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Abstract
A new method of simulating systems with a complex action is applied to lattice QCD

at finite density. At infinite gauge coupling we obtain a phase diagram which, in nice
agreement with mean field theory, gives a critical value of the chemical potential unrelated
to the baryon mass. At the same time we demonstrate explicitly the failure of the quenched
approximation.

In this talk I would like to discuss an algorithm for the simulation of lattice QCD at
finite density. In it's present form it grew out of earlier work by Bhanot et. al. [1]. I have
tested the algorithm in the highly nontrivial case of infinite gauge coupling. The results
are in agreement with mean field theory and beautifully demonstrate why the quenched
approximation fails so miserably when applied to this problem.

The most elegant way of introducing a chemical potential on the lattice is to make
the substitution [2] UQ[X) —* e^U^x) and U^{x) —* e'^Uo^x) in the fermion matrix (I
use Kogut-Susskind fermions)

M(x,y) = mSx,y + £ 5>M(*)(ffM(»)*».+, - U^(y)6yiX.fl). (1)

Unfortunatly, this substitution leeds to a complex fermionic determinant. Since Monte
Carlo methods require a positive definite measure they cannot be applied here.

The quenched approximation represents the most radical attempt at dealing with a
complex determinant by setting it equal to one. This bold approach which works so well
for most aspects of QCD unfortunately fails here. It was found [3], that contrary to our
expectations chiral symmetry is restored for all values of fj, greater than a critical value
of nc = r^3L. This means in particular that as the quark mass m -+ 0 chiral symmetry is
restored for arbitrarily small fi. The expected result was fic = ^-, ms being the baryon
mass.

* Talk given at the DPF-88 meeting, Storrs, Connecticut, August 1988.
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The algorithm that I use is a straight forward application of a general method for
simulating systems with a complex action [5]. It is a descendant of the "spectral density
method" to compute partition functions which was introduced in ref. [6]. A detailed study
of the phase structure of lattice QCD using this method can be found in ref. [7]. The
quantity of interest is the expectation value of an operator O

< O[U] >= I f[DU)\detM[U]\O[U]e?SG+im. (2)

In (2), Z is the partition function, SQ is the pure gauge part of the action (I use the
standard Wilson action), j3 = ~V is the inverse of the gauge coupling and e*e^ is the
phase of the determinant. The integration is over the SU(3) Haar measure. Introducing

p(E) = j[DU)\detM\U] \6P(9[U] - E)e0Sa, (3)

the expectation value (2) can be expressed as

o >=

In (3) 6p(x) is a periodic delta function and < O >M stands for the "microcanonical"
average

<O>M (E) = -j— J[DU]\detM[U}\O[U]6p(8[U] - E)e0Sa (5).

In the following I will refer to p(E) as the density of states. Note that it is by definition
a periodic function of E with period 2ir. To calculate (4) we need both (3) and (5). The
interval [—Emin) Emax] is split up into ns overlapping sets of 6 bins each. The simulation is
started by bringing the system into one of the edge sets. Configurations {U}, distributed
according to P{U)\DU) ~ \detM[U}\eSa[DU] are then generated. If the "energy" E of
a configuration thus proposed falls into one of the bins in the edge set the configuration
is accepted and the event recorded. If it does not, the configuration is rejected but the
event is still recorded. After a specified number of hits one moves to the next set and
the procedure is repeated. It is clear that one is basically performing a Monte Carlo
simulation in each set. Hence the evaluation of the expectation value (4) is straight forward.
After one has accumulated enough statistics in each set one still has to normalize the
density of states. The relative normalization of two adjacent sets can be obtained from the
counts in the overlap bin(s) and hence p(E) can be determined up to an overall constant
which cancels out in (4). At the end (4) is of course approximated by a Riemann sum or
an appropriate higher order integration scheme is used. Because the algorithm basically



represents Riemann integration of a stochastically generated integrand I call the method
the "Riemann Walk".

I still have to specify how I move between configurations. Note that both real and
imaginary part of the determinant are needed after each link update. Hence an exact algo-
rithm that recomputes the determinant after each accepted change is absolutely essential.
I use the exact algorithm studied in ref. [8], which computes the change in the fermion
determinant to a specified accuracy. So the way I move around in configuration space is
the following: I start with an ordered configuration which has E — 0. Then I generate
configurations using the exact update. The current value of the energy is computed by
adding up the changes. The change in E is given by 6E = Im[clog(6(detM))] where clog
is the FORTRAN complex logarithm. 6E defined this way lives in the interval [—IT,IT].

Obviously this way the "energy" of the system can attain any desired value. But because
we measure the energy mod 2TT, the density of states will be periodic with period 2TT, in
agreement with its definition (3).

I have applied the above procedure to the case of infinite gauge coupling, i.e. j3 — 0.
I employed 2* lattices with antiperiodic boundary conditions in the time direction and
periodic in space. The lattice size may appear very small but remember that at infinite
coupling all hadrons are pointlike and correlations are small. In the exact fermion update
the conjugate gradient algorithm was used to compute the elements of the inverse of
M(x,y) which are needed in the computation of the change in the determinant. After
each accepted change I recompute ipijj. This quantity is estimated from the 6 diagonal
elements of the inverse of M(x,y) which are needed in the computation of the change in
the determinant.

I ran the algorithm at three different values of the quark mass TO, TO = 0.1 , TO = 0.2
and TO = 0.4. I did not use multiple Metropolis hits in the Metropolis part of the exact
update. The links to be updated were chosen at random.

My simulations lead to the following picture. Away from the critical region the density
of states is a highly peaked function whose width decreases with the volume. In this case
quenched and unquenched averages agree within errors. By "quenched" averages I mean
averages computed by dropping the phase in eq. (2,4). As we tune fi into the critical
region the density of states begins to flatten out and quenched and unquenched averages
no longer agree. This is because all points in the integration interval are equally important
and the phase can no longer be neglected.

The phase diagram of strong coupling QCD that emerges from the numerical simula-
tion is in good agreement with the predictions of mean field theory. This was also observed
to be the case in SU(4) strong coupling lattice gauge theory [4], Hence also in the case of
color SU(3) with a fermionic baryon we do not see a threshold tied to the baryon mass as
one might have guessed. Rather before this value is reached chiral symmetry is restored. If



mean field theory is correct in detail, this happens in a first order fashion. As observed in
[4] this might be a strong coupling artifact. To check this we have to go to a finite g2. This
requires one to go to larger lattices. The growth with volume of the present algorithm is
V2 due to the use of the exact update. I should stress that there is nothing that prevents
us from going to finite /3 except for the need of using larger lattices.
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