTIN	NE FOR DISPLA	A VING AND ENTERING 2 DIGIT NO. **
DIS2	STX	TAELEB	
	LDAB	00,X	LCAD VALUE TO BE DISPLAYED
	JSR	DISDG2	DISPLAY 2 DIGITS
	JSR	ENTDS2	ENTER 2 DIGITS
	LDX	TAELEB	\$
	STAA	00,X	* STORE NEW VALUE
	TAB		
	JSR	DI SDG2	
	RTS		

PHRON LDAA PIAB2 * TURN PRINTE	R POWER ON
ORAA (0=50	
STAA PIAB2 +	
LDX [0=3402 * DELAY 201	MS
JSR DELAY3 4 (AT 1000)	HZ CLOCK)
RTS	

## CONTRO	LS PARI	AMETER PRINT	SEQUENCE **
MPRINT	BSR	PHRON	TURN PRINTER POWER ON
	BSR	BL AN K	
	BSR	DFIDIS	PRINT COS AND SIN
	LDAB	HARM10	•
	JSR	DISDG2	PRINT HAFMONIC NO.
	BSR	PRNT	•
	JSR	DISPER	4 PRINT PERIOD
	BSR	PRNT	4
	JSR	DISCYC	PRINT NO. CYCLES
	BSR	PRNT	•
	JSR	DSTNRN	PRINT STATION (MD RUN NO.
	BSR	PRNT	•
	BSR	BLANK	
	BSR	PWROFF	TURN PRINTER POWER OFF
	RTS		

# #	TURN	PRINTER	POWER OFF	44				
PWF	ROFF	LDAA	PIA82	•				
		ANDA	[O EBF	٠	TURN	POWER	OFF	
		STAA	PIAB2	#				
		RTS						

++ PRI	NTS VALUE	DISPLAYED	ON	LCD ##
PRNT	LDAA	PIA82		•
	ORAA	[0=20		# PRINT LINE HIGH = PRINT
	STAA	PIAB2		* 1
	LDAA	PIAB2		4
	ANDA	(OEDF		* PRINT LINE LOW
	STAA	PIAB2		4
BUSY	LDAA	PIAB2		+
	ANDA	€ 0 <u>=</u> 0 8		TEST BUSY LINE
	EN E	BUSY		•
	RTS			

BLANK	JSR BSR RTS	CLFDIS PRNT	•	PRI	NT	A E	LANK	\$		
** ROUTINE		S VALUES POI	NTE	C A	T 8'	ΥĪ	NDEX	RE	5. ++	
TPRINT	JSR	LCCDIS								
	JSR RTS	PRNT								
					•					
** ROUTINE	PRINTS	S COS AND ST	N T	RAN	SFO	FM	RE SU	LTS	# #	
DFTDIS	LDAA	NCHPF	۲							
	CMPA	[01	۲	SEL	ECT	NC	OF	CH.	TO BE	PRINTED
	ee q	CHAN1								
	CMPA	[02								
	CHRA	CHAN2	-							
	PED	CHAN3	•							
	CMPA	[04	#							
	EE Q	CHAN4	#							
	CMPA	[05	۲							
	8EQ	CHAN5	۲							
CHANG	LDX	[PHSSTR+20								
	esr	TPRINT								
	LDX	CAMPSTR+20								
OUTNE	BSR	TPRINT								
GRAND		TEDINT								
		TAMPSTR+16								
	BSR	TPRINT								
CHAN4	LDX	[PHSSTR+12								
	BSR	TPFINT								
	LDX	[AMPSTR+12								
	BSR	TPRINT								
CHAN3	LDX	[PHSSTR+8								
	esr	IPRINI (ANDETDAR								
		LAPPSIK+0								
CHAN2		PHSSTR+4								
UNANE	BSR	TPETNT								
	LDX	[AMPSTR+4								
	B SR	TPRINT								
CHAN1	LDX	[PHSSTR								
	esr	TPRINT								
	LDX	LAMPSTR								
	BSR	TPFINT								
	K12									
** ROUTINE	TRANSF	ORMS AND PEI	NT	S AL	.L H	AFI	IND	cs	**	
++ BEGINN	ING AI	HARMCNIC NO.	H	RMNI	C				**	
PRTALL	esr	TRSET								
	BEQ	POUT1	IF	ZEF	KO 8	RETU	JRN			
	50 A	DDTAIL								
	UINA	F (() M 6 6								
** ROUTINE	TRANSF	ORMS AND PRI	NT	S EV	ERY	r 01	HER	HAR	MONIC	**
** BEGINNI	NG AT H	ARMONIC NO.	HR	MNIC	;		•			**
PRTEVO	esr	TRSET								
	DECA					_				
	BLE	POUT1	IF	-1	OR	0 5	RETU	RN		
	R2K	HMSET								

	BRA	PRTEVO				
TRSET	JSR	HRMCK				
	JSR	SINCOS				
	LDAA	HRHNIC				
	DECA					
	RTS					
HMSET	STAA	HRENIC				
	JSR	BNBCD2				
	STAA	HARM10				
POUT1	RTS	·				
++ CONVER	TS 1 BY	TE BINARY TO	2 DECIMAL	(HAX VALU	IE IS 99)	
BNBCD2	CLRB					
ADD10	ADDB	(0=10				
	SUBA	COEQA				
	BCC	ADD10				
	SUBE	10110				
	AUUA	(UEUA				
	RTS					
		NCC 46 DTT 1		TH 32 BTT 0		STEN ATTS ##
44 25 GUH	λ τ ί μ το ίτ:	46 IL IL IL	NULTIPLICA		OT DESTROYED	
++ Y.Y+	1	ÎS	MULTIPLIER			
+++ U.U	- +1,U+2,(U+3 IS	PECDUCT			
MULT16	LDX	CO20005				
	CLRA					
HLP1	STAA	XX+1•X				
	DEX	·				
	ENE	MLP1				
MI D2		(050010				
nura		[01				
	TAB					
	EORA	FF				
	BEQ	SHIFT				
	TSTB					
	BEQ	ADD				
		U+1				
	SUBA	XX+1				
	SACA	XX				
	STAA	U+1				
	STAB	U -				
	BRA	SHIFT				
ADD	LDAA	U+1				
	LDAB	U				
	AUUA	XX+1 VV				
	STAA	AA U+1				
	STAB	U				
SHIFT	CLR	FF				
	ROR	Y				
	ROR	Y+1				
	ROL	FF				
	ASR	U				
	ROR	U+1				
	RUK	UTC				

_ - - -

ROR U+3 DEX BNE MLP2 RTS

44 3 BY TE	E BINAR	Y TO 7 DIGI	T BCD CONVERSION INPUT D3,D2,D1	** **
	1.07	10134001241		
PINDCO		RINCON	LOUDDUD LOAD CONSTANT INTO CR	
0714	036	BINGUN	SUETDACT	
OTHI	956	DINJUD DINJUD	JULINAUI	
	850	OTNA OD	ADC	
	STAA	AUT4		
	LOY	10115	100000	
	800	BINCON	LCAD CONSTANT INTO CB	
BTN2	RCD	BINGUN		
DANE	800	BTN2		
	850	RTNEFT		
	STAA	01173		
	107	r C 106		
	ACD.	RINCON		
BTN3	ASR	BINSUB		
04110	BCC	BIN3		
	ASR	BINAND		
	ADDA	0013		
	STAA	0013	·	
	LDX	£C103	1000	
	BSR	BINCON		
BIN4	ESR	BINSUB		
	BCC	BIN4		
	esr	BINSET		
	STAA	OUT2		
	Enx	[C102	1 00	
	BSR	BINCON		
BIN5	BSR	BINSUB		
	BCC	BIN5		
	8SR	BINADD		
	ADDA	OUT2		
	STAA	OUT2		
	CLR	SUBT		
	LDAA	(0 E 0 A		
	STAA	Ċ1		
BIN6	BSR	BINSUB		
	BCC	BIN6		
	8SR	BINSET		
	ADDA	D1		
	STAA	0UT1		
	RTS			
** COMPON	ENT OF	BCD CONVERS	SION ROUTINE **	
BINCON	CLR	SUBT		
	LDAA	00,X		
	STAA	C3	MS BYTE	
	LDAA	01,X		
	STAA	C2		
	LDAA	02,X	LS BYTE	
	STAA	C1		

ä

4

r Haranal RTS

** COMPONENT OF BCD CONVERSION FOUTINE ** BINSUB INC SUBT BSR SUB3 RTS

** COMPONENT OF BCD CONVERSION ROUTINE ** BINADD BSR ADD3 LDAA SUBT DECA RTS

** COMPONENT OF BCD CONVERSION ROUTINE ** BINSET BSR ADD3 LDAA SUBT DECA ASLA ASLA ASLA ASLA RTS

##	CONSTAN	IT TABLE	FCR	BINARY	TO	8 C D	CONVERSION	##
C10	6	CON	DECF.	0 = 42 . 0	Ξ40			1000000
C10	5	CON	0201,	0 = 86 • 0	EAO			100000
C10	4	CON	0ΞC0,	0.27.0	Ξ10			10000
C10	3	CON	0 Ξ 0 0 ,	0=03,0	EE 8			1000
C10	2	CON	0200,	0 200,0	E64			100

** 3 BYTE ADD FOR BCD CONVERSION ROUTINE ** ADD3 LDAA D1 ADDA C1 STAA D1 LDAA D2 ADCA C2 STAA D2 LDAA D 3 ADCA C3 STAA 03 RTS

** 3 BYTE SUBIF.ACT FOR BCD CONVERSION ROUTINE ** SUB3 D1 LDAA SUBA C1 STAA D1 LDAA D2 SBCA C2 STAA D2 LDAA D 3 SBCA C3 STAA D3 RTS

CALLED I	BY KEYS BSR	RUN 1 TESTB4	. IF SWITCH & SET DO NOT ACQUIRE DAT
	EN E	KYOUT1	¥
	8SR	ACQDAT	ACQUIRE A DATA SET
	JSR	SINCOS	TRANSFORM AND PRINT UNE MARHUNIC
	011C	IESIBS	A TE CET DEDEAT SEMIENCE
	ENE	AIPUNE	TF SEI REFEAT SEQUENCE
KTUUII	RIS		
· ACQUIRE	S. TRANS	SFORMS AND P	FINTS EVERY OTHER HARMONIC
• CALLEI	D BY KEY	rs RUN 4	A TE DATA ODOTEOT TO ON ATH
ATPEVO	USK	152184	TF UATA PROTECT 15 ON RIN
	202	ACOY	ACQUITEE A DATA SET
	JSR	PRTEVO	TRANSFORM AND PRINT RESULTS
	BSR	HRSET	* RESET HARMONIC NO. AND TEST
	ENE	A TPE VO	* REPEAT SWITCH (3)
KYOUT4	RTS		
	TOANCE		AT ALL HADMONTOS #
	88 KEA2	S RUN 7	A) ALL HARNCRIGS
ATPALL	BSR	TEST84	• IF DATA PROTECT IS ON RTN
	ENE	KYOUT7	•
	BSR	ACQX	ACQUIRES A DATA SET
	JSR	PRTALL	TRANSFORM AND PRINT RESULTS
	BSR	HR SE T	• RESET HARMONIC NO. AND TEST
	BNE	ATPALL	* REPEAT SWITCH (3)
KYOUT7	RTS	4	
ACOX	LDAA	HRMNIC	* SAVE HARMONIC NO.
	STAA	HSAVE	· #
	BSR	ACQDAT	ACQUIRE A DATA SET
	RTS		
HRSET	LDAA	HSAVE	• RESET HARMONIC NO.
	JSK	HMSEI	TECT BEDEAT CLITCH
	B2K DTC	152183	IEST REPEAT SWITCH
	F13	a la	
* TEST SWI	TCH 1	•	
TEST81	LDAA	PIAB3	READ MODE SWITCH
	ANDA	C 0 1 0	MASK OUT ALL BIT SWITCH ND.1
	RTS		
		_	
• TEST SHI	TCH 4	•	
TEST84	LUAA	P1A83	READ MODE SWITCH
	ANUA	[U = 0 U	ASK UUT ALL BUT SHITCH NU. 4
	RIS		
+ TEST SH	ITTCH 3	4	
TESTB3	LDAA	PIAB3	READ MODE SWITCH
	ANDA	(0=40	MASK OUT ALL BUT SHITCH NO. 3
	RTS	-	
		D / DTTO TH	
TT UIKCULA	ROPR	U 4 BITS INT	IU AUU A. TT
	RORA		
	RORB		
	FORA		

RORB RORA RORB RORA RTS ** MASTER ACQUISITION ROUTINE FOR 64 16 4 PTS/CYC ** ACQDAT JSR CLFDIS LDAA CYCAVG . STAA DISPLAY NO. OF CYCLES AVERAGED PIAA1 LDAA PIAB4 READ PERIOD EXP ANDA [0=70 READ PERIOD COEFFCIENT LDAB PIAA4 BSR CIRCULATE E 4 BIT INTO A RORBA ORAB TOEAD * SET 2ND AND 4TH DECIMAL PT STAB PIAA2 STAA PIAB1 LDAB FLAG12 EQ 1 FOR 12 BIT ADC WORDS • SELECT ACQUSIT. ROUTINE AS FN OF ADC WORD SIZE ee q BRAC1 **JSR** DTAQ64 FOUTINE FCR 64 OR 16 PTS PER CYCLE BRA BRAC2 BRAC1 ROUTINE FCR 4 PTS/CYC **JSR** DATAQ4 BRAC2 LDAB 120 ADL P1 • CALL BEEP 20 TIMES **JSR BEEP** DECB ADLP1 ENE **JSR** CLRDIS CLEAR DISPLAY LDAA NRUN ADDA [01 THIS ADD SETS HALF CARRY FLAG DAA STAA NRUN **# INCREMENT RUN NUMBER** NOACQ RTS ** MASTER ROUTINE FOR 64 OR 16 PTS / CYCLE ** ** WITH 12 BIT ADC WORDS DTAQ64 LDX • NO. BYTES TO BE CLEARED [1536 STX SRTCH1 LDX [DATA LOCATION OF DATA TO BE CLEARED JSR CLEMZ CLEAR MEMORY SECTION LDX NCYCLE . SET NO. CF CYCLES TO BE AVERAGED STX SRTCH1 # BSR AQ1664 ACQUIRE DATA LOX # =64#6 (64 PTS/CYC) [0384 **DT64** STX *NO. OF 4 BYTE WORDS TO BE NORMALIZED SRTCH1 LDX **#DEFINE LOCATION OF DATA** EDATA STX DATPT . **JSR** ADJUST NORMALIZE RTS *** ACQUISITION ROUTINE FOR 16 AND 64 POINTS PER CYCLE . *** ** WITH 12 BIT ADC DATA VALUES. *** AQ1664

CLR PIAA5 SELECT CH 0 PIAB3 LDAA READ MODE SWITCH LDAB PIAB4 CLEAR CYCLE PULSE BY READING PIA LDA8 PIA85 CLEAR SAMPLE PULSE ANDA MASK ALL BUT MODE 2 BIT (0=20) 8E Q AQQ2 IF MODE 2 NOT SET LOOK FOR CYCLE FULSE

AQQ1	LDAA BPL	CPIAB5 A0G1	♥ WAIT FOR SAMPLE PULSE FOR CH 0 (DOWN GOING)
	BRA	AQQ3	SKIP WAIT FOR CYCLE PULSE
AQQ2	LDAA BPL	CPIA84 Aqq2	<pre># WAIT FOR CYCLE PULSE # (OCCUPS SAME TIME AS SAMPLE PULSE CH 0)</pre>
AQQ3	LDAA	PIA85	CLEAR SAMPLE PILSE
	INC	PIAAS	SELECT CH 1
CYLOOP	LDX	SR TCH1	4 (MACHINE CYCLES) TEST CYCLE COUNTER
	BEQ	AQFIN	4 IF ZERO RTS
	DEX		4 • DEC AND STORE CYCLE COUNTER
	STX	SRTCH1	5 *
	LDX	CDATA	3 ADRS OF 1ST VALUE IN DATA STACKING AREA
	LDAB	PTSCYC	3 SET LOCP COUNTER B TO NO. PISZCYC 16 UR 64
CHLOOP	BSR	ACQSIK	IUI WALL FOR SAMPLE PULSE UN INREAU UN M
	INC	PLAAS	D SELECT OF C
	DOK DOK	PTALES IN	SELECT CH 3
	140	ACOSTK	101 WATT FOR SAMPLE PULSE CH 3. READ CH 2
	TNC	PTAA5	6 SELECT CH 4
	BSR	ACQSTK	101 WAIT FOR SAMPLE PULSE CH 4, READ CH 3
	INC	PIAAS	6 SELECT CH 5
	BSR	ACQSTK	101 WAIT FOR SAMPLE PULSE CH 5, READ CH 4
	CLR	PIAA5	6 SELECT CH D
	BSR	ACQSTK	101 WAIT FOR SAMPLE PULSE CH 0, READ CH 5
	INC	PIAA5	6 SELECT CH 1
	DECB		2 DEC PTS/CYC COUNTER (16 DR 64)
	BE Q	CYLOCP	4 IF ZERO START NEW CYCLE
	ERA	CHLOOP	IF NOT 0 GO THROUGHT CH SEQUENCE ONCE MORE
AQFIN	RIS		
₩ ROUTINI ## FOUR 8 ACQSTK	E ACQUIS BIT BY LDAA EPL LDAA	SITION AND S Tes. Require: CPIAE5 Acostk PIAA5	TACK - STACKS ONE 12 BIT WORD FRCM ADC INTO ** S 101 MACHINE CYCLES TO CALL AND RETURN. 4 WAIT FOR SAMPLE PULSE FOR CH 1 (DOWM GCING) 4 4 READ LS BYTE FRCM ADC
	ANDA	(0=F0	2 MASK OUT CH ADRS
	ADDA	03,X	5 • STACK IN MEM
	STAA	03,X	6 •
	LDAA	PIAB5	4 READ MS BYTE FROM ADC
	ADCA	02,X	5 STACK IN HEM
	STAA	02,X	
	LDAA	U1,X	5 ADD CARRY TO SRD BYTE
	ADCA	1 (1 1)	2
	CYAA	04 V	
	STAA	01.X	6 4 BRANCH TE CAPPY CLEAD
	STAA BCC TNC	01,X ACSK1 00,X	6 4 BRANCH IF CARRY CLEAR 7 DTHERWISE INC MS BYTE
ACSK1	STAA BCC Inc Inx	01,X ACSK1 00,X	6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 *
ACSK1	STAA BCC INC INX INX	01.X ACSK1 00.X	6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION
ACSK1	STAA BCC INC INX INX INX	01,X ACSK1 00,X	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 •
ACSK1	STAA BCC INC INX INX INX INX	01,X ACSK1 00,X	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 *
ACSK1	STAA BCC INC INX INX INX INX RTS	01,X ACSK1 00,X	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
ACSK1	STAA BCC INC INX INX INX INX FTS	01,X ACSK1 D0,X	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
ACSK1	STAA BCC INC INX INX INX INX FTS	01,X ACSK1 D0,X	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 4 4 POINT INDEX TO NEXT STACKING LOCATION 4 4 4 4
ACSK1	STAA BCC INC INX INX INX RTS	O1.X ACSK1 D0.X	6 4 BRANCH IF CARRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 *
ACSK1	STAA BCC INC INX INX INX RTS ROUTINE	O1.X ACSK1 D0.X FOR 4 PCINT	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * 15 PER CYCLE ** SET NO. OF CALLS TO ACOUST
ACSK1 ** MASTER DATAQ4	STAA BCC INC INX INX INX INX RTS ROUTINE JSR	01,X ACSK1 D0,X For 4 PCINT Nocall 1384	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * IS PER CYCLE ** SET NO. OF CALLS TO ACQUS1 * NO. OF CALLS TO ACQUS1
ACSK1 ** MASTER DATAQ4	STAA BCC INC INX INX INX INX RTS ROUTINE JSR LDX STX	01,X ACSK1 D0,X F FOR 4 PCINT NOCALL I 384 SR TCH1	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * 15 PER CYCLE ** SET NO. OF CALLS TO ACQUS1 • ND OF BYTES TO BE CLEARED *
ACSK1 ** MASTER DATAQ4	STAA BCC INC INX INX INX RTS ROUTINE JSR LDX STX LDX	01,X ACSK1 D0,X For 4 PCINT Nocall I384 Srtch1 IDATA	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * IS PER CYCLE ** SET NO. OF CALLS TO ACQUS1 • ND OF BYTES TO BE CLEARED * STARTING ADRS
ACSK1 ** MASTER DATAQ4	STAA BCC INC INX INX INX RTS ROUTINE JSR LDX STX LDX JSR	01,X ACSK1 D0,X FOR 4 PCINT NOCALL I384 SRTCH1 IDATA CLEM2	6 4 BRANCH IF CAPRY CLEAR 7 OTHERWISE INC MS BYTE 4 * 4 * POINT INDEX TO NEXT STACKING LOCATION 4 * 4 * STARTING ADRS CLEAR STACKING AREA

DATLP

90

×

~

ÿ

4

~

2

Ĵ.

BSR	STACK	NCH STACK DATA
LOX	NTACQ	CEC COUNTER
CEX		•
STX	NT 4CQ	+
ENE	DATLP	
LOX	[0 096	•
STX	SRTCH1	NO. OF 4 BYTE WOPDS TO BE NORMALIZED
LDX	EDATA	4
STX	DATPT	* DEFINE LOCATION OF DATA
JSR	ADJUST	ALJUST DATA FOR NO. OF PTS STACKED
RTS		

## ROUTIN	E FOR	STACKING	8 CYCLES OF DATA AT 16 OR 4 PTS/CYC **
STACK	LDAB	E G 8	* SET LCOP1 COUNTER (8 CYCLES OF DATA)
	STAB	SR TCH2	•
	STS	STORAR	SAVE STACK POINTER
	LDS	t DPSHT	SET STACK POINTEP TO TOP OF NONSTACKED DATA
STKLP1	LDX	DATAB	RESET POINTER TO DATA STACKING AREA
	LDAB	PTCYCH	RESET LCOP2 COUNTER (6 CH AT 4 OR 16 PTS/CYC)
STKLP2	PULA		PULL DATA FROM STACK
	ADDA	02,X	ADD 8 BIT BYTE TO FOUR BYTE WORD
	STAA	02,X	* LS BYTE (03,K) IS NOT USED
	LDAA	01,X	* o
	ADCA	[00]	
	STAA	01,X	\bullet
	ecc	STKB	•
	INC	00,X	*
STKB	DEX		SET TO NEXT DATA STACKING WORD
	DEX		₽
	DE X		4
	DEX		4
	DECB		*
	BNE	STKLP2	• L00P2
	DEC	SRTCH2	4
	ENE	STKLP1	* LOOP1
	LDS	STORAR	RESTORE STACK FOINTER
	RTS		

** ROUTINE	NORMAL	IZES DATA W	ITH NO. OF CYCLES STACKED **
ADJUST	LDAB	CYCAVG	EXP OF 2 BCD
	JSR	BCCBN2	CONVERT TO BINARY
	LDAA	[16	
	SBA		* SET NO. CF SHIFT NEED TO NORMALIZE
	STAA	NOSHE	· •
ADJLP1	LDAB	NUSHF	RESET NO. CF SHIFT COUNTER
	LDX	DATPT	LOAD POINTER TO DATA
ADJLP2	JSR	SHIFTL	SHIFT 4 BATES 1 BIT LEFT
	DECB		DEC NOSHE COUNTER
	ENE	ADJLP2	
	LDAA	00,X	* REMOVE EC OFFSET TO CREATE
	ADDA	[0380	* 2.5 COMPLINENT NUMBERS
	STAA	00 • X	
	JSR	INX4	SELECT NEXT VALUE TO BE SHIFTED
	STX	DATPT	📕 🕘 👘 👘 👘 👘
	LDX	SRTCH1	* DEC WORC COUNTER
	DEX		*
	STX	SR TCH1	*
	BNE	ADJLP1	
	RTS		

### ROU"	TINE SETS	S NO. OF CAL	LS TC ACQUS1 BASED ON CYCAVG ***
444 THE	MINIMUM	NO. OF CYCL	ES AVERAGED IS 8
NOCALL	LOAB	CYCAVG	CYCAVG IS EXP OF 2 IN BCD
	JSR	BC CBN2	CONVERT TO BINARY
	SUBB	[03	SUE OUT 3 FOR MIN NO. OF CYCLES
	BPL	NOCA1	IF RESULT IS POSITIVE CHANGE NOTHING
	LDAB	[03	* OTHERWISE RESET TO 3
	STAB	CYCAVG	•
	TBA		
	JSR	SETCN2	RESET CYCLE COUNTER TO 2 EXP 3
	CLRB		+ FOR N=3
NOCA1	LDX	[0001	4
	STX	NTACQ	* SETS COUNTER FOR NO. OF TIMES
NOLOOP	DECB		# ACQUS1 IS CALLED
	EMI	RETRN	➡
	ASL	NTACO+1	+
	ROL	NTACQ	
	BRA	NOLOOP	•
RETRN	RTS		

***	ROUTINE FOR	ACQUIRING 8	BIT ADC DATA VALUES AT 16 OR + PCINTS PER CYCLE ***
***	PUSHES DATA	BYTES IN TO	DATA STORAGE AREA +++
ACQU	IS1 LDAB	DTFTCH	SET LOOP COUNTER
	STS	SRTCH1	STORE STACK POINTER
	LDS	PSHBOT	SET STACK POINTER TO STARY OF DATA STORAGE AREA
	CLR	PIAA5	SELECT CHANNEL D
	LDAA	PIAB4	CLEAR CYCLE PULSE BY READING PIA
	NOP		A FUNCTIONAL NOP
AQLP	O LDAA	CPIAB4	WAIT FOR CYCLE PULSE. SAME AS SNPL PULSE CH.O
	BPL	AQLPO	NOTE TEST, SET PIA ACCORDINGLY
	LDAA	PIAB5	CLEAR SAMPLE PULSE
	INC	PIAA5	SELECT CH 1
AQLP	1 LDAA	CPIAB5	* WAIT FOR SAMPLE PULSE (DOWN GOING)
	BPL	AQLP1	• FOR CH 1
	LDAA	PIAB5	* READ DATA FOR CH D
	INC	PIAA5	* SELECT CH 2
	FSHA		* STORE DATA FOR CH 8.
AQLP	2 LDAA	CPIAB5	* WAIT FOF SAMPLE PULSE
	BPL	AQLP2	• FOR CH 2
	LDAA	PIAB5	# READ DATA FOR CH 1
	INC	PIAA5	• SELECT CH 3
	PSHA		# STORE DATA FOR CH 1
AQLP	3 LDAA	CPIA85	* WAIT FOR SAMPLE PULSE CH 3
	BPL	AQLP3	*
	LDAA	PIA85	* READ CH 2
	INC	PIAA5	• SELECT CH 4
	PSHA		* STORE CATA CH 2
AQLP	4 LDAA	CPIAB5	# WAIT FOR SAMPLE PULSE CH 4
	EPL	AQLP4	+
	LDAA	PIAB5	* READ CH 3
	INC	PIAAS	• SELECT CH 5
	PSHA		# STORE DATA CH 3
AQLP	5 LDAA	CPIA85	* WAIT FOR SAMPLLE PULSE CH 5
	BPL	AQLP5	
	LDAA	PIAB5	• READ CH 4
	CLR	PIAA5	• SELECT CH 0
	PSHA		• STORE DATA CH 4
AQLP	6 LDAA	CPIA85	• WAIT FOR SAMPLE PULSE CH 0
	BPL	AQLP6	¥

c,

• READ CH 5 PIA85 LDAA · SELECT CH 1 INC PIAA5 • STORE DATA CH 5 PSHA • DEC8 • LCOP 8NE AQLP1 RESTORE STACK POINTER LDS SRTCH1 RTS ** ROUTINE DISPLAYS VOLTAGE ON SELECTED CHANNEL IN MILLIVOLTS ** ** RANGE +/- 5000 MV **JSR** CLEDIS VOL THT WAIT FOR RELEASE OF KEY **JSR** RELESE (SCNKEY AFTER RELESE) KEYFND **JSR** RWSLCT 8E Q **VLTOUT** RTS IF RTN IS FOUND **JSR** NCODE ANDA 1020F . . DECA * SELECT CHANNEL STAA PIAA5 LDAA PIA85 CLEAR SAMPLE PULSE BY READING PIABS RELESE WAIT FOR RELEASE OF KEY **JSR** VLP1 **JSR** KEYQ LCCK FOR ANY PRESSED KEY BNE KEYFND IF FOUND DECODE KEY LDAA CPIA85 **#WAIT FOR SAMPLE PULSE** BPL VL P1 . LDAA PIAB5 MS 8 BITS LDAB PIAA5 LS 4 BITS MASK CH ADRS ANDB (0=F0 ADDA 08E0] REMOVE OFFSET (INVERT SIGN BIT) STAA . Y STAB Y+1 8SR MVDIS CONVERT TO MILLIVOLTS THEN DISPLAY BRA VLP1 VLTOUT RTS • CONVERTS Y TO MILLIVOLTS THEN DISPLAYS RESULT ON LCD . HVDIS LDX [0=4055 * SETUP MULTIPLY (19541) * FOR MV RESULT STX XX MULT16 **JSR** LDX ٤U SHIFTL **JSR** # TIMES 2. STX BNIN LOX [Y] (USES Y, Y+1, XX, XX+1) STX BCCOUT CONVERT TO BCD JSR BCCCO2 **JSR** LCODIS DISPLAY RTS ** SCANS PREVIOUSLY ACQUIRED DATA FOR ABSOLUTE MAX VALUE ON SELECTED CHAN ● MAXSGN CLEDIS **JSR** MAXLP JSR SCNKEY SCAN KEY PAD FOR PRESSED KEY TEST FOR RTN KEY **EEQ** NXOUT **JSR** NCODE - # DETERMINE CHANNEL NO. ANDA (030F STAA CHCNT STCRE CH NO. BSR FNDMAX FIND MAXIMUM VALUE **e**sr MVDIS CONVERT TO MILLIVOLTS AND DISPLAY BRA MAXLP LCOP FOR NEXT KEY MXOUT **JSR** CLEDIS

RTS

ь. 12

	RTS		
** SCANS	ONE CH	ANNELS DATA P	FOR ABSOLUTE MAX VALUE - CALLED BY MAXSGN **
FNDMAX	CLR	Y	
	CLR	Y+1	
	CLR	SRTCH3	CLEAR SIGN FLAG 2
	LDAA	PTSCYC	
	STAA	CNTINC	* SET COUNTER FOR NO OF DATA PCINTS
	LOX	CDATA-4	BACK SET POINTER TO DATA
	LDAB	CHCNT	READ CHANNEL NO.
CHNLP	esr	INX4	
	DE CB		SET POINTER TO FIRST DATA VALUE OF SELECTED CH
	ENE	CHNLP	
NXTV	CLR	SRICHZ	CLEAR SIGN FLAG 1
	LDAB	01 ₉ X	• LOAD IN SELECTED DATA VALUE
	LDAA	00 ₉ X	• MS BYTE
		PLUS SPTOM2	SET STON ELAS
		SKIGHZ	A NECATE WALLE CO THAT ALL WALLES UNED
	COMB		ADE EUCTITUE
PLUS	STAA	U	SAVE ACC A
	CMPR	¥+1	•
	SBCA	Y	
	LDAA	Ů	• COMPARE SELECTED VALUE WITH LAST
	BCS	LESS	STORED LARGEST VALUE. STORE LARGEST VALUE
	STAA	Y	¥
	STAB	Y+1	₽
	LDAA	SR TCH2	SAVE SIGN FLAG OF LARGEST VALUE
	STAA	SRTCH3	
LESS	BSR	INX24	SET FOINTER TO NEXT DATA VALUE 24 BYTES COWN
	DEC	CNTINC	DEC NO. DATA PGINTS COUNTER
	BNE	NXTV	LCCP BACK FOR NEXT COMPARISON
	LDAA	SRTCH3	•
	EEQ	FDCUT	• RESTORE SIGN TO LARGEST VALUE
	COM	T	•
FOONT	COM	Y+1	
FUUUT	KI2		
TALVI.		THOSENELTS	THEY OLD TANKS
1884		INUREMENTS	THUEX KEG FUUR TIMES
	TNY		
	RTS		
A THOREME	NT THOS		
TNY24	1040	TZ4	4 ILCS "
TNYLP	TNY	(64	
	DECA		
	BNE	TNXLP	
	RTS		
** DUMPS	6 CHAI	NELS OF DATA	TO CHAPT PAPER **
TH VALUES	ARE SE	ENT TO THE DA	C AT A RATE OF 30 VALUES PER SECOND **
TT DATA R	ATE IS	SET BY VAFIA	BLE SRTCH1 AND ROUTINE DELAY4 **
CHARID	LDX	[0=1014	• 4122 DECIMAL

STX JSR BSR RTS SRTCH1 ZEROL SNDANA * FOR DELAY OF 33,000 MACHINE CYCLES START WITH ZERO VOLT LEVEL

++ DISPL	AYS 6 CH	DATA ON SCO	OPE WHILE SCANNING KEY PAD FOR RIN AND **
OSCOTS	IDX IDX	100100 1010	SER FUESE IN ONE OF E CH FUSILIZONS
	STX	SR TCH1	SET DELAY FOR ROUTINE DELAY4
	JSR	RELESE	WAIT FOR RELEASE OF KEY
FNDKEY	JSR	RWSLCT	(SCNKEY AFTER RELESE)
	8E Q	OSCOUT	RTS IF RETURN KEY FOUND
	JSR	NCGDE	
	ANDA	COEOF	
	STAA	SRTCHS	STORE POSITION OF SCOPE TRIGGER PULSE
	JSR	RELESE	
OSCLP	82K	SNUANA	SEND 6 CH OF DATA TO DAC
	JJK	CADREY	A TE KEY COUND HUND OUT OF LOOG AND DECODE
	RP A	DSCI P	A TE KET LOOND DOUL OF FOOL NUD DECODE
OSCOUT	RTS		•
** SENDS	6 CHANN	ELS OF STORE	D DATA TO B BIT DIGITAL TO ANALOG CONVERTER **
TT DATA P	ATE IS	DETERMINETE	BY ROUTINE DELAY4 AND SRTCH1.
++ SRICH		INES FOSITIO	IN OF SCOPE TRIGGER PULSE
	SK (UN 1= 0	A TIMES DE	TAKES 3.5 MILLISECUNDS, CRI REPRESE NATE TT
·· MILL D		46 12003 60	R SECOND AT INHE CPO LEOCK
SNDANA	LDAA	10=F0	2 *
	STAA	CPIAA3	5 • ACCESS DATA DIRECTION REG.
	LDX	LOEFFF4	3 • CHANGE TO DUTPUTS
	STX	PIAA3	6 • MAKE CA2 AN OUTPUT (LDW)
	CLR	CHCNT	6
NXTCH	8SR	ZEROL	MIN OF 148 CYCLES
	INC	CHCNT	6
	LDAA	CHCNT	3
	CMPA	[7	2 SET NEXT CHANNEL TO BE OUTPUT
	EE Q	SNRTS	4 IF CHENT EQ 7 RTS
	CHPA	SRTCH5	3 • CHANNEL POSITION FOR SCOPE TRIGGER
	BNE	NOTRIG	4 *
NOTOTO	JSR	TRIGGR	27* SEND PULSE TO TRIGGER SCOPE
NUIKIG	STY		5 6 DATA-6 TO SET POSTITON OF NEVI CH
	A 124	UNIFI	2 4 TO BE SENT TO DAC
	ASLA		2 *
	ADDA	DATPT+1	3 4
	STAA	DATPT+1	
	LDAA	DATPT	3 *
	ADCA	(00	2 *
	STAA	DATPT	4 4
	LDAA	PTSCYC	3*
	STAA	CNTINC	4* SET NO. OF POINTS PER CHANNEL
NXTDAT	LOX	DATPT	
	LUAA	UD,X	5 + LOAD DATA VALUE INTO ACC A
	STAA		E T CUNVERT 25 CUMP VALUE TO UPPETED BINARY
		CD TOUA	5 - SENU VALUE IU UIGIIAL IU ANALUG CUNVERIER
	8FQ	SKIPDY	
	ESR	DELAYA	•
SKIPDY	LDAA	DATPT+1	3*
	ADDA	[24	2* SELECT NEXT DATA VALUE ON THIS CHANNEL
	STAA	DATPT+1	4^{+} (DATPT = DATPT+24)
	LDAA	DATPT	3*
	ADCA	101	2*

.

•

SNRTS	STAA DEC ENE BRA LDAA STAA LDX STX RTS	DATPT CNTINC NXTDAT NXTCH [0=F0 CPIAA3 [0=00F4 PIAA3	6* 6 * DEC POINTS PER CHANNEL COUNTER 4 * IF NOT ZERD TAKE NEXT DATA FCINT 4 START ON NEXT CHANNELS DATA 2* ACCESS CATA DIRECTION REG. 5* 3* MAKE LINES INFUTS AGAIN FOR KEY PAD USE 6* KEEP CA2 LON 5
** DELAY	FORMULA	IS 30+(SRT	CH1) #8 = NO. OF CYCLES. **
++ VALID	FOR SRT	CH1 = 0000 T	HROUGH FFFE . **
DELAY4	LDX	SR TCH1	5
	INX		4 INX MAKES SRTCH1=0 SHORTEST DELAY POSSIELF
DYLP	DEX		4
	ENE	DYLP	4
	RTS		5
B- 2000 W			
TT ZERJ V	ULIS LI	NE. USEU AS	CHANNEL SPACER. MIN UP 148 CTULES TT
ZERUL	LUAA Staa	UU =/ F	2 T
		FIAAS FL	2 SET UAL TO ZERO VOLTS
75910	ASP		INTN OF 26 CYCLES
LENEF	DECA		2
	BNE	ZERLP	4
	RTS		5
** SCOPE	TRIGGER	PULSE 7 CI	PU FACHINE CYCLES WIDE **
TRIGGR	LDAB	COEFC	2
	STAB	CPIAAS	5 MAKE LINE CAZ HIGH
	STAD	LUEF4 COTAAZ	C SAME LINE DAD LOU
·	RTS	011442	S MARE LINE GAL LUN
++ MASTER	ROUTIN	E FOR CONVERT	TING REAL AND IMAGINARY PARTS FROM ++
TT IRANSF	UKM IU I D DHASE	ADE ODTATNE	NATES ++
	U PHASE	ARE UDIALNES	TO OSTUG CORDIC KOTALIONS ++
	STY	PFAI	PRETNE START OF REAL LOCATIONS
	101	ISTARTS	A DELTHE DINKI OF REAL FOUNITOND
	STX	TMAG	* DEFINE START OF THACTNARY LOCATIONS
	CLR	CHNO	CLEAR CHANNEL NO.
PLARLP	INC	CHNO	
	BSR	SETROT	CALCULATE AND AND PHASE FOR CHANNEL CHNO
	LDX	IMAG	
	JSR	INX4	SET POINTER TO NEXT INAG VALUE
	STX	IMAG	
	LOX	REAL	
	JSR	IN >4	SET POINTER TO NEXT REAL VALUE
	STX	REAL	
	LDAA	NCHPR	÷
	CMPA	CHNO	* IF CHNO EQU NO. OF CHANNELS USED, RTS
	BNE	PLARLP	
	JSR	BEEP	SOUND BEEPER
	KI2		

** NEGATE VALUE (AN APPROXIMATION) **

NEGATE COM 00,X COM 01,X COM 02.X COM 03.X RTS ** LOADS VALUE POINTED TO BY INDEX INTO U. THEN SHIFTS U ROTACC BITS ** ** TO RIGHT. THE NO OF SHIFTS CONTROLS THE ROTATION STEP SIZE LSWORK LDAA 5 00,X STAA Ð 4 MACHINE CYCLES LDAA 01.X 5 U+1 STAA 4 LDAA 5 02,X STAA U+2 4 LOAD NO SHIFTS COUNTER MSHIFT LDAB ROTACC 3 SFLOOP LSR U. 6 ROR U+1 6 ROR U+2 6 DECB 2 SFLOOP ENE 4 RTS ** ROUTINE SETROT - MOVES VECTOR TO FIRST QUADRANT, USES CORDIC ROTATIONS -** TO ROTATE THAT VECTOR TO D DEGREES, CALCULATES NO OF DEGREES ROTATED * ** ** CORRECTS FOR ACTUAL QUADRANT, CORRECTS FOR PHASE SHIFT DO TO DATA ** SAMPLING TIME SKEW, FINAL PHASE ON CHANNELS 2 TO 6 IS RELATIVE TO CH 1 ** ** PHASE, FINAL PHASE ON CH 1 IS ACTUAL PHASE, CALCULATES AMPLITUDES IN ** ** MILLIVOLTS PER ROOT HZ . ** SETROT LDX (OEFFFF SRTCH1 + SET NO OF ROTATIONS COUNTER TO -1 STX ** ** MOVE VECTOR TO 1ST QUAIRANT ** MIXED IN WITH QUAD MOVE IS A TEST TO SEE IF BOTH REAL AND IMAG PARTS ** ** ARE ZERO (GNLY MS 16 BITS ARE LOOKED AT) IF TRUE ROTATION CNT SET 0 - # # TOUAD CLRB LDX IMAG TST 0'0 •X EPL PIMAG NEGATE IMAGINARY PART ØSR NEGATE ADDB [02 0010 = NEG. IMAG PART PIMAG CLRA CLEAR ZERO FLAG LDX X • 0 0 LOAD 2 MSB TO ENDX, IF ZERO SET FLAG BNE NOTZRO NCT ZERO INCA IMAG PART IS ZERO, SET FLAG NOT 2RO LDX REAL **TST** 00,X BPL PREAL **BSR** NEGATE NEGATE REAL PART INCB 0001 = NEG. REAL PART QUAD IS CODE FOR QUADRANT OF VECTOR PREAL STAB QUAD LDX LCAD 2 MS8 OF REAL VALUE 00.X **BNE** ROTATE NOT ZERO CONTINUE DEC ZERO FLAG DECA **ENE** ROTATE IF ZERO MEANS BOTH VALUES WERE ZERO ZERC IS IN INDEX SO IT IS USED TO SET ROT CNT STX SRTCH1 **ERA** CORECT BOTH WERE D SO SKIP ROTATION ROUTINE QUAD = 00, 01, 10, 11 EQU QUADRANT 1, 2, 4, 3, ** NEXT SECTION ROTATES VECTOR (IN FIRST QUAD.) CLOCKWISE UNTIL IMAG ** ** BECOMES NEGATIVE. NO. OF ROTATION STEPS IS IN SRTCH1 ** ROTATE LDX SRTCH1 4 # INX # 5 * INC ROTATION COUNTER STX SRTCH1

	LOX	IMAG	
	BSR	LSWORK	LOAD U AND SHIFT RIGHT
	LDX	REAL	4
	LDAA	03,X	5 NEXT 11 LINES DO COS = COS + SIN/2 EXP N
	ADDA	U+2	3
	STAA	03•X	6
	LDAA	X°20	5
	ADCA	U+1	3
	STAA	02,X	6
	LDAA	01.X	5
	ADCA	U	3
	STAA	01,x	6
	900	NOINC	4
MOTHO	INC		1
NOTHC	83K	LORUKA	6
			S NEVT 44 LINES DO STN-SIN - COS/2 EVO N
	CURA		Z NEWI II CINCO DO DINADIN - CODVE EXF N
	STAA	07.8	5
	1 0 4 4	02.1	
	SBCA	U+1	
	STAA	02 X	
	LDAA	01.X	5
	SBCA	Ŭ	3
	STAA	01,X	5
	LDAA	00,X	5
	SBCA	C D O	2
	STAA	00•X	6
	BCC	ROTATE	4 IF SIN IS STILL POS. LOOP BACK
## NEXT	SECTION	CORRECTS R	DTATICN ANGLE TO ORIGINAL QUADRANT **
CORECT	LOX	SR TCH1	SCALE UP ROTATION STEP
	STX	XX	
	LUX	[1/905	
	51 X		+
	JOR	ROTACC	A SET NO DE SUTETS TO ODTATN ANGLE TH TEN
	ADDB	F 0 7	* JEL NO. OF SHIFTS TO UDIAIN PNOLE IN TEN
		f	• THOUSKAUTHS ST DEOREES
	JSR	SHRLP	• SHTET RIGHT NOMINAL SHTET IS 5
	LDAB	QUAD	LCAD QUADRANT CODE
	8E Q	COROUT	QUAD. 1 NO CORRECTION
	JSR	NEGATE	NEGATE ANGLE
	CMPB	[02	QUADRANT 4
	ee q	COROUT	
	LDAA	L 0 = 4 0	# ADD 180.0000 DEGREES
	ADDA	U+3	↓
	STAA	U+3	4
	LDAA	C0=77	= 1800000 DEC = 187740 HEX
	AUCA	0+2	•
	STAA	0+2	•
	LUAA	10218	*
	ADUA		
	CMDR	501 501	OHADRANT 2
	PED	COROUT	QUAUKANI Z
	JSR	NEGATE	NEGATE ANGLE
++ NEXT	SECTION	CORRECTS F	R DATA SAMPLING TIME SKEW **
COROUT	LDAB	CHNO	LCAD CHANNEL NO
PCLOOP	DECB		
	BEQ	NOPSHE	CHANNEL 1, NO PHASE CORRECTION NEEDED
	LDX	[PHS1	* SUBTRACT PHASE SHIFT FROM CHANNEL PHASE
	B SR	SUBFU3	¥

ŝ

ä,

2

BRA PCLOOP IF NEECED REPEAT PHASE CORRECTION ** NEXT SECTION REFERENCES ALL PHASES TO CH 1 PHASE ## NOPSHF LDAB CHNO DECB . 8EQ SKREF * CHECK CHANNEL NO IF CH 1, SKIP REFCH SUBTRACT CH 1 PHASE FROM OTHER LDX (STARTS **BSR** SUBFU3 * CHANNEL PHASES SKREF LDX IMAG 4 LOAD U INTO BINARY * IMAGINARY LOCATION 8SR STRU3 ** NEXT SECTION CONVERTS AMPLITUDE FOUND BY ROTATION TO MILIVOLTS ** ** IT IS EQUIVALENT TO MULTIPLYING AMPLITUDE BY 1.19265869 ** CNVTHV LDX REAL LOAD AMPLITUDE INTO MULT POSITION 00,X LDX . STX XX * 19540 CONSTANT HAS ERROR OF 4 PPF LDX [0=4054 STX Y **JSR** MULT16 HULTIPLY LDAB (06 **JSR** SHFLP **+** CORRECT PULTIPLY BY SHIFTING LDX REAL * BSR STRU3 * STORE NEW AMPLITUDE RTS ** STORE 3 LS BYTES OF U IN 3 MS BYTES OF INDEXED LOCATION ** STRU3 LDAA U+1 00,X STAA LDAA U+2 STAA 01,X LDAA U+3 STAA 02,X RTS ** SUBTRACT 3 MS BYTES OF INDEXED LOCATION FROM 3 LS BYTES OF U ** SUBFU3 LDAA U+3 \$2.X SU8A STAA U+3 LDAA U+2 SBCA 01,X STAA U+2 LDAA U+1 00,X SBCA STAA U+1 RTS ** ROUTINE MAKES COMPUTER JUMP TO NEXT 4K MEMORY SECTION, IE BEGIN+0:1000 ** ** IT IS CALLED BY PRESSING «RUNB» THEN «D», IT MAY BE USED TO JUMP TO AN ** ** AUXILLARY SET OF CONTROL OR TEST PROGRAMS ... RUNB **JSR** SCNKEY JSR NCODE **TSTA BNE** RBOUT JM P BEGIN+011000 RBOUT RTS

> STOP END

ŝ

S

APPENDIX B

CIRCUIT DRAWINGS AND BOARD LAYOUTS FOR THE MICROCOMPUTER SIGNAL PROCESSOR

XBL 7810-11974

Į 03

1

.

.

Figure 9. Digital to analog converter.

4

7

.

XBL 7810-11976

.

Ø.

-41

Figure 12. Programmable sample and cycle timer.

٠

.

XBL 7810-11978

XBL 7810-11979

...

£

Figure 14. Data acquisition board layout.

.\$

۲.

XBL 7810-11980

i.

ť,

.1

٦

111

C

C

XBL 7810-11983

Figure 18. CPU board.

4

.

XBL 7810-11984

Ł

114

Figure 19. CPU board layout.

£1 à

III. GRASS VALLEY FIELD TEST

- - - -

F

----ŝ 1

LIST OF FIGURES

Figure l.	Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971). (XBL 735-676)	120
Figure 2.	Electromagnetic transmitter and receiver locations. (XBL 784-8035)	121
Figure 3.	Generalized slice of solution space. (XBL 7810-6556)	128
Figure 4.	Amplitude spectra, T3-Rl. (XBL 7810-6562)	132
Figure 5.	Phase spectra, T3-R1. (XBL 7810-6560)	133
Figure 6.	Amplitude spectra, T3-R2. (XBL 7810-6561)	134
Figure 7.	Phase spectra, T3-R2. (XBL 7810-6559)	135
Figure 8.	Amplitude spectra, T3-R2, two-layer fit. (XBL 7810-6563)	136
Figure 9.	Phase spectra, T3-R2, two-layer fit. (XBL 7810-6564)	137
Figure 10	. Amplitude spectra, T3-R4. (XBL 7810-6558)	138
Figure 11	. Phase spectra, T3-R4. (XBL 7810-6567)	139
Figure 12	. Amplitude spectra, T3-R4, two-layer fit. (XBL 7810-6557)	140
Figure 13	. Phase spectra, T3-R4, two-layer fit. (XBL 7810-6555)	141
Figure 14	. Amplitude spectra, T3-R5. (XBL 7810-6554)	142
Figure 15	. Phase spectra, T3-R5. (XBL 7810-6553)	143
Figure 16	. Resistivity sections along Line E-E' obtained from interpretations of 1 km and 2 km sounding data (after Jain, 1978). (XBL 784-8029)	144

7

.

Ş

This section describes a field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested following local testing in Berkeley. The site, approximately 22 miles south of Winnemucca, lies within the regionally high heat flow area of northern Nevada (Figure 1) and has been surveyed in detail by means of various geophysical techniques (Beyer et al, 1976), including a low power prototype of the EM-60 (Jain, 1978).

Survey Plan

The initial field test was conducted along established geophysical line E-E' (Figure 2) at stations previously occupied by Jain (1978). For direct comparisons of raw data and results with those of Jain, we followed his field procedures. The EM transmitter was placed at 3 West and the receiver was moved between sites 4 West, 5 West and 1 West. The unit separation between stations is 1 km.

Despite the dust and high temperatures during the work in July 1978, the survey proceeded quickly. The survey area is nearly flat (elevations of all stations are within 3m of each other) and the access is good. The principal instrumental problem encountered was the overheating of the electronics box for the Develco magnetometer caused by the high ambient temperature. This was easily solved by keeping it in an ice-filled tray.

Instrumentation and Procedures

The transmitter loop consisted of a 4-turn, 50m radius horizontal loop of #6 AWG copper welding cable. Current was supplied in a square wave of positive and negative polarity at any desired period between $10^{-3} - 10^3$ sec by a 60 kW generator (see Section II on the transmitter). Peak-to-peak current carried by the coil ranged from \sim 126 amp at 0.1 Hz to \sim 15 amp at 10^3 Hz.

119

Hot Springs in Northwestern Nevada

(XBL 735 676)

Figure 1. Location map, northwestern Nevada, showing prominent thermal springs within and outside of the Battle Mountain high heat flow area (after Sass et al, 1971).

XBL 784-8035

Figure 2. Electromagnetic transmitter and receiver locations.

.

The receiver system, described in detail in Section II, utilized a 3-axis Josephson-effect superconducting magnetometer as a sensor. A Develco model 8230 with sensitivity $10^{-5}\gamma$ /Hz was used. Each signal from the sensor was band-passed by means of a four-pole Butterworth filter and amplified. The pass band for a particular transmitter period is chosen according to the following considerations:

- The low-frequency cut-off is set just below the fundamental frequency to remove the geomagnetic and sferic noise. Natural geomagnetic noise is particularly bad at 20-30 sec period.
- (2) The high frequency cut-off provides anti-alias control and it should be set below the Nyquist frequency. However, as it is desirable to reduce high-frequency natural noise, we set the high-cut frequency just above the highest odd harmonic we wished to extract from the signal. Although the system is designed for periods up to 1000 seconds, we learned that it is extremely difficult to obtain reliable results at periods 50 seconds and larger. This limitation is primarily due to lightning and sferic noise swamping the signal during the long times needed to average periods longer than 50 seconds. In Nevada it was almost impossible to find a 50 second or longer period without a lightning strike that would either throw the SQUID detectors out of lock or generate signals. that exceeded the receiver's dynamic range. A further fundamental problem is that the natural noise spectrum rises roughly as 1/f below 0.1 Hz and so the averaging time to achieve a desired signal-to-noise ratio rapidly becomes impractical as the frequency decreases.

Experimentation was conducted to determine the number of harmonics that could be obtained accurately from a given period. Field tests show that the seventh harmonic can be obtained with no substantial errors for frequencies below 100 Hz. This allows us to obtain an entire decade of frequency measurements from a single transmitter period. However, above 100 Hz only, the fundamental frequency is transformed because the sampling rate is reduced to only four points-per-cycle. This does not significantly slow down the rate of data acquisition. For further details of the receiver capabilities see Section II. After digitization each signal is averaged for the desired number of cycles, then Fourier transformed to yield spectral information on the odd harmonics of the signal. These values are printed on a thermal printer in one of two forms; either real and complex parts, or amplitude and phase.

The analog signals from all channels were also monitored continuously by means of two Gould paper-chart recorders. This enables the operator to interrupt and recommence the signal averaging, should interference from lightning or large spheric fluctuations degrade the data. A block schematic of the data acquisition system is shown in Section II.

Method of Interpretation

The interpretation of the electromagnetic sounding data (amplitude and phase) has been carried out using a direct one-dimensional (layered earth) inversion method. An initial estimate of the model parameters is made, and the inversion algorithm modifies these parameters until a bestfit, in the weighted-least-squares sense, is found between the observed data and the model predicted data. The application of direct inversion methods in electrical exploration has been described by Wu (1968), Parker (1970), Glenn (1973), Inman et al (1973).

The inverse problem can be stated mathematically as

$$\phi = \sum_{i=1}^{n} w_i^2 [y_i - f(b^\circ, x_i)]^2$$
(1)

where

N is the number of observed data
w_i is the weighting factor for the ith data value
y_i is the ith observed data (i.e. amplitude or phase)
b^o is an initial estimate of the M model parameters (e.g., resistivity and layer thickness)

x. is the known dependent variables (e.g., frequency and geometry)

f is the non-linear function which relates the parameter b^{0} , x_{i} , to the observed quantities phase and amplitude.

Simply stated, the inverse problem is to find a set of model parameters, b, which minimize ϕ . The values of b, which minimize (1) are given by the solution to the set of equations:

$$\frac{\partial \phi}{\partial b_j} = 0$$
 $j = 1, M$ (2)

Writing (1) in this form, we obtain

$$\sum_{i=1}^{n} w_i^2 f_i \frac{\partial f_i}{\partial b_j} = \sum_{i=1}^{n} w_i^2 y_i \frac{\partial f_i}{\partial b_j}, \quad j = 1, M \quad (3)$$

where

$$f_i = f(b_i, x_i).$$

In general, the function $f(b, \chi)$ is a non-linear function of b_j ; thus making solution of (3) in closed form impossible. In practice ϕ is minimized by an interative technique.

Inversion Algorithm

The iterative weighted-least-squares algorithm used to interpret the EM-60 data follows a modified Marquardt approach. The model function $f(\underline{b}^{0}, x)$ in equation (1) is expanded as a Taylor series about the current estimate, \underline{b} , and only the first order terms are retained. This yields a linear estimate of the parameter changes, \underline{t} , needed to reach the minimum of ϕ . The classic least squares statement of the problem would be

$$[A]_{t} = g , \qquad (4)$$

125

where

 $[A] = [P]^{\mathsf{T}} [Q] [P] ,$

and

P is the (NxM) matrix with elements $\frac{\partial f_i}{\partial b_j} \Big|_{b=b}$ and Q is the weight matrix.

The least squares estimate of t is given by

 $t_{c} = ([A]^{T} [A])^{-1} [A]^{T} g$ (5)

This linear estimate of the changes needed in the parameter vector can become unstable when $([A]^{T}[A])$ is nearly singular because the inverse blows up. (Instability means elements of t become so large they lie far outside a linear region about the present b and thus are invalid estimates.) To prevent this, a constant named a Ridge Regression estimate is added to the diagonal terms of $([A]^{T}[A])$. The so-called Ridge Regression estimate of t is:

$$t_{vRR} = ([A]^{T} [A] + [I]K)^{-1} [A]^{T} g .$$
 (6)

The benefit of (6) is that the inversion of $([A]^{T}[A] + [1]K)$ is stable. The value of K is varied throughout the inversion. At first the smallest value of K is found for which the estimate t_{RR} yields a new model with a better fit to the data. As the interative process nears a minimum, the value of K is decreased so as to approach the classic least squares inverse.

The weighting matrix Q is a diagonal matrix with the diagonal terms equal to the inverse of the data variance. In this way, the residual for each data point is compared with its expected error.

where

 σ is a scalar factor called the problem standard deviation.

Statistical Evaluation of a Model

A set of model parameters, $b_{,}$, which minimize (1) is considered a good approximation with respect to the data if

$$(\chi_F^2)_{1-\alpha} \geq (\chi_F^2)_0$$
(7)

where $(\chi_F^2)_{1-\alpha}$ is the chi-square value at the $(1-\alpha)$ confidence level with F = N-M degrees of freedom. The experimental value of the chi-square is given by

$$(\chi_F^2)_o = \frac{\sigma^2}{\sigma^2}$$

where

$$\overset{\wedge}{\sigma}^{2} = \frac{\left[y-f\right]^{\mathsf{T}}\left[Q\right]_{\sigma}^{2} = 1\left[y-f\right]}{N-M} = \frac{\phi \mathsf{MIN}}{N-M}$$

 $\overset{\Lambda}{\sigma}$ is an estimate of the true problem standard deviation. Because data errors are expressed as percent of the actual data and used as the weights in Q, σ^2 is assumed to be 1 (Jain, 1978).

The uncertainty in the estimated model parameters is given as (Bevington, 1969)

$$\sigma_{b_{j}}^{2} = \sigma^{2}(cov(P)_{jj}) , \qquad (8)$$

where the parameter covariance matrix, cov (P), is written as

$$\operatorname{cov}(\mathsf{P}) = \left\{ \left[\mathsf{P} \right]^{\mathsf{T}} \left[\mathsf{Q} \right]_{\alpha=1} \left[\mathsf{P} \right] \right\}^{-1} .$$
 (9)

Equation (8) gives the parameter variance for a linear solution only. In the case of a non-linear problem, as this one, (8) can be used as an approximation in conjunction with the parameter correlations. The parameter correlations are a measure of the linear dependence between parameters, and are given by

$$CORR(b_{ij}) = \frac{cov(P)_{ij}}{cov(P)_{ii} cov(P)_{jj}}$$

If the value of $CORR(b_{ij})$ is near unity, then the parameters b_i and b_j are strongly correlated and nearly linearly dependent. In such a case the individual parameters are not well determined; rather, their ratio (if correlation coefficient is +1) or product (if correlation coefficient is -1) can be determined from the data.

If the correlations are small, then the standard deviations, given by the square roots of the diagonals of (8), are a good measure of the uncertainty of each parameter. If, however, two parameters are highly correlated, CORR $b_{ij} \approx \pm 1$, then the standard deviations will be larger than the actual uncertainties. Figure 3 illustrates this fact with a generalized slice of solution space. The two coordinate axes correspond to two parameters of the estimated layered earth model. The ellipse indicates a confidence region within which the residual sum of squares, ϕ , is expected to lie for a certain percent of the repeated experiments. This region also defines the values of the parameter ρ_2 (resistivity) and t_2 (thickness) which will give a residual sum of squares within the contour. The origin is defined by the parameter value at the final

solution. The tilt of the axis of the ellipse is a measure of the degree of correlation between the two parameters. If the standard deviations from (8) are taken to be the true deviation estimates, then the ellipse is enclosed by a large box whose sides are defined by the standard deviation. The box, which ignores parameters correlation, represents a much larger confidence region than the ellipse. By using the standard deviation implied by the box, one obtains a very conservative estimate of the parameter confidence interval for correlated parameters. Therefore, by considering the standard deviations in conjunction with parameter correlations, a more realistic parameter standard deviation can be arrived at, which is always less or equal to the standard deviation computed from (8).

For a further description of the inversion method and procedure, see Jain (1978).

Combined Data Interpretation

During the EM sounding survey carried out in Nevada, three orthogonal components of magnetic field were measured for each transmitter-receiver location. This provided four sounding curves: the amplitude and phase at selected frequencies for both the vertical and radial components, $|H_r|$, $|H_z|$, H_r phase and H_z phase. The tangential magnetic field would be zero over a horizontal uniform medium. The amplitude of this component can thus be used as a qualitative measure of the inhomogeneity of the ground. If each sounding curve were inverted separately, four different earth models would result. These would then have to be averaged in some way to obtain a single model. A more objective approach is to find a single model which best fits all the data simultaneously. In this approach each data point is first weighted by its standard error (defined as the standard deviation divided by the square root of the number of samples) to set its relative importance and accuracy. All data sets are then inverted simultaneously.

Survey Results

The survey line E-E' crosses Grass Valley from southeast to northwest, passing approximately 1 km northeast of Leach Hot Springs (Figure 2). The orientation of the line is approximately 45° to the strike of the local geologic structure. Sounding data were taken with the transmitter as station 3 West and receiver locations at 1, 2, 4, and 5 West.

The observed field data and their standard errors for the four soundings are tabulated in Appendix A, and are illustrated in Figures (4) through (15). The transmitter-receiver locations are indicated on each figure (e.g. T3-R4 stands for transmitter at 3 West and receiver at 4 West). The standard errors listed in Appendix A of this section, are not plotted on Figures (4) through (15) since they would not show up on the scales used.

As previously discussed, the four sets of sounding data (amplitude and phase of H_z and H_r) were simultaneously inverted to obtain an overall best-fit model. The standard errors listed in Appendix A were derived from the diagonal weighting matrix [Q].

Ordinarily, considerable effort might be needed to originate a set of initial model parameters to begin the data inversions. All existing geological and geophysical data must be considered in making a first guess. However, since this had already been done by Jain (1978), the final models obtained from his work were used as starting models in the interpretation of our data. Previous data clearly indicated a basic three-layer structure with a fairly thick and conductive middle layer overlying and underlying more resistive layers. In cases where a threelayer model resulted in poor parameter resolution, a two-layer model was used to more accurately define the depth to and resistivity of the conductive layer. As previously noted by Jain (1978) for the three-layer case, the resistivity of the bottom layer is very poorly resolved. Whether $\rho_3 = 1$ or 100 Ω m makes little difference on the other parameters, and so we use the higher value as a constant.

Figures 4 and 5 present the data for sounding T3-R1. Here the three-layer model fits the data fairly well and the model parameters are well resolved. Figures 6 and 7 present the data for sounding T3-R2 with another three-layer model fit to the data. Figures 8 and 9 represent a two-layer fit to the same data. Note that the common parameters between the two models have virtually the same values. However, the resolution of the two-layer model parameters is much better, lending increased confidence in the depth to and resistivity of the conductive target.

Figures 10 through 13 presenting data for T3-R4 show the same situation as found for T3-R2. Figures 14 and 15 are for T3-R5 and yield a three-layer model with good parameter resolution.

In general, all the models are consistent with the seeming exception of the models for T3-R2. However, ρ_2 and h_2 for T3-R2 are highly correlated, correlation coefficient = 0.99. This means that the ratio h_2/ρ_2 is all that can be determined from the inversion. Therefore a thicker, more resistive middle layer (which would keep the ratio h_2/ρ_2 constant) would also fit the data. Thus, a general model of 8-10 Ω m, 500-m thick top layer above a two $\Omega \cdot m$, 500-m thick middle layer above a 100 Ω m basement is consistent with all the data obtained. The models interpreted from data previously taken by Jain (1978) are shown in Figure 16 for comparison.

XBL78I0-6562

Figure 4. Amplitude spectra, T3-R1.

XBL 7810-6560

Figure 5. Phase spectra, T3-R1.

XBL 7810-6561

Figure 6. Amplitude spectra, T3-R2.

Figure 7. Phase spectra, T3-R2.

Figure 8. Amplitude spectra, T3-R2, two-layer fit.

Figure 9. Phase spectra, T3-R2, two-layer fit.

Figure 10. Amplitude spectra, T3-R4.

Ø

Figure 11. Phase spectra, T3-R4.

XBL 7810-6557

Figure 12. Amplitude spectra, T3-R4, two-layer fit.

Figure 13. Phase spectra, T3-R4, two-layer fit.

E

Figure 14. Amplitude spectra, T3-R5.

Figure 15. Phase spectra, T3-R5.

XBL 784-8029

j

ŝ

Figure 16. Resistivity sections along Line E-E' obtained from interpretations of 1 km and 2 km sounding data (after Jain, 1978).

144

APPENDIX A

TABULATION OF RESULTS

1

2

. . .

APPENDIX A

TABULATION OF RESULTS FROM GRASS VALLEY TESTS

T3-R1

	Normalized Field*		<u>Phase in Degrees**</u>		
Freq.	Η _z	Н _г		Φ_{z}	${}^{\Phi}$ r
0.1 0.3 0.5 0.7 1.0 3.0 5.0 10.0 30.0	1.105±0.4 1.255±0.52 1.386±0.54 1.450±0.71 1.418±0.21 1.138±0.12 0.942±0.32 0.648±0.15 0.377±1.5	0,220±7.4 0.548±3.4 0.733±3.6 0.904±2.8 0.930±0.66 1.095±0.30 1.092±0.17 0.989±0.08 0.740±0.48		183.83 ± 0.18 185.91 ± 0.29 182.26 ± 0.27 176.70 ± 0.26 170.34 ± 0.04 148.50 ± 0.19 136.17 ± 0.17 117.80 ± 0.54 95.30 ± 1.40	275.53±3.00 245.82±2.60 235,02±1.98 224.78±4.60 209.96±0.23 185.71±0.12 174.00±0.65 161.77±0.05 145.16±0.18
			T3-R2		
0.1 0.2 0.3 0.6 1.0 2.0 3.0 6.0 10.0 30.0 100.0 200.0	$\begin{array}{c} 1.085 \pm 0.07 \\ 1.114 \pm 0.07 \\ 1.152 \pm 0.12 \\ 1.232 \pm 0.07 \\ 1.281 \pm 0.01 \\ 1.350 \pm 0.02 \\ 1.380 \pm 0.02 \\ 1.380 \pm 0.02 \\ 1.401 \pm 0.27 \\ 1.354 \pm 0.16 \\ 0.996 \pm 0.26 \\ 0.469 \pm 0.33 \\ 0.248 \pm 2.2 \end{array}$	$\begin{array}{c} 0.044 \pm 1.0\\ 0.074 \pm 1.56\\ 0.114 \pm 0.78\\ 0.197 \pm 1.1\\ 0.287 \pm 0.30\\ 0.442 \pm 0.28\\ 0.559 \pm 0.12\\ 0.811 \pm 1.1\\ 1.016 \pm 0.14\\ 1.250 \pm 0.54\\ 1.16 \pm 0.21\\ 1.019 \pm 1.30\\ \end{array}$		$181.95\pm0.03183.67\pm0.02184.82\pm0.09185.25\pm0.05184.31\pm0.01180.92\pm0.01176.88\pm0.02169.83\pm0.18160.44\pm0.02130.17\pm0.2094.74\pm0.3973.60\pm2.10$	$\begin{array}{c} 286.60 \pm 1.27\\ 271.70 \pm 1.26\\ 262.17 \pm 0.56\\ 251.90 \pm 0.62\\ 243.12 \pm 0.14\\ 233.71 \pm 0.15\\ 228.75 \pm 0.10\\ 219.26 \pm 0.58\\ 207.44 \pm 0.01\\ 182.27 \pm 0.06\\ 159.00 \pm 0.11\\ 151.42 \pm 1.0\\ \end{array}$
			T3-R4		
0.1 0.3 1.0 3.0 10.0 30.0 100.0	1.098±0.08 1.123±0.16 1.271±0.02 1.341±0.03 1.317±0.007 0.966±0.55 0.507±0.31	0.047±4.4 0.117±1.37 0.302±0.08 0.546±0.06 0.991±0.03 1.179±0.12 0.632±0.54		182.16±0.08 184.66±0.03 183.52±0.01 177.27±0.01 160.42±0.01 131.55±0.16 107.89±0.28	254.25±2.2 251.25±0.75 233.95±0.38 177.27±0.03 160.42±0.01 153.98±0.04 59.48±0.17
			T3-R5		
0.1 0.3 1.0 3.0 10.0 30.0	1.101±0.31 1.186±0.42 1.257±0.09 1.105±0.23 0.596±0.38 0.131±14.4	0.203±3.0 0.534±3.0 0.923±0.49 1.052±0.61 1.007±0.27 0.708±1.36		$182.62\pm0.15 \\ 183.01\pm0.29 \\ 171.24\pm0.05 \\ 154.62\pm0.14 \\ 120.18\pm0.18 \\ 90.04\pm20.81$	258.47±3.9 243.70±2.0 206.69±0.24 185.13±0.19 158.57±0.15 137.35±0.64

*Errors in percentages

** Errors in degrees

` **B**

C

REFERENCES

- Bevington, P.R., 1969, Data reduction and error analysis for the physical sciences: McGraw Hill Book Company, Inc., New York.
- Beyer, J.H., 1977, Telluric and d.c. resistivity techniques applied to the geophysical investigation of Basin and Range Geothermal Systems: Ph.D. thesis, University of California, Berkeley.
- Beyer, J.H., Dey, A., Liaw, A., Majer, E., McEvilly, T.V., Morrison, H.F., and Wollenberg, H., 1976, Preliminary open file report: geological and geophysical studies in Grass Valley, Nevada, Lawrence Berkeley Laboratory, LBL-5262.
- Beyer, J.H., Morrison, H.F., and Dey, A., 1975, Electrical exploration of geothermal systems in Basin and Range Valleys of Nevada; Proceedings: Second U.N. Symposium on the Development and Use of Geothermal Resources, May 1975, pp. 889-894.
- Bhattacharyya, B.K., 1975, Propagation of transient electromagnetic waves in a conducting medium: Geophysics, v. 20, no. 4, pp. 959-961.
- Dey, A., and Morrison, H.F., 1973, Electromagnetic coupling in frequency and time-domain induced polarization surveys over multilayered earth; Geophysics, v. 38, no. 2.
- Frischknecht, F.C., 1967, Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys: Quarterly, Colorado School of Mines, v. 62, no. 1.
- Ghosh, M.K., and Hallof, G., 1973, Loop-loop EM depth sounding method for delineating geothermal and permafrost zones: Abstract: Geophysics, c. 38, p. 1201.
- Glenn, W.E., Ryu, J., Ward, S.H., Peeples, J.J. and Phillips, R.J., 1973. The inversion of vertical magnetic dipole sounding data: Geophysics, v. 38, pp. 1109-1129.
- Glenn, W.E., and Ward, S.H., 1976, Statistical evaluation of electrical sounding methods. Part 1: Experiment design: Geophysics, v. 41, pp. 1207-1221.
- Harthill, N., 1976, Time domain electromagnetic soundings: IEEE Trans. on Geoscience Electronics, v. GE-14, pp. 256-260.
- Inman, J.R., 1975, Resistivity inversion with Ridge regression: Geophysics, v. 40, pp. 798-817.
- Inman, J.R., Ryu, J. and Ward, S.H., 1973. Resistivity inversion: Geophysics, v. 38, pp. 1088-1108.

- Jackson, D.B., and Keller, G.V., 1972, An electromagnetic sounding survey of the summit of Kilauea Volcano, Hawaii: Journ. of Geophys. Res., v. 77, pp. 4957-4967.
- Jain, B.K., 1978, A low frequency electromagnetic prospecting system: D. Eng. thesis, University of California, Berkeley, LBL-7042, 128 pp.
- Jain, B.K., and Morrison, H.F., 1976, Progress report, inductive resistivity survey in Grass Valley, Nevada: Lawrence Berkeley Laboratory, UCID-3997, 46 pp.
- Jupp, D.L.B., and Vozoff, K., 1975, Stable iterative methods for the inversion of geophysical data: Geophys. J.R. Astr. Soc., v. 42, pp. 957-976.
- Keller, G.V., 1970, Induction method for prospecting for hot water: Geothermics -Special Issue 2.
- Keller, G.V., and Rapolla, A., 1976, A comparison of two electromagnetic probing techniques: IEEE Trans. on Geoscience Electronics, v. GE-14, pp. 250-256.
- Parker, R.L., 1970, The inverse problem of electrical conductivity in the mantle: Geophys. J.R. Astr. Soc., v. 22, pp. 121-138.
- Ryu, J., Morrison, H.F., and Ward, S.H., 1970, Electromagnetic fields about a loop source of current: Geophysics, v. 35, pp. 862-896.
- Smith, N.J., 1963, Geophysical activity in 1962: Geophysics, v. 28, no. 6, pp. 1048-1071.
- Vanyan, L.L., 1967, Electromagnetic depth sounding: Consultants Bureau.
- Wait, J.R., 1951, A conducting sphere in a time varying magnetic field: Geophysics, v. 16, no. 5, pp. 666-672.
- Ward, S.H., 1977, A report on 'Workshop on Electrical Methods in Geothermal Exploration': Geophysics, v. 42, pp. 664-666.
- Ward, S.H., 1978, Program review: resource evaluation, reservoir confirmation, and exploration technology: University of Utah, Depart. of Geology and Geophysics, Technical Report 78-1701, b.5.1.
- Wu, F.T., 1968, The inverse problem of magnetotelluric sounding: Geophysics, c. 35, pp. 972-979.

U.S.GP0:1979-690-242/119