RIDOE/ER/フOOOY-273
 R1O-2230-74-293
 CONF-800724--62

departure from weinberg-salam model and grandunification *

N.G. Deshpande

University of Oregon, Eugene, OR. 97403

ABSTRACT

The spontaneous breaking of grandunified groups like SO(10) or $\mathrm{SU}(8) \mathrm{x} \mathrm{SU}(8)$ can lead to an extra $\mathrm{U}(1)$ group beyond Weinberg-Salan (W-S) $\mathrm{SU}(2) \times \mathrm{U}(1)$. Neutral current data is now shown to depend on two more parameters. We examine the data and put limits on the mass of the extra Z boson. Need for more experiments on parity violation effects in atoms is stressed.

INTRODUCTION

Is proton decay the only direct experimental test for grandunification? The answer in the context of the SU(5) model is unfortunately yes. This is not necessarily true in other models of grandunification. Several models permit low energy group $\operatorname{SU}(3){ }_{L} \times \operatorname{SU}(2){ }_{L}$ $\mathrm{xU}(1) \mathrm{xU}(1)$ with two Z -bosons. There should be a characteristic deviation from W-S model in the low energy data which can be saught for. Here we shall examine a class of models that have SU(4) x $\operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}}$ as a subgroup. Some models that have this subgroup are $\mathrm{SO}(10),{ }^{1} \mathrm{SU}(8)_{\mathrm{L}} \times \mathrm{XU}(8)_{\mathrm{R}^{2}}$ and $\mathrm{SU}(4)^{4}$ of Pati and Salam. ${ }^{3} \mathrm{By}$ suitable choice of Higgs bosons the low energy group could be (a) $\operatorname{SU}(3)_{C} \times \operatorname{SU}(2)_{\mathrm{L}} \times \operatorname{SU}(2)_{\mathrm{R}} \times \mathrm{U}(1)$, (b) $\mathrm{SU}(3)_{C} \times \operatorname{SU}(2) \mathrm{S}_{\mathrm{L}} \times\left(\mathrm{T}_{3}\right)_{\mathrm{R}} \times \mathrm{U}(1)$ or (c) $\mathrm{SU}(3){ }_{C} \stackrel{\rightharpoonup}{\mathrm{x}} \mathrm{SU}(2) \mathrm{K} \mathrm{x} U(1)$ of W-S. The possibility (a) has begen extensively studied in the literature, but recent determination of $x \equiv \sin ^{2} \theta_{W}$ at a value of $x=.23 \pm .02$ seems to rule this out. The value of x in possibility (a) is restricted to $1 / 4<\mathrm{x}<3 / 8$ and should be close to .28 . The possibility (b) has the same constraints as (c) i.e., $1 / 6<x<3 / 8$ and is consistent with data. The right-handed charged bosons, $\mathrm{R}_{\text {}}$ can be shown to be at least as the e lo 0.20 to 0.22 in asre group (b) is realized will be pursued in this talk.

Another way of generating additional $\mathrm{U}(1)$ group has recently been pointed out by Barr and Zee. ${ }^{6}$ A group $\operatorname{SU}(\mathbb{N})$ can break through Higgs in adjoint representation into several extra $\mathrm{U}(1)$ groups The case we consider is a special case of their general case of $\mathrm{SU}(\mathrm{N}) \rightarrow \mathrm{SU}(5) \times \mathrm{U}(1)$, with known quarks and lepton having appropriate quantum numbers under $U(1)$.

MODEL
The model we consider, ${ }^{7}$ based on $\mathrm{SU}(2) \times\left(T_{3}\right)_{\mathrm{B}} \times \mathrm{U}(1)$ can be considered in its own right. It is the only model other than $\mathrm{W}-\mathrm{S}$
*Invited talk presented at Xx International Conference in High Energy Physics at Madison, Wisconsin, July, 1980. Work supported by DOE under contract no. EY-76-5-06-2230, TA4, Mod. A008.
model which is free of anomalies and has natural flavor conservation. Right-handel neutrinos play a central role in the model, so if the neutrino oscillations are ever verified, this model could b an interesting alternative. The subgroup $\operatorname{SU}(2)$ is identical to $\mathrm{W}-\mathrm{S},\left(\mathrm{T}_{3}\right)_{\mathrm{R}}$ corresponds to the third component of the $\mathrm{SU}(2)_{\mathrm{R}}$ and $U(1)$ corresponds to (B-L)/2 where B is the baryon number, and L is the lepton number. The charge Q is given by $Q=T_{3 L}+T_{3 R}+$ $(\mathrm{B}-\mathrm{L}) / 2$. The neutral current sector is described by the Lagrangian (suppressing the Lcrentz index)

$$
\begin{equation*}
L_{\text {int }}=g_{L} L \cdot J_{L}+g_{R} R \cdot J_{R}+g_{B} B \cdot J_{B} \tag{1}
\end{equation*}
$$

From normalization of the currents, at grandunification scale we find $g_{L}=g_{R}$ and $g_{3}=(3 / 2)^{\frac{1}{2}} g_{R}$. The first relation changes at lower scale ${ }^{\mathrm{R}}$ because the couplings evolve differently, while the second relationshij between two $U(1)$ groups is true at all scales. By a change of basis we can rewrite Eq. (1) in the form

$$
\begin{equation*}
L_{\text {int }}=e A \cdot Q+g_{L}\left(\sec \theta_{W}\right) Z \cdot J_{Z}+g_{R} C \cdot\left(2 J_{R}-3 J_{B}\right)(10)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

where A is the photon, $\tan \theta_{W} \equiv(3 / 5)^{\frac{1}{2}}\left(g_{R} / g_{L}\right), e=g_{L} \sin \theta_{W}, J_{Z}$ is the neutral current $W-S$ model. Z and C are linear combinations of the original gauge fields L, R and B. The first two terms belong to $\mathrm{SU}(5)$ while the third is the extra $\mathrm{U}(1)$. We now consider the most general mass-mixing of $\mathrm{Z}-\mathrm{C}$ system

$$
M^{2}=\begin{array}{ll}
M_{Z}^{2} & M_{Z-C}^{2} \tag{3}\\
M_{Z-C}^{2} & M_{C}^{2}
\end{array}
$$

It is convenient to define three equivalent parameters $\rho=M_{W}^{2}+$ $/ M_{Z}^{2} \cos ^{2} \theta_{W}, \alpha^{2}=M_{7-C}^{4} / \operatorname{det}^{2}$ and $\beta=-\left(5 \sin \theta_{W} / \sqrt{6}\right)\left(M_{Z}^{2} / M_{Z-C}^{2}\right)$. We shall see that ρ and β take simple values when the Higgs structure is simple. The low energy Lagrangian now takes the form

$$
\begin{equation*}
\mathrm{L}_{\text {eff }}=-\left(8 \mathrm{G}_{\mathrm{F}} / \sqrt{2}\right) \quad\left\{\mathrm{J}_{\mathrm{Z}}^{2}+\alpha\left[\mathrm{J}_{\mathrm{Z}}+(\beta / 5)\left(2 \mathrm{~J}_{\mathrm{R}}-3 \mathrm{~J}_{\mathrm{B}}\right)\right]^{2}\right\} \tag{4}
\end{equation*}
$$

Low energy neutral current phenomena can be described by ten parameters. We adopt the standard definition where $u_{\text {L }}, R_{\text {and }} d_{\text {L }} R_{R}$
stand for left and right handed couplings of u and d unas to left-handed neutrinos. The neutrino-electron vector and axial couplings are described by g_{y} and g_{A} respectively. For parity violation electren-quark coupling we follow Bjorken convention which differs in sign from the convention used in Ref. 5 .

This book was prepared as an account of work sponsored by an ajency of the United States Government Neither the United States Government nor any zeency thereef, nor any of their employees, makes any warranty, express or implied, Ir assumes any legal liability or responsibity froces disclosed, or commercial product, process, or service by trade name, trademark, manutacturet, or otherwise, does not necessarily constiute or inply its endorsement, recommendation, or favoring by the United States Government of any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereot.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Neutrino-Scattering	Electron $=$ Scattering
$u_{L}=(1 / 2 x / 3) \rho_{1}-z$	$c_{V A}(\mathrm{e})=,(1 / 2-2 x) \rho_{2}{ }^{-z}$
$u_{R}=(-2 x / 3) \rho_{1}+z$	$\varepsilon_{V A}(e, d)=\varepsilon_{V A}(e, u)$
$\mathrm{d}_{\mathrm{L}}=(--/ 2+x / 3) \rho_{1}-\mathrm{z}$	$\varepsilon_{V A}(e, u)=(1 / 2-4 x / 3) \rho_{2}$
$\mathrm{d}_{\mathrm{R}}=(\mathrm{x} / 3) p-3 \mathrm{z}$	$\varepsilon_{A V}(\mathrm{e}, \mathrm{d})=(-1 / 2+2 x / 3)$
$g_{v}=(-1 / 2+2 x) \rho_{1}+4 z$	where $x=\sin ^{2} \theta_{W}$
$g_{A}=(-1 / 2) \rho_{1}+2 z$	$\rho_{2}=\rho\left[1+\alpha^{2}(1-2 \beta / 5]\right.$
where $x=\sin ^{2} \epsilon_{W}$	$z^{\prime}=2 p x^{2} \beta(1-2 \beta / 5) / 5$
$\rho_{1}=\rho\left[1+\alpha^{2}(1+3 \beta / 5)\right]$	
$z=\rho \alpha^{2} \beta(1+3 \beta / 5) / 10$	

sPECIAL CAjES

Case I. $\rho=1$ and $\beta=5 / 2$

This can be accomplished by choosing a doublet and a sinclet f Higgs, sector is the same as W-S. In the neu-rino sector we have twc parameters, α^{2} and x. From the malys is of Ref. 5, we have ${ }_{u_{L}}=.351 \pm .034, u_{R}=-.18 \mathrm{C} \pm .028, \mathrm{~d}=-.415 \pm .028,{ }^{d} \mathrm{R}_{\mathrm{R}}=$ - find

$$
\begin{aligned}
& x=.24 \pm .02 \\
& \alpha^{2}=.016 \pm .012
\end{aligned}
$$

The central value of α^{2} corresponds to $M_{Z_{1}}=.99=M_{W} \sec \theta_{W}$ and $M_{Z_{2}}=2.6 \mathrm{M}_{\mathrm{W}} \sec \theta_{\mathrm{W}}$. From $\alpha^{2}<.028$ we have $\mathrm{M}_{\mathrm{Z}_{2}}>1.6 \mathrm{M}_{\mathrm{W}} \sec \theta_{\mathrm{W}}$. Case II. $\rho=1, \beta=-5 / 3$

The Higgs here must satisfy the Georgi-Weinjerg condition, namely the doublet with large expectat-on value must be neutral

$$
\begin{aligned}
A^{e d} / Q^{2} & =-3 G_{F} /(10 \sqrt{2} \pi \alpha)\left\{(3 / 2-10 x / 3)+\delta^{2}(1 / 2-2 x)\right. \\
& +3 f(y)\left[(1 / 2-2 x)+\delta^{2}(7-12 x) / 10\right]
\end{aligned}
$$

where $\delta^{2}=\alpha^{2} \beta^{2}$. We note that for $x \approx .25$, y independent part is the same as W-S theory. Further y dependent part is small if find the (δ^{2}. 0 . or $Q_{W}=-49$ winch is model. shiariy parity viola-ion in Hydrogen will also be diferent fro he staidard model. krother test is the elastic scattering o Tectrors of 5^{2}. This value of j^{2} corresponds to $\mathrm{M}_{\mathrm{Z}_{1}}=.9 \mathrm{M}_{\mathrm{Z}}$ and $\mathrm{M}_{\mathrm{Z}_{2}}=1.78 \mathrm{M}_{\mathrm{Z}}$, where $M_{Z}=M_{W} \sec \theta_{W}$.

Fig. 1. The asymmetries in the SLAC e-d deep-inelastic scatering as a function of y. The predictions of WS model (dashed Ines) as well a: the predictions of our model for $\delta^{2}=0.4$ and various values of $\sin ^{2} \theta_{\mathrm{w}}$ are shown.

general case

Barr and Zee^{6} have observed that if the combination $\mathrm{R}=2 \mathrm{U}_{\mathrm{L}}-\mathrm{U}_{\mathrm{R}}+2 \mathrm{~d}_{\mathrm{L}}$ and $\mathrm{S}=\mathrm{U}_{\mathrm{L}}+2 \mathrm{U}_{\mathrm{R}}+\mathrm{d}_{\mathrm{L}}+5 \mathrm{~d}_{\mathrm{R}}$ are plotted on y and x axis respectively, W-S model is at the origin. All $\mathrm{SU}(5) \mathrm{xU}(1)$ models lie on straight lines through the origin. The model we have considered lies on the line $R=s / 3$. A general $\mathrm{SU}(\mathrm{N}) \rightarrow \mathrm{SU}(5) \mathrm{xU}(1)$ breaking will lie on $\mathrm{R}=2 \mathrm{~S}$. The data favors $\mathrm{R}=\mathrm{S} / 3$ to $\mathrm{W}-\mathrm{S}$ model, though the error have to be consilerably reduced for definitive conclusion (see Fig. 2).

$$
R=2 u_{L}+2 d_{L}-u_{R}
$$

Figure 2

REFERENCES

1. H. Fritzsch and P. Minkowski. Ann. of Physics. 93. 193 (1974) and Nuclear Phys. B103, 61 (1976).
2. N.G. Deshpande and P. Mannheim. Phys. Lett. (1980) and University of Oregon preprint OITS 143.
3. J. Pati and A. Salam. Phys. Rev. D10, 275 (1974).
4. R.N. Mohapatra and J.C. Pati. Phys. Rev. D11, 566, 2558 (1975) G. Senjanovic and R.N. Mohapatra. Phys. Rev. D12, 1502 (1975).
5. P. Langacker et al. Univ. of Pennsylvania preprint C00-3071-243, to be published in Neutrino-79.
6. S.M. Barr and A. Zee. Phys. Lett. 92B 297 (1980).
7. N.G. Deshpande and D. Iskandar. Nuclear Physics B167 223 (1980) and Phys. Lett 87B, 383 (1979).
8. M.S. Chanowitz, J. Ellis and M.K. Gaillard, Nuclear Physics B128, 506 (1977).
9. J.D. Bjorken. Phys. Rev. D18 3239 (1978).
