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Abstract

The low—pT problem of hadron fragmentation is treated in the framework of
quark model. The basic mechanism of hadronization of quarks is recombination,
which is formulated here on a firm basis. Clustering of quarks in a hadron is
discussed in detail. The quark and antiquark joint distribution is derived
systematically with incorporation of QCD ideas wherever possible. Parameters
describing the distribution are determined by fitting low—-Q2 electroproduction
data. No free parameters are therefore involved in the calculation of the
pion inclusive distribution in the fragmentation region. The result agrees
well with data in both shape and normalization. The formalism can be applied
to calculate inclusive distributions of all nucleon and pion initiated

reactions, while for kaon initiated reactions it can be used to extract

from low—pT data the quark distributions in kaons.
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I. AN OVERVIEW OF THZ PROBLEM

Strong interactions in the realm of hard processes, such as large-pT
reactions and massive lepton-pair production, kave in recent years come withir
grasps of quantitative theoretical investigaticns in the framework of quantum
chromodynamics (QCD). However, soft prccesses such as low-pT reacticns do not
yet enjoy a similar s:atus, since thte long-distance behavior at low momentum
transfer is closely enmeshed with thte confinement problem that is still un-
solved. Nevertheless, despite the lack of a reliable calculational procedure,
significant progress has been made curing the past two yzars in discovering
and understanding the connection between inclusive cross sections in tne frag-
mentation region and the momentum distributions of quarks in hadrons. In this
paper we build upon that connection a formulation of the low—pT problem at the
constituent level. Clearly, we do not y=t have a theory for rigorous zalcula-
tions from first principles. But we shall insofar as possible incorporate
into the formulation Zdeas derivable from QCD and find dynamical description
of quantities that were introduced with some arbitrariness in earlier models.

The quark model for inclusive reactions in the fragmentation region that
we refer to above is the recombination m:del.1 It was Ochs2 who first pointed
out the similarity be:ween inclusive pion distribution for pp reactiong and
the structure function of proton in deep inelastic scattering, although the
question of how the guarks turn intc hadréns was left opan. Das and Hwa3
showed that the fragmentation model Zor nadronization is phenomenologizally
unacceptable, and sugzested a specif-c racombination mechanism that caa give
good fits to the data., The preoccurpation at that time was to demonstrate

that the idea of recombination is pkenomenologically sensible both in aormal-

ization as well as in x dependence. To that end & simple formula was ;roposed3

dx, dx
x do ; )
Sta Jy(xl, Xy R(xp5 X5, X) e (1.1)

where F(xl, xz) is the two-parton joint distribution for the incident hadron
and R(xl, Xy x) ie¢ the recombination functiom. On the basis of counting ruleb
it was suggested that R(xl, Xy x) for a meson should have the form

X%,
X

R0, %y, %) = @ 8 (x; + Xgu= X) (1.2)

where o is an unknown normalizatZon constant of order ‘unity. The two-parton
k-f,

distribution is more difficult to determine precisely. As a simple first
trial the naive factorizable forn was suggested
F(&l, x2) = Fq(xl)Fa(XZ)O(xl’-xz) ; (1.3)

where Fq and Fa are the listibutions of a quark q and an antiquark E, and
p(xl, xz) is a phese-spaze factor proportional to 1 - X = Xy for proton, but
later extended to a more general form.5 With these ingredients satisfactory
agreement with data was achieved,3 giving support to the importance of the
recombination mecharism. Later, Duke and Tay10r6 succeeded in obtaining
detailed fits of verious inclusive distributions, using (1.1) - (1.3).

A major effort in tte subseqaent development of the recombination model
has focused on varicus improved forms of F(xl, xz) and their implications. In o’

place of (1.3) a Kuti-Weisskopf model7

for F(xl, xz) has been suggested.s-lo
While it succeeds :n sat;sfying certain kinematical constraints, it remains a
phase-space model with unzertain dynamical content. The difficulty is, of
course, the unsolved bouni-state problem of the hadrons. A way to circumvent
that difficulty whilz scill examiring the recombination model is to study
photon-initiated rea:tionall or quark jet:s.12 Within certain approximations
the function F(xl, xl) fo: photon and quark (or gluon) can be calculated in
perturbative QCD. Our preblem at hand is to formulate a way of calculating
F(xl, xz) for hadrons by tackling the bound-state problem on the one hand and

incorporating ideas from the QCD calculations on the other.

In thg absence of an adequate understanding of the confinement problem,
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the wave function of the constituent quarks in a hadron must to a large extent
be phenomenological. Since that wave functicn must influence the structure
function measured at high Q2, it should be possible to extract that information
from recent data. In Ref. 13 we have adopted the view that the partons in a
nucleon form three clusters, called valons. The momentum ¢istribution of the
valons is determined from the Q2 dependence of the structure functions. This
will be discussed in Sec. II for both nucleons and mesons. The valon distri-
bution will turn out to play a crucial role in determining not only F(xl, x2),
but also th2 recombination funétion R(xl, Xas x). Although we cannot at this
stage derive it from first principles, its concept is dynamically sound and
its guantitative features are reliably determined from phenomenology based
on QCD.

In going from the valon distribution te the quark and antiquark joint
distributicn are involved gluon bremsstrahlung and quark-gpair production. The
cumulative effect of such conversion processes is hard to determine at low QZ.
In order to arrive at a reasonable formulation of this prcblem, it is useful
to recall the parton model description of multiparticle production. Feynman
invented the parton model specifically for low—pT rgaétions.lh Scaling of in-
clusive cross sections was predicted as a consequence of scale invariant parton
distributisn, which in turn was suggestéd by the structur2 functions deter-
mined at SLAC. Although the Q2 value was as'low as 1 GeVz, the scaling phe-
nomenon was already sufficiently evident to be called '"precocious.” 1In the
context of QCD where scaling violation is understood as Q2 evolution due to
gluon bramsstrahlung,15 precocious scaling is then equivalent to mature evolu-

2

tion. Inceed, if even at Q2 ~ 1 GeV™ the gluons carryv nearly half the nucleon

momentum, and the wee parton distribution is already scaling, gluon brems-
gstrahlung must be so highly effective for Qz <1 GeV2 that by Q2 21 GeV2

(what 1s usually called low Qz) the major part of the evolution has already

5

taken place. It is important to recognize this'in order to start from Feynman's

ideas about low—pT reactions and develop a more quantitative calculational
scheme as we shall pursue in Sec..V.

Our aim will be to address the major issues in formulating the low-pT
problem, without being involved in the detailed fits of various reactions.

Our concern will be the general scheme rather than specific processes. Thus,
for example, we shall not emphasize the flavor dependences of quark types or
mesons produced, but the queétion of how both the normalization and shape of
0_1 x do/dx are to be determined will be examined carefully.. The formulatfion
lends itself in a straightforward way to more zlaborate treatments that account
for all types of beam and detected particles.

It should be pointed out that the approach taken here 1s very different
from the ones adopted by the groups at Lund,l6 Orsay,17 and Saclay.18 They
emphasize quark fragmentation and borrow phenomenological.de;cription of the
fragmentation function from hard scattering processes without addressing the
basic problem of hadronization, i.e. how the quarks turn into hadrens.

There are a few parameters in our formulation, but they are completely
fixed by the structure functions of the nucleon. Obviously, we need some phe-
ﬁomenological input on the quark distribution, for example. However, after
those parameters are determined, the formalism fully specifies the low-pT
problem. There are no free parameters to adjust. Inclusive cross sections of
all reactions can be calculated. Our result for pion production from proton
agrees wel; with data in both shape and normalization.

The organization of the paper is as follows. We first discuss the valons
and their momentum distributions in Sec. II, followed by the determination of
the recombinACion function in Sec. III. We then outline the problem of calcu-
lating the quark decay function (Sec. IV), which will serve as a guide to the
main problem of hadron fragmentation discussed at lenzth in Sec. V. Conclusion

is given in the final section.

N



II. VALON DISTRIBUTIONS IN HADRONS
Valence quark clusters, called valons,l3 form a natural bridge: tetwean
constituent quarks in the bo;nd-state problem of the hadrons and thz partons
as probed in deep inelastic scéttening.19 A valor is defined to be a dressed
valence quark in QCD. That is, 1t is a valence quark tégether with. its cloud
" of gluons and sea quarks which can be resolved by high Q2 probes. At ;uffi-
ciently low 02 the internal structure of a valon can no longer be ra2solved,
~but at the hadron mass scéle it should b2 possible'to distinguish i1dividual
valons in a hadron. A nucleon has tkree valons and a meson too, just like the
constituenf quarks. éhe ﬁomentum distrisutions of the valons are iadependent
of the Q2 values of the probe. The struzture of a valon itself is, howvever,
Q2 deperdent. Assuming that a quark is sasically point-like, af least for the
distance scale that can be probeﬂ.intthe foreseeable future, the str-ucture
functions of a valon are then completely determined by gluon bremss:ranlung and
quark-pair creation in the framework of )CD. 1Indeed, they are just th2 "struc~
ture functions" of a quark.20
For hadron fragmentatfon the valon listribution in a hadron is of primary
importance. It describes the uncalcrlable wave function of the constituent ’
quarks. Before discussing how it is to be used in a low-pT reactioa, wve des-
cfibe first how it 1s determined. Or th2 basis of the definition w2 have given
above, and assuming that in a deeé iselastic scattering the probing of the
structure of one valor is not influerced by the interaction of that valon with
other spectator valons (the usual imgulsz approximation), we can write

1
7 2 : v : ¢
‘;J'h(xr qQ ) = \ZIIX :ycvlh(y)f (x/y, 03,:! (2.1)

where ;;h is the structure function =f WadTon b (e.g. F,, xFy, ete.d, jzv is
the corresponding structure function of valon v, and Gv/h is the distribution
of v in h. The sum is over various flavdr types of v. A pictorial reoresenta-

tion of (2.1) for one of the valons teing probed is shown in Fig. 1. The right-

hand side of (2.1) has an implicit dependence on a variable Qv that specifies
the value of Q at which. the valcns are resolved as individual units acting as
constituent quarks tut —with no discernable internal structure. he postpon;
our discussion on this poiﬁt until later.

As we have indicated in Sec. I, we shall not in this pAper be concerned
with flavor depenZence of Gv/h' To distinguish flévo; differences would
require more accuzzte dita than we now have for phenomenological analysis.
The theoretical pzcblem of accouating for the differences is easy, and a more
complete analysis shall be carriad out when the muon scattering data at high
02 become availab_e. Thus, for now we consider only an average valonAdistri—

bution, whose normalizatdon is

Jer/h(y)dy =1 2.2y

and which satisfies the momentum sum rule '

1
Jo;th(y) ydy = (h = nucleon) (2.3a)

= W

(h = pion) (2.3b)
Because we do recogmize :‘he different charges of u-~ and d-type valons (to be
labelled U and D, respeczively), :;v does depend on v.

By the convolation theorem, (2.1) implies the moment equation

& .
W, ¢4 = M, M G, Q0 2.4)
where .
1
M o, Qz) - J ax xn-2dzh,v(x' Qz) 2.5
0
1 n-1
. Mv/h(n) = Jody y G_,/h(y) A 2.6)

2. .
If we use M3(n, Q. to demote the average of the moments' of xFa(x, Qz) for WN

and VN scattering on isoscalar target, we can obtain13 from (2.4) with 6 =0
c

14
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Moo, @8 = M, (W (@, 05 @.n
30 v/N MNS * .

where M;S is the non-singlet component of the moment of quark distribution in
“a valon. Eq. (2.7) is of the form of the solution to renormalization group
equation, viz. a product of an uncalculable coefficient (NV/F) and a fﬁnction
(M:s) calculatle in QCD especially at high Qz. Since M3 is measured in recent
neutrino experiments, HV/N can be determined from (2i7) using QCD results. An
equaticn similar to (2.7) can also be derived for muon scattering. If flavor
‘independence s not assumed, simultaneous analysis of both v and W data can
then lead to a separation of the U- and D-valon distributions and their moments.
Recall now our earlier rema-k that the r.h.s. of (2.1) has an implicit
dependence on Qv' At Qv’ y;v(z, 03) is proportional tc 6(z - 1), signifying
that a valon behaves as a constituent cuark with no internal structure that
can be resolved at Qv' QCD supplemented by this boundary cendition completely
defines a valon. The implication of the boundary condition on the moments 1is
e, ) =1 .8
At high Q2 the solution of the renofmalization group ecuation has the

simple form - dis,

2 p—
W, o) = 292 (2.9)
s alQ)

where in leading log approximation

a@®) = = . (2.10)
(33 - 26)2nQ/A .

) . NS
f being the number of flavors, R the scale of strong interactions, and dn the

NS anomalous dimension

n
s 4 [ o2 44z l].
3=27

n C 33 - 3 n(n + 1)

At leow Qz, (2.10) is invalid; consequently, it cannot be applied for the evalu-

ation of J(Qi? in (2.9). Furthermoﬁe, (2.9) itself becomes inaccurate and must

9
: ' v 2,,-1/a"®
be supplemented by other non-leading terms. It means that [MNS(n, Q)] n,
though proportional to an2 at high QZ, deviates from a straight line in a log
plot at low 02 and approaches one at Qs. This 1is illustrated in Fig. 2.
Since the theoretical understanding of the low—Q2 behavior is incomplete at
present, we shall circumvent the difficulty associated with it in the following
way. First, we emphasize that the linear part of Fig. 2 is what we want to
exploit in the following. The boundary condition (2.8) at Qz, however, cannot
be applied unless we follow the non-linear curve at low Qz. Now, if we stay
on the linear line and extrapolate, we would arrive at a different valce (Q:)
where the extrapolated moments are unity. Thus as far as the linear portion
goes, we can just as well use the effective formula
NS 2,,2
2,,-1/d 4nQ”/A :
(@, 0D o T/ @.11)
S oonl ;.2
LnQ-/A
o
A - .
The role of Qo here is essentially to parametrize the slope of the linear line
in Fig. 2 and should not be regarded as having anything to do with (2.:30). It
can be interpreted as an effective value of Q where M;S(n, QZ) = 1, provided
that the moments are approximated by the leading order result. Thus in that
approximation the'Q2 evolution starts at Qi. Because (2.10) is not used,
there is no reason why Qo cannot be very close to A. It can also be inter-
preted as giving a rough estimate of the effective size of a valon. Tt is

important to recognize that Q° is not an arbitrary parameter chosen to be

large enough to justifv leading order calculation. It has a phvsical meaning,

- and its value can be determined phenomenologically.

While M;s(n, Qz) is a theoretical quantity that cannot be measured di-

 rectly, HJ(n, QZ) is the moment of experimentally determined structure function.

Combining (2.7) and (2.11) we now have for large Q2

NS
-l/d]

[513(n, Qz)] = S(n)ﬂnQZ/:\z (2.12)

where
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. _NS.
S(a) = (3, () 17V eng? s (2.13)

The linear dependence on RnQZ/A? in (2.12) has been verified by neutrinc exper-

1~
1ments,'1 23 and is regarded as a suxcessful test of QUD. The data of Refs. 2.

énd 22, however, have apparent discrzpencies wken the cuantity in (2.1Z) is
plotted agéinst anz. They are due largely to the cse of different values of
f in the evaluation of d:s. In Ref. 13 ve used the BEEC-GGM data,21 ar.d
obtained the following results (for = ='3):

A = 0.74 Gev, Q° = 0.8Z GeV l(2.14:

2

L05 s
GV/N(}') = g7 Q-y (2.15)

The_metﬁod used there depends crucid’ly cn the availzbility of the n = 2 moment,
for which we know from (2.3) that Mv}ﬂ(z) = 1/3. Since the CDHS'da:azz’23 do
not provide M3(2, QZ), we use here a slight varlatios of the methed to e;;ract
Gv/N(y). Adopting £ = 3 as being more relevant, we plo: [M3(n, Qz)]_lfdn
against Ean as in Fig. 3, and obtain l\2 = 0,3 Gevz. T4e slopes, S(n), of the
st?aight—line fits are then determined, a; shown in Fig. 4. To fit S(n), we

assume that the valon distribution has the form

-1 Sk-1
G =g -y @ae

in which the three parzmeters are constrailned by (2.2) and (2.3}, 1i.e.
-1 . . 2
g, = (8, W17, 5 = v/2, (2.17)
where B(j, k) is the beta function. 2hus the mcments o {2.16) are
. Tk Sk g e
EV/N(n) = B(n + ? ~1, k)rB(E, ‘), (4.;8)
We can then fit S(n) by. (2.13) and (2.18). treating a, zné k as free parameters.

The results are shown in Fig. 4. The best fit (solic¢ line) is for

k = 2.5, Qo = 0.65 Ge¥, A = 0.55 Gel (2.19a;

although a fit with k = 3 (dashéd 1in2) is also in gcod agreement with the data;

the parameters are

11

k = 3.0, QC = 0.64 GeV, A = 0.55 GeV (2.19b)
The difference between {2.14) ard (2.19) reflect the discrepencies between the
data of Ref. 21 and 22. Nevertteless, if we regard the range of k from 2.5 to
3.0 to be adequately ap>roximated by the value 3, then both sets of data yield
the same valon discribuzion, 1.e. (2.15), which is not sensitive to the absolute
normalization of the data. We have therefore extracted a rather essential
feature of the datz. It describes the wave function of the valons inside a ~
nucleon. It summarizes the hadronic structure--the part that is not calculable
by present methods in QC(D.

Whilé (2.15) #s obtained by detailed analyses of the deep inelastic scat-
tering data, the ~esult can also be obtaiﬁed by an alternative and more direct
method, once the reality of the 7alon concept is accepted. The only experimen-
tal input needed -s that vW2 Nl - x)3 as x > 1. Since k is thg only para-
meter to be deternined in (2.16}. we need only examine the large-x, hence
large-y behavior of {(2.1). The Znformation we need from QCD is the large z
behavior of the velon structure function jpv(z, QZ) at moderate QZ. We have
already mentioned tnaat tais function has the boundary condition that it is
proportional to &€z ~ 1) at Qs. At higher Q2 gluon bremsstrahlung smooths' out
this éingularity at z = L and turns J;v(z, 02) into a gently-varying function
of 2z, the shape of which depends on QZ. But for any Q2 not too close to di‘
the universal feature is that :}V(z, QZ) is finite as z + 1.20 Using this

property in (2.1) Zmplies at moderate Q2

AT Jidy G s x> 1 | (2.21)
Hence, the experim=ntal fact that the 1l.h.s. behaves as (l'- x)3 demands the
Qa - y)2 behavior Eor the integrand as y > 1. The distribution in (2.15) then
follows_uniquely given k2.16) and (2.17). At high enough Q{ jW(z, Qz) will

vanish as z + 1; tiie consequence >n b;N(x, Qz) is then that it will vanish
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faster than (1 - x)3 by a corresponding increase in the expcnent completely
determined by (2.1). This is the expected result in QCD. At low or medium Q2
there is no such complication, and the general result from ¢2.21) is that for
any hadron h we have

Gy ) = @ - ¥ asy » 1, (2.22)

if and only :g
FPe = - % as x - 1. ‘ (2.23)
Obviously, this method can be applied to the meson case where only the large x
behavior is xnown.
Consider now.the valon distribution in a pion. The momentum sum rule
(2.3b) implies j = k, so it follows that

1 k-1
G, = 3, oY@ - 2} (2.24)

: 24
There are now reasonably good evidence from massive lepton-pair ptoduction2
that the structure function of a pion behaves very nearly like (1 - x)l, as

x + 1. From (2.23) and (2.24) it means k = 1 and

Gypn() =1 (2.25)

Similar consideration when applied to the K meson ‘would give the same result
if the structure functiorn of a kaon behaves also as (1'— x}l. However, we can
do better than that. Since a valon plays the role of a constituent quark, the
strange arnd nonstrange valons should have different masses, and therefore
different momentum distributioms. We shall consider this sroblem below after .
. discussing the multi-valon diszributions.

- Since we know the precise number of valons in a hadron, and since we do
not distinguish valon types of the same mass; the multi-valon distributions
can be simply obtained by symmatry consideration and sum rules. Consider
first the rucleon case. We write the three-valon distribution in the general

. ’
symmetric form

13
’ k-1
Contryr ¥pr ¥9) = og(yyyoyg)” "8Gy 4y, +yy - 1) (2.26)
Then the two-valon distribution is
1
Gy ntryr ¥9) = Jody3 Gty Yps v3)
_ _ = K=-1
=aply;y,( -y - y,)] (2.27)
and the single-valon distribution is
l—y1 .
ComO) = [o 4, CunOy ¥2)
= L k-1 L2k-1
= aNB(K, K))l a - ylj (2.28)
Comparing this with (2.15) yields
' k = 3/2, ay = 105/2n ©(2.29)

Note that (2.27) specifies how the distribution vanishes as Y1 + ¥, > 1. It
will p1a§ an important role in-a later section in determining the limiting
behavior of the two-parton distribution F(xl, x2) and in avoiding the assump-
tion of either the factorizable form (1.3) or the Kuti-Weisskopf model.7

In the pion c¢case the two-valon distribution is
6,/ ) = 0 vy ) lely, 4y, - 1) (2.30)
v/ Y2 112 1772 :

Integfacion over y, and comparison with (2.25) yield

o =1, A =1 (2.31)

For kaons, we take into account the mass difference between light and heavy
valons, identifying the former with' the non-strange constituent quarks, and
the latter with the strange constituent quark. We write the two-valon dis-
tribution in a kaon és

\
_ a-1 b-1lg _ .
G,k 0y ¥y) = oy ¥y 80y ty, - 1) (2.32)

where Yy is the momentum fraction of the light valon and Yy that of the heavy

one. The single-valon distributions are then

,
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- -1 2.33a)
GVZ/K(yl) = aKyla ‘a - )'1)l> (2.3%
-1, a-1
th/K(yz) = axyzb -y (2.33b)

where ay = {B(a, b)]-l. The averag= momentum fractions carried by the lght
and heavy valons are, respectively,

¥y = ogB(a + 1, b) = a/(a + b) (2.3+2)
¥y = oBla, b+ 1) = t/(a+b (2.34b)

If we regard the valons as constituent cuarks bounc non-relativisticaily in a
bag, then their average momenta should te proporticmal to their masses, my and

o, - Thus we have

<1
[l

‘m
a_ 71 __*_2 (2.3%)
b ¥a o 3

With this constraint it should be possitle to determine a and b separztely by
fitting data on lepton-pair productIion in kaon: initriated reactions using Drel’-
Yan model,25 or by applying the recembiration model to low-—pT inclusive react-ons
involving K mesons.26

Similar consideration can be aprlied to tne hyperon in determinirg the

effect of valon mass iifference on the momentum distribution. Adoptirg the form
a-1_ b-1 . -
= - 2.36
Gy yWyr Yor ¥3) = 03707 Tygn T30y H vy Yy L (2.36)
for the three-valon distribution, whare Y,y andAy2 refer to the two iight valcrs,

and ¥y the heavy one, one can show that

o, = [B(a, a + D)B(a, by} . (2.3%)
and
% - %: %‘ (2.36)

We have thus far dwelt exclusivaly on the distribution functicms Gv[h(y),
etc., which are proba>ility functions defined in the noninvariant phase space

dy. The invariant distributions defined in th= inveriant phase space dy/y are

15
Fom®) = ¥6, ,, () (2.39a)
FomWar ¥9) = 919,800y ¥,) (2.39b)
FonOpr Yor Y30 = ¥ ¥9y46, ,Oqs ¥p0 ¥4) (2.39¢)

etc. Sometimes it is more convenient to work with the F rather than the G
functions. One can readily keep track of all the momentum factors in a con-
volution equaticn if all quantities are invariant F functions and integrals

are parformed over the invariant phase space.
YIX. RECOMBINATION FUICTION

Vhen the recombination fumction was first incroduced,3 there was some
ancertainty about its precise form. For the formation of a meson, quark-anti-
quark recombinaticn was considered dominant. The gluons would contribute to
nultiparton recoxtination processes, which were thought to be less important.
On the basis of ccuntirg rule the momentum dependence of the recombination
function was suggested to be that given in (1.2). The normalization constant
a wasbunspecifiedm The important property of (1.2) is that it vanishes at
L C and 1, sigmifyimg short--ange correlation. - Indeed, it has been shown9
that (1.2) corresponds to a cor-elation length of two units in rapidity. Al=-
though the phenonenological application of (1.2) has been successful, the re-
combimation fﬁnc&inn has thus far remained as’ an imprecisely defined quantity,
end its derivation.iacks rigor. A better understanding of this function is
crucial to a progzr formulation of the recombina;ion model.

The task is made simple by the development of the valon concept. Take
the pioa for definiteness. The absolute square of the wave function
<Vl(y1)V2(y2)|ﬂ> da2scrides not cnly the probability of finding the two valons

cf a pion at Yy and y,, but alsc the probability of forming a pion from two
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valons at t
hose A values. The amplitudes are related by complex conjugatio
n.
In a th i i
eory in which valon states are defined, this relationship is exact and
ct an

defi
nes reconbination. Thus the invariant recombination function is

R. (Y » Y = F 4 y )
1 2) V/TT('\]' 2 (3.1)
The rea vy w ve no am a e, a to th a is
son way e have big ity here, as opposed the case in Ref. 3 i
. ’

that the valon conten - . -
>] t N 1s derinite an nown uons are autol
t of a hadro definit d ki Gl a mat

" {cally
v taken into account in that they dress up the quarks to form the val
T ons.
The questi 4
q on of how the partons in an incident hadron turn into valons of th
e
rod
produced particles remains to bz discussed, as we shall do in the next t
wo .-

sections. The 3
issues are, however, distinct. Here, we are concerned only with

the probability for recombinatisn, given the valon momenta

Eq. (3.1 i
q. ( ) expresses the recombination function when the pion momentum is

normalized
to one. If the pion momentum is a fraction x of the initial hadron

momeotum, tEen (2.30), (2.31), (2.39b) and (3.1) imply

™ X, X x X
R (x 12 1 2 .
R S e e NS

ir agr -
greement with (1.2). Morecver, the normalization is now completely fixed

Note that x, an :
1 d Xy refer to the momeatum fractions of the valons that récombine

The resu s obtained without using the coun e 2 ment
sult I bt -3 nting rule, ya2t it is in agree

with tha
‘ t obtained by using it, provided that quarks are r=placed by valons

In a simi
lar way we can get the recombination functions for the other hadrons:

K a b )
Kaon: R (x,, x,, x) = [B -1l 2 1,=
1* %2 [B(a, b)) 7| T} 6[—;+~:—- 1J (3.3)
Nucleon: V RN(X X,y Xa, X) 105 1x2x3] [xl X
’ > ’ s =] §{— —_ ——
12 3 an (3 i 1] (3.4)
a b (F1 %2 %
Hyperon: Ry(xl, Xy, X3, X) ,f?1x2/%‘} (%3/x) 5[:: e tx 1]
3 B(a, a + b)B(a, b) . (3.5)
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IV. QUARK DECAY FUNCTION

Before we consider t=e problem of hadron fragmentatior, ve discuss first

quark fragmentation as a:z introduction to the subject. The decay function for

quark fragmentation can we calculated exactly in QCD and recombination model

without using any phenomenological input, and the result gives a good no-para-

2 N -
meter fit to the data.l' The decay function D(x, QZ) is related to the qq

distribution and recombination function in just the same way as in (1.1):
dx

dx, -
(x, ) = ]F(xl. xy0 QIR g %) <2 .1)
. 1 72

except that now the F function depends also on Qz, which in the case of a

+ -
quark jet from e & annihilation, for example, is the square of the c.m. energy.

When Q2 is large, F(xl, Xp» Qz) can be calculated in QCD. Hadron fragmentation

ig difficult to treat precisely because F(xl, xz) in (1.1) has no large QZ, so

perturbative method in QCD is not applicable. Nevertheless, the similarity

petween (1.1) and (4.1) provides us with the opportunity to use quark fragmen-

tation as a more tractable example to elucidate the jdeas involved in our cal-

culation of hadron fragmentation in the following sectiom.

A pictorial depiction of (4.1) is shown in Fig. 5. The cross-hatched

blobs represent evolution functions which describe the degradation of Q2 as

the quark created at the virtual photon vertex emits gluons and quark pairs.

F(xl, Xy Qz) {s the gq distribution represented by the part in the figure

from the initial quark at Q2 to the q and q at the position of the vertical

dotted line. Evidently, one bifurcation vertex must be considered explicitly,

at which the momentum fractions and virtual masses of the quarks and gluons

involved are to be integrated and the parton types (quark, antiquark, and

gluons) to be summed. The evolution functions are known from renormalization

group analysis. On the other side of the dotted line in Fig. 5 is the
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recombination function. At the dotted line the Q2 value associated with the q
ahd 5 is Qz. It may appear inconsistent to fegard them on the one hand. as
quark and antiquark resulting from sequertial bifurcations in F(xl, %y Qz),
but}on the other hand as valons in connection with hadronization through R(xl,
Xy x), the label Q: bzing implicit in bcth these functions, 'This duality is
actually an essential jroperty of the valons since they play the role of
bridging the hard and soft processes. Wmat is fnvolved is exactly analogous

to the case of structure functions fc- widch thg valcn concept was first

tntroduced, the only difference being the direction sf Q2 change, Récall (2.1

and Fig. 1. In the two factors ig tte imtegrand, or for the two blobs In Fig.

1, the valon plays dual roles. In G“:h(y) the valon is the valence quatk

cluster, and at Qo its internal struczure cannot be discerned. The counteg-

. part of Gv/h(y) in (4.1) 1is R(xl, £2' x), the precise connection having bezn
established by (5.1). For the factor ‘;v(z, Qz) in €2.1) describing th2 struc-
ture function of a valeon, the matbematical treatment regards the valon Initially
as a point quark at Q° with momentum distribution §(z -~ 1), and tracks :che
modification of the-distribution as & resalt of gluoa B;emsstrahlung un:zil a
quark in the clu;ter is struck by a virtuai photon at Q2. This is done in QCD
with the initial and final quarks treated as point quarks. Loosely, onz may
refer to the distribution as quark structure function,20 Sut physically it is
'the valon structure function. The ccunterpart of _7?(2, Qz) in (&.1) is F(xl,

© Xy Qz). Evidently, the processes represanted by Figs. 1 and 5 are analogous;
in the former, Q2 increases from left to right, while in the latter, it decreas=s.

The parallel betweeA (2.1) and (£.1) p;ovides the ex:use\for the use of
leading-order calculation of F(xl, Xy Qz) in pertur;ative QCh for Q2 degradé-
tion all the way down to Qg. That is because Qo itself'is determined i; the
same approximation. Recall that it is with the leading order result for

j;v(x/y, QZ) substituted into (2.1) that the VN data is fitted. Thus im both
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the structure function ;Zh(x, QZ) and decay function xD(x, Q2). the leading-
order approximaticn (and the asscciated choice of QO) is the common vehicle
that 1s convenient 1in re.ating valons to hard-collision processes., An improve-
ment of the approxipation does not change the parallelism in Ehése relationships
for the two functions, ner is it likely to lead to a significantly Aifferent
result for D(x, Q?} if tke structure function is regarded as the source of
phenomenological input or the degree of evolution.

A final remar% about the cal:ulation of D(x, Qz) is that it m;;t account
for the momenta carried ty the gluons because hadronization is complete, {i.e.
all partons get coaverted into hadrons in the end. If F(xl,-xz, Qz) is the qa
inclusive distribuzion iﬁ a quark jet which has‘momentum leakage into the gluonms,
its use in (4.1) would not lead to the correct normalization for D(x, Qz).
Thus it is necessary to iaclude in F(xl, X9 Qz)‘the q and q converted from
gluons. In that wzy the cecombinztion model can fully account for the hadron-
ization of all the partons in the quark jet.

‘All the consiceratioas about -quark fraémentatioh discussed in this section
have'their counterparts im hadron fragmentation to which we now turn.

V. HADRON FRAGMENTATION

The problem of hadroc fraémeniation is difficult to treat because, unlike
hatd-collision processes, it has no large 02 scale. Hadron-~hadron collisions
at high erergies ar= domirantly soit processes since reaction rates drop pre-
cipitously with increasing Ppe Thas they.do not reflect the short distance
behavior ?f the interacticn, and one cannot use the usual impulse approximation
valid for large 02 reactions. However, there is one feature about multiparticle
production that saves us fkpm hopeless complications. It is the short-range

correlation of the produced particles. On the basis of that one may first of
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all be justified to ignore the target hadron when studying the fragmentation
region of the projectile. Furthermore, at the parton level the interaction
between partcns must also te short-ranged. The recombination model relies on
the short-range character of the interaction to describe the hadronization
process which is approximately local in rapidity‘(Ay ~ 2) so &hat‘what goes on
in the fragrmentation region mav be dissociatéd from that in the central region.
These properties férm the basis for (1.1), which ha§ ar. appearance that follows
from impulse approximation.

What is involved in hadron iragmentation is a multistage process:

w ) 3) “ .1)

initial hadron *~= valons — partons ~— valons — produced hadrons
’ Stage (1) has been discussed in Sec. II and is represented by the valon distri-

bution Gv Stage (4) is known from Sec. III and is described by the recom-

/h™
bination function R. Stages (2) and (3) are our concerns here; together with
(1) they specify F(xl, x2) wﬂich is the major unknown in (1.1).

A. Stage (2 '

If we were able to peek at the parton state without disturbing the system,
we would presumably discover quark and antiquark distributions which are very
close to the ones determined by electroproduction at low Qz. We do not know
how low the wvalue of Qz'must be in order to be relevant to the 1ow—pé problem.
In the precusory model for F(xl, xz) which denoted two—barton distribution
since the valon concept was not yet introduced, the form (1.3) was adopted,3
where Fq(xl) and Fa(xz) were assumed to bé the quark and aétiquark distributions
determined bv Field and Feynman27 in fitting the SLAC data on nucleon structure
functions. The Q2 range was 1 - 5 GgVZ. Although one may question whether
such "high" values of QZ are relevant for low—pT reactions where pi << l(GeV/c)%
the result of the calculation-lends support to their relevance. Presumably,
precoclous scaling implies that the precise value of Q2 is unimportant and that

even at Q2 in the vicinizy of 3 GeV2 the parton distributions have already run
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through the major course of their Qz changes (1.e. mature evolution). Indeed,
as we shall see below, the parameter that characterizes the evolution from
valons to partons in stage (2) turns out to be quite large.

The strategy of our approach to the problem is as follows. We first admit
that we have no way to calculate the parton distributions from first principles.
Some free parameters must per force be introduced; they are, however, not to be
decérmined by the hadronic inclusive cross section for which we want to obtain
a no-parameter fit, but by vNZ(x) at low Qz. What we achieve as an improvehent
over (1.3) is that the valon distribution in stage (1) properly introduces the
hadron wave function and automatically takes care of the phase space problem,
which was handled in an ad hoe manner by the factor p(xl, XZ) in (1.3). The
evolution in stage (2) from the valons to the partons will be parameterized by

formulae reminiscent of QCD. Although they cannot be taken seriously, the

.largeness of the evolution parameter renders the procedure not totally nonsensical.

For definiteness we shall consider hereafter the fragmentation of proton
only and the detection of n+ in particular. Thus a valence u quark in the
proton ends up‘in the ﬂ+. Let O(xl, xz) be the invariant inclusive distribution
of u and d carrving momentum fractions Xy and Xy of the proton, respectively.

It is obtained by a convolution of the distributions in stages (1) and (2).
Since the u and d quarks may either both come from the same valon or come sepa-

rately from two different valons, @(xl, xz) has two compoments

1)

¢(x1§ xz) = & (xl, xz) + Q( )

2 (xl, xz) (5.2)
which are illustrated by the diagrams in Fig. 6. Let K(z) denote the invariant
distribution of finding a quark with momentum fraction z in a valon of the same
flavor. (As in all distributions considered in this paper, color and spin com-
ponents are averaged aver in the initial state and summed in the final state so
that we are not concerned explicitly ‘with such degrees of freedom.) Let L(z)

be the same for any antiquark or a quark with flavor different from that of the
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parent valon. Since a proton has two U valons and one D valon, we have

ay,. . A
oMy, ) = 2fayey ¥ e = "1]
Xr "2
+ Idyc:wN(y)L[—v]L[——v p— ] (5.3)
Py - l . . -
@ B *1). (*2
O xyy xp) = zjdyld”zcuum(yl’ yZ)x[‘ ]L[Yz]

%1
o ‘ "1 1., (%2

+ 2oy 85,6000, yz)[xﬂy-l] + L[H]]L{;;] (5.4)
In our approximation in Sec. II, the valon distributicns are assumed to be
flavor independent dﬁe zo the Iack of high Q2 d;ta frcm which to extract the
flavor dependence. fhus for brevity we shall suppress the subscrists of the G
functioAs in (5.3) and {5.4), and in computatior below use (2.28) and (2.27)
for them; respectively.

Eq. {5.3) is not precisely a convolution ecuatior. The distributicn of ud
in a valon 1s analogous to that in a c¢wark jet, for which a precise expression
in perturﬁative QCD is ziven in Ref. 22. But at low (2 such an expression for
a valon jet is unreliable. Since the “unctions K and L will be determired
phenomenologically anyway, an approxinate exprecsion such as the one in (5.3)
that captures the essence of quark jets ic totally adequate. -Note that (5.3),,

(5.4) and (2.28) make possible the following relation to be satisfied

) 1-x, dx,
Io x_z 0(}(1. XZ) « '?(Xl) (5.5

where o(xl) is the u quark distributiea ir. a prozon, vhich we denote mdre ex—-

plicitly as 0u: R
1
X X e
d’u(x) = deyG(_‘f)[zi[;] +l.[—y—]] . (5.6)

Similarly, the integral of (5.4) over xy is‘proporticmal to the d antiquark
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distribution

1
o3 (x3 = 3[ dyc(y:mg] : (5.7
X

although the integral of (5.3) is not. We have, however, not missed the mark
by very much, and the simplicity of (5.3) justifies its usage in the following.
Eqs. (5.2) - (5.4) >rovile a basic improvement over (1.3). In our view they
constitute a physfcally more correct expression of the two-parton distribution
than the Kuti-Weisskopf :lodel.7
The functions E(z} and L(z) are to be determined by ensuring that they
lead to the correct Ou aad Oa distributions at low Q2. More precisely, we cal-

culate the observable quantities sz(x) and the sea quark distribution xS(x)

which car be deteraineé From leptoproduction data:

i)

4
Wi, (0 fdrzcu ,p<y){;[x[§] + L[;(—,] ]+ ém[iy‘-]n
Iaycnlp(y)(gln{-}’f}] +“§1[K[§] + 3L[§]])

Id)G(y)[K[)—;] + 3L[§]1 . (5.8)

+

%S (x) = Id 26 L[i] x
yl J/p(y) Y +GD/p(y)L y]
= JdeG(;()L[-;-t] 5.9)
K(z) and L(2) are favored and unfavored distribution520 which can be- expressed
in term% of the singlet OKS) and n?nsinglet (KNS) components
. K = [xs + (27 - 1)&Ns]/2f =K+l (5.10) -

L= (KS - KNS)/Zf (5.11)

Hence, we’ can rewrite (5.8) as

WL(x) = Jd_"G(y)[KNS [l‘y-] + I.L‘[ﬂ] (5.12)
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Now, we specify the parame:rization of the uncalculable functions KNS(z)
and L(z) so‘that they can be determined phenomenologically. For KNS(z) we
assume on the basls of precocious scaling that its moments, KNS(n)’ defined as

"in (2.5), have a form that can be mimicked by the solution of the renormaliza-
tion group equation, i.e.

Keg(n) = exp(=dp 0) (5.13)
where ¢ is a free parameter to be adjusted to fit vwz(x). If leading log approx-
{mation were sensible, then ¢ would be identified as

=2n£EQ;LA; (5.14)
nQ /A
But we have no large Q2 in the problem. For the present it is more proper to
regard (5.13) merely as a one;paramece; formula for the nomsinglet moments. For
L(z) there is no simple formula that can wmimick the Q2 evclution in QCD; we

adopt the canonical form

L(z) = a(l - 2)° (5.15)
where a and ¢ are to be adju;ted to it vwz(x) and S({x). The only unknowns in
the problem [viz. K(z) and L(2)] are now reduced to three parameters, &, a, and

| ¢, which are to be determined outsidz the realm of the hadron fragmentation problem.

2
For the empirical expressions of vwz(x) we choose lov Q° data for proton

and find in Ref. 28 a parametrization of the early but classic data taken at SLAC.
sy G0 = (1 - 0 [1.274 + 0.5989(1 - x) - 1.675(L - 0% (5.16)
Tor the sea quark distributiom at lcw Q2 we use
x3(x) = 0.17(1 - x° (5.17)
where the normalization is that suggested bylField and Feynman;27 the exponent
1s in the range adopted by thzm and is also suggested by'Berger29 in fitting

dimuon prcduction data.

Instead of inverting the momen:s'in'(5.13) in order to fit (5.16) and (5.17),
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it is more convenient to work directly with moments. From (5.9), (5.12), (5.13)

and (5.15) we have for the moments
W) = M (0) [exp(-dho0) + 4aB(n - 1, ¢ + 1)] (5.18)
<xS$>(n) = Jan/N(n)B(n -1, ¢ + 1) (5.19)

The empirical values for these moments can be trivially obtained from (5.16) and
(5.17) and are plotted as dots in Fig. 7. They can be well fitted by (5.18) and
(5.19) with the choice
=20, a=0.08, ¢ = 3.5 (5.20)

as evidenced by the curves in Fig. 7. Nitﬁ.chese paramaters fixed, we have com-
pletely determined the ud distribution_o(xl, x2) through (5.2) - (5.4).

We note that the value { = 2 determined phenomenologically above turns out
to be quite reasonable, if we use (5.14) to find the corresponding vaiue of Q2.
For Qo and A given in (2.14) [derived from BEBC dat321] and (2.19b) [from CDHS

dat322’23

], we obtain Q = 1.58 GeV and-1.6% GeV, respectively. These are just
the values relevant to the data. Admittedly, (5.13) and (5.14) cannot be taken
seriously for these low 02 values. But the largeness of f{ (for a log log func-
tion) may render their application meaningful. It means that evolution has
been substantial, a circumstance which we have alreadv an;icipated on the basis
of precocious scaling and large momentum fraction for the gluons. The place in
our simple formalism (in the sense ofvleading order QCD) where.such phyvsical
features at low Q2 are stored is the closeness of Q° to A. As we have mentioned
previously, Qo is an effective value of the evolutignary start point determined
from high 02 neutrino scattering data, which obviously must contain information
consistent with low Q2 behavior.

B. Stage (3)

What we have obtained for o(xl, x2) is ‘the inclusive distribution of u and

d in proton. If they are to form a pion by recombination, the outstanding
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question is about the zole of the glions. Obviosusly, the gluons should be
accounted for in some way, lest the momertum they carry would be lost from the
final hadronic spectrum. In stages ©3) and (4) of (5.1) we are concerned with
the hadrenization of all partons (inc.luding gluons), not just u and d quarks,
whose distribution we have just specziiec. Gluons can hadronize either by
being a partner of recombination with q znd a, DY CZm Create qa pairs vhich
then hadronize subsequently in appropriate 'comhinationé. The former pcssibility
implies multi-body recombination whie¢n 1is not likely to be impcrtant ercept per-
haps in the limit x +~ 1; {it 1is totally ig_r{ored in ReZ. 3 as well as in othker
sutsequent investigations. To descrlibe _t in the valon picture is zlso diffi-
cult. .For the reccmb:l:nat;ton of u ant d quarks only it 1s easy; we simply
identify them as U and D valons, whizh aze in the proper representatiom for
hadronization. This fdentification xf qmarks with vwalons is not a brurally
executed approximatior, but is a feature of valons -=2flecting its dual proper-
ties discussed in Sec. IV, Physically, Lt mears that the u and d qoarks In
time develop their owr: clusters and turn. themselves into valons. Mathematically,
the duality can be discussed more preciszly in the case when there is a large
Qz, as in Sec. IV; here we simply borrow that motion without any alzeration.

We are left then with the problem of hadr-.niz:ition of gluons t™rough qq
pair creation. This problem 1s treated juantizatively for a quark jet at highv

1 2 .
At low Q° we have no indepen-—

Q2 because caiculational method is available.
deat guidepost fox" the gluon distritaticn. Al:hougt one can make a roigh esti-
mate for it, it is no: very useful i1f the convarsior. from gluons to q‘i pairs
is not known. At this point we reczll that Duxe anc Taylor6 succeeded in pro-
ducing a remarkably good fit of all -he meson Inclusive cross sectiors in the
recombination model by using an enha-dced sea waich saturates the momentum sum

rule. That is, the q:-1 sea quarks im their fit carry all the momentum of the

incident proton after subtracting of{ tlte momentum fraction of the valence

27
quarks, with none left aver for zhe gluons. We regard that result as being a
satisfactory guide to the formulation of an effective way of accounting for
gluon hadronization. The gluons are first to be completely converted into'qa
pairs in such .a wey chat the quiescent sea (as probed in electroproduction) is
erhanced in norma’ization to the maximum extent with no essential change in
its distribution. The walence quarks and these sea quarks are then to be re-
garded as valons, which recombine.
To carry out this procedure we first calculate the average momentum frac-

tion carried by the valemce quarks. It is
z, = [dxx-[Zu(x:l +d)] = 3fdxdyc(y)st[§J

= 3MV/N(n = Z)KNS(n =2, ¢ =2) = 0,45 (5.21)

The balance in mopenzum fraction is carried by the enhanced sea
0.55 = 6dedy3G(y)£{$} (5.22)

where
Liz) = a(l - )¢ (5.23)

With ¢ -= 3.5 according to (5.20). a is found to be 0.41. Thus the enhancenment
factor is about 5 . “

The complete ud distribution to be identified as valons at the end of stage
(3) in (.?.1) can now be determined. Denoting it by F(xl, X,), we equate it to
¢(x1, %,) in (5.23 with the condition that L(z) in (5.3), (5.4) and (5.10) be
replaced by '1&(2) ‘n (5.23). Tha:z is, in the abbreviated notacic;n of G(y) and

G(yl, yz) which are flawor independent, we have

F(x,, %)) = r‘l)(xl, x,) + F(z)(xl, x,) (5.24)
PP, x) = Jl G (y)12 [x—l] + SL[X—]']]L[ 2 } | (5.25)
e X+, s Y Yy X -
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1 1-y x X X
) -~ 1 . . 1 1} [ z]
Fr0(xy, %) = ZL dyljx dy, b(ylyz):.ZKNs[—yl] + 31;‘—),1 L —yz (5.26)
1 z -

The parameters that govern KNS &nd L through (5.13) and (5.23) have all been
fixed; they are collected here as follows
t=2 a= 0.41, ¢ = 3.5 C(5.27)

+
C. Inclusivz distributioa for 5p » 7 X

Since the two factors in (L.1) are now completely fixed, it ig only a
matter of computation to determine the inclusive cross section of the detected
pion. .To simplify the calculation which could involve quadruple integrals, it
is best to work with moments. Denoting (x/0) (do/dx) by H(x), we define

1

HEN) = f HGOX 2dx (5.28)
D]
From (1.15 znd (3.2) we then obtain
N-1 -
H(N) = 22[(m+n-3)8(mr1, n-1)) "F(n, n)6m+n,N+1 (5.29)
o=
for ¥ 2 3, vhere ’
1 1
F(m, n) = I dxl[ dx2 xlm szn 2F(xl, xz)
0 0
cF V@ )+ 5P @, (5.30)

If we abbreviate the quantity inside the square brackets fn (5.25) and (5.26)

ty J(z), then we have

F P, » = cP@+n - DI@ Lo _ (5.31)
where
1
cW iy = oy Y legy) = 1—10623(}: + % 3) (5.32)
‘o
.1
J@, n) = | de 20 - 2" @ (5.33)
Yo
1 -2
L(n) = J dz 2" L(z) = 0.41B(n - 1, 4.5) o (5.30)

0
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It is shown in Appendix A that
n—l(_l)k -1 : :
J(m, n) = 2L —=[B(k'+ 1, n - k)] KV (m + k)
k=0 n NS
+ 1.23B(m - 1, n + 3.5) (5.35)
For the moments of F(Z) we have
FfP @, n) = 6@ @, n) [2Kyo (m) + 3L (=)L (n) (5.36)
where
1 1-y .
2) - 1 m-1 n-1
¢ (m, n) = J dylf dy, ¥y ¥y Gly;» vy)
0 0
= 105 1 13
= SyBm+ 5, n+ B0+ 3, ) (5.37)

Using £ = 2 in (5.13) all the terms above can be evaluatsd, so we can determine
H(N) unambiguously and without approximation. The result is presented as dots
in Fig. 8. It is of interest to exhibit also the separate contributions of the

F(l) and F(z).

two components, Denoted as H(l)(N) and H(z)(N), they are shown
in Fig. 8 as dotted and dash-dot lines, respéctively. Evidently, the contri-
bution from two valons is about threé times as important as that from a
single valon.

To invert the moﬁents, we approximate H(N) by a sum of two beta functions

A(N) = 0.6B(N, 5) + 0.85B(N - 1, 6) (5.38)

which is shown by the solid line in Fig. 8. It translates immediately to

AG) = 0.6x(1 - 0% + 0.8501 - x)° (5.39)
This 1s the. theoretical predication for (x/cT)dc/dx in ocur model without any
free parameters. Using UT = 38.7mb we plot the corresponding inclusive cross
section in Fig. 9 (solid line). For a comparison with experiment we show in

30, The large error bars are

the same figure data on pp + 77X at 100 and 175 Gev.
due to the fact that the data on Ed30/dp3 must be integrated over Py for which

the measured range is not extensive. Although fixed—pT data are abundant and
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.of high statistics,3l—33 we nead the fntegrated (ove:z pT) data in order to check
the normalization as well as the sh;pe of our prediczior:.. The same daza ard
thecretical result are plotted in lin2ar scale in Fig. 10. The agreement is
evidently very good over the whole x rangz. Nevertheless, the predicticn is
somewhat low in the high x region. Iz cam probably b2 improved 1{ a more:
accurate flavor-dependent valon distrilbutzon is used But more likely, the
value of the evolution parareter ¢ that has.been used is slightly too higa to
describe low-pT reactions. It is obvious that =he da:za can be almest perfectly
fitted by an appropriate lowering of g. Howeve:z, we -esist the texptatjoa to
exhiSit a superb fit by adjusting €. de prefer to.enphasize the formalism

in tﬂis paper and underline the closeness of our no-parameter predictfor tc the

data, fhe only input being electroprodaction dara.
'VI. CONCLUSION

We have formulated a way of studving 1ow-p7 reactions. Although scame
de;ails may be improved, the ideas comraired in the treatment pyobablv rellect
quite accurately the basic mechanism of hzdron fragmemtation. It is a‘quan-
titative description of what has for Zong been vaguelr supposed for production
processes in the quark model. The basic steps nust involve the trans tioms
from.an incident hadron to partons and then back to hradrons. The ey element
in our formulation that gets rid of arsitrary censtarts while incorporating
pto?er dynamics is the introduction of the valot representation. Had<cnie wave
-éunction in terms of the valon coordinates 1s kiown from structure fumctien
analysis. That takes care of the two =nds of tte prcecuction chain. Thke trans-
ﬁucation irom valons to partons is mimicked by formulas- with QCD orig.n, whare
precise parametrization is fixéd by low QE eledl:oprcduction data. The part

that is least reliable in the formulation is the treztment of gluon cenversion.

Since we know that no gluons are left dver in tte firal state, we have adopted
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the classic picture that they all produce qa pairs which subsequently recombine.
Thus the sea is enhanced to the maximum. Again, no free parameters are intro-
duced 1f‘Fhe x deperdence of the 2nhanced sea remains the same as that of the
origin sea, an assumption which i3 not unreasonable. éihilar maximal glu;n
coaversion mechanisr {s used in the quark jet analysis but with more'precision
simce high Q2 is involved; the result contributes to an excellent no-parameter
fit of the quark decay function.lz In this paﬁer we have 1gnoéed flavor depen-
derce of the valon distribution. This should be corrected as soon as a more
thcrough analysis of the nucleon structure function 1s done. Then the n+/n_
ratio of zhe meson ssectra can be calculated.

We have emphasized in this paper the formulation of the low—pT problem.
Application of the formalism to various specific reactions can be carried out
without basic complication. For tae production of strange mesons and baryons,
for example, the effects of quark masses as well as three-valon recombinations
can be investigated cn the basis o the analysis described in Secs. IT and III.
Par:icle correlation can also be s-udied. A batter determination of the evolu-
tiom parameter { can be made ;f we replace vwz by the inclusive cross section
of pp - ﬂ+X as a phemomenological input. At the sacrifice of not predicting
that one reaction, ve gain a reliatle value of ¢ for'low-pT reactions, which
can then b2 used‘to calculate the cro;s sections for all other reactions inclu-
ding those initiatec by meson beams. The idea here is that the evolution from
valens to partons stould be the same in all low—pT reactions, whether they are
in mesons, nucleons, or even hyperon beam particles. The parameter ¢ in (5.23)
for the sea distribution is most probably independent of the hadron, and the
paraneter a can be determined as iajicated in this paper. Since the valon dis-
tribitions are.already given in Sec. 11, we therefore have at hand a tight
scheme that allows oae to calculate the inclusive cross sections ;f all hadronic
reaczions. Needless to say, we are optimistic that the agreement with data will

be good.
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Appendix A. TCerivation of Eq. (5.35)

We want to evaluate

1 -
Im, o) = j gz 2%%a - 2" L@ (A1)
0

where

J(z) = 2K @) + IL(2) (A.2)

The contribution from the second term is trivial. For the first term we know

the moments KNS(")‘ By Mellin transform

ctHie

1 -2+1 ; (A.3)
) = ——-I a z (%) .
Kus® = 7mi) ., Kys
we have for its contribution to (A.1)
ct+ie
. : - (A.4)
Jl(m’ n) = ?TJ .CQKNS(Q)B(m 2, n) )
c-ie

The integrand has simple poles zt L=a,m+1l, +--,m+n-1 Letting k =

2 - m, and using the identity

I(-k) =nf[[(k + Dsinn(k + 1)] (A.5)
we have for the residues at the poles of B(-k, n)
CDMrmy/ [Tk + DTG - 1)

It thén follows from contour integrat-on of (A.4)

n-1 _ k . a1 P
3 (m, ) = 2k§0 (—nll B + 1, 0 - 0] Kygm+ 0 (4.6)

"The result for (A.l) is therefcre as gziven in (5.35).
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.FIGURE CAPTIONS

A schematic diagram showing that the structure function of a hadron h
1s a convclution of the valon distribution in h and-the structure func-

tion of the valona.

. v 2, -1/a"S )
Sketch of the belavior ctf [MNs(n, Q7)] n as a function of &nQ".
The solid l-ne imdicates how it might deviate from a scraigﬁt line when
Q2 is low. The dashed line is a linear extrapolation. - The two lines
have the boundar~ value cf one at QV and Qo, respectively.

- NS o
Flot of [Mﬁen, Q)] lldn versus anZ for various moments. Points
are obzainzc by znalyzing data in Refs. 22 and 23 using f = 3. Straight

lines are =2yeball fits through I\2 =0.3 Gevz.

Slope parameter €(n) as determined from Fig. 3. The two curves represent

" two possible fits using Ejs. (2.13) and (2.18).

A schematic diagram showing pion proéuction in a quark jet initiated

by a virtual photon. The three shaded blobs represent inclusive partom
(quark, antiquark or gluoa) distributions in partons. The open blob
represents recomtdination.

Schematic diagrams for (at ¢(1)(x1, x2) where u and d quarks come Erom
the same valon and (b) ¢(2)(x1m xz) where they come from different valons.
Moments of VNZ and xS. Dots are empirical values. Curves are theoretical
fits that fix the parameters in the nodel.

Theoretical prediztions for the moments of the hadronic @ncluéivé distri-
Sution. Dccr:ed axd dash-dotted curves show the contributions from the

cwo subprocesses indicatec respectively 1n Fig. 6 (a) and (b). The

dots are their sum. The £olid line represents an approximation of the

dots for the purpose of irversion of the moments.
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Fig. 9: Theoretical péediction (solid line) compared to the data (Ref. 30) for
the inclusive cross section pp > ﬂ+X at 100 GeV and 175 GeV.

Fig. 10: Theoretical prediction (solid line) compared to the data (Ref. 30) for

the iInclusive cross section pp n+x at 100 GeV and 175 GeV.
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