CLUSTERING AND HADRONIZATION OF QUARKS:
 A TREATMENT OF THE LOW-P T_{T} PROBLEM

MASTER

Rudolph C. Hwa
Institute of Theoretical Science and Department of Physics
University of Oregon, Eugene, Oregon 97403

*Work supported, in part, by U.S. Department of Energy under contract EY-76-S-062230, TA 4, Mod. A-08. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright covering this paper.

Abstract

The low- p_{T} problem of hadron fragmentation is treated in the framework of quark model. The basic mechanism of hadronization of quarks is recombination, which is formulated here on a firm basis. Clustering of quarks in a hadron is discussed in detail. The quark and antiquark joint distribution is derived systematically with incorporation of describing the distribution are determined by fitting low- Q^{2} electroproduction data. No free parameters are therefore involved in the calculation of the pion inclusive distribution in the fragmentation region. The result agrees well with data in both shape and normalization. The formalism can be applied to calculate inclusive distributions of all nucleon and pion initiated reactions, while for kaon initiated reactions it can be used to extract from low- p_{T} data the quark distributions in kaons.

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

I. AN OVERVIEW OF THE PROBLEM

Strong interactions in the realn of hard processes, such as large-p T_{T} reactions and massive lepton-pair production, have in recent years come withir grasps of quantitative theoretical investigations in the framework of quantum chromodynamics (QCD). However, soft processes such as $l^{\circ}-W_{T}$ reacticns do not yet enjoy a similar satus, since the long-distance behavior at low monentum transfer is closely enmeshed with the confinement problem that is still unsolved. Nevertheless despite the lack of a reliable calculational procedure, significant progress has been made curing the past two years in discovering and understanding the connection between inclusive cross sections in the fragmentation region and the momentum distributions of quarks in hadrons. In this paper we build upon that connection a formulation of the $l_{\text {low- }} \mathrm{T}_{\mathrm{T}}$ problen at the constituent level. C-early, we do not yet have a theory for rigorous zalculations from first principles. But we shall insofar as possible incorporate into the formulation -deas derivable from QCD and find dynamical description of quantities that were introduced with some arbitrariness in earlier models.

The quark model for inclusive reactions in the fragnentation region that we refer to above is the recombination model. ${ }^{1}$ It was 0 chs ${ }^{2}$ who first pointed out the similarity bezween inclusive pion distribution for pp reactions and the structure function of proton in deep inelastic scattering, although the question of how the quarks turn intc hadrons was left open. Das and Hwa ${ }^{3}$ showed that the fragmentation model for adronization is phenomenologizally unacceptable, and suggested a specific recombination mechanism that can give good fits to the data. The preoccupation at that time was to denonstrate that the idea of recombination is phenomenologically sensible both in formalization as well as in x dependence. To that end a simple formula was proposed ${ }^{3}$

$$
\begin{equation*}
\frac{x}{\sigma} \frac{d \sigma}{d x}=\int F\left(x_{1}, x_{2} ; R\left(x_{1}, x_{2}, x\right) \frac{d x_{1}}{x_{-}} \frac{d x_{2}}{x_{2}}\right. \tag{1.1}
\end{equation*}
$$

where $F\left(x_{1}, x_{2}\right)$ is the two-parton joint distribution for the incident hadron and $R\left(x_{1}, x_{2}, x\right)$ is the recombination function. On the basis of counting rule ${ }^{4}$ it was suggested that $R\left(x_{1}, x_{2}, x\right)$ for a meson should have the form

$$
\begin{equation*}
R\left(x_{1}, x_{2}, x\right)=\alpha \frac{x_{1} x_{2}}{x} \delta\left(x_{1}+x_{2}-x\right) \tag{1.2}
\end{equation*}
$$

where α is an unknown normalization constant of order unity. The two-parton distribution is more difficult to determine precisely. As a simple first trial the naive factorizable forn was suggested

$$
\begin{equation*}
F\left(\alpha_{1}, x_{2}\right)=F_{q}\left(x_{1}\right) F_{\bar{q}}\left(x_{2}\right) \rho\left(x_{1}, x_{2}\right) \tag{1.3}
\end{equation*}
$$

where F_{q} and F_{q} are the fistibutions of a quark q and an antiquark $\overline{\mathrm{q}}$, and $\rho\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is a phase-space factor proportional to $1-\mathrm{x}_{1}-\mathrm{x}_{2}$ for proton, but later extended to a more general form. ${ }^{5}$ With these ingredients satisfactory agreement with data was achieved, ${ }^{3}$ giving support to the importance of the recombination mecharism. Later, Duke and Taylor ${ }^{6}$ succeeded in obtaining detailed fits of verious inclusive distributions, using (1.1) - (1.3).

A major effort in the subseqsent development of the recombination model has focused on varicus improved forms of $F\left(x_{1}, x_{2}\right)$ and their implications. In place of (1.3) a Kuti-Weisskopf model ${ }^{7}$ for $F\left(x_{1}, x_{2}\right)$ has been suggested. ${ }^{8-10}$ While it succeeds in satisfying certain kinematical constraints, it remains a phase-space model with uncertain dynamical content. The difficulty is, of course, the unsolved bound-state problem of the hadrons. A way to circumvent that difficulty while still examiring the recombination model is to study photon-initiated reastions ${ }^{11}$ or quark jets. ${ }^{12}$ Within certain approximations the function $F\left(x_{1}, x_{2}\right)$ fo- photon and quark (or gluon) can be calculated in perturbative QCD. Our problem at hand is to formulate a way of calculating $F\left(x_{1}, x_{2}\right)$ for hadrons by tackling the bound-state problem on the one hand and incorporating ideas from the QCD calculations on the other.

In the absence of an adequate understanding of the confinement problem,
the wave function of the constituent quarks in a hadron must to a large extent be phenomenological. Since that wave function must influence the structure function measured at high Q^{2}, it should be possible to extract that information from recent data. In Ref. 13 we have adopted the view that the partons in a nucleon forn three clusters, called valons. The momentum cistribution of the valons is determined from the Q^{2} dependence of the structure functions. This will be discussed in Sec. II for both nucleons and mesons. The valon distribution will turn out to play a crucial role in determining not only $F\left(x_{1}, x_{2}\right)$, but also the recombination function $R\left(x_{1}, x_{2}, x\right)$. Although we cannot at this stage derive it from first principles, its concept is dynamically sound and its quantitative features are reliably determined from phenomenology based on QCD.

In going from the valon distribution to the quark and antiquark joint , distributicn are involved gluon bremstrahlung and quark-fair production. The cumulative effect of such conversion processes is haid to determine at low Q^{2}. In order to arrive at a reasonable formulation of this problem, it is useful to recall the parton model description of muitipartisle production. Feyman invented the parton model specifically for low-p reactions. ${ }^{14}$ Scaling of inclusive cross sections was predicted as a consequence of seale invariant parton distribution, which in turn was suggested by the structure functions determined at SLAC. Although the Q^{2} value was as low as $1 \mathrm{Ge}^{2}$, the scaling phenomenon was already sufficiently evident to be called "precocious." In the context of $Q C D$ where scaling violation is understood as Q^{2} evolution due to gluon bremsstrahlung, ${ }^{15}$ precocious scaling is then equivalent to mature evolution. Inceed, if even at $Q^{2} \simeq 1 \mathrm{GeV}^{2}$ the gluons carry nearly half the nucleon momentum, and the wee parton distribution is already scaiing, gluon bremsstrahlung must be so highly effective for $Q^{2}<1 \mathrm{GeV}^{2}$ that by $Q^{2} \geq 1 \mathrm{Gev}^{2}$ (what is :ssually called low Q^{2}) the major part of the evolution has already
taken place. It is important to recognize this'in order to start from Feynman's ideas about low p_{T} reactions and develop a more quantitative calculational scheme as we shall pursue in Sec. V .

Our aim will be to address the major issues in formulating the low- p_{T} problem, without being involved in the detailed fits of various reactions. Our concern will be the general scheme rather than specific processes. Thus, for example, we shall not emphasize the flavor dependences of quark types or mesons produced, but the question of how both the normalization and shape of $\sigma^{-1} \times \mathrm{d} \sigma / \mathrm{dx}$ are to be determined will be examined carefully. The formulation lends itself in.a straightforward way to more elaborate treatments that account for all types of beam and detected particles.

It should be pointed out that the approach taken here is very different from the ones adopted by the groups at Lund, ${ }^{16}$ Orsay, ${ }^{17}$ and Saclay. ${ }^{18}$ They emphasize quark fragmentation and borrow phenomenologisal description of the fragmentation function from hard scattering processes without addressing the basic problem of hadronization, i.e. how the quarks turn into hadrons.

There are a few parameters in our formulation, but they are completely fixed by the structure functions of the nucleon. Obviously, we need some phenomenological input on the quark distribution, for example. However, after those parameters are determined, the formalism fully specifies the low-p p_{T} problem. There are no free parameters to adjust. Inclusive cross sections of all reactions can be calculated. Our result for pion production fron proton agrees well with data in both shape and normalization.

The organization of the paper is as follows. We first discuss the valons and their momentum distributions in Sec. II, followed by the determination of the recombination function in Sec . III. We then outline the problem of calculating the quark decay function (Sec. IV), which will serve as a guide to the main problem of hadron fragmentation discussed at length in Sec. v. Conclusion is given in the final section.

it. valon distributions in hadrons

Valence quark clusters; called valons, ${ }^{13}$ form a natural bridge: between constituent quarks in the bound-state problem of the hadrons and the partons as probed in deep ineastic scatterirg. ${ }^{17}$ A valor is defined to be a dressed valence quark in $Q C D$. That is, it is a valence quark tozether with its cloud of gluons and sea quarks which can be resolved by high 0^{2} probes. at sufficiently low Q^{2} the internal structure of a valon can no longer be resolved, but at the hadron mass scale it should be possible to distinguish individual valons in a hadron. A nucleon has tree valons and a neson too, just like the constituent quarks. The momentum distrijutions of the valons are independent of the Q^{2} values of the probe. The strusture of a valon itself is, hovever, Q^{2} deperdent. Assuming that a quark is jasically point-like, at least for the distance scale that can be probed in the foreseeable future, the st:ucture functions of a vaion are then completely determined by gluon brenss:ranlung and quark-pair creation in the framework of $2 C D$. Indeed, they are just the "struc-ture functions" of a quark. ${ }^{20}$

For hadron fragmentation the valon listribution in a hadron is of primary importance. It describes the uncalcilable wave function of the constituent quarks. Before discussing how it is to je used in a low- p_{T} reaction, ve describe first how it is determined. Or the basis of the definition wave givea above, and assuming that in a deep iaelastic scattering the probing of the structure of one valor: is not influenced by the interaction of that valon with other spectator valons (the usual impulsa approximation), we can write

$$
\begin{equation*}
\mathcal{I}^{h}\left(x, q^{2}\right)=\sum \int_{x}^{1} \dot{-y G_{v}}(y)\left(y \mathcal{F}^{v}\left(x / y, Q^{2}\right)\right. \tag{2.1}
\end{equation*}
$$

where $\mathcal{F}^{\text {h }}$ is the structure function $\approx \mathrm{f}$ hadron b (e.g. $\mathrm{F}_{2}, \mathrm{xF}_{3}$, etc. $\mathrm{I}, \mathcal{F}^{\mathrm{v}}$ is the corresponding structure function of jalon v, and $G_{v / h}$ is the distribution of v in h. The sum is over various flavor types of v. A pictorial rerresentation of (2.1) for one of the valons teing probed is shown in Fig. 1. The right-
hand side of (2.1) has an implicit dependence on variable Q_{v} that specifies the value of Q at which the valens are resolved as individual units acting as constituent quarks but vith no Giscernable internal structure. We postpone our discussion on this point until later.

As we have indicated in Sec. I, we shall not in this paper be concerned with flavor depen=ence of G / h. To distinguish flavor differences would require more accuzate déta than we now have for phenomenological analysis. The theoretical pecblem of accounting for the differences is easy, and a more complete analysis shall be carried out when the muon scattering data at high Q^{2} become availabie. Thus, for now we consider only an average valon distribution, whose nomalization is

$$
\begin{equation*}
\int_{0}^{-} G_{v / h}(y) d y=1 \tag{2.2}
\end{equation*}
$$

and whicin satisfics the momentum sum rule

$$
\begin{align*}
\int_{0}^{1} j_{v / h}(y) y d y & =\frac{1}{3} & & (h=\text { nucleon }) \tag{2.3a}\\
& =\frac{1}{2} & & (h=\text { pion }) \tag{2.3b}
\end{align*}
$$

Because ve do recognize :he different charges of u - and d-type valons (to be labelled U and D, respecrively), \mathcal{F}^{V} does depend on v.

By the convolation theorem, (2.1) fimplies the moment equation

$$
\begin{equation*}
M^{L_{1}}\left(n, Q^{2}\right)=\sum_{v} M_{v / h}(n) M^{v}\left(n, Q^{2}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
M^{h, v}\left(n, Q^{2}\right) & =\int_{0}^{1} d x x^{n-2} J^{h, v}\left(x, Q^{2}\right) \tag{2.5}\\
M_{v / h}(n) & =\int_{0}^{1} d y y^{n-1} G_{v / h}(y) \tag{2.6}
\end{align*}
$$

If we use $M_{3}\left(n, Q^{2}\right.$: to denote the average of the moments of $x F_{3}\left(x, Q^{2}\right)$ for $U N$ and \bar{u}_{N} scattering on isoscalar target, we can obtain ${ }^{13}$ from (2,4) with $\theta_{c}=0$

$$
\begin{equation*}
M_{3}\left(n, Q^{2}\right)=3 M_{v / i}(n) M_{N S}^{v}\left(n, Q^{2}\right) \tag{2.7}
\end{equation*}
$$

where $\mathrm{M}_{\mathrm{VS}}^{\mathrm{j}}$ is the non-singlet component of the moment of quark distribution in a valon. Eq. (2.7) is of the form of the solution to renormalization group equation, viz. a product of an uncalculable coefficient ($M_{v / s}$) and a function $\left(M_{i S}^{v}\right)$ calculatle in QCD especially at high Q^{2}. Since M_{3} is teeasured in recent neutrino experiments, $M_{v / N}$ can be determined from (2.7) using QCD results. An equation similar to (2.7) can also be derived for muon scattering. If flavor independence :s not assumed, simultaneous analysis of both ν and μ data can then lead to a separation of the U - and D-valon distributions and their moments.

Recall now our earlie: rema:k that the r.h.s. of (2.1) has an implicit dependence on Q_{v}. At $Q_{v}, \mathcal{F}^{v}\left(z, Q_{v}^{2}\right)$ is proportional tc $\delta(z-1)$, signifying that a valon behaves as a =onstituent cuark with no internal structure that can be resolved at Q_{v}. QCD supplemented by this boundary condition completely defines a valon. The implication of the boundary condition on the moments is

$$
\begin{equation*}
\mathrm{v}_{\mathrm{NS}}^{\mathrm{v}}\left(\mathrm{n}, Q_{\mathrm{v}}^{2}\right)=1 \tag{2.8}
\end{equation*}
$$

At high Q^{2} the solution of the renormalization group ecuation has the simple form

$$
\begin{equation*}
M_{N S}^{v}\left(n, Q^{2}\right)=\left(\frac{\alpha\left(Q^{2}\right)}{\alpha\left(Q_{v}^{2}\right)}\right)^{d_{n}^{N S}} \tag{2.9}
\end{equation*}
$$

where in leading log approximation

$$
\begin{equation*}
\alpha\left(Q^{2}\right)=\frac{12 \pi}{(33-2 f) \ln Q^{2} / \Lambda^{2}} \tag{2.10}
\end{equation*}
$$

f being the number of flavors, f the scale of sirong interactions, and $d_{n}^{N S}$ the nS anomalous dimension

$$
d_{n}^{N S}=\frac{4}{33-2 f}\left(1-\frac{2}{n(n+1)}+4 \sum_{j=2}^{n} \frac{1}{j}\right) .
$$

At low $Q^{2},(2.10)$ is invalid; consequently, it cannot be agplied for the evaluation of $\alpha\left(e_{v}^{2}\right)$ in (2.9). Furthermore, (2.9) itself becomes inaccurate and must
be supplemented by other non-leading terms. It means that $\left[M_{N S}^{v}\left(n, Q^{2}\right)\right]^{-1 / d_{n S}^{N}}{ }^{9}$, though proportional to ℓQ^{2} at high Q^{2}, deviates from a straight line in a log plot at low Q^{2} and approaches one at Q_{v}^{2}. This is illustrated in Fig. 2. Since the theoretical inderstanding of the low- $?^{2}$ behavior is incomplete at present, we shall circumvent the difficulty associated with it in the following way. First, we emphasize that the linear part of Fig. 2 is what we want to exploit in the following. The boundary condition (2.8) at Q_{v}^{2}, however, cannot be applied unless we follow the non-linear curve at low Q^{2}. Now, if we stay on the linear line and extrapolate, we would arrive at a different valce (Q_{0}^{2}) where the extrapolated moments are unity. Thus as far as the linear portion goes, we can just as well use the effective formula

$$
\begin{equation*}
\left[M_{N S}^{v}\left(n, Q^{2}\right)\right]^{-1 / d_{n}^{N S}}=\frac{\ln Q^{2} / A^{2}}{\ln Q_{o}^{2} / A^{2}} \tag{2.11}
\end{equation*}
$$

The role of η_{0} here is essentially to parametrize the slope of the linear line in Fig. 2 and should not be regarded as having anything to do with (2.ミ0). It can be interpreted as an effective value of Q where $M_{N S}^{v}\left(n, Q^{2}\right)=1$, provided that the moments are approximated by the leading order result. Thus in that approximation the Q^{2} evolution starts at Q_{0}^{2}. Because (2.10) is not used, there is no reason why Q_{0} cannot be very close to A. It can also be interpreted as giving a rough estimate of the effective size of a valon. It is important to recognize that Q_{0} is not an arbitrary parameter chosen to be large enough to justify leading order calculation. It has a physical meaning, and its value can be determined phenomenologically.

While $H_{N S}^{v}\left(n, Q^{2}\right)$ is a theoretical quantity that cannot be measured directly, $M_{3}\left(n, Q^{2}\right)$ is the moment of experimentally determined structure function. Combining (2.7) and (2.11) we now have for large Q^{2}

$$
\begin{equation*}
\left[M_{3}\left(n, Q^{2}\right)\right]^{-1 / d_{n}^{N S}}=S(n) \ell n Q^{2} / A^{2} \tag{2.12}
\end{equation*}
$$

$$
S(n)=\left[3 M_{v / N^{(n)}}\right]^{-1 / c_{n}^{N S} / \varepsilon_{n Q_{0}^{2} / A^{2}}^{2}}
$$

The inear dependence on $\ln Q^{2} / \Lambda^{2}$ in (2.13) has been rerified by neutrinc experiments, ${ }^{21-23}$ and is regarded as a su=cessful test of QCD. The data of Refs. 2: and 22, however, have apparent discrepencies when the cuantity in (2.1i) is plotted against ℓQ^{2}. They are due Largely to the cse of differert values of f in the evaluation of $d_{n}^{N S}$. In Ref. 13 ve used the BEEC-GGM data, ${ }^{21}$ ar.d obtained the following results (for $\bar{\Xi}=3$):

$$
\begin{array}{r}
\Lambda=0.74 \mathrm{GeV}, Q_{0}=0.82 \mathrm{GeV} \\
G_{v / N}(y)=\frac{105}{16} \cdot j^{1 / 2}(1-y)^{2} \tag{2.15}
\end{array}
$$

The method used there depends cruciai-ly on the availebility of the $n=2$ moment, for which we know from (2.3) that $M_{v, i}(2)=1 / 3$. Since the CDHS data 22,23 do not provide $M_{3}\left(2, Q^{2}\right)$, we use here a slight varlation of the method to extract $G_{v / N}(y)$. Adopting $f=3$ as being more relevant. we plo: $\left[M_{3}\left(n, Q^{2}\right)\right]^{-1 / d_{n}^{N S}}$ against ℓQ^{2} as in Fig. 3, and obtain $\Lambda^{2}=0.3 \mathrm{Sev}^{2}$. The slopes, $S(n)$, of the straight-line fits are then determined, as show in Fig. 4. To fit $S(n)$, we assume that the valon distribution has the form

$$
\begin{equation*}
G_{v / N}(y)=g_{c^{p}}^{j-1}\left(1-y_{:}^{-k-1}\right. \tag{2.16}
\end{equation*}
$$

In which the three parameters are constralned $b=(2.2)$ and (2.3), i.e.

$$
\begin{equation*}
g_{o}=[B(j, k)]^{-1}, j=E / 2 \tag{2.17}
\end{equation*}
$$

where $B(j, k)$ is the $b \in t a$ function. Thus the m:Tments $0:$ (2.16) are

$$
\begin{equation*}
v_{v / N}(n)=B\left(n+\frac{k}{2}-1, k\right) P\left(\frac{k}{2}, x\right) \tag{2.18}
\end{equation*}
$$

We can then fit $S(n)$ by. (2.13) and (2-18). treating $@_{0} \approx n c k$ as free parameters. The results are shown in Fig. 4. The best fit (solic line) is for

$$
k=2.5, Q_{0}=0.65 \mathrm{Ge}^{\nabla}, \Lambda=0.55 \mathrm{Gel}
$$

although a fit with $k=3$ (dashed line) is also in gcod agreement with the data: the parameters are

$$
k=3.0, Q_{c}=0.64 \mathrm{GeV}, \Lambda=0.55 \mathrm{GeV}
$$

The difference $b \in:$ ween $\{2.14$) ard (2.19) reflect the discrepencies between the data of Ref. 21 and 22. Nevertreless, if we regard the range of k from 2.5 to 3.0 to be adequate:y apsroximated by the value 3 , then both sets of data yield the same valon discribu:ion, i.e. (2.15), which is not sensitive to the absolute normalization of the daza. We have therefore extracted a rather essential feature of the data. II describes the wave function of the valons inside a nucleon. It summarizes the hadronic structure--the part that is not calculable by present methods in QCD.

While (2.15) is obtained by detailed analyses of the deep inelastic scattering data, the =esult can also be obtained by an alternative and more direct method, once che =eality of the zalon concept is accepted. The only experimental input needed $: s$ that $\mathrm{VW}_{2} \sim(\underline{1}-x)^{3}$ as $x \rightarrow 1$. Since \dot{k} is the only parameter to be determined in (2.16), we need only examine the large-x, hence large-y behavior of (2.1). The Enformation we need from $Q C D$ is the large z behavior of the $v \in l o n$ structure function $\mathcal{F}^{V}\left(z, Q^{2}\right)$ at moderate Q^{2}. We have already mentioned that t is function has the boundary condition that it is proportional to $\delta(z-1)$ at Q_{v}^{2}. At higher Q^{2} gluon bremsstrahlung smooths out this siagularity $a s z=1$ and turns $\mathcal{F}^{v}\left(z, Q^{2}\right)$ into a gently-varying function of z, tiae shape of which depends on Q^{2}. But for any Q^{2} not too close to Q_{v}^{2} the universal feato:e is that $\mathcal{H}^{i}\left(z, Q^{2}\right)$ is finite as $z \rightarrow 1 .{ }^{20}$ Using this property in (2.1) Emplies at moderate Q^{2}

$$
\begin{equation*}
\exists^{N}(x) \propto \int_{x}^{1} d y G_{v / N}(y), x \rightarrow 1 \tag{2.21}
\end{equation*}
$$

Hence, the experimental lact that: the l.h.s. behaves as $(1-x)^{3}$ demands the $(1-y)^{2}$ behavior for the integrand as $y \rightarrow 1$. The distribution in (2.15) then follows uniquely given (c.16) and (2.17). At high enough $Q^{2}, \mathcal{F}^{v}\left(z, Q^{2}\right)$ will vanish as $z+1$; tic consequence on $\mathcal{Z}^{N}\left(x, Q^{2}\right)$ is then that it will vanish
faster than $(1-x)^{3}$ by a corresponding increase in the exponent completely determined δy (2.1). This is the expected result in $Q C D$. f.t low or medium Q^{2} there is no such complication, and the general result from (2.21) is that for any hadron h we have

$$
\begin{equation*}
G_{v / h}(y) \propto(1-y)^{k-1}, \text { as } \dot{y} \rightarrow 1, \tag{2.22}
\end{equation*}
$$

if and only : f

$$
\begin{equation*}
f^{h}(x)=(1-x)^{k}, \text { as } x+1 \tag{2.23}
\end{equation*}
$$

Obviously, this method can be applied to the meson case where only the large x behavior is known.

Consider now the valon distribution in a pion. The monentum sum rule (2.3b) fmplies $j=k$, so it follows that

$$
\begin{equation*}
G_{v / \pi}(y)=\frac{1}{B(k, k)}[y(1-y)]^{k-1} \tag{2.24}
\end{equation*}
$$

There are now reasonably good evidence from massive lepton-pair production ${ }^{24}$ that the structure function of a pion behaves very nearly like ($1-x)^{1}$, as $x \rightarrow 1$. Frow (2.23) and (2.24) it means $k=1$ and

$$
\begin{equation*}
G_{v / \pi}(y)=1 \tag{2.25}
\end{equation*}
$$

Similar consideration when applied to the K meson would give the same result If the structure function of a kaon behaves also as ($1-x)^{1}$. However, we can do better than that. Since a valon plays the role of a constituent quark, the strange and nonstrange valons should have different masses, and therefore different momentum distributions. We shall consider this problem below after discussing the multi-valon dis:ributions.

Since we know the precise number of valons in a hadron, and since we do not distinguish valon types of the same mass, the mu:ti-valon distributions can be simply obtained by symmetry consideration and sum rules. Consider first the rucleon case. We write the three-valon distribction in the general symetric form

$$
\begin{equation*}
G_{v / N}\left(y_{1}, y_{2}, y_{3}\right)=\alpha_{N}\left(y_{1} y_{2} y_{3}\right)^{k-1} \delta\left(y_{1}+y_{2}+y_{3}-1\right) \tag{2.26}
\end{equation*}
$$

Then the two-valon distribution is

$$
\begin{align*}
G_{v / N}\left(y_{1}, y_{2}\right) & =\int_{0}^{1} d y_{3} G_{v / N}\left(y_{1}, y_{2}, y_{3}\right) \\
& =\alpha_{N}\left[y_{1} y_{2}\left(1-y_{1}-y_{2}\right)\right]^{k-1} \tag{2.27}
\end{align*}
$$

and the single-valon distribution is

$$
\begin{align*}
G_{v / N}\left(y_{1}\right) & =\int_{0}^{1-y_{1}} d_{2} G_{v / N}\left(y_{1}, y_{2}\right) \\
& =\alpha_{N} B(\kappa, k) y_{1}^{k-1}\left(1-y_{1}\right)^{2 \kappa-1} \tag{2.28}
\end{align*}
$$

Comparing this with (2.15) yields

$$
\begin{equation*}
K=3 / 2, \alpha_{N}=105 / 2 \pi \tag{2.29}
\end{equation*}
$$

Note that (2.27) specifies how the distribution vanishes as $y_{1}+y_{2}+1$. It will play an important role in a later section in determining the limiting behavior of the two-parton distribution $F\left(x_{1}, x_{2}\right)$ and in avoiding the assumption of either the factorizable form (1.3) or the Kuti-Weisskopf model. ${ }^{7}$

In the pion case the two-valon distribution is

$$
\begin{equation*}
G_{v / \pi}\left(y_{1}, y_{2}\right)=\alpha_{\pi}\left(y_{1} y_{2}\right)^{\lambda-1} \delta\left(y_{1}+y_{2}-1\right) \tag{2.30}
\end{equation*}
$$

Integration over y_{2} and comparison with (2.25) yield

$$
\begin{equation*}
\alpha_{\pi}=1, \lambda=1 \tag{2.31}
\end{equation*}
$$

For kaons, we take into account the mass difference between light and heavy valons, identifying the former with the non-strange constituent quarks, and the latter with the strange constituent quark. We write the two-valon distribution in a kaon as

$$
\begin{equation*}
G_{v / K}\left(y_{1}, y_{2}\right)=\alpha_{K}^{y} y_{1}^{a-1} y_{2}^{b-1} \delta\left(y_{1}+y_{2}^{1}-1\right) \tag{2.32}
\end{equation*}
$$

where y_{1} is the momentum fraction of the light valon and y_{2} that of the heavy one. The single-valon distributions are then

$$
\begin{align*}
& G_{v_{\ell} / K}\left(y_{1}\right)=\alpha_{K} y_{1}{ }^{a-1}\left(1-y_{1}\right)^{b-1} \\
& G_{v_{h}} / K\left(y_{2}\right)=\alpha_{K} y_{2}^{b-1}\left(1-y_{2}\right)^{a-1} \tag{2.33b}
\end{align*}
$$

where $\alpha_{K}=[B(a, b)]^{-1}$. The average momentum fractions carried by tie l-ght and heavy valons are, respectively,

$$
\begin{align*}
& \bar{y}_{1}=\alpha_{K} B(a+1, b)=a /(a+b) \tag{2.3*a}\\
& \bar{y}_{2}=\alpha_{K} B(a, b+1)=t(a+b) \tag{2.3+b}
\end{align*}
$$

If we regard the valons as constituent cuarks bounc non-relativisticaily in a bag, then their average momenta shoold be proporticnal to their masses, ${ }^{n_{i}}{ }^{\text {and }}$ wh. Thus we have

$$
\begin{equation*}
\frac{a}{b}=\frac{\bar{y}_{1}}{\bar{y}_{2}}=\frac{m_{\ell}}{m_{h}}=\frac{2}{3} \tag{2.35}
\end{equation*}
$$

With this constraine it should be possitle to letemine a and berarately by fitting data on lepton-pair production in kaon initiated reactions using Drel- Yan model, ${ }^{25}$ or by applying the reconbiration model to low- p_{T} inclusive reactions involving K mesons. ${ }^{26}$

Similar consideration can be applitd to the hyperon in determinirg the effect of valon mass iffference on tize momentum distribution. Aloftirg the form

$$
\begin{equation*}
G_{v / Y}\left(y_{1}, y_{2}, y_{3}\right)=\alpha_{Y}\left(y_{1} y_{2}\right)^{a-1} y_{3}^{b-1} 5\left(y_{1}+y_{2}+y_{3}-1\right) \tag{2.36}
\end{equation*}
$$

for the three-valon distribution, where y_{1} and. y_{2} refer to the two Eight valers, and y_{3} the heavy one, one san show tiat

$$
\alpha_{Y}=[B(a, a+b) B(a, b)]^{-1}
$$

and

$$
\begin{equation*}
\frac{a}{b}=\frac{m_{l}}{m_{h}}=\frac{2}{3} \tag{2.3E}
\end{equation*}
$$

We have thus far dwelt exclusively on the distribution functicns $G_{v / h}(y)$, etc., which are probajility functions defined in the nonfnvariant fhase space dy. The invariant distributions defined in the inveriant phase space dy/y are

$$
\begin{gather*}
F_{\cdot / / h}(y)=y G_{v / h}(y) \\
F_{v / \pi}\left(y_{1}, y_{2}\right)=y_{1} y_{2} G_{v / \pi}\left(y_{1}, y_{2}\right) \\
F_{v / N}\left(y_{1}, y_{2}, y_{3}\right)=y_{1} y_{2} y_{3} G_{v / N}\left(y_{1}, y_{2}, y_{3}\right) \tag{2.39c}
\end{gather*}
$$

$$
(2.39 a)
$$

(2.39b)
etc. Sometimes it is more convenient to work with the F rather than the G functions. One can readily keep rrack of all the momentum factors in a convolution equaticn if all quantities are invariant F functions and integrals are performed ove: the invariant phase space.
inf. recombination fuaction

Then the recombination function was first introduced, ${ }^{3}$ there was some ancertainty about its precise form. For the formation of a meson, quark-antiquark recombinaticn was considered dominant. The gluons would contribute to nultifarton recoritination processes, which were thought to be less important. On the basis of ccuntirg rule the momentum dependence of the recombination fiunction was suggested to be that given in (1.2). The normalization constant a was unspecified. The important property of (1.2) is that it vanishes at $x_{i}=C$ and 1 , sigmíying short-zange correlation. . Indeed, it has been shown ${ }^{9}$ that (1.2) corresponds to a cor-elation length of two units in rapidity. Although the phenonenological appification of (1.2) has been successful, the recombination function has thus far remained as an imprecisely defined quantity, End its derivation iacks rigor. A better understanding of this function is crucial to a profer formulation of the recombination model.

The task is made simple by the development of the valon concept. Take the pion for definiteness. The absolute square of the wave function $\stackrel{\sim v}{ }\left(y_{1}\right) v_{2}\left(y_{2}\right) \mid \pi>$ descrijes not enly the probability of finding the two valons of a pion at y_{1} and y_{2}, but alsc the probability of forming a pion from two
valons at those y_{i} values. The amplitudes are related by complex conjugation. In a theory in which valon states are defined, this relationship is exact and defines reconbination. Thus the invariant recombination function is

$$
\begin{equation*}
R^{\top}\left(y_{1}, y_{2}\right)=F_{v / \pi}\left(y_{1}, y_{2}\right) \tag{3.1}
\end{equation*}
$$

The reason wiy we have no ambiguity here, as opposed to the case in Ref. 3, is that the valon content of a hadzon is definite and known. Gluons are automatically taken into account in that they dress up the quarks to form the valons. The question of how the partons in an incident hadron turn into valons of the produced particles remains to ba disccssed, as we shall do in the next two.. sections. The issues are, howejer, distinct. Here, we are concerned only with the probability for recombination, given the valon momenta.

Eq. (3.1) expresses the reambination function when the pion momentum is normalized to one. If the pion momentum is a fraction x of the inftial hadron momentum, then (2.30), (2.31), (2.39bi and (3.1) imply

$$
\begin{equation*}
\mathbf{R}^{\pi}\left(x_{1}, x_{2}, x\right)=\frac{x_{1} x_{2}}{x^{2}} \dot{\varepsilon}\left(\frac{x_{1}}{x}+\frac{x_{2}}{x}-1\right) \tag{3.2}
\end{equation*}
$$

1r: agreement with (1.2). Morecver, tize normalization is now completely fixed. Note that x_{1} and x_{2} refer to the momentum fractions of the valons that recombine. The result is obtained without using the counting rule, ${ }^{4} y \geq t$ it is in agreement with that obtained by using it; provided that quarks are replaced by valons. In a similar way we can get the recombination functions for the other hadrons:
Kaon: $\quad R^{K}\left(x_{1}, x_{2}, x\right)=[B(a, b)]^{-1}\left(\frac{x_{1}}{x}\right\}^{a}\left\{\frac{x_{2}}{x}\right)^{b} \delta\left(\frac{x_{1}}{x}+\frac{x_{2}}{x}-1\right)$
Nucleon: $\quad{ }_{R}{ }^{N}\left(x_{1}, x_{2}, x_{3}, x\right)=\frac{105}{2 \pi}\left(\frac{x_{1} x_{2} x_{3}}{x^{3}}\right)^{\frac{3}{2}} \delta\left(\frac{x_{1}}{x}+\frac{x_{2}}{x}+\frac{x_{3}}{x}-1\right\}$
Hyperon: $R^{Y}\left(x_{1}, x_{2}, x_{3}, x\right)=\frac{\left(x_{1} x_{2} / x^{2}\right\}^{a}\left\{x_{3} / x\right)^{b}\left\{\frac{x_{1}}{x}+\frac{x_{2}}{x}+\frac{x_{3}}{x}-1\right)}{B(a, a+b) B(a, b)}$
IV. QUARK DECAY FUNCTION

Before we consider the problem of hadron fragmentation, we discuss first quark fragmentation as an introduction to the subject. The decay function for quark fragmentation can je calculated exactly in QCD and recombination model without using any phenomenological input, and the result gives a good no-parameter fit to the data. ${ }^{12}$ The decay function $D\left(x, Q^{2}\right)$ is related to the $q \bar{q}$ distribution and recombination function in just the same way as in (1.1):

$$
\begin{equation*}
x D\left(x, Q^{2}\right)=\int F\left(x_{1}, x_{2}, Q^{2}\right) R\left(x_{1}, x_{2}, x\right) \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} \tag{4.1}
\end{equation*}
$$

except that now the F function depends also on Q^{2}, which in the case of a quark jet from $e^{+} e^{-}$annihilation, for example, is the square of the $c . m$. energy. When Q^{2} is large, $F\left(x_{1}, x_{2}, Q^{2}\right)$ can be calculated in $Q C D$. Hadron fragmentation is difficult to treat precisely because $F\left(x_{1}, x_{2}\right)$ in (1.1) has no larje Q^{2}, so perturbative method in QCD is not applicable. Nevertheless, the similarity between (1.1) and (4.1) provides us with the opportunity to use quark fragmentation as a more tractable example io elucidate the ideas involved in our calculation of hadron fragmentation in the following section.

A pictorial depiction of (4.1) is shown in Fig. 5. The cross-hatched blobs represent evolution functions which describe the degradation of Q^{2} as the quark created at the virtual photon vertex emits gluons and quark pairs. $F\left(x_{1}, x_{2}, Q^{2}\right)$ is the $\bar{q} \bar{C}$ distribution represented by the part in the figure. from the initial quark at Q^{2} to the q and \bar{q} at the position of the vertical dotted line. Evidently, one bifurcation vertex must be considered'explicitly, at which the momentum fractions and virtual masses of the quarks and gluons involved are to be integrated and the parton types (quark, antiquark, and gluons) to be summed. The evolution functions are known from renormalization group analysis. On the other side of the dotted line in Fig. 5 is the
recombination function. At the dotted line the Q^{2} value associated with the q and \bar{q} is Q_{0}^{2}. It may appear inconsistent to regard them on the one hand as quark and antiquark resulting from sequertial bifurcations in $F\left(x_{1}, x_{2}, Q^{2}\right)$, but on the other hand as valons in connection with hadronization througit $R\left(x_{1}\right.$, x_{2}, x, the label Q_{0}^{2} being implicit in beth these functions. This duality is actually an essential property of the valons sirice they play the role of bridging the hard and soft processes. What is fnvolved is exactly analogoas to the case of structure functions $f \in=$ which the valen concept was first introduced, the only difference being the direction of Q^{2} change, Recall (2.1) and Fig. 1. In the two factors in the integrand, or for the two blobs in Fig. 1, the valon plays dual roles. In $G_{v, h}(y)$ the valon is the valence qua:k cluster, and at Q_{0} its internal structure cannot be itscerned. The counterpart of $G_{v / h}(y)$ in (4.t) is $R\left(x_{1}, \dot{x}_{2}, x\right)$, the precise connection having been established by (3.1). For the factor $\boldsymbol{F}^{2}\left(2, Q^{2}\right)$ in (2.1) describing the structure function of a valon, the mathemarical treatment regards the valon Inttially as a point quark at Q_{0} with momentum distribution $\delta(z-1)$, and tracks =he modification of the distribution as a result of gluon bremsstrahiung unitl a quark in the cluster is struck by a virtual photon at Q^{2}. This is done in QCD with the initial and finel quarks treated as point quarks. Loosely, one may refer to the distribution as quark structure function, ${ }^{20}$ jut physically it is the valon structure function. The ccunterpart of $\mathcal{F}\left(2, Q^{2}\right)$ in (4.1) is $F\left(x_{1}\right.$, $\left.x_{2}, Q^{2}\right)$. Evidently, the processes represented by Figs. 1 and 5 are anazogous; in the former, Q^{2} increases from left to right, while in the latter, it decreases.

The parallel between (2.1) and (1.1) provides the excuse for the use of leading-order calculation of $F\left(x_{1}, x_{2}, Q^{2}\right)$ in pertursative $Q C D$ for Q^{2} degradation all the way down to Q_{0}^{2}. That is because Q_{0} itself ${ }^{\text {is }}$ determined in the same approximation. Recall that it is with the leading oider result for $\mathcal{F}^{\mathrm{V}}\left(\mathrm{x} / \mathrm{y}, \mathrm{Q}^{2}\right)$ substituted into (2.1) that the UN data is fitted. Thus in both
the structure function $\mathcal{I}^{h}\left(x, Q^{2}\right)$ and decay function $x D\left(x, Q^{2}\right)$. the leadingorder approximation (and the asscciated choice of Q_{o}) is the common vehicle that is convenient in re_ating valons to hard-collision processes. An improvement of the approxination does not change the parallelism in those relationships for the two functions, nor is it likely to lead to a significantly different result for $D\left(x, Q^{2}\right)$ if the structure function is regarded as the source of phenomenological infut or the degree of evolution.

A final remar: about the caliulation of $D\left(x, Q^{2}\right)$ is that it must account for the momenta carried ty the gluons because hadronization is complete, i.e. all partons get cowverted into hadrons in the end. If $P\left(x_{1}, x_{2}, Q^{2}\right)$ is the $q \bar{q}$ inclusive distribueion in a quark jet which has momentum leakage into the gluons, its use in (4.1) would not lead to the correct normalization for $D\left(x, Q^{2}\right)$.
Thus it is necessary to include in $F\left(x_{1}, x_{2}, Q^{2}\right)$ the q and \bar{q} converted from gluons. In that way the eecombination model can fully account for the hadronfzation of all the partons in the quark jet.

All the consiceations about quark fragmentation discussed in this section have thei: counterfarts in hadron fragmentation to which we now turn.

v. HADROR FRAGMENTATION

The problem of hadror fragmentation is difficult to treat because, unlike hard-collision processes, it has n large Q^{2} scale. Hadron-hadron collisions at high erergies are domirantly sȯt processes since reaction rates drop precipitously with inceasing p_{T}. Thos they do not reflect the short distance behavior of the interacticn, and one cannot use the usual impulse approximation valid for large Q^{2} reactions. However, there is one feature about multiparticle production that saves us from hopeiess complications. It is the short-range correlation of the produced particles. On the basis of that one may first of
all be justified to ignore the target hadron when studying the fragmentation region of the projectile. Furthermore, at the parton level the interaction between partons must also be short-ranged. The recombination model relies on the short-range character of the interaction to describe the hadronization process which is approximately local in rapidfty ($\Delta y \sim 2$) so that what goes on In the fragtentation region may be dissociated from that in the central region. These properties form the basis for (1.1), which has ar. appearance that follows from impulse approximation.

What is involved in hadron fragmentation is a multistage process:
initial hadron $\xrightarrow{(1)}$ valons $\xrightarrow{(2)}$ partons $\xrightarrow{(3)}$ valons $\xrightarrow{(4)}$ produced hadrons (5.1) Stage (1) has been discussed in sec. Il and is represented by the valon distribution $G_{v / h}$: Stage (4) is known from Sec. III and is described by the recombination function R. Stages (2) and (3) are our concerns here; together with (1) they specify $F\left(x_{1}, x_{2}\right.$) which is the major unknown in (1.1).
A. Stage (2:

If we were able to peek at the parton state without disturbing the system, we would presumably discover quark and antiquark distributions which are very close to the ones determined by electroproduction at low Q^{2}. We do not know how low the value of Q^{2} must be in order to be relevant to the low- p_{T} problem. In the precusory model for $F\left(x_{1}, x_{2}\right)$ which denoted two-parton distribution since the valon concept was not yet introduced, the form (1.3) was adopted, ${ }^{3}$ where $F_{q}\left(x_{1}\right)$ and $F_{q}\left(x_{2}\right)$ were assumed to be the quark and artiquark distributions determined by Field and Feynman ${ }^{27}$ in fitting the SLAC data on nucleon structure functions. The Q^{2} range was $1-5 \mathrm{GeV}^{2}$. Although one may question whether such "high" values of Q^{2} are relevant for ${ }^{2} \begin{aligned} & \text { ow } \\ & P_{T}\end{aligned}$ reactions where $p_{T}^{2} \ll 1(\mathrm{GeV} / \mathrm{c})$, the result of the calculation lends support to their relevance. Presumably, precocious scaling implies that the precise value of Q^{2} is unimportant and that even at Q^{2} in the vicinity of. $3 \mathrm{GeV}^{2}$ the parton distributions have already run
through the major course of their Q^{2} changes (1.e. mature evolution). Indeed, as we shall see below, the parameter that characterizes the evolution from valons to partons in stage (2) turns out to be quite large.

The strategy of our approach to the problem is as follows. We first admit that we have no way to calculate the parton distributions from first principles. Some free parameters must per force be introduced; they are, however, not to be determined by the hadronic inclusive cross section for which we want to obtain a no-parameter $f i t$, but by $\mathrm{VN}_{2}(x)$ at low Q^{2}. What we achieve as an improvement over (1.3) is that the valon distribution in stage (1) properly introduces the hadron wave function and automatically takes care of the phase space problem, which was handled in an ad hoc manner by the factor $\rho\left(x_{1}, x_{2}\right)$ in (1.3). The evolution in stage (2) from the valons to the partons will be parameterized by formulae reminiscent of QCD. Although they cannot be taken seriously, the largeness of the evolution parameter renders the procedure not totally nonsensical.

For definiteness we shall consider hereafter the fragmentation of proton only and the detection of π^{+}in particular. Thus a valence u quark in the proton ends up in the π^{+}. Let $\Phi\left(x_{1}, x_{2}\right)$ be the invariant inclusive distribution of u and \bar{d} carrying momentum fractions x_{1} and x_{2} of the proton, respectively. It is obtained by a convolution of the distributions in stages (1) and (2). Since the u and \bar{d} quarks may either both come from the same valon or come separately from two different valons, $\phi\left(x_{1}, x_{2}\right)$ has two components

$$
\begin{equation*}
\phi\left(x_{1} ; x_{2}\right)=\phi^{(1)}\left(x_{1}, x_{2}\right)+\phi^{(2)}\left(x_{1}, x_{2}\right) \tag{5.2}
\end{equation*}
$$

which are illustrated by the diagrams in Fig. 6. Let $K(z)$ denote the invariant distribution of finding a quark with momentum fraction z in a valon of the same flavor. (As in all distributions considered in this paper, color and spin components are averaged over in the initial state and summed in the final state so that we are not concerned explicitly with such degrees of freedom.) Let $L(z)$ be the same for any antiquark or a quark with flavor different from that of the
parent vaion. Since a proton has two 0 valons and one D valon, we have

$$
\begin{align*}
\Phi^{(1)}\left(x_{1}, x_{2}\right)= & 2 \int d y \epsilon_{D / N}(y) K\left(\frac{x_{1}}{y}\right) L\left(\frac{x_{2}}{y-x_{1}}\right) \\
& +\int d y G_{D / N}(y) L\left(\frac{x_{1}}{y}\right) L\left(\frac{x_{2}}{y-x_{1}}\right) \tag{5.3}
\end{align*}
$$

$$
\begin{align*}
{ }^{(2)}\left(x_{1}, x_{2}\right) & =2 \int d y_{1} d y_{2} G_{u U / N}\left(y_{1}, y_{2}\right) K\left(\frac{r_{1}}{y_{1}}\right) L\left(\frac{x_{2}}{y_{2}}\right) \\
& \left.+2 \int d y_{1} d y_{2} G_{U D / N}\left(y_{1}, y_{2}\right)\left[\kappa \|_{1}^{x_{1}}\right)+L\left(\frac{x_{1}}{y_{1}}\right)\right] L\left(\frac{x_{2}}{y_{2}}\right) \tag{5.4}
\end{align*}
$$

In our approximation in Sec. II, the valon distributions are assumed to be flavor independent due so the lack of high Q^{2} data ircm which to extract the flavar dependence. Thus for brevity we shall stppress the subscripts of the G functions in (5.3) and :5.4), and in computation below use (2.28) and (2.27) for them; respectively.

Eq. (5.3) is not precisely a convolution eçuatior. The distributicn of ū्d in a valon is analogous to that in a cuark jet, for whtich a precise expression in perturbative QCD is 弓iven in Ref. -?. But at low C^{2} such an expression for a valon jet is unreliable. Since the Eunctions X and L will be determired phenomenologically anyway, an approxinate expression such as the one in (5.3) that captures the essence of quark jet; is totally adequate. Note that (5.3), (5.4) and (2.28) make possible the fo-lowing relation to be satisfied

$$
\begin{equation*}
\int_{0}^{1-x_{1}} \frac{d x_{2}}{x_{2}} \Phi\left(x_{1}, x_{2}\right) \propto \Phi\left(x_{1}\right) \tag{5.5}
\end{equation*}
$$

where $\phi\left(x_{1}\right)$ is the u quark distribution ir. a prozon, ohich we denote more explicitly as ${ }_{\mathrm{u}}$:

$$
\begin{equation*}
J_{u}(x)=\int_{x}^{1} d y G(y)\left[2 E\left(\frac{x}{y}\right)+l\left(\frac{x}{y}\right)\right] \tag{5.6}
\end{equation*}
$$

Similarly, the integral of (5.4) over x_{1} =s'proporticnal to the \bar{d} antiquark
distribution

$$
\begin{equation*}
\Phi_{\bar{d}}\left(x ;=3 \int_{x}^{1} d y G(y) L\left[\frac{x}{y}\right)\right. \tag{5.7}
\end{equation*}
$$

although the integral of (5.3) is not. We have, however, not missed the mark by very much, and tie simplicity of (5.3) justifies its usage in the following. Eqs. (5.2) - (5.4) provije a basic improvement over (1.3). In our view they constitute a physfically nore correct expression of the two-parton distribution than the Kuti-Neisskopf godel. ${ }^{7}$

The functions $E(2$; and $L(z)$ are to be determined by ensuring that they lead to the correct ϕ_{u} and ϕ_{d} distributions at low Q^{2}. More precisely, we calculate the observasle quantities $\mathrm{vW}_{2}(\mathrm{x})$ and the sea quark distribution $\mathrm{xS}(\mathrm{x})$ which car: be detervinee :rom leptoproduction data:

$$
\begin{align*}
U N_{2}(x) & =\int d \operatorname{dr} 2 G_{U / p}(y)\left\{\frac{4}{9}\left[K\left(\frac{x}{y}\right)+L\left(\frac{x}{y}\right)\right]+\frac{1}{9}\left\{4 L\left(\frac{x}{y}\right)\right]\right\} \\
& +\int \operatorname{dyG} G_{D / p}(y)\left(\frac{4}{9}\left[2 L\left(\frac{x}{y}\right)\right]+\frac{1}{9}\left\{K\left[\frac{x}{y}\right)+3 L\left(\frac{x}{y}\right)\right]\right\} \\
& =\int d y G(y)\left[K\left(\frac{x}{y}\right)+3 L\left(\frac{x}{y}\right)\right] \tag{5.8}\\
x S(x) & =\int d y\left[2 G_{J / p}(y) L\left(\frac{x}{y}\right)+G_{D / p}(y) L\left(\frac{x}{y}\right)\right\} \\
& =3 \int \operatorname{dyG}\left(y g L\left(\frac{x}{y}\right)\right. \tag{5.9}
\end{align*}
$$

$K(z)$ and $L(z)$ are Eavored and unEavored distributions ${ }^{20}$ which can be expressed in terms of the siaglet $\left(K_{S}\right)$ and nonsinglet ($K_{N S}$) components

$$
\begin{gather*}
\mathrm{K}=\left[\mathrm{K}_{\mathrm{S}}+(2 \mathrm{E}-1) \mathrm{K}_{\mathrm{NS}}\right] / 2 \mathrm{f}=\mathrm{K}_{\mathrm{NS}}+\mathrm{L} \tag{5.10}\\
\mathrm{~L}=\left(\mathrm{K}_{\mathrm{S}}-\mathrm{K}_{\mathrm{NS}}\right) / 2 \mathrm{f} \tag{5.11}
\end{gather*}
$$

Hence, we can rewrite (5.B) as

$$
\begin{equation*}
U W_{2}(x)=\int d \ddot{j} G(y)\left[K_{N S}\left(\frac{x}{y}\right)+4 L\left[\frac{x}{y}\right)\right] \tag{5.12}
\end{equation*}
$$

Now, we specify the parame:rization of the uncalculable functions $K_{N S}(z)$ and $L(z)$ so that they can be derermined phenomenologically. for $K_{N S}(z)$ we assume on the basis of precocioas scaing that its moments, $\mathrm{K}_{\mathrm{NS}}(\mathrm{n})$, defined as in (2.5), have a form that can be mimicked by the solution of the renormalization group equation, i.e.

$$
\begin{equation*}
\mathrm{K}_{\mathrm{is}}(n)=\exp \left(-\mathrm{d}_{\mathrm{n}}^{\mathrm{NS}} \zeta\right) \tag{5.13}
\end{equation*}
$$

where ζ is a free parameter to be adjusted to fit $\mathrm{VH}_{2}(x)$. If leading log approximation were sensible, then ζ would be identified as

$$
\begin{equation*}
\zeta=\ln \frac{\ln Q^{2} / \Lambda^{2}}{\ln Q_{0}^{2} / \Lambda^{2}} \tag{5.14}
\end{equation*}
$$

But we have no large Q^{2} in the problem. For the present it is more proper to regard (5.13) merely as a one-parameter formula for the nonsinglet moments. For $L(z)$ there is no simple formula that can mimick the Q^{2} evclution in QCD; we adopt the canonical form

$$
\begin{equation*}
L(z)=a(1-z)^{c} \tag{5.15}
\end{equation*}
$$

where a and c are to be adjusted to \because it $v W_{2}(x)$ and $S(x)$. The only unknowns in the problem [viz. $K(z)$ and $L(z)]$ are now reduced to three parameters, $5, a$, and c, which are to be determined outside the realm of the hadron fragmentation problem.

For the empirical expressions of $\mathrm{UW}_{2}(x)$ we choose $100 Q^{2}$ data for proton and find in Ref. 28 a parametrization of the early but classic data taken at SLAC.

$$
\begin{equation*}
N_{2}(x)=(1-x)^{3}\left[1.274+0.5989(1-x)-1.675(1-x)^{2}\right] \tag{5.16}
\end{equation*}
$$

For the sea quark distribution at $1 \mathrm{cw} Q^{2}$ we use

$$
\begin{equation*}
x \sin (x)=0.17(1-x)^{9} \tag{5.17}
\end{equation*}
$$

where the normalization is that suggested by Field and Feymman; ${ }^{27}$ the exponent is in the range adopted by them and is also suggested by Berger ${ }^{29}$ in fitting dimuon preduction data.

Instead of inverting the momen:s in (5.13) in order to fit (5.16) and (5.17),
it is more convenient to work directly with moments. From (5.9), (5.12), (5.13) and (5.15) we have for the moments

$$
\begin{gather*}
\left\langle\nu W_{2}>(n)=M_{v / N}(n)\left\{\exp \left(-d_{n}^{N S} \zeta\right)+4 a B(n-1, c+1)\right\}\right. \tag{5.18}\\
<x S>(n)=3 a M_{v / N}(n) B(n-1, c+1) \tag{5.19}
\end{gather*}
$$

The empirical values for these moments can be trivially obtained from (5.16) and (5.17) and are plotted as dots in Fig. 7. They can be well fitted by (5.18) and (5.19) with the choice

$$
\begin{equation*}
\zeta=2.0, a=0.08, c=3.5 \tag{5.20}
\end{equation*}
$$

as evidenced by the curves in Fig. 7. With these parameters fixed, we have completely determined the ud distribution $\phi\left(x_{1}, x_{2}\right)$ throug: (5.2) - (5.4).

We note that the value $\zeta=2$ determined phenomenologically above turns out to be quite reasonable, if we use (5.14) to find the corresponding value of Q^{2}. For Q_{0} and Λ given in (2.14) [derived from BEBC data ${ }^{21}$] and (2.19b) [from CDHS data ${ }^{22,23}$, we obtain $Q=1.58 \mathrm{GeV}$ and 1.69 GeV , respectively. These are just the values relevant to the data. Admittedly, (5.13) and (5.14) cannot be taken seriously for these low Q^{2} values. But the largeness of ζ (for a $\log \log$ function) may render their application meaningful. It means that evolution has been substantial, a circumstance which we have already anticipated on the basis of precocious scaling and large momentum fraction for the gluons. The place in our simple formalism (in the sense of leading order QCD) where. such physical features at low Q^{2} are stored is the closeness of Q_{0} to Λ. As we have mentioned previously, Q_{o} is an effective value of the evolutionary start point determined from high Q^{2} neutrino scattering data, which obviously must contain information consistent with low Q^{2} behavior.
B. Stage (3)

What we have obtained for $\phi\left(x_{1}, x_{2}\right)$ is the inclusive distribution of u and $\overline{\mathrm{d}}$ in proton. If they are to form a pion by recombination, the outstanding
question is about the =ole of the glions. Obviously, the gluons should be accounted for in some say, lest the momertum they carry would be lost from the final hadronic spectrum. In stages (3) and (4) of (5.1) we are concerned witt: the hadronization of all partons (inctuding glums), not fust u and \bar{d} quarks, whose distribution we nave fust spec $-i \mathrm{ic}$. Gluons can hadronize either by being a partner of recombination with q and \bar{q}, or ean create $q \bar{q}$ pairs which then hadronize subsequently in appropriate combdnations. The former pessibility implies multi-body recombination whica is not likely to be impcrtant except perhaps in the limit $x \rightarrow 1$; it is totally ignored in Rė. 3 as well as in other subsequent investigations. To describe $i t$ in the valon picture is also difficult. For the recombination of u and \bar{d} quarks only it is easy; we simply identify them as U and \bar{D} valions, whith a.e in the proper representazion for hadronization. This fidentification frarks rith valons is not a bratally executed approximatior, but is a feature of valons =oflecting its dual froperties discussed in Sec. IV. Physically, tt mears that the u and \bar{d} quarks in tine develop their owt clusters and turn themselves into valons. Mathematically, the duality can be discussed more precissly in the ase when there is a large Q^{2}, as in Sec. IV; here we simply barrow that motion witiout any al-eration.

We are left then with the problem of hadrunization of gluons trough q \bar{q} pair creation. This problem is treated quantiatively for a quarix fet at high Q^{2} becatse calculational method is available. ${ }^{1!}$ at low Q^{2} we ave 70 independent guidepost for the gluon distritation. Al:hougt one can make a roagh estimate for it, it is no: very useful if the conversior from gluons to gairs is not known. At this point we reckil that Duce anc. Taylor ${ }^{6}$ succeeded in producing a remarkably good fit of all the meson Inclusive cross sections in the recombination model by using an enhancec sea wich saturates the monentum sum rule. That is, the $q \overline{7}$ sea quarks in their fit. carry all the momenoum of the incident proton after subtracting of the momentum fraction of the valence
quarks, with none left over for the gluons. We regard that result as being a satisfactory guide to the formulation of an effective way of accounting for gluon hadronization. The gluons are first to be completely converted into $q \bar{q}$ pairs in such a wäy chat the quiescent sea (as probed in electroproduction) is er:hanced in normaization to the maximum extent with no essential change in its distribution. The valence quarks and these sea quarks are then to beregarded as valons, which recombine.

To carry out this procedure we first calculate the average momentum fraction carried by the valence quaris. It is

$$
\begin{align*}
\bar{E}_{v} & =\int d x x\left[2 u(x j+d(x)]=3 \int d x d y G(y) K_{N S}\left(\frac{x}{y}\right)\right. \\
& =3 M_{N / N}(n=2) K_{N S}(n=2, \zeta=2)=0.45 \tag{5.21}
\end{align*}
$$

The balance in monentum fraction is carried by the enhanced sea

$$
\begin{equation*}
0.55=6 \int \operatorname{dxdy} 3 \mathrm{G}(y) \underset{\sim}{\mathrm{L}}\left(\frac{\mathrm{x}}{\mathrm{y}}\right) \tag{5.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{m}{L}(z)=\mathrm{a}_{\mathrm{m}}(1-z)^{c} \tag{5.23}
\end{equation*}
$$

With $c=3.5$ according to (5.20) a is found to be 0.41 . Thus the enhancement. factor is about 5

The complete $u \bar{d}$ distribution to be identified as valons at the end of stage (5) in (5.1) can now be determined. Denoting it by $F\left(x_{1}, x_{2}\right)$, we equate it to $\Phi\left(x_{1}, x_{2}\right)$ in (5.2 , with the condition that $L(z)$ in (5.3), (5.4) and (5.10) be replaced by $\mathrm{L}(2)$ in (5.23). Tha: is, in the abbreviated notation of $G(y)$ and $G\left(y_{1}, y_{2}\right)$ which are Elawor independent, we have

$$
\begin{gather*}
F\left(x_{1}, x_{2}\right)=F^{\prime 1)}\left(x_{1}, x_{2}\right)+F^{(2)}\left(x_{1}, x_{2}\right) \tag{5.24}\\
F^{(1)}\left(x_{1}, x_{2}\right)=\int_{x_{1}+x_{2}}^{1} d y G(y)\left[2 K_{N S}\left(\frac{x_{1}}{y}\right)+3 L\left(\frac{x_{1}}{y}\right\}\right] L\left(\frac{x_{2}}{y-x_{1}}\right) \tag{5.25}
\end{gather*}
$$

$$
\begin{equation*}
\left.\left.F^{(2)}\left(x_{1}, x_{2}\right)=2 \int_{x_{1}}^{1} d y_{1} \int_{x_{2}}^{1-y_{1}} d_{2} G\left(y_{1} y_{2}\right) i 2 K_{N S}\left(\frac{x_{1}}{y_{1}}\right)+31 \cdot \frac{x_{1}}{y_{1}}\right)\right] L\left(\frac{x_{2}}{y_{2}}\right) \tag{5.26}
\end{equation*}
$$

The parameters that govern $K_{N S}$ and $\underset{\sim}{L}$.through (5.13) and (5.23) have all been fixed; they are collected here as follows

$$
\begin{equation*}
\zeta=2 . a=0.41, c=3.5 \tag{5.27}
\end{equation*}
$$

C. Inclusive distribution for $3 p \rightarrow \pi^{+} X$

Since the two factors in (1.1) are now completely fixed, it is only a matter of computation to determine the inclusive cross section of the detected pion. To simplify the calculation which could involve quadruple integrals, it is best to work with moments. Denoting $(x / \sigma)(d \sigma / d x)$ by $H(x)$, we define

$$
\begin{equation*}
\mathrm{H}(\mathrm{~N})=\int_{0}^{1} \mathrm{H}(\mathrm{x}) \mathrm{x}^{\mathrm{N}-2} \mathrm{dx} \tag{5.28}
\end{equation*}
$$

From (1.1) end (3.2) we then obtain

$$
\begin{equation*}
H(N)=\sum_{m=2}^{N-1}[(m+n-3) B(m-1, n-1)]^{-1} F(m, n) \delta_{m+1, N+1} \tag{5.29}
\end{equation*}
$$

for $\mathrm{f} \geq 3$, vhere

$$
\begin{align*}
F(m, n) & =\int_{0}^{1} \cdot \operatorname{lx} x_{1} \int_{0}^{1} d x_{2} x_{1}^{m-2} x_{2}^{n-2} F\left(x_{1}, x_{2}\right) \\
& =F^{(1)}(m, n)+F^{(2)}(m, n) \tag{5.30}
\end{align*}
$$

If we abbreviate the quantity inside the square brackets in (5.25) and (5.26) ty $J(z)$, then we have

$$
\begin{equation*}
F^{(1)}(m, n)=G^{(1)}(m+n-1) J(m, n) L(n: \tag{5.31}
\end{equation*}
$$

where

$$
\begin{align*}
& G(1)(N)=\int_{0}^{1} d y y^{N-1} G(y)=\frac{105}{16} B\left(N+\frac{1}{2}, 3\right) \tag{5.32}\\
& J(m, n)=\int_{0}^{1} d z z^{\mathbb{m}-2}(1-z)^{n-1} J(z) \tag{5.33}\\
& L(n)=\int_{0}^{1} d z z^{n-2} L_{m}^{L(z)}=0.41 B(n-1,4,5) \tag{5.34}
\end{align*}
$$

It is shown in Appendix A that

$$
\begin{align*}
J(m, n) & =\sum_{k=0}^{n-1} \frac{(-1)^{k}}{n}[B(k+1, n-k)]^{-1} K_{N S}(m+k) \\
& +1.23 B(m-1, n+3.5) \tag{5.35}
\end{align*}
$$

For the moments of $\mathrm{F}^{(2)}$ we have

$$
\begin{equation*}
F^{(2)}(m, n)=2 G^{(2)}(m, n)\left[2 K_{N S}(m)+3 L(m)\right] L(n) \tag{5.36}
\end{equation*}
$$

where

$$
\begin{align*}
G^{(2)}(m, n) & =\int_{0}^{1} d y_{1} \int_{0}^{1-y} 1_{d y_{2}} y_{1}{ }^{m-1} y_{2}{ }^{n-1} G\left(y_{1}, y_{2}\right) \\
& =\frac{105}{2 \pi} B\left(m+\frac{1}{2}, n+2\right) B\left(n+\frac{1}{2}, \frac{3}{2}\right) \tag{5.37}
\end{align*}
$$

Using $\zeta=2$ in (5.13) all the terms above can be evaluated, so we can determine $H(N)$ unambiguously and without approximation. The result is presented as dots in Fig. 8. It is of interest to exhibit also the separate contributions of the two components, $F^{(1)}$ and $F^{(2)}$. Denoted as $H^{(1)}(N)$ and $H^{(2)}(N)$, they are shown in Fig. 8 as dotted and dash-dot lines, respectively. Evidently, the contribution from two valons is about three times as important as that from a single valon.

To invert the moments, we approximate $H(N)$ by a sum of two beta functions

$$
\begin{equation*}
A(N)=0.6 B(N, 5)+0.85 B(N-1,6) \tag{5.38}
\end{equation*}
$$

which is shown by the solid line in Fig. 8. It translates immediately to

$$
\begin{equation*}
A(x)=0.6 x(1-x)^{4}+0.85(1-x)^{5} \tag{5.39}
\end{equation*}
$$

This is the theoretical predication for $\left(x / \sigma_{T}\right) d \sigma / d x$ in our model without any free parameters. Using $\sigma_{T}=38.7 \mathrm{mb}$ we plot the corresponding inclusive cross section in Fig. 9 (solid line). For a comparison with experiment we show in the same figure data on $\mathrm{pp} \rightarrow \pi^{+} \mathrm{X}$ at 100 and $175 \mathrm{GeV} .{ }^{30}$. The large error bars are due to the fact that the data on $E d^{3} \sigma / \mathrm{dp}^{3}$ must be integrated over p_{T} for which the measured range is not extensive. Although fixed-p T_{T} data are abundant and.
of high statistics, ${ }^{31-33}$ we need the integrated (ove $=p_{T}$) data in order to chec: the normalization as well as the shap $=$ of our predic:ion. The same daca ard thecretical result are plotted in linear scale in Fig. 10. The agreenert. is evidently very good over the whole x :ange. Nevertheless, the precicticn is somewhat low in the high x region. I: can probably beimproved if a more: accurate flavor-dependent valon distrtbution is used But more likely, tic value of the evolution parameter 5 that has been used is slighty too hign to describe low- p_{T} reactions. It is obvtous that the daza can be almest: perfectly fitted by an appropriate lowering of 3 . Howeve-, we -esist the texptation to exhibit a superb fit by adjusting ζ. We grefer to, enphasize the formalisn in this paper and underline the closeness of our no-parameter predictior :c the data, the only input being electroprodaction data.

vi. CONCLUSION

We have formulated a way of studying low-p_reactions. Although scme details may be improved, the ideas couraired in the treatment probably re: =lect quite accurately the basic mechanism of hadron fragneatation. It is a quartitative description of what has for -3ng been raguely supposed for p:oduction processes in the quark model. The basic steps nust involve the trans:tioas from an incident hadron to partons and then back to tadrons. The sey elenent in. our formulation that gets rid of araitrary censtarts while incorpo:ating proper dynamics is the introduction of the valoc representation. Had-crice wave function in terms of the valon coordinates is krown from structure fuaction analysis. That takes care of the two ands of the prccuction chain. The :ransmutation irom valons to partons is minicked by formulas. with OCD origin, vhere precise parametrization is fixed by low Q^{\prime} electzoprcciuction data. Tine part that is least reliable in the formulation is the treatment of gluon conversion. Since we know that no gluons are left jver in the firal state, we have alopted
the classic picture that they all produce $q \bar{q}$ pairs which subsequently recombine. Thas the sea is enhanced to the maximum. Again, no free parameters are introduzed if the x deperdence of the znhanced sea remains the same as that of the orgin $s \in a$, an assimption which is not unreasonable. Similar maximal gluon coaversion mechani.sm is used in the quark jet analysis but with more precision since high ϱ^{2} is involved; the result contributes to an excellent no-parameter fit of the quark decay function. ${ }^{12}$ In this paper we have ignored flavor dependerce of the valon distribution. This should be corrected as soon as a more therough analysis of the nucleon structure function is done. Then the π^{+} / π^{-} ratio of the meson spectra can be calculated.

We have emphasized in this paper the formulation of the low- p_{T} problem. Application of the formalism to various specific reactions can be carried out witiout basic complication. For the production of strange mesons and baryons, for example, the effects of quark nasses as well as three-valon recombinations can be investigated $6 n$ the basis $0 \equiv$ the analysis described in Secs. II and III. Par:icle correlation can also be s-udied. A batter determination of the evolution parameter ζ can be mase if we replace v_{2} by the inclusive cross section of $\mathrm{BP} \rightarrow \pi^{+} \mathrm{X}$ as a phemomenological znput. At the sacrifice of not predicting that one reaction, ve gain a reliatle value of ζ for low-p reactions, which can then be used to calculate the cross sections for all other reactions including those initiatec by meson beams. The idea here is that the evolution from valcns to partons stould be the same in all $10 w^{\prime}-p_{T}$ reactions, whether they are in mesons, nucleons, or even hyperon beam particles. The parameter c in (5.23) for the sea distribution is most probably independent of the hadron, and the paraneter m_{m} can be determined as inficated in this paper. Since the valon distribations are alreajs given in Sec. II, we therefore have at hand a tight schene that allows one co calculate the inclusive cross sections of all hadronic reac-ions. Needless to say, we are optimistic that the agreement with data will be good.

Appendix A. Lerivation of Eq. (5.35

We want to evaluate

$$
\begin{equation*}
J(m, n)=\int_{0}^{1} d z z^{m-2}(1-z)^{n-1} J(z) \tag{A.1}
\end{equation*}
$$

where

$$
\begin{equation*}
J(z)=2 \mathrm{~K}_{\mathrm{NS}}(z)+3 \mathrm{~K}(z) \tag{A.2}
\end{equation*}
$$

The coatribution from the second term is trivial. For the first term we know the moments $\mathrm{K}_{\mathrm{NS}}(\mathrm{n})$. By Mellin transform

$$
\begin{equation*}
K_{N S}(z)=\frac{1}{2 \pi 1} \int_{c-i \infty}^{c+1 \infty} d l z^{-l+1_{K}} K_{N S}(\ell) \tag{A.3}
\end{equation*}
$$

we have for its contribution to (A.1)

$$
\begin{equation*}
J_{1}(m, n)=\frac{l}{\pi i} \int_{c-i \infty}^{c+i \infty} \dot{c} K_{N S}(\ell) B(m-\ell, n) \tag{A.4}
\end{equation*}
$$

The integrand has simple poles at $\ell=n$, $m+1, \cdots, m+n-1$. Letting $k=$ $\ell-m$, and using the identity

$$
\Gamma(-k)=\pi[\Gamma(k+1) \sin \pi(k+1)]
$$

we have for the residues at the poles of $B(-k, n)$

$$
(-1)^{k+1} \Gamma(n) /[\Gamma(k+1) \Gamma(n-k)]
$$

It then follows from contour integration of (A.4)

$$
\begin{equation*}
J_{1}(m, n)=2 \sum_{k=0}^{n-1} \frac{(-1)^{k}}{n}[B(k+1, n-k)]^{-1} K_{N S}(m+k) \tag{A.6}
\end{equation*}
$$

The result Eor (A.1) is therefcre as ziven in (5.35).

REFERENCES

1. For recent reviews see R.C. Hwa, Proc. IX International Symposiur on High Energy Multiparticle Dynamics, Tábor, Czechoslovakia, 1978; L. Van Hove, Schladming lecture 1979, Ref. TH. 2628-CERN.
2. W. Ochs, Nucl. Phys: B118, 397 (1977).
3. K.P. Das and R.C. Hwa, Phys. Lett. 68B, 459 (1977).
4. R. Blankenbecler and S.J. Brodsky, Phys. Rev. Di0, 2973 (1974).
5. R.C. Hwa and R.G. Roberts, 2. Physik C 1, 81 (1979).
6. D.W. Duke and F.E. Taylor, Phys. Rev. D17, 1788 (1978).
7. J. Kuti and V.F. Weisskopf, Phys. Rev. D4, 3418 (197I).
8. T.A. DeGrand and H.I. Miettinen, Phys. Rev. Lett. 40, 612 (1978); T.A. DeGrand, Phys. Rev. D19, 1398 (1979).
9. E. Takasugi; Z. Tata, C.B. Chiu, R. Kaul, Phys. Rev. D20, 211 (1579); E. Takasugi and X. Tata, Phys. Rev. (to be published).
10. T.A. DeGrand, D.W. Duke, T. Inam1, H.I. Miettinen, J. Ranft, and H. Thacker, (to be published).
11. V. Chang and R.C. Hwa, Phys. Lett. 85B, 285 (1979)
12. V. Chang and R.C. Hwa, OITS-121 (1979), to be published.
13. R.C. Hwa, OITS-112 (1979), an expanded version of this preprint will be published in the Phys. Rev.
14. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).
15. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
16. B. Andersson, G. Gustafson, and C. Peterson, Phys. Lett. 69B, 221, (1977).
17. A. Capella; U. Sukhatme, C.I. Tan, and J. Tran Thanh Van, Phys. Lett. 81B, 68 (1979); A. Cape1la, U. Sukhatme, and J. Tran Thani Van, Orsay preprint LPTPE 79/23 (1979).
18. G. Cohen-Tannoudji, A. El Hassouni, J. Kalinowski, O. Napoly and R. Peschanski, Saclay preprint Ph-T/79-92 (1979).
19. G. Altarelli, N. Cabibbo, L. Maiani and R. Petronzio, Nucl. Phys. Bj9, 531. (1974) ; N. Cabibbo and R. Petronzio, Nucl. Phys. B137, 395 (1978).
20. T.A. DeGrand, UCSB TH-15 (1978).
21. P.C. Bosetti et al , Nucl. Phys. E142, 1 (19.78).
22. J.G.H. de Groot et al., Phys. Lett. 82B, 29\%., 455° (1979).
23. A. Pera (private communication); see also Proc. Df $19^{\circ 9}$ International Symposium on Lepton and Photon Intera二tions at Hizh Eeergies, Fermilab. August 1979.
24. C.B. Newman, et al., Phys. Rev. Lett. 42, $9: 1$ (1979); J.E. Pilcher, Proc. of 1979 Internatioral Symposium or Leoton ard Fhoion Enteractions a: High Energies, Fermilab, August 1979.
25. S.D. Drell and T.M. Yan, Phys. Rew. Lett. 2 兵, 316 (19:0).
26. G.W. Brandenburg (frivate zommunication); a papez on the subject is in preparation).
27. R.D. Field and R.P. Feynman, Phys. Rev. t15, 2590° (19:7).
28. G. Miller et al., Fhys. Rev. D5, 528 :1972).
29. E.L. Berger, in New Results in Hịh Energy Fhysics, ecited by R.S. Panvini and S.E. Csorna, AIP corference Proceedings No. 4; (Anerican Institute of Physics, New York, 1978).
30. G.W. Brandenburg and V.e. Polychronakas (prívate communication); I em grateful to them for permitting me to use the preifirary data of Fermilab Experiment No. Elle.
31. F.E. Taylor et al., Phys. Ref. Dlí, $1=17$ (IS76).
32. J. Singh et al., Nucl. Fhys. B140. 18. (1978).
33. D. Cutts et al., Phys. Rev. Lett. 43, 319 (1979).

FIGURE CAPTIONS

Fig. 1: A schematic diagram show n g that the structure function of a hadron h is a convclution of the ralon distribution in h and the structure function of the valoz.
Fig. 2: Sketch of the beiavior of $\left[M_{N S}^{\nu}\left(n, Q^{2}\right)\right]^{-1 / d_{n}^{N S}}$ as a function of $\ell \ln ^{2}{ }^{2}$. The solid $1: n e$ imdicates how it might deviate from a straight line when Q^{2} is low. The dashed line is a linear extrapolation. The two lines have the bounder- value of one at Q_{v} and Q_{0}, respectively.
Fig. 3: Flot of $\left[M_{j}\left(n, Q^{-}\right)\right]^{-1 / d_{n}^{N S}}$ versus $\ln Q^{2}$ for various moments. Points are obzaineć. by analyzing data in Refs. 22 and 23 using $f=3$. Straight lines are ayebali: fits through $\Lambda^{2}=0.3 \mathrm{GeV}^{2}$.

Fig. 4: Slope paramerer $\subseteq(n)$ as determined from Fig. 3. The two curves represent two possible fits using Eqs. (2.13) and (2.18).
Fig. 5: A schematic diagram showiag pion production in a quark jet initiated by a virtual photon. The three shaded blobs represent inclusive parton (quark, antiquark or gluoa) distributions in partons. The open blob represents recomtination.
Fig. 6: Sihematic diagrans for (al $\hat{f}^{(1)}\left(x_{1}, x_{2}\right)$ where u and \bar{d} quarks come from the same valon and (b) $\phi^{(?)}\left(x_{1} m x_{2}\right)$ where they come from different valons.
Fig. 7: Moments of Vi_{2} and xS . Dots are empirical values. Curves are theoretical fits that fix the parameters in the model.
Fig. 8: Theoretical prediztions for the moments of the hadronic inclusive distrijution. Dctied and dash-dotted curves show the contributions from the zwo subprocesses Indicatec respectively in Fig. 6 (a) and (b). The Hots are their sun. The solid line represents an approximation of the dots for the purpose of irversion of the moments.

Fig. 9: Theoretical prediction (solid line) compared to the data (Ref. 30) for the inclusive cross section $p p \rightarrow \pi^{+} X$ at 100 GeV and 175 GeV .
Fig. 10: Theoretical prediction (solid line) compared to the data (Ref. 30) for the inclusive cross section $\mathrm{Pp} \rightarrow \pi^{+} \mathrm{X}$ at 100 GeV and 175 GeV .

a二KNOWLEDGMENT

I have benefitted from discussions with [r. G. Brandenburg and Dr. E. Takasugi. This work was supported in part by U.S. Department of Energy under contract No. EY-76-S-06-2230.

H

FIG. 2

FIG. 3

FIG. 4

fic. 5

[^0]: This book was prepared as an account DISCLAIMER
 Neither the United States Government nor any agency thereof agency of the United States Government,
 warranty, warranty, express or implied, or assumes any legal liability or responsibility foes, makes amy
 completeness, or usefunt completeness, or usefulness of any information, apparatus, product, or process the accuracy
 represents that it represents that its use would not infringe privately owned rights. Reference herein to any sedocific
 commercial product, process not necessarily constitute or or imply its endorsement, trademark, manufacturer, or otherwise, does States Government or any agency thereof. The views, recommendation, or favoring by the United necessarily state or reflect those of the thin opinions of authors expressed herein do not

