N

.
v gy

COO-/764 -33
MASTER

RESONATING-GROUP METHOD FOR NUCLEAR

MANY-BODY PROBLEMS ™

Y. C. TANG and M. LeMERE

School of Physics, University of Minnesota
Minneapolis, Minnesota 55455, U.S.A.

and

-
D. R. THOMPSON

Institut_fir Theoretische Physik der Universitat
Tubingen, D-7400 Tibingen, Germany

*WOrk supported in part by the U. S. Department of Energy under Contract
No. E(11-1)-1764.

**Alexander von Humboldt Stiftung Fellow.

FIHLE- e Ay . . -
- L T e



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



,'\\’

Introduction : : E

This report was
Sponsored by the U,
- [ United States nor
) Energy, nor any of
contractors, subeony,

Prepared as an account of work
nited States Governmeny, Neither the
the _Umlcd States Department of
their employees, nor any of their
ractors, or their employees, makes
$s or implied, or assumes "

ss an;

llity for the Y, ! o
:' mformation. apparatus, product or
T tepresents thar jts

e use would not

any warranty, expre,
liability or .

or usefulness of an
process disclosed'
infringe privately o

Contents

Formulation of the resdnating-group method

2.1. Reformulation of the Schrodinger equation

. 2.2. Basis wave functions in cluster representation

2.3. Derivation of coupled equations
é. Single-channel calculation without specific distortion
. b. Single-channel calculation with specific distortion
c. Coupled-channel calculation
Complex-generator-coordinate technique
3.1. General remarks

3.2. Description of the complex-generator—coofdinate-technique

. 3.3. Special case-cluster internal functions in harmonic-oscillator

shell-model representation
3.4. Redundant-solution test
Boqnd-state, scattering, and reaction calculations
4.1. Bound- and resonance-state calculations
é. Cluster states in ]70, 18F, ]QF, and ZONe
b. 3ot cluster structure of 12C
4,2, Scattering calculations
‘ 16

a. Scattering of light ions by 0

b. o +o scattering with speci fic-distortion effect
4.3. Reaction calculations
a. 3He(d,p)4He reaction

4

b. He(d,t)3He reaction

i1

32
40
45
45
45
50
54
54
57

61
65

DISTRITUTIVE A7 TTIS DOCUMENT 1S UNLIVITED

I A LTS s 2 £

¢

‘2)

/



6.

EFfects of the Pauli principle
5.1. Introductory remarks
5.2. Effective‘internuc1éar potential
"a. Odd-even L -depenidence and channel-spin dependence
b. General discussion '
5.3. Direct-reaction mechanisms
a. Brief description of the method of analysis
b.‘ Result and discussion
5.4. Con;]uding remarks

Conclusion

Appendix A. The direct potential Vp

- ‘References

iii

68

68
68
68
74
82
83
87
89
90

. Appendix B. Approximate treatment of the exchange-Coulomb interaction 97

104

94



iv
Abstract

The resonating-group method is a microscopic method which uses fully
.antisymmetric wave functions, treats correctly the motion of the total center
of mass, and takes cluster correlation into consideration. In this review,
we discuss the formu]ation of this method for various nuclear many-body
problems, and describe a complex-generator-coordinate technique which has
been employed to evaluate matrix elements required in resonating-group
calculations. Several illustrative examples of bound-state, scattering,
énd reaction calculations, which serve to démonstrate the usefulness of
this method, are'presented; Finally, by utilizing the results of these
calculations, we discuss the role played by the Pauli principle in nuclear

scattering and reaction processes.



1. Introduction

The methodvof the resonating-group structure or the resonating-group
method (RGM) was proposed in 1937 by Wheeler [ 1], based on the viewpoint that
nucleons in nuclei spend fractions of their time in various substructures or
clusters. In the forties and fifties, thi;.method was extensively employed by
especially the groups at the University 6f London [ 2] to study the problems
of nuclear scattering and reactions. The results thus obtéined generally
agreed fairly well with experiment. However, because of computational
difffcu]ties, only Qery light systems could be investigated, namely, those
sysiems which involve two s-shell nuclei in both the incident and the outgoing
channels.

This method was given a physical interpretation ih 1958 by w11dermu§h and
Kanellopoulos [3] . These authors contended that, because of the on-the-
averége attractive.nature of the nuclear forces, there exist in nuclei rela-
tively long-range correlations which manifest themselves through the formation
of nucleon clusters [4,5] . In particular, they have emphasized the important
role played by the Pauli exclusion principle which causes these cluster
correlations to become the strongest in the nuclear surface region. Using
such a cluster picture, commonly referred to as the nuclear cluster model,
‘they have qualitatively and semi-quantitatively explained the essential
féatures of many nuclear systems [6,7]_. The mathematical formulation of the
cluster model is, however, basically the same as that of the resonating-group'
method; in this review we shall, therefore, make no distinction between these
two descriptions.

To give a general idea of what the resonating-group method is, we should
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state that it'fs-a micrdscopié'methbd‘which*expﬂicit1y~takesaé1uster
correlations into atcount.. It ha§ certain important features which distinguish
itself from other methods commonly used invnuc1ear-physics studies. These |
~ features are as follows: - '
(i) It employs totally antisymmetric wave functions and, therefore, takes the
Pauli exc1usion'princip1e fully into account.
(ii) It utilizes a nucleon-nucleon potential which explains reasonably well the -
two-nucleon low-energy scattering data. |
- (ii1) It treats correcfly the motion of the total center of mass.
(iv) It considers nuclear bound-state, scattering, and reéction problems from
a unified viewpoint.
(v) It can be used to study cases where the particles involved in the incoming
and outgoing channeTS‘are,arbitrary composite nuclei.

Because,of these features,'resonéting-groﬂp calculations are generally
rather difficult to ﬁerform, especia]Ty when the number of nucleons involved
in the system is large. Thus, evén though theké was a substantial number of
. such ca]culatiohs done in the sixties [8] ,» these werelmostly simple extensions
and.modifications of previously reported works. Indeed, it waS frequently
rema;ked [9] that thelrequirement of antisymmetrization causes insurmountable-
computational difficulties and, therefore, the resohating-group method cannot
be expected to be useful in studying systems containing more than eight
nucleons. This is, of course, no 1onger true. With the development of
generator-coordinate techniques for continuum stddfes since about 1970 [10-13] s
it now becomes possible to perfofm scattering calculations for rather large
169 by 0ca [14] and so on. In fact, it
180(p,t)]60,

systems, such as the scattering of

is certain that even microscopic reaction calculations, such as



are feasible, and these calculations will undoubtedly be performed in the
near future.

The formulation of the resonating-group method is described in sect. 2.
‘This description will be relatively brief, because é detailed account of it
has récent]y been given elsewhere [5] . Section 3 is devoted to the discussion
of a complex-generator-coordinate technique [11,12,15,16],.which was developed
to faci]itéte the’computation of the various matrix elements. involved in
resonating-group calculations. In this technique, the esséntia1 idea is to
express the wave function as a linear superposition of antisymmetrized
products of single-particle wave functions or Slater determinants. Then,
by employing well-developed methods of dealing with product functions, one
can usually carry out the analytical ealculation of these matrix elements in
a re]ative]y straightforward manner.

Results of representative bound-state, scattering, and reaction calcu- _
lations are presented in sect. 4. Here the purpose is not'ohly to demonstrate
the general utility of the resonating-group method in treating nuc1ear.prob1ems,
but also to show how one can obtain better agreement with experiment by'
systematically improving the resonating-group trial wave function.

From the results of resonating-group calculations, one obtains informa-
tion concerning the effects of the Pauli principle in nuclear systems. In
sect. 5, we shall describe its influence on the effective 1oca1}interaction
between two composite clusters, and discuss the relationship between this
principle and the various direct-reaction processes commonly employed in
phenomenological studies. | \

Concluding remarks are given in sect. 6. Here also, we shall mention
some possible problems which should be considered in the future by the

resonating-group approach.



2. Formulation of the resonating-group method

2.1. Reformu]ation'0f'the'$¢hrpd1nqer equétion

As a starting point, we rewrite the timé-independent‘Schrédinger
equation
(H-EY¥ =0 o o (1)
iﬁ the form of a projection equation ‘ o v
(EPIH=E-¥ D=0 | @
In eqé. (1) and (2), Ey is the totai energy of the system and H is a

Galilean-invariant Hamiltonian operator given by

| N N
i Zn w B T 'Z: T e (3)
A A(Jz ,

with N being the number of nucleons, Tcm being.the kinetic-energy operator
of the total center-of-mass, and Vij being a huc]eon-nucleon potentia] chosen
to fit the.two-nucleon scattering data especially in the low-energy region.
If §¢ represents a completely arbitrary variation in the space of all
many-nucleon functions, then it is clear that eqs. (1) and (2) are entirely
equivalent. The advantage of eq. (2) is that, as has been emphasized in
ref.[:SJ , this equation does allow one to conveniently treat the incoming
and outgoing channels in a symmetrical way, which is an important considera-
tion in the formulation of a flexible many-body nuclear-reaction theory.
In addition, of course, eq. (2) provides a convenient basis for approximate,
variational calculations in practica1 problems. |

We shall now brief1y discuss the general properties of the projection



equation (2). Let us make for  the ansatz

w=Zar¢r+/aP¢PdpE§ak¢k , )
where the coefficients 4, and Q, are the discrete and ccntinudus‘Tinear
variational amplitudes for the basis functions ‘Pr and <¢P ,respectively.

The choice of the basis. functions C#k js arbitrary — they must be linearly
independent, but need not be orthogonal to one another. Indeed, this latter
point is an essential one, because only by choosing in general a nonorthogonal
set of functions can one expect to introduce the incoming and outgoing channeis
symmetrically into the theory. Now, one can easily show [5] that, due to the
hermiticity of H and the fact that all variational parameters are contained
linearly in W , any two solutions ¥, and ¥, of eq. (2) are orthonorma]ized‘

if all degeneracies are removed, and the Hamiltonian H can be represented by a

real diagonal matrix, i.e.,

and

’

KVl HI ¥y = ED SOmm) ()

where & (m,n) represents the Kronecker &-function if m is a discrete index
and -the Dirac & -function if m is a continuous index. These relations are

in fact true, even when one restricts the number of linear variation para-
meters or, in other words, when one works only in a_restricted fpnction-space.
~ This is important, because in practical problems one certainly cannqt expect

to always use a set of basis functions which span the complete function-space.
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A proper choice of theubasis-functionqset‘is dictated by the requirement
that in practical calculations one must severely 1imit the number of qbk
in the trial function ¥ . In this respect, it is important to realfze.that
the Pauli principle, expréssed by the antisymmetrization of the wéve function,
has the effect of reducing greatly the differences between apparently different
nonorthogonal wave functions when the nucleons are close to one another.
From th1s it follows that, at relatively low excitation energies, the number
of many-nucleon configurations which one needs for approximate calculations
can usually be made so small that such calculations become quantitatively

feasible.

2.2. Basis,wave functioﬁs'in'ClUstér’representation

As was mentioned in the Introduction, the cluster model has been quite
successful in explaining qua]itative1y the features of many nuclear systems.
It seems desirable, therefore, to adopt as basfs functions generalized cluster
wave functions [5] which describe the motion of a system of two or more clusters.
Thus, in the resonating-group method one-adobts a trial function jP which

has the following schematic form:

V= Al T oA bIBIF ()

F 2 PA) (B PCHF (R, R)e)
¢

+ Z CP(Ah)Cb(BUCNCk‘)CP(D.R) Fh<»@kl,8h2,BR3>
R



‘In the above equaticn, A 1is an antisymmetrization operator given by

)

A= 2 -nfp . (8)
P | | | .

where the sum extends over all permutations P which can be carried out on
the nucleon coordiantes, and p is the number of interchanges that make up
the permutation P. The functions ¢ describe the internal behaviour of the

clusters, while Z(Bc ) is a normalizable function describing the total c.m.

m
motion. The functions Fi(gi), Fj(R Rjz)’ Fk(3k1,3k2’5k3):a"d SO on are

Rj1:2

relative-motion functions in two-, three-, four-, and more-cluster configura-

tions, with R, and so on being Jacobi coordinates defined with respect to

the centers of mass of the various clusters. The distortion functions

A [ 5;,2(gcm)] are chosen'to improve the wave function in the strong-

interaction region; they vanish for large‘internucleon and intercTﬁster distances.
We should mention that, with the exception of the functions A [ £, Z ] ,

the other basis functions are contained implicitly in the generalized cluster

functions (channel functions) %n eq. (7). :Consider, for"examp1e, a two-

cluster term

b, = A[PMOBFR) E(EN] 7

This term can be written in a parameter representation as

Y, = fe‘\ [ d(AP(B)S(R-R) Z(Rem) | F(R") dR” (10)

where R" is a parameter coordinate on which the operator ¥ does not act.



From the formof e'q.'-‘('lO-)‘, it ‘can be seen that & [ $(A)p(B) S (R-R") 2(ch)]
repfesents a continuous set of basis functions and F(R") represents a
continuous set of variational amplitudes.

The basis functions chosen here are not. orthogonal to each other.*
As has been pointed out previously, this does not cause any basic difficulty,
because the solutions of the projection equation are always mutually ortho-
gonal if all degeneracies are removed. In addition, we should mentioﬁ that
this basis set is certainly overcomplete. This also does not pose any problem,
since for practical calculations it is always necessary to use only a small
number 6f channel and distortion functions in the expansion for W

The variation &Y specifies the function space used in the calculation.
This function space is defined through arbitrary variations of the linear
functions Fi’ Fj,"' » and the linear amplitudes Cn contained in the trial
function Y of eq. (7). By substituting the expressions for d¢ and ¢
into the projection equation (2), one then obtains a set of coupled integro-
differential and integral equations which these linear functions and linear
amplitudes satisfy. This will be discussed furtﬁer in the next subsection.

As is obvious, the computation will in general become quite complicated
if the function space is taken to be rather large. Thus, in practice, one
must 1imit the extension of this space by using relatively simple forms
for ) , chosen according to physical intuition and energetical arguments.
For iﬁstance, in the five-nucleon case, one might start by taking just one
term in eq. (7), which represents a n + « cluster configurétion with the

oL particle in its ground state. This results in the so-called

"It should be noted that even basis functions A[P(AS(BYSR-RNZ(Rem) ]

with different values of R" are not orthogonal to each other.



singfe-channe] approximation without specific distortion (see subsection

4.2a of ref. [5]). Because the o particle has a low compressibility and
is, therefore, not easily distortable, one does find that this approximation
can yield satisfactory results in the wa-excitafion'region [17) . If one
proceeds further to consider higher energies at which the « particle can be
broken up, then one should improve'thé calculation by including also the

d + t cluster configuration, with both the deuteron and the triton in their
ground states. Thus one sees that, in the resonating-group approach, one
makes successive improvements until the calculation becomes computatiénally
infeasible. When such a stage is reached,.then one may have to adopt more

phenomenological means, such as the introduction of imaginary potentials and

SO on.

2.3. Derivation of coupled equations

In this subsection, we show how to derive the coupled equations which
the Tinear variational functions and amplitudes satisfy. The derivation
will be performed by assuming that the clusfers have no internal angular
momentum. This assumption is made merely for clarity in presentatidn; in
actual calculations, the cluster internalvangu1af momenta must of course be

explicitly taken into consideration.

2.3a. Single-channel calculation without specific distorfion

We start our discussion by considering the simplest case, namely, the-
case in which there is only one two-cluster open channel and where the
specific distortion effect is neglected. In this case, the wave function

is written as
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V= ﬂ[¢('A)¢(B)ﬁ(%>z(£cm)]
=_/¢[¢(’A)¢<3)52343")2(5cm'>jF(E’>€1B”, ' an
By writing the variation of 4" also in a parameter representation, i.e.,

sy =‘/¢i [$A)#(8)S(R-8)Z (Rew) ] SF(R)AR’ (12)

we obtain then from the projection equation (2) the following equation:

7

f [ H(R R )-E_N(gR)]F(RIAR" = 0 (13)

where
H(R,R") = {PIAIPB)S(R-R)E (Rem) | H A [Bra)B)S(8-R ")z@mﬂ} (14)

N (&, &) =L BAIBB)S(E-R)Z(&en) | AL <Pm>¢(s)5_(§—5")zzgmﬂ> (15)

with the Dirac-bracket notation denoting an integration over all spatial

coordinates and a summation over all spin and isospin coordinates. Note

that, in eqs. (14) and (15), the antisymmetrization operator @& occurs only

on the ket side of the Dirac bracket; this is permissible, since this operator
. is a hermitian operator which commutes with the Hami]tonian operator H and

satisfies the relation
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A% = (Myrip)l 4 ~(16)

with NA and NB being the numbers of nucleons in the clusters A and B,
- respectively.

To proceed, let us write
, A

where 94A and 5415 are, respectively, antisymmetrization operators for the
nucleons in clusters A and B, and A’ is an antisymmetrization operator which

interchanges nucleons in different clusters. Then, eq. (15) can be written as

N(RR") = {PB)PB)S(&E)Z(Rem) | A'[ $(4)3(8)S(R-R)Z(Bem)] ) (18)

with :
P(A) = A, D(A) (19)

and

$ (B)= A, 0(8) - ~ (20)

By defining further
/ % (21)
A = / + $4/

’

we can separate J/kﬁ/,g”) into two parts, i.e.,

NIRR) = N (RR") + Nz (R,R") (22)
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_ WHérevthé direct part’LﬁCD is

NLRR) = {B(AP(BIS(R-R)Z(Rer)| D(#)$(8)S(RE1Z(&enm) »  (23)

and the exchange part JV; is.

N (R1) = (BA)BB)S(£-R)E(Rer) | AT BABBSR-RIZ(Rem)] ) (20)

For.)(é we now perform the integration over the relative coordinate R. - The

resylt is

N (gr)= BA)B(B)Z( £er) $(ﬁ)$(5)2(@cm>>7? S(&-R") (29

where the notation { > . is introduced to indicate integration over
internal spatial coordinates of the clusters and the total c.m. coordinate,
summation over all spin and isospin coordinates, but no integration over the

relative coordinate R. For convenience, we shall adopt the normalization

condition

(<Z>/A)¢(B}£(£cm>/$>(A)$(3)Z(£Cm)>?= /@

With this particular normalization, the quantity ;ﬁéD then takes on the

simple form

(27)
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Similarly, one can separate ﬂ(ﬁ’, _@") . also into two parts, i.e.,

H(RR) = Hy(RR")+ N (&R (e
with
H(g8") = < BA)$(B)S(RL) 21 $mE@)See)z > (29)
and

Ho(&R") = {bA)#B)SR-R)E | HIA [$1a)d(2)8(R&VZ] ) (30)

The expression for 543 can be simplified by noting that the. Galilean-

jnvariant Hamiltonian H of eq. (3) can be written as

H=HA+HB+H' . (31)
where HA and Hé are, respectively, the internal Hamiltonians of the clusters
A and B, and H' is a Hamiltonian for the relative motion, given by

H = =—V, + V (32)

R

5

7

with /L_ being the reduced mass of the two clusters and

Vo= 2 2 v, | (33)

LEA }esB
}
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The "thio“nicTesn “potential 'VQ}. Will in geheéral contain all types of exchange
operators; however, since totally antisymmetrized wave functions are used in

resonating-group calculations, we can always replace the space-exchange

: g _T g
operator Fg: wherever it appears, by the operator -]3) TZJ with .73}
and ?3 being the spin- and isospin-exchange operators, respectively.

Nhen th1s is done, we can then define a direct (local) potential yg(&) as

Vo (&)= (ABZ(Rer) | V' | B (BIZ(R)>,  (38)

The cluster internal energies EA and EB are obtained by computing the ex-

pectation values of the Hamiltonians H, and Hg, i.e.,

<¢(A)¢<B)ZI (A)¢(B)Z> ~ (K=AB) (35)

Using eqs. (26) and (31) - (35), we finally obtain
‘ 2 .
o (R1R") = [—% Ve + V(&) + E,+E5 | §(&-R") (36)

By utilizing this expression and the expression for uY%(ZSﬂ&") of‘eq. (27),

one sees that eq.. (13) can be written more exp1fcit1y as
[~E v + vk
= Vi V- E ] F((R)

fK(M,e )FLR)dE" = 0 (a7)

where E is the relative energy of the two clusters fn-the c.m. system,

given by
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_ e (38)

E= E ~E, -E,

A

7

and K(@',ﬁf) is an energy-dependent kernel function given by
) I N " ’
K(R\R') = M (RIR") = EL N (BR") (39)

From this equation, it is seen that, if the two clusters.are considered as
structureless, then the effective interaction between them must be both non-
local and energy-dependent.

From the above discussion, one also sees that if the antisymmetrization
between nucleons in different clusters is neglected or, in other words, if
the antisymmetrization operator 94' is set as unity, then the kernel functions
345 and \ﬁ(E will be equal to zero. In this crude approximation, the
effective intercluster potential will therefore just be the direct pdtentia]
y$[18] (see Appendix A).

Next, we consider very briefly the case where the trial function is

represented by a single three-cluster term [19] s T.€.,

V= A[SAISB)PCIF (L, R)Z(Lem)] ~ (40)

Concerning this wave function, there is one important point which should be
\mentioned; that is, this trial function can also describe the behaviour of
some two-cluster configurations. Consider the nucleus 6Li«as an example.

" Here the three-cluster n + p +x channel includes the two-cluster d + o

- channel. This is so, because the function F(qugz ) can assume & product

form consisting of the deuteron bound-state function and the d +
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relative-motion Function. S$imilarly, one can easily see that the

n+ sLi and p + 5He channels are also included. On the other hand, the

t+ 3He channel cannot. be: properly described by the wave function of eq. (40).
This means that, if one wishes fo consider the breakup'reaction-3He(t,hp)d,
then one must, in addition, introduce a two-cluster t + SHe term into the
resonating-group formulation.

- By expressing ¥ and §¥ in parameter representations and using the

projection equation (2), we obtain
/ [H& 8,88 ) ~ E N (88 88 )T F(R &) ag ags =<0 (a)
where

/

HB R R R ) = PAYPB)B(C)S(R-R!)S(R=RS) 2

[H 14 [S(M)SB)P(C)E (&85 (%8 )2 ] )
| . | - (a2)

. -

N (&8 & R) = < P(A)D(B) H(C)S(R~R/)S(R-R) 2
[ A [PAPB)PCIS(R-R)S (B8 ) 2 ] S
, - (43)

‘and Ry, gé, Rys and Ry are parameter coordinates which are-not acted
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upon by the antisymmetrization operator & . Proceeding now in exactly
_the same manner as described above in the two-cluster case, we can again
write eq. (41) in the following more explicit form:
R 2 I A A ;L
[ VvV, — 5;_ + \g(ﬁl,_@:/.).’-E]F(Bi,Bz)

.—271 & o2,

-—

K]

' / ) i» B it i v .
+ fK(E.,Rz/,B.’,B; JF (R R ) dRjdR, = O (44)

where u, and)/uz are reduced masses, and E is the relative energy of the
/
clusters given by

E=E -E, - E - E

T BB (45)

with EA, EB, and EC being cluster internal energies.

If one is concerned with bound and sharp resonance states, then
eq. (44) may be approximately solved by using the Ritz variational
procedure employing trial wave functions which vanish iﬁ the asymptotic
regions. For the consideration of three-body breakup reactions, some
possibilities to utilize the derived direct potential VD(gi,'Bé) and
energy-dependent kernel functions K(Rq, Bé,_g", 35) have been recently
discussed by Schmid [19] . It should be mentioned, however, that these
functions have, in general, quité éompficated structures. Thus, together
with the fact that three-body boundary conditions are also complicated, we
are of the opinibn that for future progress to be realized in solving

the breakup problem, more advanced mathematical techniques and computational

innovations must first be made.
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'2:3b;'75ingle¥channé1 calculation with specific distortion

For some systems, the specific distortion effect may play an important
role. This occurs in the d + ¢ éase [20, 21] , for exahp]e,'where the
high compressibility of the deuteron cluster means that this cluster may be
strongly distorted when it overlaps appreciably with the o« cluster.
Therefore, for a proper consideration of such systems, it will be necessary
tb introduce square-integrable distoftion functions into the formulation such
~that the behaviour in the region of strong interaction may be adequately
described.

Let us assume, for simplicity in discussion, that only one distortion

function is introduced. The trial function is then given by
Y= + & A[F2Z(Rem)] (46)

where ’4% is a channel function of the form given by eq. (11) and Cy is a
linear variational.amplitude, By performing independent variations ¢5¢Q

and ;4[;5” —z] 5C: , the projection equation becomes

(8%, [H-Er]% >+ ¢ <% IH-E,15z>=0 O
(EZIH-Er|¥ >+ C,<§,z(-H—ET]§,z>=o) (48)

with

3* #*E ‘ | (4.9?



Solving eq. (48) for ci and substituting the resultant expression into

eq. (47) yields

19

(S I H+ V- Erl¥ >=0 i
where
. .
v (H-E:)| 5,2 D52 (H-&p) (51)
<f5%i§ | H- &+ ]35151:>
By using eq. (26) and the normalization condition
A . ‘
<37/g;§,z>=/ (52)
we can’write eq. (50) more explicitly as follows:
2 - ,
[ i Ve T VD<B)—EJ F(R)
p, N
+f[/<(33’,3") + K, (R\R") ] F(R) AR |
4 (53)
where
.
, A (R)N(R) |
K(RR)= — —F= (54)
‘ E,-— E_ .
with

N(R) = (BMGBS(R-R)Z[H-E- |52 (55)
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A e L. . N : ‘ . )
and E]:being the~expectation value 0f H with respect to the distortion

function, given by

A K
E=<5zIH|52> (56)

Thus, one sees that the addition of a distortion function introduces an
extra nonlocal, energy-dependent, separable term into the effective
internuclear potentia1, | -

It is a simple brocedure to generalize to the case where many distortion
functions are added to *Po . The only complication arises because the
functions A[$ z] are not orthogonal to each other. But this complication
can be easily overcome by tfansforming to a basis set. of orthonormal functionsl‘
[see-eq..(SZ)] which diagonalize the Hamiltonian H in the subspace spanned

by the original distortion functions % [$,z].

2.3c. Coupled—channe].ca1cu1ation

We discuss in this subsection the resonating-grbup formulation of a

two-channel problem. Here the trial function 3 has the form

where

Vo= B[S F(B)F(R) Z(Rem) ] - (58)
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and

ke U= A [P(c)d(D) 6( R,) 2 (Rem) ] (59)

In the above equations, the C#Q» are cluster internal functions, chosen

to satisfy the normalization condition (see p. 114 of ref. [5])

(oA S(B)Z(Bem) | $(4)F (B Z(Ben) D,
- By

= <<P(C>¢(J>>Z(Ecm>/<?><C)$@>z(3m>>% -

(60)

By substituting Y and &Y , expressed in parameter representations,

" into the projection equation, we obtain the following coupled equations:

f/<f P,cw,:w )dR, f (%, % )G(Ry)dRy =0 (&)

f ;(Bj Rq)G(Rg)dR +/l<f(R?/,E;)F(B;)d@£=o/ (62)

where

K, (8 R R) = {lA)b(B)S(R-R)Z | H-Er]

4 [oMe@)S(Re-RHZET> (69
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j} .\3 ?3>~ (<){>(<:)<i>(1>)5<§jt /e?)z | H- E-]
A [$(C)6(D)S(Rg-Bq ) Z ] S (64)

Keg (8,8 1= <P1$(2) 8 (8- Bz no2r | |
A[CP(C CP(D)S(W? 5 IED (65)

Kgp (Ry Rz )= <P(C)$(D)8(Bg-R;) 2| H-Er]
AL (MBBIS(R-RHE] D (66)

with Bf, R}, Ré, and R; be1ng parameter coord1nates If we now use the

procedure described in subsection 2.3a, them it is easily seen that these

coupled equations may be reduced to the following more familiar form:

+ V) (P>— F(R K., (R F(R dR/
/u7C Mf =f f] f) f f-;f> f-)

+f}<f}(§jc,}§?)6(l?;)dgg -0 (67)

’ﬁl
"3 VE? /g (39) - ]G(R + [ Koyl ] B)G ()t

t | Koo (B R0) FLE{ B = 0 (60)

(
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where /H; and /u?, are, respectively, the reduced masses of the clusters

in channels f and g, VDf and‘VDg are direct potentials, Ef and Eg are

relative energies given by

E, -E, - E (69)

Ef

-E.-E (70)

and Kf% and K __ are energy-dependent kernel functions given by

g9

ﬁc {. 2{.)‘ <¢(A>¢(B/§(P, “f)z{H E }99(//[45(,4)43(5)8 z]>(71)

ij(-«@;l,g ={$(C) 95(13)5( %IH ETMUBP(C)MD)S( )z]>(72)

From the expressions for these kernel functions, one sees that.

K '(R/R”)'—_"'K*(RI’P’) (73)
£5 L850 By s (8¢ Bf
] i * " / (74)
= R
; (75)

Keg (Re, Rg) = Kgf (B, Re)

These relations follow, of course, from the hermificity of the
Hami]tonfan operator.
By solving eqs. (67) and (68) subject to appropriate boundary conditions,

one obtains information concerning various scattering and reaction processes.
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‘For Example, 1 the Ehanndls f and g denote, respectively, the d + t
channel and the n + o« channel, then performing a two-channel calculation
in the manner described here wf11'yie1d results for the scattering processes
t(d,d)t and oL(n,n)ei, and the reaction process «(n,d)t.

The above-described two-channel formulation can be improved by the

distortion

addition of one or more, functions. This. will, of course, results in a more
complicated set of coupled equations. The procedure to derive these
equations is, however, essentially the same as that described in subsection

2.3b ; therefore, we sha11 not further go into it here.
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3. Complex-generator-coordinate technique‘

3.1. General remarks

‘ "In resonating-group calculations, the major task is to compute the
kernel functions given, for example, by egs. (63)-(66). For these computa-
tions, one needs to carry out a substantial number of multi-dimensional
spatial integrations. Because of the comb1icated nature of the resonating-
group trial wave function caused by the requirement of total antisymmetrization
and correct treatment of the c.m. motfon, these integrations are generally
rather tedious to perform, especially when the number of nucleons involved
in the system is large. Indeed, this was the main reason which led a number
of people to conmeﬁt in the past that the resonating-group method is
impracticable for any system containing more than eight nuc]eons}

The integration technique which was extensively used a few years ago is
the so-called cluster-coordinate technique [ 5,22 ] . In this technique,
one introduces as spatial variables of'integration the internal and relative
~coordinates of the clusters and the total.c.m. coordinate. This seems to
be a natural set of integration variables to use, because the‘resonating-
groub trial wave function is explicitly e*pressed in terms of these coordi-
nates. Then, by choosing functions of Gaussian dependence for both the
spatial part of the.wave function and the'spatial part of the nucleon-
nucleon potential, multi-dimensional integrals can be evaluated analytically.

The evaluation of matrix elements by the c]ﬁster-coordinate technique
is, however, usually a quite tedious procedure. The main reason for this

is that the Gaussian functions will have exponents which contain cross |
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terms in the cluster internal coordinates. For example, ]et:us consider a

translationally invariant o -cluster wave function of the form

—

. 4 ‘
P(x)= exp[-4+u> p*] (76)

A= ’

which depends on the internal coordinates f , £, » and fg , defined as

LY

N (i=1,2,3) (77)
Po= I~ R, .
with fga. being the c.m. coordinate of the « cluster. Because the coordinate
Py is not an independent variable,. the exponent

o4 * Z2  _« 2 2 ‘2 . : 2

A A S R A R G AR Dl

A=]

z 2 78
= - % (2ptragiragirap pr2pfrafg) 7

contains such cross terms. Therefore, to compute the multi-dimensional
integrals which fnvolve integrands of Gaussian functions mqltipf?d by poly-
nomials of spatial coordinates, one must first diagonalize the quadratic
terms~1n the exponents by applying linear coordinate transformations. For
systems containing a relatively small number of nucleons (NA + Ng < 8),

this is not too difficult. However, when one deals with systems which contain
a. rather large number of nucleons, this diagonalization procedure can become
very tedious due to-fhe antisymmetrization of the wave function, because

for every permutation’'of nucleons in different clusters, one has to introduce

a different coordinate transformation. In addition, it is clear that the
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cluster-coordinate technique is also not particularly suited for reaction
calculations. This is so, since the natural choices for internal and relative
" coordinates in the iricoming and outgoing channels are obviously not the same.

Because of these difficulties mentioned above, the c]usfer-coordihate
technique has begun to lose favour and we shall, therefore, not discﬁss it
here. Rather, we shall describe in this section another technique, the
complex-generator-coordinate technique (CGCT), which uses as integration
variab]eS'fhe nucleon coordinates themselves and which is especially useful
for reaction calculations and for systems involving a rather large number of
nucleons. This technique has been developed and extensively used by many
authors [ 1, 12, 15, 16, 23, 241 within the last few years. As was mentioned
in the Infroduction, the main idea is to express the trial wave function as an
integral of antisymmetrized products of single-particle functions and then make
‘use of well-developed techniques in shell-model ca]cu]ations.to carry out an
ana]ytica1 evaluation of the required matrix elements.

In subsection 3.2, we give a general description of the complex-generator-
coordinate technique. Then, in subsection 3.3, we consider a special case in
which the internal behaviour of each cluster is described by a harmonic-
oscillator shell-model wave function or a linéar superposition of such wave
functions. This special case is inferesting, because with such internal
functions the complex-generator-coordinate technique becomes particularly
convenient. '

Even with the complex-generator-coordinate technique, the derivation o¥
the kernel functions is still a rather tedious process. Thus, it will be
important to have a test which can be easily applied and whfch these functions

must meet. Fortunately, in resonating-group calculations, a test satisfying
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these criteria does exist. This is the so=called redundant-solution test

which we shall describe in subsection 3.4,

3.2. Description of _the complex-generator-coordinate téchnique

Let us consider a two-cluster function of the form

V= Al B)F(Ri-8)2(Rem) ]
where
b (K) = $(K)§K(Q¢K,tK) ' ' : ~ (80)

~

with K= A or B and §K being an appropriate spin-isospin function. The
functions $(A) and <7> (B) are spatial parts of the cluster internal functions;
they are assumed to be products of functions, with each function describing

the motion of a nuc"l‘eon with respect to the center of mass of the correspond-

ing cluster. That is, we chogse $(A) and 5(.8) to have the farms.
) ' - (81)

k=N #i o | (82)

B = NL Zi;; (e ‘NL Z: Le | (83)
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The functions ij with j =1 to Ny and \P/z with k = Ny + 1 to Ny + Np are |
chosen such that ¢ (A) and ¢ (B) describe properly the spatial behaviour
of the clusters; they can be generated from an qscﬂ‘lator well,. a Woods- |
~ Saxon well, or any other well which is appropriate.

Because of the presence of the cluster c.m. coordinates R, and Ry , the
trial function Y is not in the fbrm of an antisymmetrized product of single-
particle wave functions. However, by introducing an integral representation
for W , we can show that the integrand can be represented in such a product

form or, in other words, the integrand will contain no cross terms of the

type 1 : I} . To show this, we rewrite 4 1in the form

V= fss\[mA,M)cp(B 725)5<RA Ra)8(Re~ R5)5,55 |

=
B
—~
3

> s
!
XN
¥ =
~—

N
z( PH/B )d/a dR’
, (84)

with R" and R" being parameter coordinates and N = NA + NB being the total

~A ~B
number of nucleons. In eq. (84) it is noted that the parameter coordinates
are included in the arguments of the internal wave functions; this is
purposedly done, in order to call attention to the fact that in 5( A ,EX )
and 4-5( B, gg ) the parameter coordinates RA and R , instead of the cluster
coordinates R, and Rg, are used [see’ egs. (81) and (82)] .

Consider now the term ¢ (K, B.)&(Rc-Re ), With K = A or B, in eq. (84).

If we represent S(R.-Ry) as
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.. , .3 y //‘ ~”
S (Re-Be)= (55) [exp[ iS¢ (Re-8)] s (85)

then it can be easily shown that
s / / . ; 3
P(KR)E(R-RY) = (L

A K

represents an integral over a product df single~particle wave functions
with respect to the nucleon coordinates Fi . Using eq. (86) we obtain

therefore for Y- the following expression:

2")] [g ch hj R, exF(L_LsA ﬂi)]

!

Baﬂ w Dew (i Sort)] ]

NA R + N R n /" 7 y '
This shows that, by introduéing parameter- coordinates Ry and'ﬁg and

generator coordinates §, and SE, the wave function { can be represented as
an integral over antisymmetrized products of single-particle wave functions

or Slater determinants..
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By making the transformation

Rcm== TL'(NABA*'NBRE)) | (88)

and by expressing 51P in a similar form involving parameter coordinates

Rj and Ry and generator coordinates fSA and Sp , we obtain explicit
expressions for the kernel functions 54(2 R ) and J‘((W___ ) [see eqs. (14)
andJ(15)J . Consider the kernel function §M(£Vv‘ , for example. Because

- the operator H contains a sum of one- and two-particle operators, this

kernel functioﬁ has” the form of an integral over the generator coordinates
Spe S Sp0 33 and the ﬁarameter coordinateﬁiBém,“Bgn,(gj and R" are not
integrated over), with its integrand consisting of a sum of products of

matrix elements

(@[@» , </\‘P,;\O l¢> , <$X€(\)' e, %‘%,‘Apm>,

) PaS]
where the LP 4 are one-particle funct1ons depending on the generator and

parameter coordinates. The orthogonality relations between the qi,a,1n thg
same c]ustef will usually reduce very drastically the number of terms which
need to be evaluated.

Even though our discussion above was based on a two-cluster wave function,
it is clear that one can easily generalize it to a wave function which des-

cribes the behaviour of a system composed of a large number of clusters.
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3.3. .Special.case.—.cluster internal functions in harmonic-oscillator

shell-model representation

Even though the technique>described above is useful when the cluster
fnternal'functions-haVe the general form given by eqs. (81) and (82), it
becomes especially convenient when the internal structure of each cluster
is described by a translationally invariant harmonic-oscillator shell-model
function of the lowest configuration or a sum of such functions, with each
_ of them specified by a'different value for the oscillator width'péfameter.
In this subsection, we shall consider first the simpler case where one such

oscillator internal function is used, i.e.,.
- . : . P . 2
¢ (K)= T A, (L~ Rexp[ -+ < (L-Re) ] (89)
/L y

with o, being the oscillator width parameter for cluster K (K = A or B)
and the functions 41; being polynomials in single-partial spatial coordinates.

With this choice and upon: performing the transformation

Se — 4 Ry - . (90)

the wave function W of eq. (87) can then be written in’ the following form:
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2T

N 3 3
v= (5 ()
.
o {5, T4y Eer - op (i8]
¢ J=!
Ap[Zs T k(5 By)ee [~ (5-i€3) ]}
k=Nt '

" i ’ A2 . oo » (2
X F (8 -Re ) exp [ TNa% (Ra-4£8y) + T N3 (Rg-4Qq) ]

| . R”—G—N R” , , y
X z( Na Ra+ N3 By )d@;da’ga\egdag
. N - - TRy (91)
where we have further made use of the relation given by eq. (17). The
above equation for ) can be reduced by noting that, because the internal
function is chosen to have the lowest configuration in a harmonic-oscillator
well, the arguments (1; -'Ra ) of 42} and (I - Rg ) of AQh can be replaced,
respectively, by the arguments (_[J~- Q;’ ) and (fk-gg ), with Cj and Cp being
’ *
any constant vectors independent of the nucleon spatial coordinates.  Thus,

by using eq. (88) and the transformation

*
Even more general choices can be made. For example, gx and QB may be

chosen as any symmetric functions of the nucleon spatial coordinates.
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?

" n ]

Sen = ‘,5 (NaX, Qu + Ngp Q) (92

and by choosing

: " . NAO(A+ NBO(B %
Z(Ben) = &p (_ = R )

}

we can easily perfofm the integratibn over the-variab]eS»ﬁgm and.§gm, and

dbtain the following simplified expression:

N"NB) <A[<P (0:5'7) 35 S'ROIM(SRIFRNAS IR (94)

2¢rN
where
M(s"R")
NaNg (Npoy + Npxg) . Ngoia + N, 2
[ ANB (NpXy + NgXp ' BYATNAYp
Nty oty N ] o

and

N,
N/ " 14
Plagx) = A, [5, I 4 exp[-3, <"‘1?A ‘ﬂ

ol

_ /,

$(Bgr) = A5[ 5, W h exp[—im = 15) ] j

-N T! (96)

(93)

34
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with

" (Ng
Zv’/\ = N ols [

Varm

1 ~ N . ]
s"+ ATA (g=%) R ]

it ' \N — 1 N N -
qs = —-l;: [§,~A—£—(°{a“°‘,«)5 ]
B - :

(97)

The meaning of the function $l(i<; §”,3”),w1'th K=AorB, is clear; it is a
'she1‘1-mode1 function of the lowest configuration in a harmonic-oscillator
well of width parameter X , with the cenfer of the well located at the point
;Q';( Since it is seen from eq. (97) that :/_l;( is a complex quantity, we have
therefore chosen to call the t‘echnique_described here a complex-generator-
coordinate technique. |

As is seen from eq.. (94), the wave function Wy has a Hill-Wheeler form
[10,25-287, with A'[$'(A;$"R") & (B;8"R")] being the intrinsic
or generating function and [7( S’ R") F(R") being the weight function.

If one makes the assumption that <><A is equal to ol , then the
expressions for Z);’ and Qg “are simpler and the computation of the required
matrix elements becomes also somewhat simplified. The power of the complex-
generator-coordinate technique described here lies, however, in the fact
that the computation does not become much more complicated even when the
width parameters o, and g are chosen to have different values. This
is in contrast to the generator-coordinate method used by many other

investigators [29-45] . - In this latter method, a real generator coordinate |

(the distance vector between the centers of the harmonic-osciﬂator'potentia]
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wells) is used and the calculation of the matrix'e'lem_ents becomes
straightforward only when o, and g are assumed as equal (see, however,
refs. [ 46, 47]),. which is of course a,frequént]y unrealistic assumption.

By carrying out the same proéedure for the variation &y which will
contain a generator' coordinate §' , @ parameter coordinate R’ ', and two

arbitrary constant vectors EA and Qé, one obtains then for the kernel

A ‘
function K(R',R") [ see eq. .(13')] the expression

'
K(RIR') = #(RR) - ELN(RR)

8 KB s st s

<[5, T4, L'h'Q)a),eXF['.Jz‘?‘s(fh‘Q;)lﬂ

k—M +

Na
gH—ET\A’{AA[gAEIA}(%- Co)esp [~ 3o (-0 ]

ca s T A (5= CoJese [ (537 ]}

’ . R=N,ti

x R)l"(m,,.) ds'd g | (98)

Vi



where
' N
To= A [5G e ® ]
r 'LNA } . NB /
= - S =& — (dg~xx) R -
QB NNB[W N B A) ] (99)

From eq. (98) it is noted that in the expressiqn for E(g',g") there appear
only products of complex functions, each denending on a single-particle
(space, spin, and isospin) coordinéte. Thus, the antisymmetrization '
procedd}e causes no great difficulty and the computétion of‘E(Bf,gﬂ) can be
performed in a rathér straightforward manner (for details, see refs. [12,48,49] ).
In addition, we should mention that the integration over the nucleon coordinates
may be further facilitated by making use of the freedom associated with the
choice offogbtors QA, Cé, Qx, and Qﬁ appearing in, the arguments of /&} and {lh.

In the present case, it is appropriate to choose

(100)

This particular choice is made, in order to take advantage of the
orthonormality relations satisfied by the single-particle wave functions

in a harmonic oscillator potential well.
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Next, we discuss the more general case .[16i] where the cluster
interha] function is given by a sum of translationally-invariant harmonic-
oscillator shell-model functions of the Towest configuration. That is,

the internal functions are now- chosen to be

"
P = 2_ b, ()
b=

7

where

Na

RO NN ES T4 (G- Boem [y (2T}

qs%(s) = Cg ﬂBf'_%BQﬂ— -/&xk.(fpﬁs)exf’[“'z‘“sg(fk’&s)zn

k=N > ...(102)

with (N%P(p =1 to nP ) and'dei( g=1to ﬂ%_) being a set of appropriately
chosen width parametgrs, and'cAp and CBq being appropriate amplitudes. We
shouid mention that even though the tnternal functions given above are ex-
pressed explicitly in terms of oscillator functions, there is no severe
restriction regarding the flexibility required in properly describing the

internal behaviour of thé_c]usters, because any cluster internal function may

be well approximated by the 1inear'superpositf0n of a sufficiently large



number of ascillator cluster functions with different width parameters.

With & (A) and P (B) given by eqs. (101) and (102), eq. (13) then
becomes

n N
P A
p =l z,¢=l L
where
N\

(RLR") = (A S(R-R)Z(Rem)
Kpgona (B18) = (& ()0, (3)8 (882 (Ren

g4 (4, (1 6B 8 (8-2)2 (Ren)] >

(104)

As discussed above, a particular form for the function Z(ch) must be chosen
in order to express'ﬁ(g',gf) in the form of eq. (98). Since this choice
involves the oscillator width parameters of the cluster wave functions

[see eq. (93)] , it is not clear in the-present case how this choice should
be made because different sets of width.parameters appear on the bra and ket

sides of eq. (104). However, by using the fact that the operator (H --ET)

is Galilean-invariant, one can write eq. (104) as

39
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CZ(Ren) | Z(Rem) >
<%p3_( Rem) '/(-aa,(ﬁm) >

2
pqona (818D =

X <¢P (A)%(B)é(&&’)/c%mcm) | H- &,

(105)

# [cMA) ch(B>5<&-&")}CM<.@m>] >

The: arbitrary function ;(P%(ch) can now be chosen, in accordance with eq. (93)

to -be
N | "7 NLy Ayt N 2
_ A TCAD BB%
F%<Ecm) = eXP< 2 BCm ) (106)
With this choice, the matrix element K (R',R") can be written in the form

pqg,rs
of eq. (98), and its evaluation can be accomplished just as in the single-

width-parameter case (np=n =1) discussed above.

q

3.4, Redundantfso]ution test

Even with the help of the CGCT, it is still rather tediohs to derive
explicit expressions for the required kernel functions. In thié~subsection,
we discuss a- redundant-solution test [50,51] which can be used to check
the correctness of these functions, in the case where each of the clusters
is described by a single harﬁonic-osci]iator shell-model funcfion'in the

Towest configuration and a common width parameter is used to characterize
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all the clusters involved.

For simp]icityAin discussion, let us consider a sinale-channel two-
_ . * .
cluster case where the trial function is given by eq. (79). Under conditions
mentioned above for the cluster internal functions, there exist then inter-

cluster relative-motion functions Fred(g), called. redundant solutions, for

which

= (oM S B F™ (R)Z(Rm)] =0 (107)

In 1ight systems, thesé redundant solutions can be readily determined by
using the exact correspondence between oscillator cluster and oscillator
shell models [:5] . For example, in the 3H + o system, it can be easily
shown fhat, to comply with the Pauli principle, the relative motion between

" the clusters must have at least three oscillator quanta of excitation. Thus,
the redundant solutions are those which correspond to lower-order oscillations
with number of quanta less than three, i.e., 1s, 1p, 1d, and 2s oscillator

functions.

Because «p”ed is identically equal to zero, one cbtains also

(DA P(B)S(R-RNE (Rem)| A [CP(A)cp(B)Fred(g}z(ng)] S=0, (108)

and

(O B(8) SRR (Rem)| HIA [6(A)S(B)F () 2(Rem)] >=0. (109)

_ .
A more general discussion fot a multi-cluster system is given in ref.[ 52].
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By using eqs. (14) and (15), these equations can be further written as

fJ\/(R YVE™(RAR =0 I
‘ and
[#@®e)F™ (a8 = 0 o am

\

That.” is, the redundant so]ut1ons are the e1genfunct1ons of both the norm

or overlap kernel JJ(E‘,&") and the Hamiltonian kernel }$(R' ,R"), with
eigenvalues equal to zero.. Thus, the correctness of these two kernel
functions ean be ascertained by simply examining their-eigenva]ue spectra and

counting the number of times which e1genva1ues equal to zero occur.

One may also demonstrate the existence of redundant so]ut1ons in another

interesting way. Consider»as:an-example the n + 40

Ca case [49], where the

redundant solutions are~1s, 1p, 1d, and 2s harmonic-osci]]atorAfunctions.

If one now takes eq. (37), makes the partial-wave expansion

F(R) = 2 # f (R)P (c8’) S (112)
3 SRR | 4

)

K (R'g)= R~'— ‘i: > k (R R)Y (8'¢') (9"@") (113)

and solves numerically the resultant integrodifferential equation

{2
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t2 0 d° LA+1) A , ,
{z/k o ],-q—E—\/D(R)})CL(a)

00 ,
=j; /Ql(k',k”)-&(k”)dk” ) (114)
then. the redundant solutions may be exhibited at any value of E by plotting
‘jiL(R') obtained using different values for the integration step size h; in
the numerical brocedure. If the various kernel functions are correctly
derived, then the functions jiL(R') for A< 2 should differ at small values
of R' but remain the same in the asymptotic region. On the other hand, for
L> 2, f4(R') should be independent of h; for all values of R*, In fig. 1
we illustrate the [f = 2 and 3 solutions for n + 40Ca scattering obtained by
using h; equal to 0.3 and 0.4 fm. As is seen, these curves do behave in
exactly the way as'discu;sed above; thus indicating that the kernel functions
given ih the appendix of kef. [49] have indeed been correctly derived.

‘When ®, is not equal to og , redundant solutions db not exist.' 
However, the eigenvalue spectra of \b((g',gﬁ) and 34(3',3f) are still
expected tb be similar to those in the equal-width-parameter- case, which
follows from the fact that the Pauli principle tends to reduce greatly the
differences between apparently different structures [5]. For example,

the 1 = 0 eigenvalues of JV(B],B?) for the « + 16

0 system are equal to
0.0, 0.0, 0.0015, 0.0204, 0.244, 0.514, 0.715, --- in the case where
o, = 0.32 "2 for the 180 cluster and ol = 0.514 fm™* for the « cluster,

which are rather close to the corresponding values of 0,0, 0, 0, 0.229,
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. 0.510, 0.718, -+« in the equal width-pa'rameter case. Thus, even though
there 1's', strictly speak'ing, no redundant—ﬁo]ution test in the unequal-
width-parameter case, one can still examine the eigenvé]ue' spectra to gain
some confidence about the-corr_ectneés of the derived kernel functions;

Ih the o, % olg case, the absence of redundant solutions is. replaced
by the presence of spurious resonances which occur with definiteé characteris-

tic energies [ 53, 54 . -Take the 3

H + « system as an example. Now, instead
- of two A = 0 redundant solutions, there appear two re]ati've]y sharp spﬁrious
“vedoniances inthe L=10 phase shift. [55] . These spurious resonances do
not représent fhe‘ ekistenc‘e of true resonance st'ates in the compound system,
and thei’f presence can be easily suppressed either by the ad.optio»n of a

least-square variationa] pfocedure [56, 57] or by the introduction of a

\ .
phenomenological imaginary potential into the resonating-group formulation { 58].
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4. Bound-state, scattering, and reaction calculations

In thﬁs section, we show the usefu1ness of the resonating-group method
in treating nuclear many-body problems by discussing the results of some
bound-state, scattering, and reaction calcu1afions. These calculations are
selected mainly for illustrative purposés; however, they do serve to indicate
the importance of including various features, sucﬁ as specific distortion

effects, reaction channels, etc., in a practical calculation.

4.1.' Bound- and reSonance-state'ca1cu1ati0ns

4.1a. (Cluster states in*]70;'1$F;‘]9F; and'ZONe

17

%
As first example, we describe a recent study on the nuclei 18

0, °F,

]gF, and 20Ne in which one of the main purposes was to investigate bound and
resonance states in these nuclei which have predominantly a Tight-ion plus
]60 cluster configuration. In this study, the trial wave function used is
given by eq. (79), with the c]ustef internal functions assumed to have the
form given by eqs. (80) and (89). The width parameters are then chosen to
yield the various empirically determined rms matter radii; that is,

-2

- _ _
A study of this type, but with a different nucleon-nucleon potential and
with the exchange-Coulomb kernel approximated by a procedure described in

ref. (;49] , was given in ref. [24] .
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fdr the ]60 c]us;er; and‘
- ol = 0.20, 0.37, and 0.514 fn 2 o (116)

for the d,.3H or 3He, and «¢ clusters, respectively.

The nué]eonQnucleon pdtentia] is taken to bef[:59,'60]
- iR s Lo pTyy L e L s npF
VA‘J‘_‘ [Vr 2_<'+B}>Vt t 2 BﬂVAqu* 2.(2‘@&}]

“,JT\ -/)\expf—k(f.&‘ff)z] (g-«-%)t(fg‘fﬁx (fg-fj)'

. 2 )
e .
—_ 1 L N

-t v-a ? A (117)

\/R = \/OR eXP[—KR(fL~£J>2] s

. 2
Ve = =Vgt exp ['Kt(fi"f}) ] -
. '2 .
Vo = .‘VMCXP [ 'Km(fé’f(j) ] , (118)
with ‘ ' /
Vg = 200.0 MeV, | Kg = 1.487 fm2
- - - -2
Veg = 178.0 Mev, K, = 0.639 fn2,
Vos = 91.85 MeV, Kao= 0.465 fm™2

(119)

This particular nucleon-nucleon potential is chosen, since it yields a
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satisfactory description of not only the two-nucleon Tow-energy scattering
data but also the essential properties of the deuteron, triton, and
particle. | | '

The exchange-mixture parameter u‘in eq. (117) is-én adjustable parameter
in the ca]culatioh Its value 1s determined by fitting the 1ight-ion
separat1on energy in the Towest £ = 0 state of the compound nucleus. For

16

examp]e, in the ot + '°0 case, one adjusts u until the calculation y1e1ds

the experimental value (61] of 4,73 MeV for the « -particle separation

20Ne. This adjustment is necessary, since in

enerqgy in the ground state of
the present calculation various simplifications are made; in particular,
the specific distortion effects are not explicitly taken into consideration..
The resultant value of u so determined should be reasohab]y c1osg to 1 which
- corresponds to a Serber exchange mixture. If this should turn out not to be
the case, then adjusting u is too crude a procedure to compensate for these
simplifications and‘q more elaborate calculation should be performed. Also,
in eq. (117), the spin-orbit depth'parameter V, and ranée parameter X\ will
be treated as phenomeho]ogical parameters; their values will be determined
by using experimental daté on the energy splittings of the lowest ‘>€=2
levels in the various compound systems.

~Using the procedure described in subsection 2.3a and_upon'performing a -

partfal-wave expansion, one obtains, in a particular (J,L) state, the

following integrodifferential equation for the radial function j&l_(R')

21 d? L) 7 , -
{27[ - ]feva<R) ACOR IRVRCOIP LS

dRr'? R'?
= w[ bR+ R (RR) T £ (RD 4R (120)
L ' L L s
0 .



where the quantity Ny, is given by

=L = - ()
fql+5,2 ’ 7L-L,L (Lr1) , | S
in tﬁe-n + 189 or 34 + 160 casé,_and
- — 0 5 -  (122)
/ql+uL 2L y 7£ﬂt" 2’, ?z—uﬁ 2 (L+1) (122)
in the d + 16O case. The functions VN, Vc,and Yac represent the direct

nuclear-central, the direct Coulomb, and the direct spin-orbit potentials,
respectively, while the kerﬁels .ki_ and Hi represent the nonlocal con-
tributions arising from tﬁe exchange character of the nucleon-nucleon potential
and the antisymmetrization procedure. In deriving the intercluster spin-
orbit intefaction, the simplification is made to omit the exchangé terms by
setting the antisymmetrization operator A in eq. (17) as unity. Also,

in the actual cbmputatibn two additional approximations have been made:

(1) the exchange-Coulomb kernel hf is determjﬁed by an approximate, but
self-consistent procedure which is described in Appendix B, and (ii) the
nucleon-nucleon spin-orbit range parameter A is assumed to have a vaTue
appfoaching infinity. As a result of this latter approximation, the potential
\Cao(_Rf)‘ is characterized by only a single parameter J; = V& %:592
which will then be determined by using experimental information as described
above.

The values of u are equal to 0.924; 0.989, 0.907 and 0.881 in the n, d,

3H, and o« plus ]60 cases, respectively. The finding that u turns out to
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16

have a largest value in the d + ~0 case can be attributed to the fact that

the deuteron cluster has a high compressibility and, hence, can be easily
distorted. As for the values of J,, they are, respectively, equal to 50.0,

16 160’ and 3H + 16

20.8, and 12.4 MeV-fm® in the n + 100, d + 0 cases. Here

one notes'that these J, values are quite different in different systems,
indicating that one must be careful in interpreting the intercluster spin-
orbit potential in eq. (120). At the present moment, it seems appropriate

to say that this potential should be considerad as mainly phenomenological in
nature and is constructed only to represent the average effect of the two-
nuc1éon tensor potential.
17

0, 18

19 20

Calcu1ated levels in F, "°F, and “"Ne are shown in fig. 2,

together with those experimental Tevels [:61 -66 ] which have predom1nant1y

n’ d, 3 ]6

H, and o« plus 0 cluster configurations. In obtaining the resonance -
]eve]s, the procedure used is to ca]cu]aie the various phase shifts and
locate energy positions at which the phase-shift curve has a largest,
positive value for the slope. This is illustrated for the o« + 160 case
in fig. 3, where one notes the presence of the 6" and gt members of the
ground kK™ = o band, the K7r = 0” negative-parity band, and the excited
K™ = 0" band. In fact, there is even an indication for the existence
of an excited KT = 0 band. The states in this latter band are, however,
quite broad and, consequentiy, their presence will be hard to verify ex-
perimentally.

As is seen from fig. 2, there is a genera]]y good agreement between
calculation and exper1ment. This shows that, even with the s1mp1est type of
resonating-group calculations, one can still obtain valuable information

concerning the existence of particular cluster states in nuclear systems.
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A similar calculation in the o + ]60 case has been performed by
Matsuse et al [67] . By studying the reduced o —widths of the levels,

160

they concluded that the states in the K™ = 0  band have a strong <X+
molecule-1ike character, while the states in the ground-state band have
rather shell-model 1ike character with large (8,0)' SU3 component’ but can
stil1 be described fairly well within~the framework of the resonating-group
method'using the simple trial'function of eq..(79).v In addition, these
authors have examined various electromagnetic broperties [67;68] and found
géﬁeraTTy sgfis?aétory agreement between calculated and experimental results.
Using a bound-state approximation for'resonance feve]s, Tomoda and

20

Arima [69] have also studied the “"Ne problem. They employed a model

space which is.constructed by combining the (és-]d)4 shell-model and the
oL+ ]60 cluster-model spaces. This is equivalent to extending the calcu-
1atioﬁ described above by taking into account some specific distortion
effects. As the consequence of thé use of a larger model'spacé, they have
obtaihed from their calculation not only the above-mentioned rotational bands
but also another K" = O+ band_which corresponds to the one found experi-
mentally with band head at 6.72 MeV [ 70] .

Similar ca];ulations Have been made in many other systems.. These are
described in refs. [21, 36,'71-82] . | |

12

4.1b. 3o cluster structure of “C

For the illustration of a multi-cluster resonating-group calculation,
‘we describe the investigation of Fukushima and Kamimura [83], in which the

1ow4ehergy T = 0 states of ]ZC are considered in the 3 cluster



51

representation. In this investigation, the trial wave function has the form

of eq. (40), i.e.,

Yow = A [¢<m>¢<«2>¢(o@>m (R,B2) Z(Bew) ] | o
where
\5] N Bu\ - Raa )
Ry = sz (Rer ¥ Rz )~ Rus ) (124)
with R, R,s and R, being the centers of mass of t.he three o clusters.

The internal function d) (o{l) is taken to be

' 4 v

P(etl) = exp [- L« Z(Q—,Ed')2]§m (125)

‘ : A= ’
with §°“ being an appropriate spin-isospin function. The internal
functions ¢(d2) and 43(043) are chosen to have similar forms, specified
by the same width parameter o¢ . The relative-motion function FLM(&], R,)
is determined by solving eq. (44). For bound and quasibound states, it is
convenient to solve this equafion approximate]);.by expressing FLM(31,32)

as

L
R, Ry) =
F(BE)= > B

Ll

' [ _Z— C(L,i,/..?,z;[\/{,m,',mz)%:m(B‘)—'é (Ez)] (126)

m,m, AT A,y
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L .
4 ALy, p e
are linear expansion coefficients to be obtained by a variational procedure.

where C(L 4 {;; M m, my) is a Clebsch-Gordan coefficient, and

The functions /Q%tn (R) andA/ja?Yn (R2) are assumed, for computational
I (| 22 .

convenience, to have the forms

« 2

Ko (RO = R ep(URDY (8,40 (127)
TR ! ‘
‘and
"? 1, ’ 2 . - ‘
)Cj,lzmz(&) =R, exp (‘,/‘*J'Pl )_ﬂlmz(%?ﬁ , (128)

From eq. (126) it 1is. seen that the total angular momentum J = L of a given

12C state is obtained by coupling the orbita] angu]af‘momentum /C, of

the relative motion of the first two oc clusters which form a 88e
cluster to the orbital angular momentum L; ‘of the relative motion of the

8Be core.

third o cluster wfth'respect to the center of mass of the
Because- of computational problems, it is necessary to use a relatively

small number of basis functions in eq. (126).. As a consequence, the choice

of the fixed nonlinear parameters o , L, , L, , V; , and ey

becomes quite important. For the choice of « , it is found that a

12

reasonable value which can be used for all '=C states'considered here is

0.55 fm 2,

This va]ué is nearly edua] to that which optimizes the energy
expectation value of the oC -particle Hamiltonian. Also, since in the
presént calculation a totally antisymmetrized trial function is used, one

can adbpt-the.simp]ification of setting ,l,= 0 in
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/'(;‘ m, .* This resul.ts in only a relatively minor overestimate of the
calculated energies, but does 1imit the calculation to natural-parity states
in ]ZC. | As to the choice of .V,( and /ML} , four values for each of these
parameters are adopted. These are given by Vi /o = 0.8, 0.45, 0.15
and 0.05 and /LJ/(%'OL) = 0.8, 0.45, 0.15, and 0.05. The total number
of basis functions for each 7  state is then 16. For the ]ZC states
considered in this calculation, this seems to be sufficient because an
examination in which the number of V; and /ud is increased shows that
only Tittle energy gain can be further obtained.

Using a nucleon-nucleon potential of the form of eq. (117) with

0.980. fm2 ,

Vog = 60 MeV ,- Kq =
Vor = Voe = 60 MeV , Ke = Ko = 0.309 f 2,
u =0.8 ,

(129)

which is similar to the Volkov no. 2 potehtia] [84] » Fukushima and Kamimura

obtained a 12

C low-energy spectrum which is shown in fig. 4 together with
the spectrum experimentally determined [ 85-87] . To facilitate a comparison
between these two spectra, they have shifted the energy origin of the calcu-

lated spectrum such that the calculated and experimental 3¢ threshold

*For the 7 = 4 state, a somewhat different simplification is adopted.
Here the assumption of A, = 0 when V< 23:/“; ~and A,= 0 when

3 3 : .
VA > T/uj’ is used. Comparing to the case whgre 2, is always set
as zero, one finds that this procedure yields a significant energy gain

T
for the 4+ state, but no energy gain for the states with J = 0" and 2*

[83] .
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enengies‘OCCUr~ét”the same vertical position. This adjustment is
necessary, since with the:wavé function of eq. (125) the calculated binding
‘enerqgy of an oL particle is 27.3 MeV which is somewhat sma11ér than the
experimental value of 28.3 MeV. | |
From fig. 4 it is seen that there is a reasonable agreement between
4ca]cu1ation and experiment. The fact that the'states in the Qround-state
band are too closely spaced is a basic defect of the 3« mode], with each o
cluster in its lowest configuration. As has been pointed out by Takigawa
and Arima [88] s this defect can be remedied by a prober coﬁsideration of-
the effects caused by'the spin-orbit component in the nucledn-nuc]eon potential.
Fukushima and Kamimura have also studied the electromagnetic properties
of ]ZC in various states ahd found good agreement with observed results..
In view of the fact that the agreement between calculated and experimental
'energies is only fair, this finding is somewhat surprising. Thus, it will
be interesting to conduct a further examination where an improvéd_wave
function is used. This can be achieved, forAinstance, by introducing
different width parameters for the ot c]usters,’including less symmetri;
oL ~-cluster configurations, and so on. |

Other miéroscopic multi-cluster calculations appearing in the

literature are given in refs.[:89—97].

4.2. Scattering calculations

4.2a. 'Scattering of‘]ight'ionS]By'

In this subsection, we discuss the scattering of light ions n,d, 3He,

16

and o by 0. The purpose is to show that even simple resonating-group
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calculations can yield cross-section results which agree satisfactorily
with experiment.

The formulation of the problem is given in subsectioﬁ 4.1a. In the
present investigation where one is concerned with experimental data in the
positiveQenergy region, it will be necessary to take reaction channels into
" consideration. As is clear, the proper way to do this is to perform a
many-channel resonating-group calculation as described in subsection 2.3c.
However, this will involve a great deal of cohputationa1 effort, because
at relatively high energies one will have to contend with not only many
reaction channels but also the problem of multi-cluster breakup. Thérefore,
for the calculations to be described here, we shall crudely take reaction
effects iﬁto account by adopting the simple procedure of introduc{ng a
phenomenological imaginary potential into the theoretical formulation. In
other words, we shall replace VN(R') in eq. (120) by VN(R') + iW(R'). For

- W(R') a surface-derivative Woods-Saxon form will be embloyed, i.e.,

W) =y [ has & £2 (2]
with
=1 , ‘
ﬁm = { | + exp[(k’— RI)/CLI]} . o (131)

The geometry parameters RI and aj are chosen by the criterion that the rms
radiu§ of the form factor fI(R') be-approximately equal to that of the

direct nuclear potential VN(R'). Thus, we use
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ay = 0.6 fm , : ' (132)
~and
Ry = 3.2, 4.6, 4.4, and 4.2 fm (133)
for n, d, 3He', and « p1us.1§0 scattering, respectively. With these

pakametgrs.fixed,'thé thy adjustable quantity is the depth parameter'wI; o
this parameter is then adjﬁsted at each energy to obtain a best fit with
expérimenta] differential-cross-section result.

A comparison between calculated and experimental [63,98-101] differen-
tial scattering cross sections for the various éystems at indicated energies
is shown in fig. 5. To obtain the calculated fesu]ts, we have used values

of W, equal to 4.7, 6.6, 6.5, and 1.15 MeV for n, d, He, and o« + 100

I
scattering, respectively. As is seen, the agreement‘is generally quite

]60 case seems to be somewhat less

reasonable. The fit to experiment in the d +
satisfactory than'those in other cases. This can probably be explained by
the fact that the single-Gau;sian deuteron spatial wave function used in
this‘ca1cu1at10n is not flexible enough to adequately describe the behaviour of
this cluster [ 53] and that the important deuteron specific distortion |
effects have not‘beeﬁ broper]y.taken’intO‘consideration.

There is another interesting result which should be mentioned. In
the n + }60 case at 13.18 MeV, the reaction and integfated-elastic Cross
sections calculated with tﬁe value of W; given above are equal to 639
and 883 mb, respectively, which compare well with the measured values of

730 + 100 and 880 £ 90 mb_quoted in ref. [98] . This indicates that,

since in a reéonating-group calculation the real central part of the effective
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intercluster interaction is well accounted for, one can even use the
elastic-scattering cross-section data to make a reasonable prediction of
the total reaction cross section.

Calculated and experimental [102] results for the ratio G(8)/0,(8)
in the o + 150 case at a higher energy of 19.2 MeV are compared in fig. 6.
For the calculated result , we use a value of NI = 2.0 MeV which yields
a total reaction cross section of 927 mb. Here one sees that the agreement
obtained is indeed quite satisfactory, with the only discrepancy being in
the detailed structure of the interference minimum near 80°. ,

At present, there exist resonating-group scattering calculations for
many systems both heavier and lighter than the system degcribed here. Some
selective calculations are discussed in refs. [11, 12, 14-17, 24, 49, 53,
103-119] . In particular, we wish to point out that the calculation re-
ported in fef. [16] is performed with the flexible cluster internal function

given by eq. (101).

4.2b. ¢ +of scattering with specific distortion effect

The formulation of a scattering problem with specific distortion
effect taken into consideration is described in subsection 2.3b. In the
present calculation of ot + ot scattering [ 60] , one writes the trial

wave function as

’Y’,d ~ N . -
Y=y 4+ Z AL () ¢(x2) G (RIZ(Rem) ] (134)
,L=4

where Ny is the number of distortion functions. The function Y, represents

the usual no-distortion approximation; it has the form



Wy = A [P 2)F(R) Z(Rem)] ()

where ¢ (1)  or ¢ («2) describes the internal structure of a free

« -particle, given by | |
B | s | o
Pl =[ > Aep[-+o T (5-RaT1J5, o

and similarly for ® (®2). The parameters & and A. (i =1,2) are
determined by minimizing the expectation value of the o« -particle .
Hamiltonian; with the nucleon-nucleon potential of egs. mz) - (119), |

their values are

0.305 fm™2 ,

2

A-' 1.0 9. ) dl

A

2 16.057 y | A,
and the resultant values for the binding energy and the rms radius are

- equal to 25.39 MeV and 1.415 fm, respectively, which agree reasonably well
with the corresponding experimental values.

Yasd

The functions CP,{(oU) and . (x2) are taken as

58

0.708 fm © , (137)
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with the choice of &i to be discussed below. As for the function Gﬁ.(g)

in the distortion-function term of ¥ , we make the following expansion:
. _ ~ 1 A '
G, (R) = % Au R 3u<R>PL(°"°e) ~ (139)

where

, T (RY= R exp(-ﬁi‘kz) ' (140).
with '

=L for  LZ4. ﬁ - (141)

The choice of E& will also be discussed below. It should pe noted that
once appropriate sets of (GQ ,;{i ) are chosen, one can then determine
the variational amplitudes ;iii and the variational function FQ&) by using
the procedure given in subsection 2.3b.

The procedure for choosing the number 7, of distortion functioas
and the nonlinear parameters E;i and ﬁ;' (i=1t%o nd) is_discussed in
detail in refs.[ 21, 120] . In the &« +« case described here, it is found
that, for a value of u:in eq. (117) close to but less than 1, a choice of
ng = 3 is sufficient and the corresponding (5& fﬁi ) sets can be taken as
(0.7 fm~2, 0.32 fm"2), (0.7 fm"2, 0.48 fm"2), and (0.7 fm™2, 0.64 fm™2).
The value of u is thenlchosen such that the resonance energy of the =0
state is correctly obtained. The result is u = 0.950.

In fig. 7 we show l}l= 0,2, and 4 o + oL phase.shifts,'calculated

with u = 0.950, at c.m. energies from O to 20 MeV. The solid curves show

the result obtained with the three distortion functions mentioned above,
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while the dashed curves show the no-distortion (nd = O)’result. The
empirical data points are those of refs. [121-125] . As is seen, there

is a good over-all agreement between the calculated result with n, = 3 and.

d
the empirical result. In the L = 4 states, the calculated phase shifts
are generally somewhat tbo small. This can probab?y be attributed to the
fact that, in this cé]cu]ation,ﬂa rather simple nucleon-nucleon potential,
containing only a weakly repulsive core, has been adopted.

By studying the results of distortion calculations in different systemé
EZ], 126, 1?7] » one can make the following general comments: (i) specific
distortion effects of a nucleus are more important the higher its com-
pressibility, (ii1) a nucleus is more distorted the larger the number of
bnucleons_in the other nucleus which causes the distortion, (iii) except
near energies where resonances occur, Specific distortion'effect§ decrease
with increasing energy, (iv) except for resonance effects and odd-even
effects, the influence of distortion decreases with increasing orbital
angular momentum,.and (v) distortion appears to be stronger in "Pauli-
favouredf étates [127].‘ Based on these comments, one anticipates then that

for the scattering of neutrons by doubly—c]osed-shé]T nuclei 4He, ]60, and

4OCa, the effects of specific distortion should be relatively unimportant

and a simple resonating-group calculation of the-type used in subsection 4.2a
should be adequate. That this is indeed so is shown in fig. 8 where one

sees that results calculated without specific distortion effects[:GOJ do
compére very favourably with experimental results [:98, ]28-]30] ;

Other calculations invo]ving specific distortion effects are described

in refs.[ 20, 21, 126, 127, 131-135] .
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4.3. Reaction calculations

4.3a. 3He(d,;p)ﬁ4He reaction

As an example of a cdup]ed-channe] study, we consider a calculation in

3He (or d + 3H) channel (channel f)

the five-nucleon system where both the d-+
and the p + o (or n + « ) channel (channel g) are inc]uded [136]. For
this calculation, the formulation of subsection 2.3c is used and reaction
effecfs, arising from the presence of other open channels, are approximately
taken into account by the use of phenomenological imaginary pofentials.

The trial wave function in the channel-spin 1/2 state is given by

eq. (57) with”

Vh .
Vg A [N by, 5 FIROZ (Rem)] (142)
‘and
-l/2 ' ,
”LP? - A [ Nj CP;X 53 G(B}) Z(ch)] | (143)

In the above equations, gfl and _§3, denote appropriate spin- 1505p1n

funct1ons{:22-j , and &4, , CPd , and CP describe the spatial behav1our of

" _
Because of the adoption of a central nucleon-nucleon potential in the calcu-
lation, the spin-3/2 channel of the d + 3He system is not coupled to the

p + o channel; for this reason, we shall not discuss here the calculation

in the spin-3/2 channel.
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(3 3

the three-nucleon cluster (“He or “H), the deuteron cluster, and the

-L -1
cluster, respectively. The quantities Nf2 and Ng12 are included so that

the normalization condition of eq. (60) is satisfied..

-The functions. & and &, are assumed as
b - |
CP = éexp [_%dz_(-r‘fgd\) ] - (144)
and
<b3,= exp [‘ 3y \Z} (,CJ - Ri) ] ’ (145)
. i= N

where the parametef‘s oL and ¥ are chosen to yield the correct rms matter

radii for the respective nuclei, i.e.,

‘oL = 0.514 fm~2 | (146)
and
¥ =0.378 fm™2 for oH
= 0.367 fm2 for ‘He . - (147

For the diffuse deuteron cluster, it is necessary to use a more flexible

cluster function

3 5 |
de = Z A exp [-‘L’% 2 (.L”J-Bd)z] (148)
A= | et '

The parameters A, and o, are determined by minimizing the expectation

value of the deuteron Hamiltonian; the result is
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Ay =10, o =0.07284
A, = 3.631 , o = 0.3657 fm > ,
Ay = 5.746 | o3 = 1.4696 fm 2 . (149)

With the wave functions of egs. (144) - (149), we obtain from egs. (69) and

(70) a value of-([-:g—

experimental value of 18.35 MeV.

E%)= 20.45 MeV which is reasonably close to the

The nucleon-nucleon potential used has the form of eq. (117), with

VR = 0 3
Ve = 66.92 MeV , K= 0.415 fn 2,
Vpa= 29.05 MeV K, = 0.292 fm 2 (150)

The spin-orbit component is, for simplicity in calculation, omitted by
setting V& = 0. As for the exchange-mixture parameter u, it is chosen
such that the calculation yields a good fit to the n + oL , p-wave phase
shifts obtained using the central part of the optical pofentia] found by
Satchler et al [_137] from a phenomenalogical study of the experimental
data. The resultant value is u = 0.95."

As discussed in subsection 2.3c, two coupled ihtegrodiffergntia]

equations for the relative-motion functions F(g% ) and G(Bé ) can be

*This is the value of u in the channel-spin 1/2 state. For reasons
explained in ref. [_136] , the value of u used in the channel-spin

3/2 state is 1.10,
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deriQedf'-Upon performing-a partial-wave expansion: and solving the resultant.
equations.squect to appropriate bouﬁdary conditions, one can then obtain
the partial-wave S-matrix and, subsequently, the differential scattering
and reaction cross sections.

In fig. 9 we show a comparison befween ca1cu]ated'coubled-channe]
(solid line) and single-channel (dashed. line) differential scattering cross

3H scattering at 2.02 MeV.. "The experimental data shown are

sections for d +
those of ref. [ 138] . Here one sees that the coupled-channel result is
not only qonsiderabiy improVed over the 'single-channel resu]t*[lllS]
but also jn good agreement with experiment. This shows that a systematic
improvement of the resonating-group calculation by expanding the trial-
function space can indeed quickly lead to a satisfactory explanation of
observed phenomena.

The calculated c((p,d)3He differential reaction cross seétion at
E}' =.68 MeV is shown by the solid curve in fig. 10. To account approxi-
mately for the many-body breakup channels not considered explicitly, we have
again introduced into the formulation phenomenological imaginary potentials,
with the geometry parameters chosen according to the criterion given‘in
subsection 4.2a and the depth parameters.chosen by fitting cross-section
data in elastic-scattering channels.. As is seen from this figure, the agree-
ment'wfth experimental data [_139]- is fair]y‘satisfactory. The presence
of deep minima and the slight underestimate in ‘the calculated cross secfion
are likely due to the fact that in the nucleon-nucleon potential employed
there are no noncentral components.

From fig. 10 it is also noted that the differential reaction cross

section has a decreasing trend in the forward angular region, but begins
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to increase when Q passes about 90°. As has been studied in careful
detail [_140] , the reason for this is that, at a'relative1y high energy,
the reaction proceeds mainly through different mechanisms‘in-thé forward .
and backward angular regions. Thus, in the forward angular region it |
‘proceeds mainly through a oneé-nucleon pickup process, while in the backward
angular region‘it proceeds mainly through a two-nucleon pickup process.
Both of these prdcesses are automatically included in the coupled-channel
ca]cu1afion described hére, because in this calculation a totally anti-
symmetrized wave function is employed. |

Other reactjon calculations using the resonating-aroup approach are

reported in refs. [ 141-146 .

4.3b. 4He(d,tl§He»reactidn

For resonating-group calculations at relatively high energies where
many rearrangement and breakup channels are open, it is practically
impossible to take all these channels explicitly into considerationf Thus,
in these calculations, one is compé%]ed to adopt the procedure of utilizing
only a small number of open channels in the trial function and taking into
account the remaining channels by introducing phenomeno]ogica] imaginary
potentials into the formulation. |

At Tower energies, the number of open channels is much sma]]ef.
Consequently, if one makes the assumption that breakup processes proceed
entirely through a sequential-decay mechanism [147] , then it becomes
possible to perform resonating-group calculations with essentially all
these channels taken into account. In this subsection, we describe such a

4

calculation, made by Schutte et al [148} , on the reaction He(d,t)3He.
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The purpose of this.calculation is. to explain quantitatively the
violation of the Barshay-Temmer theorem [ 149,159] for -this reaction.

This. theorem is based on strict isospin symmetry of nuc]ear forces; it
predicts that the differential reaction cross section and the analyzing
power should, respective]y,.be symmetfic aﬁd antisymmetric:with respect

to 90° in the c.m. system. These predictions are, however, not quite borne
out by experiments which show a rather strong asymmetry in the cross
section at Ef - 15.7 MeV*'and a- smaller but definite asymmetry~atAHigher:
energies [151] .

Many channels are included 1ﬁ this calculation. These are: d +of ,
*He(3/27) + p, °Li(3/27) + n, He"(1/27) + p, Li” (1/27) + n, e + t,
5He**(3/2+)+ p, and 5Li**(3/2+) + n channels. . The nucleon-nucleon potential
used contains soft repulsive cores, and spin-orbit and tensor components [152]_
The Kohn-Hulthen variational procedure was used to compute the S-matrix for
. this problem. |

According to the Barshay-Temmer theorem, isospin-conserving 4He(d,t)3He
transitions are possible only to t + 3He channels with T = 0, é =1, £ = even
or T=0,5=0, £=o0dd. These transitions will result in a symmetric
differential reaction cross section. However, via the virtual excitation
of the 5He**(3/2+) + p and 5Li**(372+) + n fragmentations, which are super-
positions of T = 0 and T = 1 states, isospin-nonconserving 4He(d,t)3He

transitions become also possible. With these latter transitions, one then

*The quantity Efvdenotes the c.m. relative energy in the d +

channel.
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obtains a differential reaction cross section which is not symmetric with
réspect to 90% in the c.m. system. _

" In fig. 11 calculated and experimental [148, 153] differential reaction
croés sections ét Ef = 21.33 and 16.63 MeV are compared. As is seen, the
agreement is quite satisfactory. The calculation reproduées the general
features of the measured result, but does not quite yield the magnitude of
the observed maximum asymmetry.. This latter defect is probably caused by
the use of a simplified description of the five-nucleon system in the
calculation.

- A comparison between ca]cu]atfon and experimenf f154] for the
analyzing power at Ef = 21.33 MeV is shown in fig. 12. Here it is found
that the calculated derivations from antisymmetry are quite small ( < 10%),
which is in agreement with experimental finding.

There are other calculations of the type described in this subsection.
For these calculations the interested readers are referred to the review

articles by Hackenbroich [ 155,156 .
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- 5. Effects of the Pauli principle

5.1.  Introductory remarks

The importance of the Pauli princip]e,.expressed by .the presence of
the antisymmetrization operator A. in eq. (7), in well-known in nuclear-
-structure problems [ 3,157 . As has been discussed in detail in ref.[5],

it éerves to reduce greatly the diffgrence between seemingly different
structures and thereby resolve the apparent contradictions among existing’
nuclear models. In practical ca]culations, this has the consequence that,
especially at relatively low excitation energies, one can frequently obtain L
satisfactory fesu]ts by employing only a small number of many-nucleon
~ configurations in the trial wave function.

The purpose of this section is to describe briefly the role played by
the Pauli principle iﬁ'nuc1ear scattering and reaction processes. Specifically,
 what will be discussed is its influence on the effective internuclear poten-
tial (i.e., the real-central part of the optical potential) and the connection
between this principle and the various direct-reaction mechanisms commonly

employed in phenomenological analyses [158] .

5.2. Effective internuclear potential

5.2a. .Odd-even Jl-dependence and';hanne]éspin‘depehdénéé

One of the important findings from resonating-group calculations is that
the-phase-éhift behaviour frequently exhibits a distinct odd-even dependence
on the orbital angular momentum. This is demonstrated in fig. 13, where
phase shifts as a function}of L are shown for vgrious'systems, all

calculated at a wave number of 1.52 fm'1. From this figure one sees that
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" the degree of odd-even or parity dependence is quite different in different
systems, being rather strong in the 3H-+‘o< system, moderate in the n +

165 o + 16 40

system, but distinctly weak in the n + 0, and n + "“Ca systems.
The occurrence of the odd-even ,LJHependence is a consequence of the
Pauli principle. This is so, since it is shown in subsection 2.3a that if
this principle were not taken into cbnsideration or, in other Wofds, if the
operator A’ in eq. (17) were set as unity,,then the effective internuclear
potential would just be equal to the direct potential VD which has no
{-dependence and which will yield phase-shift points fo]]oQing a smaoth
trend with respect to the orbital angular momentum.
Also because of the Pauli principle, the nature of the odd-even
1 -dependence may depend on the channel spin s. As an illustration, the
phase-shift behaviour [159] of both the 3H + 3He system and the d + 3He
system at 50 MeV is depicted in fig. 14. Here it is seen that in the
d+ 3He system the zigzag pattern in the s = 3/2 state ié exactly opposite

3H + 3He system the zigzag

to that in the s = 1/2 state, while in the
patterns are similar in both channel-spin states.

The above finding in the d + 3He system may be explained by noting that
in the s =’3/2 stéte the neutron in the deuteron cluster cannot penetrate

3He cluster

into the 1s-neutron hole of the 3He cluster. This causes the
to act toward the deuteron like a.spin and isospin saturated substructure,

~ with the consequence that the'd'+ 3He system in this channel-spin state
Behaves very much like the d +ol system. In the s =‘1/2 state; oh the other
hand, the neutron can penetrate into the 1s-hole of 3He to form a cluster
similar to a diffuse o« particle; thus, in this channel-spin state, the

3

d + “He system has a similarity to the p + < system'and even more so to
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the more diffuse 3H-+~~o( system. .
In an ana1dgous manner, one can understand the situation in the 3H + 3He

system. Here in both channel-spin states, a nucleon from one of the clusters
can.penetrate into the 1s-hole of the other cluster. Therefore, it is

3

expected not only that the 3H + “He effective interaction should be rather

insensitive tovthé chanhel spin, but also that the system should behave
simi]ar]y to the d + X system and to the d +.3He‘system in its s = 3/2
 state. As is seen from fig. 14, this is indeed the case.
To”demoﬁstfite'the'pré§én¢e”6f odd-even L -dependence in a clearer
way, we construct a local-potential model in which the clusters are con-

sidered as structureless and the interaction between them is represented

by an effectivé potential le given by

e d

VL'X = C,?,X VN>\ | . (.]5])

’

with A ‘denoting the channel-spin multiplicity (the index A\ may be dropped .
if the considered system has a single A -value), \/Nk being the direct
nuclear potential, and (:LX being an { -dependent multiplicative para-

meter. In fig. 15, the results for C:LD\ ,- obtained by fitting exactly

the phase-shift values of the cqrresponding resonating-group calculations

[_49] , are shown for the n + 4OCa and 3H +ol systems at indicated energiés.

As is seen, this parameter'is,ohly weakly _{ -dependent in the n +v40Ca

system, but shows a strong zigzag pattern in the 3

6

H + X system.
Next, we illustrate in the n + "Li system another interesting consequence
of the Pauli principle. By examining the phase-shift behaviour exhibited

in figs. 13 and 14, one might predict that in this system the effective
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potential QQ&X should be stronger in odd- L states, regardiess of
the channel-spin value. That this is not quite so can be seen from fig.
16 where the oﬁen circles and crosses represent the resonating-group
result [111], while the solid lines are smooth curves drawn through phase-
shift points calculated using the local-potential model of eq. (151) with
C:LJ\ taking on indicated values.. Here one sees that in the s = 1/2 state
the odd- { interaction is indeed stronger than the even-£ interaction,
but the opposite is true in the s = 3/2 state. As toléhe reason for this
apparent failure of the prediction made above, one notes that for this system
there are in the nonclosed 1p shell two target nucleons which behave Tike a
deuteron cluster. Since it follows again from the Pauli principle that a
neutron can closely approach a deuteron in the s = 1/2 state but not so in
the s = 3/2 stéte, one may come to the conclusion that the blocking effect,
caused by these two 1p-nucleons, is much more important in the s = 3/2 state
than in the s = 1/2 state. Therefore, this example serves to show that in
predicting the relative strength of the effective interaction in odd-,@
and even-J states, one must always carefully investigate the dynamical
structures of the clusters under consideration. |

From fig. 16 one also notes that the A =0, s = 1/2 resonating-group
phase-shift point seems to deviate somewhat from the zigzag trend followed
by other s = 1/2 points. Thfs is very likely related to the fact that, for
this particular set of (4, X\ ) value, there exists a Pauli-forbidden
state in the resonating-group formulation. Indeed, deviations of this kind
have also been found in n + ¥ and other systems. This indicates, therefore,

that to construct a useful semi-microscopic potential model, one may need
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‘not ‘ony to ‘adopt‘the odd-aVen featiire described here, but also to
introducejinto the model either an orthogonality condition [160] or a
Pauli repulsive core |161-163] .

For a quantitative estimate of the importance of the Pauli principle,

it is useful to express C,, in eq. (151) as
| i -
Cix = Cor +0feen o

whefe Cay and Cyy are £ -independent parameters. Then, as is evident,
the amount by which C,» differs from 1 or Cpy differs from 0 is a
measure of the effects of antisymmetrization. In table 1, the best values
of Clzx and <jbk for'varioug systems at 30 MeV are listed; these values are
obtained by fitting as well as possible fhe corresponding resonating-group
phase-shift results. From this table it is seen that, although the values
of C:bk may become close to 0 for cerfain~systems, the values of C_
are all appreciably larger than 1, indicating that in scattering processes
the -Pauli principle is generally important. |
At a relatively high energy,Athe behaviour Qf the differential
scattering cross section in the backward angular region is strongly corre-
lated with the magnitude (not the sign) of C£>[164] . In fig. 17 we show a

3He + o scattering at

comparison‘[165] between the results obtained for
44,5 MeV using the resonating-group method and the potential model of

eqs. (151) and (152) with C£A= 1.15 and C,x = 0. Here it is seen that,
although the agreement in the forward angular region is rather satisfactory,
there is a strong disagreement at angles larger than about 90°. In the

n+ 40Ca.system at 30 MeV, on the other hand, one sees from fig. 18 that,
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because of the small magnitude of (:bx, the agreement between the resonating-
~group result (solid dots) and the result obtained using the potential model
with Cgy = 1.35 and C,)= 0 (solid curve) is fairly reasonable even at
rather large angles (the dashed curve in this figure is obtained by omitting
antiéynmetrization effects, i.e., by setting (:ax= 1 and Cyy= 0 in the
“potential model).

It should be remarked, however, that even wﬁen Cpy has a small
magnitude, one may still observe significant effects in situations'where
partial-wave scattering amplitudes strongly cancel one another. Generally,
these occur at backward angles when the scattering energies are relatively
high. For instance, in a phenomenological potential-model study of nucleon

0ca at about 30 Mev [166] , it was found that when Cx

‘scattering by
is changed from 0 to -0.01, the scattering behaviour at angles larger than
about 150° is appreciably affected and the differential cross section at
180° is increased by a factor of around 3.

0dd-even potential models have been successfully used to analyze ex-
perimental data of p + e [139] s P +o¢[]39] , 3He +ol ﬁ67,168] , and
ol + 6Li [J69] scattering. In heavier systems such as 12C + 13C [170,171]
and ]ZC + ]60 [172] , the application of such models has similarly yielded
satisfactory agreement with measured results. In addition, é phenomeno]ogi-'

16 20

cal study of the ~0 + "~Ne scattering data [173] has also indicated the

need of an odd-even term in the effective internuclear potential.

40Ca scattering is not as clear.

The situation in the case of ol +
Thus, to explain the scattéring behaviour in the backward angular region,
Kondo et al [174] have found it desirable to introduce a small amount of

odd-even [ -dependence into the real part of the optical potential. On
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the other hand, Michel and Vanderpoorten E_T?Sf} have been able to obtain
excellent ffts with experimental data over a wide energy range_using parity-
independent potentials. The fact that the same experimental résu]t can be
explained by different sets of potentials is just a manifestation of potential-
model ambiguities, as has been pointed out especially by Wa11. L175] . Based

4

on resonating-group findings in both ol + 160 and « + 0Ca [80] systems

and the discussion to be presented in the next subsection, we are of the

opinion that the essential features of o + 40

Ca scattering can very likely
be properly accounted for without the incorporation of an odd-even [-dependent

component into the effective.potential.

5.2b. General djscussion

In the Born approximation, one can show that the Ji-debendence contained
in the effective internué]ear'potential is only of the odd-even type. This
has been demonstrated in the n.-+ o case ['1641 . There it was shown that,
by separating the kernel function K( R', R" ) [see eq. (37)] into three
parts, i.e., |
K= K_+ K/S* <, (153)

’

with R& s Kﬁ , -and Kyf being the knockout (incident neutron knocks out a

3

_ target neutron), pickup (incident neutron picks up a “He cluster), and

nucleon-rearrangement kernels, respectively, one can easily construct
effective local potentiais iz‘ ,,Qagl, and Q;X which yield exactly the same
Born scattering amplitudes as these kernel terms. The potential <21

s a Wigner-type potential, whereas the potentials. g% and ;} are

Majorana-type potentials. The total effective local interaction is,.
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therefore, given in the Born approximation by \{D+ QL + % +A\7X , which
" clearly has an odd-even .[-dependence. As one goes to energy regions
where the Born approximation is less valid, the',z-dependence in the
effective internuclear interaction wiﬁ of course become more complicated;
however, it is reasonable to expect that the odd-even feature should still
remain to be the main part of the orbital engu1ar-momentum dependence.
For a more general disc‘ussion* [177] , we consider now the effects of
‘the Pauli principle on the effective interaction between two clusters A
and B, with cluster A containihg NA nucleons and characterized by a width
. parameter o<A and cluster B containing NB nucleons and characterized by a
width parameter o(y [:see eq. (89) ] . Specifically, what we shall do is

to study exchange effects associated with the normalization kernel J%E(EY,B”)

of eq. (24) which has the form

X
. ; 1y [ "
N (RR) = 2= Ne (RUR)
: : (154)
. )2 e "2
= > P, exp(-0,R*-CRR'- &R™)
_ X |
with X being the number of nucleons interchanged between the clusters and Py
being a polynomial in j{z,'ﬁhjfl, and B"Z. By using the complex-generator-
coordinate technique described in sect. 3, one can derive general
expressions for the coefficients a, and Cx:E48] . These expressions are

2 2 2 _ X 2
i /uoz X [(MAAO(B) + N, (NAfNB)dAuB]—r N,y Ng (|-/7—0>(0(A+0(B>
X 4x

NaNg (ot totg) = X (N x4+ NSty ) .- (155)

*
A similar, but more restricted, discussion is given in ref. [178] .
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: 2 X
c ol ?(2(§(A—O(B) + Ny NB (I* /_A;>(°(A+°‘B>2
X _
| 2X 0 NaNg (st og) = X (Nyoty + Ngolg) , | (156)

where M denotes the reduced nucleon number, given by

N, N |
M= AT - 4 : (157)
' Np+ NB_ . ‘ ,

It should be remarked that the kernel function 345(&',&") of eq. (30)
contains the same exponential factors in the limit case where the nucleon-
nucleon potential has a range approaching infinity ( &—)b in eq. (16) of
ref. [164]). Because of this, it is our opinion that a study of the
normalization kernel J\/E alone should yield a useful, semi-quantitative
understanding of the éffects of antisymmetrization.

For clarity in discussion, we make the simplification
(158)

and assume NA > NB .. Then, by employing the procedure discussed in

ref. [1791 ,» one can find effective local potentials \/x(ﬁ'_) which yield,

“The conclusions reached with and-without the simplification of o, =o(z= ¢

are very similar,



in the Born approximation, the same scattering amplitudes as the kernel
terms JV;((B', R"). The result is as follows:

(1) 7<'</M.o —— The effective botentials are Wigner-type potentials
which yield large Born scattering amplitudes only atforward angles. These

potentials are

~ . ~ ) . 2 , ” .
V. (R) = P, exp[-(k/R) Jexp[- (R/R)"] (159)
with
/2 |
T M QMe-X) .
hx = { x x] (160)
and
Y2
-X
Ry = [ blfam %) —’—J (161)
X(z/u,,-'x) X ‘
(ii) X >/LL0 ~— The effective potentials are Majorana-type potentia]s‘ :
which yield large Born scattering amplitudes only at backward angles.
-These potentials are
Vi (R) = Py exp [~ (R/k, ) Jexp[-(R/ROD] PT - (e
with
, y
My X 2
R = [ . x} (163)
X Apg =

77
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and

- | Yo
R, = [ 4 (X p) ] (164),

x X (%o‘lx> X

~~

Also, in eqs. (159) and (162), Px are polynomial functions in k2 and R'Z .
By examining thé expressions for hx and Rx , one can easily see that for
X</*o s IQX and Ry« have largest values when x = 1, and for X> M,
hx and R, have largest values when x = NB*. This indicates, therefore,
-that among é]] exchange terms, the one-exchange term andifhe core-exchange
term are the most important. In fact, this finding has been amply verified
by explicit resonating-group ca]cu]étions. For example, in 3He + oL
scattering [180] where M,= 12/7 , the two-exchange term was found to be

165 scattering [_181]' where i = 3.2, the one-,

rather unimportant, and in « +
two-, and three-exchange terms were found to yield progressively weaker
contribution. ' '

The effective potentials V, corresponding to the one-exchange term

and

and VE corresponding to the core-exchange term have the following expressions:
~ ~ , 2 2 :
V(R)= P exp[~(R/R) ] exp [~ LR/R)] . (165)
with

, | V2. , .
CRE Lpelope-n e ] S (166)

40 40

*.
In the case where NA ='NB, such as ""Ar + "“Ca scattering, the largest

value of x will be somewhat smaller than NB"‘



79

R, = §)5:§f7|) ci J Vi‘ B (67
and
V(&)= Boexp[-(k/k) ] exp [ (R ] PS8
with
k. = <Nl::hi,i— * >v2 . | (169)

For comparison, we also give here the direct nuclear potential \Gq which,

*
in the 1imit of a zero-range nucleon-nucleon potential, has the form

Vi (R) = ﬁ. exé [- (R/”y)* ] | ~am

with

'RN = ( 2/‘*"-'4 | ) | | (172)

E3 .
With a finite-range nucleon-nucleon potential, the direct nuclear potential

V,, will have a range longer than that given by eq. (172).

N
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"In addition, it is important to note that in the polynomial factors i%

and TAD'N , the highest powers of R'> are both given by M,+Mp ,
with M, and Mg being, respectively, the principal euantumvnumbers; in
oscillator wells A and B, of the last shells to be filled. For example, in

16

oC + "0 scattering, the value of M, is 1 and the value of My is 0 when

the clustér internal functions are assumed to have the lowest configurations
Tn -their respective oscillator wells. As for the polynomial factor ié )
its highest power of R'? 1s somewhat more difficult to determ1ne, however,
it has been der1ved in ref. [178] » where it was shown that for those
1nterest1ng cases in which NA and NB have nearly equal values, this
highest power is again approximately given by n,+ng [182] . Therefore,
since the polynomial factors in 'V; s Cé » and V4 have similar values for
their highest powers in R'? , 1t is appropriate to simply examine the
exponential factors in order to decide the situations under which the
effective potentials ¥, and'V_ make important contributions. |

Let us first study the spatial dependeﬁce of V} and ‘v; . By
comparing. the values of Rlvand ‘RC’ with fhe value of Ry » we can make the
following remarks:

(i) The ratio ‘R,/RN is given by

'/2,

[\-———————] | (173)

SRR
which is smaller than but close:to 1, indicating that the one-exchange
term is always important. This is consistent with the result, stated in
subsectien 5.2a,.that,the values of Cgy in eq. (152) are appreciably

larger than 1 for all investfgated systems. In addition, the fact that
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R; < Ry is also in agreement with an empiriéa1 finding [183] , obtained
by potential-model analysas of p, 3He, and o scattering on 160, that the
range of the Wigner-type effectivé potential is somewhat shorter than that
of the direct nuclear potential. »
(ii) The characterfstic range R, decreases with increasing value of the
difference between the nucleon numbers in clusters A and B. This means that
one expects the core-exchange effect to become less important as (NAaNB)
increases. Indeed, as is discussed in subseqtion 5.2a, we have reached a
similar conclusion from explicit resonating-group calculations. There

it was shown that the degree of odd-even [ -dependence is quite strong in
scattering systems involving tWo s-shell nuclei where the values of
(NA - NB) are small, and weak in systems such as +160_and n + QOCa
where (NA - NB) takes on rather large values. Similarly, of course, the
finding that core-exchange effécts are important in 12C'+ 13C [171 ]

40ca scattering [ 8ae, 114]

and 12¢ + 180 [77] scattering but not in of +
supports the assertion reached by our present analysis.

Next, we examine the energy dependence of exchange effects by studying
the expressions for the characteristic wave numbers h, and hc given by
eqs. (166) and (169). To do this, we make the reasonable assumption that
the effective potentials ia and CQ, become unimportant when their energy-

dependent exponential factors acquire a value less than e'4.

Adopting this
criterion, one can then easily find that the one-exchange term has a

~ %
significant influence when E4p0< E, where

*
It is interesting to note that ECuo is also the incident energy per
nucleon in the laboratory system, regardless of whether A or B is the

incident nucleus.
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RE 4 (2M, -
LR
2M Mo

E/= (174)
with M being the nucleon mass, and the core-exchange term has a significant

influence when E§q0< gc where

e 4(NA+NB>2 -

__ (175)

g -

In table 2, we list the values of E} and E; calculated for various
systems. Here it is seen that the one-exchange term is important over a
wide energy range for all systems. On the other hand, because of the
factor (NA-NB) occurring in eq. (175), the core-exchange term has a slow
energy dependence only when (NA"'NB) is relatively small.

Finally, it should be emphasized that the COnsiderationS'given here are
made in the Born approximation and based mainly on the features of the
normalization kernel. Therefore, the results obtained have only semi-
quantitative significance at relatively high energies. However; we do
believe that especially the dependence of the core-exchange effect on
‘the factor (NA - NB) is véry Tikely a realistic prediction ahd this parti-
cular finding should be very useful whéen one attempts to construct potential

models for the analyses of experimental scattering results.

5.3, 'Direct-reaction mechanisms

Since resonating-group ca]cu]ations-emp]oy totally antisymmetric wave

functions, all exchange effects are explicitly included. Thus it is
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possible to use these calculations for a study of direct-reaction
mechanisms. In this subsection, we shall carefully examine the

c‘-(P,d)3He reaction- using the plane-wave Born approximation (PWBA) [184] s
in the hope of obtaining a transparent picture concerning the roles played
by different direct-reaction processes which are represented by various

coupling-kernel terms in the resonating-group formulation.

5.3a. Brief description of the method of analysis

The formulation of the two-channel cL(p,d)3He problem is briefly given
~in subsection 4.3a and, hence, will not be further described here. For our
present purpose, it suffices to say that the transition from the p ¥cx
3 .

channel to the d +

He channel is effected by the coupling kernel ng

(hereafter simply written as K) which has the form

K= K+ Kb (176)

with

h

K™ (B¢, Bg) = (N§N§)_/Z<4>3uzs>¢d<us>§{6(Bf-13;)Z(ch)

[H-E.l (=R A, [ ¢“<;234>g}5<33-35)]¥<ch>> (177)
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“and
b / u | 'VZ - / .
K (E‘F'BZ):.(-N{NJ) <¢3('23)‘b(#S)%é(Bf‘E’c)Z(Bc-m)

[H-E1] (‘RS'Piss?BS)ﬁu [¢x(l234>§35(‘83"35)]z(3CM)>; (178)

where 133 is an operator interchanging the spatial, spin, and isospin
coordinates of nucleons i and j, and 9%1 is the antisymmetrization operator
for the o cluster. In the above equations, it should be noted that'the‘~
arguments of the internal functions of the clusters indicate which nucleons
are }nvolved.in these clusters; such a Tabelling is permissib1e; because
the wave function is totally antisymmetrized.

From egs. (177) and (178), one can clearly see that K* corresponds
to. a process in which the incident proton is contained in the outgoing
deuteron, while Kb corresponds to a process. in which the incident proton

is contained in the outgoing'3

He. In other words, K% describes a one-
nucleon pickub process, while F<b describes a two-nucleon piﬁkup process.
Since our sole purpose in the preéent study is to gain an understanding
of reaction mechanisms, we simplify the formulation in the following way:
(i) a single-Gaussian deuteron function ¢a yielding the same rms radius as
the three-Gaussian function of subsectibn 4.3a is used, (ii) a simplified
nucleon-nucleon potential with a Serber mixture is employed; this potential
is described'fn‘a previous publication [8], and (iiij the Coulomb inter=

“action is neglected. These simplifications do not change the essential

features of the results obtained in subsection 4.3a, but they do allow a



85

more straightforward interpretation.

By summing over spin and isospin 'coordinates, the kernel functions K%

and K° become [22]

a. ac a a 2N . a a
- - . 179
K KT+KE+Kfz+Kf¢szs*K45 ( )
and
b_".b b b b . b b b 180
K= KT+KE+KI2+KH++K23+K24-+K#s . (180)

b

a b
+ » Kg» and K arise from the

In these equations, the functions KCTL, K

kinetic-energy operator T and the total energy EL.. The remaining functions

come from the potential-energy operator; they have the forms
& N , * o
K= CA.‘ j[wf(lw;#s)] V. WP?(IZS%;S)dt o (18Y)
/ | J |
and
Cb [w ((23#5‘)]*@”-' P, (523431)dT (182)
i LRI T
where we have introduced the notation

Ve (1235 45) = By(123)d (45)5 (BRI 2 (Bem) | (183)

\Pj (123u5;5) = P, ( (234)5(% )Z(?cm) (184)
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=and

“P;'( 5‘139-_; 1) = 4?'; 54)3‘( |2’3,¢.'; 5) | ' (185)

. ‘ b :
Also, in egs. (181) and (182),(::} and <:;} are constant factors unimportant

for our present consideration, ﬂ&} is the form factor of the nucleon-

nucleon potential given by

% =.  | - r.? | v (186)
C R AT

and AT sjg@fies the integration over all spatial variables.

Next, we compute the PWBA reaction émp]itude fbr each of the terms in

}<O° and }(b . For example, the Born amplitude corresponding to K;}

is.

a £ . / a / " . i / i -
B =-- exp(-a kR R. RIyexp(iRq Re)dR.aR) - (187)
A(} ZWKZJ F( wfwf)KA}(*{,*g‘) F( 3 3) ¢ \«-\3 ) |

whereAEa and Efl are propagation Vectors in channe]s g and f, respectively.
" By:carrying out the spatial integrations in eqs. (181) and (182),. analytic,
expressions for the various amplitudes can be obtained [221 . The
differential reaction cross section is then given by

do Vo 2 .

‘s = £ | B*+B°] (188)

’U- )
¢

where‘Ué and v} are, raespectively, the relative velocities of the clusters

at large separation in the incident and reaction channels.
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5.3b. Result and discussion

| The validity of the PWBA at relatively high energies can be tested by
making a comparison between the differential reaction cross seétion computed
by solving the resonating-group coupled integrodifferential equations and
that‘computed by using the PWBA. This comparison is shown in fig. 19 at
an energy of Eg = 130 MeV (the corresponding value of Eg is 104.88 MeV). .
From this figure it is seen that, even though the over-all agreement is
only fair, the Born result does reproduce the essential features, i.e.,
the occurrence of large peaks at forward and backward directions and a
sharp minimum at around 100°, Thus, we'feel that a study using the PWBA
should be useful in yie]ding a qualitative understénding of the importance
of various direct-reaction processes.

From‘the explicit expressions for the Born amplitudes, one finds that

. . a ;. 8
all terms contained in B® (i.e., B_,

- B:, and B%') are peaked in the forward

direction, while all terms contained in Bb (i.e., B$ . Bz, and B% ) are
peaked in the backward direction.  This is shown in fig. 20, where the solid

curves represent the amplitudes B2 and Bb

at £ = 130 MeV. Here it is seen
that, at such a relatively high energy, the cross-section.behaviour in the
forward angular region can be accounted for by a one-nucleon pickup process,
while the cross-section behaviour in the backward anqular region can be
accounted for by a two-nucleon pickup process. .In fact, it is evident that
there is effectively no interference between these two processes. We should
point out, howeQer, that this lack of interference is strictly a high-energy

phenomenon; already at a lower energy of E_ = 70 MeV (Ef = 44,88 MeV), our

g
calculation shows that interference effects become fairly important in the

intermediate anqular region (see also ref. [,140] ).

-
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A detailed examination shows that, even though many individual terms.

b

in B and B® have appreciable magnitudes, the following approximéte relations

-hold at relatively high energies:

a ' o
B, = B
b ~ b
B, ~ B (189)

This is also shdwn in fig. 20, where the dashed curves represent the
amp1itudes BZS and B?Z at'Eg = 130 Mev. At lower energies of'Eg = 100 and
70 MeV, these relations are still reasonably valid; for examplé,,at 6 =20°
the ratios st/Ba‘ are equal to 0.83 and 0.80 at these two energies, while
at O = 180° the ratios B?Z/Bb are equal to 1.09 and 1.12. Thus, referring
to eqs. (181) and (182), one.éees that, for an approximate description of
the two pickup processes, it is only necessary to consider.the interaction
betwéen the incident nucleon and the nucleons which are removed from the
target (note that the spatial integrals involved in K:’Z and Ktl’3 yield
the same result). This seems to be intuitively reasonable, bﬁt does require
" to be further éxamined. At present, our feeling %s that this pérticu1ar
cancellation among the various Born amplitudes is related to the pfesence
of redundant solutions in our resonating-group formulation.

In summary, this investigation shows that, at relatively high energies,
the cross-section behaviour of the<<1(p,d)3He reaction at forward angles
can be exp1ained§as arising from a one-nucleon pickup process, while that

at backward angles can be explained as arising from a two-nucleon pickup
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process. In addition, it is found that for an approximate description of

these pickup processes, 6ne needs only to considgr the interaction between

the incident nucleon and the nuﬁleons removed from the target. This is an
important finding, because if it should turn out to be generally true, then
antisymmetrized direct-reaction calculations can be simplified to a considerable

extent.

5.4, Concluding remarks

The discussion in this section shows that the Pauli princip]e is é]ways
important in determining the behaviodr of scattering and reaction processes.
This means that, for a proper description df these processes, it is generally
necessary to employ totally antisymmetric wave functions in the calculations.
However, there are relatively simple ways which can be used to approximately
represent the majdr effects of antisymmetrization. In scattering problems,
one may adopt as intercluster interaction an energy-dependent effective
potential which possesses an odd-even dependence on the orbital angular
momentum and which contains possib1y also a Pauli repu]si?e-core component.

In reaction problems, the sityation becomes comparatively simple at relatively
high energies, where a careful examination ofi#isonating-group ca1cu1étion
show§ that a complete antisymmetrization between 'the nucleons in the incident
and target nuclei may not need to be carried put and the differential reaction
cross section in either fhe forward or the backward angular region may be

reasonably described by a single direct-reaction process.
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- 6. Conclusion

The resonating-group method is a microscopic method to solve nuclear
many-body problems. Its formulation is based on the idea that relatively
1ohg-range correlations, manifested through the formation of nucleon clusters

160 clusters, are important in determining the properties

" such as e, o, and
of nuclear systems. In this method, one first chooses an appropriate trial-
 functidn spaée, and then~studies bound-state, scattering, and reaction
 prob1ems by solving:theaSchrBdinger‘equation, %ormulatedwas é projectfon
equation, in this space. As the examp]és discussed in sect. 4 show, this

type of approach does lead to successful éohc]usions, and improved results

can be obtained by systematically enlarging the function space employed.

The imporﬁant features of the resonating-group method are the utiliza-
tion of a fully antisymmetric wave function, the use of.a reasonable -nucleon-
nucleon potential, and a correct treatment of the total centef—of—mass motion.
Because of these features, resonating-qroup cﬁ]cu]ations can frequently become
quite complicated from é computational viewpoint when the number of nucleons
involved is relatively large. Indeed, it is primarily for this reason that
earlier studies have been restricted to systems containing no more than about
ten nucleons. Recently, however, with the development of various generator-
coordinate techniques, the computational difficulty has been substantially

165 , 40 18

alleviated, and even relatively hea?y systems such as Ca and ¢+ 70
séattering‘can be- considered. In sect. 3, we have described how one of these
techniques, the complex-generator-coordinate technique, works. This particu-
lar technique is chosen for a detailed description, because it is especially

flexible in the sense that its application is not limited to cases where the
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choice of equal oscillator width parameters for the cluster internal functions \
is a reasonable approximation. In fact, as is shown in that section, it can
be generally used to obtain matrix elements in scattering and reaction pro-
blems where the internal functions of tHe various c]ustérs are flexibly des;
cribed by translationally-invariant, antisymmetrized products of single-
particle wave functions generated from any potential well which is appropriate,
although the use of oscillator wells does. lead to further simplification in
computation. | |

Because of the use of totally antisymmetrized wave functions, resonating-
group calculations cén be employed to investigate the effects of the Pauli
principle (see also ref. [185]). In sect. 5, it is shown that in scattering’
problems the essential result of antisymmetrization is to introduce an odd-
even [ -dependent component into the effective internuclear potential, the
importante of which seems to decrease with increasing value of the difference'
between the nucleon numbers'in the incident and target nuclei. This means
that one would expect this odd-even component to be generally important in
these cases where the nuclei involved have similar mass, but to have é'
comparatively minor iﬁf]uence when the nucleon-number difference is 1arge.
Indeed, it is precisely this Iatter feature which enables the conventional
optical model to yield a reasonable description, over a large angular region,
of light-ion scattering by médium and heavy-weight nuclei.

Also, in sect. 5, we have diScussed the roie played by the Pauli
principle in antisymmetrized direct-reaction calculations. There it was
shown that, under certain circumstances, one may simplify the calculation by
carrying out only a partial antisymmetrization, corresponding to the adoption

of a single direct-reaction process, between the nucleons in the incident

’
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and target nuclei.- For example, in the 6Li(p,3He)°L reaction at relatively
higH energies [j5,142] » the behaviour in the forward angular region may be
satisfactorily explained by employing only the process_in which the incident
proton picks up a deuteron cluster from the target, while that in the backward
. angular région may. be adequately described by considerihg the incident proton
to pick up affriton cluster from §Li. |

Even‘though‘resonating-group calculations have so far always yielded
§atisfactdry results, there is a somewhat undesirable feature which should be
mentioned.  Tﬁat is; two-nucleon potentials of relatively simple form have
generally been employed. In particular, the presence of a strong repulsive
component in the nucleon-nucleon potential has usually not been explicitly
considered and the satﬁration property has been taken into account only in a
relatively cfude manney by mostly fixing the rms ra&ii of the c1usters
1nvo]ve&. We émphasize,,however,'that although the use of more refined
forces will undoubtedly inf1uencé the numerical results to a certain extent,
- the general features of nuclear prbcesses will be essentially unchanged.
‘This must be so since, for scattering and reaction problems in which the
incident energy per nucleon is less than about 50 MeV, these general features
are determined mainly by the fact that nucleons are fermions and. nuclear
fdrces are short-ranged, saturating, and on the. average attractive.

At present, there exist manyvresonating-grdup bound-state, scattering,
and reaction calculations involving s-shell clusters. Consequently, an .
impressive amount of inforhation has been obtained concerning cluster states
in very light nuclei. For heavier systems, the situation is rather different;
here, essentially only scattering calculations involving doubly-closed-shell

16 40

nuclei "0 and "~Ca have been attempted.‘ Therefore, there are still many |
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interesting problems yet to be considered, and some of these problems which
are well within our preéent-day capabilities are:
‘(i) A systematic study of 1ight-ion_scattering by 6Li or 7Li and the
scattering of 16O'by ]70, 180, ]QF; and 20Ne. This will be a useful study,
because the results obtained should give us further information concerning
the dependence of the odd-even effect on the nuc]eon-nﬁmber difference of
the interacting nuclei.
(%) Direct-reaction calculations involving relatively heavy clusters, such
as ]80(p,t)]60 reaction and so on. |
Also, of éourse; it will be important tp study the case of three or more-
cluster decays. This is, however, a comparatively more difficult prob1em,
the solution of which wod]d probably require further advance in mathematical
and computational techniques.

In‘conclusion, it is our opinion that the resonating-group method is a
| practical, microscopic method of solving nuclear many-body pfoblems. Therefore, *
it should be extensively used in the future to study the properties of thase
nué]ear systems Whiéh have heretofore beenvfreated only by macros;opié,l

phenomenological means.
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Appendix A
The direct potential VD

In optical-model studies, one of the interestiné déve]opments was the
discovery [ 187 that, in 1ight-ion scattering by medium and‘heaVy-Weight
nuclei, the eXperiménta]'data may be %airTy well represented by using an
optica]‘pbtentia1 for which the: real part is obtained by a folding procedure
involving the matter distributions of the nuclei and the nucleon-nucleon
~ force. In this Appendix,. the purpose is to show that this'folding potenfia1
is just the direct potential Vy given by eq. (34). |

Fdr simplicity fn discussion, we shall assume that the nucleon-nucleon

. potential is purely central and consists of only a direct or spin-isospin-

- independent part Vg Then, from eq. (34), we obtain

V() = {PAISBIZ(Rem) | V') $(4)E(B) Z(Bem) Dy

NaNg

(BB BIZ(Rem) [V, (L= 1) | B BBI 2R,

C...(190)

where i and j are nucleons in clusters A and B, respectively. Now, by

defining internal spatial coordinates

o= I -R,  (ien)
fj= -k ,  (jeB) (s



we can write Vd(fk-l%:) as

:f\/dﬂ‘i+EJ>5(*&‘?)5(%’_§MW§ . (192)

Substituting eq. (192) into eq. (190) yields

V(R) = J (SMd®)z[5(8-1S8(5-3)bn)d@ZE >,

DT N NG

x V.(N-2+R)dnd3
d(n = 1] - (193)

Using the expression :

, . NA
- ()] 2= 8(8-0) (%>
£() = J;" ,\ 27_
| PM ) BAYD

Na - <D (K-
Ny ! LM S (194)

i

for the matter distribution in cluster A and a similar expression for the
matter distribution ]is(jf) in cluster B, we then find, by using further

the normalization condition of eq. (26),

95
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i@ = [N ROV(Q-5-R)amas (s
which has the form of what is commonly referred to as a double-folding
potentia].'~

From the discussion presented in subsection 5.2b, one can pnderstand '
why the double-folding procedure is useful in optica1-mdde1.studies of
1i§ht-ion scattering by medium and heavy-weight nuclei. The main reason
is that, in such cases, the‘nuc]eon-number difference of the interaéting
nuclei is large. Consequenfly, the odd-even ,K-dependence plays a
comparative]y'minor role and its omission in the obticaT potentié] will
essentially affect the features of the scattering cross séction only at

extreme backward angles. |
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Apendix B
Approximate treatment of the exchange-Coulomb interaction

In this Appendix, we discuss the exchange-Coulomb kernel in the case

where the wave function is given by

Ve AT = 4D o . o (196)
with |
Vo= ¢(A>¢>(3)F(§)z(._@cm) | (197)
and
Er @(A)@(é)ﬁ(;@)f(fcm) A (198)

As is evident from eq. (30), this particular kernel has the form

K (RR)= (D) S(R-RIZ| L |# [ d(m)dm)S(R-r)2] )~ (19)

where
N C
Y, = A (200)
A< =] 4

c
with b&‘ being the Coulomb potential between nucleons i and j.  Due to

the fact that the Coulomb potential does not have a Gaussian spatial



dependence, the evaluation of the exchange-Coulomb kernel frequently
reduires a considerable amount of computational effort. Therefore, it is
desirable to devise a simple procedure'by which this kernel can be
approximaté]y evaluated but is stiil accurate enough for'practfcal purposes.
Here we propose such a procedure which is based on the recognition that,
because of the long-range nature of the Coulomb potential, the total

' Coﬁ]omb energy of a bound system, described by the wave function of egs.
(196) -’(198) with

F(R) = —RL 75(2) E(C‘%e) | (201)

’

may be computed in an approximate manner by using only the unantisymmetrized
part of the wave function (see chapter 6 of ref.[5] ). That is, one can

obtain a good estimate qf the Coulomb energy, given exactly by

o LBV KPR R + <TGl A"E)

: _ ‘ — (202)
R TE Y (PIBD+LFIADY
frbm the approximate expression
_ A ’
g o LRIV (203)
T2 IR
By equating these two expressions for EEiL , one then finds
— " cC — " .
CHIGIA DD = E, CF AP o e

Using eqs. (197) - (199) and eq. (204) thus yields



[ FMR) K (BB F(R AR’

l

£, /Fx(.B’)J\/;s(?CB")F(B”)dk'd;’i”
4 | B : -, (205)

where the normalization kernel b/\/E(E,'g") is given by eq. (24). 1If one

now makes  partial-wave expansions for f<é and uNQE s 1.e.,

! R .~' c Iy Y - it |
KRR )= o DD Ak (RR)Y,, (91#) ), 7(e"9") (206)
L m ' ' .
2Ry = , ' (207)
NE (B,B )— RIRH % %1—_- %EL(R’R, ) Em(e/¢)Y [(9 ¢) » I

then one obtains from eqs. (201) and (205) the following equation:

// (R R”)]F(p”) c/PdR
LY, Sy TE A .
Since ;fL(R> js an arbitrary function, eq. (208) therefore implies that
C(RIR) = ES 7 (RIR") (209)
e ' TL CTELY

which is a very simp]e, though approximate, expression for the partial-

wave exchange-Coulomb kernel.

(208)

99
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" In-an-actual caleulation, ‘one further“expresses £.°

g 1ﬁ eq. (209) as

- C C C .C

= : 210
E_, E, + Eg + Exp | (210)
where E;S and E%; are: respectively, the internal Coulomb energies of
clusters A'and B, and- 55;2, is the relative Coulomb energy between the

. clusters. The energies E/f

“and E% may be easily computed by using
the expressions for the cluster internal functions $(A) and $(B) . On
the other hand, the energy 25;1 is an-a priori unknown quanéity,,but may
be determined by the use of a self-consistent procedure to be discusséd
below.

If one of the clusters, say c]uster B, is composed solely of neutrons,

then- the exchange-Coulomb kernel is just given by
LE(RIRY) = ESn_ (RIR") | (211)
£ ' A "Teg -

In this special case, it is interesting to note that the above expression
for /af is in fact exact, as can be easily verified By an explicit
calculation.

There is anothef important point which should be mentioned. For
states in which the clusters penetrate into each other strongly, the mutual
antisymmetrization between the nucleons in different clusters is important.
In such cases, there will be substantial cance]]ationS’Between the individual
terms.fn both  the numerator andfthé denominator of eq. (202), and the
consequence may be quite severe if one omits exchange-Coulomb contributions
entirely by simply setting l§f equal to zero in the calculation.

We shall now discuss how to determine the value of éigl in a
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sel f-consistent manner.. For this, let us consider a bound or a sharp
resonance state which has a certain definite value for the relative orbital )
angular-momentum quantum number L . What we do is to first choose an |
arbitrary but reasbnab]e value for E:L and then calculate the c1usteri-l

separation energy by solving the integrodifferential equation

P2 dZ /&(£+/) .
(1542 e o o] 5

dRIQ RIZ
® N " c i wy " 4
—[ [/QL(R,R)‘ILE&(R,R)JJCL(R)G?R (212)

Two separate ca]cu]atiohs will be performed, one for the actual case in
which both clusters. are charged and the other forAthe hypothetical case
in which the charges of the clusters are assumed to be zero (i.e., we
set all charge-dependent quantities in eq. (212) as zero). kTh'ese calculations
will yi-eld separation energies ES and .E;_ in the charged.and uncharged
caées, respectively. The difference AES-—— Esa-' Es s then a good
estimate of the relative Coulomb energy. In Qenera'l , the value of A&
so determined wiﬁ, of course,'no't be equal to the value of ERCL chosen
initially. Thus, the procedure is to systematically repeat the calculation
with different choiées of E/SL until self-consistency, i.e., Eac&: aEg ,
is finally obtained. This self-consistent value of ESL' will then be
used in egs. (209_) and (210) to calculate binding energies and phase shifts
in all states which are characterized by this particular value of L

In principle, one should determine the self-consistent values of E:L

for all values of A . In practice, however, this does not seem necessary

and it is a good approximation to use the value determined for L =0
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in all even- £ states and the value determined for £ =1 in all odd-4
states.* The reason why this simplification does yield satiéfactony

results is that in all states of a rotational band the relative Coulomb
energies are similar, and’for-these values of L  for which no bound or
sharp resonancevétates exist,. the calculated values of the phase shifts are
not expected to be greatly sensitive to the choice of lE;}’ appearing in the
approximate expression for the exchange-Coulomb kernel.

Next, we illustrate the procedure described above in the X+«  case
where the exact expressidn for the exchange-Coulomb kernel has been derived.
In this case; the trial function has the form of eq. (196) with the o -particle
spatial wave function given by eqs. (144) and (146). The nuc]eon-ﬁuc]eon
potential used is that of eq. (117), with the depth and range parameters
speci%ied in eq. (150).‘ The exchange-mixture parameter u is chosen to be
0.93, which yields a 8Be, L = 0 bound staté having an & -particle separation
energy of 0.748 MeV. |

Using the se]f-consistent‘procedure for the { = 0 ground state, we

obtain a value of JEéz_ equal to 1.63 MeV.. The corresponding value for the

* . 16
For example, in the o +

0 system, the self-consistent values are
obtained by performing calcu]&tions on the L= 0 ground state and the

AL =1 excited séate-at‘5.79 MeV. These values turn out to be equal to 6.12
and 5.19 MeV for L = 0 and 1, raspectively. In a case such as the 3H + &
system where the ground state has £ =1 and no bound or sharp ;esonance

states exist for L = 0, one can simply use the value determined for L=1

in all orbital-angular-momentum states.
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oL -particle separation energy is 0.709 MeV, which is very close to the
above-mentioned value obtained with the exact exchange-Coulomb kernel. AJso,
as a comparison, we héve computed the separation energy in the case where
the exchange-Coulomb interaction is neglected by setting Aﬁ? = 0. This
results in a value of 0.246 MeV, which is appreciably smaller than the
correct value of 0.748 MeV quoted above. |

In fig. 21, we show a comparison of £ = 0, 2, 4 phase shifts calcu-
lated with the exact exchange-Coulomb kernel (solid dots), with the approxi-
mate but se1f;consistent exchange-Coulomb kernel (solid curves), and with @f
set as zero (dashed curves). Here it is seen that the approximation of
omitting ekchange-Cou]omb'effects leads to significant deviations from the
exact result especially at energies near resonances. On the other hand,
the use of our proposed simple, self-consistent procedure to take these
effects into account does yield satisfactory phase-shift values in all

orbital angular-momentum states.
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Table 1

Values of Ca)\ and C,,

[ Sysfem Can Con
n+ %4 (h=2) 1.13 -0.05
n+ % (n=4) 1.20 0.05
3+ 1.16 -0.14
< + 16g 1.25 ~
n+ %0ca 1.35 0
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Table 2

Values of E& and E&‘in various systems

System NpNg N - | O E
(fm'z) ' (MeV/nucleon) (MeV/nucleon)
Mo+ x 1 0.45 53 152
o + 169 12 036 50 16
169 4+ 17 B | oo | s 106
164 4 20y, 4 o030 47 25
]60 + 40(:a 24 0.27 43 ' 5
) |




Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10:

_Comparison of calculated ahd expérimenta] energy spectra of

Figure Captions

Demonstration, in the n + 40Ca«system, of the.existence of
redundant solutions in £ = 2 states and the nonexistence of

redundant solutions in A = 3 states.

170

18F’ 19 20

F, and Ne. The levels shown are those which have

predominantly n, d, 3H, and o« plus 160 cluster configurations.

Calculated phase shifts for o + 160 scattering.

Comparison of calculated and experimental energy spectra of
126, The levels shown are those which have predominantly a
3 cluster configuration. (Adapted from ref. [ 837 ).
Comparison of calculated and expérimenta] differential cross

sections for n, d, 3He, and  scattering by 16

0 at indicated
energies.
Comparison of'ca1cu1ated'and experimental differential cross

16O scattering at 19.2 MeV.

sections for o< +
o +oL scattering with and without specific distortion effect.
Comparison of calculated and experimental differential cross

sections forn + o< , n + 16 40

0, and n + "Ca scattering at
indicated energies. |

Comparison of coupled-channel (solid curve) and~sing1e-channe1
(dashed curve) differential cross sections for d -+ 3y
scattering at 2.02 MeV with experimental data (solid dots).
Comparison of calculated and experimental differential reaction

cross sections for the process (p,d)3He.
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Figure 11: Comparison of calculated and experimental differential reaction

3

cross sections for the process 4He(d,t) He at. indicated

energies, (Adapted from ref. [148) ).

Figure 12: Comparison of calculated and experimental analyzing powers

3

for the reaction "He(d,t)He at E, = 21.33 MeV, (Adapted

from ref. [148] ).

Figure 13: Phase shifts as a function of L for various systems, all

calculated at a wave number of 1.52 fm'].

Figure 14: Calculated 3H + 3He and d + 3He phase shifts as a function of £

in various channel-spin states.

40

Figure 15: The parameter fo as a function of L for n + "“Ca and

3H + &  scattering at indicated energies.

Figure 16: Calculated n + 6Li phase shifts at 30 MeV as a function of A

Figure 17: Comparison of resonating-group and potential-model results for

3He-+cZ scattering at 44.5 MeV.

Figure 18: Compérison'of resonating-group and potentia]-modél results

40

for n + "“Ca scattering at 30 MeV.

Figure 19: Comparison of RGM and PWBA results for the differential

)*He at E, = 130 MeV.
3 g

)

reaction cross section of the process « (p,d

He at Eg = 130 MeV.

Figure 21: Comparison of o +& phase shifts calculated with the exact

Figure 20: Various Born amp]%tudes for the reaction o (p,d

exchange-Coulomb kernel, with the approximate but self-

c
consistent exchange-Coulomb kernel, and with k&_ set as zero.
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