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ONE -DIMENSIONAL DRIFT-FLUX MODEL
AND CONSTITUTIVE EQUATIONS FOR
RELATIVE MOTION BETWEEN PHASES

IN VARIOUS TWO-PHASE FLOW REGIMES

by

M. Ishii

ABSTRACT

In view of the practical importance of the drift-flux
model for two-phase flow analysis in general and in the analy-
sis of nuclear-reactor transients and accidents in particular,
the kinematic constitutive equation for the drift velocity has
been studied for various two-phase flow regimes. The consti-
tutive equation that specifies the relative motion between phases
in the drift-flux model has been derived by taking into account
the interfacial geometry, the body-force field, shear stresses,
and the interfacial momentum transfer, since these macro-
scopic effects govern the relative velocity between phases. A
comparison of the model with various experimental data over
various flow regimes and awide range of flow parameters shows
a satisfactory agreement.

I. INTRODUCTION

Two-phase flows always involves some relative motion of one phase
with respect to the other; therefore, a two-phase-flow problem should be
formulated in terms of two velocity fields. A general transient two-phase-
flow problem can be formulated by using a two-fluid model or a drift-flux
model, depending on the degree of the dynamic coupling between the phases.

In the two-fluid model, each phase is considered separately; hence the model
is formulated in terms of two sets of conservation equations governing the
balance of mass, momentum, and energy of each phase. However, an intro-
duction of two momentum equations in a formulation, as in the case of the two-
fluid model, presents considerable difficulties because of mathematical com-
plications and of uncertainties in specifying interfacial interaction terms
between two phases.l'4 Numerical instabilities caused by improper choice of
interfacial-interaction terms in the phase-momentum equations are common;
therefore careful studies on the interfacial constitutive equations are required
in the formulation of the two-fluid model. For example, it has been suggested®
that the interaction terms should include first-order time and spatial deriva-
tives under certain conditions.
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These difficulties associated with a two-fluid model can be signifi-
cantly reduced by formulating two-phase problems in terms of the drift-flux
model,® in which the motion of the whole mixture is expressed by the mixture-
momentum equation and the relative motion between phases is taken into
account by a kinematic constitutive equation. Therefore, the basic concept of
the drift-flux model is to consider the mixture as a whole, rather than as two
separated phases. The formulation of the drift-flux model based on the mix-
ture balance equations is simpler than the two-fluid model based on the
separate balance equations for each phase. The most important assumption
associated with the drift-flux model is that the dynamics of two phases can be
expressed by the mixture-momentum equation with the kinematic constitutive
equation specifying the relative motion between phases. The use of the drift-
flux model is appropriate when the motions of two phases are strongly coupled.

In the drift-flux model, the velocity fields are expressed in terms of
the mixture center-of-mass velocity and the drift velocity of the vapor phase,
which is the vapor velocity with respect to the volume center of the mixture.
The effects of thermal nonequilibrium are accommodated in the drift-flux
model by a constitutive equation for phase change that specifies the rate of
mass transfer per unit volume. Since the rates of mass and momentum trans-
fer at the interfaces depend on the structure of two-phase flows, these consti-
tutive equations for the drift velocity and the vapor generation are functions of
flow regimes.”’8

The drift-flux model is an approximate formulation in comparison
with the more rigorous two-fluid formulation. However, because of its sim=
plicity and applicability to a wide range of two-phase-flow problems of prac-
tical interest, the drift-flux model is of considerable importance. In particular,
the model is useful for transient thermohydraulic and accident analyses of both
LWR's and LMFBR's. In view of the practical importance of the drift-flux
model for two-phase-flow analyses, the kinematic constitutive equation for the
drift velocity has been studied in the present analysis. The constitutive equa-
tion for the vapor-drift velocity for bubbly and slug flows has been studied by
Zuber et al.””!! by balancing the gravity force with the drag force. The drift
velocity in two-phase annular flows has been analyzed.!? The present study is
an extension of the above analysis.

II. THREE-DIMENSIONAL FORMULATION
The three-dimensional form of the drift-flux model* has been obtained
by using the time or statistical averaging method. The result can be summa-

rized as follows:

Mixture Continuity Equation:

apm -
> + ¥ (pm¥m) = 0. (1)




Continuity Equation for Dispersed Phase:

Sogp g ~ *gPPc =

Mixture Momentum Equation:

%P m¥m T T = =T 9 PaPco> o -
St + V'(pmvmvm = -Vppn t V{T AT - 1 -og pr Vddej + PmE-

Mixture Enthalpy-energy Equation:

_r;cﬁ + V(o mhmvm) = -v- {q +3T+ =—"S(ng - hc)vdj * —_5{2
m
a,p . -py)
- d d’ -
+ ,:Vm + __sm—‘ Vdj:l “VPm T Q?n' (4)

Here oy, pk, hk, T, and Zf are the conventional time- (or ensemble)-averaged
local void fraction, phase density, phase enthalpy, viscous stress, and conduc-
tion heat flux, respectively. The component k denotes either the continuous
(k = ¢) or the dispersed phase (k = d); Pm> Vm, Pm., and hy are the local
mean density, velocity, pressure, and enthalpy of the mixture, respectively;

71 and EfT are the turbulent diffusion flux of momentum and energy for the mixture;

Fk is the mass-transfer term for phase k due to phase changes; and Qij‘n is
the energy-dissipation term. The velocity Vq; denotes the drift velocity of
the dispersed phase; its physical significance is explained below.

The center-of-mass velocity of the mixture is given by

—>

¥m = [ogegvg + (1 - @gdpevel/Pm, (5)

where Vg and V. are the mass-weighted mean velocities of phases d and c.
The velocity of the center of volume of the mixture is

j =agvg+ (I - ag)ve = jd + jc (6)

where 3:1 and Tc are the local volumetric fluxes of the indicated phases. The
vapor drift velocity of a dispersed phase is the velocity of the dispersed phase
with respect to the volume center of the mixture:

Vaj = vq - T2 (1-0g)F-7e) = (1 -ag)vy, (7)

11
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where ‘-;r is the relative velocity between phases. In Eqs. 2-4, the convective
terms are formulated in terms of Vm; therefore, an additional diffusion flux
due to relative motion between phases appears on the right-hand side of the
equations. To take these diffusion effects into account, the drift velocity should
be specified by kinematic constitutive equations, which may be written as

-

Vdj = Vdj(a/d, P & \—;m, etc.). (8)

To take into account the mass transfer across the interfaces, a constitutive
equation for I'j should also be given. In a functional form, this phase-change
constitutive equation may be written as

r > %Pm
d ~ 1-d(dd’ Pm’ Vm®» T3¢ b - hysat etc.). (9)

The vapor-drift velocity in the drift-flux model plays a role similar to
that of the diffusion coefficient in a single-phase two-component system.
However, the application of a diffusion coefficient is useful only when the rela-
tive motion between components or phases is due to a concentration gradient
and can be expressed by a linear constitutive law. For general two-phase flow
systems, Fick's law of diffusion may not hold, since in this case the interfacial
geometry, the body-force field, and the interfacial momentum transfer are the
factors governing the relative motion of phases. In other words, in two-phase
systems, the diffusion of phases is macroscopic, whereas in single-phase two-
component systems, it is due to the microscopic molecular diffusion. The
constitutive equation for the vapor-drift velocity is therefore expected to de-
pend strongly on the two-phase flow regimes, since the momentum transfer
between the phases is governed by the geometry of the interfaces as well as
by the interfacial-area concentration,

III. MULTIPARTICLE SYSTEM IN INFINITE MEDIA

The relative motion between phases can be studied by considering the
momentum equations for each phase in the two-fluid-model formulation. In a
three-dimensional form, the k-phase momentum equation® is given by

IV,

k — - - =T -
O‘kpk(—"at + Vk'Vvk> = -apVpy + cvkv-('rk + Tk) +appkg + (P - pk)chk
J= = =T hey >
(10)

where the subscript ki denotes the value at the interface for phase k and I_\;Iik
is the interfacial drag force. Under the assumption that the averaged pressure
and stress in the bulk fluid and at the interface are approximately the same,
we obtain

-




a;;k [ - =T - -
¥ P = + V'YV = - Vpp + cka‘(gk + ’Tk) + oppy g + Mk
+ (Vki . Vk)rk' (11)

The conservation of the mixture momentum requires

S My =0, (12)
K

which is the modified form of the averaged momentum-jump condition.

The two-fluid formulation for dispersed two-phase flow system was
used by Carrier'® and Ra.nnie,14 among others, in relation to low-concentration
flows through rocket nozzles. The problems were analyzed by considering
the equations of motion for a particle and mixture with a relatively simple
interaction term between phases. However, for flows with high concentrations
and under rapid transient conditions, some modification of the analysis is
required to apply the two-fluid model.

Now let us consider the derivation of the drift velocity from the two-
fluid model. In the absence of the wall and under a steady-state condition
without phase change (T = 0), the multiparticle system in an infinite medium
essentially reduces to a gravity-dominated one-dimensional flow, since the
average void and velocity profiles become flat. Then the axial component of
the momentum equation for k phase can be written as

dpm
0 = —Q/k—a— - Cl’kpkg + Mlk' (13)

Here we have also assumed that the surface-tension effect can be neglected,
and therefore p. = py = py,- By adding the phase-momentum equations and
using Eq. 12, we obtain

dp
m
— - ) 14
dz Pm8 (14)
The drag force acting on the particle under steady-state condition can
be given in terms of the drag coefficient C[y based on the relative velocity as

Fp = -%CDpcvrlvr|Ad, (15)

where Ay is the projected area of a typical particle. Then F is related to
the interfacial force by

13
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where V, is the volume of a particle. Then from Eqs. 13-15, we obtain

|
DP¢

velvel = %c (pe - Pglg(l - a4), (17)

where the mean radius of the particle is defined by rq = 3Vd/(4Ad).

On the other hand, for a single-particle system in an infinite medium,
the force balance (as shown in the appendix) reduces to

Tq

— (. -pale (18)
CDOOpc C d

Ve Ivrco I =

Where v, and Cpy, are the terminal velocity and drag coefficient of a single
particle in an infinite medium. In general, the drag law for a single particle
can be expressed by CDo = CpDw(NRew), Where the Reynolds number NRew is
given by NRew = 2rdp cIVr°°|/U'c- The expressions for CpDe in various flow
regimes are given in the appendix and shown in Fig. 1. Also, the nondimen-
sional terminal velocity is shown as a function of the dimensionless radius of

a particle in Fig. 2.
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SINGLE PARTICLE REYNOLDS NUMBER, Ne,, REDUCED RADIUS, = r(p, gap/pZ)
Fig. 1. Single-particle Drag Coefficient. Fig. 2. Terminal Velocity. ANL
ANL Neg. No, 900~-76-443. Corr. Neg. No. 900-76-445.
Then from Eqs. 17 and 18, we get
V. 2
Cpe(Nree) = CDRA) () /11 - o). (19)
ree

-

where the Reynolds number is given by Np, = Zrdpc|vrl/um and um is the mix- '

ture viscosity. If we know the mixture viscosity and the dependence of Cp on
NRe. Eq. 19 can be solved for the slip velocity in terms of the single-particle
terminal velocity.



The presence of the mixture viscosity in the similarity group NRe is
explained as follows:”'!5 A single particle moving through a dispersed two-
phase mixture imparts a motion to the continuous phase. However, as the
fluid moves, its deformation causes translational and rotational motions of
other particles in the neighborhood. Since the particles are more resistant to
deformation than is the fluid, the particles impose a system of forces that
react upon the fluid. As a result of additional stresses, the original particle
sees an increase in the resistance to its motion, which appears to it as arising
from an increase of the viscosity. Consequently, in an analysis of the motion
of the suspended particles, the mixture viscosity should be used.'®

In the present analysis, we have extended Taylor's correlation for the
mixture viscosity along the Roscoe-type power relation based on the maximum
packing  3m- Thus,

(20)

-2,5( +0.4 +
i (1 “d) dmpa+o.4nc)/ (wgtue)

Mc Ydm

The maximum packing ogpy, for solid- or liquid-particle systems ranges from
0.5 to 0.74. However, agm = 0.62 suffices for most practical cases. For a
bubbly flow, the theoretical value of @y, can be much higher. Therefore, by
considering the standard range of interest of the void fraction og < 0.35 for
developed flow and og higher than 0.35 in developing flows, and in view of the
possible foam regime, we may take o4, = 1. A similar argument can be
used for a droplet flow.

Figure 3 compares the proposal for present mixture viscosity with the
various existing models for solid-particle systems. Including the effect of the
viscosity of the dispersed phase in the correlation gives the newly developed
model an advantage over the conventional correlations, because it is not

limited to particulate flows, but can also be applied to droplet and bubbly flows.

Now let us assume that in the viscous regime a complete similarity
exists between Cpeo based on NRew and Cp based on NRe, so that CD has
exactly the same functional form in terms of NRe as CDw in terms of NRew
given by Eq. A.4. Then, by considering the two asymptotic cases of NRe = 0
and NR, > = and interpolating between them, we obtain, from Eq. 19,

0.75
Ve / 1+ O.INReoo
= (1 - o) % (eg) ’ 21
V peo gV Hea) + O.IN‘%i;io[f(ad)]éﬁ @)
where
flag) = (1 - Old)l/zuc/um- (22)

15
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Consequently, the drift velocity, which is related to the relative velocity by

Vaj = (1 - @g)vy, can be given by

1+ y(r*
()

1+ y(eX)[Eey) ¥/

Vaj = viw(l - agq)'-*i(ag) (23)

where ¢(r:§) = 0.55[(1 +0.08r:'i3)4/7 - 1]0'75 for the viscous regime, and rg is the non-
dimensional radius givenby r§ = rqlp chp/p/"c]1 ’. Note that NRew in Eq. 21 has been
replaced by a new function ¥ using the identity NRew = Zr’c“iv;m and Eq. A.7.

The similarity criterion given by C(Ng,.) = Cpo(Ng,) with the
Reynolds number based on the mixture viscosity is first introduced for the
solid-particle system in the Stokes regime.("16 In this case, the velocity
ratio B reduces to B = (1 - cvd)p,c/um, which is the limiting case of Eq. 21
with Ngao <<'1 or ré <<'1. However, because of the use of the generalized
drag law and the mixture-viscosity model in the analysis, the present theory
is not limited to a solid-particle system or to the Stokes regime.

For solid-particle systems, we assume that the transition from the
viscous regime to Newton's regime occurs at the same radius as in the single-
particle system, and that the drag coefficient Cp is a continuous function.
Then, for Newton's regime given by r:i > 34,65, we obtain




18.67
1+ 17.67[fag) ¥/

Vdj = Vrco(]- - Q/d)l'5f(ad)

where f(ogq) is given by Eq. 22.

Figure 4 compares the above theoretical results given by Egs. 23 and
24 with the empirical correlation for solid-particulate systerns.23 An agree-
ment at relatively low volumetric concentrations is excellent at all Reynolds-
number regions. At very high values of a4, the present theory predicts much
lower drift velocities than the Richardson-Zaki correlation.?> However, the
original experimental data of Richardson and Zaki also indicate this trend,
which is predicted by the present theory, as shown in Fig. 5.
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0 0.1 0.2 0.3 0.4 0.5 0.6 Fig. 5. Comparison of Present Model with

% Experimental Data for Solid Particles.
ANL Neg. No. 900-76-444 Rev. 1.
Fig. 4. Comparison of Predicted Results with
Richardson and Zaki' §23 Empirical
Correlations for Solid-particulate Flow
Systems. ANL Neg. No. 900-76-442.

In the distorted-fluid-particle regime, the single-particle drag coeffi-
cient depends only on the particle radius and fluid properties and not on the
velocity or the viscosity; i.e., Cpw = (4/3)rgqv/gAp/c. Thus, for a particle of
a fixed diameter, Cp, becomes constant. In considering the drag coefficient
for a multiparticle system with the same radius, we must take into account the
restrictions imposed by the existence of other particles on the flow field.
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Because of the random characteristic of the turbulent eddies and particle
oscillations, a particle sees the increased drag due to other particles in essen-
tially the same way as in Newton's regime for a solid-particle system where
Cpw is constant under a turbulent flow condition.

Hence we postulate that, regardless of the differences in Cpy in these
regimes, the effect of increased drag can be predicted by the same expression.
Under this assumption, Eq. 24 may also be used for the distorted-particle
regime with the appropriate v,.». Substituting the definition of flag) into Eq. 24,
the results can be further simplified to

r

(1 - ad)l.'rs; be>> Uy

Vd_] b Vo X < (1 - Q’d)z; Me o V%] (25)

2,25
(1 - og)®®5 wg>>

.

for the distorted-fluid-particle regime Ivrml = «/z(goAp/pé)o‘zs. The above
criterion is applicable for N, = 0.11 (1 + W)/¢8/3, For a distorted-bubbly flow
the first expression under the condition . >> ug is applicable, which is very
close to the semiempirical correlation of Zuber and Findley;" i.e., Vdj =
vrm(l - ad)l's. For agq << a4y the above expression with uq >> pc can be
used for Newton's regime with |Vr°°| = 2.43 VgrdAp/pC.

As the radius of the fluid particle is further increased, the wake and
bubble boundary layer can overlap due to the formation of large wake regions.
In other words, a particle can influence both the surrounding fluid and other
particles directly. Hence the entrainment of a particle in a wake of other
particles becomes possible. This flow regime is known as the churn-turbulent-
flow regime and is commonly observed in bubbly flows. In this flow regime, a
typical particle moves with respect to the average volumetric flux j rather than
at the average velocity of a continuous phase. Hence, the reference velocity
in the definitions of the drag coefficient and the Reynolds number should be the
drift velocity rather than the relative velocity.

In a churn-turbulent-flow regime, some particles should have reached
the distortion limit corresponding to the cap-bubble transition or the droplet
disintegration. This limit can be given by the Weber-number criterion based
on the drift velocity as 2p CVEjrd/c = 8 (bubble) or 12 (droplet). Due to the
entrainment of particles in a wake of other particles and the coalescence and
disintegration caused by the turbulence, the average motion of the dispersed
phase is mainly governed by those particles that satisfy the Weber-number
criteri'on. Thus for a churn-turbulent flow, we have Fp = —Cbpchj|Vdj|nré/2
with Cp = 8/3. Therefore, in a standard form,

Cp

Fp = -Tpcvr|vr|nrzd, (26)



. where Cp = 8(1 - @q)%/3. Hence, by balancing the drag force with the pressure
and gravity forces, we obtain

V2
ogAp>l/4 Pec - Pd(l ) ad)1/4

Vi

i~ 2
or ]..57 < pC Ap

A 14 - by
mﬁ(’g p) c”fd (27)

pZ bp

In the exact expression for Vgj, the proportionality constant V2 is
applicable for bubbly flows and 1.57 for droplet flows. However, in view of the
uncertainty in predicting the drag coefficient, this difference as well as the
effect of the void fraction may be neglected. The above result is consistent
with the study by Zuber and Findley for bubbly flows.!® The present results
for the drift velocity are summarized in Table I by considering four different
cases: bubbles in liquid, droplets in liquid, droplets in gas, and solid particles
in gas or liquid.

TABLE I. Summary of Drift Velocity Vdj in Infinite Media

- Bubble in Liquid Droplet in Liquid Droplet in Gas Solid Particle
we/bo (1-ay ~(1 - ay)? ~1 - ag)*® M1 - ag)*®
2
2 8bprg s 28 - pg
Stokes Regime - 1 - z r3l -« )
g s (g 5 S ri(1 -y
Undistorted - 10.8"¢ iﬁ.(l gl §¥3(1 + ) PCA‘ Pa.
ticl i
particle Regime Pe¥a Hm e e (- ad)o.s 6/7 p .
m For Newton's Regime
(rdz 34.67),
/
N, 5 0.11 1@%’ where ¢ = 0.55[(1 + 0.08r%%)"" _ 17075 § = 17.67
Distorted - cghp nPc " P4
particle Regime ﬁ( p2 >(1 g &p -
n = 1.75 n==2.0 n = 2.25
1/4 1/4 -
Churn-turbulent J2 oglp J2 ogle Pc” Pd -
. 02 02 Ap
Regime f c
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IV. LOCAL DRIFT VELOCITY OF DISPERSED FLOW IN

CONFINED CHANNEL .
The constitutive equation for the drift velocity for a multiparticle

system in an infinite medium has been studied in the preceding section. We

now study the wall effect on the local drift velocity in a channel with uniform

cross-sectional area. Under the steady-state condition without phase change

(Tk = 0) and with negligible transverse pressure gradient, i.e., pc = pg =

pm(z), the axial component of the local momentum equation for phase k can

be reduced from Eq. 11 to

OPm
=5 -~ %kMTk - %kPkgz + Mik, (28)

0 = -ox

where Mtk and Mjk are the axial forces associated with the transverse stress
gradient and the interfacial drag, as shown in Eq. 11. Here we have taken
gz 2 0 such that v > 0 when the flow is upward. Consequently we obtain

~

o}

Pm
Mjc = °‘c<chz + "‘g) + Mrcoe

and

Opm
Miqg = 0’d<9dgz + _bz_> + Mrdod.
J

However, from the interfacial-force balance, we have
Mijc + Miq = 0. (30)

Thus by eliminating the interfacial forces from the above two equations, we
get the local z components of the mixture-momentum equation as

OPm
Dz

= -PmEz - Mtm, (31)

where Mt is the force associated with mixture transverse stress gradient
and given by Mty = @gMrg + (1 - og)Mrc.

From Eq. 29 and 31, we obtain
Mid = -oqd[(1 - ad)gz(Pc - Pd) + (MTm - Mrd)]. (32)

However, inasmuch as the interfacial force Mid is related to the drag force
by Fp = M;igVa/@d, Eqs. 15 and 32 can be solved for the relative velocity as .




8 Id
o velel = 3 25 [(bc - paga(l - @) + (Mrm - Mra)] (33)

By introducing the nondimensional groups
g* = gz(pc - Pa)/(brg)

and , (34)

n

MT = (Mrm - Mrq)/(bpg)
where Ap = |oc - pd|, we obtain, from Eqs. 18, 19, and 33,

v

CDm(NRem) = CD(NRe)< )/lg*(l - Q’d) + M’»krl (35)

r

er
By using the same similarity hypothesis as used for systems in infinite

media, we can find the expression for the velocity ratio for a channel flow. The

results are summarized below:

Undistorted-particle Regime:

. be 1+ y(rd)
Vdj = IVrm ‘(1 - Q’d)[g*(l - ad) + M#]E 1+ w(r:l)[f(ad)]éﬂ’ (36)

.5
where f(ag) = (be/bm) lg*(1 - g) + M#‘O and ¥(rd) is given by

(" 0.75

4/7
0.55[(1 + 0.08x%’) - 1] ; r* <34.65;

¥(r}) - (37)

| 17.67; ry 2 34.65.

Distorted-particle Regime:

Me * 18.67
V.. = (1 - ) —|g*(1 - + M : (38)
aj = Mrallt - ) Tolg*(1 - ag) + ME| = 17.67[6(ag)]*"

Churn- turbulent-flow Regime:

' Ve g¥(1 - + M
' Vaj = Ji(gAp") M1 - ag) ¥ M (39)

p% lg*(1 - ag) + M’Ho'75
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If the effect of the wall can be neglected and the flow is vertical,

g* = 1 and M¥ = 0; hence, we have approximately
/4
oghp\'
Vg = ﬁ( gz p> , (40)
Pe

The expression for the single-particle terminal velocity vye for the corre-
sponding flow regimes appears in the appendix.

The above expressions indicate that the local drift velocity in the axial
direction depends on the difference between the transverse stress gradient of
each phase; i.e., M¥ = (1 - og)(Mr1c - Mrg)/(8pg). To take this effect into
account requires additional information concerning the turbulent structure of
both the continuous and dispersed phases.

V. ONE-DIMENSIONAL DRIFT-FLUX MODEL

Averaging over the cross-sectional area is useful for complicated
engineering problems involving fluid flow and heat transfer, since field equa-

tions can be reduced to quasi-one-dimensional forms. By area averaging, the

information on changes of variables in the direction normal to the main flow
within a channel is basically lost; therefore, the transfer of momentum and
energy between the wall and the fluid should be expressed by empirical cor-
relations or by simplified models. The rational approach to obtain a one-
dimensional model is to integrate the three-dimensional model over a cross-
sectional area and then to introduce proper mean values.

A simple area average over the cross-sectional area A is defined by

1
(F) = = [{FdA, (41)

and the void-fraction-weighted mean value is given by
UFK” = (okFk)/{ok). (42)

In the subsequent analysis, the density of each phase pq and pc within
any cross-sectional area is considered to be uniform, so that px = ((pk)).
For most practical two-phase flow problems, this assumption is valid since
the transverse pressure gradient within a channel is relatively small. The
detailed analysis without this approximation appears in Ref. 24. Under the
above simplifying assumption, the average mixture density is given by

(pm? = (agleg + (1 - {aqd?)pc. (43)




The axial component of the weighted mean velocity of phase k is

(oxvk) G

vk = TR

(44)

where the scalar expression of the velocity corresponds to the axial component
of the vector. Then the mixture velocity is defined by
{Pm¥m’

= [{agdpaiva + (1 - {a@))pc &ve N1/ {pm>, (45)
(P

and the volumetric flux is given by
G2 = Gar+ Ge? = CagdWvg? + (1 - {ag?) Ly (46)
The mean mixture enthalpy also should be weighted by the density; thus,

_ (Prnbpm?

hyy, & ——— = [ag)pg&hg» + (1 - C(ag)pc&he D)/ {Pm?. (47)
(Pm?

The appropriate mean drift velocity is defined by
Vg = Kvad - G = (1 - (ag)(Lva) - Lve ). (48)

The experimental determination of the above-defined drift velocity is
possible if the volume flow rate of each phase, Qk, and the mean void fraction
(ag) are measured. This is because Eq. 48 can be transformed into

Vas = 39 (Gad + o), (49)
(ag)

where (jik) is given by {jx) = Qg/A. Furthermore, the present definition of
the drift velocity can also be used for annular two-phase flows. Under the

definitions of various velocity fields we obtain several important relations,
such as

— pC - )
Uvg» = ¥m + dej,

- <°/d> Pd =
Uve? = vy - I~ (ag) <pm>Vdj,

J

23



24

and

(agX(pe - P4) — _

(j) = Vvm +

In the drift-flux formulation, a problem is solved for {ag) and Vi, with a given
constitutive relation for Vgj. Thus Eq. 50 can be used to recover a solution
for the velocity of each phase after a problem is solved.

By area-averaging Eqs, 1-4 and using the various mean values, we

obtain:
Mixture Continuity Equation:
b(Pm) d ., _
=+ 7=((Pm ¥m) = 0. (52)
Continuity Equation for Dispersed Phase:
d{aglrg  » - > ((2g?PdPc >
—3r— 35 (earrdvm) = (Td? - 57 <—<;m—> Vgj (53)
Mixture Momentum Equation:
AP Vm  » _ d d
T + B’;((Dm>Vi'n) = "3z <Pm> + S;("'zz + ng> - {pm’gz
fm d (agrpgpc =
- T [V - — V.
2D<Pm>Vm|Vm| bz[(l _ <°ld>)<pm> dj
)
" 32 L& COVI(PKVKVK)- (54)
Zk
Mixture Enthalpy-energy Equation:
d(pmBm - > awE » (aglege —
mPm 2 5.y = -2 (q+qTys IWEL D 10d7PdPe .
ot t oz (PmlbmVm) = -pz{a+al) + =7 32 {om) AbdcVaj

> [{aa?Papre = > (ppy, )
e —_—— . = +
[ o) AthVdJ:| bzg{:COV(Olkpkhkvk) ot

+ (3R). (55)

o feadee - pa) o 12¢Pm)
+ |vm t (pm> Vd_] 32




Here 75, + ng denotes the normal components of the stress tensor in the
axial direction and bhdc is the enthalpy difference between phases; thus,

bhge = (Khg»?? - ((hc?). The covariance terms represent the difference between
the average of a product and the product of the average of two variables such
that COV (P tkvk) = (aPritr(vk - Kvi?)). If the profile of either ¥} or vy
is flat, then the covariance term reduces to zero. The term represented by
fm (Pm )¥m [Pm [/(2D) in Eq. 54 is the two-phase frictional pressure drop. We
note here that the effects of the mass, momentum, and energy diffusion as-
sociated with the relative motion between phases appear explicitly in the
drift-flux formulation, since the convective terms on the left-hand side of the
field equations are expressed in terms of the mixture velocity. These effects
of diffusions in the present formulation are expressed in terms of the drift
velocity of the dispersed phase Vdj. This may be formulated in a functional
form as

Vgj = Vajleq?, pm?’, 8z, ¥m, etc.). (56)
To take into account the mass transfer across the interfaces, a con-

stitutive equation for {I'gq) should also be given. In a functional form, this
phase-change constitutive equation may be written as

0{pm’
(Pq? = (Td><<0!d>, (Pm’> ¥m, —%I—l—', etc.). (57)

The above formulation can be extended to nondispersed two-phase
flows, such as an annular flow, provided a proper constitutive relation for a
drift velocity of one of the phases is given.

VI. ONE-DIMENSIONAL DRIFT VELOCITY

A. Dispersed Two-phase Flow

To obtain a kinematic constitutive equation for the one-dimensional
drift-flux model, we must average the local drift velocity over the channel
cross section. The constitutive relation for the local drift velocity V4j in a
confined channel was developed in Sec. IV. Now we shall relate this to the
mean drift velocity ‘\_/’dj defined by Eq. 48.

From Eqs. 42 and 48,

aq(j + Va .
Vd_] <—<&dTJ— = <<Vd_]>> +(Co - 1)(j5), (58)
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where
<<Vdj>) = (agVg;)/{eq? (59)
and .
_ <ddj>
° = Xy (60)

The second term on the right-hand side of Eq. 58 is a covariance
between the concentration profile and the volumetric flux profile; thus it can
also be expressed as COV(agj)/{aq). The factor C,, which has been used for
bubbly or slug flows by several authors,!9:25:2 i known as a distribution
parameter. The inverse of this parameter was also used in the early work of
Bankoff.?” Physically, this effect arises from the fact that the dispersed
phase is locally transported with the drift velocity Vaj with respect to local
volumetric flux j and not to the average volumetric flux {j). For example,
if the dispersed phase is more concentrated in the higher-flux region, then
the mean transport of the dispersed phase is promoted by higher local j.

The value of Cy, can be determined from assumed profiles of the void
fraction od and total volumetric flux j,'® or from experimental data.'! By as-
suming power-law profiles in a pipe for j and g, we have

ifio = 1 - (R/Rw)™;

dq - %gw

= 1 - (R/Rwy)™,
%do - YW [Rw

where jy, gy, °qW, R, and Rw are, respectively, the value of j and o at the
center, the void fraction at the wall, radial distance, and the radius of a pipe.

By substituting these profiles into the definition of C, given by Eq. 60, we obtain

2 Yaw’

The distribution parameter based on the above assumed profiles is further
discussed in Ref. 11.

Now Eq. 58 can be transformed to

va) = 2 _ Gy (v g5, (63)
og?




where ((vq)) and (j) are easily obtainable parameters in experiments, partic-
ularly under an adiabatic condition. Therefore, this equation suggests a plot
of the mean velocity {vq)) versus the average volumetric flux (j). Various
experimental data using this mean velocity-flux plane are in Figs. 6-12. If
the concentration profile is uniform across the channel, then the value of the
distribution parameter is equal to unity. In addition, if the effect of the local
drift ((Vdj )) is negligibly small, then the flow becomes essentially homoge-
neous. In this case, the relation between the mean velocity and flux reduces
to a straight line through the origin at an angle of 45°. The deviation of the
experimental data from this homogeneous flow line shows the magnitude of
the drift of the dispersed phase with respect to the volume center of the
mixture,

An important characteristic of such a plot is that, for two-phase flow
regimes with fully developed void and velocity profiles, the data points cluster
around a straight line (see Figs. 6-12). This trend is particularly pronounced
when the local drift velocity is constant or negligibly small. Hence, for a
given flow regime, the value of the distribution parameter C; may be obtained
from the slope of these lines, whereas the intercept of this line with the mean
velocity axis can be interpreted as the weighted mean local drift velocity,
((Vdj »). The extensive study by Zuber et al.!! shows that Cy depends on pres-
sure, channel geometry, and perhaps flow rate. An important effect of sub-
cooled boiling and developing void profile on the distribution parameter has
also been noted by Hancox and Nicoll.??
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In the present study, a simple correlation for the distribution param-
eter in bubbly-flow regime has been developed along the above studies. First,
by considering a fully developed bubbly flow, we assumed that C, depends on
the density ratio pg/pf and on the Reynolds number based on liquid properties,
GD/p.f, where G, D, and uf are the total mass flow rate, hydraulic diameter,
and the viscosity of the liquid, respectively. Hence,

Pg GD
Cy = Co(}%’_ﬂf_)' (64)

A single-phase turbulent-flow profile and the ratio of the maximum
velocity to mean velocity give a theoretical limiting value of Gy, at @ = 0 and
pg/pf — 0, since in this case allthe bubbles should be concentrated at the central
region. Thus from the experimental data of Nikuradse®* for a round tube,
which gives the ratio of the maximum to mean velocity, we have

(aj? ()i GD)
= 11 = = - Iin| —
Co hm(oz)(j} 50 1.393 - 0.0155 n( " (65)

as @ = 0 and pg/pf - 0 (see Fig. 13). On the other hand, as the density ratio
approaches the unity, the distribution parameter C; should also become unity.
Thus,

Co ~ 1 (66)

as pg/pf - 1.
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Based on these limmits and various experimental data in a fully developed
flow, the distribution parameter can be given approximately by

Co = Co - (Ce - l)q/pg7pf, (67)

where the density group scales the inertia effects of each phase in a transverse
void distribution. Physically, Eq. 67 models the tendency of the lighter phase
to migrate into a higher-velocity regime, thus resulting in a higher void con-
centration in the central regime.?’” For a laminar flow, Cs is 2, but, due to

the large velocity gradient, C, is very sensitive to (a) at low void fractions.

Over a wide range of Reynolds number, GD/uf, Eq. 65 can be approxi-
mated by C, = 1.2 for a flow in a round tube. On the other hand, for a rect-
angular channel, the experimental data show this value to be approximately
1.35. Thus, for a fully developed turbulent bubbly flow,

1.2 - 0.2 \/pg/pf: round tube;
1.35 -~ 0.35 Vpg/pf: rectangular channel.

Figures 14 and 15 compare the above correlation with various experimental
data. Each point in the figures represents anywhere from five to 150 data
points. For example, the original experimental data of Smissaert,*® shown

in Fig. 9, are presented by a single point in Fig. 14. Each point in Fig. 9 can
be used to obtain a corresponding value for Cy by using the existing correlation
for the mean local drift velocity <<Vdj ). However, in view of the strong linear
relation between the mean velocity of the dispersed phase and the total flux,
the average value of C, obtained by linear fitting has been used in Figs. 14

and 15.

In the velocity-flux plane (see Figs. 11 and 12), three operational modes
can be easily identified. In the first quadrant, the flow is basically cocurrent
upward; therefore both the liquid and vapor phases flow in an upward direction.
Examples of this mode are shown in Figs. 6-10. In the second quadrant, the




vapor phase is moving upward; however, there is a net downward flow of
mixture. Consequently, the flow is countercurrent. The cocurrent downflow
operation should appear in the third quadrant of the velocity-flux plane, as
shown in Figs. 11 and 12. These data indicate that the basic characteristic
described by Eq. 63 is valid for both cocurrent up and down flows with an
identical value for the distribution parameter C,. This fact demonstrates the
usefulness of correlating the drift velocity in terms of the mean local drift
velocity <<Vdj ) and C,.
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In two-phase systems with heat addition, the change of void profiles
from concave to convex can occur as illustrated in Figs. 16 and 17. The
concave void-fraction profile is caused by the wall nucleation and delayed
transverse migration of bubbles toward the center of a channel. Under these
conditions, most of the bubbles are initially located near the nucleating wall.
The concave profile is particularly pronounced in the subcooled boiling regime,
because here only the wall-boundary layer is heated above the saturation
temperature and the core liquid is subcooled. This temperature profile will
induce collapses of migrating bubbles in the core region and resultant latent
heat transport from the wall to the subcooled liquid, However, a similar
concave profile can also be obtained by injecting gas into flowing liquid through
a porous tube wall.? ‘

In the region in which voids are still concentrated close to the wall,
the mean velocity of vapor can be less than the mean velocity of liquid, because
the bulk of liquid moves with the high core velocity. Hence, in this region,
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the data should fall below the line for a fully developed two-phase flow. This
is illustrated in Figs. 18-20. If the data fall below the homogeneous line, the ‘

value of C, should be less then unity. However, as more and more vapor is
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generated along the channel, the void-fraction profile changes from concave
to convex and becomes fully developed. This trend can easily be seen in
Figs. 18-20, in which the data approach the fully developed flow line from
below in the bulk boiling regime.
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For a flow with generation of void at the wall due to either nucleation
or gas injection, the distribution parameter C, should have a near-zero value
at the beginning of the two-phase flow region. This can be also seen from
the definition of Cy in Eq. 60. Hence, we have

im . _ . (aj) ()i
(a)>0 0 ~ ()5)  {a)j)

= 0 for I'yg>0. (69)

With the increase in the cross-sectional mean void fraction, the peak
of the local void fraction moves from the near-wall region to the central
region, as shown in Figs. 16 and 17. This will lead to the increase in the
value of C; as the void profile develops.

In view of the basic characteristic described above and various experi-
mental data,'!*?%%1#2 the following simple correlation is proposed:

Co = [Cw - (Cw - 1) VPg/pf](1 - e'18<°’>). (70)

This expression indicates the significance of the developing void profile in
the region given by 0 < (o) < 0.25; beyond this region, the value of C, ap-
proaches rapidly to that for a fully developed flow (see Fig. 21). Hence, for
I”g > 0, we obtain

(1.2 - 0.2 vog/eg)(1 - e-la(u)); round tube;

O
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For most droplet or particulate flows in the turbulent regime, the
volumetric flux profile is quite flat due to the turbulent mixing and particle
slips near the wall, which increase the volumetric flux. The concentration
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of dispersed phase also tends to be uniform, except for weak peaking near the
core of the flow. Because of these profiles for j and ¢4, the value of the
distribution parameter C; is expected to be close to unity (1.0 S C, < 1.1).
Thus, by assuming that the covariance terms are negligibly small for droplet
or particulate flows, we have

Vaj =~ «vaih, (72)
in which case the local slip becomes important.

The calculation of ((Vdj ) based on the local constitutive equations is
the integral transformation, Eq. 59; thus it will require additional information
on thevoid profile**. Since this profile is not known in general, we make the
following simplifying approximations. The average drift velocity <<Vdj ) due
to the local slip can be predicted by the same expression as the local consti-
tutive relations given in Ref. 44, provided the local void fraction og and the
nondimensional difference of the stress gradient are replaced by average
values. These approximations are good for flows with a relatively flat void-
fraction profile; also, they can be considered acceptable from the overall
simplicity of the one-dimensional model.

For a fully developed vertical flow, the stress distribution in the fluid
and in the dispersed phase should be similar; thus the effect of shear gradient
on the mean local drift velocity can be neglected. Under these conditions we
obtain the following results:

Undistorted-particle Regime:

\_/dj = (Cp - DI

10.8 4/3 Pc - P
p rp‘C 'J‘C (1—<(Yd>)2 W (1 4+ w) 6/7 CAp d’ (73)
ctd (Uﬂm) 1+ ¢[< Mc )(1 _ <ad>)o.5]
Um

s

where ¥(rd) = 0.55[(1 + 0.08r%3)Y7 - 1]0'75 for r§ < 34.65 and ¥(rd) = 17.67

for rzi 2 34.65. The limiting case of the undistorted-particle regime is the
Stokes regime in which the mean drift velocity reduces to

he Pc - Pq
<|J-m> Ap

Vaj = (Co - 1)) +-3-r2d-g-f(1-<ad>)2 (74)

Distorted-particle Regime (1.75 < n < 2,25):

/ -
Taj = (Co - 1)) + ﬁ(cgfp)l - <ozd>)n%—A—pp—d : (75)
P
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Here the value of n depends on the viscosities as seen in Eq. 25.

Churn-turbulent-flow Regime:

- Ao\V/4P. - P
Vaj = (Co- 1)) + ﬁ(og p) c_d (76)
pZ Ap
Here the mean mixture viscosity** is given by
(g ( (ag)\ 2 5odm(Bdto.4bc)/(bdtc)
=11 - . 77
B C"dm) (77)

The value of maximum packing, gy, = 0.62, is recommended for
solid particle-fluid systems, although it can range from 0.5 to 0.74. How-
ever, for a bubbly flow, the theoretical value of ®§,, can be much higher.

If we consider the standard range of interest of void fraction in bubbly flow,
%3y ™May be approximated by ¥gm = 1. Hence, for a bubbly flow, the mix-
ture viscosity becomes

by 1
= s e (78)

On the other hand, for a particulate flow with a low particle concen-
tration, i.e.,{oq) << 1, {upm) can be approximated by

Sl _ (- a2, (19)
[

In a horizontal flow with a complete suspension of the dispersed phase,
the transverse mixing, which keeps the particles suspended, can significantly
influence the stress gradient of each phase; thus the stress gradient effect
may not be neglected. However, in view of the present state of the art, the
assumption <<Vdj > = 0 may be used as a first-order approximation, particu-
larly in high-flux flows.

For high-flux flows, the effect of the local drift «Vdj ) on the mean
drift velocity is small in comparison with the covariance term (C, - 1) ).
Thus, by neglecting the former, we have

(Co - 1){Pm)Vm
(pm? - (Co - 1){ad)(pc - pd)’

vdj = (80)

-



For bubbly flows, the above equation imposes a condition on applicable void-
fraction ranges; thus we should have {pm) > (Cy - 1)€agX(Pc - Pd).

Here a simple criterion for the boundary between the high- and low-flux flow
can be obtained by taking the ratio of the total volumetric flux and the terminal
velocity. If this ratio is more than 10, the flow can be considered a high-flux
flow.

The other limiting case of the dispersed two-phase flow in a confined
channel is slug flow. When the volume of a bubble is very large, the shape
of the bubble is significantly deformed to fit the channel geometry. The
diameters of the bubbles become approximately that of the pipe with a thin
liquid film separating the bubbles from the wall. The bubbles have the bullet
form with a cap-shaped nose, The motion of these bubbles in relatively in-
viscid fluids can be studied by using a potential flow analysis around a sphere,
and the result is shown to agree with experimental data. Thus,

45

_ Ao\ Y2
Vaj = 0.2() + o.35<gD p> , (81)
Pc
which was originally proposed by Niklin et al.?® and Neal.?®
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B. Annular Two-phase Flow

In annular two-phase flows, the relative motions between phases are
governed by theinterfacial geometry, the body-force field, and the interfacial
momentum transfer. The constitutive equation for the vapor-drift velocity
in annular two-phase flows has been developed by taking into account those
macroscopic effects of the structured two-phase flows.!? Assuming steady-
state adiabatic two-phase annular flow with constant single-phase properties,
we have the following one-dimensional momentum equations for each phase:

dp,, ) TPy
(B o) - 5 (®2
and
dp, > PwiTwf TiPj
- |— = - , 83
<dz P8z Al - (@) A1 - () (&)

where Ti, Twf, Pij, and Py are the interfacial shear, wall shear, interfacial
wetted perimeter, and wall wetted perimeter, respectively. The hydraulic
diameter and the ratio of wetted perimeters are defined by D = 4A/P and
€ = Pj_/PWf. By assuming that the film thickness § is small compared
with D, we have 46/D =~ 1 - {@). On the other hand, for an annular flow in
a pipe, € reduces to -\/;.

The wall shear can be expressed through the friction factor with a
gravity-correction term by Twf = fwfpf«Vf»l«Vf»l/Z - Apgzé/?’, where fyf
can be given by the standard friction-factor correlation: fyf = 16/Ref for
laminar film flows and fyf = 0.0791Re.% % for turbulent flows. Here the
liquid-film Reynolds number is given by Res = pfkjf)lD/u.f. Similarly, the
interfacial shear can be expressed as T; = f;pg [V, \71./2 with the interfacial
friction factor given by f; = 0.005[1 + 75(1 - {@))] for rough wavy films.*®

By definition, the vapor-drift velocity is related to vy, i.e., Vo; =
(1 - <a>)\—rr; hence, by eliminating the pressure gradient from the momentum
equations, we obtain for a laminar film

= 16ar)
ng - i[ngig

and for a turbulent film

(84)

u'f<_]f> N ApgzD(l - <0/>)3 1/
D 48

0.005p¢(jeOK jg )l 1,
D(1 - (a)? 2o

.. () (1 - (a)’D
gj -~ pgfig

}1/2
. (85)
]




Here the negative root is taken when the term within the absolute
signs becomes negative. The drift velocity in the form expressed by Eqs. 84
and 85 is convenient for use in analyzing steady-state adiabatic or thermal-
equilibrium flows, since in these cases the value of (jf> can be easily obtained.

In a general drift-flux-model formulation, V : should be expressed
in terms of the mixture velocity v, rather than (jf), as vy is the velocity
used in the formulation. From the definition, we have

_ - {a)pg—
<_]f> = (1 =N - Tp——%—ng. (86)
m
By substituting Eq. 86 into Eq. 84, we obtain for a laminar film
2 2 2 21\1/2
_ 8ugla) { < £;D€p (1 - (a)E Apg,D*(1 - (a)) >
Vg = t———— -1+ 11+ 3 Vo T )
8 "(pm DfE 4ug ()0 m 48uf
(87)
which is valid for the laminar range given by
(1 - o) Vim - Coplighyy P (1 - o)V + {piy (88)
(edpg gJ (a)pg '

Here the laminar turbulent-transition volumetric flow is defined by
j = 3200 D.
<Jf>tr 200p¢/pg

The negative root of Eq. 87 applies when the term within the absolute
signs becomes negative. It is easy to show that, for_\_/'gj < (1 - <Or>)<pm>:/m/
(<a>pg), the flow is cocurrent upward, whereas, for ng larger than the
above limit, the liquid flow is downward.

The solution for the case of turbulent film flow is somewhat more
complicated. For convenience, let us introduce the following parameters:

£;8pg )
a = ;
0.005(e) pg(1 - (a))?
(o)
b = —-——pg—-—; 5 (89)
(o1 - (@)
_ ApgD(l - ()
€T TT0.0150;
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Then, for upward liquid flow, we have

— — 1/2
-bvy + [azrm + (2:):; - b?)c] ifa-b240
= _ a-b
ng = (90)
(v2, + c)/2b¥,, if a - b% = 0,

which applies under the condition vy, 2 vcb?/a. However, in the transition
regime given by -/c < Vvm < Jcb?/a, where the liquid film flow is downward
with upward interfacial shear forces on the film, the vapor-drift velocity
becomes

/
- bvy + [-avi, + (a + bz)c]1 :
Vgj = 2 : (91)
at+b
In the range of v, given by v, < -J/c,
- - /
_ -bVpy, - [aV3, - cla - B?)]"2
.= , (92)
g) a - bz

which applies to the cocurrent downward flow.

The above solution can be applied only if the following turbulent-flow
criterion is satisfied:

ng < [(1 - o) vy - <pm><jf>tr]/<°’>pg
or ) (93)
ng 2[1 - (eNpm)Vm + (pm>(jf>tr]/<a)pg

These results do not have a very simple form for a turbulent film.
However, if the absolute value of the mixture velocity is large, so that the
flow is essentially cocurrent and the gravity effect is small; then the turbulent
solution can be approximated by the simple form

_ (1 - ¥y,

ng = 7 (94)
<oz>pg gpg[l + 75(1 -{o))]
oy {a¥p,

Equation 94 for the drift velocity can be transformed to obtain the -
slip ratio Vg/Vf under the simplifying assumption that the average liquid
velocity is much smaller than the vapor velocity. Then we have .



Py 1/2
(vg ﬁ ) (95)
Uve» Pgll + 75(1 - (&)
for an annular flow in a pipe for which & = ¥/{a). The above expression for
slip ratio is similar to that obtained by Fauske,*’ namely, <<Vg>>/<<Vf>> =
(pf/pg)l/z, which has no dependence on the void fraction. The factor that takes
the void fraction into account in Eq. 94 varies roughly from 0.24 to 1 for the

range 0.8 < o < 1. Therefore, for a turbulent film, the Fauske correlation
should give reasonably accurate results at high void fractions.

The predicted vapor-drift velocity was compared to data from various
experiments*® ™% under steady-state conditions as shown in Fig. 22. The
three sets of data considered constitute about 350 data points for annular and
drop-annular flow regimes. Theoretical predictions are within about +30%
of the experimental values over a wide range of vapor-drift velocity between
20 and 250 cm/s. A quite uniform distribution of the data can be attributed

to the uncertainty in the determination of void fraction in the above experiments.
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taken in the drop-annular flow regime at moderate rates of gas flow. This
indicates that the present vapor-drift-velocity correlation can be used both
for ideal annular flows without entrainment as well as for annular mist flows
with moderate to low entrainment. However, as the amount of liquid entrained
in the gas core becomes large at high rates of gas flow,*°! the measured
vapor-drift velocity starts to depart considerably from the predicted values
and the present analysis overpredicts these values.

We note here that these data include a considerable number of points ‘

The drift-velocity correlation for the annular flow has been expressed
in terms of the mixture velocity, since v, is the basic variable in the formu-
lation of the general drift-flux model. However, it is also interesting and
important to resolve the expression for \_/gj in terms_of the total volumetric
flux {j?, since {j> was the variable used to correlate Vgj in dispersed two-
phase flow regimes.

By considering the turbulent film-flow regime and using the definition
<jf> = (1 - Cad)j) - (0!>vgj, we can resolve Eq. 85 for the mean drift veloc-
ity Vgj. The result does not have a simple form; however, for most practical
cases, it can be approximated by a linear function of {j):

1 - {a) \/ApgzD(l - <a>)}
g~ +[1 + 75(1 - (@) 2|9 0.015p; |’ (96)

1
(@) %]
> L Vi ay Pf

<l

This expression may be further simplified for pg/pf << 1 as

_ 1 - (o) . \/ApgzD(l - <oz>)J
Vej = < )[@ ¥ 0.015p; | (97)

(o) + 4, /pg/pf

From the comparison of Eq. 97 to Eq. 58, the apparent distribution parameter
for annular flow becomes

1 - {a) )
(o) + 4a/pg/pf

This indicates that the apparent C; in annular flow should be close to unity.

Co ~ I +

(0g/pg << 1). (98)

C. Annular Mist Flow

As the gas velocity increases in the annular flow, the entrainment of
liquid from the film to the gas-core flow takes place. Based on recently de- .
veloped criteria for an onset of entrainment,®! the critical gas velocity for
a rough turbulent film flow can be given by ’

-
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ligl > RV (99)
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where Nyf = uf/[pfo«/o/gAp]l/Z. However, in general, the vapor flux is much
larger than the liquid flux in the annular-mist-flow regime; then, for a weakly
viscous fluid such as water or sodium, the above correlation may be replaced

by

. . bog\'/* o,
ligl ~ 1il > <p—> S (100)
g

If Inequality 100 is satisfied, then the droplet entrainment into the gas-core
flow should be considered; otherwise the correlation for annular flow, Eq. 97,
can be applied.

The correlation for V,; in annular mist flows can be readily developed
by combining the previous results for a dispersed flow and pure annular flow.
The area fraction of liquid entrained in the gas core from total liquid area at
any cross section is denoted by E4, and the cross-sectional-area-averaged
void fraction by {@). Then the film-area fraction is given by

liquid-film cross-sectional area

- = = 1 -< - E N
L Fcore total cross-sectional area ( Ol»(l d) (101)

and the mean liquid-droplet fraction in the gas core alone is given by

cross-sectional area of drops (1L - <°’>)Ed

o = = .
drop cross-sectional area of core 1 -(1-<a)(1 - Eq) (102)

Consequently, ¢cgre should be used in the annular-flow correlation,
Eq. 97, to obtain the relative motion between the core and the film, whereas
Ydrop should be used in the dispersed-flow correlation to obtain a slip be-
tween droplets and gas-core flow.

By denoting the gas-core velocity, liquid-drop velocity, and film
velocity by vgc, vfc, and vgf, respectively, the total volumetric flux is given
by

G? = [Vgc(1 - O’drop) + Q’dropvfc]acore + vee(l - @eore)- (103)

Furthermore, by denoting the total volumetric flux in the core based on the
core area by j.gre; We have from the annular correlation, Eq. 97,
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(1 -<a)(1 - Ed)< \/Apg D(1 - (a)(1 - Ed)>
R -G ~ (i) 4 . 104
Jeore ~ (o) + 4. pg/pg ' 0.015p;¢ (104) .

On the other hand, from the dispersed-flow correlations, it can be
shown that, for a distorted-droplet or churn-droplet flow regime, the drift
velocity can be given approximately by

1/4
ocghp
<(vg>> - Jecore = ﬁ( >

2
g

Eq(l - (@)
(o) + E4(1 - (@)

(105)

Here we have used an approximation based on (1 - (&)} << 1. However,
depending on the core-gas velocity, the dispersed-flow drift-velocity corre-
lation for a much smaller particle should be used. When the droplets are
generated by the entrainment of liquid film, the following approximate form

is suggested for an undistorted-particle regime outside the Stokes regime:**
1/3
(ghp)? Eq(l - (o))
Uvg? -] = 0.5r , (106)
g Jeore d MgPg () + Eq(1 - (a))

where the particle radius may be approximated from the Weber-number cri-
terion at the shearing-off of wave crests. Thus,

rq > éE_L_ (107)

pg (*
The above relations apply only when the total volumetric flux is suffi-
ciently high to induce fragmentations of the wave crests. Hence, Eq. 106

should be used when

-1/12

1/4 w2
IKd] > 1.456 il g . (108)
ng OgUVU/gAp

By combining the above results, we obtain

_ (1 - )1 - Ed){< > x/ApgzD(l - (a1 - Ed)}
V. = P+
gJ (@) +ab /o 0.0150¢

(
cghp 1/4
) ﬁ( P >
1 -
+ Ed( ) x< or (109)
(o) + Egq(1 - (o)) /3
30 [(g80)*1 1
g ["e’ Z;T




where the latter expression applies under the condition given by Eq. 108. If
the radius of the particle is very small, then the essential contribution to the
relative motion between phases comes from the first term of Eq. 109, and
the core flow may be considered as a homogeneous dispersed flow. In such
a case, Eq. 109 reduces to

-0 Ey <(.> . \/‘”’gzD(1 - (ot - Ed)) (110)
dj COREN LY : 0-0150¢ |

This expression shows a linear decrease of drift velocity in terms of en-
trained liquid fraction, which can be observed in various experimental
data.9:%°

VII. COVARIANCE OF CONVECTIVE FLUX

In the one-dimensional drift-flux model, the momentum and energy
convective fluxes have been divided into three terms: the mixture convective
flux, the drift convective flux, and the covariance term, as can be seen
from Eqs. 54 and 55. In other words, the convective flux of quantity ¥ for
the mixture can be written as

- 3 <<°’d>pdpc

3 3, - _
g;(%“’kpkwk‘@) = 55Pm¥mvm) + 57 o) A‘VchdJ)

m

2
+ = gCOV(dkpk\bkvk), (111)

where Ajq. = <<‘1’d>> - <<‘l'c>> and COV(Olkpk\llkvk) = <°‘kpk‘1'k(vk -i(vk>>)>.

Therefore, for the momentum flux, we have yx = vk and Aygc = Vg;/(1 - (og)).

On the other hand, for the enthalpy flux, we have {) = hyi and AYgq. =
<<hd>> - <<hc>>’ which is equivalent to the latent heat if phases are in thermal
equilibrium.

To close the set of the governing equations, we must specify relations
for these covariance terms. This can be done by introducing distribution
parameters for the momentum and energy fluxes. If we define a distribution
parameter for a flux as

B <ak¢ka>
L P VTSV E &

(112)

the covariance term becomes

COV(prortivi) = prlogip(vic - Uvi)) = (Cyx - 1) ol N M. (113)
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For the momentum flux, the distribution parameter is defined by

(v
= — 14
Cvk = P (112)

Physically, Cyk represents the effect of the void and momentum-flux profiles
on the cross-sectional-area-averaged momentum flux of k phase. A quanti-
tative study of Cyk can be made by considering a symmetric flow in a circular
duct and introducing the power-law expressions in parallel with the analysis
of Cy in Sec. VI.LA. Hence we postulate that

¥y - @
KW (R/R)® (115)
and

ko (R/Ry)™, (116)
Vko

where the subscripts o and w refer to the value at the centerline and at the
wall of a tube.

For simplicity, it is assumed that the void and velocity profiles are
similar; i.e., n = m. This assumption is widely used in mass-transfer prob-
lems, and it may not be unreasonable for fully developed two-phase flows if
one considers that the vapor flux and, hence, the void concentration greatly
influence the velocity distributions. Under this assumption, it can be shown
that

n+2(oz + Ao ——33—)(01 + Ao 2 )
n+ 1\ k¥ k3n¥2/\ kw kn+2
Cyk = - , (117)
n
Upw T Aozk——n s}
where
Doy = opy - Uy
For a dispersed vapor phase, gy << A0g; hence,
3n + 3
2 (118)

CVg 3n+ 2°
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On the other hand, from Eq. 62, the volumetric-flux-distribution param-
eter C; becomes

n+ 2
n+ 1’

Co = (119)

Therefore, in the standard range of n, the parameter Cyg can be given ap-
proximately by

Cyg = 1 +0.5(Co - 1). (120)

For a liquid phase in a vapor-dispersed-flow regime, %fy =~ 1 and
@f, < 1. Then from Eq. 117 it can be shown that, for a standard range of oy,
in the bubbly- and churn-flow regimes, Cyf can be approximated by

Cyf = L+ 1.5(Cq - 1). (121)

For an annular flow, the momentum covariance term can also be cal-
culated by using the standard velocity profiles for the vapor and liquid flows.
Thus we obtain

1.02 (turbulent flow)
Cyk = (122)
1.33 (laminar flow).

~ The above result for the individual phases can now be used to study
the mixture covariance term. By defining the mixture-momentum-distribution
parameter as

Cvdpd<°’d> + Cchc(C"c>
C = , (123)
vm <pm>

the covariance term becomes

_ p pd(C(d> —_

cov 2) = (Cyrg - 1|0 )92 : Vaj

{? (@kPrvi) = (Cym )I: Pm/Vm ¥ {ag)om? JJ
2p P alag? v

—<C—pd§_d_ Cya - Cvc)VdeJ" (124)

m

In view of the above analysis, the order of magnitude of (Cygq - Cyc)
is the same as that of (Cyp, - 1) or less; therefore, the last term on the right-
hand side of Eq. 124 can be neglected for almost all cases. This term may
“ be important only in the near critical regime and if v, = vdj- However,
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in general, Vq; becomes insignificant as the density ratio approaches unity;

hence, under the above conditions the convective term itself becomes relatively .
small. Consequently, even for this case, the term may be dropped. Thus we -
have

2y _ =2 pcpd<°’d> 2 .
Z:COV(akpkvk) (Cvm 1)|:<pm>vm + 0 <ad>)<pm>vd3 . (125)

The value of C,, can be evaluated from Eq. 123 by using Eqgs. 120
and 121 or Eq. 122. In the bubbly- and c¢hurn-flow regimes of practical
importance, Cym can be given approximately by

Cym =1+ 1.5(Cy - 1). (126)

However, in the near critical regime Cym depends also on the void fraction
and the density ratio. Furthermore, at very low void fractions in a fully de-
veloped flow or in a developing flow, the value of Cy, should be reduced to
the one for the single-phase flow given by Eq. 122. The effect of the develop-
ment of the void profile into that given by the power law may be taken into
account by a similar void-fraction correction term used in the correlation for
Cy in Eq. 70. By recalling that for a turbulent flow Cym = 1.0 at « = 0, we
obtain for a round tube

Cym =~ 1+ 0.3(1 -./pg/pf)(l - e'18<°‘>), (127)

which may be used both for a fully developed flow and for a developing flow.

On the other hand, for a turbulent-annular-flow regime, we have,
from Eqs. 122 and 123, C,p, = 1.02. For all practical purposes, this may be
further approximated by

Cym = 1. (128)

In reality, the transition from the value given by Eq. 127 to that given
by Eq. 128 is a gradual one through the churn-annular (or slug-annular)-flow
regime in which characteristics of churn and annular flows alternate. If a
single correlation for Cym is preferred, regardless of the flow-regime transi-
tions, then Eq. 127 may be safely extrapolated into higher-void-fraction regime
by a simple modification given by

Cym = 1+ 0.3(1 -./pg/pf)[l - e"‘8<°‘>(1‘<°‘>)]. (129)

A similar analysis can be carried out for the enthalpy-covariance
term by assuming the void, velocity, and enthalpy profiles. In general, '
s
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z COV(ophevi) = (Chm - 1¢0m Vi

k
(ay?
p—99—‘i‘-i-[-(chc - R + (Cha - D&ha»| Va5 (130)
(o’ J
where
Chm = 2. Chiidoi ) (o )
k (131)
Chk = <O!khkvk>/(<ok><<hk>><<vk>>).

For a thermal-equilibrium flow, hg = hgg and hf = hfg, where hgg
and hgg are the saturation enthalpies of vapor and liquid. Since in this case
the enthalpy profile is completely flat for each phase, the distribution pa-
rameters become unity; i.e., Chg = Chf = Chm = 1. It is also evident that
if one of the phases is in the saturated condition, then Cpy for that phase
becomes unity.

On the other hand, in the single-phase region, the distribution pa-
rameter can be calculated from the assumed profiles for the velocity and
enthalpy. Using the standard power-law profiles for a turbulent flow, i.e.,
v/ve = (y/R)*™ and (h - hy)/(hy - hy) = (y/R)Y/™, where y is the distance
from the wall, we can show that the covariance term is negligibly small both
for developing and fully developed flows.

From the above two limiting cases, we can conclude that the enthalpy
covariant term may become important only in highly nonequilibrium flow.
Even in that case, the energy associated with phase change is considerably
larger than that associated with changes in transverse temperature profiles;
therefore, except for highly transient cases, the enthalpy covariance can be
neglected. Hence,

3
a_z Z COV(O!kathk) = 0. (132)
k

VIII. FLOW-REGIME TRANSITION AND DRIFT
VELOCITY IN VERTICAL SYSTEM

In the preceding sections, the drift-velocity correlation has been de-
veloped for various two-phase flow regimes. To use this correlation, there-
fore, we must identify the flow regime first and then choose a suitable
expression for vdj- In the literature for two-phase flow several criteria for



flow-regime transitions are summarized in Refs. 46 and 55-58. These
existing criteria may be used to identify the flow regimes under various con- ‘
ditions. However, in what follows, we shall develop flow-regime transition
criteria that are based on the relative motion between phases and are con-
sistent with the concept of the drift-flux model.

In forced-convection boiling systems, four flow regimes are of practical
importance:!! churn-turbulent bubbly, annular, annular-mist, and droplet or
liquid-dispersed regimes. In the vapor-dispersed-flow regimes such as the
bubble, distorted bubbly, and churn-turbulent flows in forced-convection sys-
tems, the effect of the concentration and velocity profiles dominates the
relative motion between phases. This can be seen from the importance of
the term associated with the distribution parameter with respect to the local
drift effect in Eq. 58. Consequently, various vapor-dispersed-flow regimes
can be satisfactorily represented by the churn-turbulent-flow correlation
alone. This is also shown by the experimental data in Figs. 6, 7, 18, 19,
and 20.

The transition criterion between churn-turbulent bubbly flow and
annular flow is obtained by postulating two different mechanisms for the
transition:

1. Flow reversal in the film section along large bubbles and follow-
ing transport of liquid mass in the slug or wake regions into the film section.

2. Destruction of liquid slugs or large waves by entrainment or de-
formation and subsequent redistribution of liquid mass into the droplets and
film.

The first mechanism assumes that, for the film section along large
bubbles, the annular drift-velocity correlation can be used locally. Hence,
by setting the flow-reversal condition as (jf> = 0 and using Eqs. 46 and 48,
we obtain, from Eq. 96,

1/2
i* = <a>"25{ L -t ~{(a) - 0.1, (133)
g8 0.015[1 + 75(1 - (a))}]

where _]g = Jg/«/ApgD/p Here the above approximation is a good fit to the
exact form for (@) < 0, 93 At this point, the flow is still in the churn-turbulent
regime. It has to support entire liquid fraction in the film in order to have a
transition; therefore the mean void fraction is calculated from the drift-
velocity correlation for the churn-turbulent flow. Thus from Eq. 76, (&) can
be obtained in terms of <jg> and (jf>. If this expression is substituted into

the above equation, we get

1

%

i = - 0.1. (134) ‘
g <Jf> 3

«/2 1 /oghe 1/a
Co {l <_]g> ¥ Co (Jg>< pi ) }




In general, the liquid flux and the terminal velocity are much smaller than
the gas flux; thus Eq. 134 can be further simplified to

iy = ci - 0.1, (135)
0

where C; is given by Eq. 68 or 71. Therefore, for a round tube,

g_ - ! - 0.1. (136)

j
&V bogD 5, 0.24/bg/ 05

The range of jg is accordingly from 0.73 to 0.9. The above value is consistent
with various experimental observations.** ¢! For example, Wallis®® found j’g
to be 0.8-0.9, and Bennett et al.®! observed the increase in jg at higher pres-
sures that is predicted by Eq. 136.

The second mechanism of the churn-annular flow-regime transition,
which was first suggested by Dukler and Smith,%® seems to be more applicable
to a flow in a larger-diameter tube. In this case, the force balance on the
wave crest rather than the liquid motion in the film determines the transition.
Since the interfacial geometries are extremely rough at the churn-annular
flow-regime transition, the wave deformation or entrainment criterion for a
rough turbulent regime developed by Ishii and Grolmes® may be used. In
this case, the criterion is given by Eq. 99. However, for a nonviscous fluid
such as water and sodium, i.e., Nl—’»f < 1/15, Eq. 99 can be rewritten as

j -
K = & - g2

i Nys (137)
2
Pg

where the nondimensional gas flux K is the Kutateladze number® and Np‘f =

we/[pgo/o/ghp) /2. The value of K does not vary much for most nonviscous

fluids, being about 3. The second criterion is valid if the predicted gas flux
based on the Kutateladze number is smaller than the one based on the first

criterion. This occurs if the following condition is satisfied:

2
o -0.4 1-0.1c0>
> —
D \/Ap_g-Nuf /( . . (138)

For water at low pressure, this corresponds approximately to D > 6 cm.

The present model gives two different criteria for the churn-annular
flow-regime transition: one depending on the diameter of the tube and the
other depending only on the properties. This division is qualitatively consistent
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with the observation of Pushkina and Sorokin® on the breakdown of liquid
film, and of Wallis and Kuo® on the liquid downward penetration.

The transition between the annular and annular-mist flow can be given
by the onset of entrainment.’! Hence, for nonviscous fluid,

-1/3
. oghp 1/4 . 11.78Ref ; Ref = 1635,
ngl > — Np‘f X (139)
g 1; Reg > 1635,

where Reg = pfl(jf>lD/uf. Figure 23 compares the above criterion to the
experimental data.

In an adiabatic system, the transition from an annular flow to a droplet
flow is gradual. As the fraction of liquid entrained, Eq4, increases, the char-
acteristic of the flow changes from that of a separated flow to a dispersed
flow. This trend is clearly exhibited by the expression for the drift velocity
in the annular-mist-flow regime, Eq. 109. In other words, the whole annular-
mist flow can be considered as a transition regime. On the other hand, in the
diabatic system, the occurrence of the critical heat flux and subsequent drying
out of the wall introduces a sudden change in flow regimes. If this occurs,

Eq. 109 should be used with 100% entrainment or Eq = 1.

The recommended drift-velocity correlations for a vertical-boiling
flow system are given in Table IIL

100 T IIJIIH' T T!ll”l' T l!)‘f”q T T T TTTT] T P rTTT

T TTTT
Lt 13117

T

INCEPTION CRITERIA GIVEN 7

i lllLll

|

T

IlllTll

I U Y

T
1

DIMENSIONLESS GAS VELOCITY,

T

0';,_‘J.___1._L_Illlll { { N i { llJlllL 1 i L4 1 1 N
i 10 10 3

i0
4p,u,8
By

10

LIQUID REYNOLDS NUMBER, Re'=

Fig. 23. Comparison of Data for Onset of Entrainment according
to Inception Criteria, ANL Neg. No. 900-4572 Rev. 1.




TABLE II Drift Velocity for Vertical Boiling System

Flow Regime

Transition Criteria
(Applicable range)

Vapor-drift Velocity, Vg

Churn-turbulent

bLpgD (1
'ngs'/o (C—0-01>

g

and

l | < oglp ! 4N-o 2
Jg 3 uf
g

_ cghp 1/4
Vgy - (Co - 1KY +«/E<LZ> .
Pt

where

G = (120 -0 zvpg/pf)(l - e""(a))
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Annular
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Pg <Co ) bg‘ (02 uf
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For a dispersed two-phase flow system, the relative motion between
phases has been analyzed by considering the drag force, the gravitationalforce,
and the effect of the pressure gradient due to shear stresses, and using a
similarity hypothesis based on the Reynolds number and drag coefficient. The
effect of the multiparticle system is taken into account by using the mixture
The present model for the relative motion
between phases has been developed for general dispersed two-phase flows;
therefore its applicability is not limited to particulate flows, but it can also be
For solid-particle systems, it agrees with
experimental data at all Reynolds-number and particle-concentration ranges
Furthermore, the present theory can be reduced to the
existing theoretical model for a solid-particle system in the Stokes regime by

viscosity in the Reynolds number.

applied to bubbly and droplet flows.

of practical interest.

IX. CONCLUSIONS

considering the limiting case of small particles.
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On the other hand, for fluid-particle systems, considering bubbly
flows in a vertical channel, the present model can be essentially reduced to
conventional semiempirical correlations. Consequently, the relative motion
between phases in dispersed two-phase flows can be predicted by the unified
theory for both solid- and fluid-particle systems at all ranges of Reynolds
numbers.

For annular flow, the constitutive equation for the drift velocity was
developed by taking into account the effect of gravity, interfacial shear stress
with its dependence on interfacial roughness, and flow regimes in the liquid
film. The constitutive equation obtained in this report is cast into two dif-
ferent forms: one useful for analyzing steady-state flows and the other for
transient flows. The predicted vapor-drift velocity from this study was com-
pared to about 350 data points from various experiments. Although the data
used in the comparison included those taken in the drop-annular-flow regimes
with moderate entrainment, the theoretical predictions were within +30% of
the measured values. However, when the amount of liquid entrainment was
large, the present correlation overpredicted the vapor-drift velocity. How-
ever, this trend can easily be explained by a newly developed correlation for
an annular dispersed-flow regime that shows an almost linear decrease of
drift velocity in terms of entrained liquid mass.

The present constitutive equations for the drift velocity in various
two-phase-flow regimes have been obtained from the steady-state and adiabatic
formulations. The effects of heat transfer and phase changes on the drift ve-
locity were considered secondary. These effects appear only indirectly through
the local variables, such as the void fraction and the mixture velocity in the
drift constitutive equation. It is a common practice to apply constitutive re-~
lationships obtained under steady-state conditions to the transient problems,
with an assumption that the parameters entering into a constitutive relation-
ship are local variables and are functions of time. Therefore, the application
of the present constitutive equation for the drift velocity to the transient two-
phase flow with a phase change will be consistent with the common practice.

However, the basic assumption of the drift-flux model is that a strong
coupling exists between the motions of two phases. Therefore, certain two-
phase problems involving a sudden acceleration of one phase may not be
appropriately described by this model. In these cases, inertia terms of each
phase should be considered separately, that is, by use of a two-fluid model.
However, the real usefulness of the drift-flux model in many practical engi-
neering problems comes from the fact that even two-phase mixtures that are
weakly coupled locally are strongly coupled when considered as a total system.
This is because the relatively large axial extent of the systems usually gives
sufficient interaction times for the momentum exchange between two phases.

-

.\
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APPENDIX

Relative Motion in Single-particle System

A motion of the single solid particles, drops, or bubbles in an infinite
medium has been studied extensively in the past. (See, for example, Refs. 52-54.)
In what follows, we shall summarize these results in simple forms useful for
the development of the drift constitutive equation in multiparticle systems.

By denoting the relative velocity of a single particle in an infinite
medium by vre = vgq - Vg, we define the drag coefficient by CDo = -2Fp/
pcvrm|vrm|nré, where Fp is the drag force and r is the radius of a particle.
On the other hand, the sum of the pressure and body forces acting on the

particle is given by

Fp +Fg = 3mr3(o, - pg)e (A1)
which should be balanced by the drag force. Hence, Fp + Fg + Fp = 0. By
introducing the nondimensional parameters for the velocity fields and radius

given by v* = |v|(p(2:/uchp)”3 and rg = rd(pchp/ué)l/s, we can solve the force
balance for the radius as

r¥ = %CDO,,V;;. : (A.2)

The standard particle Reynolds number and the viscosity number are
defined by

- Zrdpc‘vrml -2 * *
NReoo - W - rdvroo
C

and & (A.3)

5 1/2
Ny “C/("C"x/gt\:p)

where N, measures the viscous force induced by a flow to the surface-tension
force.®® Extensive studies of the single-particle drag show that, in general,
the drag coefficient is a function of the Reynolds number. However, the exact
functional form depends on whether the particle is a solid particle, drop, or
bubble.

For a viscous regime, the function Cp, is given by

24

——— (1 + 0.1IN% 7). (A.4)
NReoo( Reoo)

Cpheo =
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For solid particles, the drag coefficient becomes essentially constant at approx-
imately Cp, = 0.45 for N, 2 1000. This Newton's regime holds up to .
NRew = 2 X 108, -

For fluid particles such as drops or bubbles, the flow regime is
characterized by the distortion of particle shapes and irregular motions. In
this distorted-particle regime, the experimental data show that the terminal
velocity is independent of particle size. From this it can be seen that the
drag coefficient Cp,, does not depend on the viscosity, but should be proportional
to the radius of the particle. Physically this indicates that the drag force is
governed by the distortion and swerving motion of the particle, and the change
of the particle shape is toward an increase in the effective cross section.
Therefore, Cp,, should be scaled by the mean radius of the particle rather
than the Reynolds number.* Then,

Cpe = 2ryVebp/o (or Cpe = 4Nﬁ/3r§) (A.5)

for N, = 36«/2(1 + 0. lN(I){';';)/N‘%{em. However, since the terminal velocity in
this regime can be uniquely related to physical properties, Eq. A.5 can be
rewritten in terms of the terminal velocity or the Reynolds number as

Nz )
Nu‘rd v <or CDoo = TNHNRew .

22
Do 3

c (A.6)

Note that the above expression is a special form based on the solution
of the balance between drag and gravity forces and it may not be used in more
general situations. As the size of bubbles further increases, the bubbles be-
come spherical-cap shaped and the drag coefficient reaches a constant value
of Cpy,, = 8/3. The transition from the distorted-bubble regime tothe spherical-
cap bubble regime occurs at around rd = Z/Na/3. For a liquid drop, the drag
coefficient can increase further according to Eq. A.5; however, eventually a
droplet becomes unstable and disintegrates into smaller drops. This limit
can be given by the well-known Weber-number criterion, and it corresponds
to rd < 3/N2/3 and Cpo S 4. The above results on the drag coefficient for single
particles of solid, liquid, and gas are summarized in Fig. 1.

By knowing the drag law, Cpy, = Cpe(NRew), we can calculate the
terminal velocity from Eq. A.2). In the viscous regime, the terminal velocity
can be approximated by
4.86
T

4/7
v}‘m ==

[(1 + 0.08r*3)

Y1) (A.7)

-

On the other hand, in Newton's regime for solid particles, the drag coefficient
is constant; therefore,


http://coefficientbecom.es

/
v, = 2.431':‘11 z, (A.8)

which holds for rj = 34.65.

For the distorted-fluid-particle regime, the terminal velocity reduces
to a constant value of

v, = VZ2/NL2, (A.9)

Hence, in this regime, the relative velocity is independent of the fluid-
particle size. Furthermore, for the spherical-cap bubble regime, the terminal
velocity becomes

— 1/2
V;‘m = rX (A.10)

These results are summarized in Fig. 2.
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