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Abstract

NMR has proven to be a rich source of information about molecular structure
in condensed phases. A particularly good example of this is magnetic dipole cou-
plings between protons on partially-oriented molecules. These couplings are very
sensitive to the distance between the coupled protons and to the orientation of their
internuclear vector with respect to the applied magnetic field. This spatial depen-
dence gives proton dipole couplings the potential to be excellent probes of molecular
conformation and orientation. This potential is usually not fully realized, since cou-
plings between protons on molecules which undergo rapid conformational changes
are averaged over all molecular motions which occur. The couplings, however, can
provide detailed constraints on the time-averaged conformation of a molecule that
can be used as a rigorous test of models for molecular interactions.

NMR experiments to measure proton dipole couplings were performed on a se-
ries of n-alkanes (n-hexane through n-decane) dissolved in nematic liquid crystals.
Computer modeling of the experimental NMR spectra was done using several differ-

ent models for intermolecular interactions in these systems. The model of Photinos,
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et al. [1] was found to be best in describing the intermolecular interactions in these
systems and can provide a statistical picture of the conformation and crientation of
the alkane molecules in their partially-oriented environment. Order parameters and
conformational distributions for the alkanes can be calculated from the modeling,.
The alkanes are found to have conformational distributions very much like those
found in liquid alkanes.

Proton NMR spectra of tetrahydrofuran (THF) intercalated in two graphite in-
tercalation compounds were also measured. Computer simulations of these spectra
provide a picture of THF in the constrained environment between the graphene
layers where the THF is oriented at a particular angle, can translate and rotate

freely, but does not appear to pseudorotate.
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Chapter 1

NMR Background

1.1 Introduction

Nuclear Magnetic Resonance (NMR) has proven to be a very useful technique for
elucidation of molecular structure in solution, in solids, and in partially ordered
systems. In liquid-state NMR the isotropic parts of the nuclear spin Hamiltonian
(chemical shift and J coupling) are observable, while the anisotropic parts are av-
eraged to zero by the rapid, isotropic, molecular motions which occur in solution.
The result is a high resolution, often easy-to-interpret, NMR spectrum.
Solid-state NMR provides azcess not only to the isotropic Hamiltonian, but also
to the anisotropic parts of the nuclear spin Hamiltonian (anisotropic chemical shift
and dipole and quadrupole couplings). The spectra obtained in solid-state NMR,
however, usually contain broad, featureless lines which obscure most of the available
information. Numerous pulse sequences and methods of sample reorientation have
been developed which allow one to obtain narrower spectral lines and recover some

of the information about the system, but the full information content of dipole and



quadrupole couplings usually can not be easily obtained.

Partially ordered systems in which there is molecular motion — like the liquid
crystals and graphite intercalation compounds discussed in this thesis — provide the
best of both worlds. Rapid molecular motions in these systems result in narrow
spectral lines as in liquid-state NMR, but the anisotropy of these systems allows
access to both the isotropic and anisotropic parts of the Hamiltonian. The dipole
and quadrupole couplings that can be obtained from these spectra provide informa-
tion about molecular ordering and, in the case of the dipole couplings, molecular
geometry. It is the dipole couplings which will provide the information necessary
to understand the conformation and orientation of the alkane and THF molecules
discussed later in this thesis.

Before pressing on with this discussion, some background on NMR necessary
for discussion of the experiments in Chapters 3 and 4 will be presented. A more
complete and detailed description can be found in numerous books about NMR (2,

3,4, 5,6, 7.

1.2 The Density Operator

In NMR one usually makes measurements on a macroscopic sample which contains
an ensemble of many identical quantum-mechanical subsystems. To describe an
NMR experiment quantum-mechanically, it is convenient for the moment to con-
sider only one such subsystem. The state of this subsystem can be described by a
particular state vector |¥;). The act of measuring the state of this system involves

taking an average of some observable of the subsystem, represented by a Hermitian
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operator, A. This is written :
(A)i = (T:|A[T;). (1.1)

A Hermitian operator A has the property A = A' and has an orthonormal set of

eigenvectors |a;) each of which has a real eigenvalue a; :
Ala;) = aja;). (1.2)

If |¥;) is an eigenstate of A, then the expectation value of A is that state’s eigen-
value :

(A)i = ai. (1.3)

Otherwise, to compute the expectation value, it will often be convenient to expand
the state |¥;) in a complete set of normalized basis states (not necessarily the

eigenstates of A) :
[T:) = |6m) ($m| i) (1.4)
where the closure relation :
2 |bm)(bm| = 1 (1.5)
m
was used. The expectation value in Equation 1.1 can now be written :

(A)i = (W]AIT:) = D (0a| Vi) (ildm) (Dm| Aldn).- (1.6)

If the set of basis states, |¢m), was chosen to be the eigenstates of the operator A,

then this equation simplifies to :

(A)i= Zn: (6w |¥s)*am (1.7)

so that the average is calculated by summing the eigenvalues of A (a,,) times the

probability of obtaining that eigenvalue (|(¢m|¥:)[?).

g o IR NIRRT v [T
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4
Since NMR measurements are made on ensembles of many identical subsystems,

the next step is to consider the ensemble average of the observable A over all these
subsystems. This adds to Equation 1.6 a probability that a subsystem is in state

|¥;) and sums over all possible states |U;) of the system :

(A)ens = Z_;;wnl‘l’i)l’i(‘pi'¢m><¢mlA-|¢n> (1.8)

where p; is the probability of finding a subsystem of the ensemble in state |¥;). The

operator |¥;)p; (V| is called the density operator, p. Equation 1.8 can be written :

(Adens =D D {¢nlpldm)($m|Aldn) (1.9)

or
(Aens = Z(‘ﬁn‘pA!'j’n) (1.10)
which is the trace of pA :

(A)ens = Tr(pA). (1.11)

I have overlooked so far that the states |¥;) and therefore the density operator
usually evolve in time. To do any meaningful calculations about NMR experiments,
this must be considered. If the states |¥;) evolve in time under the influence of
a Hermitian Hamiltonian H, the time evolution of the density operator can be

described by the Liouville-von Neumann equation [4, 5, 6, 8] :

dp _ .
= =ile, H]. (1.12)

This equation can be solved for a time-independent Hamiltonian to give

p(t) = e p(0)e™. (1.13)
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If the time-evolution of the system can be broken up into several time intervals,

each governed by a different time-independent Hamiltonian, this becomes :

p(t) = g—iﬂntﬂe—iﬂ,‘_}i"_l e e—iH1t1p(0)eiH1t1 e eiHn—ltn—leiHntn. (1.14)

If the initial density operator, the Hamiltonian, and the observable to be mea-
sured are known, the results of an NMR experiment can be calculated using Equa-
tions 1.11 and 1.14. The next few sections will be devoted to describing the Hamil-
tonians of interest, the initial density operator, and the observable to be measured.
Then, in Section 1.6, Equations 1.11 and 1.14 will be used to calculate the results
of a few NMR experiments. But before that, the next section will provide some
background on tensors and rotations which will turn out to be quite useful in the

description of NMR experiments.

1.3 Tensors and Rotations

I will not try to give a complete description of tensors and rotations, but will
try to highlight some of the important properties and equations relating to them.
For a complete discussion of tensors, see books by Rose [9] or Silver [10], and for
discussion about the use of tensors in the description of NMR experiments see books
by Mehring [11], Haeberlen [12], and Ernst [4].

The Hamiltonians used to describe NMR experiments can be written in terms

of second-rank Cartesian tensors. For two-spin interactions the form is :

H = I.A-S



Az Ay Az x
H = (I I,L)| A, Ay A, v
A Ay A z
H = > Ai;LS; (1.15)

i,
Since, in the course of simulating an NMR experiment, numerous rotations often
have to be performed, it is usually more convenient to write the Cartesian tensors

as irreducible spherical tensors :

2 k

H=> Y (—1)%AkTi—q (1.16)

This separates the spatial (Ag,) and spin (Tk—,) parts of the Hamiltonian, so that
each can be transformed separately.

Rotations of spherical tensors can be performed by specifying the Euler angles
a, B, and v (see Figure 1.1) through which to rotate the tensor, using the convention
of Silver [10] for counter-clockwise rotation of a function about a fixed axis system.

Such rotations can be expressed by Wigner rotation matrices :
Dy (@, 8,7) = e Pdg,(B)e™* (1.17)

where the df,q(ﬁ) are reduced Wigner rotation matrices, tabulated in Table 1.1
for k = 2 [11]. Rotations of spherical tensors can be effected by Wigner rotation
matrices. The rotated tensor Ty, can be written as a sum of tensors times Wigner

rotation matrices :

k
te= 2 TipDpy(e, 8,7) (1.18)
p=—k

As a final note, Equation 1.17 can be changed into the form used by Rose [9] and

Mehring [11] by exchanging angles a and < in the exponentials on the right-hand

side of the equation.



Figure 1.1: Definition of Euler angles used in this thesis. Rotations can be
thought of by starting with the final and initial frames initially coincident.
Then the coordinates in the initial frame are expressed in the final frame by
rotating them by a about the final frame z-axis, by 8 about the final frame
y-axis, and by « about the final frame z-axis.
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1.4 NMR Hamiltonians

The nuclear spin Hamiltonian can be written as a sum of external terms describing
spin interactions with applied magnetic fields and internal terms describing spin

interactions with local fields :
H = Hext + Hint. (1.19)

The external part involves two terms, the Zeeman Hamiltonian for the large applied
magnetic field and the radio frequency Hamiltonian describing the applied radio

frequency pulses :

Hex = Hz + Hrr. (1.20)

The internal part of the Hamiltonian is composed of several terms - chemical shift,

J coupling, dipole coupling, and quadrupole coupling :
Hint = Hes + Hy + Hp + Hg. (1.21)

Each of these Hamiltonians will be discussed in detail, starting with the external

Hamiltonians.

1.4.1 Zeeman Hamiltonian

The principal interaction in NMR is the interaction of a nuclear spin with a large
applied magnetic field. This causes the degenerate nuclear spin angular momentum
energy levels to split into 27 4+ 1 energy levels, each characterized by its spin angular
momentum quantum number (see Figure 1.2). Written as a second-rank Cartesian

tensor, this interaction has the form :

~

My=-1.7.B (1.22)



: 10
which, if the applied magnetic field is along the z-axis, simplifies to :

'Hz = —’)’BzIz (1.23)

where v is the magnetogyric ratio (2.68 x 108 rad T-! s~! for protons and 4.11
x 107 rad T~! s? for deuterons, for example), B, is the strength of the magnetic
field (chosen along the z-axis for convenience) and I, is a spin angular momentum
operator with eigenstates labeled by their eigenvalues, m = —I,(-I+1),-.-,+I as
in Figure 1.2. The units of this and all other Hamiltonians used in this thesis are

rad s~!. The Zeeman Hamiltonian can be rewritten as :
Hz = onz (1.24)

where wy is called the Larmor frequency of the nucleus.

1.4.2 Radio Frequency Hamiltonian

The other applied field is the oscillating radio frequency (RF) field used to induce
transitions between states of the nuclear spin system. The Hamiltonian for this

‘interaction can be written :
Hgr = 2w cos(wt + @)1 (1.25)
where w,(= —vB,) is the RF field strength, w is the frequency of the applied RF

field, and ¢ is its phase.

1.4.3 Rotating Frame Transformation

It is usually convenient to transform the Hamiltonians into a frame of reference

which rotates at the frequency of the applied RF. This transformation simplifies
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Figure 1.2: Energy levels of nuclear spins 1, 1, and 2 labeled by their spin
angular momentum quantum numbers, m.
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the simulation of NMR experiments and reflects how detection is done in real NMR

experiments. The result of this transformation is to convert the RF Hamiltonian

in Equation 1.25 to (5] :
Hrr = wy(cos @I + sin @l). (1.26)

In this frame the RF field does not oscillate, but lies at a constant orientation
in the x-y plane at an angle ¢ from the x-axis. The effect of the rotating frame
transformation on the Zeeman Hamiltonian is to replace the Larmor frequency by
a resonance offset frequency :

Hz = Awl, (1.27)

where Aw (= wp — w) is the difference between the Larmor frequency and the
frequency of the abplied RF. In this frame tranverse magnetization appears to
precess at Aw rather than at wy. This transfomation has the effect of removing the
very large Zeeman interaction, allowing us to concentrate on the remaining internal
Hamiltonians which provide the interesting chemical information about the system.
As previously discussed, the internal Hamiltonians can be expressed as a sum

of irreducible spherical tensors of rank 0 through 2 :

2k
H=> > (-1)1AkTk—q (1.28)
k=0 g=—k

The internal Hamiltonians are generally much smaller than the Zeeman Hamiltonian
(0 - 50 kHz vs. 360 MHz for the studies in Chapter 3), so the effect of the rotating-
frame transformation on these Hamiltonians is to introduce a time-dependence into
all of the spin terms with ¢ # 0, leaving Ty, T1o and Ty unaffected. The time-
dependent terms do not contribute to observed NMR spectra to first order [11], so

they will not need to be considered in the rest of this thesis. This simplification is

i o ' " i) Wy "ot Y T T w” R RTT] e 1" UW[”\ e
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often called the high-field approximation. There are, of course, occasions when this

approximation is not valid - for example, experiments in low field or experiments
where Hgq is very large. The term A;oT3o can also be ignored since, to first order,
all NMR Hamiltonians are symmetric [12] so that A, is zero.

The spherical tensor representations of the internal Hamiltonians are given in
Table 1.2 (adapted from Reference [11]). The discussion below assumes that each
Hamiltonian in this table is expressed in its principal axis system (PAS) where
the second-rank Cartesian tensor is diagonal and A,, > A, > A;;. Since NMR
measurements are not made in the principal axis system of the interaction, but
rather in the laboratory frame, the Hamiltonians must be expressed in the lab
frame. The isotropic terms, AgoToo, are not affected by such a rotation, but the
second-rank spatial terms become :

2
ARB = 5 APMSDE (o, 8,7). (1.29)
g=—2
This involves rotating the spatial part of the Hamiltonian from its PAS to the lab
frame. Since APAS is diagonal in the Cartesian representation, only the terms AT}

and AP2S are non-zero. This puts the internal Hamiltonians into the form :

HUAB = (A3 Dlo(en B, 7) + Ag3 S Dio(e, B,7) + A2 D2 50(0t, 6,7)1Too-  (1.30)

1.4.4 Chemical Shift Hamiltonian

Nuclei aren’t isolated, but instead are surrounded by electrons. These electrons
shield the nucleus to some extent from the applied magnetic field, causing a shift

of the resonance frequency of the nucleus. In Cartesian form the chemical shift

I AT TR W ! T ' I K RN TR “W‘”H ITEREK
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Table 1.2: Relationship between Cartesian and spherical tensor representations of
nuclear spin interactions for the internal Hamiltonians.

gl

Cartesian Spatial Tensors Ang(a, 8 = z,y, 2)

Quadrupole Coupling Qup = 5,(5";——1‘2_—_—5%5

Chemical Shlft YOap
Dipole Coupling D}fﬁ - — %?f % [:m, :':v:g,m _ 1]
J Coupling Ji% = 27!'.]% [3ra,:i;'g,12 _ 1]

Spatial Tensors

AOO ""715 (Aza: + Ayy + Azz)
Ao "7’"5 (Amy - Ayx)

Arr || =3 [Aze — Aoz £ (Azy — Ays)]
Aso || 3x [3Ans — (Aue + Ayy + A1)
Agsy || Fi[Aw: + Ae £ (Ay: + Ay)]
Agso || 3 [Aze — Ay £ (Azy + Ays)]

Spin Tensors
Chgmical Shift J Coupling Dipole Coupling  Quadrupole Coupling

_?roTT ~Z51.B: -1 0 0

Tio 0 —55 (IT8™ —178%) 0 0

Ti+1 -1I*B, 1(I,8% - I*S,) 0 0

Tho V3LB. (LS. ~1-8)  H@LS.-1.8) H[32-I(1+1)]

To1 || F4I*B. F1(I.S* +1%S,)  FL(LS*+I%S,)  FL(LI*+I%L)

Tox2 0 1r£s* 115 1IE[E
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Hamiltonian can be written :

Hes=1-5-By (1.31)

The tensor & can be separated into isotropic and anisotropic parts using spherical
tensors. The isotropic part :

1
Hes(iso) = AooToo = 7Bz§(au + 0y +022)1; (1.32)

Hes(iso) = —woOisols (1.33)

has the same dependence on the large applied magnetic field as the Zeeman Hamil-

tonian and can be combined with Hz in Equation 1.24

Haz+cs(iso) = wo(l — Tiso) I (1.34)

Equation 1.27 for the rotating-frame Zeeman Hamiltonian must also be modified

Hz+cs(iso) = Awl, (1.35)
where Aw = wp(l — 0450) — W

The anisotropic part of the chemical shift is :

Hgg(Baniso) = [Agg AzSD, (a B, v) + APASDzo(a B,7) + APAS —20(0 B, 1)) Tz (1.36)
1 1
Hlég(?miso) = _gwo[azz - -2~(0u + 0y)](8cos® B — 1),
1

—-2-<.u0[(am — 0y,) sin® Bcos 2a)I,. (1.37)
If we define Ao = o,, — -;-(om + 0yy) as the chemical shift anisotropy and n =
3%:2=%w gs the asymmetry of the chemical shift, then this becomes :

H%?,&mo) = ——wvo [(3 cos? B — 1) 4 7 sin® B cos Za] I, (1.38)

where a and 3 are the Euler angles that relate the PAS of the chemical shift tensor
and the lab frame with the applied magnetic field along the z-axis



16
1.4.5 J Coupling Hamiltonian
The J Coupling is an indirect interaction of nuclear spins through their effect on
electrons in the chemical bonds that separate the coupled nuclei. As can be seen in
Table 1.2, the interaction has both isotropic and anisotropic components. In proton
NMR the anisotropic component has been found to be negligible (though not in
fluorine NMR) [13] and will not be discussed further, except to point out that the
second-rank part of the J coupling has the same form as the dipole coupling to be
discussed in the next section. This means that even if the anisotropic J coupling
is not negligible, it is difficult to separate the contributions of the anisotropic J
coupling and the dipole coupling in experimental spectra.

The isotropic part of the J coupling has the form :

The values of proton-proton J couplings observed in liquid-state proton NMR are

typically less than 20 Hz.

1.4.6 Dipole Coupling Hamiltonian

The dipole coupling is the internal Hamiltonian of most interest in this thesis. It
has an anisotropic part, but no isotropic part. This means that it is not observed in
liquid-state NMR spectra where rapid tumbling of molecules averages out the ori-
entational dependence of the couplings. Like in the case of the anisotropic chemical
shift, the dipole coupling tensor in Table 1.2 is expressed in the PAS of the inter-
action — that is, with D,, along the internuclear vector between the two coupled

spins. Since measurements are done in the lab frame, not tle PAS, we must rotate
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the tensor into this frame :

HlﬁAB (A PASDoo(a B, ) + PASDgo(aaﬂ,’Y)'*' PAS 2o(a By M Ta0.  (1.40)

The dipole coupling is traceless and, in its PAS, it is axially symmetric (D, = Dy, =
%;'}’3—), so that AFAS = APAS = 0 and the dipole coupling Hamiltonian for

two coupled nuclei simplifies to :

h1
= o ke k). 0
1

With the relation I* = I, +i], this becomes :

LAB _ _mreh ) T —
P = T (seos?B-1) [Lnla - 3 (W +ITE)] (142)

where £ is the angle between the internuclear vector and the applied magnetic field.

1.4.7 Quadrupole Coupling Hamiltonian

A quadrupole coupling only occurs when a nucleus is spin 1 or greater. It is due to
the interaction of a non-spherical nuclear charge distribution with external electric
field gradients. The quadrupole coupling (like the dipole coupling) is traceless, so
there is no isotropic component which can be observed in liquid-state NMR. Unlike
the dipole coupling, a quadrupole coupling does not have to be axially symmetric

(ABAS = AFAS £ 0), so in the lab frame it can be written :

HG'® = (AR Dy, 8,7) + A5 Dio(@, B,7) + AFAS D2 55(c, B,7)]T20  (1.43)

which becomes :

HEA® = §_I—(_;.?QT-T) [sz (3 cos® B — 1) + (Viz — V) sin® Bcos Qa] [31,,2 —-I(I+ 1)]

(1.44)
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where [ is the spin of the nucleus, e is the charge of an electron, @ is the quadrupole

coupling constant for the nucleus, and V,, are the Cartesian components of the
electric field gradient tensor at the nucleus. If 7 is defined as Q—’“E%:-YW—) then this

becomes :

HléAB - QEQQ;/%-Z—]; [(3 cos® B — 1) +nsin? B cos 2a] [3[3 -I(I+ 1)] (1.45)

where a and ( are the Euler angles that relate the PAS of the quadrupole coupling

tensor and the lab frame with the applied magnetic field along the z-axis.

1.5 The Hamiltonian for Experiments in This

Thesis

The various Hamiltonians which are accessible in NMR experiments on different
types of systems were discussed in the previous sections. The experiments in this
thesis are proton NMR experiments on n-alkanes dissolved in liquid crystals and on
tetrahydrofuran (THF) in graphite intercalation compounds. In these systems the
molecules of interest undergo rapid, anisotropic motion, so that NMR experiments,
which are on a time scale much slower than the molecular motions, result in partially
averaged spectra. One consequence of this is that dipole couplings between protons
on different molecules are averaged to zero. This simplifies the simulation of the
spectra of these systems because the signal observed appears to come from an
ensemble of identical, isolated molecules.

The Hamiltonian for these systems is :

H=Hz+Hcs+Hj+ Hp. (1.46)

f n I ' | e R TR O T R [
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The nature of the partially-averaged spectra that are observed leads to some sim-

plifications in the Hamiltonians. First, the anisotropic portions of the Hamiltonian
are partially averaged, so the observed chemical shift results from the isotropic
chemical shift plus the average value of the anisotropic chemical shift and will be

written :

Hos = —wo(o) 1. (1.47)

Now Aw in the rotating frame Hamiltonian in Equation 1.35 becomes (Aw) =
wo(l — (o)) — w. Second, the the J coupling is ignored. This is done because the
resolution of the spectra is not sufficient to observe splittings and line shifts due to J
couplings. Finally, the dipole couplings are also averaged over the molecular motions
that occur. The total evolution Hamiltonian consists of a resonance offset term

containing chemical shift and the partially averaged dipole coupling Hamiltonian :

| Yivh, 1 1 o

H =3 (Aw)il:+ }; ——2—;—(;% (3cos? ;- 1)) [Iz,-Izj -1 (IFI; + 1, 1;)]
11 > I,

(1.48)

where 7 and j are are summed over all the protons on the molecule of interest. The

other Hamiltonian which will be of interest between evolution periods is the RF

Hamiltonian in Equation 1.26 describing the effect of the RF pulses.

1.6 One-Dimensional NMR

Now that the Hamiltonian governing the systems in this thesis is known, we need to
specify the initial density operator and the observable before calculating NMR spec-
tra. At equilibrium the density operator is diagonal [5] with the diagonal elements

representing populations of the states. The states are populated at equilibrium as
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prescribed by the Boltzman distribution :

p; ox e~ PoEi (1.49)
where By = fq: and E; is the energy of state i. The equilibrium density operator :
can be written :
Peq = Pi x e~ Powol: (1.50)

where the Zeeman energy is wpl,. Since energies in NMR are much less than kT at
room temperature, it is possible to expand the exponential in a series and truncate
it :

Peq = 1 — Bowol. (1.51)

The constant term doesn’t evolve in time and will be dropped, as will the constants

Bowo, leaving the reduced equilibrium density operator :
Peq = 1. (1.52)

This will be the starting density operator for the calculations to follow.

The remaining issue is the observable in an NMR experiment. In NMR ex-
periments, detection is done with the same RF coil used to supply the RF pulses.
The coil simultaneously detects the real (I,) and imaginary (I,) parts of the sig-
nal. This is called quadrature detection and will be represented by the observable
I* = I, + il,. Now everything needed to calculate the results of an NMR ex-
periment has been discussed : The initial density operator (Equation 1.52), the
equation for time evolution of the density operator (Equation 1.14), the evolution
(Equation 1.48) and RF (Equation 1.26) Hamiltonians, and the equation for the

expectation value of an observable (Equation 1.11).
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The simplest type of NMR experiment involves the application of a (%)y pulse

to the spin system and detection of the resulting signal. The observed signal in

such an experiment can be written :
S(t)y={I*)y=Tr (pI+) =Tr (e'mte“‘%’"peqe‘%“em‘I‘*) (1.53)

where the RF Hamiltonian is expressed in terms of the tip angle § = w7 = J of

the pulse. The density operator immediately after the pulse can be calculated :
p(0) = e~ 3l e'sl = [, (1.54)

Then

S(t) =Tr (e"mtlmemtl"') (1.55)

or using the properties of the trace [8] :
S(t) = Tr (Le™I*e=™) (1.56)

For computer calculation of the observed signal, a basis set must be chosen for
evaluation of the trace. The most convenient basis will be the basis of eigenstates

of the Hamiltonian, written |i). The signal is :

S(t) = }:(illxemtl‘*e“mli) (1.57)
S(t) = S (ilLe™5) (| +e= ™ i) (1.58)
S(t) = Y e G| L ) (5| I i) (1.59)

v
where w; and w; are the eigenvalues of the Hamiltonian and (w; — w;) are the

observed transition frequencies. The difference between the diagonal elements of

the Hamiltonian matrix (w; —w;) gives the observed transition frequencies, and the
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product (i|I.|j)(j]1*|i) gives the relative amplitude of the signal at this frequency.

For computational purposes the Hamiltonian and the operators I* and I, must be
written in the basis of the eigenstates of the Hamiltonian. To do this one usually
first constructs the operators in the product basis (the basis formed by multiplying
the Zeeman states of the individual nuclei) and then diagonalizes the Hamiltonian

matrix. Mathematically this is :
D =UHU (1.60)

where D is the diagonal matrix and U is the transformation matrix which takes
an operator from the product basis to the basis where the Hamiltonian is diagonal.

Then the other operators can be transformed to this basis by matrix multiplication :

L=ULU *

I =Utrtu. (1.61)

The only thing left to make the simulation look like a real spectrum (besides
noise) is to mimic the effect of relaxation. This is done by assuming a Lorentzian
line shape and multiplying the time-domain signal by an exponential e~ % where
T, is the characteristic spin-spin relaxation time of the nuclei. The lines in the
spectrum will have a width at half height of W—% Hz. Alternatively, each line in the
frequency domain can be broadened by weighting it with a Lorentzian of width at
half height of -3 Hz.

Chapter 3 will consider systems of two isolated spins % For this simple case, it
is possible to analytically solve for eigenvalues and eigenvectors of the Hamiltonian.

These are shown in the energy level diagram in Figure 1.3. From this diagram it

TN
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can be seen that the observable one-quantum transitions have frequencies :

oy = w_1_2>_+% (6w)2+943
un = @-2 1oy + 5
Weg = 5)+-123—% (t5w)2+%i
we = w+%+% (6w)2+%f—. (1.62)

The intensities of the peaks at these frequencies in a simple one-pulse experiment

are given by (i|I|7)(j|I*|i) and are :

Iy =1+sin26
Is; =1—5sin20
Iso =1+sin26

I43 =1-—sin20 (163)

with 6 defined in Figure 1.3. If |D| >> |6w|, as is often the case, then (assuming
the sign of dw is positive) depending on the sign of D, either the pair of lines at
wg1 and wys or wa; and wyz will have intensity close to zero, leaving only two lines
in the spectrum at @ (1-123[ + %m). The splitting in the spectrum will
then be (|D| + m). If the difference in chemical shift between the two

nuclei, éw, is zero, the splitting will be 3|D|.

1.7 Two-Dimensional NMR

Two-dimensional NMR was first proposed by Jeener in 1972 [14]. The primary

benefits of two-dimensional NMR are the simplification of crowded one-dimensional
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Figure 1.3: Eigenstates and eigenvalues of the Hamiltonian in Equation 1.48
for two dipole coupled spins % with different chemical shifts. The symbol @
is the average chemical shift @)‘—;—Qﬂﬁ, the symbol 6w is the chemical shift

difference between the coupled nuclei, and 6 is defined by tan 26 = 5‘3%.

NMR spectra and the correlation of peaks in the two dimensions to map out either
through-bond or through-space connectivities between atoms in a molecule. All
two-dimensional NMR experiments can be separated into four parts : preparation,
evolution (t;), mixing, and detection (tz). The preparation and mixing periods
are usually composed of one or more RF pulses, while the evolution and detection
periods are time periods during which evolution under the Hamiltonian occurs.
A two-dimensional experiment is usually performed as a series of one-dimensional
experiments with the value of t, incremented between each experiment. The re-
sulting two-dimensional time-domain data matrix is Fourier Transformed along two
dimensions to give the desired frequency-domain spectrum.

The class of two-dimensional experiment of interest in this thesis is COSY (COr-

related SpectroscopY). The simplest COSY experiment is the one first proposed by
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Jeene. [14]. It has preparation and mixing periods which each consist of a single

% pulse, and free evolution during the evolution and detection periods. The pulse

sequence can be written :
m T A
=) —ti—-(2) -t .
(2),, ! (2),, 2 (1.64)
The observed signal is :
S(t;, tz) =Tr (e-—i‘?-ttze-—i-}!‘,e-—i?the—il’z-I,,peqe:'%!yeiHh ei%.l.,ei'ﬂtzI+) . (1.65)

Rearranging the trace, expanding in the eigenstates of the Hamiltonian, and eval-

uating the result of the first pulse, as in Equation 1.54, this becomes :

S(ty,ta) = 3 (ile™ 3 e M0 k) (k| L™ 1) (1]e*E e |j) (j|I+e~™2|i)  (1.66)
1,3,k,0

which can be written :

S(tr,te) = Y erwntigiles—aita(gle=iEh k) (k| L) (Ue v |5) (I TE) - (1.67)

i,5,k,!
or
S(tl,tg) = Z Ci(w‘_wk)tlei(wj_w‘)tzZji,k[ (168)
i,5,k,0
where
Zjija = (ile” 50| k) (k| L |1) (1|e*3 ¥ )5) (5| I 15). (1.69)

This results in sixteen peaks at frequencies in the two dimensions corresponding to
all possible pairs of the frequencies wa;, w31, wag, and wys. Since all peaks in a two-
dimensional spectrum of a strongly coupled spin system can not be simultaneously
phased, all two-dimensional spectra in this thesis will be presented in absolute value

: . : 1
mode. The absolute value intensities of the peaks are given by [| Z;: u|? + | Z;:1/%]2

B

d are listed in Figure 1.4. The peaks with frequencies that are the same in the
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two dimensions are called diagonal peaks. The peaks with frequencies which are

different in the two dimensions are called cross-peaks and only appear if two nuclei
are coupled in some fashion. It is the presence or absence of these cross peaks that
allows information about connectivities in a molecule to be determined, as will be
discussed in Chapter 3.

The basic COSY experiment in Equation 1.64 can become a double-quantum

filtered COSY with the addition of a delay and another 7 pulse to the mixing

Boo-@n-@e om

which can be written in the density matrix formalism (assuming ¢ = y) :

period :

S(tl,t2)= Z ei(wx—wk)hei(wj—we)tzei(wn-—wm)‘rxZjiklmn (1.71)

i3k, lmmn

where
Zjipimn = (ile" 2 |m) (mle™* 50 k) (k| |} (lle'2 v |n) (nle*z v |5) (4| T H]s).  (1.72)

The first two pulses in this sequence are cycled through phases ¢ = 0°, 90°, 180°,
and 270° and the receiver phase must be cycled through 0° and 180° to select only
the double quantum transitions during 7;. This means that m and n in the above
equation take only the values 1 and 4. The frequencies of the peaks from this
experiment are the same as in the simple COSY experiment, but the intensities of
the peaks are different and are given in Figure 1.4.

For the experiments in Chapter 3, it will be useful to do this experiment with
a (m), pulse during ¢, to refocus chemical shift during that time pericd. In the

density matrix formalism, this becomes :

w1 ~wi) L i(we—wo) L i(w: —ws (W —
S(t;,t) = E etlwi—wi) 7 pilwg—wp) 7 pi(wj—wi)tz pilwn —wm) T Ziiximnpg  (1.73)
i,j,k.l,mn,p,q
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Figure 1.4: The pattern of peaks which arises in a simple COSY experiment
on a dipole-coupled two-proton system. @ is the average of the chemical shifts
of the two coupled nuclei and wy = 2 % 1,/(6w)® + %—2. The absolute-valued
intensity of the peaks are : 1. (1 —sin26)v/1 + sin? 26, 2. cos? 26, and 3. (1+
sin 20)v/1 + sin? 26 [15]. The intensities of the peaks that are not numbered can
be determined from the D4, symmetry of the absolute-valued spectrum. For
a double-quantum-filtered COSY experiment, the absolute-valued intensities
of the numbered peaks are : 1. (1 — sin26)2, 2. cos?26, and 3. (1 + sin26)2.
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where
Ziimmnpg = (ile”*2|m)(mle~*2%|p) (ple~*1v|k) (k|L|I)
(Ue™¥|q){gle’E v |n) (nle v |} (51T |i). (1.74)
(1.75)
The peak positions and intensities for this experiment are given in Figure 1.5. This

is the experiment that will be used (with small modifications) in. Chapter 3 to study

the conformation and orientation of n-alkanes dissolved in liquid crystals.
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Figure 1.5: The pattern of peaks which arises in a refocussed double-
quantum-filtered COSY spectrum of a dipole-coupled two-proton system. @
is the average of the chemical shifts of the two coupled nuclei and w; =
-122 + %\/(6(;))2 + %3. The intensities of the numbered peaks are :
sin 26)% sin 26, 2. cos?2@sin 26, 3. 2 cos? 26(1 — sin 26), 4. 2cos? 26(1 + sin 26),
and 5. (1 + sin26)?sin 26.
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Chapter 2

Liquid Crystals

2.1 Introduction

Liquid crystals comprise what is essentially a fourth state of matter. They have been
the subject of intense study over the last 30 years, not only for their interesting phase
behavior, but also for their applications in displays and other optical technology.
Numerous books and reviews [16, 17, 18, 19, 20, 21, 22, 23, 24] exist which can
provide a more thorough description of their properties and applications than is
presented here, but an attempt will be made to provide some background which is
relevant to the upcoming work in this thesis.

As the name implies, liquid crystals have properties of both liquids and solids
and, because of this intermediate phase behavior, are also called mesophases. They
are similar to liquids in that molecules in both phases undergo rapid translational
and rotational motion. A typical self-diffusion constant for a nematic liquid crystal
is 107® to 1077 cm? s™! [16] compared with the self-diffusion constant of small

solutes in water of 10~° cm? s™! [25]. The unique properties of liquid crystals, how-

30
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Figure 2.1: A schematic picture of laminar (left) and hexagonal (right) phases
of lyotropic liquid crystals. The molecules’ polar head groups are oriented
toward the solvent water, while the hydrophobic hydrocarbon tails exclude
the water. The molecules in the laminar liquid crystal are arranged in sheets
separated by layers of water, and the hexagonal phase has the water confined
to tubes which are arranged in a hexagonal lattice.

ever, come from.their solid-like attributes. Molecules in liquid crystals, like in solids,
have cohstra.ints on their orientational and, in some cases, translational degrees of
freedom. These constraints break the isotropic symmetry of the liquid state. The
existence of a director, n, usually defined as the preferred direction of alignment of
the liquid crystal molecules, is one consequence of the broken symmetry.

Liquid crystals can be separated into two broad classes based on the origin
of their liquid crystalline properties. The first class is lyotropic, which includes
those mesophases formed from rilixtures containing compounds with amphiphilic
properties and solvents. Their liquid crystalline behavior is determined by the
concentrations of the components of the mixture. Some common examples of such
systems are soaps or detergents in water and phospholipids in water. They form

laminar, micellar, and other structures, as shown in Figure 2.1.



32
The other class of liquid crystals is known as thermotropic. These liquid crys-

tals are usually formed from a single compound which does not directly undergo a
phase transition from the solid to liquid phase, but rather exhibits one or more
liquid crystalline; phases in the temperature range between its solid and liquid
phases. Thermotropic liquid crystals can be formed from rod-shaped organic mol-
ecules, disc-shaped molecules [23], polymers [17], and organometallic compounds
[26, 27], but the most common ones (and the ones of primary interest here) are
the rod-shaped organic molecules. These liquid crystals can form several types of
mesophases, differing in the nature of the constraints placed on the orientation and
position of the liquid crystal molecules. The three most common types are nematic,

chiral nematic (also known as cholesteric), and smectic.

2.2 Nematic Liquid Crystals

Nematic liquid crystals are the most liquid-like of the three types. The liquid
crystal molecules have constraints on their orientation, but there is no positional
order of the molecules’ centers of mass. Schematic pictures of nematic mesophases
composed of rod- and disc-shaped molecules are shown in Figure 2.2.

The long axes of the rod-shaped molecules tend to align in the same direction
as their neighbors, leading, on average, to a preferred direction of alignment of the
molecules called the director, n. For disc-shaped molecules, this is the preferred
direction of alignment of the normals to the discs. A single director is all that
is needed to characterize the anisotropy in most nematics, since they are uniaxial
(though a few biaxial nematics have been shown to exist [28]). In all known nematics

the directions +n and —n are indistinguishable.



Figure 2.2: Schematic pictures of nematic liquid crystals composed of rod- and
disc-shaped molecules. The liquid crystal molecules have constraints on their
orientation but not on their position.

The direction of n in a given liquid crystal sample is arbitrary and may vary
throughout the sample, but the variations are on a length scale much larger than
the molecular length [18]. The direction of n 18 usually imposed by the boundaries
of the sample oF by applied electric or magnetic fields. Magnetic fields can impose
alignrnent of the liquid crystal molecules with their long axes either parallel or
perpendicular to the field, depending on the diamagnetic anisotropy, Ax(= X1~
x1), of the liquid crystal molecules. If Ayx is greater than zero, the liquid crystal
molecules align with their long axes parallel to the applied magnetic field, and if
Ay is less than zero, the molecules align perpendiculax to the applied feld. In large
magnetic fields like the 8.4 T field used in the studies described in the next chapter,
the liquid crystal molecules are completely aligned by the field, with only transient
variations of 1 within the sample.

One example of a thermotropic nematic liquid crystal is shown in Figure 2.3.
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Figure 2.3: The nematic liquid crystal used for the studies in this thesis. It
will be referred to in the rest of this thesis by its Eastman Kodak catalog
number, EK11650. It melts at 39°C to form a nematic which turns into an
isotropic liquid at 122°C.

This liquid crystal is the one that will be used in the studies in the next chapter.
It has a large nematic range, from 39°C to 122°C, and has a positive diamagnetic
anisotropy so that the long axes of the molecules align parallel to an applied mag-
netic field. The studies in the next chapter involve molecules dissolved in liquid
crystals. The addition of solute molecules to liquid crystals, in general, has the
effect of lowering the the nematic-isotropic transition temperature and narrowing

the nematic temperature range of the liquid crystal.

2.3 Chiral Nematic (Cholesteric) Liquid Crys-
tals

If a nematic liquid crystal is made up of one enantiomer of a chiral molecule, it
is called a chiral nematic or cholesteéric liquid crystal. This type of liquid crystal
is very similar to a nematic except that the direction of the director in the liquid
crystal varies throughout the sample in a regular fashion. The direction of the
director varies along an axis in a helical twist with a pitch on the order of 2000A

or more [16, 18]. Figure 2.4 shows a schematic picture of such a liquid crystal. The
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Figure 2.4: A schematic picture of a Chiral Nematic (or Cholesteric) liquid
crystal composed of rod-shaped molecules. The director varies along an axis
in a helix with pitch p.

pitch of the twist can be modified by the application of weak electric or magnetic

fields, or removed completely by the application of stronger fields.

2.4 Smectic Liquid Crystals

Smectic liquid crystals are more ordered than nematic or cholesteric liquid crystals.
They have constraints on molecular postion as well as orientation. There are many
different types of smectic liquid crystals, two of which are shown in Figure 2.5.
The Smectic A liquid crystal is essentially a nematic in which the positions of the
molecules have been restricted to layers perpendicular to the director. Translation

in the two dimensions within a layer is not much different from a nematic, but



Figure 2.5: Schematic pictures of Smectic A (left) and Smectic C (right) liquid
crystals composed of rod-shaped molecules. In addition to constraints on
molecular orientation, molecular position is constrained in one dimension.

perpendicular to the layers, it is significantly restricted. Smectic C liquid crystals
are similar to Smectic A liquid crystals except that the layers of positional local-
ization are not perpendicular to the director, but at some angle to it. An example
of a liquid crystal that has a Smectic A phase is 4'-n-octyl-4-cyanobiphenyl (8-CB)
which melts to form a Smectic A phase at 21.5°C. It has a transition to a nematic

liquid crystal at 33.5°C and then a transition to an isotropic liquid at 40.5°C.

2.5 Other Mesophases

Besides these three common types of thermotropic liquid crystal phases, two others
have been of much interest recently - columnar phases and blue phases. Columnar

liquid crystals are formed from disc-shaped molecules and have not only orienta-



Figure 2.6: Schematic pictures of orthogonal (left) and tilted (right) columnar
liquid crystals. Molecular orientation and molecular position in two dimen-

sions are constrained, forming columns of molecules which are arranged in a
“lattice”.

tional order, but also constraints on molecular translation in two dimensions, with
translation possible in the third [23]. Two examples of columnar mesophases are
shown in Figure 2.6. The discotic molecules are oriented as in a discotic nematic,
and their positions are constrained in two dimensions into columns which are ar-
ranged in a “lattice”. Molecular translation is less restricted along the column axis.
Some examples of the types of molecules which form discotic nematic and columnar
liquid crystalline phases are shown in Figure 2.7.

Blue phases are formed by some chiral nematic liquid crystals with short pitches
(< 3000)A [17) in a narrow temperature range between the chiral nematic and
isotropic phases. Three blue phases are known - BPI, BPII, and BPIII - and

typically form in that order with increasing temperature. The phases are found to
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Figure 2.7: Some types of discotic mesogenic cores. The “R” substituents are
usually alkyl or alkoxy chains, but may also have more complicated structures.
The nature of these substituents has a dramatic effect on the phase behavior
of the liquid crystals [23].
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be optically isotropic (unlike other liquid crystal phases) and have quite different

symmetries than other liquid crystals. BPI has body centered cubic symmetry,
BPII has simple cubic symmetry, and BPIII has either icosahedral symmetry or
is amerphous [17, 24]. One example of a molecule which exhibits all three Blue

Phases is cholesterol nonanoate.

2.6 Order Parameters

The mesophases described in the previous sections all have a director which can be
defined as a direction of preferred alignment of the molecules. The degree to which
the r_olecules are aligned along the director is measured by the order parameter of
the liquid crystal. The order parameter is a macroscopic measure of order, that is,
it is an ensemble averaged quantity, averaged over all molecules in the sample. The
order parameter should vary from zero (in an isotropic liquid) to a maximum (in a
completely ordered crystal).

Consider a single molecule of a rod-shaped nematic liquid crystal. The orienta-
tion of the long axis of the molecule with respect to a laboratory-fixed axis system
(with the director of the liquid crystal along the z-axis) can be described by a vec-
tor a. A first-rank tensor like this vector cannot provide an order parameter for
the liquid crystal, because an ensemble average of the direction of a vector in a
nematic liquid crystal will always be zero due to the equivalence of +n and —n .
A second-rank tensor constructed from this vector, however, does provide an order
parameter. The Cartesian order tensor, Sy, can be constructed from the Cartesian

components, a,, of a :

Sus = (33005 — Bug) 2.)
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or since the components of a are direction cosines for the vector in the lab-fixed

axis system :
Sap = (-;—(3005 0n cos s — 1)) (2.2)
where 6, (x = z,y,2) is the angle between the vector a and the x-axis of the

laboratory-fixed axis system. This can be rewritten in terms of Euler angles o and

B describing the orientation of a with respect to the laboratory-fixed axis system :

S = (3(Bcos?f—1)
rr—yy = (% sin? (3 cos 2cx)
Sy = (g sin? B sin & cos @)
Szz = (g sin 0 cos 8 cos a)
Sy: = (g sin 3 cos B sin ). (2.3)

If the molecule is cylindrically symmetric, then only the component of S,z along

the director of the liquid crystal is non-zero :

S, = =(3cos’ B —1). (2.4)

[T

Rod-shaped nematic liquid crystals usually deviate only slightly from cylindrical
symmetry, so this is the most important component of the order tensor. It is a
measure of the average orientation of the long axis of the molecule and ranges from
a value of 1 for a perfectly ordered crystal, to zero for an isotropic liquid, to —-% for a
perfectly ordered crystal with the long axes of the molecules aligned perpendicular

to the director. Typical nematic order parameters range from 0.3 to 0.8 {18].
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2.7 NMR in Liquid Crystals

NMR has proven to be a very useful tool for studying liquid crystals. NMR studies
of liquid crystals can provide information about molecular ordering, phase structure,
molecular structure, molecular conformation, and molecular dynamics {13, 20, 29,
30]. This thesis is primarily concerned with the use of NMR to study molecular
ordering and conformation in liquid crystals, so this will be discussed in detail.

As stated in the previous section, the order parameter used to describe lig-
uid crystals is a second-rank tensor quantity. To measure this using NMR, one
must measure a second-rank property of the nuclear spin system like chemical shift
anisotropy, quadrupole coupling, or dipole coupling [13, 30]. Starting with a second-
rank Hamiltonian in its principle axis system (PAS) :

2
H= 3 (-1)9A5 Tz (2.5)
g=-2
containing spatial AS*S and spin T;_, terms, the spatial part can be expressed in a
molecule-fixed frame by a rotation of coordinates through an angle ; :

2
AR = Y ARSD () (2.6)
r=—2
The resulting tensor can be expressed in the director frame by a rotation through
an angle {2; :

2
AR = 3 ANOUD2(0,). @)

8=-—2

If the director is parallel to the applied magnetic field, as it will be for liquid crystals
with a positive diamagnetic anisotropy (Ax > 0), then no further transformations

are necessary since AY*E = ARIR. If the liquid crystalline phase is uniaxial, all

[ TR A S T I NI T by o [ TR
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terms with ¢ # 0 vanish because of the cylindrical symmetry of a uniaxial phase :

ALAB Z AMOLD2 () ) (2.8)

8=-2

This gives the spatial part of the Hamiltonian for a particular molecule at a partic-
ular orientation at a given instant. Since in most NMR spectra of liquid crystals,
narrow, motionally-averaged lines are observed, it is safe to assume that the molec-
ular motions are occurring much faster than the time-scale of the NMR experiment;
the observed spectra are averaged over all molecular motions. This means that we

must take a long-time average of the spatial tensor in Equation 2.8 :

ADR = 3 AYOL(DZ(,). (29)

s=—2

The assumption has been made that the angle §; between the PAS of the NMR
interaction and the molecule-fixed axis system remains fixed; otherwise, an average
over this angle would also have to be performed. The (D?(f2;)) are order parame-
ters describing the average orientation of the molecule-fixed axis system with respect

to the laboratory (director) frame z-axis. The entire Hamiltonian then becomes :

H = ALABTzo (210)

H o= 3 AYOU(DE ()T (2.11)

§=—2
If the liquid crystal has Ay < 0, that is, it orients with the director perpendicular
to the applied magnetic field, then a rotation from the director frame to the lab

frame is required. Equation 2.11 then becomes :

H= Z AYO( D2 (02)) Do(Qs)Too (2.12)

§=~2
where (23 is the angle between the director and the applied magnetic field. Since the

liquid crystal is uniaxial, however, the order parameters (D%(f2;)) cannot depend
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on the third Euler angle v so they become (D%,(€22)) and Equation 2.12 becomes :

H= Z ARCH(D2(822)) D3 o($23) Tio- (2.13)
g=-2
For liquid crystals with the director perpendicular to the applied magnetic field,
the angle Q3 = (@ = 0,8 = §,7 = 0) so D¢,(Qs) = 3(8cos? f — 1) = —3, and
Equation 2.13 becomes :
H=-5 Z AR (DZ(22)) Tro. (2.14)
a——2

Thus, the only difference between the cases of uniaxial liquid crystals with pos-
itive and negative diamagnetic anisotropies is that with a negative diamagnetic

anisotropy the dipole couplings are scaled by a factor of —%.
Continuing with the case of liquid crystals with positive diamagnetic anisotropy
from Equation 2.11, it is usually easier to work in Cartesian coordinates. The
spherical tensor A} can be rewritten in Cartesian tensor form, and the Wigner

rotation matrices can be written in terms of Euler angles :

{—j—-[zAzzm ~ (AYOU 4 AYOLY)(2 (Beos? 6 1)

+= [AMOL + AMOL z(AMOL + AMOL)](\/;? sin B cos Be ™)

“+= [AMOL + AMOL — j(AMOL 4+ AMOL)](\/E sin 3 cos Be**)
54OV — ANOL 4 i(ANOE AﬁiOL)](‘/— sin? fe~2%)

+§[A¥,°L — ApPY —i(ARP + ARCHN \/' sin® Be’**)} Ty (2.15)

where AMOL (a = z,y,2) are the Cartesian components (in the molecular frame)

of the spherical tensor AY.°". Then since NMR Cartesian spatial tensors are sym-

[ [ [T gt ov o I T L oo



metric (Agy = Apg) to first order :
2 ramoL _ 1/ amoL | smoLyy,L 2
H = g{[Azz - E(Ag,,c + Ay, )](-2-(3 cos? 3 — 1))
1
+§[Af;'§,°1‘ — AMOLY] (% sin® B cos 2a)

+2[A}O" (g sin? Bsin a cos a)

2
+2[AMOL (% sin B cos 3 cos )
+2[4}°Y) (g sin Bcos Bsina)} [\ETm] (2.16)

where the terms in the angle brackets are the order parameters for the molecule-
fixed axis system (see Equation 2.3) :

1
2

1
+‘?:[AﬁOL - AyMyOL]Szz~yu

2
o= Zamer - (amor s gy,

+2AYCLS,,

+24MOLg, .

F2AMOLg ) [\/gno] . (2.17)

Using this equation, an experimental quadrupole coupling or anisotropic chemical
shift tensor can be used to determine experimentally the order parameter along
a given bond in a molecule or dipole couplings can be used to determine order
parameters and molecular geometry for rigid molecules {13, 30]. The next chap-
ter will describe a method for modeling the dipole couplings between protons on
flexible molecules and extracting information about molecular conformation and
orientation. For dipole couplings D}{°" has the form :

2
DYV~ 3~ DEASDZ () (2.18)

8=-2
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which for the cylindrically symmetric dipole coupling written in Cartesian coordi-

nates is :

—NY2h 1|, TaiiTsij
DMOE = ZILT2 _ 13 Taiihii _ 2.19
ab,sj 'IT'I'% 2 r?j ab ( )
where r is the internuclear vector between protons i and j and 7, ;; is the a (= z,y, 2)

component of that vector in the molecular frame.
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Chapter 3

NMR Studies of Molecular
Conformation and Orientation in

Liquid Crystals

3.1 Introduction

As discussed in the previous -chapter, second rank interactions in NMR - chemi-
cal shift anisotropy, quadrupole couplings, and dipole couplings — can be used to
measure order parameters in liquid crystalline systems. Order parameters are im-
portant for characterizing anisotropic systems, but they are macroscopic quantities
which give no microscopic information about the nature of the molecular interac-
tions responsible for such ordering. Since most anisotropic systems — liquid crystals,
polymers, and lipid bilayers, for example — are composed, at least in part, of flexible
alkyl chains, an important step in the understanding of intermolecular interactions

responsible for ordering in these systems is to characterize not only molecular ori-

46
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entation, but also molecular conformation.

Previous attempts to study chain conformation and orientation have often em-
ployed deuterium NMR spectroscopy [31, 32, 33, 34, 35]. The deuterium quadrupole
couplings measured in these studies provide information about the ordering of indi-
vidual methylene segments in a flexible chain, but provide no information about the
relative positions of different methylene segments in the chain - information crucial
for detailed description of chain conformation. A potentially more useful method of
measuring the conformation and orientation of alkyl chains in liquid crystals would
be to use proton NMR to measure dipole couplings between pairs of protons on the
chain. Because of the (3cos? By — 1)/r3, dependence of the dipole couplings, they
should be very sensitive to both molecular conformation and orientation.

Proton NMR spectra of molecules in partially ordered systems, however, rapidly
become intractably complex with increasing molecular size, making it virtually im-
possible to extract useful information from the spectra of molecules with more than
a few protons. One possible method of simplifying the spectra of such molecules
could be to specifically protonate a deuterated molecule at two sites. This would
allow easy measurement of the dipole coupling between the two protons but would
require the tedious and expensive synthesis of numerous molecules, each specifi-
cally protonated at different sites, in order to measure couplings between all pairs
of protons on the molecule. An alternative to this is to use random (non-selective)
deuteration and a two-dimensional multiple-quantum filtered NMR experiment, as
will be described in the next few sections. This method simplifies the synthetic
process considerably, requiring only one isotopic substitution reaction; then all the

proton dipole couplings can be measured in a single two-dimensional NMR experi-
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ment.

While the dipole couplings can potentially provide a complete description of
molecular shape, they cannot be directly interpreted in terms of molecular con-
formation and orientation, since the NMR experiment measures couplings that
are averaged over the rapid molecular motions that occur in solution. Thus the
dipole couplings are averaged over all conformations and orientations sampled by
a molecule. To obtain useful information about conformation and orientation, the
coupliﬁgs must be interpreted using models for intra- and inter-molecular interac-
tions.

Before applying this method to complicated systems of interest like liquid crys-
tals, polymers, or lipid bilayers, we will start with simple model systems. A series
of n-alkanes (hexane through decane) dissolved in a nematic liquid crystal provides
a set of good model systems on which to test the experimental method for measur-
ing dipole couplings between pairs of protons on flexible molecules. The detailed
information about molecular conformation and orientation obtained from the ex-
perimentally measured proton dipole couplings can then be used to test several

models for intermolecular interactions in nematic liquid crystals.

3.2 Two-Proton Filtered COSY Experiment

A conventional one-dimensional NMR spectrum of fully protonated n-hexane dis-
solved in EK11650 is shown in Figure 3.1. The spectrum is very complex and
would be virtually impossible to analyze to obtain dipole couplings between pairs
of protons on the molecule. To simplify the spectrum, the alkanes will be randomly

deuterated to a level of approximately 80%. With 80% of the protons replaced by

NN
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deuterons, a large number of hexane molecules will have only two protons left on

them, as shown in Figure 3.2. If the signal from molecules with two protons can
be selectively retained while discarding the signal from all other hexane molecules,
then a simple spectrum containing pairs of lines whose splittings give the dipole
couplings between pairs of protons on n-hexane can be obtained. As has been pre-
viously discussed [36, 37, 38] a two-proton filtered COSY experiment will allow us

to do this. The pulse sequence for this experiment is :

(.40, -3-0n-3-(3),-F- - 3w o

This pulse sequence begins with a 7 pulse followed by ¢, evolution. A 7 pulse
during t; is used to refocus chemical shift, and then a second § pulse is used to
generate multiple-quantum coherence which evolves during 7. If a molecule has
only one proton on it, multiple-quantum coherence cannot be generated at this
point, and signal from such molecules is lost. The multiple-quantum coherence
evolves during 7, while chemical shift is refocussed by the 7 pulse in the middle.
Then the multiple-quantum coherence is converted to observable single-quantum
signal by the last I pulse and detection is done after an echo during 72. The echo
allows the fast-relaxing liquid crystal proton signal to decay, while refocussing the
signal from the protons on the alkane. Signal from molecules with three or more
protons is removed by co-adding numerous experiments, each with a different value
of 1. This works because double-quantum coherences from two-spin systems don'’t
evolve in time while double-quantum coherences from three or more spin systems do
evolve. By co-adding experiments with different values of 71, the double-quantum
signal from molecules with more than two protons will average to zero.

Looking at this experiment in the density operator formalism for the two dipole-
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Figure 3.1: A conventional one-dimensional NMR spectrum of n-hexane dis-
solved in EK 11650.



51

030
0.25
0.20
0.15
0.10
0.05

0.00 1 1 L L - 2 4
o 1 2 3 4 5 6 7 8 9

Number of Protons

lity

1

Probab

Figure 3.2: The distribution of protonated isomers of n-hexane deuterated to
a level of 0.81. The solid line is the theoretical curve if the deuteration is truly
random, and the points (e) are the results from a mass spectrum.
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coupled spins % from the previous chapter, the signal from a single experiment with

¢ = x can be written :

S@t) = Tr(e—imzve—mgl e—inlz g—iMF =i} le Peq
151z giH % ginle GiHF 1t itz ") (3.2)
where
V = e NP inlsp-iNF o=ifle—iNG —inls o= o—if e
Vit = iflzgiMP il oiMF (15 1z iHF pimlz iHF | (3.3)

are the mixing propagator and its adjoint. Rearranging the trace, expanding in the
basis of eigenstates of the Hamiltonian and evaluating the effect of the first 7 pulse

on the equilibrium density operator, this becomes :

S = X (Ve ™y (llem e k) (k| — Le™E |n)
i,j,k,l,m,n
(nle™™t= ™% m) (m|V1e™2)j) (511 M4 i) (3.4)

Since the basis states are eigenstates of the Hamiltonian, this can be written :

S(t) _ Z ei(wj—w;)tzei[(wm+w")—-(wk+w‘)]%
ijklmn
@V e ™= k) (k| = I |n)(nle™= Im)(m|V|7) (G11* i) (3.5)
where wq are the eigenvalues of the Hamiltonian, given in Figure 1.3. The frequen-

cies which occur in the spectrum are the same as in Figure 1.5 but the intensities

are slightly different because of the additional delay ™, and the m pulse in 7.

3.3 Experimental Details

The alkanes to be studied (n-hexane, n-heptane, n-octane, n-nonane, and n-decane)

were randomly deuterated to a level of 0.8-0.9 by gas-phase exchange with D, over
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a Pd catalyst at 90°C. The level of deuteration was determined by mass spec-

trometry. Five samples, each containing one of the n-alkanes, were prepared by
dissolving a sufficient amount of the randomly deuterated alkane in the liquid crys-
. tal EK 11650 (p-pentylphenyl-2-chloro-(4-benzylbenzoyloxy)-benzoate) to bring the
concentration of the alkane to 30 mole %. The NMR experiments were performed
on a home-built 360 MHz spectrometer using the pulse sequence in Equation 3.1.
For each sample, 1024 t; points and 384 t, points were collected with a 12 kHz
sweep width in both dimensions. Fer each t; point 96 scans were averaged, cycling
phase ¢ through 0°, 90°, 180°, and 270° every scan, cycling the receiver through
0° and 180° every scan, and incrementing 7; by 1.4 ms every fourth scan from a
starting value of 1.4 ms. 7, was kept fixed at a value of 1.2 msec. Double-quantum
deuterium decoupling /39] over a 30 kHz bandwidth was used throughout the ex-
periment to remove proton-deuteron dipole couplings. The spectra were recorded
at a reduced temperature (Tg = T/Txr) of 0.875 to allow direct comparison of the
results for different alkanes. The experimental temperatures and clearing points for

the different samples are given in Table 3.1.

Table 3.1: Experimental temperatures, clearing points and reduced temperatures
for the n-alkane/EK11650 samples.

Experimental Clearing | Reduced Temperature
Temperature (T) | Point (Tyi) Tg = ilm
hexane ' 314.1 359.0 0.875
. heptene 309.7 354.0 0.875
octane 308.2 352.2 0.875
nonane 306.9 350.8 0.875
. decane 304.8 348.4 0.875

Since the dipole couplings are much larger in magnitude than the differences in

chemical shift for most of the proton pairs on these alkanes, usually only four peaks
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appear in the spectra with significant intensity. These appear in square patterns,

from which the magnitude of the dipole couplings can be determined (neglecting J

couplings which are not resolved in the spectra) by the relation :

ID| = %s - %\/sz T3 (6w)? (3.6)

where s is the length of the side of the square and éw is the difference in chemical
shift between the two coupled protons. Increasing molecular size precludes the mea-
surement and assignment of all dipole couplings. Fortunately, the readily resolvable
couplings are those which provide the greatest constraints on molecular conforma-
tion : couplings between geminal protons, couplings involving a methyl proton,
and couplings between methylene protons which are on second-nearest-neighbor
carbons.

Assignment of the couplings to specific pairs of protons is based primarily on
the chemical shifts of coupled protons, but for longer alkanes also relies on com-
parison with the results for n-hexane [36, 37, 38]. The sign of each coupling can
be determined based on the assumption that the alkanes are aligned predominantly
along the nematic director — along the applied magnetic field. This means that the
geminal proton couplings, with their internuclear vector approximately perpendic-
ular to the applied magnetic field, are positive, and couplings between proton pairs
whose internuclear vector lies along the length of the chain are negative.

Figures 3.3, 3.4, and 3.5 show an example of the analysis of the two-proton-
filtered COSY spectrum of n-decane. The square patterns in the spectrum and
their assignment to pairs of protons on the molecule are shown, with the labeling of
protons given in Figure 3.6. Table 3.2 lists the dipole couplings obtained from this

spectrum, as well as those obtained from the spectra of the other n-alkanes in this
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Figure 3.3: The two-proton-filtered COSY spectrum of n-decane dissolved in
EK 11650 with the square patterns of peaks in the spectra labeled by the
protons corresponding to those peaks. The numbering of the protons is given

in Figure 3.6.
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Figure 3.4: Enlarged view of the two-proton-filtered COSY spectrum of n-
decane dissolved in EK 11650.
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decane dissolved in EK 11650.



58

) ® ) C
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Figure 3.6: The numbering of the protons on the alkanes. The even-numbered
protons are on the same side of the molecule, coming out of the page, and the
odd-numbered protons are on the side of the molecule going into the page.
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study, and Table 3.3 lists the chemical shifts of the protons on the alkanes which

were used to calculate the dipole couplings from Equation 3.6.

Table 3.2: Expeﬁmental dipole couplings.

Dipole Coupling (Hz)}

Protons' | Hexane | Heptane | Octane | Nonane | Decane
1-2 1526 1489 1637 1546 1669
4-5 3288 3461 3539 3570 3660
6-7 3711 3897 4119 4104 4283
8-9 4093 4319 4420 4577

10-11 4420 4697
1-4 -310 -226 -319 -265 -313
1-6 -852 -916 -949 -958 -998
1-8 -484 -520 -538 -539 -556
1-10 -272 -290 -296 -300 -319
1-12 -167 -192 -204 -206 -219
1-14 -127 -129 -138 -151
1-16 -96 -93 -127
1-18 -73 -82
1-20 =97
4-8 -1323 -1453 | -1544 -1554 | -1666
4-9 -881 -924 -976 -977 | -1020
6-10 -1575 | -1710 -1721 1 -1863
6-11 -975 | -1088 -1028 | -1062
8-12 -1779 | -1970
8-13 -1097 | -1140

tLabeling of protons is given in Figure 3.6
{Experimental Error +25 Hz

3.4 Experimental Dipole Couplings

While it hasn’t been possible to determine all of the dipole couplings between pairs
of protons on the n-alkanes, a significant number have been determined, as shown

in Table 3.4. Trends in the experimental dipole couplings listed in Table 3.2 are
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Table 3.3: Experimental chemical shifts.

Chemical Shift (Hz)

Protons! || Hexane | Heotane | Octane | Nonane | Decane
1,2,3 0 0 0 0 0
4,5 219 227 229 230 230
6,7 185 186 190 189 187
8,9 180 177 178 174
10,11 178 165

tLabeling of protons is given in Figure 3.6

more easily seen if the individual couplings are plotted versus chain length, as in
Figures 3.7, 3.8, and 3.9. Figure 3.7 shows the geminal couplings as a function of
chain length. One notable feature is the even-odd variation of the magnitude of the
methyl proton couplings. This has been observed previously in a deuterium NMR
study of alkyl chains dissolved in liquid crystals [40] and reflects the difference in
the shape of even and odd alkanes. If we consider the conformations of an alkane
as symmetrical fluctuations about the lowest-energy, all-trans conformation, then,
on average, even alkanes have Cy, symmetry and odd alkanes have Cs, symmetry.
Looking at hexane and heptane in the all-trans conformation, as in Figure 3.10, it

“can be seen that the two terminal carbon-carbon bonds in hexane are parallel to
each other and the terminal carbon-carbon bonds in heptane are at an angle of 112°
to each other. If we assume that the liquid crystal aligns individual carbon-carbon
bonds or that the inertia tensor of the molecule determines its lowest energy orien-
tation, then even n-alkanes will have these terminal carbon-carbon bonds aligned,
on average, closer to the nematic director than the terminal carbon-carbon bonds
in odd n-alkanes. This makes the geminal methyl proton coupling larger for even
n-alkanes than for odd n-alkanes.

The remaining proton dipole couplings measured in this study are shown in
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Figure 3.7: Geminal proton dipole couplings as a function of chain length.
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Figure 3.8: Proton dipole couplings involving a methyl proton as a function
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Figure 3.10: The even-odd variation of the dipole couplings between pro-
ton pairs 1-2 and 1-4 can be pictured by considering the lowest energy, all-
trans conformations of hexane and heptane. If it is assumed that the nematic
mean field attempts to align carbon-carbon bonds or the inertia tensor of
the molecule, then the even alkanes with their terminal carbon-carbon bonds
parallel to each other will have these bonds aligned closer to parallel to the
nematic director (and the applied magnetic field) than in the odd alkanes,
whose terminal carbon-carbon bonds are at an angle of 112° to each other.
This makes 6; smaller than 6, and the dipole couplings between proton pairs
1-2 and 1-4 larger in magnitude in the even alkanes than in the odd alkanes.
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Table 3.4: Number of experimental dipole couplings for the n-alkanes.

Number of Dipole | Total Number of

- | Couplings Used | Dipole Couplings
hexane 10 16
heptane 14 22
octane 15 29
nonane 19 37
decane 20 46

Figures 3.8 and 3.9. These couplings give information about molecular shape that
is not available from deuterium quadrupole couplings. Figure 3.8 shows the dipole
couplings between a methyl proton and protons on other carbon atoms in the chain.
The even-odd variation in the magnitude of the coupling between a methyl proton
and a proton on the neighboring carbon (protons 1 and 4) can be seen. This is again
the result of the difference in ordering of terminal carbon-carbon bonds in even and
odd n-alkanes. The effect of the (3cos? 8 — 1) dependence of the dipole couplings
can also be seen. Despite the proximity of proton 4 to the methyl protons, the
coupling between this proton and the methyl protons is smaller than the coupling
between the methyl protons and proton 6. This is because the internuclear vector
between the methyl protons and proton 4 is closer, on average, to the magic angle
(54.7°) with respect to the applied magnetic field, than the internuclear vector
between the methyl protons and proton 6, which is approximately parallel to the
applied magnetic field. The more distant couplings reflect the dominance of the
r~3 dependence of the dipole couplings — the magnitude of couplings to the methyl
protons decreases as the distance of its coupling partner increases.

Figure 3.9 shows the couplings between protons on second-nearest-neighbor car-

bon atoms. There appears to be an even-odd variation in the couplings, which again
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can be attributed to the difference in ordering of even- and odd-length chains, as

pictured in Figure 3.10. Internuclear vectors between protons on second-nearest-
neighbor carbons in the all-trans conformation of odd n-alkanes are closer to par-
allel to the nematic director (and the applied magnetic field) than those in even

n~alkanes. This makes the couplings in odd n-alkanes larger than in even n-alkanes.

3.5 Modeling of Alkanes

The proton dipole couplings listed in Table 3.2 do not directly provide quantitative
information about molecular conformation and orientation, but instead only give
constraints on the ensemble-averaged conformation and orientation of the n-alkanes.
To obtain quantitative information, computer simulation of the averaging process
must be carried out using suitable models for inter- and intra-molecular interactions.
One method assumes a mean-field potential, U(n,), for the energy of a single
solute molecule in a uniaxial nematic solvent. U(n, Q) is a function of the discrete
conformations, n, of the solute molecule and the orientation, 2, of a solute molecule-
fixed axis system with respect to the nematic director. The averaged dipole coupling

between two protons on this molecule can be expressed as :
2
(D) = 3 5" 5 S5 DU" (37)
n [}

where p" is the probability of conformer n, S ; is the order tensor for the molecule
in that conformation, and Dﬁdﬂ‘z‘“ is the dipole coupling tensor in the molecular
frame for the two protons with the molecule in conformation n. The order tensor
is defined as :

Sap = —;—(3 o8 0, cos 0 — 8up) (3.8)
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where 0, (x = x, y, z) is the angle between the director and the molecular x axis.

The dipole coupling tensor for two spins % in conformer n in the molecular frame
is:

h
Dfﬂg" = - ’;1’)’23 (3cos8q,12 cos0p,12 — 8ag) (3.9)
T3

where 8,12 is the angle between the internuclear vector r;; and the molecular x axis.
Since p” and S} ; are average quantities and depend on U(n, (2), a good choice of
U(n, Q) will allow one to simulate the experimental dipole couplings and interpret
them in terms of molecular conformation and orientation.

In order to simplify the modeling of U(n, §2), the solute conformer energy is as-
sumed to be independent of its orientation. The potential U(n,2) can then be sep-

arated into internal (solvent-independent) and external (solute-solvent) terms [41] :
U(n, Q) = Uim;(‘n) + Um(n, Q) . (310)

The internal part depends only on conformation and will be modeled by the Rota-
tional Isomeric States (RIS) model [42] where rotation about each carbon-carbon

bond is restricted tc three discrete states (trans, gauche*, and gauche™) :
Uine(n) = ngEg + ng+g-Eg+g- . (3.11)

In the first term, n, represents the number of gauche bonds in conformer n, and E,
the gas phase trans-gauche energy differerce (approximately 3.8 kJ/mol [43]). The
second term penalizes conformations with adjacent gauche* and gauche™ bonds
(the pentane effect [42]), assuming the energy of this configuration, Zg+4-, is 12.6
kJ/mol [42].

The external (solute-solvent) potential can be divided into isotropic and aniso-
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tropic components :

Uext (7, Q) = U (n) + U2 (n, Q) . (3.12)

The isotropic, conformation-dependent, component will be modeled as a correction
to the gas-phase trans-gauche energy difference, E; in Equation 3.11, due to “solvent
pressure” :

U (n) = ngE (3.13)

though other parameterizations of this “solvent pressure” are possible. This por-
tion of the solute-solvent potential can be combined with the internal part of the

potential in Equation 3.11 to give :
U™ (n) = ngELT + ngeg- Egrg- (3.14)

using an effective trans-gauche energy difference, ES" = E;+ E2°. The value of EZ"
depends not only on the internal coordinates of the solute molecule, but also on the
isotropic solute-solvent interaction and determines the conformational distribution
observed in solution. E;ﬁ has been measured by different methods to be 2.1 - 2.5
kJ/mol [43] and will be used as an adjustable parameter in modeling the alkanes.

The total potential can now be written :
U(n. Q) = U (n) + U2 (n, Q) (3.15)

where U (n) is defined by Equation 3.14 and U2%=(n, ) will be defined by a
mean field model for the anisotropic solute-solvent interaction. The conformer
probabilities, p", and order tensors, S7 5, can be expressed in terms of the potential
U(n,2). p* can be written in terms of U{n, ) as :

exp(— L) 2z,

" =G(n) 7

(3.16)
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where G(n) = (II,1,)? is the confomer rotational kinetic energy factor [1] (which

has a very small effect on the calculated probabilities) and

> (n, Q)

2%, = / exp(— Vet o )d§ (3.17)
and
Zow = 3 Gln)eap(— ) 73, (3.18)

are the external and total partition functions. The average in Equation 3.8 can be

written in terms of U2%%(n, () :

Uaa(n, Q)
KT

Sas = 273,

/(3 cos 0, cos 05 — 8up) exp(— )y . (3.19)

For the modeling in the next few sections, G(n) will be used with Model D but will
not be used in the other models for consistency with previous uses of the models

and because of its negligible effect on the results of the modeling.

3.6 Models for U2 (n, Q)

ext

Several mean-field models for the external potential U2%%°(n,$2) describing the
solute-solvent interaction were examined and used to simulate the measured dipole
couplings of the n-alkanes. The first, Model A, is a phenomenological model that
was introduced by van der Est, et al. [44] and describes the liquid crystal solvent
as an elastic continuum distorted by the presence of the solute molecule. This po-
tential is expressed in terms of the circumference of the projection of the solute

molecule into a plane perpendicular to the nematic director :

Ushiso(y, Q) = kc?(n, ) (3.20)
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where k is an adjustable constant describing the strength of the interaction between

the solute molecule and the solvent mean-field, and ¢ is the minimum circumfer-
ence [44] around the projection of the solute molecule, pictured in Figure 3.11. This
model has also been extended by Zimmerman, et al. [45] to include a term which
accounts for the length of the elastic tube along the director of the liquid crystal.

The potential then becomes :
Uaise(n Q) = kc?(n, Q) — C2(Q)c(Q) (3.21)

where k and ¢ are adjustable constants describing the strength of the solute-solvent
interaction, ¢(n,2) has the same meaning as in Equation 3.20, and z(n, ) is the
length of the projection of the solute molecule along the liquid crystal director, as
shown in Figure 3.11.

The other models used in this study are based on a potential of mean torque for
a solute molecule in a uniaxial mean field. The total external potential (including

the isotropic portion), truncated to second rank, can be expressed [20, 46, 47) :
Uext(n, 2) = ugy D5 o(?) + Y5 D7 o(?) (3.22)
m

where the uf,, are coefficients describing the solute-solvent interaction and the
D!, .» are Wigner rotation matrices. This form for the potential can be derived by
considering long-range [46] or short-range [20] forces as the primary intermolecular
interactions in the liquid crystal or simply by expanding an unknown interaction in
an infinite series of spherical harmonics [47], yet all lead to the same form for the
potential. Thus it is not clear what type(s) of forces may be responsible for ordering
in liquid crystals, so three parameterizations of the u3,, coefficients will be used

in this thesis. The zero-rank term in Equation 3.22 is the same as the isotropic,
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Z(n,QQ)

Figure 3.11: Model A. z(n,) is the length of the projection of conformer
n along the director of the liquid crystal as a function of orientation of the
molecule, Q2. ¢(n, ) is the minimum circumference around the projection of
the van der Waals radii of the atoms of conformer 7 into a plane perpendicular
to the director of the liquid crystal.
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conformation-dependent solute-solvent interaction, Ui (n) in Equation 3.12, and

will be modeled as in Equation 3.13. The remaining second-rank terms comprise

the anisotropic portion of the solute-solvent interaction :

Usiso(n, Q) = Zu2m 2.0(9). (3.23)

u3 ., is a spherical tensor representation of the interaction between a particular
conformation, n, of the solute molecule and the solvent mean field. This tensor can

be written in its principal axis system leaving only u3, and uj ;, non-zero. Then

Equation 3.23 can be written :

Uz®(n,Q) = '“20 o(B) +2uy, ,o(ﬂ) cos(2a) (3.24)

where d3, = 3(3cos? 8 — 1) and d}, = \/g sin? 3 are reduced Wigner rotation ma-
trices describing the orientation of the molecule’s PAS with respect to the nematic
director.

The first mean-torque potential (Model B) parameterizes the u3,, coefficients
in Equation 3.24 using a model for the solute-solvent interaction in which the in-
teracting molecules are represented by parallelepipeds. This interaction is not a

| true tensor. However, it appears to be successful in modeling solute-liquid crystal
interactions (40, 48] and will be used here. The coefficients u3,, are written in terms

of the length (L), width (W), and breadth (B) of the parallelepiped representing
the solute molecule [40, 48] :

wp, = %[GLBW + L(W? + B2) — 2W(L? + B?) — 2B(W? + L?)]
e = Zl(L?~ BW)(B - W) (3.25)

The length, width, and breadth of each conformer of the molecule are calculated

from the semiaxes of the ellipsoid of inertia of the conformer [40] so that L, B, and

1
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W are coincident with the principal axes of the inertia tensor of the solute molecule,

pictured in Figure 3.12. L, B, and W are calculated :

5
L = \/%(Izz-l-lw—lu)

5
B —4 J%(Izz"'lzz—lw)

5
W = \/ ==Ly + Ioz = Iia) (3.26)

where m is the mass of the solute molecule and I,, are the diagonal elements
of particular conformation’s Cartesian inertia tensor. € in Equation 3.25 is an
adjustable parameter describing the strength of the solute-solvent interaction.
The second mean-field model (Model C) uses the inertia tensor for the w3,
coefficients. The spherical tensor coefficients are calculated from the Cartesian

inertia tensor :

zmi(y? +27)

i

Uy = Zm,-(:nf+z,-2)
1

Uzz = th(mf'*'yf)

1
Ugy = "Zmi-’b'iyi
i
Uz = — Y M4TiZ
i
Uy, = -—Zm.-y.-zi (3.27)
:

wkere z;, i, and 2; are the distances of atom i from the center of mass of a given

conformation and m is the mass of the atom. The spherical tensor elements UD

are constructed from the diagonalized Cartesian tensor elements as in Table 1.2.
This model can be pictured as the liquid crystal solvent orienting an anisotropically-

shaped molecule, where the shape anisotropy is quantified by the inertia tensor.
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Figure 3.12: Model B. L, B, and W are the dimensions of a parallelipiped
representing each alkane conformer. L, B, and W are coincident with the

principal axes of the inertia tensor.
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The other mean-torque potential (Model D) [1] parameterizes the u3,, as an in-

teraction between individual carbon-carbon bonds and the nematic mean field, and
as an interaction between pairs of adjacent carbon-carbon bonds and the nematic

mean field. The u3,, are derived from the Cartesian tensor (1, 49) :

2 N o } . 2 N-1 i i+1 i+l
Uap = — =13 [3si.5% — abs‘-s']—gtblz[S(S“sb ;sa %
i=1 i

3 ) — baps’ - 8] (3.28)

where s’ is a unit vector in the direction of carbon-carbon bond i, s, is the a(=
z,v,2) component of that unit vector, and @, and w; are adjustable constants
describing the strength of the solute-liquid crystal interaction. The first sum in
Equation 3.28 accounts for the interaction aligning individual carbon-carbon bonds,
and the second sum describes the orientation of adjacent pairs of carbon-carbon
bonds by the nematic mean-field. As discussed by Photinos, et al. [1, 49], this
equation can be rewritten in terms of chords connecting the midpoints of adjacent
carbon-carbon bonds. In this equivalent representation, ordering of the n-alkane
is due to alignment of individual carbon-carbon bonds and alignment of chords
connecting adjacent carbon-carbon bonds, as pictured in Figure 3.13.

The u3,, can be constructed fror the diagonalized Cartesian tensor of Equa-

tion 3.28 :

1
Upy = —\/‘g[Quas ~ (u11 + ug))

1
Uy, = §(u11-—u22) (2.29)
where 411, U2, and ug; are the principal values of the Cartesian tensor of Equa-
tion 3.28. This potential will be tested with one adjustable parameter, wy = w,,

and with two adjustable parameters, @y and .

To test the mean field models, the experimental dipole couplings will be simu-
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Figure 3.13: Model D. a) The single carbon-carbon bond self-correleation
terms of the tensor in Equation 3.28 can be interpreted as alignment of each
carbon-carbon bond by the nematic mean field. The importance of the single
bond terms is determined by the value of the multiplier of this term, (W — o)
[1]. b) The second sum in Equation 2.28 can be rewritten in terms of chords
connecting the midpoints of adjacent carbon-carbon bonds [1]. This term can
be interpreted as the nematic mean field aligning the chords and the termi-
nal carbon-carbon bonds. The importance of this term is determined by its
coefficient, w;.
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lated using the RIS model for the isotropic part of the alkane solute potential and

one of the four mean-field models just described for the anisotropic part. The simu-
lations will be done using either two or three adjustable parameters : one being the
effective trans-gauche energy difference, Eg“, and the other one or two describing

the strength of the solute-solvent interaction.

3.7 Results of Two-Adjustable-Parameter Mod-
eling

Simulations of the experimental dipole couplings of the alkanes were performed
with the two- and three-parameter versions of the models described in the previous
sections. The adjustable parameters were varied using a simplex minimization
routine to optimize the root-mean-squared (RMS) difference between the calculated
and experimental couplings. All minimizations were performed with the alkane

geometrical parameters from Table 3.5.

Table 3.5: Geometrical parameters of alkanes.

Length of C-H bond 1.09
Length of C-C bond 1.53 A
Bond Angle HCH of methylene group 109.0°
Bond Angle HCH of methyl group 109.47°
Bond Angle CCC 112°
Dihedral Angle for gauche conformations | £112.5°
van der Waals radius of H 12A
van der Waals radius of C 1.7 A
Mass of H 2.0
Mass of C 12.0

The two-parameter fits used the strength of the solute-solvent interaction (k, e,
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or Wy = 1) and the effective trans-gauche energy difference (ES¥) as adjustable

parameters. The RMS deviation between the calculated and experimental dipole
couplings in Table 3.6 and the calculated dipole couplings in Tables 3.7-3.11 show
that all models fit the couplings of the shorter alkanes better than the longer, prob-
ably due in part to the greater number of couplings on the longer alkanes. Model B
fit the short alkanes the best and Model D fit the long alkanes best. The adjustable
parameters show a variation with molecular size — the sclute-solvent interaction
strength parameters €, k, and Wy = W, all decrease in magnitude with increasing
chain length. The other adjustable parameter, Egﬁ, counters this by increasing
with increasing chain length. Both of these effects are much more pronounced in
Models A, B, and C than in Model D. In fact, the values of EST in Models A, B,
and C grow larger for decane than the gas phase value of E; found for butane of
3.8 kJ/mol [43]. Comparison with experimentally determined values of ET found
for butane in the liquid state (EST approximately 2.1-2.5 kJ/mol [43]) suggests that
such large values of E;“ are physically unreasonable. While it is possible that the
orienting effect of the liquid crystal might skew the conformer population distri-
bution to favor elongated conformers, resulting in a higher Eg“, it should n~t be
so pronounced in a “liquid-like” system such as this. Models A, B, and C appear
to work well only for small molecules, while Model D works for molecules of all
sizes and has values of adjustable parameters which remain relatively constant as
the size of the alkane changes, allowing prediction of dipole couplings for longer
alkanes by extrapolation from the values of adjustable parameters found for these
alkanes. Thus it appears that Model D, which is an additive potential constructed

from interactions of molecular subunits with .he liquid crystal mean field outper-
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forms Models A, B, and C which model the overall shape of the solute molecule

interacting with the liquid crystal mean field.

Table 3.6: Results of two-adjustable-parameter fits to experimental dipole cou-
plings.

| | | Hexane | Heptane | Octane | Nonane Decane
k 397 330 2.88 2.15
(10-3Nm™1)
Model A EX 3.27 3.45 3.72 3.89 4.22
(kJmol 1)
RMS Dev. 88 109 122 151 153
(Hz)
€ 2.13 157 | 121 092 0.74
(10%kJmol~tm™3)
Model B EF 3.07 335| 3.7 4.03 4.47
(kJmol“)
RMS Dev. 35 54 83 105 112
(Hz) ,
€ 1.45 1.01| 0.74 054 | 042
(Jkg~'m~2mol™1)
Model C EX 2.96 316| 356 372 411
(kJmol~1)
RMS Dev. 93 120 142 175 178
(Hz)
Wo = W, 0.806 | 0.765| 0.754| 0.738| 0.714
(kJmol™1)
Model D EF 2.16 228 235 2.28 2.51
(kJmol 1)
RMS Dev. 74 7 79 93 90
(Hz)

Having fit the dipole couplings, the models allows us to calculate order param-
eters and conformational probabilities for the alkanes. Table 3.12 shows the order
parameters calculated using the best-fit parameters in Table 3.6. It can be seen
that all four models give similar results for the values of the order parameters.

Table 3.13 lists the probabilities of having different numbers of gauche bonds
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Table 3.7: Dipole couplings for hexane from the two-adjustable-parameter fits to
the experimental couplings.

| Dipole Couplings (Hz)
rotons || Experiment | Model A [ Model B | Model C [ Model D |
[ 1-2 | 1526 1493 1455 1482 1573 |
4-5 3288 3161 3280 3149 3171
6-7 3711 3702 3737 3709 3686
1-4 -310 -262 -293 -257 - -305
1-6 -852 -919 -836 -919 -901
1-8 -484 -576 -501 -568 -585
1-10 -272 -276 -242 -275 -273
1-12 -167 -176 -154 -176 -172
4-8 ! -1323 -1516 -1380 -1532 -1440
4-9 -881 -963 -850 -967 -990
4-6 - 92 2 100 134
4-7 - 156 141 161 182
4-10 - -761 -666 -760 -767
4-11 - -561 -470 -554 -580
6-8 - 21 -91 17 -40
6-9 - 121 96 124 74

in the chain for the different models. Alongside each probability is the probability
of the conformers in an isotropic liquid with the same values of Eg‘f (that is, with
€, k, or Wy = W) set to 0). The total number of conformers for each molecule
is listed, along with the number of conformers with a given number of gauche
bonds, excluding conformers with adjacent gauche® and gauche~ bonds, which
have nearly zero probability. From this table it can be seen that the anisotropic
solute-solvent interaction has little effect on the conformer distribution — the value
of E‘;ﬁ is primarily what determines the conformer distribution. This confirms the
notion that the alkanes in a “liquid-like” liquid crystal such as this one behave very
similarly to the neat liquid alkane, and also suggests that Models A, B, and C,
with their high E;“, do not provide good models for solute-solvent interaction. It
can also be seen from Model D that the small effect the anisotropic solute-solvent

potential does have on the conformer distribution is to slightly favor elongated
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Table 3.8: Dipole couplings for heptane from the two-adjustable-parameter fits to
the experimental couplings.

;,\__ P

Dipole Couplings (Hz)

‘Protons xperiment | Model A | Model B | Model C | Model D
1-2 1489 1421 1417 1412 1495
4-5 3461 3211 3351 3182 3305
6-7 3897 3860 3898 3859 3845
8-9 4093 4122 4172 4127 4098
1-4 -226 -215 -259 -218 -248
1-6 -916 -945 -875 -939 -947
1-8 -520 -572 -509 -568 -605
1-10 -290 -293 -262 -292 -299
1-12 - -192 -199 -176 -199 -202
1-14 -127 -127 -112 -127 -133
4-8 -1453 -1646 -1524 -1658 -1551
49 -924 -994 -890 -994 -1029
6-10 -1575 -1792 -1652 -1820 -1700
6-11 -975 -1044 -938 -1053 -1073
4-6 - 67 -9 79 65
4-7 - 141 131 149 139
4-10 - -817 -726 -814 -851
4-11 - -575 -492 -567 -609
412 - -322 -288 -324 -323
4-13 - -315 -282 =317 -320
6-8 - 106 -8 101 90
6-9 - 177 153 181 163
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Table 3.9: Dipole couplings for octane from the two-adjustable-parameter fits to
the experimental couplings.

Dipole Couplings (Hz)

Protons || kixperiment | Model A | Model B | Model C [ Model D
1-2 1637 1516 1495 1494 1626
4-5 3539 3298 3424 3259 3356
6-7 4119 4018 4079 4012 4058
8-9 4319 4389 4432 4398 4358
1-4 -319 -255 -282 -247 -297
1-6 -949 -986 -913 -970 -974
1-8 -538 -563 -504 -551 -625
1-10 -296 -300 -269 -297 -311
1-12 -204 -208 -184 -204 -218
1-14 -129 -140 -122 -137 -150
1-16 -96 -95 -83 -93 -103
4-8 -1544 -1780 -1669 -1805 -1653
4-9 -976 -1014 -912 -1006 -1082
6-10 -1710 -1979 -1855 -2041 -1851
6-11 -1088 -1099 -984 -1094 -1136
4-6 - 130 45 138 154
4-7 - 182 - 168 189 201
4-10 - -838 -739 -819 -905
4-11 - -564 -479 -541 -630
4-12 - -355 -316 -353 -360
4-13 - -344 -305 -339 -355
4-14 - -223 -201 -224 -226
4-15 - -228 -199 -223 -244
6-8 - 100 -16 95 15
6-9 - 189 157 187 124
6-12 - -902 -787 -868 -960
6-13 - -602 -505 -572 -654
8-10 - 160 68 188 225
8-11 - 228 212 244 256

moge e e ey I P T T A T oo e T I A TR SRR IR | IO



e o

Dipole Couplings (Hz)

Protors || Experiment | Model A | Model B | Model C [ Model D
1-2 1546 1405 1431 1392 1514
4-5 3570 3214 3353 3151 3326
6-7 4104 3920 3991 3897 3987
8-9 4420 4387 4450 4386 4417

10-11 4420 4525 4537 4533 4475
1-4 -265 -215 -260 -216 -246
1-6 -958 -960 -903 -940 -967
1-8 -539 -528 -473 -520 -629
1-10 -300 -291 -264 -288 -317
1-12 -206 -201 -178 -199 -222
1-14 -138 -139 -122 -136 -157
1-16 -93 -100 -87 -98 -113
1-18 -73 -71 -61 -69 -82
4-8 -1554 -1788 -1695 -1793 -1638
4-9 -977 -977 -878 -964 -1071
6-10 -1721 -2021 -1908 -2070 -1866
6-11 -1028 -1082 -975 -1078 -1160
8-12 -1779 -2076 -1970 -2151 -1909
8-13 -1097 -1120 -1001 -1114 -1176
4-6 - 97 37 113 90
4-7 - 164 160 171 158
4-10 - -807 -714 -791 -916
4-11 - -531 -455 -514 -645
4-12 - -355 -318 -353 -367
4-13 - -340 -303 -336 -361
4-14 - -228 -203 -228 -238
4-15 - -231 -201 -225 -259
4-16 - -152 -132 -149 -168
4-17 - -151 -131 -148 -167
6-8 - 156 30 142 105
6-9 - 217 183 213 179
6-12 - -894 -778 -868 -1006
6-13 - -577 -485 -554 -673
€-14 - -372 -333 -372 -388
6-15 - -358 -317 -353 -382
8-10 - 129 52 164 140
811 - 219 205 234 206
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Table 3.10: Dipole couplings for nonane from the two-adjustable-parameter fits to
the experimental couplings.
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Table 3.11: Dipole couplings for decane from the two-adjustable-parameter fits to
the experimental couplings.

Dipole Couplings (Hz)
Protons || Experiment | Model A | Model B | Model C | Model D
1-2 1669 1538 1524 1497 1639
4-5 3660 3334 3482 3279 3411
6-7 4283 4040 4134 4025 4149
8-9 4577 4544 4602 4537 4574
10-11 4697 4807 4822 4808 4787
1-4 -313 -270 -290 -252 -294
1-6 -998 -1001 -945 -982 -996
1-8 -556 -513 -458 -502 -623
1-10 -319 -292 -265 -289 -319
1-12 -219 -199 -176 -195 -225
1-14 -151 -139 -121 -135 -158
1-16 -127 -102 -88 -98 -117
1-18 -82 -75 -64 -73 -87
1-20 -57 -55 -47 -53 -64
4-8 -1666 -1915 -1827 -1925 -1745
4-9 -1020 -973 -878 -964 -1094
6-10 -1863 -2179 -2060 -2233 -2003
6-11 -1062 -1091 -978 -1082 -1177
8-12 -1970 -2289 -2164 -2374 -2085
8-13 -1140 -1160 -1035 -1151 -1235
4-6 - 165 72 158 165
4-7 - 203 190 205 208
4-10 - -788 -694 -770 -925
4-11 - -496 -425 -479 -624
4-12 - -367 -330 -365 -382
4-13 - -345 -309 -341 -373
4-14 - -231 -204 -229 -248
4-15 - -230 -199 -223 -263
4-16 - -158 -136 -153 -175
417 - -156 -135 -151 -174
4-18 - -109 -94 -106 -124
4-19 - -109 -94 -106 -124
6-8 - 133 23 134 48
6-9 - 217 191 218 150
6-12 - -891 -774 -856 -1016
6-13 - -562 -471 -532 -672
6-14 - -392 -350 -392 -406
6-15 - -371 -328 -365 -395
6-16 - -243 -214 -239 -257
6-17 - -241 -207 -232 -273
8-10 - 206 99 225 248
8-11 - 268 245 280 278
8-14 - -920 -790 -884 -1055
8-15 - -576 -475 -542 -676
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conformers (e.g. all-trans, and conformers with only one gauche bond) in relation

to the isotropic conformer distribution. The other notable feature is that, especially
for longer alkanes, a significant number of the possible conformers have adjacent

gauche® and gauche™ bonds and almost never occur in solution.

Table 3.12: Order parameters from two-adjustable-parameter fits to experimental
dipole couplings.

SZZ
Model A | Model B | Model C | Model D
Hexane 0.19 0.17 0.19 0.19
Heptane 0.21 0.19 0.21 0.22
Octane 0.23 0.21 0.23 0.24
Nonane 0.24 0.22 0.24 0.26
Decane 0.26 0.23 0.26 0.28

The probabilites of conformers of hexane with different numbers of gauche bonds
are further broken down in Table 3.14. Here the probability of each of the signif-
icantly populated conformers is listed. The primary feature to note is that for a
given number of gauche bonds, regardless of their placement, the probabilities of the
conformers are very similar. This further shows that the solute-solvent interaction
has little effect on the conformer probabilities. Finally, it should be noted that the
approximate probability of a given conformer can be determined from Table 3.13 by
taking the probability for conformers with the same number of gauche bonds and
dividing by the number of conformers with that number of gauche bonds. Because
of this and the large number of conformers sampled by the longer alkanes, detailed
tables of conformer probabilites like Table 3.14 will not be presented for the longer

alkanes.
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Table 3.13: Conformer probabilities from two-adjustable-parameter fits to experi-
mental dipole couplings.

No. Probabilities
Gauche | No. Model A Model B Model C Model D

Bonds | Confs' | Model | Tso. | Model | Iso. | Model | Iso. | Model | Iso.
Hexane 0 1 0.27 | 0.29 0.28 | 0.27 0.27 | 0.26 0.20 | 0.19
27 1 6 0.50 | 0.50 0.50 | 0.50 0.50 | 0.50 0.50 | 0.50
Confs. 2 8 0.21 | 0.19 0.20 | 0.21 0.21 | 0.22 0.27 | 0.28
Total 3 2 0.02 | 0.01 0.02 | 0.02 0.02 | 0.02 0.03 | 0.03
Heptane 0 1 0.20 | 0.22 0.22 | 0.21 0.20 { 0.19 0.13 | 0.12
81 1 8 0.45 | 0.46 0.46 | 0.46 0.45 | 045 0.42 | 0.41
Confs. 2 18 0.29 | 0.27 0.27 | 0.28 0.29 | 0.30 0.35 | 0.37
Total 3 12 0.05 | 0.05 0.05 | 0.05 0.05 | 0.06 0.09 | 0.10
4 2 0.00 | 0.00 0.00 { 0.00 0.00 | 0.00 0.01 | 0.01
Octane 0 1 0.16 | 0.18 0.19 | 0.18 0.17 | 0.16 0.09 | 0.07
243 1 10 0.40 | 0.41 0.42 | 0.42 0.41 | 041 0.33 | 0.32
Confs. 2 32 0.33 | 0.31 0.30 | 0.31 0.31 | 0.32 0.39 | 0.40
Total 3 38 0.10 | 0.09 0.08 | 0.08 0.09 | 0.10 0.16 | 0.18
4 16 0.01 | 0.01 0.01 | 0.01 0.01 | 0.01 0.03 | 0.03
5 2 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00
Nonane 0 1 0.13 | 0.14 0.16 | 0.15 0.14 { 0.13 0.05 | 0.04
729 1 12 0.35 | 0.37 0.39 | 0.38 0.36 | 0.36 0.25 | 0.23
Confs. 2 50 0.35 | 0.34 0.32 | 0.33 0.34 | 0.35 0.38 | 0.38
Total 3 88 0.14 | 0.13 0.11 | 0.12 0.14 | 0.14 0.24 | 0.26
4 66 0.02 | 0.02 0.02 | 0.02 0.02 | 0.02 0.07 | 0.07
5 20 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.01 | 0.01
6 2 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00
Decane 0 1 0.12 | 0.13 0.16 | 0.15 0.13 | 0.12 0.04 | 0.03
2187 1 14 0.33 | 0.35 0.37 | 0.37 0.34 | 0.34 0.21 | 0.18
Confs. 2 72 0.34 | 0.34 0.32 | 0.32 0.33 | 0.34 0.35 { 0.35
Total 3 170 0.17 { 0.15 0.13 | 0.13 0.15 | 0.16 0.28 | 0.29
4 192 0.04 | 0.03 0.02 | 0.03 0.03 | 0.04 0.10 | 0.12
5 102 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.02 | 0.02
6 24 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00
7 2 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

t Excluding conformers with adjacent gauche™ gauche™ bonds.
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Table 3.14: Conformer probabilities for hexane from two-adjustable-parameter fits
to experimental dipole couplings.

Probabilities
Conformer [ Model A Model B Model C Model D

(Multiplicity) || Model | Iso. | Model | Iso. | Model | Iso. | Model | Iso.

ttt(1) 0.274 1 0.292 | 0.280 | 0.272 | 0.272 1 0.261 | 0.201 | 0.186

) gtt(4) 0.084 | 0.084 [ 0.084 | 0.084 | 0.083 | 0.084 | 0.085 | 0.085
tgt(2) 0.083 | 0.084 | 0.084 | 0.084 | 0.084 | 0.084 | 0.083 | 0.082

ggt(4) 0.026 | 0.024 | 0.025 | 0.026 | 0.026 | 0.027 | 0.033 | 0.035

gtg(2) 0.026 | 0.024 | 0.026 | 0.026 | 0.026 | 0.027 | 0.033 | 0.035

gtg=(2) 0.026 | 0.624 | 0.025 | 0.026 | 0.027 | 0.027 { 0.033 | 0.034

gegg(2) 0.008 | 0.007 { 0.008 | 0.008 | 0.008 | 0.009 | 0.013 | 0.014

3.8 Results of Three-Adjustable-Parameter Mod-
eling

The dipole couplings were also fit with Models A and D using three adjustable
parameters. Two solute-solvent interaction parameters (k and ¢ for Model A, or
wo and w; for Model D) and the effective trans-gauche energy difference, Egﬁ ,
were used as adjustable parameters in the simplex minimization. Minimization
with Model D reached a stable minimum, but no single minimum was found with
Model A. There is a range of values for the adjustable parameters in Model A which
result in fits of similar quality to the one shown in Table 3.15. This occurs because
the two adjustable parameters, k¥ and ¢, multiply the terms ¢?(2) and ¢(£2)2(f),
. respectively, and ¢(2) and z(f2) are not independent. Generally as ¢(2) decreases
for a given molecule, z({2) increases, as shown in Figure 3.11. This interdependence
yields a wide range of values for the adjustable parameters which provide fits of
similar quality. Furthermore, Model A gives an unusually low value for E;“. Model

A is judged deficient, for while it fits the experimental couplings fairly well, the
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resulting adjustable parameters seem physically unreasonable.

Table 3.15: Results of three-adjustable-parameter fits to experimental dipole cou-
plings.

[ | | Hexane | Heptane | Octane | Nonane | Decane |
k -3.79 -2.27 -3.86 -2.12 -2.58
(10-3Nm™1)
¢ 74.76 56.86 78.94 55.42 66.54
Model A | (10-3Nm™?)
B 51 179| 068| 137| 068
(kJmol™!)
RMS Dev. 56 39 66 78 77
(Hz)
Wy 0.970 0.914 0.914 0.907 0.855
(kJmol~1)
W, 0.598 0.538 0.550 0.494 0.500
Model D | (kJmol™!)
Egﬁ 2.11 2.44 2.40 2.46 2.70
(kJmol™1)
RMS Dev. 42 28 37 38 47
(Hz)

Model D, on the other hand, fits the dipole couplings better than Model A, as can
be seen in Tables 3.15-3.20 and has physically reasonable values of the adjustable
parameters that are not very different from those found in the two-parameter fit.
Eg“ stays almost the same as in the two-parameter fit, and when w, and @, are
varied independently in the three-parameter fits, wy s a little higher and w, is
a little lower than when they are varied together in the two-parameter fit. The
quality of the fit using Model D is closer to the experimental uncertainty of the
dipole couplings of £25 Hz. Better fits may be possible by extending the model
and increasing the number of adjustable parameters as described in reference [1].
This will be investigated in Section 3.11.

Order parameters for the alkanes can be calculated based on the best-fit values of
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Table 3.16: Dipole couplings for hexane from the three-adjustable-parameter fits to
the experimental couplings.

Dipole Couplings (Hz)
Protons || Experiment | Model A | Model D
1-2 1526 1484 1616
4-5 3288 3386 3235
6-7 3711 3604 3702
1-4 -310 -262 -361
1-6 -852 -881 -836
1-8 -484 -511 -540
1-10 -272 -264 -254
1-12 -167 -160 -158
4-8 -1323 -1372 -1323
4-9 -881 -839 -907
4-6 - -7 131
4-7 - 94 177
4-10 - -751 -720
4-11 - -513 -525
6-8 - 17 -151
6-9 - 104 -1

the adjustable parameters and are listed in Table 3.21. The values for Model D with
three adjustable parameters are slightly lower than with two adjustable parameters
in Table 3.12, but do not differ dramatically. The conformer probabilities are listed
in Table 3.22, and it can be seen that the values for the three-parameter fits using
Model D differ only slightly from those found in the two-parameter fits in Table 3.13.
For completeness, the probabilities of the different conformers of hexane for the
three-parameter fits is presented in Table 3.23, though for Model D they are quite
similar to the values found in the two-parameter fits. Thus Model D can be used
with three adjustable parameters to better fit the experimental dipole couplings.
Not only are the fits better than with any of the two-adjustable-parameter models,
but the values of the adjustable parameters are well behaved in going from two to
three adjustable parameters. All in all Model D appears to be a very good model for

intermolecular interactions in liquid crystals and has adjustable parameters which
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Table 3.17: Dipole couplings for heptane from the three-adjustable-parameter fits
to the experimental couplings. :

| Dipole Couplings (Hz)
Protons || Experiment | Model A | Model D
1-2 1489 1399 1504
4-5 3461 3412 3426
6-7 3897 3905 3865
8-9 4093 4135 4144
1-4 -226 -215 -289
1-6 -916 -919 -888
1-8 -520 -544 -541
1-10 -290 -278 -275
1-12 -192 -189 -182
1-14 -127 -117 -120
4-8 -1453 -1489 -1456
4-9 -924 -903 -923
6-10 -1575 -1632 -1582
6-11 -975 -924 -976
4-6 - -76 25
4-7 - 59 111
4-10 - -755 -772
4-11 - -541 -526
4-12 - -304 -294
4-13 - -302 -289
6-8 - 65 17
6-9 - 187 114
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Table 3.18: Dipole couplings for octane from the three-adjustable-parameter fits to
the experimental couplings. '

Dipole Couplings (Hz)
Protons || Experiment | Model A [ Modei D
1-2 1637 1513 1683
4-5 3539 3589 3458
6-7 4119 4069 4101
8-9 4319 4353 4384
1-4 -319 -228 -359
1-6 -949 -969 -912
1-8 -538 -564 -573
1-10 -296 -301 -289
1-12 -204 -187 -200
1-14 -129 -127 -138
1-16 -96 -84 -95
4-8 -1544 -1539 -1545
4-9 -976 -941 -993
6-10 -1710 -1755 -1720
6-11 -1088 -913 -1042
4-6 - -147 149
47 - 60 195
4-10 - -848 -843
411 - -552 -559
4-12 - -330 -333
4-13 - -307 -327
4-14 - -218 -205
4-15 - -210 -224
6-8 - 73 -106
6-9 - 175 46
6-12 - -698 -880
6-13 - -485 -587
8-10 - -155 204
8-11 - 186 236
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Table 3.19: Dipole couplings for nonane from the three-adjustable-parameter fits
to the experimental couplings.

Dipole Couplings (Hz)
Protons || Experiment | Model A | Model D
1-2 1546 1392 1546
4-5 3570 3415 3490
6-7 4104 4067 4042
89 4420 4465 4483
10-11 4420 4536 4494
1-4 -265 -218 -300
1-6 -958 -929 -906
1-8 -539 -559 -558
1-10 -300 -290 -289
1-12 -206 -198 -198
1-14 -138 -130 -140
1-16 -93 -93 -101
1-18 -73 -65 -72
4-8 -1554 -1570 -1540
49 -977 -961 -957
6-10 -1721 -1835 -1735 '
6-11 -1028 -967 -1049
8-12 -1779 -1894 -1776
8-13 -1097 -971 -1049 -
4-6 - -42 50 -
4-7 - 105 130 —
4-10 - -793 -826 =
4-11 - -554 -550
4-12 - -339 -331
4-13 - -325 -323 _
4-14 - -217 -212 -
4-15 - -214 -230 -
4-16 - -141 -150 =
4-17 - -140 -149 .
6-8 - 56 9 =
6-9 - 204 118 -
6-12 - -816 -901 =
6-13 - -505 -574 -
6-14 - -343 -354 '
6-15 - -323 -346
8-10 - -39 62
8-11 - 188 151

(| e
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Table 3.20: Dipole couplings for decane from the three-adjustable-parameter fits to
the experimental couplings.

Dipole Couplings (Hz)

Protons || Experiment | Model A | Model D
1-2 1669 1458 1705
45 3660 3626 3542
6-7 4283 4298 4213
89 4577 4605 4617
10-11 4697 4708 4813
1-4 -313 -179 -362
1-6 -998 -995 -938
1-8 -556 -583 -560
1-10 -319 -312 -293
1-12 -219 -196 -203
1-14 -151 -135 -143
1-16 -127 -90 -105
1-18 -82 -67 -78
1-20 -57 -48 -58
4-8 -1666 -1658 -1656
4-9 -1020 -1001 -993
6-10 -1863 -1946 -1884
6-11 -1062 -991 -1070
8-12 -1970 -2026 -1958
8-13 -1140 -954 -1121
4-6 - -158 157
4-7 - 26 203
4-10 - -879 -845
4-11 -1 -573 -536
4-12 - -356 -351
4-13 - -329 -340
4-14 - -234 -223
4-15 - -223 -236
4-16 - -142 -158
4-17 - -138 -157
418 - -101 -112
419 . - ~-100 -112
6-8 - 129 -79
6-9 - 198 75
6-12 - -736 -915
6-13 - -486 -586
6-14 - -374 -372
6-15 - -338 -360
6-16 - -206 -232
6-17 - -193 -245
8-10 - -141 218
8-11 - 200 255
3-14 - -927 -959
8-15 - -519 -580
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have physically reasonable values and are well-behaved enough to extrapolate from

these results to molecules of larger size.

Table 3.21: Order parameters from three-adjustable-parameter fits to experimental
dipole couplings.

Szz
Model A | Model D
Hexane 0.18 0.18
Heptane 0.20 0.20
Octane 0.21 0.23
Nonane 0.23 0.24
Decane 0.24 0.26

3.9 Comparison of n-hexane in Liquid Crystals

with Ax >0 and Ax <0

As was mentioned in Chapter 2, nematic liquid crystals can have positive or neg-
ative diamagnetic anisotropy (Ax). The two-proton filtered COSY experiments
described in the previous sections used the liquid crystal EK11650, which has a
positive diamagnetic anisotropy. It would be interesting to perform similar exper-
iments in a liquid crystal with Ax < 0. Such an experiment has been done with
n-hexane dissolved in the liquid crystal Merck ZLI1167, a nematic liquid crystal
composed of propyl, pentyl, and heptyl bicyclohexylcarbonitriles which has a neg-
ative diamagnetic anisotropy [50]. ZLI1167 has phase transitions from crystal to
smectic A at 25°C, from smectic A to nematic at 32°C, and from nematic to iso-
tropic liquid at 83°C. 80% randomly deuterated n-hexane was dissolved in ZLI1167

to bring its concentration to 20 mol %. A two-proton filtered COSY experiment was
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Table 3.22: Conformer probabilities from three-adjustable-parameter fits to exper-
imental dipole couplings.

No. Probabilities

Gauche | No. Model A Model D
Bonds | Confs' | Model | Iso. | Model | Iso.
Hexane 0 1 0.35 | 0.14 0.20 { 0.18
27 1 6 0.47 | 046 | 0.50 | 0.50
Confs. 2 8 0.17 1 0.35 0.27 | 0.28
Total 3 2 0.01 | V.05 0.03 | 0.03
Heptane 0 1 0.23 | 0.09 0.14 | 0.13
81 1 8 0.45]0.37| 043042
Confs. 2 18 0.27 | 0.40 0.34 | 0.35
Total 3 12 0.05 | 0.13 0.08 | 0.09
4 2 0.00 | 0.01 0.00 | 0.01
Octane 0 1 0.23 |'0.02 0.09 | 0.08
243 1 10 0.37 | 0.16 0.34 | 0.33
Confs. 2 32 0.29 | 0.38 0.38 | 0.40
Total 3 38 0.10 | 0.33 6.16 | 0.17
4 16 0.02 | 0.10 0.02 | 0.03
5 2 0.00 | 0.01 0.00 | 0.00
Nonane 0 1 0.14 | 0.02 0.06 | 0.05
729 1 12 034014 | 0.26]0.25
Confs. 2 50 0.32 | 0.34 0.38 ] 0.39
Total 3 88 0.16 | 0.33 0.2310.24
4 66 0.03 | 0.14 0.06 | 0.07
5 20 0.00 | 0.02 0.01 { 0.01
6 2 0.00 | 0.00 0.00 | 0.00
Decane 0 1 0.16 | 0.00| 0.05|0.04
2187 1 14 0.29 | 0.05 0.22 | 0.20
Confs. 2 72 0.30 | 0.20 0.36 | 0.36
Total 3 170 0.17] 0.34 0.26 | 0.28
4 192 0.06 | 0.28 0.09 | 0.10
5 102 0.01 | 0.10 0.02 | 0.02
6 24 0.00 | 0.02 0.00 | 0.00
7 2 0.00 | 0.00 0.00 | 0.00

t Excluding conformers with adjacent gauche* gauche™ bonds.
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Table 3.23: Conformer probabilities for hexane from three-adjustable-parameter fits
to experimental dipole couplings.

Probabilities
Conformer Model A Model D
(Multiplicity) || Model | Iso. | Model | Iso.
ttt(1) 0.352 [ 0.138 | 0.197 [ 0.182
gtt(4) 0.069 | 0.077 | 0.084 | 0.085
tgt(2) 0.096 | 0.077 | 0.083 | 0.082
ggt(4) 0.020 | 0.043 [ 0.034 | 0.036
gtg(2) 0.017 | 0.043 | 0.034 | 0.036
gtg=(2) 0.025 | 0.043 | 0.034 | 0.035
geg(2) 0.007 | 0.024 | 0.014 | 0.015

done at 302K and the dipole couplings between pairs of protons on n-hexane were
determined. While the concentration and the reduced temperature were not the
same as the previous experiments in EK11650, it should be possible to qualitatively
compare the results for liquid crystal with Ax > 0 and Ax < 0. A comparison of
the dipole couplings between pairs of protons on n-hexane dissolved in EK11650
and ZL1116;7 is given in Table 3.24. The hexane/EK11650 results are from the
experiménts and modeling discussed in the previous section.

Some notable features of the ZLI1167 system are that the liquid crystal molecules
tend to align with their long molecular axes perpendicular to the applied magnetic
field. They have no macroscopic preferred direction in the plane perpendicular to
the applied magnetic field, but tend to align parallel to neighboring molecules on
a microscopic length scale. The mai;l difference, though, is that measured dipole
couplings in a liquid crystal with Ay < 0 are scaled by a factor of —1 from those
in a liquid crystal with Ax > 0. It can be seen from Table 3.24 that this is
approximately true, but since the liquid crystals and experimental conditions are

different, the difference is not exactly a factor of —3.
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Table 3.24: Experimental and calculated dipole couplings for Hexane in the liquid
crystals EK11650 and ZLI1167.

| D (Hz)?
EK11650 ZLI1167
Protons' || Experiment | Model D | Experiment | Model D
1-2 1526 1616 -1119 -1153
4-5 3288 3235 -2300 -2273
6-7 3711 3702 -2611 -2612
1-4 -310 -361 221 246
1-6 -852 -836 637 624
1-8 -484 -540 353 384
1-10 -272 -254 193 184
1-12 -167 -158 120 116
4-8 -1323 -1323 1013 1018
4-9 -881 -907 652 663
4-6 - 131 - -118
47 - 177 - -138
4-10 - -720 - 514
4-11 - -925 - 367
6-8 - -151 - 68
6-9 - -1 - -27

tLabeling of protons is given in Figure 3.6

‘Experimental Error +25 Hz
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Model D with three adjustable parameters was judged to be best of the models

tested in describing the alkane-liquid crystal interaction and was used to calculate
dipole couplings for hexane in these two liquid crystals. Table 3.25 shows the results.
The model did a very good job of fitting the couplings for hexane in ZLI1167, with
the RMS deviation less than the experimental error of £25 Hz, but it was less
effective in modeling hexane in EK11650. The values of E;ﬁ are very similar for the
two liquid crystals, but the values of Wy and 1, are very different. The explanation
for this can be seen in Table 3.26 where the order parameters for n-hexane in the two
liquid crystals are given. Hexane is ordered to a much greater extent in the liquid
crystal ZLI1167, and this may account for the difference in the values of g and 0,
for the two systems. The similarity of the values of Eg‘f for hexane in the two liquid
crystals shows that Model D does a good job of modeling the anisotropic solute-
liquid crystal interaction, since the value of Egﬁ does not depend on the degree of
ordering; the effects of the liquid crystal ordering are entirely acconnted for by the
anisotropic solute-liquid crystal interaction. The conformer probabilities are given
in Table 3.27. It can be seen from this table that the effect of the liquid crystal
solvent ZLI1167 is to make the elongated conformers (ttt, for example) noticibly
more probable than for isotropic liquid hexane and more probable than in the less
ordered liquid cry\sta,l EK11650.

In summary, tI;e liquid crystals EK11650 and ZLI1167 with opposite signs of dia-
magnetic anisotropies appear to have ordering mechanisms which are well-described
by Model D. Hexane dissolved in the two liquid crystals seems to experience similar
isotropic “solvent pressures”, as reflected in the values of Egﬁ , but the greater or-

dering effect of ZLI1167 makes elongated conformers like ttt slightly more probable
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than in EK11650 and more probable than in an isotropic liquid.

Table 3.25: Results of three-adjustable-parameter fits to experimental dipole cou-
plings of hexane in EK11650 and hexane in ZLI1167.

. | | | EK11650 | ZLi1167 |
o 0.970 [ 1.168
(kJmol™1)
i W 0598 | 0.912
Model D | (kJmol™?)
EX 2.11 2.22
(kJmol™?) '
RMS Dev. 42 20
(Hz)

Table 3.26: Order parameters for hexane in EK11650 and ZLI167.

Szz
EK11650 | ZLI1167
| Hexane || 0.18 | 0.26 |

Table 3.27: Conformer probabilities for hexane in EK11650 and ZLI1167.

Probabilities

Conformer EK11650 ZLI1167
(Multiplicity) || Model D | Iso. | Model D | Iso.
ttt(1) 0.197 | 0.182 0.228 | 0.199
gtt(4) 0.084 | 0.085 |  0.084 | 0.086
tgt(2) 0.083 | 0.082 0.084 | 0.083
get(4) 0.034 | 0.036 0.030 | 0.034
gtg(2) 0.034 | 0.036 0.030 { 0.033
, gtg (2) 0.034 [ 0.035|  0.031 | 0.033
’ ggg(2) 0.014 | 0.015 0.011 | 0.013
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3.10 The Complete Set of Dipole Couplings for

Hexane

While it isn’t possible to determine the complete set of couplings for the longer alka-
nes, it is possible to do this for n-hexane. The experiments on n-hexane in EK11650
from Section 3.3 and on n-hexane in ZLI1167 from Section 3.9 were analyzed further
to determine all 16 possible dipole couplings between pairs of protons on n-hexane.
The couplings are listed in Table 3.28 along with the couplings calculated from
Model D with three adjustable parameters. The results of the modeling are listed
in Tables 3.29, 3.30, and 3.31. The effect of the additional dipole couplings does not
seem to be very dramatic. It appears that the subset of dipole couplings used in the
previous sections for the alkanes n-hexane through n-decane describe the alkanes
sufficiently well. The uncertainty in assignment and sign of the additionai dipole

couplings {36, 37, 38] may also affect these results, however.

3.11 Further Studies with the Chord Model

The chord model as used in the previous sections only takes into account carbon-
carbon bond self-correlations and neighboring carbon-carbon bond correlations.
‘The model, as originally proposed, takes into account correlations between all pos-
sible pairs of carbon-carbon bonds, so that the tensor in Equation 3.28 can be
written [1] :

N—-
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Table 3.28: All 16 Experimental and calculated dipole couplings for hexane in the
liquid crystals EK11650 and ZLI1167.

Dipole Couplings (Hz)*
EK11650 ZLI1167
Protons' | Experiment | Model D | Experiment | Model D
1-2 1526 1619 -1119 -1161
4-5 3288 3229 -2300 -2275
6-7 3711 3685 -2611 -2602
1-4 -310 -369 221 256
1-6 -852 -828 637 615
1-8 -484 -522 353 370
1-10 . =272 -248 193 179
1-12 -167 -154 120 113
4-8 -1323 -1325 1013 1011
4-9 -881 -888 652 644
4-6 56 139 -79 -124
4-7 148 181 -129 -141
4-10 -585 -701 425 499
4-11 -504 -502 362 348
6-8 -157 -163 121 85
6-9 33 -6 -39 -17

tLabeling of protons is given in Figure 3.6
tExperimental Error 25 Hz

Table 3.29: Results of three-adjustable-parameter fits to all 16 experimental dipole
couplings of hexane in EK11650 and hexane in ZLI1167.

[ | | EK11650 | ZLI1167 |

Wo 0.960 1.185
(kJmol™1)
wy 0.568 0.843
Model D | (kJmol™?)
EH 2.25 2.34
(kJmol™?)
RMS Dev. 51 30
(Hz)
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Table 3.30: Order parameters for hexane in EK11650 and ZLI167 using all 16 dipole
couplings.

Szz
EK11650 | ZL11167

LHexaneL 0.18 | 0.26 |

Table 3.31: Conformer probabilities for hexane in EK11650 and ZLI1167 using all
16 dipole couplings.

Probabilities
Conformer EK11650 ZLI1167
(Multiplicity) | Model D | Iso. | Model D | Iso.
ttt(1) 0.207 | 0.193 0.238 | 0.209
gtt(4) 0.085 | 0.085 0.084 | 0.086
tgt(2) 0.084 | 0.083 0.084 | 0.083
ggt(4) 0.033 | 0.034 0.029 | 0.032
gtg(2) 0.033 | 0.034 0.029 | 0.032
gtg~(2) 0.033 | 0.033 0.030 | 0.031
gee(2) 0.013 | 0.013 0.010 { 0.012

where the symbols have the same meaning as in Equation 3.28. It was found in
previous studies [1, 35, 51] that the terms ip Equation 3.30 with j > 1 didn’t
contribute significantly to the ordering mechanism, and these terms were dropped.
To check the validity of this assumption, the term with j = 2 was also kept, and
modeling of the series of alkanes in EK11650 and hexane in ZLI1167 was done with
four adjustable parameters. The results are given in Table 3.32 and the calculated
couplings are given in Tables 3.33-3.37 for this model.

It appears that the extra adjustable parameter improves the fits noticably, bring-
ing them close to the level of experimental error. The value of E;ﬂ stays nearly the
same as in the two- and three-adjustable-parameter fits, and the order parameters
(Table 3.38) and conformational probabilities (Tables 3.39 and 3.40) also are near

the values found for the two- and three-adjustable-parameter fits.
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Table 3.32: Results of four-adjustable-parameter fits to experimental dipole cou-

plings.
Hexane Heptane | Octane | Nonane | Decane
EK11650 | ZLI1167
Wo 1.128 1.451 1.018 | 1.059 1.068 | 1.060
(kJmol™1)
W 0.673 1.031 0.586 | 0.630| 0.579| 0.610
(kJmol™1)
Wo -0.258 -0.438 -0.138 | -0.192 | -0.202 [ -0.248
(kJmol™!)
Jo 1.93 1.94 228 220 226 242
(kJmol™1)
RMS Dev 39 15 24 28 23 28
(Hz)

Table 3.33: Dipole couplings for hexane in the liquid crystals EK11650 and ZLI1167
from four-adjustable-parameter fits.

Dipole Couplings (Hz)
EK11650 ZLI1167

Protons || Experiment | Model D | Experiment | Model D
1-2 1526 1610 -1119 -1140
4-5 3288 3266 -2300 -2298
6-7 3711 3675 -2611 -2594
1-4 -310 -356 221 239
1-6 -852 -845 637 629
1-8 -484 -530 353 377
1-10 =272 -250 193 181
1-12 -167 -151 120 113
4-8 -1323 -1329 1013 1019
4-9 -881 -917 652 669
4-6 - 122 - -104
4-7 - 170 - -129
4-10 - -698 - 496
4-11 - -517 - 362
6-8 - -117 - 41
6-9 - 16 - -41
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Table 3.34: Dipole couplings for heptane from the four-adjustable-parameter fits to
the experimental couplings.

Dipole Couplings (Hz)

rotons || kxperiment | Model D
1-2 1489 1516

4-5 3461 3457

6-7 3897 3862

8-9 4093 4110

1-4 -226 -291

1-6 -916 -897

1-8 -520 -544

1-10 -290 -275
1-12 -192 -181
1-14 -127 -120
4-8 -1453 -1455

4-9 -924 -938

6-10 -1575 -1580
6-11 -975 -980
4-6 - 24

4-7 - 110

4-10 - =771
4-11 - -529
4-12 - -294
4-13 - -290
6-8 - 27

6-9 - 118
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Table 3.35: Dipole couplings for octane from the four-adjustable-parameter fits to
the experimental couplings.

[| Dipole Couplings (Hz) |

Protons || Experiment | Model D
1-2 1637 1699
4-5 3539 3513
6-7 4119 4097
89 4319 4324
1-4 -319 -358
1-6 -949 -932
1-8 -538 -580
1-10 -296 -290
1-12 -204 -199
1-14 -129 -139
1-16 -96 -96
4-8 -1544 -1552
49 -976 -1017
6-10 -1710 -1715
6-11 -1088 -1052
4-6 - 141
4-7 - 192
4-10 - -842
411 - -568
4-12 - -334
4-13 - -328
4-14 - -201
4-15 - -226
6-8 - -79
6-9 - 58
6-12 - -884
6-13 - -589
8-10 - 210
8-11 - 238
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Table 3.36: Dipole couplings for nonane from the four-adjustable-parameter fits to
the experimental couplings.

[| Dipole Couplings (Hz)
Protons || Experiment | Model D
1-2 1546 1585
4-5 3570 3571
6-7 4104 4061
89 4420 4432
10-11 4420 4426
1-4 -265 -306
1-6 -958 -932
1-8 -539 -567
1-10 -300 -292
1-12 -206 -198
1-14 -138 -141
1-16 -93 -102
1-18 -73 -73
4-8 -1554 -1557
49 -977 -988
6-10 -1721 -1739
6-11 -1028 -1063
812 -1779 -1769
813 -1097 -1062
4-6 - 51
4-7 - 133
4-10 - -828
4-11 - -559
4-12 - -333
4-13 - -325
4-14 - -208
4-15 - -232
4-16 - -150
4-17 - -150
6-8 ~ 29
6-9 - 127
6-12 - -904
6-13 - -579
6-14 - -354
6-15 - -346
8-10 - 79
8-11 - 159
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Table 2.37. Dipole couplings for decane from the four-adjustable-parameter fits to
the experimental couplings.

[| Dipole Couplings (Hz)

| Protons || Experiment | Model D
. 12 |' 1669 1744
4-H 3660 3645
6-7 4283 4239

. 89 4577 4561
10-11 4697 4724
1-4 -313 -364
1-6 -998 -972
1-8 -556 -575
1-10 -319 -297
1-12 -219 -205
1-14 -151 -145
1-1% -127 -107
1-18 -82 -80
1-20 -57 -59
4-8 -1666 -1676
49 -1020 -1035
6-10 -1863 -1886
6-11 -1362 -1093
8.12 -1970 -1944
3-13 -1140 -1141
4-6 - 150
4-7 - 202
4-10 - -854
4-11 - -555
4-12 - -354
4-13 - -344
4-14 - -221
4-15 - -240
4-16 - -159
4-17 - -159
4-18 - -113
4-19 - -114
68 - -46
6-9 - 90

. 6-12 - -925
6-13 - -597
6-14 - -373

. 6-15 - -362
6-16 - -229
6-17 - -249
8-10 - 229
8-11 - 59
3-14 - -966
8-15 - -595
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Table 3.38: Order parameters from Model D four-adjustable-parameter fits to ex-
perimental dipole couplings.

Szz
EK11650 | ZLI1167

[ Hexane 0.18 0.26
Heptane 0.20 -
Octane 0.23 -
Nonane 0.24 -
Decane 0.26 -

3.12 Conclusions

The work in this chapter has focussed on obtaining better experimental information
about molecular conformation and modeling the conformation of flexible molecules
in a constrained environment. Proton dipole couplings of flexible molecules dis-
solved in liquid crystals provide detailed information about the conformation and
orientation of the flexible molecules not available by other experimental techniques.
These experimental constraints give data with which to test models for intermolec-
ular interactions in liquid crystals. In this chapter it was found that Model D
proposed by Photinos, et al. _[1] provides the best description of the anisotropic
intermolecular interaction found in liquid crystals of the four mean-field models
tested, in agreement with the results of Photinos, et. al. [51] for the proton dipole
couplings of hexane. It also appears that the RIS model with an effective trans-
gauche energy difference (Egﬁ) of 1.9- 2.7 kJ mol~! adequately describes the internal
degrees of freedom and the isotropic “solvent pressure” on the alkane solutes. This
range of values agrees well with other experimental measurements on alkanes in the
liquid state [43]. Thus it can be concluded that alkyl chains in the Cg-Cyo range

have conformational distributions which are not very different from those in the

moone oy ' g " W o [ T (T R R R I ([ e
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Table 3.39: Conformer probabilities from four-adjustable-parameter fits to experi-

mental dipole couplings.

No. Probabilities

Gauche | No. Model D
Bonds | Confs' | Model | Iso.
Hexane 0 1 0.18 | 0.17
(EK11650) 1 6 0.50 | 0.50
27 Confs. 2 8 0.29 | 0.30
Total 3 2 0.03 | 0.03
Hexane 0 1 0.21]0.18
(ZLI1167) 1 6 0.50 | 0.50
27 Confs. 2 8 0.26 | 0.29
Total 3 2 0.03 | 0.03
Heptane 0 1 0.130.12
81 1 8 042|041
Confs. 2 18 0.35 | 0.37
Total 3 12 0.09 { 0.09
4 2 0.01 | 0.01
Octane 0 1 0.08 | 0.07
243 1 10 0.32 | 0.31
Confs. 2 32 0.39 | 0.40
Total 3 38 0.18 | 0.19
4 16 0.03 | 0.03
5 2 0.00 | 0.00
Nonane 0 1 0.05 { 0.04
729 1 12 0.24 | 0.23
Confs. 2 50 0.38 1 0.38
Total 3 88 0.25 | 0.26
4 66 0.07 { 0.08
5 20 0.01 | 0.01
6 2 0.00 { 0.00
Decane 0 1 0.04 | 0.03
2187 1 14 0.20 ] 0.18
Confs. 2 72 0.351 0.35
Total 3 170 0.28 | 0.30
4 192 0.11 | 0.12
5 102 0.02 | 0.02
6 24 0.00 | 0.00
7 2 0.00 | 0.00

t Excluding conformers with adjacent gauche* gauche™ bonds.
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Table 3.40: Conformer probabilities for hexane in EK11650 and ZLI1167 from four-
adjustable-parameter fits.

Probabilities

Conformer | EK11650 ZLI1167
| (Multiplicity) || Model D | Iso. | Model D | Tso.
ttt(1) 0.18310.168 0.208 [ 0.175
gtt(4) 0.083 | 0.084 0.084 | 0.084
tgt(2) 0.082 | 0.081 |  0.082 | 0.081
get(4) 0.036 | 0.038 |  0.033 | 0.037
gtg(2) 0.036 | 0.038 |  0.033 | 0.037
gtg=(2) 0.036 | 0.037 0.034 | 0.036
22g(2) 0.016 | 0.017 |  0.014 | 0.016

neat liquid, and that the liquid crystal solvent has only a slight effect on molecular

conformation.



Chapter 4

NMR Studies of Molecular

Conformation and Orientation in
Graphite Intercalation

Compounds

4.1 Introduction

Two Graphite Intercalation Compounds (GICs) composed of an alkali metal and
tetrahydrofuran (THF) intercalated between the layers of highly-oriented pyrolytic
graphite (HOPG) were studied by proton NMR to determine the conformation and
orientation of the THF molecules in these compounds. These alkali/THF GICs are
very different compounds than the alkane/liquid crystal mixtures studied in the
previous chapter, but NMR studies of the compounds show that they have more in

common than it first appears. Both compounds have conformationally and transla-

111
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tionally mobile species (alkanes or THF) which are in an anisotropic environment.

Because of this, the NMR Hamiltonians are the same, and the same approach
could be taken with the alkali/THF GICs as was taken with the alkanes in the
previous chapter to determine the conformation and orientation of the THF. Ran-
dom deuteration of the THF molecules and two-proton filtered NMR experiments
should work well in this case for measuring dipole couplings between protons on a
THF molecule. Unfortunately, this approach was not taken due to the unavailabil-
ity of a sample with randomly deuterated THF. Instead, fully protonated THF was
used, so that the NMR spectra are quite complex, resulting from eight-spin THF
molecules. This makes it necessary to take a brute-force computational approach
to simulation of the NMR spectra, since analytical calculation of the eigenstates
and eigenvalues of such a spin system is prohibitively difficult. Before tackling the
problem of interpreting the NMR spectra of THF in these GICs, a brief digression
into some background .about the compounds of interest is in order.

Graphite intercalation compounds (GICs) have been studied for many years
[52, 53], both because of their possible applications (for example, as conductors)
and as models for quasi-two-dimensional systems. Ternary GICs, reviewed recently
by Solin and Zabel [54], are of special interest because they allow a wider variation
of composition and properties than binary compounds.

Previous work on ternary alkali/THF GICs has revealed pronounced differences
in their structure, depending on the type of intercalated alkali metal and on the
amount of intercalated THF [55, 56]. With the exception of compounds with Li {55,
57, the intercalants form monomolecular layers. In the case of the ternary K, Rb,

or Cs/THF GICs, two forms of the GIC are possible - saturated and residual. The
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saturated form is a first-stage GIC (stage refers to the number of graphene layers

.between neighboring layers of intercalate) obtained by direct action of THF vapor
on the second-stage binary GIC MC,4 (M = K, Rb, Cs). The residual compound
is a first-stage GIC in the case of K or Rb and a second stage GIC for Cs, and
is formed by incomplete deintercalation of THF from the saturated one [58]. The
intercalation process can be pictured by the pleated layer model of Daumas and
Herold [59], shown schematically in Figure 4.1.

The differences in structure between ternary alkali/THF GICs containing differ-
ent alkali metals is evident in their composition and in the spacing between the two
nearest intercalated layers (I.). The saturated form of the K or Rb/THF GIC has a
THF/metal ratio of about 2.5 and an I, of 8.9 A, while the residual compound has
a THF /metal ratio of about 1.6 and an I, of 7.1 A [58, 60]. The saturated Cs/THF
GIC is similar to the residual K or Rb compound and has a THF /Cs ratio of about
1.6 and an I, of 7.1 A, and the residual compound is second stage with a THF/Cs
ratio of about 0.9 and an I, value of 10.2 A [61, 62].

The interlayer spacing for alkali/THF GICs is imposed by the size and orienta-
tion of the THF molecules, rather than by the size of the smaller alkali ions [58].
From the observed differences in composition and I, between the K or Rb/THF and
Cs/THF saturated compounds, it was concluded that the mean plane of the THF
molecule is approximately perpendicular to the graphene layers in the K and Rb
compounds and parallel to the graphene layers in the Cs compound [62, 63, 64, 65],
as pictured in Figure 4.2.

To better understand the differences between the K or Rb/THF and Cs/THF

GICs, proton NMR studies have been conducted on saturated K/THF and satu-
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Figure 4.1: Pleated Layer Model for interclation of THF into the binary stage 2
alkali GIC to form the stage 1 ternary alkali/THF GIC. The open circles
represent alkali metal ions and the filled circles represent THF molecules.
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Figure 4.2: Schematic picture of the ternary graphite intercalation compounds
CS(THF)1‘3C24 and K(THF)2_5024. In CS(THF)L;;C% the THF molecules
have their mean planes approximately parallel to the graphene layers, while
in K(THF)35Cq4 they have their mean planes almost perpendicular to the

graphene layers.
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rated Cs/THF GICs. Proton NMR spectroscopy is particularly informative here

for two reasons. First, at room temperature, the observed lineshapes indicate that
anisotropic molecular motions of the intercalated molecules effectively average out
magnetic dipole-dipole couplings between spins on different molecules, leaving only
intramolecular couplings. The dependence of these couplings on the orientation and
length of proton-proton internuclear vectors provides information about molecular
orientation, conformation, and mobility. Second, the layers of the graphite matrix
impose a high degree of orientational order on the intercalated THF molecules. The
situation is similar to that of molecules dissolved in, and partially oriented by, liquid
crystals. But while NMR in liquid crystals has become a widely used method for
structure determination, to date there have been only a few examples where dipo-
lar spectra of molecules oriented in solids have resolved lines which permit detailed
analysis (see for example, [66, 67]). Thus NMR spectroscopy of intercalation com-
pounds has been applied most often to powder samples [68, 69], which yield broad,
unresolvable spectra. The almost perfectly parallel orientation of the graphene lay-
ers in the HOPG-GIC samples studied here, however, results in well-resolved NMR
spectra.

Of special interest is the motion of the THF molecule itself. One possible mode
of motion is rotation of the molecule around a fixed axis. In addition, as with
other five-membered ring molecules, THF in the gas or liquid phase exhibits a large
amplitude vibration known as pseudorotation {70, 71]. One of the goals of this work
is to determine whether or not such rotational and vibrational modes of THF are

active in the intercalation compounds.
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4.2 Experimental

The preparation of ternary alkali/THF GICs has been described previously [64].
From measurement of THF consumption during intercalation, the THF/C ratio
(referenced to 24 C atoms) was determined to be 1.3 in the Cs/THF sample, yielding
a ternary sample of composition Cs,(THF); 3Co4 with z = 1.0 & 0.1. The amount
of intercalated THF in this sample is less than that usually found in saturated
Cs/THF GICs [57, 62, 65], but the proton NMR spectrum of this sample is the
same as that of a sample of saturated Cs/THF GIC with the higher THF/Ca4 ratio
of 1.6 [62]). The K/THF GIC has the approximate composition K;(THF)q 5Cs4 with
=10 =%0.1.

NMR experiments on these two samples were performed on a Bruker CXP100
spectrometer operating at a proton frequercy of 100 MHz. The orientation of the
sample inside the coil was adjusted by eye. The error in the angle © between the
sample c axis (perpendicular to the graphene layers) and the external magnetic field
was estimated to be + 2.5° at © = 0° and 90°, and &+ 10.0° at intermediate angles.

The temperature dependence of the proton NMR spectra of the Cs/THF GIC
is shown in Figure 4.3 for © = 0°. At low temperature the spectrum is broad and
featureless because the rate of motion of the THF molecules is greatly reduced. As
the temperature increases, so does the mobility of the THF molecules, resulting in
sharper spectral features due to averaging of intermolecular dipole couplings. The
angular dependence of the proton spectra of both alkali/THF GICs at 293 K is
shown in Figures 4.4 and 4.5. The overall width of the spectra shows the 3cos?©
- 1 dependence characteristic of dipolar spectra, but at angles between 0° and 90°

individual lines in the spectra of the Cs/THF GIC appear to broaden more than



. 118
those in the spectra of the K/THF GIC. This occurs because the graphene layers

in the Cs/THF GIC exhibit a larger mosaic spread in orientation than those in the
K/THF compound. The orientational disorder of the graphene layers in the two

samples is shown in the X-ray diffraction results in Figure 4.6.

4.3 Simulation of the NMR Spectra

Typically, all nuclear spins in a solid are dipole coupled to each other, resulting in a
broad featureless spectrum like the low temperature spectrum of the Cs/THF GIC
in Figure 4.3. At higher temperatures, however, the THF molecules are mobile; they
rotate and probably undergo translational motion [62]. This rapid molecular motion
results in a motionally-averaged Hamiltonian (Equation 1.48). The resolution of the
room temperature spectra of the Cs/THF and K/THF GICs in Figures 4.4 and 4.5
suggests that intermolecular dipole couplings are essentially averaged to zero and
only the intramolecular couplings remain. Thus, to a good approximation, the
room temperature spectra can be considered to result from isolated, eight-spin
THF molecules, which can be simulated numerically. The spectrum of an eight-
spin system with C,, symmetry (possibly the symmetry of the time-averaged THF
molecule) still has up to 2860 lines, leading to a crowded spectrum with extensive
overlap of lines. Nevertheless, the spectra of THF in the highly oriented GICs
studied here exhibit enough resolution and characteristic features to permit analysis.

To simulate the spectrum of THF, motional averaging must be carried out over
the molecular motions of THF in the GIC. Possible motions include molecular ro-
tatic..s and conformational changes or pseudorotation. THF was the first molecule

for which spectroscopic evidence [72] was found for pseudorotation, a vibrational
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T =293K

-40 0 40
Frequency (kHz)

Figure 4.3: Experimental spectra of Cs(THF); 3C24 with the graphene layers
perpendicular to the external magnetic field. The narrower lines in the higher
temperature spectrum result from an increase in the rates of motion of the
THF molecules from 213K to 293K.
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Figure 4.4: Experimental spectra of Cs(THF); 3C,4 for different angles © be-
tween the normal to the graphene layers and the external magnetic field. The
overall width of the features in the spectra scale as 3cos?© — 1 indicating
rotation of THF about an axis perpendicular to the graphene layers.
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© = 50-60°
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Figure 4.5: Experimental spectra of K(THF),5C,4 for different angles © be-
tween the normal to the graphene layers and the external magnetic field. The
overall width of the features in the spectra scale as 3cos?© — 1 indicating
rotation of THF about an axis perpendicular to the graphene layers.
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® (Degrees)

Figure 4.6: Mosaic spread of the orientation of the graphene layers in
Cs(THF);13C24 (top) and K(THF)y5Cy4 (bottom) as measured by X-ray
diffraction. With the detector set to verify the Bragg condition corresponding
to the (002) reflection, the intensity as a function of sample orientation is a
direct measure of the orientational distribution of the graphene layers in the
sample. The solid circles represent experimental points, the solid lines rep-
resent Gaussian fits to the experimental data, and the dashed lines are the
distributions used in the simulations of the experimental NMR spectra.
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mode originally postulated for cyclopentane [71] and subsequently for other five-

membered ring molecules [73]. Such ring systems are usually not planar, but puck-
ered. In the model by Kilpatrick, Pitzer, and Spitzer [71], the distances of the ring

atoms from the reference x-y plane are given by :

2(3) = \/gqcos(é;—ri + @) (4.1)
where i ranges from 0 to 4 and labels the ring atoms, starting with the oxygen atom,
and ¢ and ¢ are the amplitude and phase of the puckering, respectively. Note that
our definition of ¢ is different from that of Kilpatrick et al. [71]. In their definition
¢ ranges from 0° to 180° and in ours it ranges from 0° to 360°. Kilpatrick’s model
was improved by Geise et al. [74] to minimize the variations in C-C and C-O bond
lengths with changes in phase and amplitude of the puckering. They start with a
planar reference compound defined by the spoke length Sy and the angles 6 and e
as shown in Figure 4.7. The distances of the ring atoms from the x-y plane in the

puckered molecule are given by Equation 4.1 with the additional constraint that
S(i) = So(1 — k22(3)) (4.2)

where S(i) is the spoke length in the puckered compound and k is a constant equal
to 0.65 A—2. Thus, using Equations 4.1 and 4.2 and the values of S, §, and ¢
of Geise, et al. [74], it is possible to calculate the coordinates of the oxygen and
carbon atoms in THF as a function of the pseudorotation parameters ¢ and ¢.
Several conformations of THF as a function of ¢ are shown in Figure 4.8 for a fixed
value of gq.

The proton coordinates for THF are calculated by assuming a fixed C-H bond
length of 1.115 A [74] and an H-C-H angle of 109.47°. Each H-C-H plane is per-

pendicular to the plane defined by the carbon atom and its two nearest heavy atom
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Figure 4.7: The planar reference compound for THF showing the x and y
coordinates of the heavy atoms in THF. The positions of the atoms in the x-y
plane are defined by the angles § and € and by the spoke length Sp.
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Figure 4.8: Pseudorotation of THF as a function of the pseudorotation phase
@.
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neighbors; the intersection of both planes bisects the H-C-H angle. The geometrical

parameters used in the simulations are summarized in Table 4.1.

Table 4.1: Geometrical parameters for THF

5 74.52°
€ 68.22°
So 1.277 A

C-HBond |1.1154
H-C-H Angle | 109.47°

To parameterize the potential for pseudorotation of THF, previous studies 75,

76, 77] have used a potential of the form :
V(¢) = Va cos(2¢) + V, cos(4¢) (4.3)

where V5, and V} are constants and ¢ is the phase of the pseudorotation. Greenhouse,
et al. [76] and Engerholm, et al. [77] found values around V, = 0.16 kJ/mol and V4 =
0.24 kJ/mol for gaseous THF, corresponding to slightly hindered pseudorotation.
Esteban, et al. [75] were unable to determine unique values for V, and Vy for
THF dissolved in a nematic liquid crystal, but concluded that their data ;vas most
consistent with nearly free pseudorotation.

In addition to dipole couplings, the chemical shifts of the protons in THF could
play a role in determining the shape of the NMR spectra. The measured spectra
are almost symmetric at all sample orientations, showing that the chemical shift
difference between the a- and (- protons of THF is small compared to the dipole
couplings. For the simulations here a chemical shift difference of 200 Hz (2 ppm)
was used. This is approximately the same as the difference in the measured isotropic
chemical shift values [78, 79].

An attempt was made to simulate the NMR spectra of THF in the K/THF

RN
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and Cs/THF GICs using the geometrical parameters in Table 4.1 and adjusting

the pseudorotation amplitude g, the coefficients V; and Vj of the pseudorotation
potential, and the orientation of the THF molecule within the graphene layers. The
simulations were done by density matrix calculations like in Equation 1.53 for an
eight-spin THF molecule. The Hamiltonian is first constructed by averaging over all
conformations and orientations sampled by the molecule. Then it is diagonalized,

and Equation 1.59 is used to calculate the NMR spectra.

4.4 Results

4.4.1 CS(THF)1_3C24

Previous studies of saturated Cs/THF GICs [57, 65] concluded that due to steric
constraints imposed by the small interlayer spacing (I.) of 7.1 A, the THF mol-
ecules must have their mean planes parallel to the graphene layers. It was also
proposed that at room temperature the THF molecules are rotating about an axis
perpendicular to the graphene planes. Both of these conclusions are supported by
the data and simulatibns in this chapter. The width of the spectra in Figure 4.4 as
a function of ©, the angle between the normal to the graphene layers and the ex-
ternal magnetic field, retain roughly the same shape, except scaled by 3cos?© —1,
and collapse to a single line at the magic angle. This can only occur if all THF
molecules are rapidly spinning about one common axis — the axis perpendicular to
the graphene layers. A rapid rotation of complexes consisting of one cation and a
few THF molecules is also possible. The THF molecules must also have their mean

planes approximately parallel to the graphene layers, as this is the only orientation
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for which the simulations give spectra with features which extend past + 40 kHz as

in the experimental spectra. Any other orientation gives simulated spectra which
are too narrow.

With the mean plane of THF parallel to the graphene layers and rotation
about an axis perpendicular to the graphene layers, simulation of the © = 0°
Cs(THF); 3Co4 spectrum was optimized with respect to the parameters g (the ring
puckering amplitude) and V2 and Vj (the constants in the pseudorotation poten-
tial in Equation 4.3). The best fit to the experimental data was obtained with
q=030+0.01A, Vo =-15+5kJ/mol, and V; = 3 £ 2 kJ/mol and is shown in
Figures 4.9 and 4.10. The value of ¢ is somewhat less than that found for gaseous
THF of 0.38 - 0.44 A [72, 74, 80] and that found for THF in a liquid crystal of 0.39
A [75]. The values found for V; and Vj correspond not to hindered pseudorotation,
but instead to interconversion between only two conformations at ¢ = 0° and 180°
with a barrier of 30 kJ/mol between them. The possibility that THF is fixed in one
conformation, ¢ == 0°, was also considered. With this as;umption, it was found that
the experimental spectra could be most accurately simulated with ¢ = 0.32 £ 0.01
A, as shown in Figures 4.11 and 4.12.

The differences in the conformational mobility and puckering amplitude between
THF in a gas or liquid crystal and THF intercalated into the layers of graphite are
most likely a result of the constrained environment imposed by the graphene layers.
The graphite matrix and the interaction with the cations seem to deform the THI
molecules slightly from their equilibrium conformation, as well as to prevent them

from pseudorotating.
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simulation

40 0 40
Frequency (kHz)

Figure 4.9: Simulation of Cs(THF), 3Cy4 for ©, the angle between the external
magnetic field and the normal to the graphene layers, having the values 0°
and 30°. The simulations were carried out with the mean planes of the THF
molecules parallel to the graphene layers and the molecules rotating about an
axis perpendicular to the layers. The parameters ¢ = 0.30 A, V; =-15 kJ /mol,
V4 = 3 kJ/mol, and line broadening of 200 Hz were used, and appropriately
weighted spectra of different orientations were added together to simulate the
mosaic spread of the layers in Figure 4.6.
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©=90°

experiment

simulation

-40 0 40
Frequency (kHz)

Figure 4.10: Simulation of Cs(THF); 3Cy4 for ©, the angle between the exter-
nal magnetic field and the normal to the graphene layers, having the values
54.7° and 90°. The simulations were carried out with the mean planes of
the THF molecules parallel to the graphene layers and the molecules rotating
about an axis perpendicular to the layers. The parameters ¢ = 0.30 AV, =
-15 kJ/mol, V4 = 3 kJ/mol, and line broadening of 200 Hz were used, and
appropriately weighted spectra of different orientations were added together
to simulate the mosaic spread of the layers in Figure 4.6.
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Figure 4.11: Simulation of the spectra Cs(THF); 3Cy4 a§ in Figure 4.9 except

with only one conformation, ¢ = 0°, and with g = 0.32 A.
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©0=90°
experiment
simulation
©=54.7°
i ] 1
-40 0 40
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Figure 4.12: Simulation of the spectra Cs(THF); 3Cy4 as in Figure 4.10 except
with only one conformation, ¢ = 0°, and with ¢ = 0.32 A.
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4.4.2 K(THF);5Ca
The spectra of K(THF);5Cy4 in Figure 4.5 are quite different from those of the
Cs/THF GIC in Figure 4.4, indicating that the orientation and motion of THF
in the K/THF GIC are quite different from those in the Cs compound. Previous
studies of saturated K/THF GICs [58, 81] have concluded from the presence of
more THF per alkali atom and the larger interlayer spacing of 8.9 A that the mean
planes of the THF molecules are approximately perpendicular to the graphene lay-
ers. It was also concluded that the THF molecules are oriented such that their
oxygen atoms are near a graphene layer and that the THF molecules or K+ /THF
complexes are spinning about an axis perpendicular to the graphene layers. Our
initial simulations showed that the THF molecules could not have their mean planes
exactly perpendicular to the graphene layers, but must have some orientation be-
tween perpendicular and parallel. Varying the orientation of the THF molecules in
addition to their conformation would introduce two more adjustable parameters.
This leads to a large number of adjustable parameters for the simulations, so a few
simplifying assumptions were made for the further simulations. Since the lineshape
appears to be more sensitive to changes in the orientation than to the details of the
molecular conformation, the values of g, V5, and Vj; were no longer varied, but rather
taken from the best simulations of the Cs(THF); 3Cs4 compound. Only the reori-
entational motions of the THF molecules were varied. Like in the Cs/THF GIC,
the THF molecules must be rotating about an axis perpendicular to the graphene
planes, since the overall width of the spectra in Figure 4.5 as a function of © scales
as 3cos?© — 1.

The orientation of a THF molecule with respect to the graphene layers is defined



134
by the two Euler angles o and 8 which involve counterclockwise rotations of the

reference orientation shown in Figure 4.7 about space-fixed axes with the layer
normal along the z axis. The first rotation is by the angle a about the z axis,
followed by a rotation of B about the y axis. The best result for the case of two
conformations of THF (g = 0.30, V; = -15 kJ/mol, and V; = 3 kJ/mol) was obtained
by averaging over orientations of THF defined by the Euler angles a = 40° to
120° and B = 71° and is shown in Figures 4.13 and 4.14. In this simulation the
THF molecules have their mean planes tilted slightly away from perpendicular to
the graphene layers, and oscillate about an axis perpendicular to the rings’ mean
planes, moving the oxygen atoms through a range of angles which keep it away
from the graphene layers. The simulations with only one conformation (¢ = 0°
and ¢ = 0.32 A) gave a best fit to the experimental spectra for THF oriented at
Euler angles of a = 22° and § = 55°, shown in Figures 4.15 and 4.16. In this
case the mean plane of THF is tilted further away from the layer normal, with the
oxygen atoms oriented approximately towards the layers. These results show that
the THF molecules can not have their mean planes perpendicular to the graphene
layers, but most likely have their mean planes between 50° and 75° from parallel
to the graphene layers. Additional motions, besides the rotation about an axis
perpendicular to the graphene layers, are possible, but cannot be discerned based

on our simulations.

4.5 Conclusions

Proton NMR spectra of Cs(THF); 3C24 and K(THF);5C24 have been analyzed to

determine the orientations and motions of the THF molecules in these compounds
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Figure 4.13: Simulation of K(THF),5Cz4 for ©, the angle between the external
s magnetic field and the normal to the graphene layers, having the values 0° and
18°. The simulations were carried out by averaging over orientations of the
THF molecules with respect to the graphene layers defined by the Euler angles
a = 40° through 120° and B = 71° and the molecuies rotating about an axis
perpendicular to the layers. The parameters ¢ = 0.30 A, V3 =-15 kJ/mol, V,
= 3 kJ/mol, and line broadening of 100 Hz were used.
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Figure 4.14: Simulation of K(THF),5Co4 for ©, the angle between the external
magnetic field and the normal to the graphene layers, having the values 65°
and 90°. The simulations were carried out by averaging over orientations of
the THF molecules with respect to the graphene layers defined by the Euler
angles a = 40° through 120° and 8 = 71° and the molecules rotating about
an axis perpendicular to the layers. The parameters ¢ = 0.30 A Vo =-15
kJ/mol, V3 = 3 kJ/mol, and line broadening of 100 Hz were used.
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-20 0 20
Frequency (kHz)

Figure 4.15: Simulation of the spectra K(THF);5Cy4 as in Figure 4.13 except
with only one conformation, ¢ = 0°, and with ¢ = 0.32 A. The orientation
of the THF molecules with respect to the graphene planes is defined by the
Euler angles a = 22° and § = 55°.
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Figure 4.16: Simulation of the spectra K(THF),5Co4 as in Figure 4.14 except
with only one conformation, ¢ = 0°, and with ¢ = 0.32 A. The orientation
of the THF molecules with respect to the graphene planes is defined by the
Euler angles o = 22° and § = 55°.
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at 293K. Simulations of the NMR specra of Cs/THF GIC have confirmed previ-

ous conclusions that the THF molecules have their mean planes parallel to the
graphene layers and are rotating about an axis perpendicular to the layers. Pseu-
dorotation of THF in this compound is unlikely since a simulation of the spectrum of
Cs(THF),.3Cp4 with free pseudorotation, shown in Figure 4.17, differs significantly
from the experimental spectrum. Simulations of the spectra of the K/THF GIC are
not as conclusive, although they indicate that the THF molecules are oriented with
their mean planes between 50° and 75° with respect the graphene layers, balanced
between the forces from the graphene layers above and below and neighboring THF
molecules and K+ ions on the sides. The experimental data and simulations show
that the THF molecules are rotating about an axis perpendicular to the graphene
layers, as in the Cs compound, but that they cannot be freely rotating about an
axis perpendicular to the mean planes of their rings. The question of pseudorota-
tion of THF in the K compound cannot be answered. None of the simulations of
this compound - with two conformations (Figures 4.13 and 4.14), with one con-
formation (Figure 4.15 and 4.16), and with free pseudorotation (Figure 4.17) — fits
the experimental data well enough to rule out the others. Further studies using
deuterium or multiple-quantum NMR could give more information on the nature

of the motion occurring in these compounds [82].
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Figure 4.17: Simulation of Proton NMR Spectrum of Cs(THF);3Cq and
K(THF),5Co4 as in Figures 4.9 and 4.13 with free pseudorotation (V =V, =

0).



Chapter 5

Tecmag Pulse Programmer

Control Software

This chapter describes the software used to control a Tecmag, Inc. [83] pulse pro-
grammer/signal acquisition unit with a DEC VAXStation II or MicroVAX II com-
puter. The software provided by Tecmag, Inc. proved to be inadequate for control
and operation of the unit, so the TECMAG program to be described in this chap-
ter was written. The software and Tecmag PULSkit/SAkit unit is presently on the

Delta spectrometer, which is described in previous theses [37, 84].

5.1 Hardware

The Tecmag PULSkit/SAkit unit is designed to provide TTL pulses at a rate of up
to 5 MHz and to acquire data on two channels at a rate of up to 1 MHz. It requires
an analog 10 MHz clock signal at approximately 1 V,, (though it may not function

properly if the clock signal is < 1 V,,, or if the clock signal is noisy). This clock is

141
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usually supplied by the PTS frequency synthesizer used on the spectrometer. The

PULSKkit and SAkit are enclosed in a single rack-mount box and each communicates
with the VAXStation II running VMS through a 16-bit DR11-W parallel interface
card from MDB Systems [85]. The two DR11-W’s are known to the VMS operating
systems as the devices XAA0: and XABO:. XAAQ: is the upper of the two DR11-
W’s in the VAXStation II backplane and is connected to the SAkit (see Figure 5.1).
Its bus address and vector address are octal 760240 and 300, respectively. XABO: is
connected to the PULSKit as shown in Figure 5.1, and has bus and vector addresses

of octal 760250 and 304, respectively.

5.1.1 PULSKkit

The PULSkit pulse programmer is based on an AMD 2910 microsequencer, which
clocks out 128-bit microcode words of duration 0.2 microseconds or more from
its associated 2048 word microcode memory. Each 1%8—bit microcode word is an
event of fixed duration, usually a pulse, delay, loop, or data acquisition step. An
AMD 9513 chip is also present in the PULSkit and contains five 16-bit loop counters
which can used to form loops in the microcode. A microcode word is shown in

Figure 5.2. Starting with the highest number bit, each will now be described :

Bits Description
127-118 User-definable lines. No definition at present.

117 External trigger. If set, PULSkit stops until an external trigger
pulse is received through the External Trigger line on the back of
the Tecmag unit.

116-112 Loop counters. Each bit designates a loop counter to use with a
loop instruction. Bit 112 corresponds to LCI.
111-108 Microsequencer instruction. Three instructions are used :
1. Continue — execute this instruction and continue to next one

R

[
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106-96
95-94
93

91
90
89-88

87
86

85

84-80
79-48

47-35
34-25

24
23-20

143

in sequence (hexadecimal code “E”).
2. Loop unconditional — loop to address specified in bits 106-96.
(hexadecimal code “2”).
3. Loop conditional — loop to address specified in bits 106-96
if the loop counter specified in bits 116-112 has a non-zero
value. (hexadecimal code “3”).
ATTN bit to send interrupt to VAXStation II.
Loop branch address. Address of microcode word to loop to.
User-definable lines. No definition at present
ADC bit to trigger analog-to-digital converters in the SAkit to
start conversion.
SIG2 bit giving the sign of the data to be added to the imaginary
buffer. 0: “+” sign, 1: “—” sign.
SIG1 bit giving the sign of the data to be added to the real buffer.
0: “4” sign, 1: “=” sign.
CHA bit to swap data input channels A and B. 0 : A goes to real
and B goes to imaginary buffer. 1 : buffers swapped.
User-definable lines. No definition at present
PPG3 bit which resets the SAkit data memory address to zero.
CONYV bit for data acquistion which causes a read of the current
data word in the SAkit memory and adds it to the last output of
the analog-to-digital converter.
EOC bit which completes the acquisition of a data point by
writing it back to memory and incrementing the SAkit data
memory address.
User-definable lines. No definition at present.
Two’s complement time interval word in 0.1 microsecond increments.
While instruction is executing, this is incremented each clock cycle
until it equals zero, then the next instruction is executed.
User-definable lines. No definition at present.
Bits A10-Al. Auxiliary lines for the A (proton) channel of the
spectrometer.
A8 is used for RF switch #2 and must be high during a proton
pulse.
AT is used to toggle the PTS-500 frequency between two pre-
programmed values.
A6 is used to toggle the digital phase shifter in and out of line.
Ab is used to reset the digital phase shifter.
Ad is used to increment the digital phase shifter.
ARF bit for RF switch #1. Must be high during a proton pulse.
Gates for Y, Y, X, and X pulses on the A (proton) channel.
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19-15 User-definable lines. No definition at present.
14-6 Auxiliary lines for the B channel.
B2 is used for ENI deblanking on the proton channel. For a proton
pulse, this must be high for the delay preceding a pulse
and during the pulse itself.
5 Receiver deblanking. This must be high during data acquistion.
4 BRF bit for the RF switch which must be high during a B channel
pulse.
3-0 Gates for Y, Y, X, and X pulses on the B channel.

The program used to control the Tecmag must load pulse programs composed
of several microcode words, load values into the loop counters, and start and stop
execution of these pulse programs. In Section 5.2 the TECMAG program which
does this will be described.

5.1.2 SAkit

The SAkit contains two 12-bit analog-to-digital converters which can do a conver-
sion in approximately 0.9 microseconds and 256k of 32-bit words of memory for
acquired data. It is connected to the VAXStation II computer through a DR11-
W parallel interface card. Acguisition of data is controlled by the PULSkit, and

acquired data is transferred to the VAXStation II through the DR11-W.

5.2 TECMAG Program

5.2.1 Overview

The purpose of the TECMAG program is to control the Tecmag PULSkit/SAkit
unit to perform an NMR experiment, collect data, and write it to disk. Processing

and display of the data is done with separate programs (see Appendix A). The
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To signal distribution box
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Figure 5.1: Connections between the VAXStation II and the Tecmag PULSkit
and SAkit. Two 40-conductor ribbon cables connect the PULSkit and SAkit to
DR11-W’s in the VAXStation, as shown. The two other 40-conductor ribbon
cables take output signals to a signal distribution box where the signals are
buffered by TTL line drivers and redistributed on BNC connectorized coaxial

cable.
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Figure 5.2: 128-bit microcode word for the PULSkit pulse programmer. A
description of the lines is given in the text.
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TECMAG program reads in pulse programs which are written as lines of 128-bit

microcode (written in hexadecimal), allows the user to change parameters such as
time durations, phases of pulses, numbers of points, dwell time, and other experi-
mental parameters, acquires complex data, and writes it to disk.

The program is built on a series of primitive commands that use the VMS system
function “$QIOW” to communicate through the DR11-W parallel interface cards
with the PULSkit and SAkit. These primitives do the following :

Attach DR11-W - sssign a system I/O channel for device
Reset DR11-W

Detach DR11-W - deassign system I/O channel for device
Initialize PULSkit and SAkit

Set PULSkit to load mode

Load PULSKkit loop counters

Load PULSkit memory with microcode

o Set PULSKkit to execute mode

e Start and stop PULSkit

e Set SAkit to load mode

e Zero SAkit memory

e Set SAkit to execute mode

e Set SAkit to signal average mode

e Upload SAkit memory to VAXStation II

e Process interrupts generated when PULSkit sets ATTN bit high

On top of these primitives is a command interpreter which provides the user in-
terface. The possible commands are listed in Table 5.1 with a brief description of
each command. These will be discussed further in the examples in Sections 5.2.3

and 5.2.4.
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Table 5.1: TECMAG program commands

AT - set acquisition time.
Dy - set length of delay “x” (x = 0-9,A-H,J-V X-Z).
DIx - set increment for delay “x”.

DW - set dwell time.

FS - set when frequency shift bit (A7) is on.

GO - start pulse program without zeroing memory.
HA - halt pulse program after present scan.

LCx - set loop counter “x” (x = 1,3,4,5).

NA - set number of averages per FID.

NB - set number of points acquired per FID.

NF - set number of FID’s acquired in 2-D expt.
PG read in pulse program (“.mic” extension).

Px - set length of pulse “x” (x = 0-9,A-F,H,J-R,T-Z).
PIx - set increment for pulse “x”.

PSI - set when phase shift increment bit (A4) is on.
PSR - set when phase shift reset bit (A5) is on.

QU - quit program.

RP - read parameter file (“.acq” extension).

ST - stop pulse program immediately.

SW - set sweep width.

UL - upload data from SAkit and write to a file.
WL - write words to be loaded into loop counters.
WM - write present pulse program microcode.

WPA - write present acquisition parameters.

WPH - write present phase tables.

ZE - zero SAkit memory.

G - zero SAkit memory and start pulse program.
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5.2.2 Pulse Programming

An example of a pulse program is given in Figure 5.3. This pulse program is
for a standard one-dimensional proton experiment. Each line must be formatted
exactly as in the example. A line starts with eight groups of four hexadecimal digits
representing the microcode, with each group separated by a single space. This is
followed by a 10 character line number (for convenierce only, this is not used by
the TECMAG program) and then a 10 character descriptor. The 10 character line
number usually has 5 spaces followed by 4 characters which are hexadecimal digits
starting with line 0, followed by a single space. The descriptor begins with a two
character mnemonic which has one of 4 forms : t

e Dy (x = 0-9,A-H,J-V,X-Z) : the line is a delay

e Px (x = 0-9,A-F,H,J-R,T-Z) : the line is a pulse

e A : the line is a fixed delay during the acquisition sequence

e AL : the line is a variable delay during the acquisition sequence for the dwell

time. This delay p.us the fixed delay in lines with mnemonic “A” add up to
the dwell time.

The mnemonic is followed by a space and then, if necessary, the fourth, fifth, and
sixth characters of the mnemonic can be a number or letter 0-9 or A-Z which
specifies a phase table to use for a proton pulse, a pulse on the B channel, or the
receiver phase, respectively. The seventh character can take the value “I” or “R”
for phase shifter increr.ient or reset.

A typical pu'se program like that in Figure 5.3 has four basic parts :

e An initial delay, the recycle delay (line 0)

e One or more pulses and delays which represent the pulse sequence (lines 1
and 2)

e The acquisition (lines 3-8)
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0000 E000 0080 0000 0000 0000 0000 0080 0000 DO
0000 EO0O0 0000 0000 0000 0001 0100 0080 0001 P11
0000 E00O0 0000 0000 0000 0000 0000 0020 0002 D2
0000 E000 2000 FFFF FFFA 0000 0000 0020 0003 A
0000 E000 0000 0000 0000 0000 0000 0020 0004 AL
0000 E000 2040 FFFF FFFE 0000 0000 0020 0005
0000 EO00 0000 FFFF FFFE 0000 0000 0020 0006
0000 E000 0020 FFFF FFFE 0000 0000 0020 0007
0002 3005 0000 0000 0000 0000 0000 0020 0008 AL
0000 E800 0000 0000 0000 0000 0000 0000 0009 D3
0000 200A 0000 0000 0000 0000 0000 0000 000A D5

i i
Wwwwww

Figure 5.3: PULSE_ACQ.MIC, a pulse program for a simple one-dimensional
proton experiment.

o Interrupt to the VAXStation II and extra line of microcode (lines 9-10)

Each line is required to have a microsequencer instruction in bits 111-108. The first
line, the recycle delay DO, usually has bit 87 set to reset the SAkit data memory
address back to zero. This is necessary any time more than one average is done.
Otherwise, the data from each average will be written sequentially into the SAkit
data memory rather than being co-added. Bit 7 for ENI deblanking is also set. This
is necessary because there is a proton pulse in the next line and the ENI deblanking
gate has a settling time > 1 microsecond. The only other bits that need to be set
on this line are bits 79-48 which contain the timing bits for this line. This doesn’t
need to be set in the pulse program microcode because it is set by the TECMAG
program.

The second line, labeled P1, is a proton pulse. This line must have 3 bits set —
bits 24 and 22 for the two RF gates and bit 7 for ENI deblanking. The timing bits
are set in the TECMAG program and the phase of the proton pulse is set based on

the values in phase table 1. If no phase table is specified for this pulse, then one
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of the bits 23-20 must be set in the pulse program microcode to specify the phase

or the pulse. Line 2, D2, is the ringdown delay before starting data acquisition. At
this point, the receiver deblanking is turned on (bit 5) and the ENI deblanking is
turned off (bit 7).

The next six lines comprise the data acquisition sequence shown in Figure 5.4.
The lines with mnemonic “A” must have the timing word set as shown, while the
lines with mnemonic “AL” are set by the software, based on the dwell time. The
six lines for acquisition in the pulse program (lines 3-8) all have the RB bit (bit 5)
on. Also, they all use phase table #3, as specified in column 6 of the descriptor
at the end of the line. Line 3 digitizes the first point with the A to D bit (bit 93)
set for 0.6 microseconds. The next line is a delay set by the TECMAG program
which, when added to 0.6 microseconds, equals the dwell time. The next four lines
digitize the remaining points. Line 5 triggers the A to D converter again (bit 93)
and the CONV bit (bit 86) to add the previously digitized word to the value in the
SAkit memory. Following this is a 0.2 microsecond delay in line 6, then in line 7
the EOC bit (bit 85) is triggered to complete the acquisition of a point by writing
the result of the addition triggered by the CONV bit to the SAkit data memory
and incrementing the SAkit data memory address. Line 8 is a delay which when
added to 0.6 microseconds equals the dwell time. Line 8 also has a conditional
loop instruction in bits 111-108. It uses loop counter 2 (designated by bit 113) to
determine whether or not to loop back to line 5 (designated in bits 106-96) and
acquire another point. The TECMAG software assumes that loop counter 2 will be
used to determine the number of points to acquire per FID. This loop counter is

loaded by the TECMAG program with the two’s complement value of the number
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0.2 psec
DWELL TIME DWELL TIME
- 0.6 psec ; - 0.6 psec
0.6 Hsec ”~ - W ——— % n)
(bit 93)
ADC
~ CONVERT SECOND DATA POINT
(bit 86)
CONV
(bit 85) \ \
EOC .
T~
\ \ WRITE SUM TO MEMORY
SAMPLE FIRST DATA POINT SEND FIRST DATA POINT TO ADDER

AND READ IN FIRST DATA POINT FROM MEMORY

Figure 5.4: Timing diagram for data acquisition with the SAkit. All pulses
are generated by the PULSkit.

of points to be acquired (NB). When line 8 is executed, if loop counter 2 has a non-
zero value, then the value in loop counter 2 is incremented and line 5 is executed.
Otherwise, if loop counter 2 has the value 0, then line 9 is executed. The other bits
that need to be set in these six data acquisition lines are the receiver phase bits.
The receiver phase is specified in phase table 3. If no phase table is specified here, a
particular phase must be hard-coded into the microcode. For an X receiver phase,
bit 92 must be set to “0” and bits 91 and 90 must be “1”, for Y - bits 92, 91, and
90 must be set to “0”, for X - bits 92 and 90 must be “1” and bit 91 must be “0”,
and for Y - bits 92 and 91 must be set to “1” and bit 90 must be “0” in lines 3-8 of
the microcode. Generally, the data acquisition sequence for any pulse sequence can
be specified by using the six lines 3-8 in this pulse program, and simply numbering
them according to their location in a pulse sequence and changing the loop branch

address (bits 106-96) in the last of the six lines.
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Line 9, D3, sends an interrupt to the VAXStation II by setting bit 107, the ATTN

bit. The VAXStation II then calls the interrupt service routine in the TECMAG
program, which immediately stops the PULSkit, and, if necessary uploads data from
the SAkit memory to the VAXStation II, updates the pulse and receiver phases,
loads the modified pulse program, and restarts it for the next scan. The last line
in the pulse program is just a safety measure, so that if the VAXStation II fails to
respond to the ATTN bit interrupt in line 9, the PULSKkit goes into an infinite loop

with the transmitter gated off.

5.2.3 Example of Use of the TECMAG Program

The TECMAG program is located in the directory DUBO:[TECMAG] and can
be started by setting this to the default directory and typing “RUN TECMAG”
at the VMS prompt. When the program is started, a small window is created
which is used to display a running count of the number of averages completed
(NA) and the number of FIDs completed (NF) so far in the experiment. Several
subdirectories exist for files related to the TECMAG program. [TECMAG.MIC]
contains files containing microcode pulse programs. These files must end with the
suffix “MIC”. The subdirectory [TECMAG.DATA] contains the data files written
by the TECMAG program. [TECMAG.PHASE] contains the phase tables used by
the TECMAG program when specified in a pulse program. The format of the phase
tables for a pulse or the receiver is simply a file named “x.PHASE” (where x is
a number or letter corresponding to that specified in the descriptor on a line of a
pulse program) which contains lines which each have a single number on them : 0

for X phase, 1 for Y, 2 for X, and 3 for Y. These tables are read by the TECMAG

IR
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program when a pulse program is read in using the “PG” command. If you wish

to change the phase table for a pulse program after it is read into the TECMAG
program, you must edit the file /TECMAG.PHASE]x.PHASE” for the particular
phase tables you wish to change and do the “PG” command again to read the
new phase tables. No other parameter values are changed by executing the “PG”
command.

An example of using the TECMAG program to run an experiment and collect
data using the PULSE_ACQ pulse program is shown below. User input is indicated
by bold-faced type. All time durations in the program are entered and written out

in microseconds.

$ run tecmag

# pg

Enter name of pulse program file : pulse_acq
# wm

0000 EO0O 0080 FFFF FF9C 0000 0000 0080 0000 DO
0000 EO00 0000 FFFF FF9C 0001 0110 0080 0001 P11
0000 EO00 0000 FFFF FF9C 0000 0000 0020 0002 D2

0000 EOOO 3400 FFFF FFFA 0000 0000 0020 0003 A 3

0000 EOOO 1400 FFFF FC1E 0000 0000 0020 0004 AL 3

0000 EOOO 3440 FFFF FFFE 0000 0000 0020 0005 A 3

0000 EOOO 1400 FFFF FFFE 0000 0000 0020 0006 A 3

0000 EOO0 1420 FFFF FFFE 0000 0000 0020 0007 A 3

0002 3005 0000 FFFF FCiE 0000 0000 0020 0008 AL 3

0000 E800 0000 FFFF FF9C 0000 0000 0000 0009 D3

0000 200A 0000 FFFF FF9C 0000 0000 0000 000A D5

# wpa

NF = 1 SW = 10000.0

NA = 1 DW = 100.0

NB = 1024 AT = 102400.0

P1 = 10.0 P1 INC. = 0.0 PIINA = O PIINF = O
DO = 10.0 DO INC. = 0.0 DIONA = O DIONF = O
D2 = 10.0 D2 INC. = 0.0 DI2NA = O DI2NF = O
D3 = 10.0 D3 INC. = 0.0 DI3NA = O DI3NF = O
D5 = 10.0 D5 INC. = 0.0 DISNA = O DISNF = O
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# wph

FSNA= O FSNF= O PSRNA= 0 PSRNF= 0 PSINA= O
PSINF = O

PHi : 0 1 2 3

PH3 : 0 1 2 3

There are several things to note at this point. When the TECMAG program is
started, all pulses and delays are initialized to 10 microseconds, and the other acqui-
sition parameters are initialized to the values shown above by the “wpa” command.
The files TECMAG.PHASE]|1.PHASE” and “TECMAG.PHASE|3.PHASE” have
the values 0, 1, 2, and 3 in them and are read in when the “pg” command is exe-
cuted. Also note that the pulse program as printed out by the “wm” command has
been updated to contain the correct timing words and to have the correct pulse and
receiver phases, based on the first values in the phase tables. The next thing to do
before attempting to run an experiment is to set the pulse and delay lengths, the

sweep width, the number of points, and the number of averages to the desired values.

# do

DO = 10.0

Enter delay length in.microseconds : 5000000
DO = 5000000.0

# pl

P1 = 10.0

Enter pulse length in microseconds : 5.0

P1 =5.0

# sw

SW = 10000 DW = 100.0 AT
Enter SW in Hertz : 5000.0
SW = 5000 DW = 200.0 AT
# nb

NB = 1024

Enter NB : 512

NB = 512

# na

NA = 1

Enter NA : 8

102400.0

204800.0
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NA = 8
# wm

0000 EO00 0080 FDO5 OF80 0000 0000 0080 0000 DO
0000 E000 0000 FFFF FFCE 0001 0110 0080 0001 P1 1
0000 EO00 0000 FFFF FF9C 0000 0000 0020 0002 D2

0000 E000 3400 FFFF FFFA 0000 0000 0020 0003 A 3
0000 E000 1400 FFFF F836 0000 0000 0020 0004 AL 3
0000 E000 3440 FFFF FFFE 0000 0000 0020 0005 A 3
0000 E000 1400 FFFF FFFE 0000 0000 0020 0006 A 3
0000 E000 1420 FFFF FFFE 0000 0000 0020 0007 A 3
0002 3005 0000 FFFF F836 0000 0000 0020 0008 AL 3
0000 E800 0000 FFFF FF9C 0000 0000 0000 0009 D3
0000 200A 0000 FFFF FF9C 0000 0000 0000 000A D5
# wpa
NF = 1 SW = 5000.0
NA = 8 DW = 200.0
NB = 512 AT = 102400.0
P1 = 5.0 P1 INC. = 0.0 PIINA = O PIINF = O
DO = 5000000.0 DO INC. = 0.0 DIONA = O DIONF = O
D2 = 10.0 D2 INC. = 0.0 DI2NA = O DI2NF = O
D3 = 10.0 D3 INC. = 0.0 DI3NA = O DISNF = 0
DS = 10.0 D5 INC. = 0.0 DISNA = O DISNF = 0
# wph
FSNA = 0 FSNF= O PSRNA= O PSRNF= 0 PSINA= O
PSINF = 0
PH1 01 2 3
PH3 01 2 3
# zg
Enter name of data file : 052592
#

The “zg” command above zeros the SAkit data memory, loads the pulse pro-
gram exactly as written above by the “wm” command into the PULSkit memory
and starts execution of the pulse program. Four files are created in the directory
“lTECMAG.DATA]”. The first, “052592.par”, contains acquisition parameters in a
format that can be read by the data processing program “NMR1D” on the VAXS-

tation II or “nmrX” on the Stardent computer (see Appendix A). The second,
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“052592.acq”, contains the output from the TECMAG program commands “wm”,

“wlc”, “wpa”, and “wph” and can be read at any time back into the TECMAG
program by the “rp” command to set the pulse program and all parameters exactly
as they were at the beginning of this experiment. The third, “052592end.acq”,
contains the same information as the file “052592.acq” except the parameters have
the values they took on the last scan prior to completion of the experiment. This
file is useful for verifying that pulse or delay increments or phase tables were done
correctly. The last file, “052592.data” contains the data from the experiment. It
is written as a binary file of 32-bit integers with record length 512 bytes. The real
buffer is written first, followed by the imaginary buffer. Phase tables are considered
to be cyclical. For example, if there are 8 averages and only four entries in the

phase table, then on the fifth scan the first entry in the phase table will be reused.

5.2.4 More Pulse Programs

Figure 5.5 shows a pulse program for a simple two-pulse COSY experiment. It is
identical to the one-dimensional experiment in Figure 5.3 except for the addition
of lines 2 and 3 with a delay, D1, and a second pulse, P1. The same steps as just
described for the one-dimensional experiment need to be done to read the pulse
program into the TECMAG program and set the parameters. The additional steps
that need to be done for a two-dimensional experiment are to set D1 to an initial
value, to set an increment for D1 (the dwell time in t;), and to set the number of
t, points to acquire. Typical values for these parameters would be set as follows :

# dl

D1 = 10.0
ter delay lemgth in microseconds : 1.0
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0000 E000 0080 0000 0000 0000 0000 0080 0000 DO
0000 EO00 0000 0000 0000 0001 0100 0080 0001 P1 1
0000 E0O00 0000 0000 0000 0000 0000 0080 0002 D1
0000 EO00 0000 0000 0000 0001 0100 0080 0003 P11
0000 EO000 0000 0000 0000 0000 000G 0020 0004 D2
0000 E000 2000 FFFF FFFA 0000 0000 0020 0005 A
0000 E000 0000 0000 0000 0000 0000 0020 0006 AL
0000 E000 2040 FFFF FFFE 0000 0000 0020 0007
0000 EO00 0000 FFFF FFFE 0000 0000 0020 0008
0000 EO00 0020 FFFF FFFE 0000 0000 0020 0009
0002 3007 0000 0000 0000 0000 0000 0020 000A AL
0000 E800 0000 0000 0000 0000 0000 0000 000B D3
0000 200A 0000 0000 0000 000Q. 0000 0000 000C D5

o
wWwwwww

Figure 5.5: A pulse program for a simple two-dimensional proton COSY ex-
periment.

DO = 1.0

# dil

DI1i = 0.0

DIINA = O

DIINF = O

Enter delay length increment in microseconds : 200.0
Enter number of NA scans after which to do increment : O
Enter number of NF scans after which to do increment : 1
DI1 = 200.0

DIINA = 0

DIINF = 1

# nf

NF =1

Enter NF : 256

NF = 256

#

The above commands would set up the two dimensional experiment to have a sweep
width of 5000 Hz in t; and to collect 256 points in t;, that is to increment D1 by
200.0 microseconds after each fid is collected (DIINF = 1). After ea‘ch FID is
collected (after each NF), the FID is uploaded to the VAXStation II and written

sequentially to a file on disk in the same format as in a one-dimensional experiment.
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0000 E000 0080 0000 0000 0000 0000 0080 0000 DO
0000 E000 0000 0000 0000 0001 0110 0080 0001 P1
0004 3001 0000 0000 0000 0000 0000 0080 0002 D2 3
0000 E800 0000 0000 0000 0000 0000 0000 0003 D3
0000 2004 0000 0000 0000 0000 0000 0000 0004 D5

Figure 5.6: A pulse program for producing a rapid train of pulses for observa-
tion on an oscilloscope.

As another example of a pulse program, the pulse program in Figure 5.6 can
be used to look at pulses on an oscilloscope. It has no acquisition sequence, but
uses a loop counter to provide a train of pulses spaced by a delay. Typically the
delay DO would be set > 0.1 second, P1 would be set to 10 microseconds and D2
would be set to > 100 microseconds. Then loop counter 3 (specified by setting bit
114 on line 2 of the microcode) would be set to a large value using the TECMAG
command “lc3” and a train of pulses separated by a delay would be produced. The
loop counters are only 16 bits so that the maximum value for “le3” is 65535. It is
not possible to use “NA” to produce a train of pulses for the scope, since NA is
incremented each time the AT'TN bit (bit 107) is set and the VAXStation II calls
the interrupt service routine, and to do this takes ~ 0.1 seconds.

The next example is a two-dimensional, even-quantum excitation experiment
shown in Figure 5.7. The experiment was used to obtain 6-QT vs. 1-QT correlation
spectra of 1,1,1,6,6,6-d¢ n-hexane dissolved in a liquid crystal with CW deuterium
decoupling, as described in references [36, 37, 38]. The pulse sequence for this

experiment is :

3,303,400, -3 3w e

TPPI was use to excite and separate up to 8 quantum transitions by incrementing

oo [ [ T O
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the phase of pulses, ¢, by 22.5° in step with incrementation of ¢;. The phase x was

cycled through X, Y, X, and Y and the receiver phase was not cycled. The results
of the TECMAG commands “wm”, “wpa”, and “wph” just prior to starting the

experiment are shown below :

# wm

0000 E000 0080 FFFF FF38 0000 0000 0000 0000 DA I
0000 E000 0000 FC20 2DCO 0000 0000 0080 0001 DO R
0000 E000 0000 FFFF FF93 0001 0110 0091 0002 P1 1
0000 EO00 0000 FFFF 1BSE 0000 0000 0091 0003 D4
0000 E000 0000 FFFF FF26 0001 0110 0091 0004 P2 1
0000 E000 0000 FFFF 1BSE 0000 0000 0091 0005 D4
0000 EO00 0000 FFFF FF93 0001 0110 0091 0006 P1 1
0000 E000 0000 FFFF FFD8 0000 4000 0091 0007 D1
0000 E000 0000 FFFF FF26 0001 0110 0091 0008 P2 2
0000 EOOO 0000 FFFF FFD8 0000 0000 0091 0009 D1
0000 E000 0000 FFFF FF93 0001 0110 0091 O00A P1 1
0000 E000 0000 FFFF C568 0000 0000 0091 000B D6
0000 E000 0000 FFFF FF26 0001 0110 0091 000C P2 1
0000 E000 0000 FFFF C568 0000 4000 0091 000D D6
0000 EOOO0 3400 FFFF FFFA 0000 0000 0031 O0CE A
0000 E000 1400 FFFF FFOC 0000 0000 0031 O00CF AL
0000 EOOO 3440 FFFF FFFE 0000 0000 0031 0010 A
0000 E000 1400 FFFF FFFE 0000 0000 0031 0011 A
0000 E000 1420 FFFF FFFE 0000 0000 0031 0012 A
0002 3010 0000 FFFF FFOC 0000 0000 0031 0013 AL
0000 E800 0000 FFFF FF9C 0000 0000 0000 0014 D3
0000 200A 0000 FFFE 7960 0000 0000 0000 0015 DS

wWwwwwwow

# wpa

NF = 2048 SW = 40000.0

NA = 4 DW = 25.0

NB = 1024 AT = 25600.0

P1 = 10.9 P1 INC. = 0.0 PIINA = O PIINF = 0
P2 = 21.8 P2 INC. = 0.0 PI2NA = O PI2NF = 0
DO = 6500000.0 DO INC. = 0.0 DIONA = O DIONF = O
D1 = 4.0 D1 INC. = 4.0 DIINA = O DIINF = 1
D3 = 10.0 D3 INC. = 0.0 DI3NA = O DI3NF = O
D4 = 5853.0 D4 INC. = 0.0 DI4NA = O DI4NF = O
D5 = 10000.0 D5 INC. = 0.0 DISNA = O DISNF = O
D6 = 1500.0 D6 INC. = 0.0 DI6NA = O DI6NF = O
DA = 20.0 DA INC. = 0.0 DIANA = O DIANF = O
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FSNA= O FSNF= 0 PSRNA = O PSRNF= 16 PSINA = O
PSINF = 1

# wph

FSNA= O FSNF= 0 PSRNA = O PSRNF= 16 PSINA = O
PSINF = 1

PH1 : O

PH3 : 0 1 2 3

PH3 : O

The things to note here are the use of the phase shift reset, increment and
toggle bits. The phase shift reset bit is set every 16 FID’s (after it should be back
to zero anyway) and the phase shift increment bit is set at the start of every FID
to implement the TPPI scheme. The phase shift toggle bit is set in lines 7 and D to
toggle the digital phase shifter out of line and then back in line, so that the pulses
between those lines will have the quadrature phases specified by the phase tables,
and not the phase specified by the digital phase shifter.

The final pulse program example is a Carr-Purcell-Meiboom-Gill echo train
acquisition [86, 87) to demonstrate how single point acquisition is done. The pulse
program for this experiment is shown in Figure 5.8. Acquisition of a single point is
done at the tops of the echos between successive 7 pulses. The dwell time for such
an experiment should be set to be the same as D2. NB will still control the number

of points that are acquired using loop counter 2 to loop, do another 7 pulse and

delay, and acquire another point.

5.2.5 Miscellany about the TECMAG Program

The upload command “UL” allows the user to upload the data at any point in the
experiment. If an experiment is running when the “UL” command is typed, the next

time a scan is finished (the next time the ATTN bit is set in the pulse program), the



0000 E000
0000 E000
0000 E000
0000 EO000
0000 EO000
0000 EO000
0000 EO000
0000 E000
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0000 EO000
0000 EQO00
0000 E000
0000 EO000
0000 EOO0O0
0000 EO000
0000 EO00O0
0002 3010
0000 E800
0000 2015

Figure 5.7: A pulse program for a TPPI multiple-quantum experiment.
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D3
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wwwwww

162



163

0000 E00O 0080 0000 0000 0000 0000 0080 0000 DO
0000 EOOO0 0000 0000 0GOO 0001 0100 0080 0001 P11
0000 EO0O0 0000 0000 0000 0000 0000 00AO 0002 D2
0000 EOO0O0 0000 0000 0000 0001 0100 0080 0003 P2 2
0000 EOO0O 0000 0000 0000 0000 0000 0020 0004 D2
0000 E000 2000 FFFF FFFA 0000 0000 0020 0005 a 3

0000 EO0O0 0000 0000 0000 0000 000G 0020 0006 AL 3
0000 E000 0000 0000 0000 0001 0100 0080 0007 P2 2
000Q E000 0000 0000 0000 0000 0000 0020 0008 D2
0000 E000 2040 FFFF FFFE 0000 0000 0020 0009 A 3
0000 E000 0000 FFFF FFFE 0000 0000 0020 oo0Aa a 3
0000 EO00 0020 FFFF FFFE 0000 0000 0020 000B A 3
0062 3007 0000 0000 0000 0000 0000 0020 000C AL 3

0000 E800 0000 0000 0000 0000 0000 0000 000D D3
0000 200F 0000 0000 0000 0000 0000 0000 000E DS

Figure 5.8: A pulse program for single point acquisition during a Carr-Purcell-
Meiboom-Gill echo train.

data in the SAkit memory is uploaded aud written out to the file “TEMP.DATA”.
A “TEMP.PAR?” file is also created for use with the data processing programs. If
no experiment is running when the “UL” command is typed, then “NB” points are
uploaded from the SAkit memory and user is prompted for a filename to which the
data should be written.

The user account on the VAXStation II needs extra privileges besides the default
ones to run the TECMAG program. Some of vhese are specified in the Tecmag, Inc.
manual for Pulsel23 software [88]. If the users of the TECMAG program can be
trusted, then it is usually easier to just give the account(s) which use the TECMAG
program “SYSPRV” privilege.

Two common problems can occur, which result in strange error messages from
the TECMAG program. The first occurs if the Tecmag unit does not have power

to it. When the “RUN TECMAG” command is issued, an error message “Reset
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DR11-W failed” will appear. Second, if the 10 MHz clock for the Tecmag unit is

either of insufficient amplitude or is not connected, the TECMAG program will
appear to run normally until a “GO” or “ZG” command is executed, at which time
the program will crash with the error message “LDLC failed”.

Some cautions for use of the TECMAG program :

e The recycle delay (usually DO0) should not be set less than 0.1 seconds. If this
is absolutely necessary, it should be tried first with the RF amplifier(s) off,
so that problems with the VAXStation II or Tecmag PULSkit don’t result
in long pulses which could damage a probe or sample. Alternatively, it is
possible to use a loop counter to do a fast recycle delay without having to set
the ATTN bit and send an interrupt to the VAXStation II. If this is the case,
all phase cycling must be hard-coded into the pulse program, since software
phase updates using phase tables can only be done in the TECMAG program
when the interrupt service routine is called by setting the ATTN bit in the

pulse program.

e Pulse lengths should not be set longer than about 100 microseconds, unless
you know what you are dning, since such pulses could damage a probe or

sample.

o Always check the pulse program and parameters using the “wm”, “wpa”, and
“wph” commands before running a pulse program. It riay also be prudent to
run the pulse program with the RF amplifiers turned off to test that it does

what it should before running an experiment.

o It may be useful to type the “wm” command during recycle delays between
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scans to see that the phases of pulses and the receiver are being updated

properly.
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Appendix A

Software

A.1 Data Processing

In addition to the TECMAG program described in the previous chapter, several
programs were written or modified to process and display data on different com-

puters.

On the VAXStation II and MicroVAX II computers :

e NMRI1D - A program originally written by Dieter Suter to process and
display one-dimensional NMR data. It has been modified to enhance its
capabilities. It can read the “.par” and “.data” files written by the TECMAG

prograim.

e NMR2D - A program originally written oy Dieter Suter to process and

display two-dimensional NMR data. Very slow for processing large data sets.

o NMR2DPLOT - A program derived from the NMR2D program which reads

in processed two-dimensional NMR data and plots it to the screen or to an
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HP7550 plotter. Better plotting and interactive peak-picking than NMR2D.

e 2DF'T - A program originally written by Steve Rucker. It reads and processes
two-dimensional NMR data files written by the TECMAG program. The

output file from this program can be read by the NMR2DPLOT program.

On the Stardent computer :

. e nmrX - A program for processing and display of one-dimensional NMR data.
It can read the “.par” and “.data” files produced by the TECMAG program,
as well as Bruker data and binary data stored as float’s with alternating
real and imaginary points. Outputs include PostScript and Adobe Illustrator

formats.

e nmnrX_2D - A program for processing and display of two-dimensional NMR
data. It can read the “.par” and “.data” files produced by the TECMAG pro-
gram, as well as Bruker data and binary data stored as float’s with alternating
real and imaginary points. OQutputs include PostScript, Adobe Illustrator, and
AVS field formats.

A.2 Simulation

The programs used for the simulations in Chapters 3 and 4 can be found on the
Stardent computer. The programs for the mean-field simulations in Chapter 3 are
located in the directory “/opt/pines/rosen/marksalks/rmsdev/sources” and are in
subdirectories named for the model and the number of adjustable parameters used
in the simulation. The model names used are “burnell” for Model A, “samulski”

for Model B, “inertia” for Model C, and “photinos” for Model D. The program for
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the simulations in Chapter 4 is in the directory “/opt/pines/rosen/thf/sim” and is

named “thf’.
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