FINAL PROJECT REPORT FOR CONTRACT DE-AC02-76ER00535 BETWEEN THE UNIVERSITY OF COLORADO AND THE U.S. DEPARTMENT OF ENERGY.

June 1, 1957 to January 31, 1981

Submitted April 1, 1981

R. J. Peterson
Chairman, Nuclear Physics Laboratory
1979-1981
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I. ABSTRACT

This report is a summary of the research accomplished under contract DE-AC02-76ER-00535 between the University of Colorado and the USAEC, (ERDA), (DOE) from June 1, 1957 until January 31, 1981. The program is currently continued under contracts DE-AC-81-ER-40014, 40015 and 40016.

Sections II, III, IV and V will present some of the highlights of this research and some of the important implications of the work. Many of the research results combine coherently advances in all aspects of our program and are not easily separated into the tasks A, B, C, or D of our contract. The divisions used for this report must be considered to have highly permeable boundaries. Annual progress reports and timely publications are not able to discuss the influence of work first performed at Colorado, and this report attempts to indicate some of the effects of our work. Lists of publications, research associates, and Ph.D. theses are in Appendices A, B, and C.
II. FACILITY AND INSTRUMENTATION

A. Introduction

The University of Colorado 52-inch cyclotron was conceived in the fall of 1956. A preliminary contract was awarded June 1, 1957 by the Atomic Energy Commission for research studies and investigations leading to design of the cyclotron. This contract was later expanded and modified to include engineering, construction, and operation of the cyclotron. By 1976 the AEC had amortized the cyclotron to zero value, and title was transferred from the Federal government to the university.

On January 4, 1960, the project moved into the new Nuclear Physics Laboratory provided by the University of Colorado. The building was enlarged in 1964 with matching funds from the National Science Foundation and the university. First beam from the incomplete cyclotron was achieved at 3 a.m. on April 7, 1962. Use of the extracted beam from the accelerator for experiments started in May, 1963. Dr. Glenn Seaborg, Chairman of the AEC, officiated at the dedication of the cyclotron on June 28, 1963.

Operation of this facility has continued until the present. A new contract was negotiated with the DOE and took effect February 1, 1981.

B. Cyclotron Design, Engineering and Construction

In 1957, when the contract was initiated, the objective was the design, engineering and construction of a 30-MeV variable energy cyclotron accelerating protons, deuterons, 3He and 4He projectiles for nuclear structure studies. Design studies on the relatively new application of alternating gradient focussing to cyclotron operation were completed. A 4-sector spiral shim design with windings around the individual shims was
selected. The magnetic field configurations were conservative in design so that \(^3\)He energies of 45 and \(^4\)He energies of 36 MeV have been achieved.

The radiofrequency system is driven from a stable oscillator and has a tuning range of 3:1 so harmonic acceleration is possible. Beam energies from as low as 200 keV to over 45 MeV have been achieved with the cyclotron. In addition to a remarkable reliability and absence of malfunction it has a fine record for minimal maintenance. Many critical components have operated for 18 years without replacements.

A special characteristic of this cyclotron is the high stability of the beam tuning. Once a suitable beam is delivered on target, the cyclotron will run without attention from an operator for days at a time. From the beginning no professional operators have been employed. There are few, if any, comparable cyclotrons which have a better performance record. We feel that this performance was due in part to the intimate involvement of the laboratory scientific staff in the design and construction of most of the components. Thus critical matters were of direct concern to the ultimate users.

C. Operation

Over a period of 17 years and 9 months of recorded operation, the cyclotron has been in use for experiments 55% of the time, for a total of 84,876 hours of running time. It was out of commission for maintenance and repairs, both scheduled and unscheduled, or unusable because of major construction or improvements, for 17,512 hours or 11% of the time.

Over the years, not counting casual drop-ins or personal acquaintances, approximately 17,000 people in 380 groups have toured the laboratory. Elementary, high school, and college teachers from a several-state area
bring their classes back every year. Several teachers have remarked that the
cyclotron and laboratory are of a size which, while impressive, are
comprehensible to students.

D. Negative Hydrogen Ion Acceleration

On April 13, 1962, just six days after the first internal beam was
achieved, the University of Colorado cyclotron became the first cyclotron to
in the world to produce a useful beam of negative hydrogen ions. The
circulating beam passed through a foil which stripped away both electrons,
leaving a proton beam which simply curved out of the magnetic field. In
addition to the attractive possibilities of nearly 100% beam extraction
efficiency and easily variable energy, it was pointed out that a
conventionally extracted negative ion beam would have a number of other
interesting possibilities, including post acceleration in a tandem
electrostatic accelerator.¹

It is now possible to look back and see that many of these possibilities
have indeed been realized. The University of Manitoba added axial injection
of H^- ions to its high field cyclotron, and successfully achieved 100%
extraction efficiency and a variable energy capability from 20 MeV to 50
MeV.²

The Tri-Universities Nuclear Laboratory (TUNL), for example, employed a
commercially produced, fixed energy, negative ion cyclotron (Cyclotron
Corporation, Berkeley, California) to inject 15 MeV H^- or 7.5 MeV D^- ions into
an electrostatic tandem accelerator. This combination, called a
cyclo-graaff, provided a very flexible nuclear physics research facility.³ A
similar arrangement, employing a 26-MeV negative ion, sector-focussed
cyclotron (Cyclotron Corporation, Model CN30) injecting into an electrostatic
tandem accelerator (High Voltage Engineering Corporation, Model EN) has been completed at the Australian National University in Canberra.\(^4\)

Certainly the most ambitious project to take advantage of the \(\text{H}^-\)
cyclotron technology originated here is TRIUMF, a meson physics facility located in Vancouver, Canada. The TRIUMF accelerator was especially designed to have excellent vacuum and low magnetic field to reduce the probability of stripping the weakly bound (0.7 eV) second electron from the \(\text{H}^-\) ion. As a reward, they have achieved a variable energy proton machine with unique capabilities.

E. The Beam Swinger

By late 1970 it was apparent that modern experiments needed resolution superior to that obtained with solid state detectors. A design for a novel magnetic spectrometer system was reached by early 1971 and construction of the major magnets was begun in 1971. This design involved rotation of the incident beam about the target. We thus vary $\mathbf{q} = \mathbf{k}_i - \mathbf{k}_f$ by changing \mathbf{k}_i, not \mathbf{k}_f in the usual fashion. This beam swinger operates in two modes. The first mode, for neutron time-of-flight runs, is fully isochronous, producing no observable broadening of the time resolution of the incident beam, indicating a time resolution due to the swinger of no worse than a few hundred picoseconds. The neutron detectors are fixed in well-shielded locations, providing an angular range of 0 to 140 degrees.

In the second mode, the beam swinger system places a beam with high momentum-position correlation on the target, suitable for a dispersion matched or energy-loss spectrometer system. The change in magnification needed to analyze products from a variety of reactions is provided by a stack of four quadrupole lenses between the target and the reaction analyzing magnet. A careful field mapping of the four magnets comprising this zoom lens found essentially perfect quadrupole fields. The final momentum analysis is accomplished by a 90 degree bending magnet. Focal plane localization is accomplished with a variety of helical cathode detectors. With the energy-loss system, a final resolution as good as 8 keV is obtained even though the beam on the target may be spread over 100 keV. No aberrations have been noted in studies of the best resolution, determined
by the size of the entrance aperture only, although in practice target thickness effects place a limit on the final peak width.

Particle identification is redundantly provided by simultaneous determinations of momentum, total energy (in a backing scintillator), energy loss in the anode gas, time-of-flight (modulo the cyclotron RF cycle) and transverse deflection by an electric field. Very rare events can be separated from background in this fashion. A system of baffles is included in the analysis magnets, using ray tracing in the measured fields, such that only the desired trajectories are transmitted. This has provided a very clean system for small angle cross section measurements. In many cases we take data exactly at zero degrees. With the energy-loss principle, we can utilize the full extracted cyclotron current, as much as 10 µA on target.

The rotating beam system, first used in Boulder, has also been applied at MSU and Hammersmith Hospital (London). The excellent resolution, count rate, particle identification and momentum filter properties of this system have provided excellent data for many studies for over eight years so far. All the design and engineering were completed at the NPL, as were many of the components and all installation, field mapping and calibrations. A series of six publications in Nuclear Instruments and Methods documents this instrument.

F. Detector Development

Measurement of the energies, momenta, flight times and species of reaction products is as important as is the provision of the cyclotron beam. The NPL has been in the forefront in developing and testing a wide range of detectors.
When Si(Li) counters provided most of the information on charged reaction products these were constructed in the laboratory. Almost all needs were met by this in-house manufacture from 1967 to 1977, with depletion depths of up to 10 mm. Ge(Li) gamma-ray detectors were also manufactured, at the state of the art from 1966 to 1970, and continuing until 1977. Commercial sources of both types had so improved by 1977 that in-house manufacture was ended.

Particle detectors made from high purity, intrinsic Ge were needed for higher energy beams encountered at the Indiana University Cyclotron Facility, and a 2 x 14 mm telescope was constructed. Several small gamma-ray counters were also made. More recently, the properties of solid state counters made from CdTe or HgI₂ have been investigated.

Particle localization in the focal plane of the spectrometer is accomplished by a variety of helical cathode detectors. When the first of these was built in 1973 it was the longest one in operation anywhere. Replacements and new varieties of these detectors are now made routinely.

A large effort has been made to build large volume neutron detectors with good time resolution and good discrimination against gamma-ray events. Designs suited to a range of neutron energies (1 to 50 MeV) have been built. Many other laboratories using the neutron time-of-flight method have since followed these designs. Pulsing of the cyclotron beam has been accomplished by a gated ion source and by an external radio-frequency beam deflector.

A double-focussing beta spectrometer, an on-line transport system for conversion electrons and a curved Ge crystal diffraction spectrometer were designed and built for the study of electron and photon spectra. Prior to construction of the beam swinger, a quadrupole spectrometer was
used for a momentum filter. The quadrupole spectrometer design has been followed elsewhere, for instance at Munich and at Livermore, where neutron induced charged particle reactions are studied. Two versions of a time-of-flight, time-loss spectrometer have been designed, for charged particles and for neutrons.

G. Plasma Physics of Ion Source

A one-quarter scale model of the main cyclotron magnet was made for field mapping and orbit design studies around 1960. More recently, this system has been reconnected as a test bed for basic studies of the plasma physics of arc ion sources. A sophisticated optical diagnostic system is now installed and providing important new information that may lead to more intense sources from cyclotrons and other accelerators.

H. Computing

A PDP-9 was installed in 1968 for off-line analysis and some on-line data acquisition. This was replaced by a PDP-11/34 in 1978, with most of the off-line analysis now performed with a PDP-11/60 installed in 1980. The 11/34 is dedicated to on-line data acquisition. The analysis package SPECTR has proven to be a versatile and simple tool for manipulation of spectra. This package has been exported to a number of laboratories. A data acquisition routine KAOS has been developed for the 11/34, and has been in common use since 1978.
III. EXPERIMENTAL HIGHLIGHTS

A. Reaction Mechanism Studies

A sizeable fraction of the effort at the Nuclear Physics Laboratory over the years has been directed towards a better understanding of the nuclear reaction mechanisms in various light ion reactions. In many ways this interest was stimulated both by the capabilities of the facilities and the expertise offered by the faculty members at the laboratory interested in theoretical nuclear physics. Because of the energy of the charged particle beams available, the direct reaction mechanism is the process of interest with particular emphasis on the distorted wave Born approximation (DWBA) method. Some of the highlights of the studies that have been completed in the last twenty years are listed:

1. A study of inelastic proton scattering on 90Zr with the first analysis (with G. R. Satchler) of such data by the use of microscopic interactions, i.e. shell model wave functions and an assumed proton-nucleus potential. Since then, this has become a standard method of analysis for inelastic and charge exchange reactions, most clearly successful at the IUCF.

2. A series of two-neutron pickup reactions (p,t) were studied which, when coupled with a DWBA analysis, yielded important information on the dependencies of the results on the assumed optical model potentials for the proton and triton, the shell model configuration involved, the potential for the bound neutrons and other details of the calculations. Experimental tests were made to ascertain the reliability of the L-value assignments and the enhancement factors extracted from the data. This work was important to the analysis of pairing vibrations.
More recently the energy dependence of the reaction mechanism has been investigated using data taken here at 26 MeV, data taken at 80 MeV at the Indiana University Cyclotron Facility, and several studies done by others. This was the first such investigation where both zero-range and exact finite-range calculations could be compared with the data. Studies of nucleon transfer induced by heavy ion reactions now rely on these methods.

3. The role of two-step or sequential processes in reactions such as the (p,d) and (p,t) have been extensively investigated here. In the case of the (p,d) reaction (p,p')(p',d) sequences explained in a very reassuring way the population of core coupled states which are forbidden for the one-step process. In the (p,t) reaction the populations of unnatural parity states in 58Ni and 60Ni were completely accounted for by a combination of (p,p')(p',t) and (p,d)(d,t) processes.

4. Various features of the (3He,t) reaction have been brought to light by a combination of theoretical and experimental studies carried out here in the last 15 years. Included in this category are the importance of the tensor part of the interaction for excitation of unnatural parity states, the role of two-step processes in the excitation of states in odd-odd nuclei, the dependence on the optical model parameters for the 3He and tritons, as well as the energy dependence of the reactions. More recently, detailed comparisons of (3He,t) and scattering data have revealed very simple isospin relations to compare to inelastic pion scattering.

B. Isobaric Analog States and the Lane Model

Isobaric analog states (IAS) were discovered in the (p,n) reaction at direct reaction energies by Anderson and co-workers at Livermore. The Lane Model offered a unification of proton elastic scattering, neutron elastic
scattering and the quasi-elastic \((p,n)\) transition to the IAS. If the model was correct, \((p,n)\) IAS data measured the asymmetry term of the nucleon-nucleus optical potential.

The Nuclear Physics Laboratory carried out a systematic and precise study of \((p,n)\) IAS reactions which spanned 33 target nuclides ranging from \(^9\text{Be}\) to \(^{232}\text{Th}\). The Lane Model interpretation of this reaction was beautifully confirmed and our knowledge of the asymmetry term in the optical potential was vastly improved. A practical consequence is that it is now rather straightforward to convert an easily measured proton optical potential for a given target and beam energy to a neutron optical potential for that target. This enables more reliable calculations to be carried out for both the fission and fusion power programs.

C. Multinucleon Transfer

A systematic study of the \((^3\text{He}, ^7\text{Be})\) reaction was carried out by the Nuclear Physics Laboratory from 1970 to 1972. Our preliminary studies involving selection rules showed that the \((^3\text{He}, ^7\text{Be})\) reaction was dominated by direct transfer of an alpha-like cluster with the quantum numbers of the ground state of the alpha particle. The \((^3\text{He}, ^7\text{Be})\) alpha-transfer reaction was then used as a tool to study the variation of alpha particle spectroscopic factors for targets ranging from \(A=12\) to \(A=93\). These studies extended our knowledge of alpha "clustering" far beyond the region of mass 60 which was the limit prior to our work. In addition, a careful comparison of alpha clustering was made for \(^{40}\text{Ar}\) and \(^{40}\text{Ca}\). The near identity of the results were in strong opposition to a then-current explanation of anomalous alpha particle elastic back-scattering from \(^{40}\text{Ca}\). This explanation invoked enhanced alpha cluster probability for self-conjugate \(4N\) nuclides but was not
supported by our results. A heavy ion focal plane detector has been developed to allow these studies to be continued with the energy-loss spectrometer system.

The \((\alpha,p),(\alpha,n)\) and \((p,\alpha)\) three-nucleon transfer reactions are well-suited to the study of high-spin final states due to their large momentum mismatch. Our early studies dealt mainly with levels of known spin, but we now understood this reaction well enough to deal with states of spins as high as \(11^-\) (by \(^{39}\text{K}(\alpha,p)^{42}\text{Ca}\)) and \(21/2^+\) (by \(^{116}\text{Sn}(\alpha,p)^{119}\text{Sb}\)). These reactions thus offer the specific benefits of a direct reaction to the simply structured high spin states usually best known from inclusive compound reaction data.

D. Nuclear Astrophysics

The ease and range of energy variation with the cyclotron have permitted a study of nuclear reaction rates important for stellar nucleosynthesis. Beam energies as low as 200 keV were provided to the target, accelerating on the fifth harmonic of the RF. A thick target technique was developed for these low energies, where there can be no thin target measurements. Important non-statistical contributions to \((p,\gamma)\) reaction rates were included by measuring reaction yields in fine steps over isobaric analog states; this technique is more commonly associated with Van de Graaff accelerators. Over one-hundred proton and \(^4\text{He}\) induced thermonuclear reaction rates have been determined, covering in some cases up to 40 decades of rate as a function of temperature. This corpus of data has been of the utmost importance for modern understanding of stellar nucleosynthesis.

Thermonuclear reaction rates have also been determined by this technique for a variety of questions relevant to the thermonuclear power program.
E. Pre-equilibrium Reaction Mechanism Studies

In 1978, we began to study light-ion induced pre-equilibrium reaction mechanisms. Due to the long history of neutron detection here and the relatively small amount of experimental information available concerning compound or nearly-compound reactions in which neutrons were emitted, the \((\alpha,\text{xn}\gamma)\) and \((\text{\(^3\)He,\text{xn}\gamma})\) reactions were targeted for study. During the course of the investigation both inclusive and exclusive spectra of neutrons emitted in \(\alpha\)- and \(^3\)He-induced reactions have been obtained for about twenty targets in the range \(80<A<210\) using beam energies from 24 to 35 MeV for \(\alpha\)'s and 25 to 43 MeV for \(^3\)He's.

The accumulation of this large data set has allowed us to observe systematic features of the reaction mechanisms involved which are not evident in studies of a single target. The most prominent such feature is a pronounced relation between the pre-equilibrium reaction cross section and the neutron excess parameter \((N-Z)/A\). Such a relation is unexpected in at least one current view of such reactions, the massive-transfer model. We have also developed techniques for the analysis of \(n-\gamma\) coincidence data which show in some detail the feeding pattern of the yrast states from the entry region. Using these techniques, we have in several cases been able to place fairly strict limits on the \(J\)-width and location of the entry clouds for specific reactions.

These studies nicely supplement the traditional interest in reaction mechanisms at Colorado, and are of particular interest for heavy ion reaction mechanisms, where the simpler features noted with helium beams clarify the more complex reactions.
F. Nuclear Spectroscopy

The energy-level schemes of many nuclei have been investigated at the NPL. With a variety of beams and the ability to detect a range of particles, a wide range of nuclei have been studied. In some cases, the spin, spectroscopic factor or other observables for a single state have been determined for cases of special interest. A recent example is the determination of the $9/2^+$ spin and rotational nature of the 9.50 MeV state in 13C.

We have also mounted heavy attacks to determine the general properties of some nuclei. A good example may be found in 106Ag, where $(\alpha,x\gamma)$, (p,d), $(^3\text{He},d)$, $(^3\text{He},p)$ and $(^3\text{He},t)$ reactions were all used to provide a level scheme and a shell model interpretation. Previous to this study only a single isomeric state was known for this nucleus. These studies provide the ore to be mined by detailed shell model or other calculations.

G. Two-Proton Pairing Studies

An important area of research growing out of the neutron time-of-flight facilities was the $(^3\text{He},n)$ studies on medium to heavy nuclei. Such work had been initiated at Rochester, in Berlin and Munich. However, when this laboratory started its investigations, it so dominated this field of nuclear research that now no other laboratory anywhere can compete. As a result the field has been left exclusively to this laboratory.

The $(^3\text{He},n)$ reaction excites preferentially elementary modes of nuclear excitation with the two protons coupled to angular momentum zero. Up to mass 60 such studies have been completed by others. This laboratory carried on the work from mass 60 to 230 as well as some studies below mass 60. About 11 papers have been published on this topic from this laboratory. The work has
temporarily ceased while improvements in energy resolution and luminosity are being made. There is a great deal more to do with improved capability.

Near the closed nuclear shells at Z=40, 50 and 82 the phenomena of paired proton particle or hole states are particularly simple. The corresponding systematics for neutron states in nuclei with N=40, 50, 82 and 128, as well as in other regions, have been extensively studied by (p,t) and (t,p) reactions. However, no comparable work with proton transfer reactions was available. The proton work confirmed rather nicely the systematics predicted by the neutron pairing vibration studies when the proper corrections for Coulomb effects were included. A matter of interest was the interaction of the proton and neutron pairing states. A very small residual interaction in \(^{208}\text{Pb}\) was confirmed by systematics from studies in \(^{204}\text{Hg}\) and \(^{206}\text{Pb}\).

Some studies on odd-A nuclei to show the effects of coupling single particle states with pairing vibration states have been done. However, questions remain because of insufficient resolution. Also, additional strength at much higher excitation energy is expected; preliminary work on light targets indeed shows strong, discrete states at very high excitations. Future \(^{3}\text{He},n\) studies are certain to be rewarding.

H. Proposals

Although valuable research with the 30 MeV cyclotron has been our main interest, it has also been realized that future work would be aided by light ion beams of greater intensity and energy. A series of proposals (1970, 1978, and 1980) was submitted requesting a second cyclotron to boost our proton energy to 75 MeV. Higher beam currents were to be obtained, sufficient to allow time-of-flight studies at very long flight paths and to
study neutron induced reactions. In the more recent proposals a polarized hydrogen beam was also requested to allow more detailed studies of reaction mechanisms. A large effort was dedicated to these proposals, and several innovative designs were developed. The advantages and technical difficulties of a light ion storage ring have been examined, for example.
IV. INTERMEDIATE ENERGY PHYSICS

A program of experimental research in intermediate energy nuclear physics was begun in 1970, with the first funding through Task C in 1973. Theoretical work in this field is described elsewhere in this report. The research at higher energy accelerators follows the same general lines developed at the cyclotron, with emphases on reaction mechanisms and the structure of complex nuclei. We have been closely associated with the accelerators at LAMPF, TRIUMF and IUCF, particularly in their high resolution beam lines. Design and construction of the EPICS system at LAMPF was an important element of our effort for many years.

Four important classes of experiments have been undertaken. Pion induced nucleon removal (π^+,pN) was studied to test whether this reaction was related to the more familiar single nucleon pick-up reactions such as (p,d), or proceeded by a statistical process.

High energy proton beams have been used to study the (p,d) reaction on several targets, at several beam energies, and in some cases, with polarized beam. The objective of this work is to examine the high momentum components of nuclear wave functions and to test the distorted wave theories at higher energies. Extensive theoretical work and studies of proton elastic and inelastic scattering have also been needed for this work, which has resulted in a great increase in our understanding of nuclear reactions. As needed, data have also been taken with our cyclotron to complement these studies. Some work on the (π^+,p) reaction has also been undertaken, also picking up a neutron at a large momentum mismatch, but has not yet been addressed in much detail.

Data on elastic and inelastic pion scattering have been a main goal of
our program. Very low energy data were important for understanding the many-body aspects of a pion optical potential. At the 3-3 resonance the striking isospin properties of the basic pion-nucleon system have been used to study pion-nucleus reactions. Ratios of yields to states of known isospin or ratios of π^+ to π^- yields have provided a fairly model-independent probe of the spin-isospin properties of the interaction on a number of light nuclei. Many questions of nuclear structure relevant to the pion studies have also been investigated with the cyclotron.

The most fundamental study in this pion elastic scattering program has been a determination of the validity of nuclear charge symmetry by a comparison of π^- and π^+ elastic scattering on the deuteron. The systematic uncertainties and Coulomb effects have been well understood, and we affirm that nuclear charge symmetry is valid to much better than one percent.

The very successful (p,n) program at the cyclotron has been supplemented at higher energies at the IUCF. The bulk, analog, effects noted at lower energies are dominated by single-particle effects at energies above 100 MeV. This coherent study of charge exchange is also complemented by $(^3\text{He},t)$ data with the cyclotron, with better energy resolution and a wide range of momentum transfers.

We have found it possible to study problems of reaction mechanism or nuclear structure with the most specific probe by operating programs both at the cyclotron and at the appropriate national accelerators.
V. NUCLEAR THEORY

The main thrust of our work has been toward the understanding of nuclear structure by means of nuclear reactions, usually simple inelastic, charge-exchange or particle transfer reactions. The interplay of the continuum reaction theory with the bound nucleus provides a large variety of fascinating questions, many of which can be addressed in the framework of nuclear models. The simplest models—involving few degrees of freedom in a "direct" reaction—have provided much of our current knowledge of nuclear structure.

A basic question in applying direct reaction analyses is delineating the range of validity of the method. This has led naturally to the study of two-step processes, of deuteron breakup effects in stripping, and to intermediate pion effects which are discussed in many of the publications in our bibliography. In these studies we have focussed on reactions involving light projectiles (usually $A<4$) although our computer codes are often used by others in the heavy-ion domain. In recent years the experiments at LAMPF and TRIUMF have led us into the higher energy domain with protons and pions as nuclear probes. The pion experiments have led to a study of the basic π-nucleon interaction as well as its N^* and Δ resonant states. The proton experiments have led to the extrapolation of low energy reaction theory to the intermediate energy regime.

For almost all nuclear reactions, distortion is an important and even dominant feature. In the last decade a distorted wave Born approximation code DWUCK was developed with care taken to ensure accuracy, speed and flexibility. The demand for this program was outstanding—as evidenced by more than 140 other research groups currently using this program.
The complications of analyzing inelastic scattering reactions when the coupling is strong resulted in the development of the coupled channels code CHUCK, which was designed to allow for strong coupling in particle transfer modes as well. For situations where the zero-range approximation is inadequate (e.g. at high energies) a full finite-range calculational scheme using an efficient plane wave expansion method was incorporated into the program DWUCKS. The three programs together form a direct reaction analysis package which the nuclear physics community has used extensively. More specialized codes for pion projectiles have also been developed.

In the low energy region, a continuing interest has improved our understanding of two-particle transfer reactions. The role of a second-order process, the sequential transfer of the two neutrons, has been studied using several simplifying assumptions. In addition, work has been continuing on the calculations for the usual first-order dineutron transfer. A finite-range calculation has been formulated and can now be made with the ease of a zero-range calculation. One finds that with the correct treatment of the repulsive term in the nucleon-nucleon potential the first-order term does not predict the magnitude or relative energy dependence of the experimental cross sections over a range of energy from 25 MeV to 80 MeV. Thus there are still unresolved questions to answer in this simple basic reaction.

The interaction of pions with nuclei has been a major item in our research in the last decade. This has included calculation of the various N* and Δ admixtures in the deuteron, the effects of nuclear spin either as an aligned target or in a radiative deexcitation, as well as the more common analyses of elastic and inelastic scattering. An interesting discovery was that low-energy π⁺ and π⁻ scattering involved the isovector part of the
nuclear density distribution coherently and sensitively. This was turned around to study neutron density distributions relative to the known proton distributions. Several experiments at the meson factories have exploited this idea.

Another discovery occurred when we found great difficulty in understanding the $^4\text{He}(p,d)^3\text{He}$ reaction at high energies (200-800 MeV). The resolution of our difficulties turned out to be the neglected meson exchange currents which should be removed in constructing a "bare" nucleon density distribution using electron scattering form factors. This provided the first verification of the effect of these exchange currents in a hadronic scattering process.

The nuclear theory research at the University of Colorado is closely tied to experimental nuclear physics programs. The theorists have offices at the cyclotron building and often collaborate with experimental work at the national labs as well as at the Colorado cyclotron. It is expected that this collaboration will continue and that a large fraction of our future research will be involved with interesting (or anomalous or puzzling) experiments yet to be done.
APPENDIX A
- 24 -

PUBLISHED ARTICLES OF THE NUCLEAR PHYSICS LABORATORY
1961-1981

Studies of Gamma Rays from Neutron Inelastic Scattering
D. A. Lind and R. B. Day
Annals of Physics 12 (1961) 485

Decay of 42K and 44Sc
J. D. McCullen and J. J. Kraushaar
Phys. Rev. 122 (1961) 555

Level Structure of 52Cr
R. R. Wilson, A. A. Bartlett, J. J. Kraushaar, J. D. McCullen, and
R. A. Ristinen
Phys. Rev. 125 (1962) 1655

Magnetic Field Design and Measurement for the Colorado 52-inch Cyclotron
D. A. Lind, M. E. Rickey, and B. M. Bardin
Nucl. Inst. and Meth. 18, 19 (1962) 129

University of Colorado 52-inch Cyclotron Dee Design
Rodman Smythe
Nucl. Inst. and Meth. 18, 19 (1962) 582

The Acceleration and Extraction of Negative Hydrogen Ions in the C.U. Cyclotron
M. E. Rickey and R. Smythe
Nucl. Inst. and Meth. 18, 19 (1962) 66

General Design Features of the University of Colorado 52-inch Cyclotron
D. A. Lind, J. J. Kraushaar, W. R. Smythe, and M. E. Rickey
Nucl. Inst. and Meth. 18, 19 (1962) 62

Nuclear Magnetic Dipole Moment of 41Ca
E. Brun, J. J. Kraushaar, W. L. Pierce, and W. J. Veigele
Phys. Rev. Lett. 9 (1962) 166

Decay of 44Sc and 44mSc
L. T. Dillman, J. J. Kraushaar, and J. D. McCullen
Nucl. Phys. 42 (1963) 383

A Study of the Decay of 48V
R. A. Ristinen, A. A. Bartlett, and J. J. Kraushaar
Nucl. Phys. 45 (1963) 321

The Level Structure of 44Sc
J. K. Kliwer, J. J. Kraushaar, R. A. Ristinen, J. R. Keith, and
A. A. Bartlett
Nucl. Phys. 49 (1963) 328

Spin-Orbit Splitting Among Certain Light Nuclei Due to the Two-Body Spin-Orbit Force
P. D. Kunz
The Colutron, A Zero Deflection Isotope Separator
L. Wöhl
Nucl. Inst. and Meth. 27 (1964) 55

Beam Current Integrator
P. W. Allison
Rev. of Sci. Inst. 35 (1964) 1728

Compton Effect: An Experiment for the Advanced Laboratory
A. A. Bartlett, J. H. Wilson, O. W. Lyle, Jr., C. V. Wells, and J. J. Kraushaar
Am. J. of Phys. 32 (1964) 135

Relativistic Equations and Table for Ion Energy Determination by the Cross-over Technique
Rodman Smythe
Rev. Sci. Inst. 35 (1964) 1197

Kinematic Method for Determination of Accelerator Beam Energies
B. M. Bardin and M. E. Rickey
Rev. Sci. Inst. 35 (1964) 902

A Study of Nuclear Reactions \(^{26}\text{Mg}(p,t)^{24}\text{Mg}\) and \(^{26}\text{Mg}({}\text{He},\text{He})^{24}\text{Mg}\)
M. E. Rickey, H. E. Wegner, K. W. Jones, B. M. Bardin, C. Hoot, and M. Kondo
ANL 6848, p. 217

J. Dependence of the Angular Distribution from the \((p,d)\) Reactions at 28 MeV
R. Sherr, E. Rost, and M. E. Rickey
Phys. Rev. Lett. 12 (1964) 420

Preparation of Germanium Detectors
E. Kashy and M. E. Rickey
Rev. Sci. Inst. 35 (1964) 1364

New Two-Neutron Pickup Reaction: \(^{26}\text{Mg}(\text{He},\text{He})^{24}\text{Mg}\)
M. E. Rickey, H. E. Wegner, and K. W. Jones
Phys. Rev. Lett. 13 (1964) 444

The Colorado Curved Crystal Spectrometer
D. A. Lind and P. Henning
Symposium on Crystal Diffraction of Nuclear Gamma Rays, National Technical University, Athens, 1964

Measurement and Control of the Magnetic Field in a Beta Spectrometer
A. A. Bartlett, H. Shafer, and J. R. Keith
Rev. Sci. Inst. 35 (1964) 1072

Inelastic Proton Scattering from \(^{40}\text{Ca}\) at 14.6 and 17.3 MeV
J. J. Kraushaar, W. S. Cray, and R. A. Kenefick
Comptes Rendus du Congres International de Physique Nucleaire 2 (1964) 395
A Cyclotron Power-Amplifier RF System Using a 4CW50,000/8350 Tetrode
J. W. Osterlund and W. R. Smythe
IEEE Transactions on Nuclear Science NS-12 No. 3 (1965) 174

Collisional Electron Detachment from Hydrogen Atoms and Negative Hydrogen Ions between 4 and 18 MeV
W. R. Smythe and J. W. Toevs
Phys. Rev. 139 (1965) 15

Inelastic Proton Scattering (I) 40Ar and 40Ca
W. S. Gray, R. A. Kenefick, and J. J. Kraushaar
Nucl. Phys. 67 (1965) 565

Inelastic Proton Scattering (II) 50Ti and 54Fe
W. S. Gray, R. A. Kenefick, and J. J. Kraushaar
Nucl. Phys. 67 (1965) 565

The 40Sc-40Ca Mass Difference and the 40Sc Ground State Spin
M. E. Rickey, P. D. Kunz, J. J. Kraushaar, and W. C. Anderson
Phys. Lett. 17 (1965) 296

Special Methods in the Analysis of Conversion Electron Spectra
A. A. Bartlett
Nucl. Inst. and Meth. 34 (1965) 181

Configuration Mixing in the Ground State of 40Ca
C. Glashausser, M. Kondo, M. E. Rickey, and E. Rost
Phys. Lett. 14 (1965) 113

Excitation of Isobaric Analog States in Medium-Weight Nuclei by the (p,d) Reaction at 28 MeV
R. Sherr, B. F. Bayman, E. Rost, M. E. Rickey, and C. G. Hoot
Phys. Rev. 139 (1965) B464

The Calutron Mark II, A Velocity Isotope Separator
L. Wäbli
Nucl. Inst. and Meth. 38 (1965) 38

A New Double Focusing Beta Spectrometer II
A. A. Bartlett and J. Keith
Nucl. Inst. and Meth. 36 (1965) 119

A Theoretical Study of the Beta Decay of 40Sc
P. D. Kunz
Nucl. Phys. 77 (1965) 425

Decay of 32Cl and 40Sc and the T=1 Isobaric Analog States in 32S and 40Ca
W. C. Anderson, L. T. Dillman, and J. J. Kraushaar
Nucl. Phys. 77 (1966) 401

90Zr(p,p') Reaction at 18.8 MeV and the Nuclear Shell Model
W. S. Gray, R. A. Kenefick, J. J. Kraushaar, and G. R. Satchler
Phys. Rev. 142 (1966) 735
Status Report for University of Colorado Isochronous Cyclotron
D. A. Lind
IEEE Transactions on Nuclear Science, NS-13 (1966) 501

A Complete Variational Wave Function for the Ground State of 3H and 3He
P. D. Kunz and M. Banville

Analysis of Proton Scattering from 92Zr and 94Zr at 19.4 MeV
M. M. Stautberg and J. J. Kraushaar
Phys. Rev. 151 (1966) 969

Normal Modes of a Current Loop in Axially Symmetric Magnetic Field
W. R. Smythe

Elastic Scattering of 3He Ions at Intermediate Energies
E. F. Gibson, B. W. Ridley, J. J. Kraushaar, M. E. Rickey, and
R. H. Bassel
Phys. Rev. 155 (1967) 1194

Inelastic Scattering of 3He Ions at Intermediate Energies
E. F. Gibson, B. W. Ridley, J. J. Kraushaar, M. E. Rickey, and
R. H. Bassel
Phys. Rev. 155 (1967) 1208

Nuclear Structure Studies of 88Sr and 89Y Using 19 MeV Proton Scattering
and the 88Sr(3He,d) Reaction
M. M. Stautberg, J. J. Kraushaar, and B. W. Ridley
Phys. Rev. 157 (1967) 977

A Quantitative Explanation and Precise Measurement of the Pulse Height
Shift Associated with Nuclear Reaction Peaks in Solid State Detectors
(1967) 13

Nuclear Level Density Fluctuations and Tests of the Compound Statistical
Model
R. R. Johnson and N. M. Hintz
Phys. Rev. 153 (1967) 1169

Coupled-Channel Calculations for Nuclear Bound States
E. Rost
Phys. Rev. 154 (1967) 994

Spin Correlation in Proton-Proton Scattering at 27 MeV
N. Jarmie, J. E. Brolly, H. Kruse, H. C. Bryant, and W. R. Smythe
Phys. Rev. 155 (1967) 1438

The Manufacture of Thick Lithium-Drifted Silicon Detectors
R. A. Ristinen, D. A. Lind, and J. L. Homan
Nucl. Inst. and Meth. 56 (1967) 55
The 96Zr(p,p') and 96Zr(p,d) Reactions at 19.4 MeV
M. M. Stautberg, R. R. Johnson, J. J. Kraushaar, and B. W. Ridley

Proton-Deuteron Elastic Scattering Cross Section at 17.1 MeV Center-of-Mass Energy
G. E. Bixby and Rodman Smythe
Phys. Rev. 166 (1968) 946

A Study of the Nuclear Structure of 60Ni by the 59Co(3He,d)60Ni and 60Ni(p,p)60Ni Reactions.
R. W. Barnard and G. D. Jones
Nucl. Phys. A106 (1968) 497

A Study of the 28Si(p,d)27Si Reaction
G. D. Jones, R. R. Johnson, and R. J. Griffiths
Nucl. Phys. A107 (1968) 659

A Study of the Nuclear Structure of 28Si by the 27Al(3He,d)28Si Reaction
R. W. Barnard and G. D. Jones
Nucl. Phys. A108 (1968) 641

A Study of the Nuclear Structure of 28Si by the 28Si(p,p)28Si Reaction
R. W. Barnard and G. D. Jones

A Study of 46Ti by the 45Sc(3He,d)46Ti and 46Ti(p,p)46Ti Reactions
R. W. Barnard and G. D. Jones
Nucl. Phys. A111 (1968) 17

Some Low-Lying Energy Levels of 45Ti
G. D. Jones, R. R. Johnson, and J. H. Jett
Nucl. Phys. A111 (1968) 449

Proton Shell-Model Potentials for Lead and the Stability of Superheavy Nuclei
E. Rost
Phys. Lett. 27B (1968) 184

Comparison of Theoretical Conversion Coefficients
R. S. Dingus and Niels Rud
Nucl. Phys. A117 (1968) 73

Polarization of 3He Elastically Scattered by 12C and the 3He Spin-Orbit Optical Potential
Phys. Lett. 27B (1968) 153

Inelastic Proton Scattering from 42Ca and 44Ca and Analysis in Terms of Shell-Model Form Factors
J. C. Bane, J. J. Kraushaar, B. W. Ridley, and M. M. Stautberg
Proton Elastic and Inelastic Scattering from Argon at 25 MeV
R. R. Johnson and R. J. Griffiths
Nucl. Phys. A117 (1968) 273

Pion-Nucleon Elastic Scattering above 1 GeV
E. Rost and L. Marshall Libby
Phys. Rev. 175 (1968) 1869

Evidence for a Ground State Triplet in 45Ti
Phys. Lett 28B (1968) 111

High Voltage Operation of Grooved Si(Li) Detectors
R. A. Ristinen
Nucl. Inst. and Meth. 64 (1968) 201

Presence of Hard Core in High Energy Pion-Proton Scattering
E. Rost and L. Marshall Libby
Theoretical Physics Institute Proceedings, p. 745, Univ. of Colo. 1968

Elastic Scattering of Protons by 4He from 20 to 28 MeV
P. W. Allison and W. R. Smythe
Nucl. Phys. A121 (1968) 97

The 64Zn(p,p')64Zn and 64Zn(p,d)63Zn Reactions at 26 MeV
R. R. Johnson and G. D. Jones
Nucl. Phys. A122 (1968) 657

Evidence of the Hard Core in Multi-GeV K±p Elastic Scattering
L. Marshall Libby, N. S. P. King, and E. Rost

Particle Transfer Reactions on Deformed Nuclei
P. D. Kunz, E. Rost, and R. R. Johnson
Phys. Rev. 177 (1969) 1737

Study of the Effective Two-Body Force using the 54Fe(3He,t) Charge-Exchange Reaction
S. I. Hayakawa, J. J. Kraushaar, P. D. Kunz, and E. Rost
Phys. Lett. 29B (1969) 327

Instrumentation for Picnic X-ray Studies
D. A. Lind
Proceedings of the 2nd LAMPF User's Meeting, LA 4087MF, Jan., 1969

Differential Cross Sections and Phase Shifts for 3He + 4He Elastic Scattering Between 27 and 43 MeV
P. Schwandt, B. W. Ridley, S. Hayakawa, L. Put, and J. J. Kraushaar
Phys. Lett. 30B (1969) 30

Particle Transfer Reactions on Deformed Nuclei
P. D. Kunz, E. Rost, and R. R. Johnson
Phys. Rev. 177 (1969) 1737
Potential Well Depths for Λ in Heavy Hypernuclei
B. W. Downs and P. D. Kunz
Proceedings of the International Conference on Hypernuclear Physics
Argonne National Laboratory, May, 1969

A Design for a High-Resolution Reaction-Product Analyzing System
B. Klank, D. A. Lind, and R. R. Johnson
Nucl. Inst. and Meth. 67 (1969) 61

Role of Tensor Force in Charge Exchange Reactions
E. Rost and P. D. Kunz
Phys. Lett. 30B (1969) 231

Study of the $^{90}\text{Zr}(^3\text{He},t)$ Reaction
S. I. Hayakawa, W. L. Fadner, J. J. Kraushaar, and E. Rost

The Isomeric Decay of ^{73}Se
J. Konijn, B. Klank, D. L. Spenny, and R. A. Ristinen

Analyses of Quasi-Elastic and Quasi-Inelastic ($^3\text{He},t$) Scattering from the Ni Isotopes
P. D. Kunz, E. Rost, R. R. Johnson, G. D. Jones, and S. I. Hayakawa
Phys. Rev. 185 (1969) 1528

The Radioactive Decays of 6.7 min ^{179m}W and 38 min ^{179}W
J. Konijn, B. J. Meijer, B. Klank, and R. A. Ristinen

Coulomb Energies in Mass 18 and Mass 42 Nuclei
C. A. Rappleyea and P. D. Kunz

Gated Ion Source for Cyclotron-Operation at Reduced Beam Repetition Rates
Nucl. Inst. and Meth. 83 (1970) 245

$T=9/2$ Analog State in ^{63}Ni
D. W. Devins, M. E. Rickey, S. I. Hayakawa, and E. Rost

Calculation of Single-Particle Levels in a Deformed Diffuse Well
G. P. Ford, D. C. Hoffman, and E. Rost

A Cooling and Warming System for Si(Li) Charged-Particle Detectors
D. M. Stupin
Nucl. Inst. and Meth. 85 (1970) 325

Role of Tensor Force in Charge-Exchange Scattering
E. Rost and P. D. Kunz
A Geometrical Polarization Effect in Some Transfer Reactions Involving Heavy Ions.
C. Détraz

Inadequacies in a Conventional Distorted-Wave Born-Approximation Analysis of (p,t) Transitions in Titanium Isotopes at E=27 MeV
H. W. Baer, J. J. Kraushaar, C. E. Moss, N. S. P. King, and R. E. L. Green

Neutron Emission from the 64Zn Compound Nucleus Formed in Two Ways: $p + ^{63}$Cu and $\alpha + ^{60}$Ni
S. T. Ahrens, W. G. Simon, and H. B. Eldridge, Univ. of Wyoming

Rotational States of 158Dy, 164Er, 168Yb, and 174Hf Excited by Evaporation Reactions
J. H. Jett and D. A. Lind

Nuclear Reaction Measurements with 1H, 2H, 3He, and 4He Incident on Silicon Detectors
T. R. King, J. J. Kraushaar, R. A. Ristinen, Rodman Smythe, and D. M. Stupin
Nucl. Inst. and Meth. 88 (1970) 17

SPECTR - A Program for Handling and Analyzing Multichannel Pulse Height Spectra
D. H. Zurstadt
Proceedings of the DECUS Fall Symposium (1970) 263

PICSY - A Program Input and Control System
D. H. Zurstadt
Proceedings of the DECUS Fall Symposium (1970) 143

A Faster, More Compact Chaining Procedure for the PDP-9
D. H. Zurstadt
Proceedings of the DECUS Fall Symposium (1970) 241

Rotational Levels of Deformed Even-Even Nuclei
P. M. Abraham and E. Rost

Study of Isobaric Analog Ground States for Several Nuclei Using the (3He,t) Reaction
W. L. Fadner, R. E. L. Green, S. I. Hayakawa, J. J. Kraushaar, and R. R. Johnson

Spectroscopy of States in 91Zr from Gamma-Ray Transitions Observed in the 88Sr(α,γ)91Zr Reaction
J. E. Glenn, H. W. Baer, and J. J. Kraushaar
Nucl. Phys. A165 (1971) 533
Study of the Excited States of \(^{46}\text{V}\) Using the \(^{(3}\text{He},t)\) Reaction
W. L. Fadner, L. C. Farwell, R. E. L. Green, S. I. Hayakawa, and J. J. Kraushaar
Nucl. Phys. A162 (1971) 239

Isospin Dependence of the Mass-3 Optical Potential from the Comparison of Triton and Helion Elastic Scattering
P. P. Urone, L. W. Put, H. H. Chang, and B. W. Ridley
Nucl. Phys. A163 (1971) 225

Finite Range Corrections in Two-Nucleon Transfer Reactions
E. Rost and P. D. Kunz
Nucl. Phys. A162 (1971) 376

A Quadrupole Lens Reaction Products Spectrometer System
R. E. L. Green and D. A. Lind
Nucl. Inst. and Meth. 94 (1971) 93

Small-Angle \(j\)-Dependence of \((\alpha,p)\) Reactions
J. E. Glenn, C. D. Zafiratos, and C. S. Zaidins

Beta Decay of \(^{23}\text{Mg},^{27}\text{Si},^{31}\text{S},^{35}\text{Ar},\) and \(^{39}\text{Ca}\)
C. Détraz, C. E. Moss, and C. S. Zaidins
Phys. Lett. 34B (1971) 128

Optical Model Analysis of \(3\text{MeV}^{3}\text{He}\) Elastic Scattering Extended into the Backward Hemisphere
P. P. Urone, L. W. Put, B. W. Ridley, and G. D. Jones

Comments on "Shapes of Angular Distributions of \((^{3}\text{He},t)\) and \((p,n)\) Transitions to \(0^+\) Anti-Analog States"
E. Rost

The \(^{19}\text{F}(^{3}\text{He},^{6}\text{Li})^{16}\text{O}\) Reaction at 40 MeV: A Study of the Multi-Particle, Multi-Hole Structure of \(^{16}\text{O}\) Excited States
C. Détraz, C. E. Moss, C. D. Zafiratos, and C. S. Zaidins

Mechanism for Extending the \(^{20}\text{Ne}\) Rotational Band
S. Pittel
Phys. Lett. 34B (1971) 555

Isospin Purity at High Excitation Energies as Evidenced by Cross Correlations of Mirror Channel Fluctuations
C. Détraz, C. E. Moss, C. D. Zafiratos, and C. S. Zaidins

\(\pi\)-Carbon Inelastic Scattering Near the 33 Resonance
G. E. Edwards and E. Rost
Beta Decay of 25Al and 37K
C. E. Moss, C. Détraz, and C. S. Zaidins

Non-Direct 26Mg(4He,6He)24Mg Reaction at 35 MeV

New 0^+ States in 50Cr Observed via the (p,t) Reaction
H. W. Baer, J. J. Kraushaar, J. R. Shepard, and B. W. Ridley
Phys. Lett. 35B (1971) 395

The 39K(3He,3He)39K and 39K(3He,d)40Ca Reactions at 29.3 MeV
M. E. Cage, R. R. Johnson, P. D. Kunz, and D. A. Lind

Comparison Between the (3He,7Be) α-Pickup Reactions on 40Ca and 40Ar
C. D. Zafiratos, C. Détraz, C. E. Moss, and C. S. Zaidins
Phys. Rev. Lett. 27 (1971) 437

New (p,n) Reaction Studies at $E = 23$ MeV
R. F. Bentley, J. D. Carlson, D. A. Lind, R. B. Perkins, and C. D. Zafiratos
Phys. Rev. Lett. 27 (1971) 1081

The Rate of the 12C + 16O Reaction
C. J. Hansen and C. S. Zaidins

Optical Model Potential Depth for Deuterons
P. D. Kunz
Phys. Lett. 35B (1971) 16

Nuclear Excitation of the Giant Dipole and Quadrupole Resonances
J. Bang and P. D. Kunz
Phys. Lett. 37B (1971) 128

Pion-Nucleus Charge-Exchange Scattering at Intermediate Energies
E. Rost and G. W. Edwards

An Unexpected 1/2$^-$ State in 55Mn
R. J. Peterson, S. Pittel, and H. Rudolph
Phys. Lett. 37B (1971) 278

Investigation of the Mechanism of τ-Induced Four Nucleon Pickup Reactions
C. Détraz, C. D. Zafiratos, C. E. Moss, and C. S. Zaidins
Nucl. Phys. A177 (1971) 258

Beta Decay of 26Si, 30S and 34Ar
C. E. Moss, C. Détraz, and C. S. Zaidins
A Study of the Excited States in $^{58}_{\text{Cu}}$, $^{54}_{\text{Co}}$, $^{50}_{\text{Mn}}$, and $^{46}_{\text{V}}$
N. S. P. King, C. E. Moss, H. W. Baer, and R. A. Ristinen
Nucl. Phys. A177 (1971) 625

Second Order Pairing Phase Transitions in the Sn-isotopes: Competition Between Pairing and Shell Effects
R. A. Broglia, P. D. Kunz, and B. Nilsson
Phys. Lett. 38B (1972) 383

A Study of the $^{26}_{\text{Mg}}$(Li, He)$^{26}_{\text{Al}}$ Charge Exchange Reaction
Phys. Lett. 38B (1972) 306

Alpha Pickup in the A=90 Region
C. Détraz, C. D. Zafiratos, H. Rudolph and C. S. Zaidins
Phys. Rev. Lett. 28 (1972) 117

Elemental Analysis by Proton and X-ray Induced Characteristic X-rays
H. Rudolph, J. K. Kliwer, J. J. Kraushaar, R. A. Ristinen, and W. R. Smythe
Analysis Instrumentation 10 (1972) 151

Two Nucleon Pickup from Spin 1/2 Targets I: $^{57}_{\text{Fe}}$
R. J. Peterson and H. Rudolph
Nucl. Phys. A191 (1972) 47

The (He, Li) Reaction on Several Nuclei in the Region A=10 to 27
Nucl. Phys. A178 (1972) 497

Stepping Motor Controller Costs Little but Performs Well
L. A. Erb, P. K. Govind, and C. D. Zafiratos
Electronic Design News
May 15 (1972) 34

The Texture of the Nuclear Surface
C. D. Zafiratos
Scientific American, October, 1972

An Investigation of the Excited States of $^{50}_{\text{Mn}}$ and of Energy Dependent Effects in the $^{50}_{\text{Cr}}$(He,t)$^{50}_{\text{Mn}}$ Reaction
W. L. Fadner, J. J. Kraushaar, and L. C. Farwell
Nucl. Phys. A178 (1972) 385

Structure of $^{62}_{\text{Zn}}$ Studied Through the (p,t) Reaction at 27.5 MeV
L. C. Farwell, J. J. Kraushaar, and H. W. Baer
Nucl. Phys. A186 (1972) 545

Energy Dependence in the (He,t) Transitions to Isobaric Analog Ground States
W. L. Fadner, J. J. Kraushaar, and S. I. Hayakawa

Investigation of the Reaction $^{26}_{\text{Mg}}$ near $E_p=26$ MeV
J. R. Shepard, J. J. Kraushaar, and H. W. Baer
Phys. Rev. C5 (1972) 1288
Complex Effective Interactions in Microscopic Description of (r,t) Scattering
W. L. Fadner, J. J. Kraushaar, and S. I. Hayakawa
Phys. Lett. 40B (1972) 49

Complex Form Factors in Nucleon Transfer Reactions
J. R. Shepard, F. M. Edwards, and J. J. Kraushaar
Phys. Lett. 40B (1972) 95

Beta Decay of 26Si, 30S and 34Ar
C. E. Moss, C. Détraz, and C. S. Zaidins

Reactions Induced by 3He Ions on 64Zn
D. F. Crisler, H. B. Eldridge, R. Kunselman, and C. S. Zaidins
Phys. Rev. C 5 (1972) 419

About the Half-Lives of 20Na and 36K
C. E. Moss, C. Détraz, C. S. Zaidins, and D. J. Frantevog
Phys. Rev. C 5 (1972) 1122

Excitation Energies of Levels in 16F, 20Na, and 24Al
C. E. Moss and A. B. Comiter
Nucl. Phys. A178 (1972) 241

The Mechanism of the 12C(6Li,d)16O Reaction Leading to the 6.92 and 7.12
MeV Levels of 16O
C. S. Zaidins
Phys. Rev. C 6 (1972) 1444

Beta Decay of 24Al and 28P
C. Détraz
Nucl. Phys. A188 (1972) 413

The (p,γ) Reaction on 27Al and 28Si
C. E. Moss, N. S. P. King, A. B. Comiter, and R. A. Ristinen
Nucl. Phys. A179 (1972) 89

Cross Sections for 2H(3He, 3He) and 2H(3He, 4He) at 7 to 18 MeV Centre-of-Mass Energy
T. R. King and R. Smythe
Nucl. Phys. A183 (1972) 657

Global Optical-Model Analysis of 37.7 MeV 3He Elastic Scattering from
Medium-A Nuclei (46 ≤ A ≤ 91)
P. P. Urone, L. W. Put, and B. W. Ridley
Nucl. Phys. A186 (1972) 344

Octupole Excitations in 50Cr
R. J. Peterson, E. W. Stoub, and R. A. Ristinen
Phys. Rev. C 6 (1972) 829

Remarks on Absorptive Potentials and Heavy Ion Elastic Scattering
L. D. Rickertsen
Phys. Lett. 41B (1972) 473
A Study of the $^{113}_{\text{In}}(\text{He},d)^{114}_{\text{Sn}}$ Reaction at 37.7 MeV
M. E. Cage, P. D. Kunz, R. R. Johnson, and D. A. Lind
J. Phys. 5 (1972) 1529

The Level Structure of $^{48}_{\text{Cr}}$ and $^{68}_{\text{Ge}}$ from the (p,t) Reaction at $E_p=27$ MeV
J. R. Shepard, R. Graetzer, and J. J. Kraushaar
Nucl. Phys. A197 (1972) 17

Two-Nucleon Pickup from Spin 1/2 Targets II: $^{89}_{\text{Y}}$
R. J. Peterson and H. Rudolph
Nucl. Phys. A202 (1973) 335

$^{20}_{\text{Na}}$ Beta Decay
P. D. Ingalls
Phys. Rev. C 7 (1973) 464

Violation of Isospin Conservation in Two-Nucleon Pickup Reactions
P. D. Ingalls
Phys. Rev. Lett. 31 (1973) 605

(p,t) and $(p,^3\text{He})$ Reactions on $^{27}_{\text{Al}}$ at $E_p=27$ MeV
R. Graetzer, J. J. Kraushaar, and J. P. R. Shepard
Phys. Rev. C 7 (1973) 199

A Study of the Excited States of $^{57}_{\text{Ni}}$ via the (p,d) and $(^3\text{He},\alpha)$ Reactions at 27.5 and 37.7 MeV
F. M. Edwards, J. J. Kraushaar, and B. W. Ridley
Nucl. Phys. A199 (1973) 463

Multi-Step Processes in the $^{12}_{\text{C}}(^3\text{He},\alpha)^{11}_{\text{C}}$ Reaction
Nucl. Phys. A205 (1973) 97

Study of the (p,t) Reaction on the Even-A Titanium Isotopes
H. W. Baer, J. J. Kraushaar, C. E. Moss, N. S. P. King, R. E. L. Green,
P. D. Kunz, and E. Rost
Annals of Physics 76 (1973) 437

Analysis of (π^+,p) and (p,π^+) Reactions
E. Rost and P. D. Kunz
Phys. Lett. 43B (1973) 17

Muscle and Serum Trace Element Profile in Uremia
H. Rudolph, A. C. Alfrey, and W. R. Smythe

The $(^3\text{He},t)$ Reaction on $^{54}_{\text{Fe}},^{58}_{\text{Ni}},$ and $^{60}_{\text{Ni}}$
H. Rudolph and R. C. McGrath
Phys. Rev. C 8 (1973) 247

Beta Decay of $^{32}_{\text{Cl}}$ and $^{40}_{\text{Sc}}$
C. Detraz, C. S. Zaidins, D. J. Frantsvog, R. L. Wilson, and A. R. Kusselman
Nucl. Phys. A203 (1973) 414
Search for the Excitation of the Giant Dipole State by Direct Inelastic 3He Scattering
R. J. Peterson
Nucl. Phys. A202 (1973) 557

Laser Evaporation and Elemental Analysis
J. K. Kliwer
J. Appl. Phys. 44 (1973) 490

Determination of Trace Amounts of Fluorine by Nuclear Inelastic Scattering
H. Rudolph, J. J. Kraushaar, R. A. Ristinen, and R. R. Meglen
Proceedings of the 7th Annual Conference on Trace Substances in Environmental Health, Columbia, MO, June, 1973

Test of the Lane model for Nucleon-Nucleus Optical Potentials
J. D. Carlson, D. A. Lind, and C. D. Zafiratos

Identification of Silver in a Periapical Lesion of a Tooth
E. H. McIntyre, J. K. McClatchy, H. Rudolph, and J. J. Kraushaar
Amer. Journal of Clinical Pathology 60 (1973) 613

Microscopic Calculations for (p,n) Reactions to Isobaric Analog States
L. D. Rickertsen and P. D. Kunz
Phys. Lett. 47B (1973) 11

On Two-Step Processes via Particle Transfer Channels
P. D. Kunz and E. Rost
Phys. Lett. 47B (1973) 136

Widths of Analog States in Heavy Elements from (p,n) Spectra
H. W. Fielding, S. D. Schery, D. A. Lind, and C. D. Zafiratos

Radius of the Neutron Distribution in 208Pb from (p,n) Quasi-Elastic Scattering
S. D. Schery, D. A. Lind, and C. D. Zafiratos

Study of the 56Fe(p,n)56Co Reaction to the Anti-Analog State
H. W. Fielding, L. D. Rickertsen, P. D. Kunz, D. A. Lind, and C. D. Zafiratos

A Diffraction Spectrometer for Studies of Particle Excited Radiative Transitions
J. H. Jett, N. S. P. King, D. A. Lind, and P. Henning
Nucl. Inst. and Meth. 114 (1974) 301

Data Simulation Techniques for Reactions of the Form X (a,b,c)Y
M. J. Fritts
Nucl. Inst. and Meth. 117 (1974) 415
Thick-Target Measurements of the (p,γ) Stellar Reaction Rates on the Nuclides \(^{12}\text{C}, ^{29}\text{Si}, ^{46}\text{Ti}, ^{42}\text{Ti}, \text{and} ^{56}\text{Fe}\)
N. A. Roughton, C. J. Hansen, M. J. Fritts, R. J. Peterson, and C. S. Zaidins

Neutron-Proton Shell Model Multiplets in \(^{88}\text{Y} \text{and} ^{90}\text{Y}\) from a Study of the (α,nγ) Reaction
H. W. Baer, R. L. Bunting, J. E. Glenn, and J. J. Kraushaar

Short-Lived Radioactivity Induced in Ge(Li) Gamma-Ray Detectors by Neutrons
R. L. Bunting and J. J. Kraushaar
Nucl. Inst. and Meth. 118 (1974) 565

Nuclear Data Sheets for \(A=136\)
R. L. Bunting and J. J. Kraushaar
Nucl. Data Sheets 13 (1974) 191

Charge Exchange Reactions on \(^{91}\text{Zr}\)
P. D. Ingalls and H. Rudolph

Inelastic Scattering Studies on \(^{50}\text{Cr}\)
R. J. Peterson and E. W. Stoub

Microscopic Analysis of (p,n) Reactions
P. D. Kunz, L. D. Rickertsen, and G. W. Hoffmann

Field Mapping the Dipole Magnets for the University of Colorado Energy-Loss Spectrograph
D. E. Prull and S. D. Schery
Nucl. Inst. and Meth. 115 (1974) 339

A Study of the Higher Excited States of \(^{10}\text{Be}\) from the \(^{9}\text{Be}(d,p)^{10}\text{Be}\) Reaction

Stellar Reaction Rates for Proton Captures on \(^{28}\text{Si}, ^{50}\text{Cr}, ^{54}\text{Fe}, ^{58}\text{Ni}, \text{and} ^{61}\text{Ni}\)
N. A. Roughton, M. J. Fritts, R. J. Peterson, C. S. Zaidins, and C. J. Hansen

\(^{(3}\text{He},2n)\) Excitation Functions for Some Light Nuclei
C. E. Moss and C. S. Zaidins

A Method for Energy-Loss and Range Calculations Based on Empirical Approximations
C. S. Zaidins
Nucl. Inst. and Meth. 120 (1974) 125
The (p,n) Reaction to the Isobaric Analog State of High Z Elements at 25.8 MeV
S. D. Schery, D. A. Lind, H. W. Fielding, and C. D. Zafiratos

On the Analysis of the \(^{12}\text{C}(\text{d},t)^{11}\text{B} \) Reaction at 80 MeV
P. D. Kunz and E. Rost

Study of Unbound Levels in \(^{10}\text{C} \) via \(^{10}\text{B}(^{3}\text{He},t) \)
M. J. Schneider, B. W. Ridley, M. E. Rickey, J. J. Kraushaar, and
W. R. Zimmerman
Phys. Rev. C 12 (1975) 335

Levels in \(^{179}\text{W} \) Studied in the \(^{181}\text{Ta}(\text{p},3\text{n}) \) Reaction by On-Line Electron and
Gamma Ray Spectroscopy
B. J. Meijer, J. Konijn, B. Klank, J. H. Jett and R. A. Ristinen
Z. Physik, A987 (1975) 79

Proton Spectroscopy of \(^{86,88}\text{Sr} \) via \((^{3}\text{He},d) \)
M. J. Schneider, R. E. Anderson, and P. G. Brabeck
Nucl. Phys. A246 (1975) 156

The \(^{3}\text{He} \) Spin Analysing Power of 27 MeV Protons
R. H. Ware, W. R. Smythe, and P. D. Ingalls

Mineral Metabolism in Uremia
Allen C. Alfrey, Harvey Rudolph, and W. Rodman Smythe
Kidney International 1 (1975) 585

Comparison of Activation and Direct Measurement Yields for the \(^{13}\text{C}(\text{p},n)^{13}\text{N} \)
(g.s.) Reaction
D. A. Lind, R. J. Peterson, and H. W. Fielding

A Study of the \(^{106}\text{Pd}(\text{p},d)^{105}\text{Pd} \) and \(^{106}\text{Pd}(^{3}\text{He},d)^{107}\text{Ag} \) Reactions
R. E. Anderson, R. L. Bunting, J. D. Burch, S. R. Chinn, J. J. Kraushaar,
R. J. Peterson, D. E. Prull, B. W. Ridley, and R. A. Ristinen
Nucl. Phys. A242 (1975) 75

Level Structure of \(^{106}\text{Ag} \)
R. E. Anderson, R. L. Bunting, J. D. Burch, S. R. Chinn, J. J. Kraushaar,
R. J. Peterson, D. E. Prull, B. W. Ridley, and R. A. Ristinen
Nucl. Phys. A242 (1975) 93

Radioactive Products from Boron CTR Reactors

Direct (p,a) Pickup Reaction on the Even Isotopes of Zr
R. J. Peterson and H. Rudolph
A Study of the Reaction $^{12}\text{C}(\alpha,\alpha')$ to the $^{1}\text{T}=0$ Level at 12.71 MeV
F. E. Cecil and R. J. Peterson
Phys. Lett. 56B (1975) 335

The $(^3\text{He,d})$ Reaction on ^{24}Mg and ^{28}Si at 38.5 MeV
R. J. Peterson and R. A. Ristinen
Nucl. Phys. A243 (1975) 170

Proton Spectroscopy of ^{105}Ag from the $(^3\text{He,d})$ Reaction
R. E. Anderson and J. J. Kraushaar
Nucl. Phys. A241 (1975) 189

The Fixed Scatterer Approximation and Nucleon-Deuteron Scattering
D. A. Sparrow
Annals of Physics 91 (1975) 157

The Effect of Pickup-Stripping Contributions on the Selection of a Unique
^3He Optical Potential
J. R. Shepard, P. D. Kunz, and J. J. Kraushaar
Phys. Lett. 56B (1975) 135

Comparison of Fast Neutron Beams for Radiotherapy Produced by 17.3 MeV
Deuterons Incident on Beryllium and Deuterium Targets
F. M. Edwards, H. W. Fielding, J. J. Kraushaar, and K. A. Weaver
Medical Physics 1 (1975) 317

Nuclear Data Sheets for A=137
R. L. Bunting
Nuclear Data Sheets 15 (1975) 335

A Helical Cathode Proportional Chamber System for a Charged Particle
Spectrometer
E. W. Stoub, R. A. Ristinen, and R. R. Sercely
Nucl. Inst. and Meth. 127 (1975) 329

A Versatile Multipole Correction Magnet of Rectangular Aperture
R. J. Peterson, J. J. Kraushaar, R. A. Ristinen, H. A. Thiessen,
and M. E. Rickey
Nucl. Inst. and Meth. 129 (1975) 47

Two-Step Processes in the $(^3\text{He,t})$ Reaction to Analog and Anti-Analog States
in ^{56}Co
L. D. Rickertsen, M. J. Schneider, J. J. Kraushaar, W. R. Zimmerman,
and H. Rudolph
Phys. Lett. 60B (1975) 19

Charged Particle Reaction Studies on ^{14}C
F. E. Cecil, J. R. Shepard, R. E. Anderson, R. J. Peterson, and P.
Kaczkowski

The Energy-Loss Spectrograph at the University of Colorado Cyclotron
B. W. Ridley, D. E. Prull, R. J. Peterson, E. W. Stoub, and R. A. Emigh
Nucl. Inst. and Meth. 130 (1975) 79
The Importance of Spin-Flips in Pion Charge Exchange Reactions
D. A. Sparrow
Phys. Lett. 58B (1975) 309

Exact Finite Range DWBA Results for the 12C(p,d)11C Reaction at 700 MeV
E. Rost and J. R. Shepard
Phys. Lett. 59B (1975) 413

Pion Elastic Scattering from Aligned Targets
Martha S. Iverson and E. Rost

Quasi-Elastic (p,n) Studies and the Isospin Dependence of Nucleon-Nucleus Optical Potentials
J. D. Carlson, D. A. Lind, and C. D. Zafiratos
Nucl. Phys. A249 (1975) 29

Baryon Resonance Components in the Deuteron
E. Root

A Cyclotron Neutron Time-of-Flight Facility
D. A. Lind, R. F. Bentley, J. D. Carlson, S. D. Schery, and C. D. Zafiratos
Nucl. Inst. and Meth. 130 (1975) 93

Two-Step Contributions to the 40Ar(p,n)40K Anti-Analog State Transition
Phys. Lett. 59B (1975) 129

Nuclear Data Sheets for A=88
R. L. Bunting and J. J. Kraushaar
Nucl. Data Sheets 18 (1976) 87

Three Charge Modes of the Isovector Giant Dipole State Studied by Mass Three' Projectiles
F. E. Cecil, R. J. Peterson, R. A. Ristinen, E. R. Flynn, N. Stein, and J. Sherman

The Influence of Overlapping Potentials and Short-Range Correlations on High Energy Scattering
D. A. Sparrow and W. J. Gerace

Competition of Two-Step Processes in the Reaction 60,62Ni(p,t) Leading to Unnatural Parity States
M. J. Schneider, J. D. Burch, and P. D. Kunz
Phys. Lett. 63B (1976) 129

Thermonuclear Reaction Rates Derived from Thick Target Yields
N. A. Roughton, M. J. Fritts, R. J. Peterson, C. S. Zaidins, and C. J. Hansen
The Astrophysical Journal 205 (1976) 302
Decay of 36K
Martin J. Fritts

24Mg(d,α) Reaction as a Test of 22Na Wave Functions
M. J. Schneider and J. W. Olness

A Small-Sample X-ray Fluorescence System for Medical Analysis
A. C. Alfrey, L. L. Nunnelley, H. Rudolph, and W. R. Smythe
Advances in X-ray Analysis 19 (1976) 497

Trace Element Analysis of Tissue and Resin from the Egyptian Mummy Pum-II.
L. L. Nunnelley, W. R. Smythe, J. W. V. Trish, and A. C. Alfrey
Paleopathology Newsletter 13 (1976) 12

A Microscopic Analysis of the 25,26Mg(6Li,6He)25,26Al Reactions
F. E. Cecil, G. Ciangaru, and R. L. McGrath
Phys. Lett. 61B (1976) 25

Excitation Functions of Reactions Induced by 1H and 2H Ions on Natural Mg, Al, and Si
R. L. Wilson C. Détraz, C Zaidins, D. J. Frantsvog, and A. R. Kunselman

Finite-Range Effects in Multi-Step (p-d,d-n) Reactions
P. D. Kunz and L. A. Charlton
Phys. Lett. 61B (1976) 1

Decay of 20Na to γ-ray Emitting States of 20Ne
P. D. Ingalls

Two-Proton Transfer Near Z=40
Nucl. Phys. A269 (1976) 125

A Comparison of Neutron Removal from 7Li by $^\pi^+$ with Free Pion-Nucleus Results

The (3He,t) Reaction on 24Mg and 28Si
R. J. Peterson and R. A. Ristinen
Nucl. Phys. A269 (1976) 301

Multiple-Scattering and Nucleon Recoil Effects in Pion Production by Nucleons on Nuclei
Kuo-Ho-Yang, Barry R. Holstein, M. M. Sternheim, and D. A. Sparrow
A Study of the 12N 2.43 MeV Level
F. E. Cecil, J. R. Shepard, R. R. Sercely, R. J. Peterson, and N. S. P. King
Phys. Lett. 64B (1976) 411

Pion-Gamma Angular Correlations Following Inelastic Scattering
Martha S. Iverson and E. Rost

Nuclear Matter Distribution in 112,116,124Sn from the (p,n) Reaction
S. D. Schery, D. A. Lind, and H. H. Wieman

0^+ States Observed in Cd and Sn Nuclei with the $(^3$He,n) Reaction

Energy Dependence of the Zero-Range Normalization of the 58Ni$(^3$He,a)57Ni Reaction
J. R. Shepard, W. K. Zimmerman, and J. J. Kraushaar
Nucl. Phys. A275 (1977) 189

Excitation of Particle-Vibration Multiplets in the A=110 Region by Neutron Stripping Reactions

Scattering of 50 MeV π^+ from 12C

Single-Particle Component of the First Excited State of 211Bi
Phys. Rev. C 16 (1977) 139

The Use of 48Ca as a Stable Isotope Tracer Analyzed by Proton Activation
F. M. Edwards, J. J. Kraushaar, R. A. Ristinen, and H. Rudolph
Med. Phys. 4 (1977) 58

Exact and Approximate Multiple Diffraction Calculations
Y. Alexander, S. J. Wallace, and D. A. Sparrow

Nuclear Data Sheets for A=148
B. Harmatz and J. R. Shepard
Phys. Lett. 66B (1977) 127

Pion Nucleus Scattering at 50 MeV
N. J. DiGiacomo, A. S. Rosenthal, E. Rost, and D. A. Sparrow
Phys. Lett. 66B (1977) 421
The Effect of p-h Corrections on the Proton Pairing Vibrations at Z=50
E. R. Flynn and P. D. Kunz
Phys. Lett. 68B (1977) 40

On the Influence of Recoil Effects in the Microscopic Description of
Inelastic Scattering
H. P. Blok and P. D. Kunz
Phys. Lett. 69B (1977) 261

The Zoom Lens Quadrupole Magnets for the University of Colorado Energy-Loss
Spectrograph
R. A. Emigh, D. E. Prull, R. J. Peterson, and B. W. Ridley
Nucl. Inst. and Meth. 144 (1977) 87

A Study of the Reaction 16O(p, p')16O* Exciting the 6.05 MeV $^{0+}$ Level
F. E. Cecil, D. A. Sparrow, and J. R. Shepard
Phys. Lett. 66B (1977) 127

A High-Voltage RF Deflector for Reduction of Cyclotron Beam Repetition Rates
H. H. Wieman and L. A. Erb
Nucl. Inst. and Meth. 142 (1977) 573

Pion Scattering from 7Li
D. A. Sparrow

Excitation of Core-Coupled States in 87Sr and 89Sr via Two-Step Processes
in the 88Sr(p,d) and 88Sr(d,p) Reactions
H. P. Blok, W. R. Zimmerman, J. J. Kraushaar, and P. A. Batay-Csorba

A Study of the 99Tc(p,d)98Tc Reaction
R. A. Emigh and R. E. Anderson
Nucl. Phys. A293 (1977) 379

Level Structure of 99Tc by Inelastic Scattering and Proton Stripping
R. J. Peterson, R. A. Emigh, and R. E. Anderson
Nucl. Phys. A290 (1977) 155

Neutron Pickup from 194Pt, 196Pt and 198Pt
G. R. Smith, N. J. DiGiacomo, M. L. Munger, and R. J. Peterson
Nucl. Phys. A290 (1977) 72

A Least-Squares Technique for Extracting Neutron Spectra from Bonner Sphere
Data
C. S. Zaidins, J. B. Martin, F. M. Edwards
Med. Phys. 5 (1978) 42
Reappraisal of the 24Mg(3He,t)24Al Data to Low-Lying 1$^+$ States
R. J. Peterson
Phys. Rev. Cl6 (1977) 2424

Observation of the Proton-Pairing Vibration in 206Pb

56Fe(3He,t)56Co Reaction
W.R. Zimmerman, J.J. Kraushaar, M.J. Schneider, and H. Rudolph

Second Order Density Effects in Low Energy Pion Scattering
A.S. Rosenthal, E. Rost, D.A. Sparrow, and N.J. DiGiacomo
Phys. Lett. 71B (1977) 237

Energy Dependence of π^+ Induced Two- and Four-Nucleon Removal
Phys. Lett. 72B (1977) 176

Structure of 88Sr from the 86Kr(3He,n)88Sr Reaction
Nucl. Phys. A293 (1977) 83

Definitive Test of Outgoing Nucleon Charge Exchange Using the Reaction
13C(π^+,NN)12C (4.44 and 15.11 MeV)

The Level Structure of 111Ag via the 110Pd(3He,d)111Ag Reaction

Is (3He,t) Primarily A (3He,α)(α,t) Reaction?
L.A. Charlton and P.D. Kunz
Phys. Lett. 72B (1977) 7

A Study of the (3He,n) Reaction on Isotopes of Tin

The Contribution of Second-Order Processes to (3He,n) Calculations
I. Brissaud,
Energy Dispersive X-ray Fluorescence Spectrometric Determination of Trace Elements in Oil Samples. H. Kubo, R. Bernthal, T. Wildman

Two-Step Processes and Finite-Range Effects in the 60,62Ni(p,t) Reaction. J.D. Burch, M.J. Schneider and J.J. Kraushaar

Isoscalar Excitations of 24Mg by Inelastic 3He Scattering. R.J. Peterson and F.E. Cecil

14C(t,p)16C Reaction at 23 MeV. R.R. Sercely, R.J. Peterson and E.R. Flynn

A Study of the (3He,t) Reaction on 60Ni. W.R. Zimmerman, J.J. Kraushaar, M.D. Schneider, and H. Rudolph

Distorted-Wave Born-Approximation Description of the 4He(p,d)3He Reaction at $E_p = 770$ MeV. E. Rost, J.R. Shepard, and D.A. Sparrow
Observation of the Neutron Pairing Vibration in 206Hg
E.R. Flynn, D.L. Hanson, R.V. Poore and S.D. Orbson, D.A. Lind
Phys. Lett. 76B (1978) 197

Proton Stripping Reactions on 194Pt, 196Pt and 198Pt
M.L. Munger and R.J. Peterson

DWBA Description of 4He(p,d)3He Reaction at $E = 770$ MeV
E. Rost, J.R. Shepard and D.A. Sparrow
Phys. Rev. C 17 (1978) 1513

A Study of the 76Se(3He,d)77Br and 78Se(3He,d)79Br Reactions
B.M. Kluger, R.E. Anderson, R.J. Peterson and R.A. Ristinen

A Study of the 58Ni, 90Zr and 208Pb (p,d) Reactions at 121 MeV
R. E. Anderson, J. J. Kraushaar, J. R. Shepard and J. R. Comfort

Two-Step Processes in the 54Fe(3He,t)54Co Reaction
W. R. Zimmermann, J. J. Kraushaar and F. E. Cecil
Nucl. Phys. A309 (1978) 34

Electrostatic Deflector for the University of Colorado Energy-Loss Spectrometer
R. A. Emigh
Nucl. Inst. 156 (1978) 603

Observation of Enhanced Excitation of 12C by Inelastic Pion Scattering on the (3,3) Pion-Nucleon Resonance
Phys. Lett. 80B (1978) 38

The 208Pb(p,α) 205Tl Reaction
P. A. Smith, G. M. Crawley, R. G. Markham and D. Weber

A Study of the 80Se(p,d)79Se Reaction
B. M. Kluger, R. E. Anderson, R. J. Peterson and R. A. Ristinen

A Study of 80Br by the 81Br(p,d) Reaction
B. M. Kluger, R. E. Anderson, R. J. Peterson and R. A. Ristinen

Quadrupole Scattering of Pions by 9Be
Replacement of Renal Function by Dialysis, Chapter 37, Trace Metals and Regular Dialysis
A. C. Alfrey and W. R. Smythe
Drukken, Parsons and Maher, Editors, Martinus Nijhoff, The Hague (1978) 647

The Alpha-Transfer Reactions and the Pairing Vibrational Model
R. A. Broglia, L. Ferreira, P. D. Kunz, H. Sofia and A. Vitturi
Phys. Lett. 79B (1978) 351

Elastic and Inelastic Scattering of π^+ by 208Pb
Nucl. Phys. A312 (1978) 368

Elastic Pion Scattering from 6, 7Li and 12,13C

Pion-Induced Double Charge Exchange on 18O
D. A. Sparrow and A. S. Rosenthal

Proton Spectroscopy of 96Tc from the (3He,d) Reaction
R. A. Emigh, J. J. Kraushaar and S. Shastry
Nucl. Phys. A320 (1979) 335

Elastic and Inelastic Diffraction Scattering of 0.8 GeV Protons by 89Y and 90Zr
Phys. Rev. C 19 (1979) 113

Irradiation of Microvasculature with Fast Neutrons
J. R. Fike, E. L. Gillette, F. M. Edwards, J. J. Kraushaar and D. E. Prull
Radiology 131 (1979) 763

The (p,t) Reaction on 12C, 54Fe and 208Pb at 80 MeV
Nucl. Phys. A322 (1979) 92

Population of Intrinsic High Spin States with the Direct 116Sn(α,p)119Sb Reaction
P. A. Smith, R. A. Emigh, N. J. DiGiacomo, G. R. Smith and R. J. Peterson
(\(^3\)He,n) Reaction Near and Above Z=82

The (\(^3\)He,n) Reaction on N=82 Targets and Even Isotopes of Neodymium
Nucl. Phys. A321 (1979) 45

The (\(^3\)He,n) Reaction on Tellurium Isotopes

The Effect of Energy Straggling on the Relationship Between Cross-Sections and Thick Target Yields
C. S. Zaidins
Nucl. Instr. and Meth. 158 (1979) 237

Energy Dependence of the Optical Model Parameters for \(^3\)He Ions Scattered from \(^{40}\)Ca and \(^{58}\)Ni
H. H. Chang, B. W. Ridley, T. H. Braid, T. W. Conlon, E. F. Gibson and N. S. P. King
Nucl. Phys. A297 (1979) 105

High-Spin States Above 3.5 MeV in \(^{91}\)Nb
C. A. Fields, J. J. Kraushaar, R. A. Ristinen and L. E. Samuelson

A Facility for Studying Neutron Energy Spectra at Intermediate Energies

The Level Structure of \(^{78}\)Br
B. M. Kluger-Bell, R. E. Anderson, R. J. Peterson, D. E. Prull, R. A. Ristinen and B. L. Smith

Neutron-Proton Radius Differences and Isospin Deformations From \(\pi^+\) and \(\pi^-\) Inelastic Scattering from \(^{180}\)O
Phys. Lett. 82B (1979) 51

X-Ray Measurement of X-Ray Fluorescent Sample Mass
H. Kubo and W. R. Smythe
Analytical Chemistry 51 (1979) 1194

Method of Finite-Range Distorted-Wave Born Approximation for Pickup to Unbound Ejectiles
P. D. Kunz, A. Saha and H. T. Fortune
Phys. Rev. Lett. 43 (1979) 341
Low-Energy π⁺ Scattering from Light Nuclei
S. A. Dyttman, J. F. Amann, P. D. Barnes, J. N. Craig, K. G. R.
Doss, R. A. Eisenstein, J. D. Sherman, W. R. Wharton, G. R.
Burleson, S. L. Verbeck, R. J. Peterson and H. A. Thiessen
Phys. Rev. C 19 (1979) 971

The Proton Shell Closure at 1⁴C
R. R. Sercely, R. J. Peterson, P. A. Smith and E. R. Flynn
Nucl. Phys. A324 (1979) 53

Excitation of the Low-Energy Octupole Resonance in ⁹⁰Zr by 0.8 GeV
Proton Inelastic Scattering
N. J. DiGiacomo and R. J. Peterson
Phys. Rev. C 20 (1979) 693

Observation of Isospin Mixing in ¹²C near 19.5 MeV Excitation
C. L. Morris, J. Piffaretti, H. A. Thiessen, W. B. Cottingame,
W. J. Braithwaite, R. J. Joseph, I. B. Moore, D. B. Holtkamp,
C. J. Harvey, S. J. Greene, C. F. Moore, R. L. Boudrie and R. J.
Peterson
Phys. Lett. 86B (1979) 31

New Limit on Independence of Charge and Velocity
D. F. Bartlett, J. R. Shepard and Chris Zafiratos, and B. F. L.
Ward

Neutron Radii Determinations from the Ratio of π⁻ Elastic Scattering
from ¹²,¹³C and ¹⁶,¹⁸O
R. R. Johnson, T. Masterson, B. Bassalleck, W. Gyles, T. Marks,
K. L. Erdman, A. W. Thomas, D. R. Gill, E. Rost, J. J. Kraushaar,
J. Alster, C. Sabev, J. Arvieux and M. Krell
Phys. Rev. Lett. 43 (1979) 844

A Simple Function for the Description of Cyclotron Magnetic Fields. D. H.
Haynes and P. A. Smith; Nucl. Inst. and Meth. 166 (1979) 315.

Possible Methods for Improving the Resolution of Neutron Time-of-Flight
Measurements of Direct Reaction Spectra. P. A. Smith, Nucl. Inst. and
Meth. 166 (1979) 229.

Evidence for Pion Exchange Currents in the Analysis of the ⁴He(p,d)³He
Reaction at Intermediate Energies. J. R. Shepard, E. S. Rost, and G. R.

High Spin States of \(^{89}\text{Y}\) Studied with the \(^{87}\text{Rb(a,ny)}\)\(^{89}\text{Y}\) Reaction. C. A. Fields and L. E. Samuelson, Phys. Rev. C 20 (1979) 2442.

Low lying Excited States of \(^{106}\text{Ag}\) Studied with the \(^{103}\text{Rh(a,ny)}\)\(^{106}\text{Ag}\) and \(^{104}\text{Pd(α,ny)}\)\(^{106}\text{Ag}\) Reactions. L. E. Samuelson, R. A. Emigh, D. E. Prull, R. E. Anderson, J. J. Kraushaar, and R. A. Ristinen, Z. Phys. A294 (1980) 353.

The Reaction 10B(d,n)11C as an Ion Temperature Plasma Diagnostic. F. E. Cecil, L. K. Len and R. J. Peterson, Nucl. Instr. and Meth. 175 (1980) 293.

Research Appointees from 1961-1981, Nuclear Physics Laboratory

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Present Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>R. A. Kenefick</td>
<td>Texas A & M, College Station, TX</td>
</tr>
<tr>
<td>1962</td>
<td>Michaya Kondo</td>
<td>Osaka University, Osaka, Japan</td>
</tr>
<tr>
<td>1963</td>
<td>Rubby Sherr</td>
<td>Princeton Univ.</td>
</tr>
<tr>
<td>1965</td>
<td>B. W. Ridley</td>
<td>U. of Colo. On leave</td>
</tr>
<tr>
<td>1965</td>
<td>P. W. Allison</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1965</td>
<td>R. R. Johnson</td>
<td>University of British Columbia, Vancouver</td>
</tr>
<tr>
<td>1966</td>
<td>R. S. Dingus</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1966</td>
<td>S. I. Hayakawa</td>
<td>Wasada University, Tokyo, Japan</td>
</tr>
<tr>
<td>1966</td>
<td>G. D. Jones</td>
<td>University of Liverpool, England</td>
</tr>
<tr>
<td>1966</td>
<td>Marc Chabre</td>
<td>I.P.N., Orsay, France</td>
</tr>
<tr>
<td>1967</td>
<td>R. J. Griffiths</td>
<td>University of London, England</td>
</tr>
<tr>
<td>1968</td>
<td>J. E. Glenn</td>
<td>Mallinckrodt Nuclear, Carlstadt, NJ</td>
</tr>
<tr>
<td>1968</td>
<td>L. W. Put</td>
<td>KVI, Groningen, The Netherlands</td>
</tr>
<tr>
<td>1969</td>
<td>H. W. Baer</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1969</td>
<td>J. H. Jett</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1969</td>
<td>C. E. Moss</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1969</td>
<td>P. Schwandt</td>
<td>University of Indiana, Bloomington</td>
</tr>
<tr>
<td>1970</td>
<td>C. Detraz</td>
<td>I.P.N., Orsay, France</td>
</tr>
<tr>
<td>1970</td>
<td>R. J. Peterson</td>
<td>U. of Colorado</td>
</tr>
<tr>
<td>1970</td>
<td>H. Rudolph</td>
<td>Bureau of Radiological Health, Rockville, PA</td>
</tr>
<tr>
<td>1971</td>
<td>Reinhard Graetzer</td>
<td>Pennsylvania State Univ., Univ. Park, PA</td>
</tr>
<tr>
<td>1971</td>
<td>P. D. Ingalls</td>
<td>Applied Physics Lab., Univ. of Washington</td>
</tr>
<tr>
<td>1972</td>
<td>R. L. Bunting</td>
<td>Aerojet Nuclear, Idaho Falls, ID</td>
</tr>
<tr>
<td>1972</td>
<td>G. W. Edwards</td>
<td>Northridge College, CA</td>
</tr>
<tr>
<td>1972</td>
<td>W. L. Fadner</td>
<td>Univ. of Northern Colorado, Greeley</td>
</tr>
<tr>
<td>1972</td>
<td>M. J. Fritts</td>
<td>Naval Research Labs, Washington, D. C.</td>
</tr>
<tr>
<td>1972</td>
<td>L. D. Rickertsen</td>
<td>Oak Ridge, TN</td>
</tr>
<tr>
<td>1973</td>
<td>R. E. Anderson</td>
<td>University of North Carolina, Chapel Hill</td>
</tr>
<tr>
<td>1973</td>
<td>N. A. Roughton</td>
<td>Regis College, Denver</td>
</tr>
<tr>
<td>1973</td>
<td>M. J. Schneider</td>
<td>Krasdale Foods, Bronx, NY</td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Present Location</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>1974</td>
<td>F. E. Cecil</td>
<td>Colorado School of Mines, Golden</td>
</tr>
<tr>
<td>1974</td>
<td>L. L. Nunnelley</td>
<td>Chemeketa Comm. College, Salem, OR</td>
</tr>
<tr>
<td>1974</td>
<td>D. A. Sparrow</td>
<td>U. of Pennsylvania, Philadelphia, PA</td>
</tr>
<tr>
<td>1974</td>
<td>H. H. Wieman</td>
<td>Lawrence Berkeley Laboratory, Berkeley, CA</td>
</tr>
<tr>
<td>1975</td>
<td>P. A. Batay-Csorba</td>
<td>Computer Sciences Corp., Silver Spring, MD</td>
</tr>
<tr>
<td>1975</td>
<td>H. P. Blok</td>
<td>The Free University, Amsterdam, Netherlands</td>
</tr>
<tr>
<td>1975</td>
<td>N. Ensslin</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1975</td>
<td>J. R. Shepard</td>
<td>Univ. of Colorado, Boulder</td>
</tr>
<tr>
<td>1976</td>
<td>R. L. Boudrie</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1976</td>
<td>Hideo Kubo</td>
<td>Massachusetts General Hospital, Boston</td>
</tr>
<tr>
<td>1977</td>
<td>W. S. Pong</td>
<td>Technical School, Hong Kong</td>
</tr>
<tr>
<td>1977</td>
<td>L. E. Samuelson</td>
<td>Princeton University, NJ</td>
</tr>
<tr>
<td>1977</td>
<td>P. A. Smith</td>
<td>Molitor Industries, Inc., Englewood, CO</td>
</tr>
<tr>
<td>1978</td>
<td>M. L. Gartner</td>
<td>Houston, TX</td>
</tr>
<tr>
<td>1978</td>
<td>E. R. Sugarbaker</td>
<td>Ohio State University, Columbus, OH</td>
</tr>
<tr>
<td>1979</td>
<td>T. G. Masterson</td>
<td>University of Colorado, Boulder</td>
</tr>
<tr>
<td>1979</td>
<td>S. S. DasGupta</td>
<td>University of Burdwan, India</td>
</tr>
<tr>
<td>1979</td>
<td>R. J. McLeod</td>
<td>Nucl. Phys. Lab, U. of Colorado</td>
</tr>
<tr>
<td>1979</td>
<td>R. S. Raymond</td>
<td>Nucl. Phys. Lab, U. of Colorado</td>
</tr>
<tr>
<td>1979</td>
<td>F. W. N. de Boer</td>
<td>SIN, Villagen, Switzerland</td>
</tr>
<tr>
<td>1980</td>
<td>M. Yasue</td>
<td>Nucl. Phys. Lab, U. of Colorado</td>
</tr>
<tr>
<td>1980</td>
<td>M. B. Chen</td>
<td>Nucl. Phys. Lab, U. of Colorado</td>
</tr>
</tbody>
</table>

Among the recent visiting faculty have been E. R. Flynn (LASL), J. E. Kitching (McGill University), E. F. Gibson (Sacramento State University), W. P. Alford (Western Ontario University), and F. D. Becchetti (University of Michigan).
APPENDIX C

Ph.D. Graduates of the Nuclear Physics Laboratory

<table>
<thead>
<tr>
<th>Year</th>
<th>Graduate</th>
<th>Thesis Title and Advisor</th>
<th>Present Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>J. D. McCullen</td>
<td>A Study of the Low Excited States of 42Ca and 44Ca</td>
<td>Professor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td>Physics Department</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U. of Arizona</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tucson, AZ</td>
</tr>
<tr>
<td>1963</td>
<td>J. K. Kliwer</td>
<td>Method for the Measurement of the Longitudinal Polarization of</td>
<td>Professor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrons and a Nuclear Level Study of 44Sc</td>
<td>Physics Department</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td>University of Nevada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reno, NV</td>
</tr>
<tr>
<td>1964</td>
<td>C. G. Hoot</td>
<td>A Study of (p,d) and (p,t) Reactions on Nickel and Iron at 28 MeV</td>
<td>at Intelcom Radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: M. E. Rickey</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td></td>
<td>W. S. Gray</td>
<td>Inelastic Proton Scattering from 40Ca, 50Ti and 54Fe</td>
<td>Faculty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td>Physics Department</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U. of Michigan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ann Arbor, MI</td>
</tr>
<tr>
<td></td>
<td>J. G. Kelly</td>
<td>Elastic Scattering Cross Sections of 14.5 MeV Protons for Medium Weight Nuclei</td>
<td>Physicist, Sandia Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: D. A. Lind</td>
<td>Albuquerque, NM</td>
</tr>
<tr>
<td></td>
<td>W. C. Anderson</td>
<td>The Decay of 40Sc and 32Cl</td>
<td>at E. G and G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td>Los Alamos, NM</td>
</tr>
<tr>
<td>1965</td>
<td>B. M. Bardin</td>
<td>Study of the (p,α) Reaction on Medium-Weight Nuclei at 28 MeV</td>
<td>Computer industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: M. E. Rickey</td>
<td>Fullerton, CA</td>
</tr>
<tr>
<td></td>
<td>P. Henning</td>
<td>Development of High Resolution Gamma Ray Spectroscopy for use with the University of Colorado Cyclotron</td>
<td>Self-employed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: D. A. Lind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. W. Allison</td>
<td>Elastic Scattering of Protons by 4He from 20 to 28 MeV</td>
<td>Staff Physicist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: W. R. Smythe</td>
<td>LAMPF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LASL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Los Alamos, NM</td>
</tr>
<tr>
<td>Year</td>
<td>Graduate</td>
<td>Thesis Title and Advisor</td>
<td>Present Position</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>M. M. Stautberg</td>
<td>Nuclear Structure Studies of 88Sr, 89Y, 92Zr, and 94Zr using 19 MeV Proton Induced Reactions and the 88Sr(3He,d) Reaction Advisor: J. J. Kraushaar</td>
<td>Professor of Physics De Paul University Chicago, IL</td>
</tr>
<tr>
<td></td>
<td>E. F. Gibson</td>
<td>Scattering of 3He from Medium Weight Nuclei at 37.7 and 43.7 MeV Advisor: J. J. Kraushaar</td>
<td>Professor of Physics Sacramento State College Sacramento, CA</td>
</tr>
<tr>
<td>1967</td>
<td>R. L. Hutson</td>
<td>Polarization of 40 MeV 3He Ions Elastically Scattered from 12C Advisor: J. J. Kraushaar</td>
<td>Staff member, Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1968</td>
<td>R. W. Barnard</td>
<td>Study of 60Ni, 46Ti and 28Si with the (3He,d) Reaction Advisor: J. J. Kraushaar</td>
<td>Physicist, Sandia Corp. Albuquerque, NM</td>
</tr>
<tr>
<td>1969</td>
<td>M. E. Cage</td>
<td>A Study of Particle-Hole States in Medium Weight Nuclei by the (3He,d) Reaction Advisor: D. A. Lind</td>
<td>Physicist, National Bureau of Standards Washington, D. C.</td>
</tr>
<tr>
<td></td>
<td>J. H. Jett</td>
<td>A Study of Porational States of 150Dy, 162Er, 164Er, 168Yb and 174Hf Advisor: D. A. Lind</td>
<td>Staff member, N-Division Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td></td>
<td>Benno Klank</td>
<td>An Electron-Transport Solenoid Si(Li) Detector Spectrometer and On-Line Conversion Electron and Gamma Spectroscopy Advisor: R. A. Ristinen</td>
<td>Assoc. Professor Integrated Studies University of Colorado Boulder</td>
</tr>
<tr>
<td>Year</td>
<td>Graduate</td>
<td>Thesis Title and Advisor</td>
<td>Present Position</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1969</td>
<td>Temple Smith</td>
<td>The Deuteron Amplitudes from a Composite Particle Nuclear Scattering Theory</td>
<td>Faculty University of Northern Michigan, Marquette, MI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: P. D. Kunz</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>P. M. Abraham</td>
<td>A Microscopic Investigation of the Collective Model of Nuclei</td>
<td>Faculty Belmont Abbey College NC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: E. Rost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. E. L. Green</td>
<td>A Double-Focussing Quadrupole Lens Spectrometer and Its Use in Nuclear Reaction Studies</td>
<td>Faculty Simon Fraser Univ. British Columbia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: D. A. Lind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Ki Oh</td>
<td>The (^3\text{He}, ^6\text{Li}) Reaction on Light Nuclei</td>
<td>Nuclear Engineer Rockwell International</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: C. S. Zaidins</td>
<td>Rocky Flats, CO</td>
</tr>
<tr>
<td></td>
<td>A. Rappleyea</td>
<td>Coulomb Energies of Isospin Triplets in the 2s-1d Shells</td>
<td>Faculty City College of San Francisco, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: P. D. Kunz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. L. Spenny</td>
<td>L & M Subshell Internal Conversion Ratios for Electric Quadrupole Transitions</td>
<td>Faculty Univ. of Minnesota Bemidji, MN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: A. A. Bartlett</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. P. Urone</td>
<td>Study of the Mass-3 Optical Potential for Medium-Weight Nuclei</td>
<td>Faculty Department of Physics Sacramento State College Sacramento, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: B. W. Ridley</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>N. S. P. King</td>
<td>A ((p,\alpha)) Study of Excited States in (^{58}\text{Cu}, ^{54}\text{Co}, ^{50}\text{Mn},) and (^ {46}\text{V})</td>
<td>Staff Member, J-Division Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. A. Ristinen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. L. Padner</td>
<td>Nuclear Structure and Reaction Mechanism Studies with the ((^3\text{He},t)) Reaction</td>
<td>Faculty Dept. of Physics Univ. of Northern CO Greeley, CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. R. King</td>
<td>A Study of (^2\text{H}+^3\text{He}) Elastic Scattering and the Reaction (^2\text{H}(^3\text{He}, ^4\alpha))(^1\text{H}) Between 17.5 and 44.1 MeV</td>
<td>Staff Member, Los Alamos Scientific Laboratory, Los Alamos, NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: W. R. Smythe</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Graduate</td>
<td>Thesis Title and Advisor</td>
<td>Present Position</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1971</td>
<td>D. M. Stupin</td>
<td>A Study of Final-State Proton-Proton Interactions and the 28Si(3He,2p) and 12C(3He,2p) Reactions at 40 MeV Advisor: R. A. Ristinen</td>
<td>Staff member, Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td>1972</td>
<td>G. E. Edwards</td>
<td>Pion-Nucleus Inelastic Scattering in the Distorted-Wave Born Approximation Advisor: E. Rost</td>
<td>Faculty, Northridge College, San Fernando Valley, CA</td>
</tr>
<tr>
<td></td>
<td>J. R. Shepard</td>
<td>The (p,t) Reaction on Medium-Mass Nuclei at E =27 MeV Advisor: J. J. Kraushaar</td>
<td>Asst. Professor Physics Department Univ. of Colorado, Boulder, CO</td>
</tr>
<tr>
<td></td>
<td>J. D. Carlson</td>
<td>Quasi-elastic (p,n) Studies and the Isospin Dependence of Nucleon-Nucleus Optical Potentials Advisor: C. D. Zafiratos</td>
<td>Group Leader Lord Corp. Erie, PA</td>
</tr>
<tr>
<td>1973</td>
<td>S. D. Schery</td>
<td>The (p,n) Reaction on High Z Elements Using a Rotating Beam Neutron Time-of-Flight System Advisor: D. A. Lind</td>
<td>Research Faculty New Mexico Tech Socorro, NM</td>
</tr>
<tr>
<td>1974</td>
<td>R. H. Ware</td>
<td>Analyzing Power of Polarized 3He for 27 MeV Protons and 15 MeV Alphas Advisor: W. R. Smythe</td>
<td>Research Associate, CIRES University of Colorado Boulder, CO</td>
</tr>
<tr>
<td>1975</td>
<td>H. H. Chang</td>
<td>The Nuclear Optical Model for 3He and 4He Projectiles Advisor: B. W. Ridley</td>
<td>Geophysics Co. Houston, TX</td>
</tr>
<tr>
<td>1976</td>
<td>F. M. Edwards</td>
<td>Studies of Thick Target Fast Neutron Production and Proton Activation of the Stable Isotope Tracer 48Ca as Applications of Nuclear Physics in Medicine Advisor: J. J. Kraushaar</td>
<td>Medical Physicist, Univ. of Missouri Medical School, Columbia, MO</td>
</tr>
<tr>
<td>Year</td>
<td>Graduate</td>
<td>Thesis Title and Advisor</td>
<td>Present Position</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1976</td>
<td>M. S. Iverson</td>
<td>Pion-Nucleus Scattering and the Investigation of Nuclear Spin Dependent Effects</td>
<td>Kaman Nuclear Corp. Colorado Springs, CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: E. Rost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. A. Emigh</td>
<td>A Study of the 98Tc Nucleus via the 99Tc(p,d)98Tc Reaction</td>
<td>Rocky Mtn. Energy Broomfield, CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. E. Anderson</td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>J. D. Burch</td>
<td>Second Order Processes and Finite Range Effects in the 60,62Ni(p,t) Reactions</td>
<td>Self-employed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. R. Zimmerman</td>
<td>The Role of Two-Step Processes in the (3He,t) Reaction</td>
<td>Scientist, BDM Corp. Albuquerque, NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: J. J. Kraushaar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. J. Peterson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. W. Stoub</td>
<td>Helical Cathode Proportional Chambers with Application to the 40Ca(d,α)38K Reaction at 16 MeV</td>
<td>Principal Research Scientist and Group Leader, Searle Radiographics, Inc., Des Plaines, IL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. A. Ristinen</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>B. M. Kluger</td>
<td>The Level Structure of 78Br</td>
<td>Staff (Education) Univ. of California Berkeley, CA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. A. Ristinen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. S. Rosenthal</td>
<td>Low Energy Pion Scattering</td>
<td>Research staff TRIUMF - Vancouver, BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: E. S. Rost</td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>N. J. DiGiacomo</td>
<td>The Elastic and Inelastic Scattering of 0.8 GeV Protons by 88Y and 90Zr</td>
<td>Staff Member, P-7 LASL Los Alamos, NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisor: R. J. Peterson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. R. Smith</td>
<td>Large Momentum Transfer Neutron Pickup with the (π^+,p) and (p,d) Reactions</td>
<td>S.I.N. Villigen, Switzerland</td>
</tr>
</tbody>
</table>
FINAL REPORT OF GOVERNMENT PROPERTY

EQUIPMENT LIST
Contract DE-AC02-76ER00535

University of Colorado
Boulder, Colorado

March 12, 1981

1 ea. Keypunch Machine
I.B.M.
Ser. 68359-J3 Mod. 026-1
GFE, Source: Argonne Nat'l Lab. Foc'd May '72 Code 5, Used-Fair
Tag 4135 $3,997.25

1 ea. PDP-9 Computer (#2)
Digital Equip't Corp.
Ser. 109-101 Mod PDP-9
GFE, Source: Brook Haven Nat'l Lab. Foc'd Aug '76
Code X Salvage
Tag 4450 $60,974.00

1 ea. Computer Terminal
Tektronix, Inc.
Ser. B067026 Mod. 40101
CP Code 4, Used-Good
Tag 4486 $4,727.25

Digital Equip't Corp.
Mod. 11/34-LM
CP Dec '77 Code 4, Used-Good
Tag 4492 $58,733.25

1 ea. Computer, PDP-9 On-Line
Digital Equip't Corp.
(C.U. Assembled)
CP Code 6, Used-Poor
Tag 3903 $197,582.21

Raymond H. Friese
Government Property Officer