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ABSTRACT 

This report discusses some of the physics issues anticipated in 
field-reversed mirrors. The effect of current cancellation due to elec­
trons is described. An estimate is made of the required impurity level 
to maintain a field-reversed configuration. The SUPERLAYER code is used 
to simulate the high-g 2XIIB results, and favorable comparisons require 
inclusion of quasilinear RF turbulence. Impact of a quadrupole field on 
field-line closure and resonant transport is discussed. A simple self-
consistent model of ion currents is presented. Conditions for stability 
of field-reversed configurations to E x B driven rotations is determined. 
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INTRODUCTION 
The principal advantage of a field-reversed-mirror (FRM) configura­

tion is that there is no external toroidal field. Consequently B is 
high, and the configuration can be made small and simple, particularly if 
it can be sustained by neutral beams. The problems are numerous. Can 
the configuration be generated with ion current; that is, do self-gener­
ated electron currents cancel? How is the equilibrium sustained, and is 
it pulsed? Finally, conventional wisdom suggests that in the absence of 
any toroidal field [l] the system is unstable if the layer is too long 
(tearing), if the aspect ratio is too small (MHD), or if the Larmor orbit 
is too small (MHD). In the face of these is a stable configuration fea­
sible? It is the purpose of this paper to examine these questions and to 
indicate our level of understanding at this time. 

In Sec. 1, we describe the equations governing equilibrium, emphasiz­
ing the role played by electrons. The consequences of constraints im­
posed by current cancellation are discussed. Next, a comparison is made 
between 2XIIB and the two-dimensional code called SUPERLAYER. One defect 
of the code is the restriction to axisymmetry. We next assess the role 
quadrupole fields play upon injection (the effective stretching of the 
source), equilibrium (the opening of field lines), and transport (the de­
grading of confinement through single-particle resonances). This section 
concludes with an analytic model of an ion layer. Finally, in Sec. II, 
we address stability, where we consider the influence of finite lanaor 
radius (FLR) and large aspect ratio on rotation-driven instabilities. 

1. EQUILIBRIUM AMD TRANSPORT 
1.1 Electron Physics 

In an FRM configuration generated and sustained by neutral beams, the 
first point to resolve is the extent to which electrons cancel the ion 
current. At a field null, electrons by resistive drag will speed up to 
the ion velocity unless there is some other competitive viscous force al­
lowing a net current, such as generated by slower moving, higher Z impu­
rities (Ohkawa current [2]). Away from a null, electron current must be 
due to E x B drifts, and so it is bounded by the potentials sustained 
across flux surfaces. For substantial current cancellation, the E x B 
velocity must be of the order of ion speed, requiring a potential (e<J>) 
drop of the order of the ion temperature (Tf). Consequently, on the 
open field lines where T e << Tj and e$ ~ T e, electron currents are 
negligible. On the other hand, on closed field lines there is no such 
limitation, and we must solve explicitly for the self-consistent poten­
tial. In both of these cases the external viscous force that is required 
to maintain this differential rotation comes from the interaction of the 
electrons on the open field lines with the walls. 

To study these effects due to electrons [3], we consider an axisyra-
metric hybrid model wherein the ion dynamics are determined from a two-
space, three-velocity particle code (SUPERtAYlR)[4]. The magnetic and 
electric fields are given by 

B= i V*x i , E = - W - ^ i , (1) 



and the s e l f - g e n e r a t e d t o r o i d a l f i e l d can be made n e g l i g i b l e . The e l e c ­
t r o n s a r e t r e a t e d as an E x B f l u i d g i v e n by 

n = n . Z . , q u a s i - n e u t r a l (2) 
e 1 1 ^ 

and 
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C o n s e q u e n t l y , w i t h Ampere ' s law, n e g l e c t i n g d i s p l a c e m e n t c u r r e n t s , we 

o b t a i n 

3* _. r,, r 2 c 2 n 1 u.i - OHKAWA . , 0 

<?% • e ~ H-TT t 
r 

where the second equality holds when there is only one species having a 
non-zero velocity. Note the bootstrap current [5] ve*Vi,'; / nrc . There 
are several simple points that can be obtained from Eq. (5). First, at 
the null (O-point), if the electron velocity is finite, steady state is 
not possible in the absence of the seed current. It should be emphasized 
that any process that breaks the relation P ei/n e = nj leads to a seed 
current. Further, if field reversal is achieved, it can only be lost in 
a resistive diffusion time. 

We estimate the seed current necessary for reversal by examining the 
steady-state solution of Eq. (5) in the paraxial limit (B <<B ). For an 
ion source localized near the position of the null rp, write nhe ion 
source nv r = (r - rn)S and then integrate over the plasma volume to 
obtain 

o. I I s k i n , , \ k dx exp hr? (<r 1 = -f- /_ dx exp [ — ^ ± 2 ( ( r - r Q ) 2 - (x - r 0 ) 2 ) \ (6 ) 
2 n r Q 

2 2 where for 6 ~ 1 we use nm.v . = B„ /4ir 
I 6 0 

. 2 
4nr MS)', J-U> . , s k i n 2 \ a . / d rag I 8 c i 
nc I 

where cocj is the gyrofrequency at the vacuum field, v„ is the ion ther­
mal velocity, and r^ is the last closed flux racius where B is assumed 
to have its vacuum value. The term multiplying the integral is just the 
ratio of the self field, due to the Ohkawa current, to the vacuum field. 

To apply this result to the slow buildup in the present 2XIIB exper­
iments, we argue as follows. The injection current must be sufficient to 
drive the field close to zero while the field lines are open and T e is 
low; in this regime, STjjrag^n or for the trapped current 
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I T r 
trap drag 0 

<* — 5 - • (7) 
L a. 

1 
We now compare this with the condition that a well developed field-re­
versed steady state exists for the same T e, noting that this should be 
pessimistic because T e should climb on closed lines. For fixed a , Eq. 
(6) may be thought of as giving STs^j:n/ n « Itrap Tdrag/ L a s a 

function of rn/ai. The combination of this result and Eq. (7) forms 
a minimum in the required trapped current; for a = 0.2 this lies at r* 
2rg * 4a^. Thus, the required radius is about twice that of 2XIIB, 
which is roughly four times the volume. Folding in the increased trap­
ping efficiency, we conclude that to achieve field reversal in the exper­
imental regime, a threefold increase in injection current, or an equiv­
alent increase in the energy containment on the open lines, is required. 
This increase in lifetime to Tj s; Tdrag would require better suppres­
sion of rf t-nrbulance at high B. These, basic electron physics equaticnc, 
Eqs. (1-5), coupled with the constraint 

are being coupled with the ion pusher, SUPERLAYER, in a new hybrid simu­
lation code. 

1.2 SUPERLAYER Simulation 

In addition to the electron physics, which is presently being 
worked into SUPERLAYER, we have developed a Monte Orlo package to model 
the drift-cyclotron loss-cone (DCLC) rf activity on open lines and charge 
exchange off the beams. The former generates transport (i.e., diffusion 
coefficients) in agreement with the quasilinear model of DCLC. Since the 
electron physics package is not complete, only energy transfer to elec­
trons has been considered; thus, at present we are only able to simulate 
the approach to B = 0. Typical runs contain between 10 000 and 60 000 
superparticles. We select the electron temperature (and the rf level, 
which determines the ion energy) to agree with the experiment, and then 
determine the remaining equilibrium quantities as a function of injection 
current. The DCLC turbulence not only modifies the energy distribution, 
it also causes appreciable radial diffusion. In addition results are sensi­
tive to the stream current imposed. At present, this current is an external 
parameter. Agreement between simulation and experiment [6] is reasonably 
good at two field strengths for peak densities, AB/B and radii. However, 
the plasma length is too short in the simulation by a factor ~ 2 . This 
discrepancy is believed to be due to the neglect of a quadrupole field in 
the simulation, which now brings us the question of what we neglect by 
assuming axisyrametry. 

1.3 Quadrupole Fields 

An obvious effect of the quadrupole field is the tipping of the field 
lines away from the axis, effectively lengthening the source. To eval­
uate this effect, we have superimposed an external quadrupole field in 
SUPERLAYER and have observed stretching of ion-ring equilibria by tne 
right magnitude. However, the introduction of the quadrupole field 
raises more subtle issues. First is the question of whether field lines 
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can then close if the field is reversed. The second issue is how badly 
do single-particle resonances for axis-encircling particles degrade con­
finement. 

First consider the question of the opening of field lines [7]. To 
show the scaling, we superimpose externally applied toroidal and quad-
rupole fields on the field-reversed configuration. As a model, we again 
assume that B z >> B r almost everywhere and use the paraxial approxi­
mation (except over a small region where field lines turn). In this case, 
the field-reversed configuration can be written 

2 2 A 2 n , a . 
r " ro " ± ro V0 ' ( 8 a ) 

B 2 = B 2 tanh2n , n > 0, (8b) 
z v ' 
B = i J B„ , (8c) 
-T R T ' 

and 

B = B £ (r cos 26 - 8 sin 2 8). (8d) 
~q q R v 

Note that no is the value of n on the last closed-field line and is re­
lated to the vacuum flux by expCifJ/ig) = cosh^n. Also, Eq. (8a) is 
the equation of a field line (ri constant) in the absence of B q and Bj 
that we now treat as a perturbation. Now the equations of motion of a 
field line due to this perturbation can be written 

d* / fjjr\- »= d e ifir v?;, + ? T > • ye ; (9) 
thus 

BT sin 26(z = 0) - -*- (10) B 
= n(z = 0) = 1 

sin 28-
BT 
B 
q 

Consequently, field lines are confined if | Bj/B_| > 1. This analysis 
ignores diamagnetic effects on the quadrupole field. To ascertain 
whether plasma currents can shield out the quadrupole field is an unan­
swered question and awaits the development of a self-consistent three-
dimensional equilibrium code. 

Another aspect of asymmetry is bow it affects radial transport. Spe­
cifically, axis-encircling particles can satisfy resonance conditions, in 
which case perturbations due to quadrupole fields can enhance particle 
losses. Luckhardt and Fleishman 8 have suggested that such is the cause 
of the enhanced electron losses in the RECE-BERTA ring experiment. An 
important observation is that the sudden losses occur at fixed values at 
6 = AB/B (independent of B ) and that the losses between these fixed 
values are proportional to Che collision frequency but enhanced by a fac­
tor proportional to B„. These features suggest that, near the fixed 
values of 6, a sizable fraction of the plasma intercepts the loss region, 
whereas at other values there,is "neoclassical" like transport with an 
effective banana width <* B 

Assume that particles In this general three-dimensional system pos-
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sess three good invariants, then the resonance condition associated with 
these invariants is 

raft n£2 + Lfi = 0 
r 9 

(11) 
If particles could maintain this resonance relation, they would simply 
drift out of the confined region under the influence of a symmetry-break­
ing field. The fact that the Hamiltonian of the system is a nonlinear 
function of the invariants (actions) bounds the regions of resonance. 
The quadrupole field couples degrees of freedom if L = 2 and m is odd. 
Then the invariants oscillate about resonant values slowly, compared with 
their associated frequencies. The amplitudes AI and island frequency 
V. oz B . I f this swing intercepts a radial limiter, plasma 
loss results. 

To evaluate these effects, we expand about circular orbits and write 
the Hamiltonian in action-angle variables, viz, 

H 0 = a (i ) + W z .(IJ R- ( V f (12) 
The procedure then is to cast the perturbed Hamiltonian due to B„ in 
action angle variables, which have a nearly constant phase when Eq. (11) 
is satisfied. Then, following Chirikov [9], we make a further canonical 
transformation to obtain a new Hamiltonian dependent on this slow phase 
and action and hence deduce the oscillation amplitudes of the original 
actions: 

B 1 / 2 M (13) 

where M is a completely determined but complicated decreasing function of 
m and n. 

To apply this calculation to RECE-BERTA, we choose the flux to satisfy 
B„r2 T / _2 22\" L" ?JJ' (14) * = 1 - Sexp [ j 

with L z = 11 cm and L r = 16 cm, and thus the current-density peaks at 
r = 9 cm. 

We have calculated resonance positions and widths in I r, I z space 
for 450-keV electrons at various values of <5. We identify a "well popu­
lated" region corresponding to particles that do not hit the limiter and 
turn axially at Z t < 10 cm. We find that, as 6 is varied, resonances 
move slowly in the axial tail (Z t > 11 cm) but rapidly in the well-pop­
ulated region; e.g., the m = 3, n = 0 resonance sweeps through the latter 
region as 6 changes from 0.62 to 0.56, corresponding to a time short com­
pared with the ring7decay time (10--' s) but slow compared with the is­
land frequency (10 s ) for B (r = 10 cm)/B = 0.02. Hence, particles ly­
ing in I-space within AI of thl radial limiter are lost during a sweep, 
while the increase in diffusion coefficient for the remaining particles 
is neoclassical (banana regime) 

-6-



D ^ (AI) 2v- B v . (15) 
q 

In this model; the most notable resonances were & = 0.83 (m = n = 1), 5 = 

0.55 (m = 3, n = 0) and 6 = 0.14 (m = 3, n = 1). In RECE-BERTA, only two 
resonances have been identified, which we speculate to be the latter 
two. As for the first resonance, a more exact treatment might predict 
its onset to lie at o>l and thus not in present data. There are other 
weaker resonances intercepting the limiter that have also not been ob­
served. It should be emphasized that our model field is crude, assumes 
fixed scale lengths, and ignores mirroring in the vacuum field. The 
weakness in the Hamiltonian model is the inadequate treatment of parti­
cles with large excursions. It should be noted that resonances hang up 
in these regions. 

These effects have also been investigated with the exact orbit, sin­
gle-particle code ORBXYZ. To date comparisons have been limited, but for 
the principal resonances studied, 5 is as predicted and the excursions 
scale with analytic theory. 

Such resonance should degrade confinement in the very high 3-reginte 
in 2XII8. However, if the radius is doubled for significant bootstrap­
ping as required for field reversal, the number of axis-encircling parti­
cles should be small, the frequencies should be disparate, and this reso­
nant di ffuri i on should disappear. 

1.4 Analytical Model of a Field Reversing Ion Layer 

To help gain insight into the physics of field-reversed states, we 
investigated an analytically solvable case. The model is a Z-independ-
ent, axially symmetric entity in which monoenergetic ions of fixed canon­
ical angular momentum f — o(E - EQ) <5(L - LQ) move in the self-
consistent fields generated by their motion in the external field Bg. 
For the chosen ion-distribution function the ionic azimuthal current is 
jg = v(l/r. Use of this relation, together with that required by conser­
vation of canonical angular momentum, leads immediately to a differential 
equation of Bessel form for y = VQ /V, the dimensionless azimuthal veloc­
ity of the ions: 

ix + _L ±L . (J_ + JL 
A 2 A \ 2 

dx x dx \ x x 
where x = K(r/aj), a dimensionless radius, an is the ion gyroradius 
in the (uniform) vacuum field Bo, and K is a constant (later deter­
mined) that is a measure of the dimensionlese radius of the entity 
K * a/a^ 

The general solution to this equation is 
y = AI 2(2x 1 / 2) + BK 2(2x 1 / Z) (17) 

Boundary conditions to be imposed are (I) y = -1 at r = a and r = s 
* (inner radius of entity) and (2) aj = an at r = a (i.e., ion gyro-

radius at outer boundary equals vacuum-f ield-.g.yroradius) . With the 
above, a closed solution is obtained wherein A and B are given as func­
tions of s/a and a/a£, from which follow self-consistent fields and 
orb' ::s. 
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Some conclusions from the analysis: 
• Field reversal is only possible for a/an > 2.0. 
• Large, thick layers produce higher field reversal: 

B(s) _ , , -.1/2 , ] D, 
„ **• - (a/s) , a>>a. ; a >> s, (18) 
0 

• Depending on the sign of y at r = s, either field reversal or field 
enhancement may be achieved. 

2. STABILITY 
To ascertain the stability of an FRM we must include FLR and a large 

aspect ratio. To examine these effects we relax the length constraint 
and use the paraxial approximation. We also consider a rigid-rotor equi­
librium so that see Eq. (8) 

P, = — j — ; us; 
8 n cosh ri 

1 
I' = "(0) r , . (20) 

cosh'" n 
and the rotation frequency 

where 

ExB 

2 V , 1 -A i r 

2 

no 
'"'* + ExB 

2 V , 1 -A i r 

2 T 
1 + - ^ T. 

l 

V 2 

Alf 
- 4 V 2 

Alf 
-

(1 + K) , (21) 

(22) 
and K = Te/T^ for electrostatically confined electrons and comes from 
the E x B drift. Also, the mean particle frequency is given by 

. , 2 VAlf n0 •" 1 

2 ExB VB „ T 
T. 
= > 2 

1 + — 2sinh n 

K . (23) 

We assume field-line lengths scale with n. How we resolve the singular­
ity at ̂  = 0 will be described presently. 

The perturbed equations for this configuration (E|| = 0) have been 
derived previously [10J and will be applied here. For the perturbed ra­
dial displacement, we have the equation 

r | ^ 3 P T | = ( m 2 - l ) o p T C - r n | u 2 * k 2 V y f K , (24) 
with 

pT = p(n) (" - muj) (io - mu ) - k B /4TI. (25) 
We consider rotation-driven modes which are flute-like. Consequently, we 
average over a line (k'' = 0) to obtain 
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d 
dn 

io 

nb 
pT dn 

n0 

,(n 

?pT 

£ tanh n (26) 

when the upper (lower) quantities pertain to the open (closed) field 
lines. Note that because K is only a function of n through the flute 
average, the boundary condition or regularity at r = 0 is lost. Now to 
close the problem we need a constraint at the null. Both solutions are 
well behaved; E Q = 0 does not determine the proper solution at the 
null. We then have as n approaches zero, the two solutions 

C = n2 

1 + 
16 nl 

2, 2 
n Inn 

(27) 

The next point is to obtain the appropriate linear combination. Recall­
ing Eq. (23), we see that breakdown in the model occurs in the VB drift, 
which diverges at n 
lead to finite tfirm 

„2 

0, and that an appropriate particle treatment would 
Consequently, we model this effect by writing 

= 2 Alf 
2 

ci r0 1 + 
T 
e 
T. 
l 

2sinh 2(n 2 

(28) 
+ v*)> r0"0 

To obtain this scaling, we have made use of the linear expansion B 
2Bo(r - T Q ) Tl()/r0- N o w > near the null the differential equation, 
Eq. (26), takes the form 

d 
dn 

solving by 

5 

d_§ 
dn 

1 
+ v 

iteration we generate the solution (n 
, , m 2 - 1 2 ,, 2 , , 2 . = 1 + rr- n (Inn - 1 + lnv ), 

16 n„ 

•J) 

(29) 

which then determines the linear combination. Bote that the othpr solu­
tion diverges logarithmatically and must be discarded. It must be re­
marked that this result is only qualitative. A rigorous treatment 
requires the solution of the Vlasov equation in the vicinity of the null, 
where the magnetic field is linear. Our results show that as v 2 •+ 0 
(small Larmor radius) the system is most stable (K * 1.2). Recall that 
in this limit the solution at the null is i-^. On the other hand, as 
v 2 •* l/nn(ai/ro = 1) the threshold drops to K=0(E = 0). In this 
limit the solution at the null is predominantly Ki- These results do 
not agree with the Los Alamos Scientific Laboratory experiment [11], 
whose stability threshold is low»r yet. It should be emphasized that 
there is a linear combination nt the null with marginal stability at zero 
rotation; however, the solutio.i is inconsistent with our boundary-layer 
analysis. 
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