Zero range three-particle equations. [Karlsson-Zeiger equations]
Zero range three-particle equations. [Karlsson-Zeiger equations]
In order to separate the entire effect of two-particle on-shell scatterings in three-particle systems from the effects of hidden mesonic degrees of freedom (off-shell effects and three-body forces), the zero range limit of the Karlsson-Zeiger equations. Although the Faddeev equations are ambiguous in this limit, the KZ equations remain well defined. Using only two-particle phase shifts, binding energies, and reduced widths, these zero-range equations uniquely predict the three-particle observables which would occur in the absence of hidden mesonic degrees of freedom. The three-particle amplitudes possess all requisite physical symmetry properties, and can be proved to be unitary if the spectator basis is orthonormal and complete. Possible extensions of the scheme for the analysis of three-particle final states, to zero range four-particle equations, and to relativistic systems are conjectured.
mark.phillips@unt.edu
https://digital.library.unt.edu/media/aubrey_public/images/brand-digital-library/favicon.ico
open