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Nm1ENCLATURE 

see Figs. 4 and 5 

distance from apex to the axis of symmetry (Fiq. 2d) 

function 

definite integrals (Eqs. l4a and b) 

upper bound on power 

a constant (see Eq. 16) 

see Fig. 5 

length of land of the die 

friction, factor 

apex of the cone of die 

point on the axis of symmetry (Fig. 2c) 

axes of spherical coordinate system 

radial distance of a point entering the deformation region 

radial distance of a point exiting the deformation region 

axes of cylindrica~ conrrlin~te system 

see Fig. 6 

radius of the die at x = 0 

initial radius of rod 

final radius of rod 

radius of cylindrical raw material 

radius of cylindrical product 

components of velocity vector in spherical cobrdinate system 
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velocity of incoming flow 

velocity of exiting flow 

velocity discontinuity 

volume of deformation zone 

volume rate 

power to overcome friction losses 

power of internal deformation 

power to overcome shear 

semicone angle of the die 

angle between the surface of velocity discontinuity 
and the axis of symmetry 

surface of velocity discontinuity 

strain rate 

components of strain rate in spherical coordinate system 

components. of strain ·rate in cylindrical coordinate system 

yield limit in 1miaxial tensile test 

extrusion stress (back pull stress) 

drawing stress (front pull stress) 

function 

. symbols indicating spherical, triangular, and trapezoidal 
velocity fields, respectively 
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ABSTRACT 

Limit analysis is a very versatile modeling technique that can 

be used to study metal-forming processes. The upper-bound analysis 

can be used to predict an upper limit on the power requirements. 

This work reviews some upper-bound solutions that describe flow 

through conical converging dies. The concept of a trapezoidal field· 

is introduced and dealt with in great detail,and the power requirements 

based on the trapezoidal field are calculated. The results 

are compared with those obtained using spherical and triangular 

fields. The relative stress expression has been developed analytically 

and the final optimization with respect to the pseudoindependent 

parameter is done numerically. The trapezoidal field predicts a 

lower upper-bound solution for small semicone an~les. The range 

over which the trapezoidal field solution becomes dominant increases 

with increasing fri~tion factor. 
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INTRODUCTION 

Fore'v'IOrd 

The operations called wire drawing, rod extrusion, hydrostatic· 

extrusion, and tube sinking are all performed through similar dies. 

Identical flow patterns are as~umed in the analytical study of these 

different processes. Therefore, the analysis described here and the 

flow characteristics which are discussed can be utilized in dealing with 

several different processes. A wire, or a rod, of initial radius R
0 

is 

pushed (extruded) or pulled (drawn) through a conical portion of a die 

(see Fig. 1). As it passes through the die, the wire deforms plastically 

and decreases in diameter. Although the cylindrical portion of the die 

causes additional friction losses, it is; nevertheless, required for 

dimensional stability of the product of the final radius Rf' and also 

because of d1e manufacturing practice. An upper-bound solution for 

the case of constant shear friction factor is derived simultaneously 

for the power involved in drawing and in extrusion. At the vicinity 

of the die, the wire undergoes plastic deformation. Further away, at 

the entrance and exit of the die, the incoming workpiece and the 

product, respectively, move as two rigid bodies in a direction parallel 

to the axis of symmetry. The incoming rod moves at the velocity v
0 

and the product at the velocity vf. This is a steady state process; 

therefore, when a sound product is produ~ed, the law of incompressibility 

dictates that 

( l ) 
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!~hen sound flow is maintained and a sound product is manufactured, 

it can be noted that any concentric cylinder of the radius R1 in the raw 

material will end up as a concentric cylinder in the product. Volume· 

constancy dictates that the ratio of the radius of the cylinder on the 

product (R2) to that of the cylinder at the entrance (R1) will equal the 

ratio of the radius of the product to that of the entering rod, 

(2) 

In the present study, a number of flow patterns within the deformation 

regions are explored. The relationships of the boundaries between the 

deformation region and its rigid body neighbors at the entrance and exit 

of the die to the characteristics of several flow patterns are investigated. 

The effectiveness of the several modes of deformation as models resefubling 

the actual process is studied.: 

In the application of upper-bound solutions to the metal~forming processes 

that employ flow throuqh conical converging dies.several velocity fields 

can be explored. Some of the literature that provide established 

solutions ·will'·be presented,and new solutions will be developed. In this 

introduction,classitication ot a wide range of kinematica1 ly ~dmissible 

velocity fields is proposed. The first section,described in Fig. 2,presents 

basic simple fields. 

Next,some assembly arrangements of the simple fields that cover the 

entire deformation region by a combination of several of the above-mentioned 

simple fields are described. As the assembly becomes more complex, 

the treatment gets closer and closer to the treatment of metal-forming by 

2 



numerical methods; specifically, the finite element method and the 

"Upper-Bound El ementa 1 Technique," ·(UBET). 

In the above-mentioned assembly of units,the individual simple units 

cover the entire deformation region without overlapping. At the end of 

this section, the concept of overlapping regions is introduced. The power 

of this concept in introducing variability to the family of velocity fields 

is demonstrated. 

Classification of Basic Fields 

General Observations 

In the present stud~ the boundaries between the deformation region 

(zone II where plastic flow occurs) and its rigid neighbors at the entrance 

and exit of the die: (zones I and III respectively), are surfaces of velocity 

discontinuity, r2 and r1 respectively (see Fig. lb). A general flow pattern 

is described by the flow line in Fiq. lb .. Here, Point A, at a radial 

distance R1, from the axis of symmetry, moves towards the die at a velocity 

v
0 

~ntil it reaches the surface df velocity discontinuity r2. Undergoing 

a drastic change in direction and magnitude, the point crosses the surface 

r?, enters the deformation region (zone II) and moves in a generally 
L. 

converging flow towards the exit at an accelerated speed. The path of flow 

·through the deformation region (zone II) is described here as a winding general 

hypothetical path. On reaching the surface of velocity discontinuity r1 at 

the exit, another change in direction and magnitude of the velocity vector 

occurs,and the point, on crossing r1, proceeds to move parallel to the axis 

of symmetry at the constant rigid body speed of vf. 

3 



The radial distance of the point when it enters zone III is R2, 

dictated by Eq. (2) to be R2/R1 = Rf/R0. 

The points along the path of flow where drastic· changes in the velocity 

vector occur, that is, where point A crosses.the surfaces of velocity 

discontinuity r2 and r1, are noted in Fig. lb. These two points 

are connected. by a straight line which is extended to its inter-

section with the axis of symmetry of the workpiece and die. The inter-

section point is denoted by O,and the radial distance of the two points 

on r2 and r1 respectively from 0 are denoted as the distances r~ and rf. 

From geometrical s:i'milarity and by Eq. (2) it is observed that 

(3) 

The t\'-10 surfaces, r 1 and r 2, are 11 Conjugating surfaces, 11 related to 

each other by Eq. (3). This observation is most useful in further derivations, 

especially during the volume integration performed to determine the internal 

power of deformation in the deformation region. 

The basic units of flow modes that are described in this manuscript 

maintain only straight~line flow in the deformation region. Thus, for 

solid rod, but not for tube, the conjugation rule provided by Eq. (3) 

takes on a simple significance and is described with each individual field. 

Surf~ces of Velocity Discontinuity 

The velocity field described in Fig. lb is a radially converging flow 

directed into the apex of the die (0). The two surfaces of velocity 

discontinuity, r 1 and r 2, are· 'parallel' so that the ratio of the radial 
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distance (r*) of a point entering the deformation region to its radial 
0 

distance (rf) exiting the deformation region is equal to the ratio R
0
/Rf. 

The angular position e remains constant for each point while it is 

passing through the plastic region. The angle S that the tangential 

line to the curved surface of discontinuity makes with the axes of 

symmetry may be chosen as an arbitrary function of the angular position e 

The velocity of the point entering the deformation region with coordinates 

r* and e is 
0 

(4) 

In the deformation region,radially converging flow coupled with the law of 

incompressibility leads to 

r* 2 
0 = 0 I . ( _Q_) = v r* 2 ___..,..2 s_,_· n--'-'S'---. 

r r r2 r o o r sin(s+e) 

r* 2 
= v (_I) 

f r 
sin 6 

sin(s+e) 

Note that for the spherical field,Eq. (5a) reduces to 

Along surface r
1 

and r 2,the velocity discontinuiti·es are 

= v cos s - 0 cos (s+e) = v [cos s + sin s cot (s+e)] o r o 

6vlr = vf[cos s +sins cot (s+e)] 
1 

5 

( 5a) 

(5b) 

( 6a) 



For the spherical velocity field 

~vir = v cos B vo sin e 
0 -

1 (6b) 

~vir = vf sin e 
1 

Because r:f in Eq. (5a) is yet an arbitrary function of e, (r:f = r:f (e)), 

the determination of the strain rate components by applYing Eq. (8. 1) of 

Ref. 3 to Eq.(5a) is not performed here. When any specific functional 

relation of rf to e is determined, the strain rate components are derivable. 

The basic modes of converging flow described in Fig. 2 can be classified 

in three categories, i.e. as: 

1. Conically converging radial flow 

2. Cylindrical1y converging radial flow, and 

3. Parallel Flow. 

1. Conically Converging Radial Flow 

In the general conically converging radial flow (Fig~ 2a); any point 

in the deformation zone II moves towards the apex of the die, 0, along a 

straight line which forms the angle e with the axis of symmetry of the 

workpiece and die. A generally winding shape of one surface of velocity 

discontinuity, say surface r
1
, is admissible, dictating the shape of the 

other conjugate surface through Eq. (3). These surfaces are called 

"conjugating similar surfaces." The shapes of the surfaces of velocity 

discontinuity dictate the dependence of r; and r:f on the angle e 

In the basic unit fields covered in this oaoer, two specific shapes 

of the surfaces of velocity discontinuity are considered. First the spherical 
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surfaces of velocity fields associated with the so-called "spherical 

veloc.ity field'' denoted from here on by (0) (see Refs. l, 2 and 3) are 

presented. Here, the surfaces r1 and r2 are two concentric spherical surfaces 

with their center at the apex (0) of the die. The radial distances r; and 

rf become constants r
0 

and rf respectively, rerldering the radial distances 

r
0 

and rf independent of .e . The spherical velocity field is a rigid 

single field, not a family of fields, and has no pseudoindependent 

parameter by which the computed power can be minimized. 

The second specific field in the category of conically converging 

radial flows is the "trapezoidal" field ~ with parallel surfaces r 1 and 

r2 inclined to the axis of symmetry at an arbitrary angle s. The treatment 

of this field is developed in this manuscript. The angle S becomes a 

pseudoindependent parameter subject to optimization. The treatment of the 

trapezoidal field for drawing and extrusion in plane strain is presented 

in Refs. 4 and 5. 

2. Cylindrically Converging Radial Flow 

The cylindrically converging basic units (Fig. 2b) as described in 

Chapter 7 of Ref. 3 are rectangular and right-angle triangular rings, and 

solid cylindrical discs. These units, as individuals, do not serve as 

~ field that leads to an upper-bound solution for flow through conical 
... 

converging dies.· In combination with each other or with other units 

however, this assembly of units can lead to an upper-bound solution by 

a method called UBET (see Ref. 6 ). For the sake of brevity, the 

above-mentioned rings and discs will not be covered in this paper. 
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3. Parallel Flow 

In the parallel flow,any point in the deformation region (Fig. 2c) 

is moving along a straight line parallel to the surface r3 , which may 

be the surface of the die. In a more complex assembly of unit~ the surface 

r3 may be an interface between two fields. 

The surfaces r1 and r2 can be curved as long as the vertices (edges) are 

at the entrance, the exit and on the axis of symmetry, point P, respectively, and 

the ratio of r~/rf = R
0
/Rf (Eq. (3)) is obtained for each point passing through the· 

deformation region. These surfaces (r1 and r2) are called "conjugate 

intersecting surfaces." The radial distances r~ and r:f become a general 

function of the position of the moving apex 0. In this paper, the 

surfaces r 1 and r 2 are handled only as straight lines and the position 

of the vertex P is treated as a pseudoindependent parameter, subject to 

optimization. The field is called the "triangular" field denoted by (.~). 

4. The Toroidal Flow 

In the toroidal flow (Fig. 2d), the straight line flow is directed 

towards the apex O,which is a circle of a radius e lying on the extension 

of the conical surface r3. One surface ~2 or r1) may be a toroidal surface 

with the center at 0, but then the other surface (r1 or r2 respectively) 

becomes a complex function of e and e. Work now in progress on this field shows 

that it applies to the analysis. of tubes, but leads to singularity problems when e 

approaches zero for finite non-zero values of e. The complexity of 

the solution excludes the treatment of the toroidal field from this paper. 



Individual Basic Fields 

The following is a more detailed description of the individual basic 

velocity fields. 

1. Conically Convergi~g Velocity Fields 

1.1 The Spherical Velocity Field 

One of the earlier proposed fields, the spherical field is described 

in Refs. 1, 2 and 3 as follows: 

A kinematically admissible velocity field is described in Fig. 3. 

The wire is divided into three regions in which the velocity field is 

continuous. In zones I and III the velocity is uniform and has only an 

axial component. In zone I the velocity is v
0

, and in zone III 

the velocity is vf. Because of volume constancy,Eq. (1) dictates that 

In zone I,defo~mation has not yet begun. It consists of the incoming rod, 

which is separated from the deform1ng zone II by the sur·face r 2. 

Sufface r2 is spherical, of radius r
0 

with the origin at the apex 0 of 

the cone of the die. Zone II is the zone of deformation bounded by 

the surface of the die, with a cone of an included angle 2a and two 

concentric spherical surfaces r 1 and r2. The surface r 2 is the 

previously mentioned spherical boundary between zones I and II. The 

spherical surface r 1 of radius rf' with the origin at the apex 0 of 

the cone, separates zone II from the emerging product of zone III. 

In zone II the velocity is directed toward the apex 0 of the cone, 

with cylindrical symmetry. 

9 



In the spherical coordinate system (r,e.~). the velocity components are 

0 = 0 = 0 e <P 
(7) 

Across the boundaries r1 and r2 the components of velocity normal to 

the surfaces (r1 and r2) are continuous. There exist velticity 

discontinuities parallel to these surfaces and of the following magnitudes: 

Along r1 

6v = vf sin e (8a) 

Along r 2 

6V = vo sin e (8b) 

Since the die is at rest, the v~locity discontinuities along the conical 

surface r 3 and the cylindrical surface r4 are as follows: 

Along r3 

6v 2 cos Cl. 
= vfrf 2 (Be) 

r 

Along r4 

6v = vf (8d) 

The above treatment of the soherical field is provided in Refs. 1 and 2 

and in Chapter 8 of Ref. 3. The calculation of the internal power of 

deformation, shear and friction losses and power associated with front 

and back tensions led to the solution for the net front/back pull as follows: 

where for the spherical field the function ~ is determined by Eq. 8.11 

of Ref. 3 as follows: 

10 
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where 

a, m , 
R 

= 2 f (a ) l n_Q_ + 
Rf 

2 [ a 
/3 . 2 

R 
- cot a + m cot a ln (_Q_) + mL] 

Rf Rf s 1 n ·a 

(9b) 

f(a) = 
1

2 [·1 ll . 2 l 
T2 Sln a + 11·12 

/il 
+ /12 l 

1Ji.,.,.·
1 

~]'""' c_o_s_a=,..:...+_/~1 ""-~~f"'~=s=i=n""2_a_J - cos a ;{_ 
sin a 

The results from the spherical velocity field (Eq. (9b)) will be 

compared with other solutions. 

1.2 The Trapezoidal Velocity Field 

The trapezoidal velocity field also uses a spherical coordinate system 

(r, 6,¢) to calculate the power requirements. 

A kinematically admissible velocity field is described in Fig. 4. As 

before, the wire is divided into three zones in which the velocity field is 

continuous. In zones I and III the velocities are v0 and vf respectively, 

and in either case have only axial components~- As befor~ volume constancy 

· dictutc5 thut 

Zone I, in which deformation has not begun, consists of the incoming rod and it 

is separated from zone II by the surface r2. Surface r2 is an inclined 

plane with cylindrical symmetry which makes an angle B with the axis of 

symmetry. Zone II, the deformation zone, is bounded by the surface of the 

die with a semicone angle a. Zone III,which consists of the outgoing product, 

is separated from zone II by an inclined surface r1 which is parallel to 

r2. In zone II, the velocity is, at all times, directed towards the apex 

0 of the cone, with cylindrical symmetry. The angle B is a pseudoindependent 

ll 



process .Parameter. In the spherical coordinate system,the velocity 

components (see Fig. 5) are; 

v sinS .e. 2 
• 0 2 08 =· 0 = 0 Ur = sin(8+6) 

. -2 
X <P 

( l 0) 

By substituting for l2 and x in terms of r o' a and 8 

Across the boundaries r1 and r2 the components of velocities normal to 

the surfaces are co~tinuous. There ~xist velocity discontinuities parallel 

to these surfaces which can be expressed as: 

Along r 2 

~v = v
0 

sinS { cotS- cot(f3+6)} 

Along r1 

~v = vf sinS {cots- cot(s+e)} 

(ll a) 

( ll b) 

Since the die is at rest, the velocity discontinuities along the conical 

surface r3 and cylindrical surface r4 are: 

Along r3 

v
0
sin S .e.2

2 

~v = sin ( S+a). ·-2-
x 

Along r4 

( ll c) 

( ll d) 

The calculations of the internal power of deformation, the shear and friction 

losses,and power associated with front and back tensions yield 

12 



· 
0
xf -crxb. 4 . 2( B) sin B *· ( B) 21 (Ro) sinS . 2( + )[I I ] a=---· -·= /3 s1n a+ . 2 g a, + n R . 2 , s1n a B 1- 2 0

0 
3 s1n a f s1n a 

where 

with 

and 

2m 1 ( R o ) s i n B + 2m L 
+ 13 n Rf sina sin(a+B) 73 Rf 

g (a, B) = cos B {csc2 (a+ B) - csc2 B} 

+ cosB cotS{cotB -· cot(atB)} 

+ sinS {cot3B- cot3 (a+B)} 
3 

{ ~ +- cos :} J <I> = a + B 
I 1 = 13 coss 1- ~:::, ~0 ~ <I>+ t ln u cos : 

L 2s 1 n ¢ <I> = B 

_ sinS 
I2- -9-

1:::, = ;,· + l s i n 2 ¢ 

~3 (3 + sin2(a+S)3/ 2J 
sin ( a+B) 

The derivation of this expression can be seen in the section entitled 

11 The derivation of the solution for the trapezoidal velocity field. 11 

Please note that any value of the pseudoindependent parameter B 

will lead to an upper bound solution for cr. Thus, B becomes a subject 

for optimization of Eq. (12). 

2. Parallel Flow -the Triangular Velocity Field 

The triangular velocity field for plane strain flow is described in 

Green's work. 8 A more general solution for plane strain is worked in Ref. 5. 

Kudo 
10

suqgested the same velocity field for axisymmetric flow and Kobayashi 

13 

( 12) 

( 13) 

( 14a) 

( 14b) 



executed this task in Ref. g. The present description is from Ref. 7, 

where a more general solution is provided. 

In the triangular velocity field,the surfaces of velocity discontinuity 

r1 and r 2 are conical surfaces that meet at the axis of symmetry (see Fig. 6). 

The position of their intersection point along the axis of symmetry is 

temporarily assumed arbitrarily. Thus the.distance ! 2 is called a pseudo

independent parameter. When the total power of deformation is computed, 

it will be minimized with respect to ! 2. 

In zones I and III, the mat~rial moves as a figid body with a constant 

velocity v
0 

or vf' respectively, in the axial direction. In the zone of 

plastic deformation~ zone II, the velocity is parallel to the surface of 

the die and has the following components (see Fig. 6) 

vR-- K tan a (1 +~tan a), 

v = K 
X 

+ ~ tan a), ( 15) 

ve = 0. 

The constant· K·is obtained by caltuiating·the··volumetric flow through 

the cross-section at x = 0, where v = K, and equating it with either v R 2 
X 0 0 

2 · (the inflow) or vfRf (the outflow). 

R 2 
K = v (_f) 

f R 
y 

R 2 
= v (___2_) 

o R 
y 

where RY is the radjus of the die at x = 0. 

The above pattern of deformation satisfies,by definition, the kinematical 

conditions along the surface or the die. 

14 
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Volume constancy everywhere is easily verified from 

K tana·(l + x tan ) 
R R a ' 

= K tan a 
R 

(17) 

The treatment of the triangular velocity field that is described above 

and in Fig .. 6 (see Ref. 7) led to the following solution for the front and 

back pull : 

cr = 

( 18) 

where 

+ v/(4 2 ) [ ( ) (4 tan
2
a + 1 - Z )] , ( ) tan a + l _arcsh 2 tan u. - arcsh 2ztana 19 

and the value of Rd is found by su'ccessive approximation as follows: 

Rd ( o) If coset / 1 + 2m 
l - ( Rf/Ro) 

(a) (R) = ( 20) l + (R/R
0

) 0 0 

as the zero order of precision for Rd. 

15 



(k) - . (b) Successive orders of approximations Rd , k- 1 ,2, ... , are calculated 

from Rdk-l ~: 

.Rd ( k) 
(-' ) 
R 

0 

Rd (k-1) 
= (-) 

R 
0 

where ~ is a function of Rd/R
0

: 

R Rf Rf Rd R 
= ( R o ) [ 1 + R + 2m ( 1 - R) ] - ( R) ( 1 + ~) 2 sec a 

d , o o o Rf 

and 

by differentiation 

R 2 
(1 + _Q_) sec a 

Rf 

( 21 ) 

(22) 

(23) 

The ratio (~/~') is calculated for (Rd/R
0

)(k-l). Also, fr0m the geometry 

where 

t 1 R 
-- - cota + 2 ud cosec(2a) 
Rf ~f 

t 26) 

and 

1 
sinS2 = /1 + (L.,/R )2 

L 0 

(27) 

16 
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where 
. ., 

f.2 - R 
--- cota - 2 Rd cosec(2a) 
Ro o 

(28) 

The upper-bound solution by the triangular field is a little bulkier 

than that by the spherical field, and iteration procedure for the determination 

of the parameter Rd is involved. The derivation is performed in Ref. 7. 

The Derivation of the Solution for the Trapezoidal Velocity Field 

The total power required for the process can be split up into parts: 

a) The power loss due to shear at surfaces of velocity discontinuities 

r1 and r2 denoted by Ws 

b) The power loss due to friction along die surfaces· r
3 

and r
4 

denoted by Wf 

c) The internal work of deformation denoted by Wi. 

a) Calculation of W : s 

Along surface r2 (Fig. 4) the velocity normal to the surface is continuous, 

= 0 cos (90°- s - e) r 

• v sinS 
Thus, Ur = s~n(B+e) 

·and = v sin(90°- B) - 0 sin(90°- s - e) o r 

= v sinS [cotB - cot(B+e)] 
0 

For any point on the surface r 2, using the law of sines 

b - f.2 
sinA - sin(l80°- R - A) 

or b sine 
t;" = sin(s+e) 
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(29) 

( 30) . 

( 31 ) 

(32 a) 



we have 

and 

db __ sin(s+e) cose- sine cos(s+e) de 
12- sin2(s+e) 

= sinS de 
s i n2 ( s+e) 

ds I = 2rr bs inS db 
r2 

( 2 . 2 . I . 3( e· )) de = 27T £.2 Sln S Slne Sln S+ 

\ 
i 

[cots - cot(s+e)] . sine de 
sin3(s+e) 

= M J 

a 

sine [cots - cot(s+e)] de 
e=O ·sin3(s+e) 

20o 2 . 3 where M = ~ rr v £.2 s1n S 
Y,), 0 

Put (e+s) = <t> and de= d¢. Eq. (35) becomes 

I 
S+a 

· I sin(¢-S) ws .r. = ~~ 15 • 3 
2 s1n <t> 

[cots - cot¢] d¢ 

(32b) 

(33) 

(34) 

(35) 

(36) 

(37) 

This expression results in four separate integrals each of which is integrable 

and leads to the final expression : 
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2 TI cro . 2 . 3 [ 2 2 
Ws lr

2 
= ~- vo"!-2 s1n Bloss {esc (cxl-B) -esc B} 

sins 3 3 ;1 +cos B cot B {cot B - cot ( cxl- B) } + - 3- {cot B - cot (at- s) 2J 

R
0

2 sin 2 (a+ B) 
f..2 = ----'----,.--------,.,---

2 . 2 . 2 s1n a s1n B 
Since, 

w 1 = cro v R 2 2TI sin
2

(a+B) sins [g(a,s)J sr2 73 oo .2 s1n a 

and, 2 
.~, __ \~' I + w· I 4TI 2 sin (a+8) [ ( )] ~~ v = - a v R - s i n B g a, B s s r1 s r2 /3 o f f . 2 

s 1 n a 

Calculation of the velocitY field in zone II. 

This is done by equating volume rates in zone I and zone II which should be 

identical if we consider a tubular channel indicated by de. 

Since 

2 . 2 . p_ sine o sine 
= TI sln B vb ~ sin(s+e) ~2 2 

2 . 2 
= TISln B 

sin e 

VII= Vlll 

2 . 2e )( s1n 
--:-. 2 
sin ( s+e) 

v
0
sinB ~ 

sin( s+e) -2 
X 

sin ( s+e) 

19 

de 

(38) 

(39) 

(40) 

( 41) 

(42) 

(43) 

(44) 



b) Calculation of ~f: 

Along r
3 

(the conical die surface) 

and 

From the law of sines (see Fiq. 5), 

ds 
sin S 

dx = dx 
= sin ( 180°- s - e) -s ,-=-. n--;:(_s_+_a-.-) 

Also· 

b X = 
sin a sin(S+a) 

and the elemental area around the die wall (dA) 

dA = 2rrRds = 2rr bsinB ds 

= 2 xsin a sins sinS dx rr sin(s+a) sin(s+a) 
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( 45) 



Thus, 
? 

rna v si ns-t2-o 0 
13 sin((3+a) 

2 . . 2 rr s1nas1n (3 x 
2 2 dx 

sin ((3+a) x 

. 3 
rna v s1n (3 2 t

2 - 0 0 . 2 ·0 1 ( ) - F 3 s 1 na rr-t-2 n --
sin· (a+(3) il 

From simil~r triangles t
2 

R 
- 0 

ll - Rf 

and R sin ( a+f3) 
i2 = _0_::__ ___ _ 

s i n a. s i n · (3 

we have 

. 
c) Calculation of W.: 

1 

sin (3 
sina sin(a+f3) 

(46) 

(47) 

( 4g) 

(49) 

In order to calculate the internal power of deformation,it is necessary 

to calculate the strain rate components, Err' €88 , and €¢¢. From Eq. (44) 
• 0 2 v s1n(3 -t- 2 • 0 

U r = -s"'""i n-(.--(3-+-e ) 2 
X 

and from the law of sines 

0 2 . 3(3 
= v

0
-t- 2 s1n · 

1
\ 2 . 3( ) r s 1 n (3+8 

x = r sin(8+e) 
sin (3 

21 

(50) 



U• 2 f~ • 3 • a - v 
0 

_i s 1 n s 
= ~ = --=-~~--

Err '"'r 3 . 3 ( ) 
o rs1n s+e 

G i · 3s • • r v0 2 s1n 
E e e = E ct>ct> = -r = 3 . 3 ( ) 

r S1n (3+e 

U• "2 . 3 
- 1 a r - -3 v o.{_2 s 1 n f3 

Ere - 2r ae - 2 3 
r 

cos ( s+e) 

sin
4

(s+e) 

A 11 the other E: .. = 0 because of. a xi a 1 symmetry, and'. 
1J \ 

"2 . 3 v
0

-t..
2

s1n (3 
1
. 2 = 3 4 9 + 3sin (s+e) 

2r sin ( s+e) 

An elemental volume inside zone II can be written as 

dv = 2rr rsine rde dr 

For a given e in zone II r goes from 

4sino 
sin ( s+e) at r 1 

and 

I /!- ~ .. ~ .. 
L 1 J 1 J 

rlv 

v 

2 3 JCL = 2rr a v .t
2 

sin (3 
0 0 e=O 

r c;in((3t8) 

= 2n o0v/~ sin 38 ln(:0 ) ( ~ine A'~~-- sin 2(B+e) de 
f e=o sin (s+e) 
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(51 a) 

(51 b) 

(51 c) 

(52) 

dr de 



Ct. 

= Q J 
sine 13 + sin2(s+e) de 

sin4(s+e) e=o 
(53) 

where 

2 3 R 
Q = 2ncr v .e.

2 sin f3 ln(R0
) 

0 0 f 
(54) 

Using the substitution f3 +e = ¢ , and 

sine= sin(¢-S) =sin¢ coss- cos¢ sins, 

= Q [I - I ] 
l 2 (55) 

The solution of the integrals I1 and II 2 yields 

S+a I l 2 
( II +- sin ¢ 

I l = cos S * !3 1 . 
3 

3 d¢ 
¢=S s1n ¢ 

r- ~ f3+a 
= 13 f3 l-6cos¢ + l 1 { 6 - cos¢ } 

COS • 2 3 n 1\ + COS¢ 
2 sIll ¢ . f3 

( l4a) 

where 

6 = 

and 

_ stns [(3 + sin2s) 312 _ 
- -9- . 3 

s1n f3 
( l4b) 
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Substituting for a and t 2, we have 

Applied powers: 

for drawing 

for extrusion 

J* = ..,.v R 2a .. 
II f f xf 

J* = ...-v· R 2a 
- II f f xb 

(5t) 

(57) 

(58~ 

Setting the applied powers equal to the upper bound on enerqies,it follows that 

0 xf - 0 xb 4 2 · a 
a= =/3 sin {a+B) s~n2 * g(a,B) 0o s1n a 

2 R . 
+ ___.!!! ln{__Q_) s1n(3 

13 Rf sina sin(a+B) ( 12) 

where the definition of g{a,B), 11 and 12 are given by Eqs. (13) and (14a,b) 

respectively. 

When 6 is chosen to be rr/2, Eq. (12) red~ces to a simple 

expression for the upper bound on the net drawing stress, 
0 xf - 0 xb _ 4 2 l-fn(RiRf) L J 

a = --;-o-·- 2F{ a) ln(R/Rf) : 3/3 tan a+ /3m .sin a cos a+ Rf (59) 

where 1 3 3/2 
F{a) = ---'-____,2,---- [(1 + 2 ) - 8] 

9tan a cos a 
(60) 

and F{<:FO) = l. 

Note the similarity of Eq. (59) and Eq. (d) in 

Sec. 3.17.3 of Ref. 11, when the typo~raphical error in the last term in 

Eq. (d) is corrected to read 4/(3/3)tana. 

_ ___, ____________________________ ~-----------~---



DISCUSSION 

The results presented above can be discussed effectively by 

comparison of solutions based on different velocity fields. The 

comparison between spherical and triangular fields has been given in 

Ref. 7. This discussion will be restricted to a comparison of spherical 

and trapezoidal fields made on the following bases: 

(i) Lowest upper-bound solution (UBS) 

For most values of the semicone cin~le a , th~ relatfve'stresses 

predicted by the spherical and trapezoidal fields are almost identical. 

This is shown qualitatively in Fig. 7. The values are so close to each 

other that the two curves overlap and fail to bring out the differences 

that exist. In order to see the nature of the relative differences, a 

differential plot was used. The ordinate 1t1as [J(O) - J(.O)]/J(O). Figure 8 

shows such a plot for r = 25% for different values of friction factor. 

The plot indicates that for small values of a, the trapezoidal field 

predicts a lower upper~bound solution; but as a increases the spherical 

field takes over. This crossover point of a increases with increasing 

values of the friction factor. 

(ii) Simplicity of the derived expression that provides the UBS. 

Looking at the final expressions yielded by these two velocity fields, 

it is rather obvious that the spherical field yields a solution that is 

less complex. This arises partly from the geometry of the surfaces of 

velocity discontinuities and partly from the fact that it is necessary to 

introduce a pseudoindependent variable in the case of a tr-apezoidal field 

solution. 

25 
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(iii) Ease of derivation. 

Here again the spherical field takes an upper hand. Not only is there 

a pseudoindependent variable associated with the calculation of the 

trapezoidal field,·but this further necessitates an optimization step 

with respect to the pseudoindependent variable s. 
It may be noted that although the solution to the trapezoidal field 

is somewhat cumbersome, all the integrals involved can be evaluated analytically. 

The only source of error would be the optimization step, which is done 

numerically.· The error can, however, be made insignificant by carrying 

the optimiiation through the computer till a desired level of accuracy is 

attained. Figure 9 shows how the optimized pseudoindependent variable 

8 varies as a function of a the semicone angle of the die. 

In conclusion, the trapezoidal field predicts the lowest upper-bound 

solution for small values of a. As alpha values increase (see Fig. 7), 

the spherical field, the triangular field,··arid again, the spherical field, 

in turn become dominant. 
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(a) THE DIE AND THE WORKPIECE . 

(b) FLOW AND SURFACES OF DISCONTINUITY. 

FIG. 1 WIRE AND DIE. 
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FIG.2 BASIC VELOCITY FIELDS. 
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FIELD. 
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FIG.6 THE TRIANGULAR VELOCITY FIELD. 
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