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Abstract 

The low-pT problem of hadron fragmentation is treated in the framework of 

quark model. The basic mechanism of hadronization of quarks is recombination, 

which is formulated here on a firm basis. Clustering of quarks in a hadron is 

discussed in detail. The quark and antiquark joint distribution is derived 

syslemalically with incorporation of Qcn iciP.as wherever possible. ;parameters 

describing the distribution are determined by fitting low-Q2 electroproduction 

data. No free parameters are therefore involved in the calculation of the 

pion inclusive distribution in the fragmentation region. The result agrees 

well with data in both shape and normalization. The formalism can be applied 

to calculate inclusive distributions of all nucleon and pion initiated 

reactions, while for kaon initiated reactions it can be used to extract 

from low-pT data the quark distributions in kaons. 
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I. AN OVERVIEW OF TIE PROBLEH 

Strong interactio>ns in the realo of hard ~rocesses, such as large-pT 

reactions and massive lepton-pair production, t.ave in re:ent yea:-s cc·me withir 

grasps of quantitative theoretical investigati:ns in the frame•ork of quantum 

chromodynamics (QCD). However, soft prc~esses such as low-pT r eacticns do not 

yet enjoy a similar s:atus , since tte long-distance behavior at low rto11entum 

transfer is closely enmeshed with tt.e confinemEnt proble-11 that is still un-

solved. Nevertheless, despite the lack 4f a reliable calculational pr~cedure, 

significant progress has been made during the past two years i~ discovering 

and understanding the connection between inclusive cross sections in t~e frag-

mentation region and che momentum distributions of q.uark; in hadrons. In this 

paper we build upon that connection a formulation of the low-pT problem at the 

constituent level. c:.early, we do r.ot y:t have a theory for rigorous :alcula-

tions from first principles. But we shall insofar as possible incorporate 

into the formulation cdeas derivable from QCD and find dynamical description 

of quantities that were introduced ~ith ;orne arbitrariness in earlier nodels. 

The quark model for inclusive reactions i~ the fra~entation re~ion that 

we refer to above is ~he recombination ~del. 1 It was Ochs
2 w~o first pointe~ 

ou: the similarity be:ween inclusive pio~ distribution for pp reactions and 

the structure function of proton in deep inelastic scatterin~, although the 

f k i h d 1 f Das and H·_,a3 
q~estion o how the q·Jar s turn n t c a r:ons was e t open. • 

showed that the fragmentation model :or ~adronization ~s phenomenologi:ally 

unacceptable, and sug~ested a specif~c r:combination mechanism that ca~ give 

good fits to the data. The preoccufati~ at that time was to denonstr~te 

that the idea of recombination is prenomenologically sensible both in ~ormal­

iza tion as well as in x dependence. To :hat end a simple formula was ?roposed3 

(1.1) 

3 

where F(x1 , x2) is the !wo-parton joint distribution for the incident hadron 

and R(x1 , x2 , x) i~ the recombi::lation function. On the basis of countin!( rule4 

it was suggested tt at Rtx1 , x2 , x) for a meson should have the form 

where a is an unknown normalizatcon constant of ' order unity . The two-parton 

d:i:stribution is more difficult te determine precisely. ' As a simple first 

trial the naive factoriz3ble foro was suggested 

(1. 3) 

where Fq and Fq ate the 1istibuti ons of a quark q and an antiquark q, and 

p(x1 , x2) is a ph<se-spaoe factor proportional to 1- x
1

- x
2 

for proton, but 

later extended to a more general form. 5 l'i h h i ' t t ese ngredients satisfactory 

agreement with data was ~chieved, 3 giving support to the importance of the 

recombination mechar:ism. Later, Duke and Taylor6 succeeded in obtaining 

detailed fits of v;rious i nclusive distributions, using (1.1) - (1.3). 

A major effort in tre subseq~ent development of the recombination model 

has focused on varicus improved f ·>rms of F(x
1

, x
2

) and their implications. In 

place of (1. 3) a Kuti-Weisskopf model 7 for F(x
1

, x
2

) has been suggested. B-10 

"~ile it succeeds en satisfying certain kinematical constraints, it remains a 

phase-space model with ~n=ertain dynamical content. The difficulty is, of 

course, the unsolvd boun:l-state problem of the hadrons. A way to circumvent 

that difficulty wh1l: still examiring the recombination model is to study 

Photon-initiated rea:tion,11 or qLark J'ets. 12 h - 1-!it in certain approximations 

the func:ion F(x1 , x2) fo-: photon and quark (or gluon) can be calculated in 

perturbacive QCD. Our problem at hand is to formulate a way of calculating 

F(x1 , x2) for hadroos by ~:ackling the bound-state problem on the one hand and 

incorporating ideas from lhe QCD calculat ions on the other. 

In the absence eof an adequate understanding of the confinement problem, 

/ 
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the wave function of the constituent quarks in a hadron mus·t to a large extent 

be phenomenological. Since that wave functic·n must influence the structure 

function measured at high Q2 , it should be possible to extract that information 

from recent data. In Ref. 13 toe have adopted the view that the partons in a 

nucleon fern three clusters, called valons. The momentum cistribution of the 

valons is determined from the Q2 
dependence of the structu1re functions. This 

will be discussed in Sec. II for both nucleons and mesons. The valon distri-

bution will turn out to play· a crucial role in determining not only F(x
1

, x
2
), 

but also the recombination function R(x
1

, x2 , x). Although we cannot at· this 

stage derive it from first principl~s, its concept is dynamically sound and 

its ~uantitative features are reliably determined from phenomenology based 

on QCD. 

In going from the valon distribution to the quark and antiquark joint 

distributicn are involved gluon bremsstrahlung and quark-Fair production. The 

cumulative effect of such conversion processes is ha~d to determine at low Q
2

. 

In order to arrive at a reasonable formulation of this prc·blem, it is useful 

to recall the parton model description of multiparti:le pToduction. Feynman 
. 14 

invented the parton model specifically for low-pT reactions. Scaling of in-

elusive cross sections was predicted as a consequence of seale invariant parton 

distributbn, which in turn was suggested by the structur·• functions deter-

mined at SLAC. 
2 ~ 

Although the Q value was as let< as 1 Ge\'-, the scaling phe-

nomenon "as already sufficiently evident to be called "precocious." In the 
., 

context of QCD where scaling violation is understood as Q! evolution due to 

gluon bre~sstrahlung, 15 precocious scaling is then equivalent to mature evolu­

tion. Inieed, if even at Q2 ~ 1 Gev2 the gluons carry nearly half the nucleon 

momentum, and the wee parton distribution is already sca:'.ing, gluon brems­

strahlung must be so highly effective for Q2 
< 1 Gev

2 
that by Q

2 ~ 1 Gev
2 

(what is •Jsually called low Q2) the major part of the evolution has already 

5 

taken place. It is important to recognize this·in order to start from Feynman's 

ideas about low-pT reactions and develop a more quantitative calculational 

scheme as we shall pursue in Sec .. V. 

Our aim will be to address the major issues in formulating the low-pT 

problem, without being involved in the detailed fits of various reactions. 

Our concern will be the general scheme rather than specific processes. Thus, 

for example, we shall not emphasize the flavor dependences of quark types or 

mesons produced, but the question of how both the normalization and shape of 

0-l x do/dx are to be determined will be examined carefully. The formulation 

lends itself in.a straightforward way to more elaborate treatments that account 

for all types of beam and detected particles. 

It should be pointed out that the approach taken here is very different 

from the ones adopted by the groups at Lund, 16 Orsay, 17 and Saclay.lS They 

emphasize quark fragmentation and borrow phenomenologi·:al description of the 

fragmentation .function from hard scattering processes without addressing the 

basic problem of hadronization, i.e. how the quarks turn into hadrons. 

There are a few parameters in our formulation, but they are completely 

fixed by the structure functions of the nucleon. Obviously, we need some phe­

nomenological input on the quark distribution, for example. However, after 

those parameters are determined, the f9rmalism fully specifies the low-pT 

problem. There are no free parameters to adjust. Inclusive cross sections of 

all reactions can be calculated. Our result for pion production fran proton 

agrees "ell with data in both shape and normalization. 

The organization of the paper is as follows. l~e first discuss the valons 

and their momentum distributions in Sec. II, followed by the determination of 

the recombination function in Sec. III. l·~e then outline the problem of calcu-

lating the quark decay function (Sec. IV), "'hich "ill serve as a guide to the 

main problem of hadron fragmentation discussed at len5th in Sec. V. Conclusion 

is given in the final section. 

'\. 



II. VALON DISTRIBUTIONS IN HADRONS 

Valence quark clusters·, called valona, 13 form a natural bridge· betwean 

constituent quarks in the bound-state pr~blem of the hadrons and tha partons 

as probed in deep ine:astic scatte~g. 13 Avalon is defined to be a ~ressed 

valence quark in QCD. That is, it is a ~alence quark together with. its cloud 

2 
of gluons and sea quarks which can ~ resolved by high 0 probes. ~t suffi-

ciently low Q2 the internal structun= of a valon can no longer be resolved, 

··but at the hadron mass sc~le it should ba possible to distinguish bdi~idual 

E 

valons in a hadron. A nucleon has tt.ree. valons and a oeson too, j u 3t like the: 

constituent quarks. :he momentum dLEtriJutions of the valona are i,de?endent 

of the q2 values of the probe. The stru:ture of a vslon itself is, ho·oJever, 

Q2 dependent. Assuming that a quark is ~asically point-like, at le•st for the 

distance scale that can be probed in the foreseeable future, the st·~ucture 

functions of a vaion are then completely· determined by gluon br~nss:ra~lung an3 

quark-pair creation in the framework of ~CD. Indeed, they are just tha "struc.­

ture functions" of a quark.
20 

For hadron fragmentation the valon 1istribution in a hadron is of primary 

importance. It describes the uncalcrlable wave function of the con;tituent 

quarks. Before discussing how it is. to ·,e used in a low-pT reaction, ·•e des­

cribe first how it is determined. Or. tha basis of the definition we h.•ve give~ 

' above, and assuming that in a deep inela;tic scattering the probing of the 

structure of one valon is not influer.ced by the interaction of that valon with 

other spectator valons (the usual iiDfulsa approximation), we can write 

}hex, Q
2

) = ~J: cyGv 1h(y):;"(x/y, OJ (2 .1) 

where Jh is the structure function :f nicfrori b ·(e:g. r 2 , xF3 , etc.:•, fv is 

the conesponding structure function .. of ·1alon v, and Gv/h is the di~trlbution 

of v in h. The sum is over various flavJr types of v. A pictorial re~resenta-

tion of (2.1) for one of the valons tei~ probed is shown in Fig. 1. 'fhe right-

hand side of (2.1) has ~n implicit dependenc~ on a variable Q._ that specifies 

the value of Q at ·•hich. the valcns are resolved as individual units acting .a~ 

constituent quarks but ·•ith no ciscernable internal structure. We postpone 

our discussion on this point until later. 

As we have indicated in Sec. I, we shall not in this paper be concerned 

with flavor depen·:ence of Gv/h' To distinguish flavor differences would 

require more accu·:s te d;;.ta than :.ile now have for phenomenological analysis. 

The theoretical p~cblem of accou~ting for the differences is easy, and a more 

complete analysis sball be carried out when the muon scattering data at high 

2 . 
Q become availab:e. Tbus, for now we consider only an average valon distri-

bution, ~hos~ norBalization is 

7 

(2.2) 

and which satisfi~s the momentum sum rule 

(h = nucleon) (2.3a) 

(h = pion) (2.3b) 

Because we do recot:aize ·:he different charges of u- and d-type valons (to be 

labelled U and D, respec>.ively), ~v does depend on v. 

where 

By the convol~tion lheorem, (2.1) implies the moment equation 
II: 2 . . v 2 

M (n, Q ) = ~ Mv/h(n)M (n, Q) 

Mh''(n, Q2) ~ J:dx 

Mv/h(n) = J>y n-1 
Y c.,/h (y) 

(2 .4) 

(2.5) 

(2.6) 

If we use M
3

(n, Q2: to ~enote the average of the moments· of xF
3

(x, Q2) for vN 

and vN scattering con is·JS::alar target, we can obtain 13 from (2.4) with ec = 0 
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(2.7) 

where ~~S is the non-singlet comp::>nent of the moment of quark distribution in 

·avalon. Eq. (2.7) is of the form of the solution to renormalization group 

equation, viE. a product of an uncalculable coefficient (Mv/~) and a function 

(~~ 5 ) calculatle in QCD especially at hlgh Q2. Since M3 is rteasured in recent 

An neutrino experiments, Mv/N can be deter:oined from (2.7) using QCD results. 

equation similar to (2. 7) can al•.o be d2rived for muon scattering. If flavor 

·independence ~s not assumed, simultaneous analysis of both v and~ data can 

then lead to a separation of the U- and D-valon distributions and theirmoments. 

Recall now our earlie:c rema7k that the r.h.s. of (2.1) has an implicit 

.}
v 2 dependence on ~· At ~· (z, q_;;> i• proportional tc· c5 (z - 1), signifying 

that a valon behaves as a :onstituent c.uark with no internal structure that 

can be resolved at ~· QCD sup?lemented by this boundary condition completely 

defines avalon. The'implicatian of the boundary condition ·on the moments is 

(2.8) 

At high q2 the solution of the re:10rmalization group ec.uation has the 

simple form 

(2.9) 

where in leading log approximation 

a(Q2) = 12n 
(33 - 2f)~nQ 2 /A 2 

(2 .10) 

f being the number ·of flavors, !\ the scale of strong interactions, and d~S the 

NS anomalous dimension 

NS 4. [ 
d n = 3)":2f 1 n(n + 1) + 4 ~ _jl)' 

j=2 

At lew q2, 1,2.10) is invalid; consequ:ntly, it cannot be applied for the evalu­

ati?n of :t(~) in (2. 9). Furthermore., (2. 9) itself becomes inaccurate and must 

NS 
be supplemented by other non-leading terms. It means that [~s·(n, q2) ]-l/dn, 

9 

though proportional to inQ2 at high Q2 , deviat.es from a straight line in a log 

2 '2 
plot at low Q and approaches one at Qv. This is illustrated in Fig. 2. 

Since the theoretical understanding of the low-Q2 behavior is incomplete at 

present, we shall circumvent the difficulty associated with it in the following 

way. First, we emphasize that the linear part of Fig. 2 is what we want to 

exploit in the fol101.:ing. 
2 

The boundary condition (2.8) .at~· however, cannot 

be applied unless we follow the non-linear curve at low Q2 . Now, if we stay 

on the linear line and extrapolate, we would arrive at a different val~e (Q2) 
0 

where the extrapolated moments are unity. Thus as far as the linear portion 

goes, we can just as well use the effective formula 

(2.ll) 

The role of Q
0 

here is essentially to parametrize the slope of the linear line· 

in Fig. 2 and should not be regarded as having anything to do with (2.10). It 

can be interpreted as an effective value of Q .where ~S(n~ Q2) = 1, provided 

that the moments are appr.oximated by the leading order result. Thus in that 

approximation the 'q2 evolution starts at Q2 • Because (2.10) is not used, 
0 

there is no reason ••hy Q
0 

cannot be very close to A. It can also be inter-

preted as giving a rough estimate of the effective size of a valon. It is 

important to recognize that Q
0 

is not an arbitrary parameter chosen to be 

large enough to justifv leading order calculation. It has a physical meaning, 

and its value can be determined phenomenologically. 

While ~~5 (n, Q2J is a theoretical quantity that cannot be measured di-

.. rectly, }!
3

(n, Q2) is the moment of experimentally determined structure function. 

Combining (2.7) and (2.11) we now have for large Q2 

(2 .12) 

where 

\ 
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(2.13• 

The linear dependence on inQ2 I 1\2 in (2 .12) has been ·1erified by neutrinc exper­

iments,21-23 and is regarded as a su=cessful test of QCD. The data of Refs. 2~ 

and 22, however, have apparent discr~en~ies wt.en the cuantity in (2.1~) is 

plotted against £nQ2 • They are due largely to "the o:se of different values of 

f in the evaluation of dNS. In Ref. 13 ve used the !EE-C-GGM data, 21 ar.d 
n 

obtained the following results (for :: = ::) : 

A= 0.74 GeV, Q
0 

= 0.82 GeV 

LOS !~ 2 
Gv/N(y) = 16/ (l - y) 

(2.14~ 

(2 .15) 

The. method used there depends cruc!a::.Ly en the ;~vai11ibility of the n = 2 moment, 

for which we know from (2.3) that Mv.':-1(2) = 1/3. Since the CDHS 'data
22

•
23 

do 

not provide M
3

(2, Q2), we use here a slight varlatioo of the method to extract 

Gv/N(y). Adopting f = 3 as being more reJ.evant, we plo: [H
3

(n, Q2)]-l/:l:s 

against 2nQ2 as. in Fig. 3, and obtain A2 
= 0.3 ~ev2 • ~e slopes, S(n), of the 

straight-line fits are then determined, as sho'Wll in 'Fig. ·4, To fit S(n), we 

assume that the valon distribution has the form 

in which the three par=eters are co!lf,tralned b!' (2, 2) .and (2, 3), i.e, 

g = [B(j, k)]-l, j = 't./2, 
0 

where B(j, k) is the beta function. Jhus the m-::-ments o:' (2.16) are 

(2.16) 

(2.17) 

(2.18) 

We can then fit S(n) by.(2.13) and (2-18), treating Q
0 

<nci k as free parameters. 

The results are shown in Fig. 4. The best fit Csolic line) is for 

k ~ 2.5, Q
0 

= 0.65 Gev, A = 0.55 Ge\ (2.19a: 

altliough a fit with k ~ 3 (dashed lin~) is also in gcod .agreement with t.he data; 

the parameters are 

11 

k = 3.0, Qc = 0.64 GeV, A = 0.55 GeV (2.19b) 

The difference be:·•een (2.14) ar.d (2.19) reflect the discrepencies between the 

data of Ref. 21 and 22. Nevertreless, if we regard the range of k from 2.5 to 

3.0 to be adequately ap~roximated by the value 3, then both sets of data yield 

the same valon discribu".ion, i.e. (2.15), which is not sensitive-to the absolute 

normalization of tile da£a. l-Ie t.ave therefore extracted a r'!ther essential 

feature of the dat~. II describes the wave function of the valons inside a 

nucleon. It summ3rizes the hadr~nic structure--the part that is not calculable 

by present method; in QCD. 

While (2.15) is obtained by detailed analyses of the deep inelastic scat-

tering data, the ::-esult can also be obtained by an alternative and more direct 

method, once the reality of the 7alon concept is accepted. The only experimen­

tal input needed ~s chat vw2 ~ (l - x) 3 as x ~ 1. Since k is the only para­

meter to be deternined in (2.16). we need only examine the large-x, hence 

large-y behavior of (2.1). The ::.nformation we need from QCD is the large z 

behavior of the v~l~n structure function ~v(z, Q2) at moderate Q2• We have 

already ~entioned t~at t,is function has the boundary condition that it is 

proporti-onal to oCz - 1) at ~· At higher Q2 gluon bremsstrahlung smooths out 

this singularity at z = Land turns ~v(z, Q2) into a gently-varying function 

of z, t~e shaFe of vhich depends on Q2. But for any Q2 not too close to ~2 · 
v 

the uni'lersal featu::-e is that J'' (z, Q2) is finite as z ~ 1. 
20 

property in (2.1) ~mplies at moderate q2 

Using this 

(2.21) 

Hence, the experi~ntal fact that the 1. h. s. behaves as (1.- x) 3 demands the 

" (1 - y)' behavior for the integra:rl as y ~ 1. The distribution in (2.15) then 

follows uniquely gh·en (~.16) and (2.17). At high enough Q2, Jv(z, q2) will 

'IN 2 vanish as z ~ 1; t~1e consequence Jn J' (x, Q ) is then that it will vanish 

r 
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faster than (1 - x) 3 by a correseonding increase in the expcnent completely 

determined by (2 .1). This is the expected result in QCD. l.t low or medium Q
2 

there is no Euch complication, and the general result from (2.21) is that for 

any hadron h we have 

k-1 . 
Gv/h(y) ~ (1- y) , as y ~ 1, (2.22) 

if and only ~f 

(2.23) 

Obviously, this method can be arplied to the meson case whe·re only the large x 

behav~or is :<nown. 

Consider now. the valon disr.ribution in a pion. The mo~entum sum rule 

(2. 3b) implies j = k, so it follot<s that 

1 k-1 
Gv/n(y) = B(k, k)(y(l- y)l (2.24) 

There are now reasonably good eJidence from massive lepton-pair production
24 

that the s:ructure function of a pion behaves very nearly ]ike (1- x) 1 , as 

x ~ 1. Froa, (2. 23) and (2. 24) it means k = 1 and 

(2.25) 

Similar consideration when applied to the K meson would give the same result 

if the structure function of a kaon behaves also as (1 - x/. However, we can 

do better than that. Since a yalon plays the role of a constituent quark., the 

strange ar,d nonstrange valons should have different masses, and therefore 

different m::nnenturn distributio11s. l.fe shall consider this ?roblem below after 

discussing the multi-valon dis~ributions. 

Since we know the p~ecise number of valons in a hadron, and since we do 

not distinguish valon ty;>es of the same mass, the mu~ti-valon distributions 

can be sim.ly obtained by symm:try consideration and sum rules. Consider 

first the r.ucleon case. l.fe write the three-valon distrib"tion in the general 

symmetric form 

13 

(2.26) 

Then the two-valon distribution is 

J:dy3 Gv/N(yl, Y2' y3) 

= aN(yly2(l - Y1 - y2)]K-l (2.27) 

and the single-valon distribution is 

(2.28) 

Comparing this with (2.15) yields 

K = 3/2, aN= 105/2rr (2.29) 

Note that.(2.27) specifies how the distribution vanishes as y
1 

+ y
2 

+ 1. It 

will play an important role in·a later section in determining the limiting 

behavior of the two-parton distribution F(x1 , x2J and in avoiding the assump­

tion of either the factorizable form (1.3) or the Kuti-Weisskopf model. 7 

In the pion case the two-valon distribution is 

Integration over y2 and comparison with (2.25) yield 

arr =•1, A= 1· 

(2.30) 

(2 .31) 

For kaons, we take into account the mass difference between light and heavy 

valons, identifying the former with· the non-strange constituent quarks, and 

the latter with the strange constituent quark. We write the two-valon dis-

tribution in a kaon as 

(2. 32) 

where y
1 

is the momentum fraction of the light valon and y
2 

that of the heavy 

one. The single-valon distributions· are then 

'• 



(2.33a) 

(2.3Jb) 

-1 
where aK ~ [B(a, b)] . The averag"' momentum fracG.:lons carried by t:1e l:.ght 

and heavy valons are, respectively, 

Yz = ~B(a, b + 1) = t/(a +b) 

If we regard the valoas as constituent c.uarks bounc non-relativistically in a 

bag, then their average momenta should t-e prop:>rticnal to their maEses, m1 and 

"'h· Thus we have 

(2. 35) 

With this constraint it should be po5sit le to :letemine a and b SeJ'ar<.te]y by 

fitting data on lepton-pair product~~n Jn kaoru initiated reactions ·using Drel:­

Yan model, 25 or by applying the recc:~~bir:ation model to low-pT inclcsive react:.ons 

involving K mesons.
26 

Similar consider~tion can be ap?lied to t.,e ;,yy·eron in determ£nir.g the 

effect of valon mass :lifference on t'1e 1n.omentum distribution. A~Oftir.g the form 

(2.3e.) 

for the three-valon distribution, whare -y
1 

and. y2 r~.fer to the t'.JO l.ight valotos, 

and y
3 

the heavy one, one =an show t~at 

[B(a, a+ b)B(a, b))~1 

and 

(2.3E) 

We have thus far dwelt exclusivaly on the. distribution funct:i=s Gv/h(y), 

etc., which are proba">ility function; defined in the. noninvariant phase space 

dy. The invariant di5tributions deflned in ths inV2riant phase space .dy/y ar~ 

i 
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(2.39a) 

(2.39b) 

(2.39c) 

etc. SometimeE it is more convenient to work with the F"rather than the G 

functi·:ms. One c~n resdily keep track of all the momentum factors in a con-

volution equaticn if all quantities are invariant F functions and integrals 

are p:rformed o"e·= the invariant phase space. 

III. RECOMBINA~O~ FU~CTION 

~en the r~ombination function was first introduced,
3 

there was some 

'Jncertainty about its rrecise form. For the formation of a meson, quark-anti-

·auark recombinatic·n wa,. consideo:ed dominant. The gluons would contribute to 

nultii=·arton rec=tinatoon processes, which were thought to be less important. 

On the. basis of ccuntit:.g rule the momentum dependence of the recombination 

function was sug~ested to be th~t given in (1.2). The normalization constant 

a was unspecified. .. The importa:-tt property of (1.2) is that it vanishes at 

x = C and 1, signifying short-=ange correlation. · Indeed, it has been shown
9 

i 

that (1.2) corresponds ~o a cor~elation length of two units in rapidity. Al-

though the phenonenological app~ication of (1.2) has been successful, the re-

combination funcG.ion has thus far remained as· an imprecisely defined quantity, 

<.nd it:s derivatic·n :adcs rigor. A better understanding of this function is 

crucial to a pro1=er formulation of the recombination model. 

The task is made simple by the development of the valon concept. Take 

the p~:-t for definiteness. The absolute square of the wave function 

<v
1 

(y
1

)·,
2

(y 2) Jn> d~scri">es not C·nly the probability of finding the two valons 

cf a pion at y
1 

a:n-1 y
2

, but alsc the probability of forming a pion from two 
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valons at those yi values. The amplitudes are related by complex conjugation. 

In a theory in which valon states are defined, this relationship is exact and 

defines recocbination. Thus the invariant recombination function is 

R'(yl. y2) = Fv/1T(yl' y2) 

The reason w·,_y we have no b am igaity here, as O?posed to the case in Ref. 

(3.1) 

3, is 

that the val•)n content of h d a a 70n is definite and known. Gluons are automat-

. ically taken into account i n th•t they dress up the quarks to form the valons. 

The question of how the partons in an incident hadron turn into valons of the 

pr·~duced particles remains to b: disc~:ssed, as we shall do in the next two.· 

sections. The issues are, howeJer, distinct. Here, we are concerned only with 

the probab::lity for recombinatbn, given the valon momenta. 

Eq. (3.~) axpresses the re:ombina.tion function when the pion momentum is 

normalized to one. If the pion momentum is a fraction x ol the initial hadron 

momentum, thn (2.30), (2.31), (2.39b) and (3.1) imply 

IT( xlx2 ("1 x ) 
R xl, x.2' x) = -2- c - + ..1.- 1 

X X X 
(3. 2) 

in agreement with (1.2). M orecver, t]e normalization is now completely fixed. 

Note that xl and x2 refer to tr.e mome:ttum fractions of the valons that recombine. 

The result ~s obtained without using the 4 counting rule, Y·•t it is in agreement 

with that obtained by using it, provided that quarks are r•placed by valons. 

In a similar way we can get the recombination f unctions for the other hadrons: 

Kaon: 
K 

R (x
1

, x 2 , x) = 

a b 

[B(a, b)]-lr-xl) en {,; +; _ lJ (3. 3) 

~ 
x) = 105r-lx2x3) .s[xl + x2 + ":3._ ) 

211 X3 X X X 1 
(3.4) Nucleon: 

Hyperon: 

• a b rXl X2 X l 
x2, x • x) ~ (<lxz!x') (x3/x) .S -;- +-;- + -f- 1 

3 B(a, a + b)B(a, b) (3.5) 
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IV. QUARK DECAY FUNCTION 

Before we consider t~e problem of hadron fragmentation, we discuss first 

quark fragmentation as a~ introduction to the subject. The decay function for 

quark fragmentation can :e calculated exactly in QCD and recombination model 

without using any pheno~c:tological input, and the result gives a good no-para­

meter fit to the data. 12 The decay function D(x, Q
2

) is related to the qq 

distribution and recombination function in just the same ~ay as in (1.1): 

2 f 2 dxl dx2 
xD(x, Q) ~ F(x1 ,.x2, Q )R(x1 , x 2, x) ~ ~ 

(4 .1) 

except that now the F function depends also on Q
2

, which in the case of a 

quark jet from e+e- annihilation, for example, is the square of the c.m. energy. 

When Q is large, F(x
1

, x
2

, Q ) can be calculated in QCD. Hadron fragmentation 2 2 

is difficult to treat precisely because F(x1 , x2) in (1.1) has no lar5e Q
2

, so 

perturbative method in QCD is not applicable. Nevertheless, the similarity 

between (1.1) and (4.1) provides us with the opportunity to use quark fragmen-

tation as a more tractable example co elucidate the ideas involved in our cal-

culation of hadron fragmentation in the following section. 

A pictorial depiction of (4.1) is shown in Fig. 5. The cross-hatched 

blobs represent evolution functions which describe the degradation of Q
2 

as 

the quark created at the virtual photon vertex emits gluons and quark pairs. 

F(x
1

, x
2 

.• Q2) is the q~ distribution represented by the part in the figure 

from the initial quark at Q2 to the q and q at the position of ~he vertical 

dotted line. Evidently, one bifurcation vertex must b~ considered·explicitly, 

at which the momentum fractions and virtual masses of the quarks and gluons 

involved are to be integrated and the parton types (quark, antiquark, and 

gluons) to be summed. The evolution functions are kno·NO from renormalization 

group analysis. On the other side of the dotted line in Fig. 5 is the 

\ 
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recombination function. At the dotted l£ne the Q2 value associ•tei with the q 

and q is Q!. It may appear inconsist-~nt ·to ~egard them on the one hand. as 

quark and antiquark resulting from se·~uer:tial bifurc3tions in F(x1 , x2 , Q
2
), 

but on the other hand •s valons in co:mec.tion with hadronization throug;, R(x 1 , 

x), the lab~l Q2 b•ing implicit in beth these functions. This duality is 
x2' o 

actually an essential ?roperty of the val..ons since ttey play the role of 

bridging the hard and ;oft processes. What is involved is exactly analJgo'JS 

to the case of structu~e functions fc-:: which the valc-n concept vas first 

introduced, the only dlfference being the direction ~f Q
2 

change, Recall (2.1) 

and Fig. 1. In the two fac ~ors in tb• ir>tej~rand, or for· the tw•> blobs Ln Fig· 

1, the valon plays dua.L roles. In G , (y) the -~alon is the valence qua~k 
'J,h 

cluster, and at Q
0 

its internal struc".ure cannot be iiscerned. The COU:Iter-

pari: of Gv/h(y) in (4.L) is R(x
1

, x
2

, x),. the precise connection having been 

established by (3.1). For the factor ~(z, Q2) in (2.1) describing th• struc-

ture function of a valon, the mathematicaU. treatment regards the valon Lnitiall1 

as a point quark at Q
0 

with momentum distributi•Jn 6 (z - 1), and tracks :he 

modification of the -distribution as a rerult of gluo:1 bremsstrahlung un:il a 

quark in the cluster is struck by a "~rtual photon at Q
2

• This is done in QCD 

wit:t the initial and final quarks treatedi as point q·~arks. Loosely, on~ may 

refer to the distribution as quark struct:.Jre functio:~, 20 
'>ut physically it is 

the valon structure function. The CC\!ntecpart of .J.:J(z, Q
2

) in (L.l) is F(x1 , 

Evidently, the processes rerresanted by Fi~s. 1 and 5 are ano~ogous; 

in the former, Q2 increases from left to right, while in the latte::, it d'ecreas·~s · 

The parallel between (2 .1) and (L.l) provides be excuse _for the use of 

leading-order calculation of F(x
1

, x
2

, Q:l) in pertur'Jative QCD for Q
2 

degrada-

i 11 h d 1: Q
2 That is because Q its-~lf is determined in the t on a t e way own o o' 0 • 

same approximation. Recall that it is wi!:h the leadlng o::der result f·or 

jfv(x/y, Q2) substituted into (2.1) that the vN data is fitted. Thus ia both 
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the structure fun~tion _lh(x, Q2) and decay function xD(x, Q2). the leading-

order approximatic•n (and the asscciated choice of Q
0

) is the common vehicle 

that is convenient in re_ating valons to hard-collision processes. An improve-

ment of ~he approxication does not change the parallelism in those relationships 

for the two functions, nor is it likely to lead to a significantly different 

result for D(x, Q2) if t~e structure function is regarded as the source of 

phenomenological in~·ut or the degree of evolution. 

A final remark about the cal:ulation of D(x, Q2) is that it m~~t account 

for the momenta carried ty the gluons because hadronization is complete, i.e. 

all partons get co~erted into hadrons in the end. 2 -If F(x
1

, x
2

, Q ) is the qq 

inclusive distribucion in a quark jet which has_ momentum leakage into the gluons, 

its use in (4.1) would n~ lead to the correct normalization for D(x, Q2). 

Thus it is necessary to L<clude in F(x
1

, x2, Q2) the q and q converted from 

gluons. In that way the ~ecombin<tion model can fully account for the hadron-

ization of all the parton; in the quark jet. 

~11 the consice"atio~s about ·quark fragmentation discussed in this sect~on 

have their counter~rts im hadron fragmentation to which we now turn. 

V. HADRON FRAGMENTATION 

The problem of hadror. fragmentation is difficult to treat because, unlike 

hard-collis.ion processes, it has n.J large Q2 scale. Hadron-hadron collisions 

at high energies ar: domicantly soit processes since reaction rates drop pre-

cipitously with increasing pT .. Thus they do not reflect the short distance 

behavior of t·he interacticn, · and one cannot use the usual impulse approximation 

valid for large Q2 reactions. However, there is one feature about multiparticle 

production that saves us f"rom hope::.ess complications. It is the short-range 

correlation of the produced particles. On the basis of that one may first of 
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all be justified to ignore the target hadron when studying tl".e fragmentation 

region of the projectile. Furthermore, at the parton level the interaction 

between partcns must also be short-ranged. The recombination model relies on 

the short-range character of the interaction to describe the hadronization 

process which is approximately local in rapidity (6y "' 2) so that _what goes on 

in the fragr.entation region may be dissociated from that. in the central region. 

These properties form the basis for (1.1), which has a~ appe3rance that follows 

from impulse 3pproximation. 

What is involved in hadron fragmentation is a multistag~ process: 

initial hadron~ valons ~ partons ~ valons ~ produced hadrons (5.1) 

Stage (1) has been discussed in Sec. II and is represented by the valon distri-

bution Gv/h"· Stage (4) is known from Sec. III and .is described by the recom­

bination function R. Stages (2) and (3) are our concerns here; together with 

(1) they specify F(x1 , x
2

) which is the major unknown in (1.1). 

A. Stage (2: 

cf we were able to peek at the parton state without di?turbing the system, 

we would pre;umably discover quark and antiquark distributi•>ns which are very 

close to the ones determined by electroproduction at low q2• lie do not know 

how l:>w the value of Q2 .must be in order to be relevant to 1the low-pT problem. 

In the precusory model for F(x
1

, x
2

) which denoted two-parton distribution 

since the ·.•alon concept was not yet introduced, the form (1.3) was adopted, 3 

where Fq(x
1

) and Fq(x 2) were assumed to be the quark and a~tiquark distributions 

determined toy Field and Feynman27 in fitting the SLAC data on nucleon structure 

functions. The Q2 range was 1 - 5 G_ev 2 . Although one may question whether 

2 2 2 
such "high" values of Q are relevant for low-pT reactions where PT « l(GeV /c), 

the result of the calculation-lends support to their relevance. Presumably, 

precocious ,;caling implies that the precise value of Q2 is unimportant and that 

even at Q2 in the vicinity of·3 GeV 2 the parton distributions have already run 
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through the major course of their Q2 changes (i.e. mature evolution). Indeed, 

as we shall see below, the parameter that characterizes the evolution from 

valons to partons in stage (2) turns out to be quite large. 

The strategy of our approach to the problem is as follows. l~e first admit 

that we have_no way to calculate the parton distributions from first principles. 

Some free parameters must per force be introduced; they are, however, not to be 

determined by the hadronic inclusive cross section for which we want to obtain 

a no-parameter fit, but by vt~ 2 (x) at low Q2 • \,'hat we achieve as an improveinent 

over (1.3) is that the valon distribution in stage (1) properly introduces the 

hadron wave function and automatically takes care of the ?hase space problem, 

which was handled in an ad hoc manner bv_ the f t ( ) i (1 3) ac or p x
1

, x
2 

n . , The 

evolution in stage (2) from the valons to the partons will be parameterized by 

formulae reminiscent of QCD. Although they cannot be taken seriously, the 

.largeness of the evolution parameter renders the procedure not totally nonsensical. 

For definiteness we shall consider hereafter the fragmentation of proton 

only and the detection of n+ in particular. Thus a valence u quark in the 

proton ends up .in then+. Let ~(x 1 , x
2

) be the invariant inclusive distribution 

of u and d carrying momentum fractions x
1 

and x
2 

of the proton, respectively. 

It is obtained by a convolution of the distribu-tions in stages (1) and (2). 

Since the u and d quarks may either both come from the same valon or come sepa-

rately from two different valons, ~(x1 , x
2

) has t<JO components 

(5.2) 

which are illustrated by the diagrams in Fig. 6. Let K(z) denote the invariant 

distribution of finding a quark with momentum fraction z in a valon of the same 

flavor. (As in all distributions considered in this paper, color and spin com-

ponents are averaged over in the initial state and summed in the final state so 

that we are not concerned explicitly·with such degrees of freedom.) Let L(z) 

be the same for any antiquark or a quark with flavor different from that of the 

·. 

\ 



22 

parent valon. Since a proton has two U valons and one D valon, we have 

2 fdy(U/N(;)K[xyl) L [:r :2 xJ 

(5. 3) 

(5.4) 

In our approximation in Sec. II, the valon distz:ibuticns are assumed to be 

flav-~r independent due r.o the lack of high Q2 data frcm ••hich to extract the 

flav~r dependence. Thus for brevity we shall s~~press the subscripts of the G 

functions in (5.3) and :5.4), and in <-•>mputatior: belo•· use (2.28) and. (2.27) 

for them; respectively. 

Eq. {5. 3) is not p::-ecisely a convolution ec;uatior.. The distributicn of ud 

in a valon is analogous to that in a c_uark jet, for wt.ich a precise expression 

in perturbative QCD is .~iven in Ref. :.~. :But at low C 2 such an express1·on for 

a valol). jet is unreliable. Since the ·:unctions :K and_ L ·will be determir.ed 

phenomenologically anyw3y, an approxinate expressio"' such as the one in (5.3) 

that captures the essen~e of quark jet.; is totally adtoquate. ·Note that (5.3),, 

(5.4) and (2.28) make p~ssible the fo:Lowing relati-~n to be satisfied 

(5 .5) 

where ~(x1 ) is the u quark distributio:\ ir. a procon, vhich we denote mote ex-

plicitly as ~u' 

(5.6) 

Similarly, the integral of (5.4) over x
1 

~s'prororticaal to the d antiquark 

.· 
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distribution 

(5. 7) 

although the inte~r31 of- (5.3) is not. We have, however, not missed the mark 

by very much, and t:le sitlplicity of (5.3) justifies its usage in the following. 

Eqs. (5.2) - (5.4) ?rovi3e a basic improvement over (1.3). In our view they 

constitute a physfcally 11ore correct expression of the two-parton distribution 

than the Kuti-l<eissl:opf :~odel. 7 

The functions E(z) ~nd L(z) are to be determined by ensuring that they 

lead to the correct ~u amd ~d distributions at low Q2 . More precisely, we cal­

culate the observS:.le quantities v1~2 (x) and the sea quark distribution xS(x) 

which can be deter:uineci :'rom leptoproduction data: 

vt~2 (x) = f d~2GU/p (y){%[K[~) + L[~) J. + t£4L[~)]} 

+ Jd;GD/p(y){~[2L[~)J +i[K[~) + 3L(~)Jl 

I d)G(y) [K(~] + 3L(~) l 

xS(x) = Jdy[2G'J/p(y)L(~) + GD/p(y)L(~)] 

3JdyG(y)L(~) 

(5.8) 

(5.9) 

K(z) and L(z) are favored and unfavored distributions 20 which can he· expressed 

in terms of the singlet (KS) and nonsinglet (~S) components 

K; [Ks + (2.::- 1)~5 ]/2£ = ~s + L 

L = (K5 - ~sl/2f 

Hence, we·can rewrite (5.9) as 

(5.10) 

(5.11) 

(5.12) 

/ 
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Now, we specify the ?arame<rizat~on of the uncalculable functions ~S(z) 

and L(z) so. ·that they can be determined phenomenologically. For ~S (z) we 

assume on the basis of precocio~s sca~ing that its moments, ~5 (n), defined as 

in (2.5), have a form that can be mimicked by the solution of the renormaliza-

tion group equation, i.e. 

NS 
K~5 (n) = exp(-dn ~) (5.13) 

wbere ~ is a free parameter to ·be adj:Jsted to fit vl~2 (x) · 

imation were sensible, then ~ •·ould be identified as 

If leading log approx-

(5.14) 

But we have no large Q2 in the problem. For the present Lt is more proper to 

regard (5.13) merely as a one-parameter formula for the nonsinglet moments. 

L(z) there is no simple formula that can mimick the Q
2 

evclution in QCD; we 

adopt the canonical form 

For 

L(z) = a(l - z)c (5.15) 

where a and c are to be adjusted to cit v11 2 (x) and S(x). The only unknowns in 

the proble~ [viz. K(z) and L(z)) are now reduced to three parameters, ~. a, and 

c, which are to be determined outside the realm of the hadron fragmentation problem. 

1 · f I' ( ) e choose lov Q2 data for proton For the empirica express1ons o v. 2 x w 

and find im Ref. 28 a paramett·izatioo of the early but classic data taken at SLAG. 

(1- x) 3[1.274 + Q.5989(1- x) - 1.675(1- x)
2
J (5.16) 

::or the se .. quark distribution at lev Q
2 

we use 

xS(x) = 0.17(1- x) 9 (5.17) 

27 the exponent where the normalization is th3t suggested by Field and Feynman; 

· 1 t d by ·aerger29 in fitting is in the range adopted by them and 1s a so sugges e 

dimuon prcduction data. 

Instead of inverting the momen:s in ·(5.13) in ·nder to fit (5.16) and (5.17) • 
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it is more convenient to work directly with moments. From (5.9), (5.12), (5.13) 

and (5.15) we have for the moments 

NS 
<vW 2>(n) = Mv/N(n)[exp(-d~ ~) + 4aB(n- 1, c + 1)) (5 .18) 

<xS>(n) = 3aMv/K(n)B(n - 1, c + 1) (5.19) 

The empirical values for these moments can be trivially obtained from (5.16) and 

(5.17) and are plotted as dots in Fig. 7. They can be well fitted by (5.18) and 

(5.19) with the choice 

~ = 2.0, a = 0.08, c = 3.5 (5.20) 

as evidenced by the curves in Fig. 7. With these parameters fixed, we have com-

pletely determined the ud distribution. ¢(x
1

, x2) throug·n (5.2) - (5.4). 

We note that the value~= 2 determined.phenomenologically above turns out 

to be quite reasonable, if we use (5.14) to find the corresponding value of Q2 . 

For Q
0 

and A given in (2.14) [derived from BEBC data 21 J and (2.19b) [from CDHS 

data22 •23 ], we obtain Q = 1.58 GeV and·l.69 GeV, respectively •. These are just 

the values relevant to the data. Admittedly, (5.13) an~ (5.14) cannot be taken 

seriously for these low Q2 values. But the largeness of ~ (for a log log func-

tion) may render their application meaningful. It means that evolution has 

been substantial, a circumstance which we have already anticipated on the basis 

of precocious scaling and large momentum fraction for the gluons. The place in 

our simple formalism (in the sense of leading order QCD) where.such physical 

features at low Q2 are stored is the closeness of Q
0 

to A. As we have mentioned 

previously, Q
0 

is an effective value of the evolutionary start point determined 

from high Q2 neutrino scattering data, which obviously must contain information 

consistent with low Q2 behavior. 

B. Stage (3) 

lfuat we have ~btained for <l>(x
1

, x2) is ·the inclusive distribution of u and 

d in proton. If they are to form a pion by recombination, the outstanding 

.. 

\ 
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question is about the ::ole .,f the glLons. Obviously, the gluons should' be 

accounted for in some ·•ay, lest 'the ruomertum they carry would be lost from the 

final hadronic spectrtD>. In stages •)) and (4) of (~.1) we are C•)ncerned witt 

the hadronization of all partons (inc_Luding glu::ms), not just u and d quarks, 

whose distribution we h~ve just spec:.::' iec. Gluons can hadronize eit:he~ by 

being a ?artner of rec,mbination with. q end q, 'r :c.a create qq pai~s ~o·hich 

then hadronize subsequently in appropriale comlxinations. The formec pc·ssibility 

implies ;nulti-body recombination whie:t i!· not likely to be impcrtant e>.cept per­

haps in the limit x -+ 1; it is totally ie.nored :in Re:. 3 as well as in other 

subs!!quent investigations. To descrlbe :.i: in the va.Lon picture is c.lso diffi­

cult. For the recombination of u an-~ d '(Uarks only Lt is easy; "-e simply 

identify them as U and ii valons, whi::Jh a::e in the pr-,per representatioll for 

hadronization. This :identification ::rf q .. arks ~o·ith "'-•lons is not a l>rutally 

executed approximatior., but is a feature of valons ::;fleeting its d~al proper­

ties discussed in Sec. IV. Physically, Lt mea~s that the u and d quarks in 

tine develop their ovr, clusters and turn. th~se.lves into valons. Mathematically, 

the duality can be discussed more p~cis;ly in the ~se when there is a large 

Q2, as in Sec. IV; here we simply boo:ro'W' that motio:> wit'nout any al-:eration. 

We are left then with the probLem IX hadr•nization ,,f gluons t'·.ro·Jgh qq 

pair creation. This J>roblem is treated =!Uanti-:at:Cvely f'r a quark jet at high 

Q2 beca~:se calculational method is available. I.~ At. low Q2 we :,ave :to indepen­

de:tt guidepost for the gluon distritaticn. Al:hougt one can make a roJgh esti­

mate for it, it is no: very useful H the conv~rsioc. from gluons to- q·q_ pairs 

is not known. At this point we recc.!l that Duote aoc. Taylor6 succee:led in pro-

ducing a remarkably g->od fit cif all -:he meson Lnclu•ive cross sections in the 

recombination model by using an enha,cec sea 'lol'1ich saturates the mooentum sum 

rule. That is, the q~ sea quarks in their fit. carl'! all the mom~tum of the 

incident proton after subtracting ofi' tl:.e momentum fraction of the varence 

,. 
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quarks, with none left over for c.he gluons. We regard that result as being a 

satisfactory guide •to the formulation of an effective way of accounting for 

gluon hadronization. The gluons are first to be completely converted into qq 

pairs in such -a way that: the quiescent sea (as probed in electroproduction) is 

enhanced in norma:i:zatic:n to the maximum extent with no essential change in 

its distribution. The valence quarks and these sea quarks are then to be·re-

garded as valons, ~ich recombine. 

To carry out this procedure we first calculate the average momentum frac-

tion carried by the •1alence quarks. It is 

Jdxx[2u(x:0 + d(x)) = 3fdxdyG(y)~s[~J 

(5.21) 

The balance in mooen.:um fraction is carried by the enhanced sea 

0.55 (5.22) 

where 

!:_(:) = ~(1 - z)c (5.23) 

With c ·= 3.5 according to (5.20j. ~is found to be 0.41. Thus the enhancement 

factor is about 5 

The complete ud distribution to be identified as valons at the end of stage 

(3) in (5.1) can new be determined. Denoting it by F(x
1

, x
2
), we equate it to 

<l>(x1 , x 2 ) in (5.2:• with :the condition that L(z) in (5.3), (5.4) and (5.10) be 

replaced by l(z) ~n (5.23). Tha-: is, in the abbreviated notation of G(y) and 

G(y1 , y2 ) which are fla~r independent, we have 

F (l) (x 
!' 

F(x
1

• x
2

) = F~1\x1 , x
2

) + F(2)(x
1

, x
2

) 

3L[xl}]L[~} 
- y) ... y - xlJ 

(5. 24) 

(5.25) 
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(5.26) 

The parameters that govern ~S ~nd ~.through (5.13) and (5.23) have all been 

fixed; they are collected here as follows 

(; = 2 0 a. = o. 41, c = 3 0 5 

C. Inclusiva distributio~ for ~e ~ rr+X 

(5.27) 

Since the two factors in (~.1) are now completely fixed, it is onry a 

ma-tter of computation to determd.ne the inclusive cross section of the detected 

pion. To simplify the calculation which could involve quadTuple integrals, it 

iE best to "ork with moments. Deno.ting (x/a) (da/dx) by H(x), we define 

f
l N-2 

HCN) = H(x)x dx 
o) 

From (1.1) ~nd (3.2) we then obtain 

N-1 . -1 
H(N) = E [(m+n-J)B(m-1, n-1)] F(m, n)om~,N+l 

m=2 

flr N 2 3, ~here 

f

l fl m-2 n-2 
F(m, n) = 0·3xl 

0
dx 2 x1 x 2 F(x1, x 2) 

=·F(l) (m, n) + F(2) (m, n) 

(5.28) 

(5.29) 

(50 30) 

]f we abbreviate the quantity inside the square brackets i~ (5.25) and (5,26). 

ty J(z), then we have 

F (l) (m, n) G(l) (m + n- l)J(m, n)l;,(n: (50 31) 

where 
·1 
I dy YN-lG(y) = 105B(N + l 3) 
'0 16 2' 

(50 32) 

r1 2 1 J(m, n) = , dz zm- (1- z)n- J(z) 
-'o 

(50 33) 

L(n) = f
1

dz zn- 2L(z) = 0.41B(n- 1, 4,5) 
""" 0 .,..., 

(5 .34) 

It is shown in Appendix A that 

n-1 k 
J(m, n) = 2E (-l) [B(k·+ 1, n- k)]- 1~5 (m + k) 

k=O n 

+ 1.23B(m- 1, n + 3.5) 

For the moments of F( 2) we have 

where 

= 
1
i;s(m + t• n + 2)B(n + t· t> 

29 

(5.35) 

(5 .36) 

(5.37) 

Using ~ = 2 in (5.13) all the terms above can be evaluated, so we can determine 

H(N) unambiguously and without approximation. The result is presented as dots 

in Fig. 8. It is of interest to exhibit also the separate contributions of the 

two components, F(l) and F( 2l. Denoted as H(l)(N) and H( 2)(N), they are shown 

in Fig. 8 as dotted. and dash-dot lines, respectively. Evidently, the contri-

bution from two valons is about three times as important as that from a 

single valon. 

To invert the moments, we approximate H(N) by a sum of two beta functions 

A(N) = 0.6B(~, 5) + 0.85B(N - 1, 6) (5.38) 

which is shown by the solid line in Fig. 8. It translates immediately to 

A(x) = 0.6x(l - x) 4 + 0.85(1 - x)
5 (50 39) 

This is the. theoretical predication for (x/aT)da/dx in our model without any 

free parameters. Using aT= 38.7mb we plot the corresponding inclusive cross 

section in Fig. 9 (solid line). For a comparison with experiment we show in 

the same figure data on pp -+ n +X at 100 and 17 5 Ge\". 30 . The large error bars are 

due to the fact that the data on Ed 3a/dp 3 must be integrated over pT for which 

the measured range is not extensive. Although fixed-pT data are abundant and 

.. 
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of high statistics,
31

-
33 

we nead the lntegrated (ove" pT) data in orde~ to chec~ 

the normalization as well as the shap~ of our p·redic~ior,. The same dao;o ar.d 

theoretical result are plotted in lin-~r scale in Fig. 10. The agree:nent. Js 

evidently very good over the whole x ·:--anga. Nevertheless, the precictic·n. 1s 

somewhat low in the high x region. I~ can prob~bly b~ improved if a ~ota 

accurate flavor-dependent valon distrlbut:on is used But more likely, t~e 

·value of the evolution pararr.eter ' tha~ has been used is slightly to~ hJg' to 

describe low-pT reactions. It is obvlous that ~he da:a can tie almost: perfectly 

fitted py an appropriate lo..:ering of .~.. Howeve::, we -:esist the te:rptatio' to 

exhibit a superb fit by adjusting ~. We prefer to.en?hasize the formaljsD 

in this paper and underline the closeness of our no-parameter predictlor. :c the 

data, the only input bei.ng electroproduct!on data. 

VI. CONCLUSION 

We have formulated a way of stud:ing low-p_ reactions. Altho~gh soma 

details may be improved, the ideas contair.ed in ~he t!"eatment probabb r-e.:Lect 

quite accurately the basic mechanism of hadron f~ag~emtatfon. It is .• !JU-'Tt-

titative description of what has for :,ng been •aguel: su.posed for p~oduction 

processes in the quark ·nodel. The basic steps nust 1mvolve the trans :tions 

f:rom an incident hadron. to partons and then back to r.adrons. The '~ey eLenent 

in. our formulation that gets rid of aoit~ary cc-nstarts while incorpo·~ating 

proper dynamics is the intr~uction of the valor. rep~esentation. Had7cni~ ~ave 

function in terms of ~he valon coordbnes is kr.own from structure fu::.ctic>n 

analysis. That takes care of the two ends of tte prcc.uction chain. -:'te ~rans-

mutation irom valons to par tons is minicked by l"ormulas-.with QCD .orig .n, 11h=re 

precise parametrization. is fixed by lo·• Q~ elect=oprcc!uction data. T'ne part 

that is least reliable in the formulatlon is the treatment of gluon conversion. 

Since we know tnat no gluons are left )Ve~ in tte firal state, we have adopted 

.. 
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the classic picture that they all produce qq pairs which subsequently recombine. 

Th~s the sea is enhanced to the maximum. Again, no free parameters are intro­

du:ed if the x deper.dence of the ~nhanced sea remains the same as that of the 

origin sea, an ass.m.ption which i.; not unreasonable. Similar maximal gluon 

co:::~version mechani.:;n- is used in the quark jet analysis but with more. precision 

siace high Q
2 

is involved; the resu_lt contributes to an excellent no-parameter 

fil. of the quark decav. function. 1: I hi n t s paper we have ignored flavor depen-

der.ce of the valon distribution. This should be corrected as soon as a more 

thcrough analysis ~f the nucleon structure function is done. Then the n+/n­

ratio of ~he meson s·>ectra can be -calculated. 

We have emphasi:!ed ir. this pomer the forn:ulation f h 1 ~ o t e ow-pT problem. 

Application of the formalism to vrurious specific reactions can be carried out 

wit~out basic complication. For t'e production of strange mesons and baryons, 

for example, the effects of quark ~asses as well as three-valon recombinations 

can be investigated en the basis o: the analysis described in Sees. II and III. 

Par·:icle correlatio, -can also be s~udied. A better determination of the evolu-

tioa parameter can ibe ma.je if we replace v!<2 by the inclusive cross section 

of ~P ~ n+X as a phenomenological ~nput. At the sacrifice of not predicting 

thai one reaction, ve gain a reliable value of ' for low-pT reactions, which 

can then be used to calculate the cross sections for all other reactions inclu­

dine thosa initiatec "by meson beams. The idea here is that the evolution from 

valc:ns to partons stould be the sarr-e in all lo ... •-pT reactions, whether they are 

in n:esons, nucleons,. or even hyperon beam particles. The parameter c in (5.23) 

for the sea distrib~ion is most probably independent of the hadron, and the 

para~eter! can be determined as injicated in this paper. Since the valon dis­

tribJtions are.alreajy given in Sec. II, we therefore have at hand a tight 

sche~e that allows o~e to calculate the inclusive cross sections of all hadronic 

reac·:ions. Needless t·o say., we are optimistic that the agreement with data will 

be gaod. 
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Appendix A. [erivation of Eq. (5.35) REFERENCES 

We want to evaluate 1. For recent reviews see R.C. Hwa, Proc. IX International Symposium on High 
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J(m, n) = odz z (1 - z) J(z) (A.l) Energy Multipanicle Dynamics, Tabor, Czechoslovakia, 1978; L. Van Hove, 

where 

J(z) = 2~S(z) + 3!.-(z) (A.2) 

The cootributlon from the second term is trivial. For the first term we know 

the moments ~S(n). By Mellin transform 

f
c+i"" 

1 z-R.+llCS(.".) lC (z) = - d£ -"N '-
·"Ns 21li c-~"" 

(A. 3) 

we have for its contribution to (A.l) 

f
c+i"" 

J
1
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r.i c-io:> 

(A.4) 
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FIGURE CAPTIONS 

Fig. 1: A schematic diag.~am show~ng that the structure function of a hadron h 

Fig. 2: 

Fig. 3: 

is a convclution of the valon distribution in h and·the structure func-

tion of the valo·1. 
NS 

Sketch of. t!Je be:>avior cf [~S(n, Q2))-l/dn 
. 2 

as a function of £nQ . 

The solid l~ne imdicates how it might deviate from a straight line when 

q2 is low. The •ashed line is a linear extrapolation. The two lines 

the boundar~ value cf one at Qv and Q
0

, respectively. 
~ -1/dMS 2 . . 

of [M..,_In, q-)) n versus £nQ for various moments. Points 

have 

Hot 

are obtainec. by c.na1yzing data in Refs. 22 and 23 usin!l f = 3. Straight 

lines are :)'ebal:. fits tllrough A2 
=· 0.3 Gev2. 

Fig. 4: Slope para~eter ~(n) as ietermined from Fig. 3. The two curves represent 

two possible fits using E:js. (2.13) and (2.18). 

Fig. 5: A schematic diagram showi:~g pion production in a quark jet initiated 

1by a virtual photon. The three shaded blobs represent inclusive parton 

(quark, antiquark or gl_uo:~) distributions in partons. The open blob 

represents recombination. 

. ¢(l) ( ) h d -d k f Fig. 6: S:hematic diagrams for {at x1 , x2 w ere u an quar s come rom 

'') ~he sarr.e valon ans:l (b) <I>·- (x1m x2) where they come from different valons. 

Fig. 7: ~oments of v~2 and xS. Dots are empirical values. Curves are theoretical 

fits that fix the parameters in the model. 

Fig. 8: [heoretical predi:tions for the moments of the hadronic inclusive distri-

)ution. Dct:ed a~d dash-dotted curves show the contributions from the 

:wo subprocesses lndicate~ respectively in Fig. 6 (a) and (b). The 

.Jots are the~r su11. The solid line represents an approximation of the 

dots for the purp->Se of irversion of the moments. 

/ 
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Fig. 9: Theoretical prediction (solid line) compared to the data (Ref. 30) for 

the inclusive cross section pp-+ TT+X at 100 GeV and 175 GeV. 

Fig. 10: Theoretical prediction (solid line) compared to the data (Ref. 30) for 

the cnclusive cross section pp-+ TT+X at 100 GeV and 175 GeV. 
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