Improved 60 Hz superconducting power transmission cable

PDF Version Also Available for Download.

Description

The third in a series of 10 m, Nb/sub 3/Sn cables for ac power transmission has been installed in a horizontal, refrigerated cryostat. Like the two previous ones, this coaxial cable has its ends rigidly fixed so that it cannot contract axially on cooldown, and has two layers of superconducting helices and two layers of high purity aluminum helices for stabilization in each conductor. It differs from the previous one in having thicker electrical insulation (7.4 mm vs 3.6 mm), in having increased contact resistance between the superconducting layers to reduce ac loss, and in being driven by an external ... continued below

Physical Description

4 pages

Creation Information

Morgan, G.H.; Schauer, F. & Thomas, R.A. January 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The third in a series of 10 m, Nb/sub 3/Sn cables for ac power transmission has been installed in a horizontal, refrigerated cryostat. Like the two previous ones, this coaxial cable has its ends rigidly fixed so that it cannot contract axially on cooldown, and has two layers of superconducting helices and two layers of high purity aluminum helices for stabilization in each conductor. It differs from the previous one in having thicker electrical insulation (7.4 mm vs 3.6 mm), in having increased contact resistance between the superconducting layers to reduce ac loss, and in being driven by an external supply through horizontal, coaxial, vapor-cooled current leads. This is the final short cable prior to construction late this year of a 100 m cable which will be tested with high voltage and high current simultaneously. Results of current tests are presented, including ac loss at various temperatures and recovery from thermally induced quenches.

Physical Description

4 pages

Notes

NTIS, PC A02/MF A01.

Source

  • Applied superconductivity conference, Santa Fe, NM, USA, 29 Sep 1980

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL-28389
  • Report No.: CONF-800980-23
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 6990030
  • Archival Resource Key: ark:/67531/metadc1193851

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1980

Added to The UNT Digital Library

  • July 2, 2018, 10:52 p.m.

Description Last Updated

  • April 25, 2019, 10:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Morgan, G.H.; Schauer, F. & Thomas, R.A. Improved 60 Hz superconducting power transmission cable, article, January 1, 1980; Upton, New York. (https://digital.library.unt.edu/ark:/67531/metadc1193851/: accessed May 24, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.