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Abstract

The resonating-group method is a microscopic method which uses fully

·antisymmetric wave functions, treats correctly the motion of the total center
r

of mass, and takes cluster correlation into consideration.  In this review,

we discuss the formulation of this method for various nuclear many-body

problems, and describe a complex-generator-coordinate technique which has

been employed to evaluate matrix elements required in resonating-group

calculations.  Several illustrative examples of bound-state, scattering,

and reaction calculations, which serve to demonstrate the usefulness of

this method, are presented.  Finally,. by utilizing the results of these

calculations, we discuss the role played by the Pauli principle in nuclear

scattering and reaction processes.

e.
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1.  Introduction

The method of the resonating-group structure or the resonating-group

method (RGM) was proposed in 1937 by Wheeler [13 , based on the viewpoint that

nucleons in nuclei spend fractions of their time in various substructures or

-        clusters.  In the forties and fifties, this. method was extensively employed by

especially the groups at the University of London  [2] to study the problems

of nuclear scattering and reactions.  The results thus obtained generally

agreed  fai rly  well with experiment. However, because of computational

difficulties, only very light systems could be investigated, namely, those

systems which involve two s-shell nuclei in both the incident and the outgoing

channels.

This method was given a physical interpretation in 1958 by Wildermuth and

Kanellopoulos [31 .  These authors contended that, because of the on-the-

average attractive nature of the nuclear forces, there exist in nuclei rela-

tively long-range correlations which manifest themselves through the formation

of nucleon clusters [4,5] .  In particular, they have emphasized the imoortant

role played by the Pauli exclusion principle which causes these cluster

correlations to become the strongest in the nuclear surface region.  Using

such a cluster picture, commonly referred to as the nuclear cluster model,

e
they have qualitatively and semi-quantitatively explained the essential

features of many nuclear systems [ 6,.7 3 . The mathematical formulation of the
.

cluster model is, however, basically the same as that of the resonating-group

method; in this review we shall, therefore, make no distinction between these

two descriptions.

To give a general idea of what the resonating-group method is, we should
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state that it is a mi-croscopic method which explicitly takes cluster

correlations into account.  It has certain important features which distinguish

itself from other methods commonly used in nuclear-physics studies.  These

features are as follows:

(i) It employs totally antisymmetric wave functions and, therefore, takes the

Pauli exclusion principle fully into account.

(ii) It utilizes a nucleon-nucleon potential which explains reasonably well the ·

two-nucleon low-energy scattering data.

(iii) It treats correctly the motion of the total center of mass.

(iv) It considers nuclear bound-state, scattering, and reaction problems from

a unified viewpoint.

(v)  It can be used to study cases where the· particles involved in the incoming

and outgoing channels are arbitrary composite nuclei.

Because of these features, resonating-group calculations are generally

rather difficult to perform, especially when the number of nucleons involved

in the system is large.   Thus, even though there was a substantial number of

such calculations done in the sixties [81 , these were mostly simple extensions

and. modifications of previously reported works.  Indeed, it was frequently

remarked  [ 9]  that the requirement of antisymmetrization causes insurmountable

computational difficulties and, therefore, the resonating-group method cannot .'

be expected to be useful in studying systems containing m6re than eight
-

nucleons.  This is, of course, no longer true.  With the development of

generator-coordinate techniques for continuum studies since about 1970  10-13] ,

it now becomes possible to perform scattering calculations for rather large

16     40   r  1
systems, such as the scattering of 0 by   Ca l 141 and so on.  In fact, it

18     16
is certain that even microscopic reaction calculations, such as 0(P,t)  0,
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are feasible, and these calculations will undoubtedly be performed in the

near future.

The formulation of the resonating-group method is described in sect. 2.

-·        This description will be relatively brief, because a detailed account of it

has recently been given elsewhere [51 . Section 3 is devoted to the discussion

of a complex-generator-coordinate technique [11,12,15,16], which was developed

to facilitate the computation of the various matrix elements involved in

resonating-group calculations.  In this technique, the essential idea is to

express the wave function as a linear superposition of antisymmetrized

products of single-particle wave functions or Slater determinants.  Then,

by employing well-developed methods of dealing with product functions, one

can usually carry out the analytical calculation of these matrix elements in

a relatively straightforward manner.

Results of representative bound-state, scattering, and reaction calcu- _

lations are presented in sect. 4.  Here the purpose is not only to demonstrate

the general utility of the resonating-group method in treating nuclear problems,

but also to show how one can obtain better agreement with experiment by

systematically improving the resonating-group trial wave function.

From the results of resonating-group calculations,. one obtains informa-

tion concerning the effects of the Pauli principle in nuclear systems.  In

sect. 5, we shall describe its influence on the effective local interaction

-

between two composite clusters, and discuss the relationship between this

principle and the various direct-reaction processes commonly employed in

phenomenological studies.

Concluding remarks'are given in sect. 6.  Here also, we shall mention

some possible problems which should be considered in the future by the

resonating-group approach.
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2.  Formulation of the resonating-group method

2.1.  Reformulation of the Schrodinger equation

As a starting point, we rewrite the time-independent SchrBdinger

equation

(1)(H-ET)*=0
in the form of a projection equation

< 8.4 1  H' -E T'l p  ) =  0                                              (2)

In eqs. (1) and (2), ET is the total energy of the system and H is a

Galileah-invariant Hamiltonian operator given by

N                  N

H= 7 1 • ., +III V. , -T2 M .Sk Cm
/=1 4<3=1                                   (3))

with N being the number of nucleons, T being the kinetic-energy operatorcm

of the total center-of-mass, and V.. being a nucleon-nucleon potential chosen
1J

to fit the two-nucleon scattering data especially in the low-energy region.

If 641 represents a completely arbitrary variation in the space of all

many-nucleon functions, then it is clear that eqs.. (1) and (2) are entirely

equivalent.  The advantage of eq. (2) is that, as has been emphasized in

ref. [ 5]  , this equation does allow one to conveniently treat the incoming
-

and outgoing channels   in  a  symmetrical way, which  is an important considera-

tion  in the formulation of- a flexible many-body nuclear-reaction theory.

In addition, of course, eq. (2) provides a convenient basis for approximate,

variational calculations in practical problems.

We shall now briefly discuss the general properties of the projection
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equation  (2).    Let  us  make  for  + the ansatz

1   =     T     a.    6        +      ap  * p  d.p    =     6   ak chk                            (4)- r 'r
r                                            k              '

where the coefficients  ar and  ap  are the discrete and continuous:.linear

variational amplitudes for the basis functions 4'r and * , respectively.
The choice of the basis functions 56/2 is arbitrary - they must be linearly

independent, but need not be orthogonal to one another.  Indeed, this latter

point is an essential one, because only by choosing in general a nonorthogonal

set of functions can one expect to introduce the incoming and outgoing channels

symmetrically into the theory.  Now, one can easily show [53 that, due to the

hermiticity of H and the fact that all variational parameters are contained

linearly in 4, , any two Solutions 1144 and '1 76 of eq. (2) are orthonormalized

if all degeneracies are removed, and the Hamiltonian H can be represented by a

real diagonal matrix, i.e.,

<4'„11'41*3 j    C  )71.,  YL  )                                                                                                                       (5)

and

TrI.

<fm.IHI*74> E T     6- C  YYL, 7 L)                                                                   (6)                                  </

where  6 (m,n) represents the Kronecker 6-function if m is a discrete index

and the Dirac 6-function if m is a continuous index. These relations are

in fact true, even when ona restricts the number of linear variation para-

meters or, in other words, when one works only in a restricted function-space.

This is important, because jn practical problems one certainly cannot expect

to always use a set of basis functions which span the complete function-space.
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A proper choice of the..basis-function .set is dictated by the requirement

that in practical calculations one must severely limit the number of  gbk
in the trial function + .  In this respect, it is important to realize that
the Pauli principle, expressed by the antisymmetrization of the wave function,

has the effect of reducing greatly the differences between apparently different

nonorthogonal wave functions when the nucleons are close to one another.

From this it follows that, at relatively low excitation energies, the number

of many-nucleon configurations which one needs for approximate calculations

can usually be made so small that' such calculations become quantitatively
feasible.

2.2.  Basis wave functions in cluster representation

As was mentioned in the Introduction, the cluster model has been quite

successful in explaining qualitatively the features of many nuclear systems.

It seems desirable, therefore, to adopt as basis functions generalized cluster

wave functions [5] which describe the motion of a system of two or more clusters.
Thus, in the resonating-group method one adopts a trial function 14 which

has the following schematic form:

11'      9'i Z c# (4, ) 4(BA) F:(81)

+        +  (A i)  * (B i)  4 (C i)  Fi  C  Ri ,  ,  EJ, )

4-  - 4 (Ak) 4 (Bk) 4 (Ck ) 4 (Pk) FA (Eki,Ek=.8. k3)

+   5-   c    f        2 C Ecm)21          m   J m                                                                                                                           (7)
m
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In the above equation, A is an antisymmetrization operator given by

94     =      7-1      ( -1  )P    P                                                                                                                                         (8)
P

where the sum extends over all permutations P which can be carried out on

the nucleon coordiantes, and p is the number of interchanges that make up

the permutation P. The functions + describe the internal behaviour of the

clusters, while Z(8cm) is a normalizable function describing the total c.m.

motion. The functions Fi(Ri)'  Fj(gjl'Rj2)'  Fl<(Rkl,·81<2'81<3),and  so  on  are

relative-motion functions in two-, three-, four-, and more-cluster configura-

tions, with Bi and so on being Jacobi coordinates defined with respect to

the centers of mass of the various clusters.  The distortion functions

94 I sm z(Rcm,1 are chosen 'to improve the wave function in the strong-

interaction region; they vanish for large internucleon and intercluster distances.

We should mention  that, with the exception of the functions  * E :f m z l,
the other basis functions are contained implicitly in the generalized cluster

functions (channel functions) in eq. (7).  Consider, for example, a two-

cluster term

4'z - 94 [ 43(A)43(B) FLE) 2 (Ecm)]
(9)

This term can be written in a parameter representation as

1-= JI ,4 [+CA)4(8)6(8-8")2(Rcm)] F(-R')dE",     (10)

where &" is a parameter coordinate on which the operator 94  does not act.
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From the form of' eq: (10)., it can be seen that 54 [*(A)*(8)6(8-8")2(Rcm) 
represents a continuous set of basis functions and F (R") represents a

continuous set of variational amplitudes.

*
The basis functions chosen here are not orthogonal to each other.               -

As has been pointed out previously, this does not cause any basic difficulty,

because the solutions of the projection equation are always mutually ortho-

gonal if all degeneracies are removed.  In addition, we should mention that

this basis set is certainly overcomplete.  This also does not pose any problem,

since for practical calculations it is always necessary to use only a small

number of channel and distortion functions in the expansion for 11·1

The variation 64, specifies the function space used in the calculation.

This function space is defined through arbitrary variations of the linear

functions F.. F.,'   , and the linear amplitudes c  contained in the trial1.  J

function 14 of eq. (7). By substituting the expressions for 6 +  and 4

into the projection equation (2), one then obtains a set of coupled integro-

differential and integral equations which these linear functions and linear

amplitudes satisfy.  This will be discussed further in the next subsection.

As is obvious, the computation will in general become quite complicated

if the function space is taken to be rather large.  Thus, in practice, one

must limit the extension of this space by using relatively simple forms             :

for  9  , chosen according to. physical intuition and energetical arguments.

For instance, in the five-nucleon case, one might start by taking just one

term in eq. (7), which represents a n+c< cluster configuration with the

04  particle in its ground state.  This results in the so-called

4*It should be noted that even basis functions  94 C+(A)$(3)6(,8-5 )2(Ecm) 
with  different  values  of  ,"  are not orthogonal  to each other.
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single-channel approximation without specific distortion (see subsection

4.2a of ref. [5] ). Because the eL particle has a low compressibility and

is, therefore, not easily distortable, one does find that this approximation

-                     can yield satisfactory results   in the low-excitation  region    [17]   .     If  one

proceeds further to consider higher energies at which the cl particle can be

broken up, then one should improve the calculation by including also the

d + t cluster configuration, with both the deuteron and the triton in their

ground states.  Thus one sees that, in the resonating-group approach, one

makes successive improvements until the calculation becomes computationally

infeasible.  When such a stage is reached,.then one may have to adopt more

phenomenological means, such as the introduction of imaginary potentials and

so on.

2.3.  Derivation of coupled equations

In this subsection, we show how to derive the coupled equations which

the linear variational functions and amplitudes satisfy.  The derivation

will be performed by assuming that the clusters have no internal angular

momentum. This assumption is made merely for clarity in presentation; in

actual calculations, the cluster internal angular momenta must of course be

explicitly taken into consideration.
.

2.3a.  Single-channel calculation without specific distortion

We start our discussion by considering the simplest case, namely, the-

case in which there is only one two-cluster open channel and where the

specific distortion effect is neglected.  In this case, the wave function

is written as
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ip = 94[43(A).(B)FC&) 2(80-)3

=   94[0(A).4>(8)6(8--8")2(Ecm)3FCE')d "  ·          (17)

By writing the variation of 9, also in a parameter representation, i.e.,

f ll; = cA[*CA)*(B) 6 ( 8 - R') 2 (Ecm)3 EF (8')01.8,, (12)

.... ,    JF

we obtain then from the projection equation (2) the following equation:.

    [-31 ( &'' 8.)-  ETJIC K.1,)3  F(R')d.R"=  0           (13))

where

84(61,6")= <+CA)0(8)8(&-8')2(Ecm)\HI*[ckA)*B)6(&-R")2(&M·>1\ (14)
)

K  (EL,  61' )  --  4+CA)*(B)S(g-&')2-(gs.-01% [*(A)*(B)S (tS")2(Rc..)3'>    (75)
)

with the Dirac-bracket notation denoting an integration over all spatial

coordinates and a surrmation over all spin and isospin coordinates.  Note

that,  in eqs.  (14)  and  (15), the antisymmetrization operator 94 occurs only

on the ket side of the Dirac bracket; this is permissible, s.ince this operator

is a hermitian operator which commutes with the Hamiltonian operator H and

satisfies the relation
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942            (NA+  NB ) 1   94 ,
(16)

with NA and NB being the numbers of nucleons in the clusters A and B,

-        respectively.

To proceed, let us write

%= 94,44 94B (17)
1

where  94A  and   948 are, respecti vely, antisymmetrization operators  for  the

nucleons in clusters A and B, and 94' is an antisymmetrization operator which

interchanges nucleons in different clusters.  Then, eq. (15) can be written as

J'((8,' ')=  <+CA)*{B)6(&-2,)2(29'.'.)  94, Et(A) (8)6(&-8„)2(&=33»>,  (18)                      -

with

/\

0   (A)   =      gAA    4 (A) (19)
)

and

(20)4;   (B)  =    948   4(8)   .

By defining further
r

. /                  u                                                            (21)9 4= / +9 4

we can separate 3((f,&") into two parts, i.e.,

Jil  6,11:) ji(32;8«) i. JVE (31 &') (22)
}
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where   the  direct   part  31    is

J'(I)(R'' &.')  =   <4(A)*(B)6(&- 8,)2(&9„')13(A)$(8)&(&--2")2(&(m)'>     C23)

and the exchange part JYE is                                                              -

.Niflg, C) =   <*(A)*(836<&-6,)£(Sc,„) \ 9<'E*(A)*(d)6(&-6") 2-(Rom)3'>  (24)

For u   we now perform the integrati on  over the relati ve coordinate  R.     The

result is

36(8,'&')=   <4(A)*(B)2(29,„)1 $(A) (8)2(Ec.,f>  6 (&'- &">           (25)5

where the notation <  > R is introduced to indicate integration over

internal spatial coordinates of the clusters and the total c.m. coordinate,

summation over all spin and isospin coordinates, but no integration over the

relative coordinate 3. For convenience, we shall adopt the .normal ization

condition

<(13(A)+(B'>2(Ecm)' *(A) (B)2(Ec„'), 3=  1   .         (26)

With this particular normalization, the quantity J\<D then takes on the

simple form

(27)

6 l R',&")  =    6( &'- &" )  .
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Similarly, one can separate 34 ( 8; R")  also into two parts, i.e.,

34 ( 8'' 6,3  =   34  ( &,.R" )  +   34 E( 8') &") (28)
)

-        with

#8(Q,  ')  =    <*(A)+CB)8(8-8') 2 H)  (A)$(8)6(g-(')23 (29)

and

34ECK,K') =  <0(A)*(8)6(&-&')2 )HIA'[95(A)*(3)6(&-8")2]) (30)

The expression for 3'6 can be simplified by noting that the Galilean-

invariant Hamiltonian H of eq. (3) can be written as

H=H +HB+H, , ( 31 )

where HA and HB are, respectively, the internal Hamiltonians of the clusters

A and B, and H' is a Hamiltonian for the relative motion, given by

I         *2  2H'    -- 9-  + V (32)=        2)k d )

with
/»

being the reduced  mass  of  the  two cl usters  and

V ,                 Z      'E          Vi            .                                                                                                        (33)
i€A    .E B
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Th»e 't )61»ni.ic"116,1,#6'tdR€ial  \44   will  in
gehdral contain all types of exchange

operators; however, since totally antisymmetrized wave functions are used in

resonating-group calculations, we can always replace the space-exchange

e T        -
operator p,  wherever it appears, by the operator - 1 .  01:   with  ·Ri             -
and P  being  the spin- and isospin-exchange operators, respectively.                   -

& Ad

When this is done, we can then define. a direct (local) potential \4(&) as

 ) (E) = <*(A)4(33 2(,fem)   V'I 4-(A) (B)£(Ecm)>R (34)

The cluster internal energies EA and EB are obtained by computing the ex-

pectation values of the Hamiltonians HA and HB' i.e.,

A

El- <c (A)+(B)2 \ Hit 4(A')0(B)2  2 (i=A,-83 (35)

Using eqs. (26) and (31) - (35), we finally obtain

42  2

$3(897 = E-P VE, + 16 (g'f + 4+4 1 6(8'-8')          (36)
1 4

By utilizing this expression and the expression for A :  (8,6 ) of eq. (27),

one sees that eq.. (13) can be written more explicitly as                           -

[-- Y VID (&,>  -   E    3   F(&'  )
142 -72   ,

r 6

+ f K(*2;5&')FLe")01&" = O (37)

)                                                                                               -

where E is the relative energy of the two clusters in the c.m. system,

gi ven  by
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E    -      ET-     EA    -   EB (38)

7

and K(8', &" ) is an energy-dependent kernel function given by

K(8',8" ) =  34Ele'I f<' ) - EFJ .(8/.8„) (39)

From this equation, it is seen that, if the two clusters are considered as

structureless,   then the effecti ve interaction between  them must  be   both  non-

local and energy-dependent.

From the above discussion, one also sees that if the antisymmetrization

between nucleons in different clusters is neglected or, in other words, if

the antisymmetrization operator 4' is set as unity, then the kernel functions

SNE and J\/E will be equal to zero.  In this crude approximation, the

effective intercluster potential will therefore just be the direct potential

\1081 (see Appendix A).

Next, we consider very briefly the case where the trial function is

represented by a single three-cluster term [19] , i.e.,

-                            9  =     9AE  *CA)+(B)+(C)F  (81,%%32 (acrn)3 (40)

Concerning this wave function, there is one important point which should be

mentioned; that is, this trial function can also describe the behaviour of

some two-cluster configurations.  Consider the nucleus 6Li·as an example.

Here the three-cluster  n *p+c c channel includes the two-cl uster  d  +0 2

channel.  This is so, because the function F(81,82 ) can assume a product

form consisting of the deuteron bound-state function and the d + (x
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relative-Aotion function. S'imilarly, one can easily see that the
55

n +  Li and p +  He channels are also included.  On the other hand, the

t +  3He channel cannot. be properly described  by  the wave function  of eq.  (40).

This means that, if one wishes to consider the breakup reaction 3He(t,np)OL,

then one must, in addition, introduce a two-cluster t + 3He term into the

resonating-group formulation.

By expressing 11/ and 311, in parameter representations and using the

projection equation (2), we obtain

(41)

where

34( 8; ,&I,&,", SI')  =    < 4(A)(4(B) 4 (C) S (e,-61')6(&-811)2

1 H 1.94 I 4 (A)*(B)+IC) 6 (gi-gi)6(82-82 ) 21 1>
'

·-· (42)

..14   l  gi,  BL,   St,   EL)    -      <  *(A)*(B)  *(C)6(8,-8,')  5(82-  BL)   2

(4 E*(A)*(B)*(C) 6(8,-8,")6 ( 8*-fa'.) 2 3)
.

· . ·  (43)

and  i , B  , 8; ,   and RI  are parameter coordinates which are·not acted

\
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upon by the antisymmetrization operator 94 . Proceeding now in exactly

the same manner as described above in the two-cluster case, we can again

write eq. (41) in the following more explicit form:

,1

F - -1 72-   A
Z

L          2%           R i r  vi       +     Vi  C  fi' ,  ,Rt  ). -  E    ]   F  (  8 i'. 3& )
1-\ -

r.1-     -1

/

where  B,   and //,12
are reduced masses,  and  E  is the relative energy of  the

t

clusters given by

E=E-E-E-E- (45)
T    A B C'

with EA' EB' and EC being cluster internal energies.

If one is concerned with bound and sharp resonance states, then

eq. (44) may be approximately solved by using the Ritz variational

procedure employing trial wave functions which vanish in the asymptotic

regions.  For the consideration of three-body breakup reactions, some

possibilities to utilize the derived direct potential V (gi, ,%) and
- energy-dependent kernel functions  K(Ri,  R ,  811,  R )  have baen recently

discussed by Schmid  19  .  It should be mentioned, however, that these

functions have, in general, quite complicated structures.  Thus, together

with the fact that three-body boundary conditions are also complicated, we

are of the opinion that for future progress to be reAlized in solving

the breakup problem, more advanced mathematical techniques and, computational

innovations must first be made.
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2.3b. Single-channal calculation with specific distortion

For some systems, the SDecific distortion effect may play an important

role. This occurs in the d + 04  case  20, 21   , for example, where the

high compressibility of the deuteron cluster means that this cluster may be

strongly distorted when it overlaps appreciably with the oc cluster.

Therefore, for a proper consideration of such systems, it will be necessary

to introduce square-integrable distortion functions into the formulation such

that the behaviour in the region of strong interaction may be adequately

described.

Let us assume, for simplicity in discussion, that only one distortion

function is. introduced. The trial' function is then given by

1# =
i     +       c,    94     E   .91   2  (Es"'3 1 (46)

'

where 1 0 is a channel function of the form given by eq. (11) and cl is a
linear variational amplitude. By performing independent variations 390
and   54 I:£ 21 EC,   ,  thi  projection equation becomes

<3 4'0  1  H-ET 1 4,   >  +     C,  < 31,0  1  H-E T I  f 2  >  = O
(47)

)

< 2 2 1 H - ET I "11 > +  cl < f 211-1 - ST 1,  2 > -0 (48)
)

with

A

1     4 fl   . (49)
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Sol ving  eq.   (48)  for  cl and substituting the resultant exoression· into

eq. (47) yields

<3 90    1    H   +    0    -    E T   1   311,0   >  -   0
(50)

where

A
//'I CH_ ET) 1 3,2 ><221 (H-ET)
V =- (51)

4  ,2  1  H- eT I    2 3

By using eq. (26) and the normalization condition

<g 96 1 21,2> -- 1
(52)

we can write eq. (50) more explicitly as follows:

+2  2
F--1-7, + VD (3')-EJF(R')L l» Rj

+      [KLE'. 8')+KICE'..R')3   F(-R')°18"   , (53)

where

A  (   8')  >3 (R')
KI  (E; E.') -- A (54)

E  ET )

with

(55)
X ( 8' ) = <+C A)* LB) 3 ( B-B' )2 1 H - ET 1   2  
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A

and  Ellbeing the- expectation  value  Of"H with respect to the distortion

function, given by

/1 -

Et     <421 HI 212 ) (56)

Thus, one sees that the addition of a distortion function introduces an

extra nonlocal, energy-dependent, separable term into the effective

internuclear potential.

It is a simple procedure to generalize to the case where many distortion

functions are added to 90 .  The only complication arises because the

functions 94 Ism 2 J  are not orthogonal  to each other.    But this compl ication

can be easily overcome by transforming to a basis set of orthonormal functions

Isee·eq. (52)1 which diagonalize the Hamiltonian' H in the subspace spanned

by the original distortion functions 94 Efmal .

2.3c.  Coupled-channel calculation

We discuss in this subsection the resonating-group formulation of a

two-channel problem.  Here the trial function 111.1 has the form

*= 14# t.'11' (57)
& ,

where

4= 4  I.(A)+(B)  F (892(Ecm)1
(58)

+
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and

11.13= 54 [*(C) +LD) 4-(82)2(Bcm) 1 (59)

In the above equations, the +1 are cluster internal functions, chosen

to satisfy the normalization condition (see p. 114 of ref. ES])

<*CA)*(B) 2(Ec,„)1 $(A) f (B) 2(fc,") >ff

= <0(00(3)2(Re=)1  (C) 0(3)2(.fc-) >.9-   1 (60)

By substituting   .4.1  and  51,1.1 , expressed in parameter representations,

into the projection equation, we obtain the following coupled equations:

f  K   (-R ,E;) FLRI)d RI  +1  i K  (IR: ·Fi)9(,Bi)d·Ri= o (61)

J   fi -r,

f  R    (f;  EJ')(i-(.Rj),14  + fK    (R.' 11:) FC.F.i)64-0     (62)               '
12   ' d li -1,-T

-          where

2  (R' 9') = <4(A)*(B)6(ff-·4)2   H-ETI
ff -t'-t·

1,

94 f 4 (A)+(B)6(-Rf-Bf )2]3 (63)
)



22

A
1             4\

K22(182, 83.)=  <i#(C)0(.1))3(82-g;)2 1 H- ETI
1t

54 04(C)*(3) 5(f,-3,)31> (64)
)

1 it

Kf   C  Ef,  82   )            < + (A-)  4 (B)  3 (Rf -  .4 )2 1   H  -ETI

94 [+(C)*(D) 6(5-fi) 2 1 > (65)
)

K24(4.8.I)=   <*(C)0(1))5(32-3&')el  H-ETI
a I+ (A)0(B)5(gf- 8;) 2 J> (66)

)

with 8·i:, Bf,· Rl,. and R" being parameter coordinates.  If we now use the
-9     -9

procedure described in subsection 2.3a, then it is easily seen that these

coupled equations may be reduced to the following more familiar form:

 -31 Vt + V  (4)-EfJ F(Fi) -'fk (fi, 3,') F(B;)'lEi
22/                it                   ·       14                                                                                                                                                      4  4

A 4
(67)

+    f    *  C 4,  82  )  e ( 3 1,     d 824
=0

)

2 0, 72 +1%(-Ri)- E ](SCRI)+f  (3;,81.)4<Ef)«11;2/1 11             1}
+ F K C RT,4RJ) FL*R*) R+ -0 (68)

11

J   15  -4
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where  Pf   and  )12 are, respectively, the reduced masses  of  the cl usters

in channels f and g, VDf and VDg are direct potentials, Ef and Eg are

relative energies given by

E  =E  -E -E (69)f T A  B'

E  =E  -E -E (70)
g T C     D'

and K and K are energy-dependent kernel functions given byff      gg

K     (84, FI) =  20(A)0(8)3(Ff-ff')E I H- ET 1 94"L-$(A) 8)6(4-4")£]>(71)ff

51. (S;,  82")  =  <45(c)45(.D) S (82-f  )061   H  -  ET),A«(4*(C)4;(1)6(3'-3f)21>  (72)

From the expressions for these kernel functions, one sees that

4

Kf f C ff'' Bf ) K. 5  C   *    24-  )
(73)

)

(74)

kif   C 31''  81"
) K*   (E, , Ri >99                                         7

1 „

'<f;    (ff, 31) 1(;f  ( 81'.  .EI ) .

(75)

These relations follow, of course, from the hermiticity of the

Hamiltonian operator.

By solving eqs. (67) and (68) subject to appropriate boundary conditions,

one obtains information concerning various scattering and reaction processes.
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For '6'jtdinple., 'if the'Ehannels f Ahd g denote, respectively, the d + t

channel  and  the  n  + oc channel, then performing a two-channel cal culation

in the manner described here will yield results for the· scattering processes

t(d,d)t and oc(n,n)0, , and the reaction process 0,(n,d) t.

The above-described two-channel formulation can be improved by the
distortion

addition of one or more \functions.  This will, of course, results in a more

complicated set of coupled equations.  The procedure to derive these

equations is, however, essentially the same as that described in subsection

2.3b ; therefore, we shall not further go into it here.
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3.  Complex-generator-coordinate technique

3.1.  General remarks

In resonating-group calculations, the major task is to compute the

kernel functions given, for example, by eqs. (63)-(66).  For these computa-

tions, one needs to carry out a substantial number of multi-dimensional

spatial integrations.  Because of the complicated nature of the resonating-

group trial wave function caused by the requirement of total antisymmetrization

and correct treatment of the c.m. motion, these integrations are generally

rather tedious to perform, especially when the number of nucleons involved

in the system is large.  Indeed, this was the main reason which led a number

of people to comment in the past that the resonating-group method is

impracticable for any system containing more than eight nucleons.

The integration technique which was extensively used a few years ago is

the so-called cluster-coordinate technique C 5,22 J  .   In this technique,

one introduces as spatial variables of integration the internal and relative

coordinates of the clusters and the total c.m. coordinate.  This seems to

be a natural set of integration variables to use, because the resonating-

group trial wave function is explicitly expressed in terms of these coordi-

nates.  Then, by choosing functions of Gaussian dependence for both the

-           spatial part of the. wave function and the spatial part of the nucleon-

nucleon potential, multi-dimensional integrals can be evaluated analytically.

The evaluation of matrix elements by the cluster-coordinate technique

is, however, usually a quite tedious procedure.  The main reason for this

is that the Gaussian functions will have exponents which contain cross
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terms in the cluster internal coordinates.  For example, let us consider a

translationally invariant eL-cluster wave function of the form

+  w)  =      exp  E-  1 oc  t   ff   1                                                           061
#=1

which depends on the internal coordinates    , -92-, and  -93 ' defined as

9.     f 2 - B«  , (i = 1, 2, 3) (77)
2 k

with  2<c being  the c.m. coordinate of the 0( cl uster. Because the coordinate

fF.  is  not an independent  vari able,. the exponent

- 1 , pil - t.1- 91 + P2 + e3 + l- 9,- f,--faf 3A. 4 -/    2 -s -       '-

.4=1

\  (78)
-

92 <2-f + 29 + 2 p + Z.f.·f.+22'·S+lf.·33)

contains such cross terms.  Therefore, to compute the multi-dimensional

integrals which involve integrands of Gaussian functions multipl ed by poly-

nomials of spatial coordinates, one must first diagonalize the quadratic

terms  in the exponents by applying  1 inear coordinate transformations.    For

systems containing a relatively small number of nucleons (NA + NB 4 8),

this is not too difficult. However, when one deals with systems which contain

a rather large number of nucleons, this diagonalization procedure can become

very tedious due to the antisymmetrization of the wave function, because

for every permutation'of nucleons in different clusters, one has to introduce

a different coordinate transformation. In addition, it is clear that the
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cluster-coordinate technique is also not particularly suited for reaction

calculations. This is so, since the natural choices for internal and relative

coordinates in the incoming and outgoing channels are obviously not the same.

Because of these difficulties mentioned above, the cluster-coordinate

-          technique has begun to lose favour and we shall, therefore, not discuss it

here.  Rather, we shall describe in this section another technique, the

complex-generator-coordinate technique (CGCT), which uses as integration

variables the nucleon coordinates themselves and which is especially useful

for reaction calculations and for systems involving a rather large number of

nucleons.  This technique has been developed and extensively used by many

authors   11, 12, 15, 16, 23, 24] within the last few years.  As was mentioned

in the Introduction, the main idea is to express the trial wave function as an

integral of antisymmetrized products of single-particle functions and then make

use of well-developed techniques in shell-model calculations to carry out an

analytical evaluation of the required matrix elements.

In subsection 3.2, we give a general description of the complex-generator-

coordinate technique.  Then, in subsection 3.3, we consider a special case in

which the internal behaviour of each cluster is described by a harmonic-

oscillator shell-model wave function or a linear superposition of such wave

-         functions.  This special case is interesting, because with such internal

functions the complex-generator-coordinate technique becomes particularly

convenient.

Even with the complex-generator-coordinate technique, the derivation of

the kernel functions is still a rather tedious process.  Thus, it will be

important to have a test which can be easily applied and which these functions

must meet.  Fortunately, in resonating-group calculations, a test satisfying
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these criteria does exist. This is the so=called redundant-solution test

which we shall describe in subsection 3.4.

3.2.  Description of the complex-generator-coordinate technique

Let us consider a two-cl uster function  of  the  form

9 = 94 I +CA) 4(8) F ( EA-,23) 2 ( RCm) 1
(79)

)

where

4(K) *(K) 5,<  C «4K 't'<) (80)

with K=A o r B and 3 K
being an appropriate spin-isospin function.  The

functions   + (A)  and   + (B) are spatial parts  of the cluster internal functions;

they are assumed  to be products of functions,  with each function describing

the motion of a nucleon with respect to the center of mass of the correspond-

ing cluster.  That is, we choose  (A) and *(B) to have the forms

WA

0-14) =    f 1    5 (-ri - 84)
=                                                      '                                                                          (8 1)

NA+ NB

+  (3) =      IT-          'fk    C r k  - 8 8)
12.=NA+' (82)

with

NA                                                    NA+Na
1

_      r.         33 -  t  7--'  1.k            (83)-A    N  4 - -A  ,A
&=1 k=NAil
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The functions (P 
with j=l t o N A and lPk with k=N A+l t o N A+N B are

chosen such that + (A) and  + (B) describe properly the spatial behaviour

of the clusters; they can be generated from an oscillator well,. a Woods-

Saxon well, or any other well which is appropriate.

Because  of the presence  of  the cl uster c.m. coordinates  6   and   83   ,  the
trial function iP  is not in the form of an antisymmetrized product of single-

particle wave functions.  However, by introducing an integral representation

for ,p , we can show that the integrand can be represented in such a product

form or, in other words, the integrand will contain no cross terms of the

type    Il:  I      .     To -show  this, we rewrite   ny    in  the   form

1' =  94 [*(A,3,:)0 (B,El) 6( BA- 81) 6(.Ra- B6)3,A B _i5 7

x  F C Ef- EI) 2 l
/   NA 3; + 16.Fi,     \

N               )      - A    -Bu   -     )   d-R"   d  R"
(84)

with BA and 88 being parameter coordinates and N = NA + NB being the total

number of nucleons.  In eq. (84) it is noted that the parameter coordinates

are included in the arguments of the internal wave functions; this is
-                                "

purposedly  done, in order  to call attention  to  the  fact  that  in  0(A,B A)
1#

and 0 (3 , 88 ) the parameter coordinates BR and 88, instead of the cluster

coordinates BA and 38' are used   see ea·s. (81) and (82)  .
Consider now the term *(K,gJ)3(RK-R") with K=A o r B,i n eq.  (84).

...K ,

If we represent 3 (BK- 3 I) as



30

6 (EK-'R )= (1 3 r1-Wj .1     exp[  L.SI(R A-  8;  fl    d     :                                (85)

then it can be easily shown that

*(K,EJ)6(8 -R") -  (_L)3K ·-Ki -
1X )

K                              A    (86)

represents an integral over a product of single-particle wave functions

with respect to the nucleon coordinates Il · Using eq. (86) we obtain

therefore for \1·' the following expression:

. -  RA) exf < d N4 08. fi) 1
'1                      -1_   r. 'l

N
-/1  \

x  [38-Ii-  fk(-rk- E812"p(Ets&·fk,13
k= 6Atl

"4 n   4/

x exp (-2 -SA. BA -158'.RI ) FI SA- Rj)
4

C   N A 8 1 + N B E B  1         4                  4      „x
2< j d -SA d-S  d'RA 4'88 (87)

This shows that, by introducing parameter coordinates J3  and R" and-5

generator coordinates S  and S , the wave function 14  can be represented as

an integral over antisymmetrized products of single-particle wave functions

or Slater determinants.



31

By making the transformation

n H    _       04              4A - SA- 88- )

'i               " +N R#') (88)
Bc'" =   -Ii- ( NA BA B -8 /

and by expressing 311.1 in a similar form involving parameter coordinates

BA and 88 and generator coordinates :FA  and -58 , we obtain explicit

expressidns  for the kernel functions 54(8'' 80)  and  Jf(8' 84)  f see eqs.  (14)
/ "4 '

and.(15)  .  Consider the kernel function 34(&,ts   )    ,
for example.  Because

the operator H contains a sum of one- and two-particle operators, this

kernel function has-the form of an integral  over the generator coordinates
1,

,§A, 5B, &A, 5B and the parameter coordinates Bc , .Ecm (R' and R" are not

integrated over), with its integrand consisting of a sum of products of

matrix elements

Cqi' t,    1     < fllop I  i ,     ,   <e t  1  0     1 91 'FA > ,pF
A ,

where the  9, 8 are one-particle functions depending on the generator and

parameter coordinates. The orthogonality relations between the  .1 in the

same cluster will usually reduce very drastically the number of terms which

need to be evaluated.

-              Even though our discussion above was based on a two-cluster wave function,

it is clear that one can easily generalize it to a wave function which des-

cribes the behaviour of a system composed of a large number of clusters.
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3.3.     .»Spe.cja.1..case..: ...cluste.r...i.nter.nal functions in harmonic-oscillator

shell-model representation

Even though the technique described above is useful when the cluster

i'nternal functions have the general form given by eqs. (81) and (82), it

becomes especially convenient when the internal structure of each cluster

is described by a translationally invariant harmonic-oscillator shell-model

function of the lowest configuration or a  sum of such functions, with  each

of them specified .by a different value for the oscillator width parameter.

In this subsection, we shall consider first the simpler case where one such

oscillator internal function is used, i.e.,

0 (K) =  71- 4,1 ( fi - EK> exf L-- * «K ( fl - EK f 1 (89)
A                                                                                                                              '

with  (3<K being the oscillator width parameter for cluster K (K = A or B)

and the functions 41 being polynomials in single-partial spatial coordinates.

With this choice and upon performing the transformation

U            1          4.4
 K                   N    -d         K-   4 E K (90)

K  K

the wave function    14     of  eq.    (87)   can   then be written   in the. following   form:
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®= ( NA» f ( N'Ke f     ·27r 211-

r,
-

xicA a<4,  -i, f i C - BA ) exp E- 4 9(A ( f. - L 9: )' J]
,J

N

x AB Ig8 -11·-  A.k(rk-E;)exp E-#IWS( rk-191)'J]j
k=NA:1

x  F L 8,9 -88 ) exf C i NAKA (84- '1-9':/ + dr NadB (fs-iRB)* 1

c   NA U + NBBI   ,        '
X      2  l                    N                     j  d @A  4 98  d EA  d.21

(91)

where we have further made use of the relation given by eq. (17).  The

above equation for 11, can be reduced by noting that, because the internal

function is chosen to have the lowest configuration in a harmonic-oscillator

well, the arguments ( I) - fi' ) of ,Aj· and (4 - 88 ) of ,Ak can be replaced,

respectively, by the arguments ( fi- 6 A ) and ( 12.- Q8  ,with g  and 58 being
*

any constant vectors independent of the nucleon spatial coordinates. Thus,

by using eq. (88) and the transformation

*
Even more general choices can be made. For example, &A and 68 may be

chosen as any symmetric functions of the nucleon spatial coordinates.
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 " -  iA   - 0<8 -06  ,

S"    =    1  ( WA A Q   +   NB«(B 9-1 ) (92)
-Cm           N

and by choosing

4            NAKA+ NB<B . //2 \
2( .Rcm)  =   exp  < -                 z - 0-rn )

(93)R
)

we can easily perform the integration over the variables R"  and S" , and-cm -Cm

obtain the following simplified expression:

lp=   NA"IB f 14'  $'(A ;S"E")  '(B; S' R")1 f (-538")F(g")d-5'cAR"      (94)
2Tr N            J'

-'- 1 1                         )

where

r (SS'.R" )

r I  NAMB(NA041+NBOB) , 4+i NBWA+NAIB R"127 (95)=   expl -2 ..2.                                              N           -  /
N      WAd B                                                                                                                                                       '

and

NA.
AJ

*(A, 532·) -     A [KA T- liexp E-*HA (ri- 9,)  -11D "           - 9Ai ,  &-71                                        -
)

1

N
A /                                                                                                                                                 If

9 (Bi s.E'J =  'AB 018 -TI-  Aik exf I-* vB(rk-118)'ll
4

k=Nit'                                                                                                J                            (9 6)
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with

u iNB r -"     NA             " 7

iQA
=

1

5    +   i  -R       (048 - ciA) B     _1N °LA   < -

u              i NA

318 -   1'10,B      -1 - IN  (cia-°(A).8"
(97)

/7   ,/ .
The meaning of the function *'(K; 5/8 1,with K=A o r 8, is clear; it is a

shell-model function of the lowest configuration in a harmonic-oscillator

well of width parameter <K , with the center of the well located at the point
4                                                                                     -                                                t'

I K.  Since it is seen from eq. (97) that NK is a complex quantity, we have

therefore chosen to call the technique described here a complex-generator-

coordinate technique.

As is seen from eq. (94), the wave function 14  has a Hill-Wheeler form

[10,25-28], with  94'[*'(A; S",LE") *'(B;,S"R")] being the intrinsic

or generating function and  F'(S'/R") F (,R") being the weight function.

If one makes the assumption that  (3(A is equal to dB , then the
4                             4

expressions for  A and   B are simpler and the computation of the required

matrix elements becomes also somewhat simplified.  The power of the complex-

generator-coordinate technique described here lies, however, in the fact

that the computation does not become much more complicated even when the

width parameters    o<A   and   0,8 are chosen  to  have di fferent  val ues.    This

is in contrast to the generator-coordinate method used by many other

investigators [ 29-45] .  In this latter method, a real generator coordinate

(the distance vector between the centers of the harmonic-oscillator potential
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wells) is used and the calculation of the matrix elements becomes

straightforward  only  when     c>LA     and     o<B are assumed as equal (see, however,

refs.[46, 47]), which is of course a frequdntly unrealistic assumption-.

By carrying out the same procedure for the variation 67, which will         -

contain a generator coordinate :S', a parameter coordinate -R' , and two

arbitrary constant vectors  £   and £A, one obtains then for the kernel

function K(R',!1")  see eq.  (13)] the expression

/\

K ( 818") 34 ( BIE"0 - ETJ< ( 8'.8,4)

C NAN,)6 (        NA

= (2TN )  j< [.gA 7--t (f j- -C  ) exp [- t. RA (ri - Il;)2 ]]

x     I  IB   -f      ALk   (rk -   9&8)«"p  E-  ir «a  (f k- 2Ta)» 11

k=NA+I

NA
11              1, 2 7

1 H - E,1'4, fed, f 3,1 -T- 4# ( fi -  A ) exp E- 3-«A ( fi - 1, ) JJ

N

3  94B I IB -F •A·k ( fk- CI' f exp [-*«8 (rk -96)2 113>
'

  1 |Ati

X   1-' *-(  wS''R')  1-'( " R,) G' 5'd §"                                                  (98))

('

\
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where

i N B   r   ,     .   NA
li                            L  ,3 · +   i  --ii     C EB- aA ) E'  3N  <A

N   - iNA FFs - A- - DCA) 8, ]N D< (99)B
....

,  . :,
 (.8

A

From eq.  (98) it is noted that in the expression for K(R',R" ) there appear

only products of complex functions, each denending on a single-particle

(space, spin, and isospin) coordinate.  Thus, the antisymmetrization
/\

procedure causes no great di fficulty and the computation of K(R' 'r') can be

performed in a rather straightforward manner (for details, see refs. [12,48.491 ).

In addition, we should mention that the integration over the nucleon coordinates

may be further facilitated by making use of the freedom associated with the

thechoice ofAvectors SA, 98, Q;i, and fig appearing in, the arguments of ..Ai and Ak ·
In the present case, it is appropriate to choose

C'-  r
"

t ( Fi' + 4'' 1.*A - br A

CB  (8 i        /    01*+09&).I  .c -18 (100)

This particular choice is made, in order to take advantage of the

orthonormality relations satisfied by the single-particle wave functions

in a harmonic oscillator potential well.
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Next, we discuss  the more ,general  case  .I 1.6 1 where  the cl uster

internal function is given by a sum of translationally-invariant harmonic-

oscillator shell-model functions of the lowest configuration.  That is,
the internal functions  are now· chosen  to be

*(A)  -  *FLA)

*m) 4
L-   42 (3) <101)9=1

D

where

NA
I

*F (A)   =      C         54     f I A    -IT              '   - ·        ,Ap At i i,-1,) exp[-i«Ap (,9-3,)2 ]1(
,=1                                    ' ,

N

41(8) - CB  74IBilfB 71- T'k('rk-88)exp[-1-«81(f,-881-jj
k-NA+1 '  · · · (102 )

with d  (p=l t o nf) and g  (q=l t o 711 ) being a set of appropriately
Ap                   B 

chosen width parameters, and c and c being appropriate amplitudes.  WeAp      Bq
shoul d mention  that even though  the tnternal functions given above  are  ex-

pressed explicitly in terms of oscillator functions, there is no severe

restriction regarding the flexibility required in properly describing the

internal behaviour of the clusters, because any cluster internal function may

be well approximated by the linear superposition of a sufficiently large
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number of oscillator cluster functions with different width parameters.

with 4(A) and +(B) given by eqs. (101) and (102), eq. (13) then

becomes

2 f f R (6&,R") FIET')68&' - 0
+ , h.4 (303)

p, A-= i  Ck, 6= 1

where

t.

K      ( 6',8") = <46 (A)0 (8)3-(2-8')2(,Rcm)22,24

   H - ET 1 94  lt( A) t.(B) 3-( 8-8 ") 2 ( Ecm )J  >
(104)

As discussed above, a particular form for the function Z(licm) must be chosen
/\

in order to express K(R',8.")  in the form of eq. (98). Since this choice

involves the oscillator width parameters of the cluster wave functions

 see eq. (93)  , it is not clear in the present case how this choice should

be made because different sets of width parameters appear on the bra and ket

sides of eq. (104).  However, by using the fact that the operator (H - ET)

is Galilean-invariant, one can write eq. (104) as
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K        '
4 < 2(8 cm) 1 2( Licm) 3

Pi,ki
(&,R) =

<,XP  ( 82(M)   /CA+ ( ·RCH) >

X <(1>FCA)4>1.(8)3('8-8,)/pi·(gcm) 1 H-ET'

94 [t(A) 4 (B) 3('8- R"j/XY,+(Rcin)-1 >is

(105)

The arbitrary function Y  (R  ) can now be chosen, in accordance with eq. (93)
/ Pi  cm

to · be

 pt ( gcm) =   exp (--  NA   ApzNB© 81   Ec., )                  (106)

A

With this choice, the matrix element K (t', i") can be written in the form
pq,rs

.

of eq. (98), and its evaluation can be accomplished just as in the single-

width-parameter case (n =n =1) discussed above.Pq

3.4.  Redundant-solution test

Even with the help of the CGCT, it is still rather tedious to derive

explicit expressions for the required kernel functions.   In this subsection,

we  discuss a- redundant-sol ution test C50,51 ] which  can  be  used to check

the correctness of these functions, in the case where each of the clusters

is described by a single harmonic-oscillator shell-model function in the

lowest configuration and a common width parameter is used to characterize
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all the clusters involved.

For simplicity in discussion, let us consider a single-channel two-
*

cluster case where the trial function is given  by eq·.  (79) . Under conditions

mentioned above  for  the cl uster internal functions, there exist then inter-
redcluster relative-motion functions F    (R), called. redundant solutions, for

which

red recl
(107)14  = 94 [*CA)*(B) F  (8)2(Ecm)] = 0 .

In light systems, these redundant solutions can be readily determined by

using the exact correspondence between oscillator cluster and oscillator

shell models  C 5J . For example,  in the 3H + x system,  it can be easily

shown that, to comply with the Pauli principle, the relative motion between

the clusters must have at least three oscillator quanta of excitation.  Thus,

the redundant solutions are those which correspond to lower-order oscillations

with number of quanta less than three, i.e., ls, lp, ld, and 2s oscillator
.,

functions.
./

.i.redBecause Y is identically equal to zero, one obtains also

red (108)<*CA)*(B)3(&-R')£(gcm) 1 940+(A)+(B)F     (8)2(Rcm)13=0'

-          and

red
<*CA)*(8)3(S-&') 2(Rcm)1 H I A [*CA)0(B) F    (,8)2(gcm)] >--0.

(109)

*
A more general discussion for a multi-cluster system is given in ref. E 52].
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By using eqs. (14) and (15), these e4uations can be further written as

 4(Rie")  Fr (E,}cle"           0                                                                                  (110)

and

-  44 (R#,2")·Fred.Cli"Jolg:'     0                               (111)

That  is, the redundant solutions  are the eigenfunctions  of both  the  norm

or overlap kernel J\/(R', ') and the Hamiltonian kernel 34 (R',&" ), with

eigenvalues equal to zero.  Thus,. the correctness of these two kernel

functions can be ascertained by simply examining their eigenvalue spectra and

counting the number of times which eigenvalues equal to zero occur.

One may also demonstrate the existence of redundant solutions in another

40interesting way.  Consider .as:an example the n +   Ca case l49], where the

redundant solutions Are ls, lp, ld, and 25 harmonic-oscillator functions.

If one now .takes eq.  (37), makes the partial-wave expansion

F (E') = Z -ip fliR') pi (c'we') (112)
1

*
K ( R'.ff') - R P Z Z ki(K',R') Y (e' 0')'lim (e':9") (113)

1   YYL

and solves numeri cally the resultant integrodifferential equation
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f tz F d2 1 L 1+1)   7
il---

-     t   E-   V» C R' )   fs'-C R, )C     2,u.    L   al R,2                         R'e
1

ki ( Ri R") fi ( R") 01,2"                                            (114)-                                      j
0

then the redundant solutions may be exhibited at any value of E by plotting

 11(R') obtained using different  val ues  for the integration  step  size  hi  in

the numerical procedure.  If the various kernel functions are correctly

derived, then the functions  f, (R') for 142 should di ffer at small values

of  R' but remain   the   same   in the asymptotic region.     On the other   hand,   for

i >2, ft(R') should be independent of hi for all values of R'.  In fig. 1
40we illustrate the 1= 2 and 3 solutions for n + Ca scattering obtained by

using  hi equal to 0.3 and 0.4 fm.  As is seen, these curves do behave in
-

exactly the way as discussed above; thus indicating that the kernel functions

given in the appendix of ref. [49] have indeed been correctly derived.

When 04 is not equal to 0(B , redundant solutions do not exist.

However, the eigenvalue spectra of J\((R' 'r') and *1(R',&') are still

expected to be similar to those in the equal-width-parameter case, which

follows from the fact that the Pauli principle tends to reduce greatly the

di-fferences between apparently di fferent structures   [ 51. For exampl e,
16

the     At  = 0 eigenvalues   of  X (R",&")    for   the    0  + 0 system are equal    to

0.0, 0.0, 0.0015, 0.0204, 0.244, 0.514, 0.715, ··· in the case where

16
0<A = 0.32 fm-2 for the 0 cluster and   = 0·514 fm-2 for the K cluster,

which are rather close to the corresponding values of 0,0, 0, 0, 0.229,
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, 0.510, 0.718, ··· in the equal width-parameter case.  Thus, even though

there is, strictly speaking, no redundant-sol ution test  in the unequal-

width-parameter case, one can still examine the eigenvalue spectra to gain

some confidence about the correctness of the derived kernel functions.

In  the· 0(A#: 643  case, the absence of redundant solutions is replaced

by the presence of spurious resonances which occur with definite characteris-

tic energies    53, 54  .  ·Take the 3H + e< system as an example. Now, instead

of  two 1=O redundant sol utions, there appear two relatively sharp spurious

reydridntes in 'the   L= 0 phase· shift. (55] . These spurious resonances do

not represent the existence of true resonance states in the compound system,

and their presence can be easily suppressed either by the adoption of a

least-square variational procedure  E 56,  57     or by the introduction  of a

phenomenological imaginary pot'ential   into the resonating-group formul ation  0581.
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4.  Bound-state, scattering, and reaction calculations

In this section, we show the usefulness of the, resonating-group method

in treating nuclear many-body problems by discussing the results of some

bound-state, scattering, and reaction calculations.  These calculations are

selected mainly for illustrative purposes; however, they do serve to indicate

the importance of including various features, such as specific distortion

effects, reaction channels, etc., in a practical calculation.

4.1.  Bound- and resonance-state calculations

17   18   19      20
4.la.  Cluster states in   0, F, F, and   Ne

*              17   18
As first example, we describe a recent study  on the nuclei   0,   F,

19       20
F, and Ne in which one of the main purposes was to investigate bound and

resonance states in these nuclei which have predominantly a light-ion plus

16
0 cluster configuration.  In this study, the trial wave function used is

given by eq. (79), with the cluster internal functions assumed to have the

form given by eqs. (80) and (89).  The width parameters are then chosen to

yield the various empirically determined rms matter radii; that is,

0(A                0,32 fm (115)

2

*
A study of this type, but with a different nucleon-nucleon potential and

with the exchange-Coulomb kernel approximated by a procedure described in

ref. I 491 , was given in ref.  24  .
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16

for the 0  cluster,  and

-202  = 0.20, 0.37, and 0.514 fm
(116)B

for the d, 3H or 3He, and of clusters, respectively.
The nucleon-nucleon potential is taken to be [ 59, 60 ]

VI-= IvR + t(I-'p; )4 + 1(1-ET,v'II-k«'--1(1.-u-)'f ]Aa

-r21*vA eAF[-A ( fi -4.)* 1 ( (32+ 5  ) .  c f.. -  r-J 1  X   (f i-f i)

2e
2,·  (  2  +  ·r.. )    L  (%     r,    ')42    2           j aIIi-61                                             (117)

where

,2 1
VR      =         VOR    exp   f  -  11 R  ( fi  -fj)      J

Vt    =    - Vot  ek p  [  - 1<t  (  ri -  fit 1   ,

'27
F*  -   - V GAex p[-ti# (r.- r·)   1\-1  -d  1 7 (118)

1with

VoR = 200.0 MeV, 1<R = 1.487 fm-2,

Vol:   =  178.0 MeV, lit =  0.639  fm-2,
t/  =  91.85 MeV,

114,=   O.465   fm-2
0»

(119)

This particular nu€leon-nucleon potential is chosen, since it yields a
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satisfactory description of not only the two-nucleon low-energy scattering

data  but  also the essential properties  of the deuteron, triton,  and   oc

particle.

-               The exchange-mixture parameter u in eq. (117) is an adjustable parameter

in the calculation.  Its value is determined by fitting the light-ion

separation energy in the lowest t = 0 state of the compound nucleus.  For
16example,   in  the     04  +       0  case,  one  adjusts u until the calculation yields

the  experimental  val ue   [61]    of  4.73  MeV  for the oc-particle separation
20

energy in the ground state of Ne.  This adjustment is necessary, since in

the present calculation various simplifications are made; in particular,

the specific distortion effects are not explicitly taken into consideration.

The resultant value of u so determined should be reasonably close to 1 which

corresponds to a Serber exchange mixture.  If this should turn out not to be

the case, then adjusting u is too crude a procedure to compensate for these

simplifications and a more elaborate calculation should be performed.  Also,

in eq. (117), the spin-orbit depth parameter VA and range parameter X will

be treated as phenomenological parameters; their values will be determined

by using experimental  data  on the energy spl ittings  of the lowest    1=2

levels in the various compound systems.

Using the procedure described in subsection 2.3a and upon performing a

partial-wave expansion, one obtains, in a particular (J,L ) state, the

following integrodifferential equation for the radial function fj-1,(R')  :

i#I- - -   +  E-  VN (R' ) -  VC (R' ) - tri \'10 (R' )1  f     (R' )
62       1 (1+1)  7

d k, 2                R' 2                                                                                        )     51

-  f- 1-  AN (R'IR') +  k (R,R")  1  f   (R')de"                                (120)J L .1 1 .LL
0
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where the quantity '7 is' given   by(31

1 =1
7,- 2,t

= -(1+1) (121)' itt   94 ./4

16    3   16
in the n + 0 or  H + 0 case, and

11«1, 1 =21 r 1                  - _ 1 1 = -2(1+1) (122)
,             .C 1,1.   -              ,        Il -1,1

16in the d+  0 case. The functions VN' VC,and Va, represent the direct

nuclear-central,.the direct Coulomb,  and the direct spin-orbit potentials,
N

respectively, while the kernels  .ki   and k   represent the nonlocal con-

tributions arising from the exchange character of the nucleon-nucleon potential

and the antisymmetrization'procedure. In deriving the intercluster spin-·

orbit interaction, the simplification is made to omit the exchange terms by

setting the antisymmetrization operator 94  in eq. (17) as unity. Also,

in the actual computation two additional approximations have been made:

(i) the exchange-Coulomb kernel k  is determined by an approximate, but

self-consistent procedure which is described in Appendix B, and (ii) the

nucleon-nucleon spin-orbit range parameter X  is assumed to have a value

approaching infinity.  As a result of this latter approximation, the potential
-5/2,

Vdo ( R') is characterized by only a single parameter  Ji =VAX
which will then be determined by using experimental information as described

above.

The values of u are equal to 0.924, 0.989, 0.907 and 0.881 in the n, d,

3             16
H, and oc plus 0 cases, respectively.  The finding that u turns out to
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have a largest value in the d + 0 case can be attributed to the fact that
16

the deuteron cluster has a high compressibility and, hence, can be easily

distorted.  As for the values of J they are, respectively, equal to 50.0,X'

5           16      16      3   16
-          20.8, and 12.4 MeV-fm  in the n +, 0, d + 0, and  H + 0 cases. Here

one  notes that these  JA    values are quite different in different systems,

indicating that one must be careful in interpreting the intercluster spin-

orbit potential in eq. (120).  At the present moment, it seems appropriate

to say that this potential should be considered as mainly phenomenological in

nature and is constructed only to represent the average effect of the two-

nucleon tensor potential.

17   18   19      20
Calculated levels in   0, F, F, and Ne are shown in fig. 2,

together with those experimental levels  ( 61-66] which have predominantly
16n, d, 3H, and oc plus 0 cluster configurations. In obtaining the resonance

levels, the procedure used is to calculate the various phase shifts and

locate energy positions at which the phase-shift curve has a largest,

positive  val ue  for the slope.    This is illustrated  for  the    1 + 0 case
16

in fig. 3, where one notes the presence of the 6  and 8  members of the

ground Klr = 0  band, the Kl  = 0- negative-parity band, and the excited
11-            +
K   = 0  band.  In fact, there is even an indication for the existence

of an excited K'r = 0- band. The states in this latter band are, however,

quite broad and, consequently, their presence  will be hard  to  verify  ex-

perimentally.

As is seen from fig. 2, there is a generally good agreement between

calculation and experiment.  This shows that, even with the simplest type of

resonating-group calculations, one can still obtain valuable information

concerning the existence of particular cluster states in nuclear systems.
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A Similar .calculation in the  oc + 0 case has been performed by
16

Matsuse .at al [67] . By studying the reduced 06.-·widths of the levels,
16they  concl uded  that the states  in  the  Klr  =  0-  band  have a strong  o< +      0

molecule-like character, while the states in the ground-state band have

rather shell-model   1 ike character with large  (8,0)
SU3

component  but  can

still be described fairly well within the framework of the resonating-group

method using the simple trial function of eq. (79).  In additioh, these

authors have examined various electromagnetic properties [67,68] and found

generally sd'tisfactory agreemen't between calculated and experimental results.

Using a bound-state approximation for resonance levels, Tomoda and

20
Arima  [69]   have also studied  the Ne problem.    They  empl oyed a model

space which is constructed by combining the (2s-ld)4 shell-model and the

4+ 0 cluster-model spaces.  This is equivalent to extending the calcu-
16

lation described above by taking into account some specific distortion

effects.  As the consequence of the use of a larger model space, they have

obtained from their calculation not only the above-mentioned rotational bands

but also another K'  = 0  band which corresponds to the one found experi-

mentally with band head at 6.72 MeV  70] .

Similar calculations have been made in many other systems.  These are

described in refs.  21,  36,.· 71-82  .

124.lb. 30< cluster structure of  C

For the illustration of a multi-cluster resonating-group calculation,

we describe the investigation of Fukushima and Kamimura  83 , in which the

low-energy T=0 states of C are considered in the 30 cluster12
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representation.  In this investigation, the trial wave function has the form

of eq. (40), i.e.,

11/LM = 94 l.*(oll>*(0(2)(#(0(3)FLM C Ri. 82)2(Ecm)] (123)

where

-81   =       8* i-   8«2

B2    =z    C   .8«t   +    8 0 2)   - R e,3 (124)
,

with  ot, ,.842'  and Boij being the centers  of  mass  of the three   ot cl usters.

The internal function  * (oll ) is taken to be

4
4(«LI)= exp LF- -*0< 7 (S· - R )'13«I (125)-0(1

k=I

with F being an appropriate spin-isospin function.  The internalDoll

functions *(41) and *(83) are chosen to have similar forms, specified

by  the same width parameter   c<    .    The  rel ati ve-motion function  F   (Rl '  82)LM

is determined by solving eq. (44).  For bound and quasibound states, it is

convenient to solve this equation approximately by expressing  FLivi(Rl '82)

as

.

F   ( EI,82) =        B,LLAI *11/ i 12
i /1,  12-

X  El  c (L i, ) , 2 ;  M. m,  m2,m,)fI-,C *Ri) f- (32)j   (.126) 2mz
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where C(L,1,24.; M.'»L„m2 )  is a Clebsch-Gordan coefficient; and  3/Li,(i·e.2
are linear expansion coefficients to be obtained by a variational procedure.

.L

The functions
 El,m,  (BI)           and / m2(8.21 are assumed, for computational

convenience, to have the forms                                                     -

%4 (EI)= Rit, exp(- 9,Rt) Y  (8, 4,) (127)

/   fl Al 1/mi   ,

and

-4         12
/)61'mz (. 82)  =  R:     exf  (-/1·1  R   )  '14;m,  C 82,46) (128)

From eq. (126) it. is. seen that the total angular momentum J=L o f a given
12C state is obtained by coupling the orbital angular momentum  1%   of

8the relative motion of the first two ob clusters which form a  Be

cluster to the orbital angular momentum  li  of the relative motion of the

third   ct cl uster with respect  to the center of mass  of  the  8Be  core.

Because of computational problems,  it is necessary  to  use a relatively

small number of basis functions in eq. (126).  As a consequence, the choice

of the fixed nonlinear parameters  GL , 1,  , 12 , 1/£ , and »j
becomes quite important.  For the choice of oC , it is found that a

reasonable value which can be used for all C states considered here is
12

.

0.55 fm-2.  This value is nearly equal to that which optimizes the energy

expectation  value  of  the (X -particle Hamiltonian. Also, since  in  the

present calculation a totally antisymmetrized trial function is used, one

can adopt the simplification of setting   11= 0 in
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A               *

Y.t, mi
· This results in only a relatively minor overestimate of the

calculated energies, but does limit the calculation to natural-parity states

12in   C.  As to the choice of  )4 and /,AL   , four values for each of these

parameters are adopted. These are given by  Vk/0   = 0.8,0.45,0.15

and 0.05 and  YIA.j/(  4<)   -= 0.8, 0.45, 0.15, and 0.05. The total number

*Tr                               12
of basis functions for each J state is then 16.  For the C states

considered in this calculation, this seems to be sufficient because an

exami nation in which the number  of    Vi     and   (1 
is increased shows  that

only little energy gain can be further obtained.

Using a nucleon-nucleon potential of the form of eq. (117) with

VoR = 60 MeV , <R = 0.980. fm-2 ,

Vot   =  Vo*=  60  MeV , 1<t =  1<* = 0.309 fm    ,
-2

u   = 0.82  ,
(129)

which is similar to the Volkov no. 2 potential I 84 1 , Fukushima and Kamimura

12
obtained a C low-energy spectrum which is shown in fig. 4 together with

the spectrum experimentally determined [ 85-87 J . To facilitate a comparison

between these two spectra, they have shifted the energy origin of the calcu-

lated spectrum such that the calculated and experimental 306 threshold

*For the J lr = 4+ state, a somewhat different simplification is adopted.

Here the assumption of   li = 0 when  1,/ <  /U:i·  and  12= 0 when

1,1  p   .*PLi        is used. Comparing  to  the case where   ,gj is always  set

as zero, one finds that this procedure yields a significant energy gain

for the 4  state, but no energy gain for the states with J'Ir = 0  and 2 

[83] .
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ener.gies occur  at' the same verti cal position.     This  adjustment  is

necessary, since with the·wave function of eq. (125) the calculated binding

energy of an oL particle is 27.3 MeV which. is somewhat smaller than the

experimental value of 28.3 MeV.                                                    -

From fig. 4 it is seen that there is a reasonable agreement between

calculation and experiment. The fact that the states in the ground-state

band are too closely spaced is a basic defect of the 30(- model, with each CL

cluster in its lowest configuration.  As has been pointed out by Takigawa

and Arima  88  , this defect can be remedied by a proper consideration of.

the effects caused by the spin-orbit component in the nucleon-nucleon potential.

Fukushima and Kamimura have also' studied the electromagnetic properties

of   C in various states and found good agreement with observed results.
12

In view of the fact that the agreement between calculated and experimental

energies is only fair, this finding is somewhat surprising.  Thus, it will

be interesting to conduct a further examination where an improved wave

function is used.  This can be achieved, for instance, by introducing

different width parameters   for  the oc clusters, including less symmetri c

oi-cluster configurations, and. so on.

Other microscopic multi-cluster calculations appearing in the

literature are given in refs. [89-97].

4.2.  Scattering calculations

164.2a.  Scattering of light_ions by  0

In this subsection, we discuss the scattering of light ions n,d, 3He,

16and 01 by  0. The purpose is to show that even simple resonating-group
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calculations can yield cross-section results which agree satisfactorily

with experiment.

The formulation of the problem is given in subsection 4.la.  In the

present investigation where one is concerned with,experimental data in the

positive-energy region, it will be necessary to take reaction channels into

consideration.  As is clear, the proper way to do this is to perform a

many-channel resonating-group calculation as described in subsection 2.3c.

However, this will involve a great deal of computational effort, because

at relatively high energies one will have to contend with not only many

reaction channels but also the problem of multi-cluster breakup.  Therefore,

for the calculations to be described here, we shall crudely take reaction

effects into account by adopting the simple procedure of introducing a

phenomenological imaginary potential into the theoretical formulation.  In

other words, we shall replace VN(R') in eq. (120) by VN(R') + iW(R').  For

WCR') a surface-derivative Woods-Saxon form will be employed, i.e.,

W (R' )   =   WI   I  .4  61.I    ·A;   fr  (R, ) ] (130)

with

-                                                 1 -1

fr(R') = < 1+ eAP[(R'-RI)/ar] j                  (131)

The geometry parameters RI and aI are chosen by the criterion that the rms

radius of the form factor f (R' ) be-approximately equal  to that of the

direct nuclear potential VN(R').  Thus, we use



56

aI = 0.6 fm (132)

and

,

RI = 3.2, 4.6, 4.4, and 4.2
fm (133)

for n, d, 3He, and o< plus 160 scattering, respectively. With these

parameters fixed, the only adjustable quantity is the depth parameter WI;

this   parameter  is   then adj usted  at each energy to obtain  a  best  fit  with

experimental diffe-rential-cross-section result.

A comparison between calculated and experimental C 63,98-101     di ffaren-

tial scattering cross sections for the various systems at indicated energies

is shown in fig. 5.  To obtain the calculated results, we have used values

of WI equal to 4.7,. 6.6, 6.5, and 1.15 MeV for n, d, 3He, and oc + 160

scattering, respectively.  As is seen, the agreement is generally quite

reasonable.  The fit to experiment in the d + 0 case seems to be somewhat less
16

satisfactory than those in other cases.  This can probably be explained by

the fact that the single-Gaussian deuteron spatial wave function used in

this calculation is not flexible enough to adequately describe the behaviour of

this cluster [53] and that the important deuteron specific distortion

effects have not'been properly taken into consideration.

There is another interesting result which should be mentioned.  In

16                                                                    -the n + 0 case at 13.18 MeV, the reaction and integrated-elastic  cross

sections calculated with the value of WI given above are equal to 639

and 883 mb, respectively, which compare well with the measured values of

730 k 100 and 880 & 90 mb quoted in ref. [98] . This indicates that,

since in a resonating-group calculation the real central part of the effective
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intercluster interaction is well accounted for, one can even use the

elastic-scattering cross-section data to make a reasonable prediction of

the total reaction cross section.

Calculated and experimental [102] results for the ratio 0-(0)/02(e)
16in   the  d + 0 case at a higher energy of 19.2 MeV are compared in fig. 6.

For the calculated result , we use a value of WI = 2.0 MeV which yields

a total reaction cross section of 927 mb.  Here one sees that the agreement

obtained is indeed quite satisfactory, with the only discrepancy being in

the detailed structure of the interference minimum near 80'.

At present, there exist resonating-group scattering calculations for

many systems both heavier and lighter than the system described here.  Some

selective calculations are discussed in refs.  11, 12, 14-17, 24, 49,.53,

103-1191 . In particular, we wish to point out that the calculation re-

ported in ref. [16] is performed with the flexible cluster internal function

given by eq. (101).

4.2b.  02 + ci scattering with specific distortion effect

The formulation of a scattering problem with specific distortion

effect taken into consideration is described in subsection 2.3b.  In the

present calculation  of   oc + ci scattering   [ 60]  ,  one  writes the trial

-          wave function as

11.d

41 - 140 + r. 4 [i (061) i(0,2) Si(E)2(Bcm)] (134)
1 = 1

where 11-4 is the number of distortion functions. The function •90
represents

the usual no-distortion approximation; it has the form
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· 10 - 94 [4(0(1)*(022)FLE)2(Ecm)] (135)

where   * (of l )      or   * (0(2) describes the internal structure  of a  free                       -

oL -particle, given by

2 4

*(di)= f Y- AiexpE- 4--di Z (·fi-B«i )21 1-5       (136)
-1  j    C< 1

A=I              J-1

and similarly for  * 6*2). The parameters c<, and A  (i = 1,2) are
determined by minimizing the expectation  value  of  the cl -particle

Hamiltonian; with the nucleon-nucleon potential of eqs. (117) - (119),

their values are

Al = 1.0 , 0( i     =   0.305   fm         ,.

-2

A     =   16.057 , 0< 2    =   0.708 fm (137)
-2

2

and the resultant values for the binding energy and the rms radius are

equal to 25.39 MeV and 1.415 fm, respectively, which agree reasonably well

with the corresponding experimental values.

The functions 4,(41 ) and   &51 (El) are taken as

4
i (al) =  exp [- 196  Z  ( fi - 8.1 )21 3«1

%

i (0(2) = exp [-fil Z (fi - B,if 1 *«2
61=5                                          (138)
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with the choice of Ok to be discussed below.  As for the function @£ (R )

in the distortion-function term of N)  , we make the following expansion:

6-(R)=   'Ali "i  211 (R).11(Come)               (139)
-          where

n+I

9 1,(R) = R exp C - 4-1 Ra ) (140)

with

YL = 4 for              1=   0,2

= 1 for t 3 4. (141)

I»

The choice of 8. will also be discussed below.  It should be noted that
FA

N

once  appropriate  sets  of  ( cli,  Ax  ) are chosen,  one  can then determine
-

the variational amplitudes A and the variational function F(fl) by usingli

the procedure given in subsection 2.3b.

The procedure for choosing the number 7Lf of distortion functions
40-

and the nonlinear parameters 0(1 and 8- (i = 1 to nci) is discussed in
f 'l

detail in refs.(21, 1201 .  In the 02 + 4 case described here, it is found

that, for a value of u in eq. (117) close to but less than 1, a choice of
»          -

nd = 3 is sufficient and the corresponding ( 0(£ ,  i ) sets can be taken as

(0.7 fm-2, 0.32 fm-2), (0.7 fm-2, 0.48 fm-2), and (0.7 fm-2, 0.64 fm-2).

The value of u is then chosen such that the resonance energy of the t= 0

state is correctly obtained.  The result is u = 0.950.

In fig. 7 we show 1= 0,2, and 4  oc + 0, phase. shifts, calculated

with u=0 .950, at c.m. energies from 0 to 20 MeV.  The solid curves show

the result obtained with the three distortion functions mentioned above,
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while the dashed curves show the no-distortion (nd = 0) result.  The

empirical data points are those of refs.  121-125] .  As is seen, there

is a good over-all agreement between the calculated result with nd = 3 and.

the empirical result.  In the 1=4 states-,. the calculated phase shifts

are generally somewhat too small.  This can probably be attributed to the

fact that, in this calculation,. a rather simple nucleon-nucleon potential,

containing only a weakly repulsive core, has been adopted.

By studying the results of distortion calculations in different systems

 21, 126, 127  , one can make the following general comments: (i) specific

distortion effects of a nucleus are more important the higher its com-

pressibility, (ii) a nucleus is more distorted the larger the number of

nucleons in the·other nucleus  which causes. the distortion, (iii) except

near energies where resonances occur, specific distortion effects decrease

with increasing energy, (iv) except for resonance effects and odd-even

effects, the influence of distortion  decreases with increasing orbital

angular momentum, and (v) distortion appears to be stronger in "Pauli-·

favoured" states [1271. Based on these comments, one anticipates  then  that
. 4    16

for the scattering of neutrons by doubly-closed-shell nuclei  He,   0, and

40
Ca, the effects of specific distortion should be relatively unimportant

and a simple resonating-group calculation of the"type used in subsection 4.2a

should be adequate.  That this is indeed so is shown in fig. 8 where one

sees that results calculated without specific distortion effects I 60] do
compare very favourably with experimental results  I 98,  128-1301 .

Other calculations involving specific distortion effects are described
-

in refs.. 20, 21, 126, 127, 131-135  .
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4.3.  Reaction calculations

4.3a.  3He(d,p)4He reaction

-               As an example of a coupled-channel study, we consider a calculation in

the five-nucleon system where both the· d· + 3He  (or d + 3H) channel (channel  f)

abd the p + ci  (or n + ci ) channel (channel g) are included [1361 .  For

this calculation, the formulation of subsection 2.3c is used and reaction

effects, arising from the presence of other open channels, are approximately

taken into account by the use of phenomenological imaginary potentials.

The trial wave function in the channel-spin 1/2 state is givdn by

*
eq. (57) with

r -'/2

7%     A [ Nf   *34'4 ff FC -Rf) 2 (Ecm)] (142)

and

-1/2
'11'- 4 IN

t  f ,  (3- C R })  2 ( Bcm) ]                                     (143)5              2

In the above equations, f f and 3 2 denote appropriate spin-isospin

functions   22   ,  and  (1  ,  414  ,  and <9x describe the spatial behaviour of

*
Because of the adoption of a central nucleon-nucleon potential in the calcu-

lation, the spin-3/2 channel of the d + 3He system is not couoled to the

p  + cd   channel;  for this reason, we shall not discuss  here  the cal culation

in the spin-3/2 channel.

.
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the three-nucleon cluster  (3He  or  3H), the deuteron cl uster,  and  the  oL
k

cluster, respectively.  The quantities N-fi  and  N.4  are  included  so  that.=

the normalization condition of eq. (60) is satisfied.

The functions. 41< and *3 are assumed as                                   ..

4
t =  exp  - +« E  (,5 - R«)2 J                          (144)

and

3
43  exp [- 2 Y 7- (fi 1 33) ] (145)

2

d                    '

A=t

where the parameters 04 and Y are chosen to yield the correct rms matter

radii for the respective nuclei, i.e.,

02     =   0.514 fm (146)
-2

and

Y = 0.378 fm for   H
-2       3

-2      3=   0.367  fm  - for He . (147)

For the diffuse deuteron cluster, it is necessary to use a more flexible

cluster function

3                        5
2

t = 5 Ak exp [ - + f  71  ( fi - 18«)  J                   (148)
J=4

The parameters Ai  and 04 are determined by minimizing the expectation

value of the deuteron Hamiltonian; the result is
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-2

Al =.1.0 , 04    =   0.07284   fm

-2

A2 = 3.631 , 12 = 0.3657 fm

A3 = 5.746 , 06 = 1.4696 fm-2 (149)

With the wave functions of eqs. (144) - (149), we obtain from eqs. (69) and

(70)  a  value  of(E9-  Ef)=  20.45 MeV which is reasonably close  to  the

experimental value of 18.35 MeV.

The nucleon-nucleon potential used has the form of eq. (117), with

V=0,R

Vol: =   66.92   MeV , lit  =   0.4 1 5   fm
-2

VOA·=   29.05  MeV , K/,=   0.292 fm-2 (150)

The spin-orbit component is, for simplicity in calculation, omitted by

setting  VA = 0.  As for the exchange-mixture parameter u, it is chosen

such that the calculation yields a good fit to the n + oL , p-wave phase

shifts obtained using the central part of the optical potential found by

Satchler et al   137  from a phenomenological study of the experimental
*

data. The resultant value is u = 0.95.

As discussed in subsection 2.3c, two coupled integrodifferential

equations for the relative-motion functions F(< ) and G(E  ) can be

*
This is the value of u in the channel-spin 1/2 state.  For reasons

explained in ref.  C 136]  , the value of u used in the channel-spin

3/2 state is 1.10.
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derived., -Upon performing-a partial-wave expansion and solving the resultant.

equations subject to appropriate boundary conditions, one can then obtain

the partial-wave· S-matrix and, subsequently, the differential scattering

and reaction cross sections.                                                       -

In fig. 9 we show a comparison between calculated coupled-channel

(solid line) and single-channel (dashed. line) differential scattering cross

sections  for  d  + 3H scattering  at  2.02  MeV.. The experimental data shown  are

those of ref.    138  .  Here one sees that the coupled-channel result is

not only considerably improved over the single-channel result [1151
but also in good agreement with experiment.  This shows that a systematic

improvement of the resonating-group calculation by expanding the trial-

function space can indeed quickly lead to a satisfactory explanation of

observed phenomena.

The calculated  c< (p,d)3He differential reaction cross section at

E   = 68 MeV is shown by the solid curve in fig. 10.  To account approxi-
2

mately for the many-body breakup channels not considered explicitly, we have

again introduced into the formulation phenomenological imaginary potentials,

with the geometry parameters chosen according to the criterion given in

subsection 4.2a and the depth parameters chosen by fitting cross-section

data in elastic-scattering channels.. As is seen from this figure, the agree-

ment with experimental  data     1391 - is fairly satisfactory. The presence

of deep minima and the slight underestimate in ·the calculated cross section

are likely due to the fact that in the nucleon-nucleon potential employed

there are no noncentral components.

From fig. 10 it is also noted that the differential reaction cross

section has a decreasing trend in the forward angular region, but begins
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to increase when e  passes about. 90'.  As has been studied in careful

detail 01403  , the reason  for  this  is  that,  at a relatively high energy,

the reaction proceeds mainly through di fferent mechanisms  in the forward

-          and backward angular regions.  Thus, in the forward angular region it

proceeds mainly through a one-nucleon pickup process, while  in the backward

angular region it proceeds mainly through a two-nucleon pickup process.

Both of these processes are automatically included in the coupled-channel

calculation described here, because in this calculation a totally anti-

symmetrized wave function is employed.

Other reaction calculations using the resonating-aroup approach are

reported in refs. E 141-1461 .

4.3b.  4He(d,t)3He· reaction

For resonating-group calculations at relatively high energies where

many rearrangement and breakup channels are open, it is practically

impossible to take all these channels explicitly into consideration.  Thus,

in  these cal culations,  one  is  compelled to adopt the procedure of utilizing

only a small number of open channels in the trial function and taking into

account the remaining channels by introducing phenomenological imaginary

potentials into the formulation.

At lower energies, the number of open channels is much smaller.

Consequently, if one makes the assumption that breakup processes proceed

entirely through a sequential-decay mechanism   147  , then it becomes

possible to perform resonating-group calculations with essentially all

these channels taken into account.  In this subsection, we describe such a

cal.cul ation,  made by Schutte  et  al      I1481   ,   on the reaction 4He(d,t)3He.
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The  purpose  of this .calcul ation  is. to explain quantitatively  the

violation of the Barshay-Temmer theorem   149,159   for this reaction.

This theorem is based on strict isospin symmetry of nucledr forces; it

predicts that the differential reaction cross section and the analyzing          -

power shoul,d, respectively, be symmetric and antisymmetric with respect

to  900  in  the c.m. system. These predi ctions are, however, not quite borne

out by experiments which show a rather strong asymmetry in the cross
*

section at Ef = 15.7 MeV  and a: smaller but definite asymmetry· at higher

energies [151 3 .

Many channels are included in this calculation. These are: d +ct ,
Q*                      \5He(3/2-) + p,  SLi(312-) + n, -'He (1/2-) + p, 5Li* (1/2-) + n, 3He + t,

5 ** C  **    +He    (3/2T)+  p,  and  -'Li    (3/2 ) +n channels. The nucleon-nucl eon potential

used contains soft repulsive cores, and spin-orbit and tensor components [152 Jo

The Kohn-Hulth6n variational procedure was used to compute the S-matrix for

this problem.

According to the Barshay-Temmer theorem, isospin-conserving 4He(d,t)3He

transitions. are possible only to t + 3He channels with T = 0, S = 1, f = even

or  T  =  O,   S.  =  0,    I =·odd.     These-transitions will result   in a symmetri c

differential reaction cross section.  However, via the virtual excitation
C ** 9  **    +of the WHe  (3/2 ) +p and ''Li  (372 ) +n fragmentations, which are super-

positions of T=0 and T=1 states, isospin-nonconserving 4He(d,t)3He

transitions become also possible.  With these latter transitions,.one then         -

*
The  quantity Ef denotes  the  c.m. rel ative energy  in  the  d  + cl

channel.
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obtains a differential reaction cross section which is not symmetric with

respect to 90' in the c.m. system.

In fig. 11 calculated and experimental [148, 153  differential reaction

«          cross sections at Ef = 21.33 and 16.63 MeV are compared.  As is seen, the

agreement is quite satisfactory.  The calculation reproduces the general

features of the measured result, but does not quite yield the magnitude of

the observed maximum asymmetry.  This latter defect is probably caused by

the use of a simplified description of the five-nucleon system in the

calculation.

A comparison between calculation and experiment  L 154  for the

analyzing power at Ef = 21.33 MeV is shown in fig. 12.  Here it is found

that the calculated deri vations from antisymmetry are quite small     (<10%),

which is in agreement with experimental finding.

There are other calculations of the type described in this subsection.

For these calculations the interested readers are referred to the review

articles by Hackenbroich  155,156] .



68

5.  Effects of the Pauli principle

5.1.  Introductory remarks

The importance of the Pauli principle, expressed by the presence of          -

the antisymmetrization operator 94· in eq. (7), in well-known in nuclear-

structure problems [3,157  .  As has been discussed in detail in ref.[5] ,

i t  serves to reduce greatly  the di fference between seemingly different

structures and thereby resolve the apparent contradictions among existing

nuclear models.  In practical calculations, this has the consequence that,

especially at relatively low excitation energies, one can frequently obtain

satisfactory results by employing only a small number of many-nucleon

configurations  in the trial wave function.

The purpose of this section is to describe briefly the role played by

the Pauli principle in nuclear scattering and reaction processes.  Specifically,

what will be discussed is its influence on the effective internuclear poten-

tial (i.e., the real-central part of the optical potential) and the connection

between this principle and the various direct-reaction mechanisms commonly

employed in phenomenological analyses [1581  .

5.2.  Effective internuclear potential

5.2a. Odd-even 1-dependence and channel-spin dependence

One of the important findings from resonating-group calculations is that

the phase-shift behaviour frequently exhibits a distinct odd-even dependence

on the orbital angular momentum.  This is demonstrated in fig. 13, where

' phase shifts as a function of L are shown for various systems, all

calculated at a wave number of 1.52 fm-1.  From this figure one sees that
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the degree of odd-even or parity dependence is quite different in different

systems, being rather strong in the 3H + oc system, moderate in the n + oc
16      16          40

system, but distinctly weak in the n + 0, a + 0, and n + Ca systems.

-              The occurrence of the odd-even 1-dependence is a consequence of the

Pauli principle.  This is so, since it is shown in subsection 2.3a that if

this principle were not taken into consideration or, in other words, if the

-A'

operator 94 in eq. (17) were set as unity, then the effective internuclear

potential would just be equal to the direct potential VD which has no

1-dependence and which will yield phase-shift points following a smooth

trend with respect to the orbital angular momentum.

Also because of the Pauli principle, the nature of the odd-even

1-dependence may depend on the channel spin s.  As an illustration, the

phase-shi ft behaviour  159]   of  both  the  3H  + 3He system  and  the  d  +  3He

system at 50 MeV is depicted in fig. 14.  Here it is seen that in the

d + 3He system the zigzag pattern in the s = 3/2 state is exactly opposite

to that in the s = 1/2 state, while in the 3H + 3He system the zigzag

patterns are similar in both channel-spin states.

The above finding in the d + 3He system may be explained by noting that

in the s = 3/2 state the neutron in the deuteron cluster cannot penetrate

into the ls-neutron hole of the 3He cluster.  This causes the 3He cluster

to act toward the deuteron like a spin and isospin saturated substructure,

with the consequence that the d + 3He system in this channel-spin state

behaves very much. like the d + al system.  In the s = 1/2 state, on the other

hand, the neutron can penetrate into the ls-hole of 3He to form a cluster

similar to a diffuse of particle; thus, in this channel-spin state, the
d + 3He system has a similarity to the p + 0( system and even more so to
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3the more diffuse  H.+ oc system.

In an analogous manner, one can understand the situation in the 3H + 3He

system.  Here in both channel-spin states, a nucleon from one of the clusters

can penetrate into the ls-hole of the other cluster.  Therefore, it is

expected not only that the 3H + 3He effective interaction should be rather

insensitive to the channel spin, but also that the system should behave

similarly to the d +0< system and to the d + 3He system in its s = 3/2

state.  As is seen from fig. 14, this is indeed the case.

To demonstrate the presence df odd-even 1 -dependence in a clearer

way, we construct a local-potential model in which the clusters are con-

sidered as structureless and the interaction between them is represented
N

by an effective potential \/ given byVlx

'-I

V     C V (1 51  )lA .1X NA ,

with X  denoting the channel-spin multiplicity (the index A may be dropped

if the·considered system has a single A -value), VNX
being the direct

nuclear potential,  and CiA being an ,t -dependent multipl icative  para-

meter.    In  fig.  15, the resul ts  for   CLA , obtained by fitting exactly

the phase-shift values of the corresponding resonating-group calculations

40[49] , are shown for the n +  .Ca and 3H + 04 systems at indicated energies.
40As  is seen, this parameter is only weakly  1 -dependent in the n +    Ca

system„ but shows a strong zigzag pattern in the 3H + 04 system.

Next, we illustrate in· the n + 6Li system another interesting consequence

of the Pauli principle.  By examining the phase-shift behaviour exhibited

in figs. 13 and 14, one might predict that in this system the effective
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»

potential (/LA should be stronger in odd- .1 states, regardless of

the channel-spin value.  That this is not quite so can be seen from fig.

16 where the open circles and crosses represent the resonating-group

- result Elll], while the solid lines are smooth curves drawn-through phase-

shift points calculated using the local-potential model of eq. (151) with

Cl>,  taking on indicated values., Here one sees that in the s = 1/2 state

the  odd- 1 interaction is indeed stronger  than the even-1 interaction,

but the opposite is true in the s = 3/2 state.  As to the reason for this

apparent failure of the prediction made above, one notes that for this system

there are in the nonclosed lp shell two target nucleons which behave like a

deuteron cluster. Since it follows again from the Pauli principle that a

neutron can closely approach a deuteron in the s = 1/2 state but not so in

the s = 3/2 state, one may come to the conclusion that the blocking effect,

caused by these two lp-nucleons, is much more important in the s = 3/2 state

than in the s = 1/2 state.  Therefore, this example serves to show that in

predi cting  the rel ative strength  of the effecti ve interaction   in  odd-1

and even-1 states, one must always carefully investigate the dynamical

structures of the clusters under consideration.

From fig. 16 one also notes that the 1 = 0, s = 1/2 resonating-group

phase-shift point seems to deviate somewhat from the zigzag trend followed

by other s = 1/2 points.  This is very likely related to the fact that, for

this  particular  set  of  (1, X   ) value, there exists a Pauli-forbidden

state in the resonating-group formulation.  Indeed, deviations of this kind

have  also been found  in  n  + oc and other systems. This indicates, therefore,

that to construct a useful semi-microscopic potential model, one may need
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not only tb  adopt'thf --ad'd-€Oun fe'ature 'described h*6re', but also to

introduce into the model either an orthogonality condition [160] or a
Pauli repulsive core  161-1637 .

For a quantitative estimate of the importance· of the Pauli principle,          -

it is useful to express  CiA in eq. (151) as

1
CiA   CGA + (-1) (6 X ,

(152)

where Cax and C6X are 1-independent parameters.  Then, as is evident,
the amount by which  Ca-X di ffers from 1 or Ci>A di ffers from 0 is a

measure of the effects of antisymmetrization.  In table 1, the best values

of  (aX  and  (6X for various systems  at  30  MeV  are  1 isted; these values  are

obtained by fitting as well as possible the corresponding resonating-group

phase-shift results.  From this table it is seen that, although the values

of Cbx may become close to 0 for certain systems, the values of CaX
are all appreciably larger than 1, indicating that in scattering processes

the Pauli principle is generally important.

At a relatively high energy, the behaviour of the differential

scattering cross section in the backward angular region is strongly corre-

lated with the magnitude (not the sign) of (6AD64] . In fig. 17 we show a
comparison·E165] between the results obtained for 3He + H scattering at

44.5 MeV using the resonating-group method and the potential model of

eqs·. (151) and (152) with C  = 1.15 and ChX = 0.  Here it is seen that,aX

although the agreement in the forward angular region is rather satisfactory,

there is a strong disagreement at angles larger than about 90'.  In the

40n+ Ca. system at 30 MeV , on the other hand, one sees from fig. 18 that,
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because of the· small magnitude of  CbX, the agreement between the resonating-

group result (solid dots) and the result obtained using the potential model

with Cax= 1.35 and Ct,A= 0 (solid curve) is fairly reasonable even at

rather large angles (the dashed curve in this figure is obtained by omitting

antisymmetrization effects, i.e., by setting Cak= 1 and CAX= 0 in tha

potential model).

It  should be remarked, however,  that  even  when   CbX   has a small

magnitude, one may still observe significant effects in situations where

partial-wave scattering amplitudes strongly cancel one another.  Generally,

these occur at backward angles when the scattering energies are relatively

high.  For instance, in a phenomenological potential-model study of nucleon

40scattering  by      Ca at about  30  MeV  El 661  ,  it was found  that  when   C 61

is changed from 0 to -0.01, the scattering behaviour at angles larger than

about 150' is appreciably affected and the differential cross section at

180' is increased by a factor of around 3.

Odd-even potential models have been successfully used to analyze ex-

perimental data of p + 3He [1 391 , p + 4 D 39] , 3He + 4 0 67,1681 , and

6   r                                             12    13C  ral + Li L169  scattering. In heavier systems such as  C + Ll 70,1711

and 12C + 160  172  , the application of such models has similarly yielded

satisfactory agreement with measured results.  In addition, a phenomenologi-

16    20
cal study of the   0 +   Ne scattering data  173  has also indicated the

need of an odd-even term in the effective internuclear potential.

40The situation in the case of  ol + Ca scattering is not as clear.

Thus, to explain the scattering behaviour in the backward angular region,

Kondo et al   174   have found it desirable to introduce a small amount of

odd-even 1--dependence into the real  part of the optical potential.   On
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the other hand, Michel and Vanderpoorten  £ 175 ]  have  been  able  to  obtain

excellent fits with experimental data over a wide energy range using parity-

independent potentials.  The fact that the same experimental result can be·

explained by different sets of potentials is just a manifestation of potential-   -

model ambiguities, as has been pointed out especially by Wall [176 3 . Based

16          40on resonating-group findings  in  both   ot +     0  and  el +     Ca [80] systems

and the discussion to be presented in the'next subsection, we are of the

opinion that the essential features of  04 + Ca scattering can very likely
40

be properly accounted for without the incorporation of an odd-even 2-dependent

component into the effective.potential.

5.2b.  General discussion

In  the Born approximation,  one  can  show  that  the    1 -dependence contained

in the effective internuclear potential is only of the odd-even type.  This

has been demonstrated in the n + al  case   164  .  There it·was shown that,.
by separating the kernel function K( B', R" )  see eq. (37)  into three

parts, i.e.,

(153)
K              K a   +     K    +     Kg )

with 1,<4 , K  , ·and KY being the knockout (incident neutron knocks out a

target- neutron), pickup (incident. neutron picks  up a 3He cluster),  and

nucleon-rearrangement kernels, respectively, one can easily construct
-I      /...

effecti ve local potentia·ls   Va   '. V    '   and Vr which yield exactly  the  same
-

Born scattering amplitudes as these kernel terms.  The potential 1/4
.-/

ts a Wigner-type potential, whereas the potentials  \/   and  V   are
Majorana-type potentials. The total effective local interaction  is,.
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r=                       -                       -

therefore, given in the Born approximation by \5 + \4 + Vp + Vt which)

- clearly has an odd-even .1-dependence.  As one goes to energy regions

where  the Born approximation  is  less  val id, the 1-dependence  in  the

-          effective internuclear interaction will of course become more comolicated;

however, it is reasonable to expect that the odd-even feature should still

remain to be the main part of the orbital angular-momentum dependence.

For a more general discussion  [177] , we consider now the effects of

the Pauli principle on the effective interaction between two clusters A

and B, with cluster A containing NA nucleons and characterized by a width

parameter NA and cluster B containing
NB

nucleons and characterized by a

width parameter o<B C see eq. (89) 1 0 Specifically, what we shall do is

to study exchange effects associated with the normalization kernel J\(E (8'. 8 )

of eq. (24), which has  the form

JVE   ( 8'. 8")                s
=   ENE (B', R")

(154)
*12   r -; -4 -01,

=     7--    Px    e x p   (-  a x  !1     -  (*KLf   -ax  K         /
X

with % being the number.of nucleons interchanged between the clusters and Px

12  -,. -,1         ,12being a polynomial   in   R   ,   K. 8    ,  and  E      . By using the compl ex-generator-

coordinate technique described in sect. 3, one can derive general

expressions for the coefficients ax and Cx  48-  . These expressions are

2 2 2 2        %  1
-                                  ,(lo     X    (0A-48)  +  JU:  (NA+NB')WAWB  +  NANE  (1-  Tr)(94 + MB)r o /a

x= 4X
NA ND ( *A #-«B )-  X(NANA + NB B )

···(155)

*
A similar, but more restricted, discussion is given in ref. [178] .
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and

X.        2
,42  *2 (SA - 48)2 + NA NB (1i l- -li )(VA + w B )

C         =   --                                                                                                                                                      ro

x 2X (156)NANB (WA+*B)- M (NA*A + NBOB)
7

where  i, denotes the reduced  nucl eon number, given  by

NANB
(157)

NA +  NB

It should be remarked that the kernel function NE(&',8") of eq. (30)
contains the same exponential factors in the limit case where the nucleon-

nucleon potential has a range approaching infinity  (  R.-+ 0 in eq.. (16) of

ref. [164] .  Because of this, it is our opinion that a study of the

normalization kernel J\fE alone should yield a useful,. semi-quantitative

understanding of the effects of ahtisymmetrization.                              d

For clarity in discussion, we make the simplification

ciA = c<B   c<                                      (158)
*

and  assume      NA  >   NB    .       Then,   by empl oying the procedure discussed   in

ref.   179   ,  one  can find effecti ve local potentials Vx(8') which yield,

*
The conclusions reached with and without the simplification of  o<A = 0<B== ci

are very similar.
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in the Born approximation, the same scattering amplitudes as the kernel

terms   JVE (8', 8"). The result  is as follows:

(i)  % <)10   - The effective potentials are Wigner-type potentials

which yield large Born scattering amplitudes only atforward  angl es. These

potentials are

Ox(E') =  p* exp[-(k/kx)*lexp[-(R'/Rx)' 1 (159)
>

with

\/1

1 2 x  =    [ /WO ( .2, ro-X)    06 3
(160)

and

'/2

R, -- I :5
F, -x)       1

240- Y )    .2 J
(161)

(i i ) 7 > lo  - The effective potentials are Majorana-type potentials

which yield large Born scattering amplitudes only at backward angles.

These potentials are

Ox   L 3' )   =      P"    exp  [ -   C k/k x  )2   ]   ex F  EL  (  RI/R,)21   P
R (162)

with

1/2

6 -  - Ao,A X                      4/00 -  4         02  l                                                                                                  (163)
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and

- '/2
-R                                 4   C x -Fo)              1           1

*-I SY   (220 -X)     -r J
(164).

N

Also, in eqs. (159) and (162), Px are polynomial functions in k2 and R'' .
By examining the expressions for kx and Rx , one can easily see that for

x < »0   ,    kx    and   Rx     have  largest  val ues  when  x=l,   and  for   X >20    ,
*

kx and Rx have largest values when x = NB . This indicates, therefore,
that among all exchange terms, the one-exchange term and the core-exchange

term are the most important.  In fact, this finding has been amply verified

by explicit resonating-group calculations. For example, in 3He + 04

scattering [180] where   )10 =  12/7  , the two-exchange  term was found  to  be
16rather unimportant,  and  in of + 0 scattering [1811 where p,=  3.2,  the  one-,

two-, and three-exchange terms were found to yield progressively weaker

contribution.
.V

The effective potentials Vi  corresponding to the one-exchange term

and  , corresponding to the core-exchange term have the following expressions:

tv 2 -1
91 (8') -  pl  exp[- Ck/4 1  J  exp C- i R:/Rt )2 1 (165)

with
1/2

k  = [)U, (2tl,- i) (<
] (166)

*                                   40     40In the case where NA = NB' such as   Ar +· Ca scattering, the largest

value of x will be somewhat smaller than NB.
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f

 /2-
r       4  (Fo-I)            1

RI =  11

(167)

L 1 110 - | 8 1,
and

Vc(&') -   96 ex f [- c k/k()* 1  exp E- (R f e( ) '1  P R' (168)

with

b     =    <     NAN
B

(169)
' c           \    N A  -  N B     0,      2

R   =         4        1  )1/2                                                (170)c                   N A-  N B     0,    )

For comparison, we also give here the direct nuclear potential \,/ 1 which,
*

in the limit of a zero-range nucleon-nucleon potential, has the form

rk

V N   C   R, )    =       pN     e x p   [ -    6  R'  R N   )      J
\2.-1 (171)

with

'/Z

-                      RN        
2F10-I

1 -1)     . (172)

20

*
With a finite-range nucleon-nucleon potential, the direct nuclear potential

VN will have a range longer than that given by eq. (172).
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.4

-  In -addition, it is important to note that in the polynomial factors Pj

and   PN      , the highest powers of  12'2   are both given by  TZA+ 7.1.B ,

with NA and 718 being, respectively, the principal quantum numbers, in

oscillator wells A and B, of the last shells to be filled.  For example, in       -

16ol   +      0  scattering,  the  value  of   71.A   is  1  and the value  of  n3 is  0  when
the cluster internal functions are assumed to have the lowest. configurations

-

in their· respective oscillator wells.  As for the polynomial factor Pc ,
its highest power  of  R,2 is. somewhat more difficult to determine; however,

it has been derived in ref. I1781 , where '1 t was shown that for those

interesting cases in which NA and NB have nearly equal values, this

highest power is again approximately given by MA+718 0 82] . Therefore,
A.'                 +

since the polynomial factors in  Vi , Vc, and VD have similar values for
i2

their highest powers in R , it is appropriate to simply examine the

exponential factors in order to decide the situations under which the

effective potentials 9, and VC make important contributions.
/V

Let us first study the spatial dependence of  Vj  and  c .  By
comparing the values of RI .and EC with the value of RN ' we can make the
following remarks:

(i)  The ratio  121/RN is given by

R i                               i                 '/z- = 1 1- (173)

RN
L

(P,-1 )2  3 )

which is smaller than but close to 1, indicating that the one-exchange

term is- always important. This is consistent with the result, stated in

subsection  5.2a,. that. the  values  of  Cax  in  eq.  (152)  are  appreciably

larger than 1 for all investigated systems.  In addition, the fact that
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Ri < RN  is also in agreement with an empirical finding  [183] , obtained

by potential -model analysas  of  p,  3He,  and D scattering  on      0,  that  the16

range of the Wigner-type effective potential is somewhat shorter than that

-          of the direct nuclear potential.

(ii) The characteristic range RC decreases with increasing value of the

difference between the nucleon numbers in clusters A and B.  This means that

one expects the core-exchange effect to become less important as (NA-NB)

increases.  Indeed, as is discussed in subsection 5.2a, we have reached a

similar conclusion from explicit resonating-group calculations.  There

it was shown  that the degree of odd-even  1 -dependence is quite strong  in

scattering systems involving two s-shell nuclei where the values of
16           40

(NA - NB) are small, and weak in systems such as OC +  0 and n +   Ca

where  (NA - NB) takes on rather large values.  Similarly, of course, the

finding that core-exchange effects are important in 12C + 13C  C171 1

12and   C + 160 [77] scattering but not in 06 + Ca scattering I 80,114140

supports the assertion reached by our present analysis.

Next, we examine the energy dependence of exchange effects by studying

the expressions for the characteristic wave numbers ki and kc given by

eqs. (166) and (169).  To do this, we make the reasonable assumption that
-

the  effecti ve potentials   VI    and Oc become unimportant when their energy-

dependent exponential factors acquire a value less than e-4.  Adopting this

criterion, one can then easily find that the one-exchange term has a
*

Significant influence when E/u < E   where/0  I

*
It is interesting to note that E/p, is also the incident energy per

nucleon in the laboratory system, regardless of whether A or B is the

incident nucleus.
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-               f'2       4 C *(1  _1)E
1

2 M             0           OC                                                                        .(174)

with M being the nucleon mass., and the core-exchange term has a significant
r.influence when E//,< EC where

ri
52    4 (NA+NB)1        1Er - .                          of                     (175)#* 2M NA NB NA- N.B

-

In  table  2,  we  list  the  values  of  E,      and Ec calculated for vario.us

systems.  Here it is seen that the one-exchange term is important over a

wide energy range for' all systems.  On the other hand, because of the
factor (NA-NB)

occurring in eq.  (175), the core-exchange term has a slow
energy dependence only when (NA - NB) is relatively small.

Finally, it should be emphasized that the considerations given here are

made in the Born approximation and based mainly on the features of the

normalization kernel.  Therefore, the results obtained have only semi-

quantitative significance at relatively high energies.  However, we do

believe that especially the dependence of the core-exchange effect on

the factor (NA - NB) is very likely a realistic prediction and this parti-

cular finding should be very useful when one attempts to construct potential

models  for the analyses of experimental scattering resul ts.

5.3.  Direct-reaction'mechanisms

Since resonating-group calculations employ totally antisymmetric wave

functions, all exchange effects are explicitly includdd.  Thus it is
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possible to use these calculations for a study of direct-reaction

mechanisms.  In this subsection, we shall carefully examine the

CL(.p,d) 3He reaction using the plane-wave Born approximation  (PWBA)   C 184]  ,

in the hope of obtaining a transparent picture concerning the roles played

-          by different direct-reaction processes which are represented by various

coupling-kernel terms in the resonating-group formulation.

5.3a.  Brief description of the method of analysis

The formulation of the two-channel 06.(P,d)3He problem is briefly given

in subsection 4.3a and, hence, will not be further described here.  For our

present purpose, it suffices to say that the transition from the p + 0,

channel to the d + 3He channel is effected by the coupling kernel K
fg

(hereafter simply written as K) which has the form

K  - K z+K b (176)

with

K ( .P; .E; ) =  ( Nful)-' < 43(123)+d(45) ff 3(-Rf -8; )2 (Ecm)

C H -ET I  (1- E's) 94« [ 4„( 1234)5&3(Ep- IEi)] 2('89-)>                (177)
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and

K  (EI,.Ri) = (Nf Njf/*<43('23) t (45)5< 6(IEf -SI) 2(&-)

4 7

| H - ET 1  (-F s- P25 -135 ) 94«  40' ( 123*) fj 3 ( 52 - El )j 2 ( Rci"l>,   (178)

where -Fl   is
an operator interchanging the spatial, spin, and isospin

coordinates of nucleons  i  and j,  and  946 is the antisymmetrization operator
for the cl cluster.  In the above equations, it should be noted that the

arguments  of the internal functions  of  the cl usters indicate which nucleons

are involved in these clusters; such a labelling is permissible, because

the wave function is totally antisymmetrized.

From eqs.  (177)  and  (178) ,  one can clearly see that Ka- corresponds

to a process in which the incident proton is contained in the outgoing
b

deuteron, while K corresponds  to a process in which the incident proton

is  contained  in the outgoing  3He. In other words,.  K a. describes  a   one-
bnucleon pickup process, while K describes a two-nucl eon pickup process.

Since our sole purpose in the present study is to gain an understanding

of reaction mechanisms, we simplify the formulation in the following way:

(i) a single-Gaussian deuteron function (td yielding the same rms radius as

the three-Gaussian function of subsection 4.3a is used, (ii) a simplified

nucleon-nucleon potential with a Serber mixture is employed; this potential

is described in' a previous publication [8 ], and (iii) the Coulomb inter-

action is neglected.  These simplifications do not change the essential

features of the results obtained in subsection 4.3a, but they do allow a·
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more straightforward interpretation.

By  summing  over  spin and isospin coordinates, the kernel functions   Ka-

and Kb become [221

K«-=  KT + KE + KA + Ka  + KA + Ka (179)
11      14-      15      45

and

b               (180)K b=   K b+  Kb  +  Kb  +K b  +  Kb  + K b   +  K12   1*    23 24- 45  ·

In these equations, the functions KT, K6  , KE , and K  arise from the

kinetic-energy operator T and the total energy ET. The remaining functions

come from the potential-energy operator; they have the forms

*
K« = Ct  ["li (1239 45)] fj .11'i(1234-35)dt       (181)
Al      *A j

and

6        6 F                  *

KiA 16   071('23; 4.s )1  1,-,  11'f (523411 )d.E       (182)

where we have introduced the notation

(183)
'Pf (1 3,45)   4>3(1 3)4>d(45)3(ff-Bf)£(Ecm) ,

(184)
+  ( 123'A )

5) +g  (1234 ) 3( Bj- Rj  ) 96( Ecm ) )
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'and

.<-

1  ' (   5 2 3  0   3   1   )    -      -P         '4'.-(1234.   ;   S )                                                                                          (185)
15   1

Also, in eqs. (181) and (182), Cti and (66. are constant factors unimportant
Aa

for our present
consideration, 'Ul i is the

form factor of the nucleon-

nucleon potential given by

2                                             (186)

1TI     =     ex F  ( -  K.rai   )    ,

and dt sigr,fies the integration over all spatial variables.

Next, we compute the PWBA reaction amplitude for each of the terms in

Ka-  and Kb  . For example, the Born amplitude corresponding to K 3.
A,

is

8:-= -   24   F       ,
A                                                                                          0   1211- 162,1  exy l-ikf  E;) K  (-RI,Eit)exp(Ckl. B  )dE;dfi'          (-187)

where  kl   and  k f
are propagation vectors in channel s  g  and f, resoectively.

By: carrying out the spatial integrations in eqs.  (181) and (182), analytic

expressions  for the various ampl itudes  can be obtained  22  .    The
differential reaction cross section is then given by

clo-

61/-     1  Ba + B6 12 (188)
3

where 1.   and 'VI':  are, respectively, the relative velocities .of the clusters

at large separation in the incident and reaction channels.
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5.3b. Result and discussion

The validity of the PWBA at relatively high energies can be tested by

making a comparison between the differential reaction cross section computed

by solving the resonating-group coupled integrodifferential equations and

that computed by using the PWBA.  This comparison is shown in fig. 19 at

an energy of Eg = 130 MeV (thd corresponding value of Ef is 104.88 MeV).

From this figure it is seen that, even though the over-all agreement is

only fair, the Born result does reproduce the essential features, i.e.,

the occurrence of large peaks at forward and backward directions and a

sharp minimum at around 100'.  Thus, we feel that a study using the PWBA

should be useful in yielding a qualitative understanding of the importance

Of various direct-reaction processes.

From the explicit expressions for the Born amplitudes, one finds that
a          aall terms contained in Ba (i.e., BT' BE' and B ) are peaked in the forward

direction, while all terms contained in Bb (i.e., 86 , 86. and 86 ) are
1 t.      9

peaked in the backward direction.  This is shown in fig. 20, where the solid

curves represent the amplitudes Ba and Bb at Eg = 130 MeV.  Here it is seen

that, at such a relatively high energy, the cross-section behaviour in the

forward angular region can be accounted for by a one-nucleon pickup process,

while the cross-section behaviour in the backward angular region can be

accounted for by a two-nucleon pickup process. .In fact, it is evident that

there is effectively no interference between these two processes.  We should

point out, however, that this lack of interference is strictly a high-energy

phenomenon; already at a lower energy of Eg = 70 MeV (Ef = 44.88 MeV), our

calculation shows that interference effects become fairly important in the

intermediate angular region  (see also ref.  L 140  ) .
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A detailed examination shows that, even though many individual terms

in Ba  and Bb have appreciable magnitudes, the following approximate relations

hold at .relatively high energies:

B«  = B-45

b           bB i l    Sj   B
0

(189)

This is also shown in fig. 20, where the dashed curves represent the

amplitudes B 5  and B 2  at Eg = 130 MeV. At lower energies of Eg = 100 and
0

70 MeV, these relations are still reasonably valid; for example, at  8=0

the ratios Ba /Ba  are equal to 0.83 and 0.80 at these two energies, while
45

at  8 = 180' the ratios Bb /Bb are equal to 1.09 and 1.12.  Thus, referring
12

to eqs. (181) and (182), one sees that, for an approximate description of

the two pickup processes, it is only necessary to consider the interaction

between the incident nucleon and the nucleons which are removed from the

target (note that the spatial integrals involved in K  and K 3 yield
-  the same result).  This seems to be intuitively reasonable, but does require

to be further examined.  At present, our feeling is that this particular

cancellation among the various Born amplitudes is related to the presence

of redundant solutions in our resonating-group formulation.

In summary, this investigation shows that, at relatively high energies,

the cross-section behaviour· of the  OL (p,d)3He reaction at forward angles

can be explained as arising from a one-nucleon pickup process, while that.

at backward angles can be explained as arising from a two-nucleon pickup



89

process.  In addition, it is found that for an approximate description of

these pickup processes, one needs only to consider the interaction between

the incident nucleon and the nucleons removed from the target.  This is an

important finding, because if it should turn out to be generally true, then

antisymmetri zed direct-reaction calculations  can be simplified  to a considerable

extent.

5.4.  Concluding remarks

The discussion in this section shows that the Pauli principle is always

important in determining the behaviour of scattering and reaction processes.

This means that, for a proper description of these processes, it is generally

necessary to employ totally antisymmetric wave functions in the calculations.

However, there are relatively simple ways which can be used to approximately

represent the major effects of antisymmetrization.  In scattering problems,

one may adopt as intercluster interaction an energy-dependent effective

potential which possesses an odd-even dependence on the orbital angular

momentum and which contains possibly also a Pauli repulsive-core component.

In reaction problems, the situation becomes comparatively simple at relatively
the

high energies, where a careful examination ofAresonating-group calculation

shows  that a complete antisymmetrization between the nucleons  in the incident

and target nuclei may not need to be carried out and the differential reaction

cross section in either the forward or the backward angular region may be

reasonably described by a single direct-reaction process.
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"6.  Conclusion

The resonating-group method is a microscopic method to solve nuclear

many-body problems.  Its formulation is based on the idea that relatively

long-range correlations, manifested through the formation of nucleon clusters
3           16                                                             -

such  as    He, Ol, and 0 clusters, are important in determining the properties

of nuclear systems.  In this method, one first chooses an appropriate trial-

function space, and then studies bound-state, scattering, and reaction

problems by solving the Schrodinger ,equation, formulated ·as a projection

equation, in this space.  As the examples discussed in sect. 4 show, this

type of approach does lead to successful conclusions, and improved results

can be obtained by systematically enlarginq the function space employed.

The important features of the resonating-group method are the utiliza-

tion of a fully antisymmetric wave function, the use of a reasonable nucleon-

nucleon potential, and a correct treatment of the total center-of-mass motion.

Because of these features, resonating-group calculations can frequently become

quite complicated from a computational viewpoint when the number of nucleons

involved is relatively large. Indeed, it is primarily for this reason that

earlier studies have been restricted to systems containing no more than about

ten nucleons. Recently, however, with the development of various generator-

coordinate techniques, the computational difficulty has been substantially

16    40           18
alleviated, and even relatively heavy systems such as 0+ Ca and 8 +   0

scattering can be consi dered.   In sect. 3,. we have described how one of these

techniques, the complex-generator-coordinate· technique, works. This particu-

lar technique is chosen for a detailed description, because it is especially

flexible in the sense that its application is not limited to cases where the
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choice of equal oscillator width parameters for the cluster internal functions

is a reasonable approximation.  In fact, as is shown in that section, it can

be generally used to obtain matrix elements in scattering and reaction pro-

blems where the internal functions of the various clusters are flexibly des-

cribed by translationally-invariant, antisymmetrized products of single-

particle wave functions generated from any potential well which is appropriate,

although the use of oscillator wells does lead to further simplification in

computation.

Because of the use of totally antisymmetrized wave functions, resonating-

group calculations can be employed to investigate the effects of the Pauli

principle (see also ref. [185J).   In sect.  5,  it is shown that in scattering

problems the essential result of antisymmetrization is to introduce an odd-

even  2 -dependent component  into the effecti ve internuclear potential,  the

importante of which seems to decrease with increasing value of the difference

between the nucleon numbers in the incident and target nuclei.  This means

that one would expect this odd-even component to be generally important in

those cases where the nuclei involved have similar mass, but to have a

comparatively minor influence when the nucleon-number difference is large.

Indeed, it is precisely this latter feature which enables the conventional

optical model to yield a reasonable description, over a large angular region,

of light-ion scattering by medium and heavy-weight nuclei.

Also, in sect. 5, we have discussed the role played by the Pauli

principle in antisymmetrized direct-reaction calculations.  There it was

shown that, under certain circumstances, one may simplify the calculation by

carrying out only a partial antisymmetrization, corresponding to the adoption

of a single direct-reaction process, between the nucleons in the incident
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and target nuclei.. For example, in the 6Li(p,3He)04 reaction at relatively

high energies (5,142] , the behaviour in the forward angular region may be

satisfactorily explained by employing only the Drocess in which the incident

proton picks up a deuteron cluster from the target, while that in the backward

angular region may be adequately described by considering the incident proton
to pick up a triton cluster from 6Li.

Even though resonating-group calculations have so far always yielded

satisfactory results, there is a somewhat undesirable feature which should be

mentioned.  That is, two-nucleon potentials of relatively simple form have

generally been employed.  In particular, the presence of a strong repulsive

component in the nucleon-nucleon potential has usually not been exolicitly

considered and the saturation property has been taken into account only in a

relatively crude manner by mostly fixing the rms radii of the clusters

involved.  We emphasize, however, that although the use of more refined

forces will undoubtedly influence the numerical results to a certain extent,

the general features of nuclear processes will be essentially unchanged.

This must be so since, for scattering and reaction problems in which the

incident energy per' nucleon  is  less than about  50 MeV, these general features

are determined mainly by the fact that nucleons are fermions and nuclear

forces are short-ranged, saturating,  and  on the. average attractive.

At present, there exist many resonating-group bound-state, scattering,

and reaction calculations involving s-shell clusters.  Consequently, an

impressive amount of information has been obtained concerning cluster states

in very light nuclei. For heavier systems, the situation is rather different;

here, essentially only scattering calculations involving doubly-closed-shell
16      40

nuclei   0 and Ca have been attempted.  Therefore, there are still many
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interesting problems yet to be considered, and some of these problems which

are well within our present-day capabilities are:

(i) A systematic study of light-ion scattering by 6Li or 7Li and the

scattering of   0 by 0, ,   F, and Ne.  This will be a useful study,16    17  18  19      20

because the results obtained should give us further information concerning

the dependence of the odd-even effect on the nucleon-number difference of

the interacting nuclei.

(ii) Direct-reaction calculations involving relatively heavy clusters, such

18     16
as 0(p,t)  0 reaction and so on.

Also, of course, it will be important to study the case of three or  more-

cluster decays.  This is, however, a comparatively more difficult problem,

the solution of which would probably require further advance in mathematical

and computational techniques.

In conclusion, it is our opinion that the resonating-group method is a

practical, microscopic method of solving nuclear many-body problems.  Therefore, '

it should be extensively used in the future to study the properties of those

nuclear systems which have heretofore been treated only by macroscopic,

phenomenological means.
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Appendix A

The direct potential VD

In optical-model studies, one of the interesting developments was the

discovery [18] that, in light-ion scattering by medium and heavy-weight

nuclei, the experimental data may be fairly well represented by using an

optical potential for which  the  real  part is obtained  by  a  fol ding procedure

involving the matter distributions of the nuclei and the nucleon-nucleon

force.  In this Appendix, the purpose is to show that this folding potential

is just the direct potential VD given by eq. (34).

For simplicity in discussion, we shall assume that the nucleon-nucleon

potential is purely central and consists of only a direct or spin-isospin-

independent part Vd.  Then, from eq. (34), we obtain

A A

\4)(E)= <*(A)*(B)2(,Rcm)   V'  *(A)*(B) EE(Bcm)>R

=    NANB    / AC 4)(A) (B)2(-Rcm) < vd (fl--rj) 1 *(A)$(B) 2(Ec'")t
NA !  NB ! -

....(190)

where i and j are nucleons in clusters A and B, respectively.  Now, by

defining internal spatial coordinates

A r. R A ,
(i€A)-k

f ..

-          j - Rb , (6€B) (191)
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we   can   write   V d ( -rx - .Ej:  )    as

Vd (r k- Ij )  =   Va  (f e-f i 4- E)

-   J    Vd  (1-  f   +  S. )  6(fi-  11 )  3  (fi  -  f  )  d l'  d f (192)

Substituting eq. (192) into eq. (190) yields

VD(El < $(A) (512   3 (fl-, )6(.5. - f)1 *(A). (B)2  >B
NA NB    r

NA 1  NB' Ul

x   V  (0-f+R)d l d f  . (193)

Using the expression

NA

fl (1))  =
<$(A) 1  6(,5 - 4 ) 1 $(A)>

<  (A) 1  (A)>

NA  Li (A)1 6(fi-  )1 $(A))
NI

4 (*(A) 1 $(A)  (194)
A.

for the matter distribution in cluster A and a similar expression for the

matter distribution 53 (f) in cluster B, we then find, by using further

the normalization condition of eq. (26),
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VD (E)      « - ·.11 ( 31) .1:8 (f)  4 ( Il - -3 TB ) 43 af                       (195)
.

which has the form of what is commonly referred to as a double-folding

potential.

From the discussion presented in subsection 5.2b, one can understand

why the double-folding procedure is useful in optical-model studies of

light-ion scattering  by  medium and heavy-weight nuclei.     The main reason

is that, in such cases, the nucleon-number difference of the interacting

nuclei is large. Consequently, the odd-even 1-dependence plays a

comparati vely minor  role  and its omission  in the optical potential  will

essentially affect the features of the scattering cross section only at

extreme backwa rd   an gl es.
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Apendix B

Approximate treatment of the exchanae-Coulomb interaction

In this Appendix, we discuss the exchange-Coulomb kernel in the case

where the wave function is given by

14- 4  91' fit
(196)  ,

)

with

49 *(A)*(B) F (512(·Ecm) (197)

and

A

1,1, = *(A)6(B)F(R)2 (Ecm) (198)

As is evident from eq. (30), this oarticular kernel has the form

.

KC LE'.E')-   <45M)0(8)3(8-812  1 446  194"C $(A)$(816(8-8321> ,
(199)

where

N
C

*1 - 23  Vii                                   (200)
4<J=I

C
with Vi being the Coulomb potential between nucleons i and j.  Due to

J
the fact that the Coulomb potential does not have a Gaussian spatial



98

dependence, the evaluation of tbe exchange-Coulomb kernel frequently

requires a considerable amount of computational effort.  Therefore, it is

desirable to devise a simple procedure by which this kernel can be

..

approximately evaluated but is still accurate enough for practical purposes.

Here we propose such a procedure which is based on the recognition that,

because of the long-range nature of the Coulomb potential, the total

Coul omb energy  of a bound system,. described  by  the wave function  of  eqs.

(196) - (198) with

FIR) = 4 4.(R' li (C»e) (201)

may be computed in an approximate manner by using only the unantisymmetrized

part of the wave function (see chapter 6 of ref.[5] ).  That is, one can

obtain a good estimate of the Coulomb energy, given exactly by

Ec = (202)
< * 11,101 tp > <0 1 /1'g 1  4  >  4-  <*  1 418 1  4"4  >

U   <fl *) <    7   1    'S     3    +     <  1   1    94'0   ,

from the approximate expression

c                   < * 11,13  1  4' >E 2 (203)
71 C.*1*>

C
By equating these two expressions for E one then findsTi '

6 9 1 413 1 4 9> E-1 < *f A" f' > .
(204)

It A

Using eqs. (197) - (199) and eq. (204) thus yields
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  F*(.8,) Kc(B'.i')F(5")dE'ds"

- Ec   F* C .R')JfE('8''E") FCE") dxds"TL J                                            (205)

where the normalization kernel X (B;R") is given by eq. (24).  If one

now makes partial-wa ve expansions    for     KC       and   J E        ,    i:e.,

Kc<Eff) "  .2 2  31#I k,(2,17f) Y ( e' 0') y;  (e", *") (206)
1/7\.      '

'NE (R.',8")=  --f=   2 7 7EE£(R; R") YAL e:*') Cle:,0,9 (207)

R R    1  rh

then one obtains from eqs. (201) and (205) the following equation:

roo °°

,}    ft*(R') k (R.'R") f2(R#) d R'JIR"0     0

=k6, 572.1(R')71 (R',R")t(R") d R'dR"TZ o
El (2083

.

Since  2.CR) isian arbitrary function, eq. (208) therefore implies that

,   tilc (72;R') = EC ·7le£(R; R")                      (209)Ti

which is a very simple, though approximate, expression for the partial-

wave exchange-Coulomb kernel.
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In -'an -acttial 'caltul'ation, "0'ne  further+exp-resses    E C
in eq. (209) as71

Ec c       .cE    .+EC   + E (210)716     A    3    Rt ,

where E&2  and E  are, respectively, the internal Coulomb energies of        -

clusters  A  and  8,   and     E C        i s   the  relative  Coul omb energy between  theRt
clusters. The energies  E c   and E    may be easily computed by using

A

the expressions for the cluster internal functions  *(A) and *(B) .  On

the other hand, the energy Ei  is an a priori unknown quantity,. but may

be determined by the use of a self-consistent procedure to be discussed

below.

If one of the clusters, say cluster B, is composed solely of neutrons,

then the exchange-Coulomb kernel is just given by

&£    (R,' R")   =      Ec    72         (R;  R")
(211)

A  EL

In this special case, it is interesting to note that the above expression
C

for    ki       is  in fact exact,   as  can be easily  veri fied  by an explicit

calculation.

There is another important point which should be mentioned.  For

states in which the clusters penetrate into each other strongly, the mutual

antisymmetrization between the nucleons in different clusters is important.

In such cases, there will be substantial cancellations between the individual

terms. in both the numerator and the denominator of eq.  (202) , and the

consequence may be quite severe if one omits exchange-Coulomb contributions

entirely, by simply setting *£c equal to zero in the calculation.

We  shall now discuss  how to determine the  val ue  of    EC      ina2L



101

self-consistent manner..  For this, let us consider a bound or a sharp

resonance state which has a certain definite value for the relative orbital

angular-momentum quantum number  1   .    What  we  do  is  to first choose  an

arbitrary but reasonable  value  for   EC       and then calculate the clusterRt

separation energy by solving the integrodifferential equation

ft'F (12- 1(1+11 7

l  *l  L   d R'
2 R' 2      ]    +   E-   VN (R')-   VC (R') j  i(R,)

= f- [ <'(R',R') -1- k  (R',R")] fi(R')«IR'             (212)
0                                                                   ·

Two separate calculations will be performed, one for the actual case in

which  both cl usters. are charged  and the other  for the hypotheti cal  case

in which the charges of the clusters are assumed to be zero (i.e., we

set all charge-dependent quantities in eq. (212) as zero).  These calculations

will yield separation energies Es   and E   in the charged and uncharged
0

cases, respectively. The difference  LJ ES = Es - ES  is then a good

estimate  of the relative Coulomb energy. In general,  the  value  of   Z E3

so  determi ned  will, of course,  not be equal   to  the  val ue  of Ec chosen
R 1

initially.  Thus, the procedure is to systematically repeat the calculation

with different choices of Ec until self-consistency, i.e., Ec = 4.Es
Rt Rt      '

-        is finally obtained. This self-consistent value of Ec will then be
R£

used in eqs. (209) and (210) to calculate binding energies and phase shifts

in all states which are characterized  by this particular value  of  L

In  principle, one should determine the self-consistent values  of  EcRt
for all values of L . In practice, however, this does not seem necessary

and it is a good approximation to use the value determined for  £ =0
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in all even-t states  and the value determined · for    £=  1   in  all  odd- 1,
*

states. The reason why this simplification does yield satisfactory

results is that in all states of a ratational band the relative Coulomb

energies are similar, and for these values of L  for which no bound or

sharp resonance states exist, the calculated values of the phase shifts are

not expected to be greatly sensitive to the choice of ER L appearing in the

approximate expression for the exchange-Coulomb kernel.
..

Next, we illustrate the procedure described above in the c(+ cc case

where the exact expression for the exchange-Coulomb kernel has been derived.

In this case, the trial function has the form of eq. (196) with the  o<-particle

spatial wave function given by eqs. (144) and (146).  The nucleon-nucleon

potential used is that of eq. (117), with the depth and range parameters

specified in eq. (150).  The exchange-mixture parameter u is chosen to be

0.93, which yields a 8Be, 1=0 bound state having an ci -particle separation

energy of 0.748 MeV.

Using the self-consistent procedure for the L = 0 ground state, we

obtain a value of .E  equal  to 1.63 MeV. The corresponding value for the

*                      16For example, in the  0 + 0 system, the self-consistent values are

obtained by performing calculations on the  k= 0 ground state and the            ,.

2  =  l excited state· at  5.79 MeV. These  val ues  turn  out  to be equal  to  6.12

and 5..19 MeV for 1=0 and T, respectively.  In a case such as. the 3H + O f

system where the ground state has  1 = 1  and no bound or sharp resonance

states exist  for   L =  O,   one can simply  use  the  val ue determined  for      I =  1

in all orbital-angular-momentum states.
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06 -particle separation energy is 0.709 MeV, which is very close to the

above-mentioned value obtained with the exact exchange-Coulomb kernel.  Also,

as a comparison, we have computed the separation energy in the case where

the exchange-Coulomb interaction is neglected by setting   4  = O.  This
results in a value of 0.246 MeV, which is appreciably smaller than the

correct value of 0.748 MeV quoted above.

In fig. 21, we show a comparison of  1 = 0, 2, 4 phase shifts calcu-

lated with the exact exchange-Coulomb kernel (solid dots), with the approxi-

mate but self-consistent exchange-Coulomb kernel  (sol id curves),  and with   

set  as zero (dashed curves).    Here  it  is  seen  that the approximation  of

omitting exchange-Coulomb effects leads to significant deviations from the

exact result especially at energies near resonances.  On the other hand,

the use of our proposed simple, self-consistent Drocedure to take these

effects into account does yield satisfactory phase-shift  val ues  in  al T

orbital angular-momentum states.
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Table 1

Val ues  of C and Cax bX

1
1                                                                                                                                                                                            !

System                   C                    Cax               bx

n + 6Li  (X= 2) 1.13 -O.05

n+ 6Li  (X= 4) 1.20 0.05

3
H + 04 1.16 -0.14

16OC + 0 1.25 =0
40

n +   Ca 1.35 =0
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Table 2
..

Values of El and Ec in various systems

System
NA-NB          06               El                Ec

(fm-2) (MeV/nucleon) (MeV/nucleon)

3H.+ 0<            1             0.45                  53                  152

00 + 160         12            0.36                50                 16
16   170 +   0         1            0.32                 50                 106

16   200 +   Ne        4            0.30                 47                  25
16   40

0 +   Ca       24            0.27                 43                   5
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Figure Captions

Figure 1: Demonstration, in the n + Ca system, of the existence of
40

redundant solutions in  £ =2 states and the nonexistence of

redundant sol utions  in 1=3 states.
17

Figure 2: Comparison of calculated and experimental energy spectra of   0,

18   19      20
F,   F, and Ne.  The levels shown are those which have

16predominantly n, d, 3H, and 04 plus 0 cluster configurations.

16
Figure 3: Calculated phase shifts for 04 + 0 scattering.

Figure 4: Comparison of calculated and experimental energy spectra of

12
C.  The levels shown are those which have predominantly a

30( cluster configuration. (Adaoted from ref. C 83] ).

Figure 5: Comparison of calculated and experimental differential cross

3                        16sections for n, d,  He, and o< scattering by 0 at indicated

energies.

Figure 6: Comparison of calculated and experimental differential cross

-                                    16
sections for  oc + 0 scattering at 19.2 MeV.

Figure 7: oc + 02   scattering with and without specific distortion effect.

Figure 8: Comparison of calculated and experimental differential cross

16          40sections' for n + c c,n+ 0, andn+ Ca scattering at

indicated energies.

Figure 9: Comparison of coupled-channel (solid curve) and single-channel

(dashed curve) differential cross sections for d + 3H

scattering at 2.02 MeV with exoerimental data (solid dots).

Figure 10:  Comparison of calculated and experimental differential reaction

cross sections for the process  oc (p,d)3He.
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Figure 11:  Comparison of caltulated and experimental differential reaction

cross sections for the process 4He(d,t)3He at. indicated

energies. (Adapted  from ref. [1483 ).

Figure 12:  Comparison of calculated and exnerimental analyzing powers

for the reaction 4He(d,.t)3He at   Ef = 21.33 MeV. (Adapted

from ref. [1481 ).

Figure 13: Phase shifts as a function of 1 for various systems, all

calculated at a wave number of 1.52 fm-1.

Figure 14:  Calculated 3H + 3He and d + 3He phase shifts as a function of 1

in various channel-spin states.

40Figure 15: The parameter Ct as a function of i  for n +  Ca and
3H  + DC    scattering at indicated energies.

Figure 16: Calculated n + 6Li phase shifts at 30 MeV as a function of L .
Figure 17:  Comparison of resonating-group and potential-model results for

3He. + OL scattering  at   44.5   MeV.

Figure 18:  Comparison of resonating-group and potential-model results

for n + Ca scattering at 30 MeV.
40

Figure 19:  Comparison of RGM and PWBA results for the differential

reaction cross section of the process 04(P,d)3He at Eg = 130 MeV.
Figure 20: Various Born amplitudes for the reaction cE (P,d) 3He at Eg = 130 MeV.

Figure 21: Comparison of oc + (X phase shifts calculated with the exact

exchange-Coulomb kernel, with the approximate but self-·

consistent exchange-Coulomb kernel, and with k   set as zero.
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