SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSSTALLINE ROCK

Harold A. Wollenberg, Beverly Strisower, Donald J. Corrigan, Alexander N. Graf, and Maura T. O'Brien
Lawrence Berkeley Laboratory
Berkeley, California

Howard Pratt and
Mark Board
Terra Tek
Salt Lake City, Utah

and

William Hustrulid
Colorado School of Mines
Golden, Colorado

October 1979
Revised January 1980

Prepared for the U.S. Department of Energy under Contract No. W-7405-ENG-48
through a contract with the Office of Nuclear Waste Isolation, Battelle Memorial Institute and the Nuclear Regulatory Commission.

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 6782
SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST

FACILITIES IN CRYSTALLINE ROCK

Harold A. Wollenberg, Beverly Strisower, Donald J. Corrigan, Alexander N. Graf, and Maura T. O'Brien
Lawrence Berkeley Laboratory
University of California, Berkeley, CA

Howard Pratt and
Mark Board
Terra Tek
Salt Lake City, Utah

and

William Hustrulid
Colorado School of Mines
Golden, Colorado

October 1979
Revised January 1980

This work was supported by the Assistant Secretary for Nuclear Energy, Office of Waste Isolation of the U.S. Department of Energy under Contract No. W-7405-ENG-48. Funding for this project was administered by the Office of Nuclear Waste Isolation at Battelle Memorial Institute.

Publication of this report was funded by High Level Waste Technical Development Branch, Division of Waste Management, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, under Interagency Agreement DOE 50-80-36, N.R.C. FIN. No. B 3110-0.
ABSTRACT

This report covers a project to identify existing underground openings which may be utilized as facilities for geomechanical, geochemical and hydrogeologic tests pertinent to the isolation of radioactive wastes in crystalline rock. With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. A review of the literature was conducted, based primarily on MAS, the Minerals Availability System of the U.S. Bureau of Mines and to a lesser extent on CRIB, the Computerized Resources Information Bank of the U.S. Geological Survey, and GEOREF. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria, which included:

- Crystalline rock
- Depths below 600 feet
- Workings of adequate size to provide for a Stripa-sized facility
- Workings open within the past 10 years and not flooded or caved
- Workings below the water table
- Good rock support

resulted in the identification of 60 potential sites. Within this number, 26 mines ("class 1") and 4 civil works were identified as having potential in that they fulfilled the criteria; these are summarized in detail. Thirty mines ("class 2") may have similar potential if information on one or more criteria is obtained; information on these mines is tabulated.

Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies.

A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures and Tables</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I. Identification and Selection Processes</td>
<td>5</td>
</tr>
<tr>
<td>II. Summaries of Information</td>
<td>9</td>
</tr>
<tr>
<td>III. Conclusions and Recommendations</td>
<td>21</td>
</tr>
<tr>
<td>IV. Descriptions of "class 1" Mines and Civil Works</td>
<td>25</td>
</tr>
<tr>
<td>MINES</td>
<td>27</td>
</tr>
<tr>
<td>Arizona</td>
<td></td>
</tr>
<tr>
<td>Lakeshore Mine</td>
<td>27</td>
</tr>
<tr>
<td>Miami East Mine</td>
<td>37</td>
</tr>
<tr>
<td>San Manuel/Kalamazoo Mine</td>
<td>47</td>
</tr>
<tr>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Pine Creek Mine</td>
<td>63</td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
</tr>
<tr>
<td>Climax Mine</td>
<td>75</td>
</tr>
<tr>
<td>Schwartzwalder Mine</td>
<td>89</td>
</tr>
<tr>
<td>Urad Mine/Henderson Mine</td>
<td>99</td>
</tr>
<tr>
<td>Colorado School of Mines, Experimental Mine</td>
<td>109</td>
</tr>
<tr>
<td>Idaho</td>
<td></td>
</tr>
<tr>
<td>Lost Packer Mine</td>
<td>117</td>
</tr>
<tr>
<td>Coeur d'Alene District</td>
<td>125</td>
</tr>
<tr>
<td>Dayrock Mine</td>
<td>143</td>
</tr>
</tbody>
</table>
Idaho (cont.)

Star-Morning Mine 447
Coeur Mine 151

Maine

Black Hawk (second pond) - Blue Hill Mine 155

Minnesota

Minnamax Project and Ely Prospect 163

Montana

Black Pine Mine 171
Butte Mining District and Butte Underground Mines 183
Leonard Mine 194
Steward Mine 197
Granite-Bimetallic Mine 201

Nevada

Tem Piute District 209

New Jersey

Mount Hope and Scrub Oaks Mines 217

New Mexico

Questa Molybdenum Mine 231

New York

Balmat-Edwards District Mines 245
Lyon Mountain District 257

South Dakota

Homestake Mine 265

Tennessee

Ducktown District 285
<table>
<thead>
<tr>
<th>Location</th>
<th>Project Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington</td>
<td>Holden Mine</td>
<td>295</td>
</tr>
<tr>
<td>Wyoming</td>
<td>Sunrise Mine</td>
<td>307</td>
</tr>
<tr>
<td>CIVIL WORKS</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>California</td>
<td>Helms Underground Powerhouse - Pumped Storage Project</td>
<td>317</td>
</tr>
<tr>
<td>Idaho</td>
<td>Dworshak Dam Site</td>
<td>325</td>
</tr>
<tr>
<td>Nevada</td>
<td>Nevada Test Site - Climax Stock</td>
<td>331</td>
</tr>
<tr>
<td>South Carolina</td>
<td>Bad Creek Pumped Storage Project</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>Appendix 1 - Sources of Information</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Appendix 2 - Mines in Crystalline Rocks Considered for Study</td>
<td>457</td>
</tr>
</tbody>
</table>
LIST OF FIGURES AND TABLES

I. Identification and Selection Process

Figure 1. Identification and selection process for potential underground sites

II. Summaries of Information

Figure 1. Location of underground workings on map of the United States

Table 1. "Class 1" mines

Table 2. "Class 2" mines

III. Conclusions and Recommendations

IV. Descriptions of "class 1" mines and civil works

MINES

Arizona

Lakeshore Mine

Figure 1. Location map of the Lakeshore ore body, Pinal County, Arizona (Hallof, 1974)

Figure 2. Preliminary geology of the Lakeshore Mine area has been largely interpreted from drill hole data. Cross section A-A' is seen as Figure 3 (Harper, 1969)

Figure 3. Geologic section A-A' of Lakeshore ore deposit (Harper, 1969)

Figure 4. North-south and east-west cross sections of Lakeshore deposit illustrating the three zones of mineralization: oxide, sulfide, and tactite (EMJ, June, 1969)

Table 1. Lakeshore Mine rock properties (Board, 1974)

Miami East Mine

Figure 1. Index map of Arizona showing location of Globe quadrangle (Peterson, 1951)
Figure 2. Geologic sketch map of Globe quadrangle, Arizona. Data from Ransome with modifications (Peterson, 1951)

Figure 3a. Geologic plan and sections, Inspiration Mine, Gila County, Arizona (Olmstead, 1966)

Figure 3b. Geologic map of Miami area (Peterson, 1962)

San Manuel/Kalamazoo Mine

Figure 1. Sketch map showing principal towns and topographic features in the area surrounding the San Manuel district, Arizona (Schwartz, 1953)

Figure 2. Geologic map of area around San Manuel and Tiger, Arizona (Schwartz, 1953)

Figure 3. Geologic map of the San Manuel area (Lowell, 1968)

Figure 4. Schematic drawings showing possible origin of Kalamazoo ore body (Lowell, 1968)

Figure 5. Geology of 1,475 haulage level (Thomas, 1966)

Figure 6. Idealized cross section looking northeast (Thomas, 1966)

Figure 7. Idealized longitudinal section looking northwest (Thomas, 1966)

Table 1. Summary of quartz monzonite Brazilian test data (Kendorski, 1976)

Table 2. Quartz monzonite compression test summary (Kendorski, 1976)

California

Pine Creek Mine

Figure 1. Location map of the Bishop, California area (Bateman, 1965)
Colorado

Climax Mine

Figure 1. Relationship of Climax to the Colorado mineral belt (Wallace, 1968) 76
Figure 2. Generalized bedrock geology of the Climax area (Wallace, 1968) 77
Figure 3. Diagrammatic sections showing multiple intrusion and mineralization, and progressive tilting (Amex, 1974+)
Figure 4. Cross section, showing generalized geology and ore zones (Wallace, 1968) 81
Figure 5. Cut-away diagram of Climax Mine (Amex, 1974+)
Figure 6. Production levels at Climax Mine (Amex, 1974+)
Figure 7. Phillipson level, showing generalized geology and ore zones (Wallace, 1968) 85

Schwartzwalder Mine

Figure 1. Map of Colorado-Denver mountain area 90
Figure 2. Simplified geologic map of Ralston Buttes district, Jefferson County, showing the principal uranium deposits (Sims, 1964) 91
Figure 3. Simplified geologic map of the Schwartzwalder Mine area Ralston Butte district, Jefferson County (Sims, 1964) 93
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Geologic section of the Schwartzwalder Mine, Ralson Butte district, Jefferson County (Sims, 1964)</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>Recent cross section of Schwartzwalder Mine with level map (EMJ, Nov. 1978)</td>
<td>97</td>
</tr>
<tr>
<td>Brad Mine/Henderson Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Generalized surface geologic map of Red Mountain showing location of section 480 H (Ranta, 1976)</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Generalized geologic section 480 H (Ranta, 1976)</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>The complexity and number of development openings needed for mining the Henderson are enormous . . . (Hoppe, 1976)</td>
<td>107</td>
</tr>
<tr>
<td>Colorado School of Mines, Experimental Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Location map, Colorado School of Mines, experimental mine, Idaho Springs, Clear Creek County, Colorado</td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Geologic map of Idaho Springs area (Lovering and Goddard, 1950)</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>Map showing location of experimental room, Colorado School of Mines, experimental mine, Idaho Springs, Colorado</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>Geology of the experimental room area</td>
<td>114</td>
</tr>
<tr>
<td>Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost Packer Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Location map showing the Lost Packer Mine, Custer County, Idaho</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>Geologic map of the Loon Creek Mining district, showing the location of the Lost Packer Mine</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>Transverse section through Lost Packer vein, Loon Creek district, Idaho, looking north. (Umpleby, 1913)</td>
<td>122</td>
</tr>
</tbody>
</table>
Coeur d'Alene district

Figure 1a. Location map of the Coeur d'Alene area (Chan, 1972)

Figure 1b. Location of Coeur d'Alene district in Shoshone County, Idaho

Figure 2. Coeur d'Alene mining district showing mines and major faults (Sorenson, 1947)

Table 1. Generalized stratigraphic section, Coeur d'Alene district, Idaho (Hobbs and others)

Figure 3. Isometric drawing of regional sections centered on the Coeur d'Alene district showing the general thickening of the stratigraphic section to the north and east (Hobbs and others, 1965)

Figure 4. Zones of fault gouge and brecciation along Osburn fault as seen in the main cross cut of the Star-Morning Mine (Hobbs and Fryklund, 1968)

Dayrock Mine

Figure 1. Generalized geologic cross section of the Dayrock Mine, Coeur d'Alene mining district, Idaho (Farmin, 1961)

Maine

Black Hawk (Second Pond)-Blue Hill Mine

Figure 1. Location map of Blue Hill Mine, Hancock County, Maine

Figure 2. Basic geologic environments, State of Maine (Young, 1968)

Figure 3. Simplified geologic map of the Blue Hill area (Smith, 1907)
Minnesota

Minnamax Project

Figure 1. Location map of Minnamax Project, St. Louis County, Minnesota (EMJ, 1976) 164

Figure 2. Geologic map of southern part of Duluth complex (Bonnichsen, 1972) 165

Figure 3. Geologic map of Babbitt-Hoyt Lakes region (Bonnichsen, 1972) 165

Figure 4. Minnamax Exploration Shaft (EMJ, 1976) 168

Montana

Black Pine Mine

Figure 1. Location map of Black Pine Mine, Granite County, Montana 172

Figure 2. Geologic map of the area around the Black Pine Mine, Granite County, Montana (Wallace, 1978) 173

Table 1. Generalized geologic column for the Black Pine Mine area, Philipsburg mining district, Granite County, Montana (Ross, 1963, Emmons, 1913) 175

Figure 3. Geologic cross section of the Combination Vein, Black Pine Mine, in relation to the Spokane formation quartzite. Displacements are shown along several faults, and early mine workings (Emmons and Calkins, 1913) 177

Figure 4. Recent development drifts at Black Pine Mine. The main haulage drift is along Combination Vein (Figure 3) (White, 1976) 180

Butte Mining District and Butte Underground Mines

Figure 1. Location map of Butte Underground Mines, Silver Bow County, Montana 184
Figure 2. Generalized geologic map of the Butte mining district and Boulder batholith relative to major tectonic elements in southeastern Montana (Meyer and others, 1968)

Figure 3. Generalized rock column for the Butte mining district, Montana, showing intrusive-vein-alteration sequence and available age dates of rock-alteration assemblages (Miller, 1973)

Figure 4. Composite plan at 2800 and 3800 levels showing zones of mineralization ... in relation to the principal shafts of the district (Meyer and others, 1968)

Figure 5. Plan view of the State, Syndicate, and Anaconda vein systems near the center of the district at the 1800 level, high ore (Meyer and others, 1968)

Figure 6. Cross section view of Anaconda Vein, looking west, showing dips of Anaconda fissures (Meyer and others, 1968)

Figure 7. Map of the Leonard Mine at the 3600 level, Silver Bow County, Montana (Soc. Econ. Geol., 1973)

Figure 8. Map of the Leonard Mine at the 4800 level, Silver Bow County, Montana (Soc. Econ. Geol., 1973)

Figure 9. Map of the Steward Mine at the 4200 level, Silver Bow County, Montana (Soc. Econ. Geol., 1973)

Figure 10. Map of the Steward Mine at the 4400 level, Silver Bow County, Montana (Soc. Econ. Geol., 1973)

Granite-Bimetallic Mine

Figure 1. Location map, Granite-Bimetallic Mine, in Granite County, Montana

Figure 2. Generalized geology of the Philipsburg batholith and surrounding area showing location of the Philipsburg district (Prinz, 1967)
Table 1. Stratigraphic succession in the Philipsburg district (Prinz, 1967)

Figure 3. Plan and elevation of levels in Granite-Bimetallic Mine (Emmon and Calkins, 1913)

Nevada

Tem Piute district

Figure 1. Location map of Tem Piute

Figure 2. Geologic map of the Tem Piute district (Tschanz, 1970)

Figure 3. Geologic map of Tem Piute (Lincoln) Mine property, Tschanz, 1970

New Jersey

Mount Hope and Scrub Oaks Mine

Figure 1. Index map showing the location of the Dover district (Sims, 1958)

Figure 2. Geologic map showing the location of the Mount Hope and Scrub Oaks Mines in the Dover mining district, Morris County, New Jersey, (Sims, 1958)

Figure 3. Geologic map and section of Side Hill adit, Mount Hope Mine, (Sims, 1958)

Figure 4. Vertical longitudinal projection of Taylor ore body, Mount Hope Mine (Sims, 1958)

Figure 5. Map and longitudinal projection of main workings at Scrub Oaks Mine (Sims, 1958)

New Mexico

Questa Molybdenum Mine

Figure 1. Map of Taos County showing location of Questa Molybdenum Mine (Schilling, 1960)
Figure 2. Generalized geology of Questa Molybdenum Mine area (Schilling, 1960) 233

Figure 3. Generalized rock section of the Questa Molybdenum Mine area (Schilling, 1960) 234

Figure 4. Questa Molybdenum Mine area, geologic map and D section 236

Figure 5. Block diagram of the Questa Molybdenum Mine, Taos County, New Mexico (Schilling, 1960) 237

New York

Balmat-Edwards District Mines

Figure 1. Index map, showing location of the Balmat-Edwards district, New York (Lea, 1968) 246

Figure 2. Generalized geologic map of the Balmat-Edwards district within the northwestern Adirondacks, showing the distribution of major rock types and mineral deposits (Lea, 1968) 247

Figure 3. Geologic map of the Balmat-Edwards district: Edwards area (Lea, 1968) 250

Figure 4. Geologic map of the 1500-foot mining level: Edwards Mine (Lea, 1968) 251

Figure 5. Edwards Mine: northwest-southeast section (Lea, 1968) 252

Figure 6. Section through No. 4 shaft, Balmat Mines, St. Joe Minerals Corp. (EMJ, Nov. 1976) 253

Lyon Mountain District

Figure 1. Map showing locations of the Chateaugay and 81 Mines, Clinton County, New York. 258
Figure 2. Geologic map of the Lyon Mountain area, Clinton County, New York, showing the location of the Chateaugay and 81 Mines (Postel, 1952)

South Dakota

Homestake Mine

Figure 1. Location maps of the Homestake Mine, Lawrence County, South Dakota (Slaughter, 1968)

Figure 2. Geologic map of the Lead district (Slaughter, 1968)

Figure 3. Precambrian geology in the vicinity of the Homestake Gold Mine, Black Hills, South Dakota (Noble, 1949)

Figure 4. Distribution of the Precambrian sedimentary rocks and the metamorphic zones in those rocks in the Lead district (Noble, 1948)

Figure 5. Relation of ore bodies to structure (Slaughter, 1968)

Figure 6. Cross-folded structures, 2600 level (Slaughter, 1968)

Figure 7. Cross-folded syncline, 2300 level (Slaughter, 1968)

Figure 8. Idealized section of Homestake Mine (Homestake Mining Company, 1976)

Figure 9. Cross section of 9-ledge structure, showing open cut and fill stoping (Homestake Mining Company, 1976)

Tennessee

Ducktown District

Figure 1. Location maps, Ducktown district, Polk County, Tennessee
Figure 2. Regional geologic map of the Ducktown area (Magee and others, 1968)

Table 1. Stratigraphic sequence across the Ducktown region of the Great Smoky Mountains (Magee, 1968)

Figure 3. Cross sections of the Boyd and Eureka ore deposits. The drag fold pattern of the Boyd ore body is evident (Magee, 1968)

Figure 4. Horizontal plan views of the Boyd and Eureka ore deposits (Magee, 1968)

Washington

Holden Mine

Figure 1. Location maps - Holden Mine, Chelan County, Washington

Figure 2. Geology of the Holden area (Youngberg, 1952)

Figure 3. Gross structural trends and major faults in the North Cascade Range of Washington (Grant, 1968)

Figure 4. Idealized geologic cross section of the Holden ore body, showing ore zoning and its relationship to the wall rocks and intrusions (Youngberg, 1952)

Figure 5. Geologic structure of a west-east section of the Holden Mine, showing mineralization, mine levels, and No. 2 shaft. (Youngberg, 1952)

Wyoming

Sunrise Mine

Figure 1. Location map of Sunrise Mine, Platte County, Wyoming.
Figure 2. Geologic map, vicinity Sunrise, Wyoming (Carter, 1963)

Figure 3. Generalized sections of Sunrise Mine operations (EMJ, 1974)

CIVIL WORKS

California

Helms Underground Powerhouse - Pumped storage project

Figure 1. Location of Helms Project in California, 60 miles east of Fresno

Figure 2. Original and modified layout of underground powerhouse complex—Helms Pumped Storage Project

Figure 3. Plan and profile, Helms Pumped Storage Project

Table 1. Rock properties and project characteristics

Idaho

Dworshak Dam Site

Figure 1. Dworshak Dam Site in Idaho, approx. 40 miles east of Lewiston

Figure 2. Geologic map of the Orofino region, northern Idaho, (Johnson, 1947)

Nevada

Nevada Test Site - Climax Stock

Figure 1. Location map of the Nevada Test Site-Climax Stock area, Nye County, Nevada

Figure 2. Generalized geologic map of the Yucca Flat area. Unpatterned areas are surficial deposits (Hinrichs, 1968)
Figure 3. Geologic map of the Climax Stock area (Ramspott, 1979) 335

Table 1. Summary of laboratory tests on Climax Stock quartz monzonite (Pratt, 1976) 337

Figure 4. Failure envelopes of both intact and fractured Climax Stock granodiorite under dry and saturated conditions, 240 m level (Heard, 1971) 339

Figure 5. Failure strength as a function of confining pressure for dry samples and samples with excess water, 240 m level (Duba and others, 1974) 340

Figure 6. Layout of 420 m level, Climax granite, showing new construction for spent-fuel test (Ramspott, 1979) 341

South Carolina

Bad Creek Pumped Storage Project

Figure 1. Location map of Bad Creek Project in Oconee County, South Carolina (Overstreet, 1965) 344

Figure 2. Vertical section through the waterways—Bad Creek Pumped Storage Project (Nester, 1974) 345

Figure 3. Simplified geologic map of the Lake Jocasee area (Overstreet, 1965) 346

Table 1. Rock properties - Bad Creek area 347

Bibliography

Index

Appendix 1. Sources of Information

Exhibit 2. Printout of data on the Crescent Mine from the CRIB data base.

Exhibit 3. Bibliographic references dealing with the Leadville quadrangle, Colorado, from GEOREF.

Appendix 2. Mines in Crystalline Rocks Considered for Study

Table 1. Quantitative summary by state of underground sites reviewed and selected for study.

Table 2. Mines considered for study, listed alphabetically along with state and county.
ACKNOWLEDGMENTS

During the compilation of this report the work of many authors was drawn upon. These contributions are acknowledged in the report by reference to the appropriate publications.

In addition to the principal contributors and authors shown, we wish to acknowledge the following individuals and institutions:

Jon Stone and Peggy Edwards of the U.S. Bureau of Mines were most helpful in searching the Minerals Availability System (MAS) data base for information on mines in known rock types.

Maureen Johnson, U.S. Geological Survey, and Jerlene Bright and Pat Tracy, University of Oklahoma, searched the CRIB data base; Carol Backhus of LBL's Mechanical Engineering Library assisted in searching the GEOREF data base; and Helen Reed, of Utah International, Inc., provided use of their mining library. Mrs. Beatrice Lukens, librarian of the Earth Sciences Library, University of California, Berkeley, was most helpful. Gary Murrie and Todd Gates, Dames and Moore Co., Cincinnati, Ohio, discussed with us their project to identify crystalline rock bodies of the U. S. and provided access to their files containing valuable information on this subject.

Other LBL personnel instrumental in providing support in preparing this report included Ellen Diamond, Dodie Kataque, Cynthia Childs, Bob Flower, and Lorraine Allen. This work was supported by the ONWI, Columbia Division of the U. S. Department of Energy under Contract W-7405-ENG-48.
SEARCH FOR UNDERGROUND OPENINGS
FOR IN SITU TEST FACILITIES IN CRYSSTALLINE ROCKS

INTRODUCTION

The objective of this project was to identify existing underground openings suitable for performing geomechanical, geochemical, and hydrogeologic tests pertinent to the storage of radioactive waste in crystalline rock. Crystalline rock, for the purpose of this study, has been defined to include intrusive igneous rocks and medium- to high-grade metamorphic rocks. The underground openings would be located at sufficient depth and would be of sufficient volume to conduct large-scale in-situ experiments. This project, covering active or recently inactive mines and civil works, was conducted simultaneously with a study (Cohen, 1979) to identify criteria for in-situ test facilities and to formulate a provisional program of experiments.

Concurrently, the Dames and Moore Company conducted a preliminary assessment of crystalline rock bodies in the U. S. which may accommodate a waste-isolation facility.

Based on a search of open literature, 26 "class 1" sites were identified as having, possibly, the greatest potential for underground test facilities. Thirty sites were categorized as "class 2" because data in the open literature were not sufficient to verify one or more established criteria. Potentially suitable underground openings in crystalline rocks, primarily exploration adits, shafts, and drifts, which are not documented in the open literature were not included in this project report.
This report summarizes a systematic search and analysis of the available literature on underground openings in crystalline rocks. Because of its preliminary nature the study was restricted to the open literature. Neither mining companies, state geologists and bureaus of mines, nor utility and transportation authorities were contacted.

There was generally not sufficient information in the open literature on the hydrologic settings of most of the underground workings. This is partially because it is difficult to define a water table in crystalline rocks; also, total water production and its component introduced by mining operations are data normally in company files. It is safe to state, however, that mines encompassing a broad depth range, for example the Homestake, with levels accessible from depths of 1100 to over 8000 ft., would intersect a variety of hydrogeologic conditions.

The report consists of four sections, a bibliography, index, and two appendices as described below:

Section I - Identification and Selection Process - principal data bases, criteria, and the selection process.

Section II - Summaries of Information - locations and tabulations of mines and civil works.

Section III - Conclusions and Recommendations - Summary of findings and an outline of studies designed to refine the list of potential sites.

Section IV - Descriptions of "class 1" mines and civil works.

Bibliography - a general bibliography of all literature searched, including the individual bibliographies for "class 1" sites.

Index - lists place and mine names referred to in the text and bibliography.
Appendix 1 - Sources of Information - description of data bases used.

Appendix 2 - Table giving the number of mines by state which were derived from various sources, and list of mines in crystalline rock which were considered.
I. IDENTIFICATION AND SELECTION PROCESS

The process of identification and selection of potential underground sites is diagrammed in Figure 1. It depended on the availability of information in the literature and personal knowledge of the authors. To identify candidate sites, a variety of information sources were used to collect data on the existing underground mines and civil works. Information was extracted from two mine data bases: The Minerals Availability System (MAS) of the U.S. Bureau of Mines and the U.S. Geological Survey's Computerized Resources Information Bank (CRIB). Additional sources utilized were GEOREF (the Geological Reference file prepared by the American Geological Institute), mining directories, various geological and mining engineering reports and tunneling and excavation reports.

Data on the civil works were obtained from the open literature and consultants. Descriptions of the data bases and examples of printouts are given in Appendix 1. Also listed in the first appendix are the kinds of information obtainable from these sources of information.

Based on underground mine information, a list of 5900 mines was extracted from the 130,000 mines on record in MAS, and an additional 120 sites were identified from other data bases. Thirty-four civil works sites were added from discussions with consultants. After initial review the compiled list of surface and underground mines in crystalline and non-crystalline rock totaled approximately 6100. Application of the criteria described below resulted in identification of 60 underground sites in crystalline rock.
Figure 1. Identification and Selection Process for Potential Underground Sites.

*All criteria met, some information not validated in open literature.
Along with information on mines in crystalline rocks, similar data were obtained from MAS on over 3000 mines in non-crystalline rocks. This data base is available for a preliminary characterization of underground workings in argillaceous, carbonate and volcanic rocks.

Criteria

The base list of underground sites was reduced by categorizing the openings on how well they fit the criteria defined below. The criteria were designed to include a broad spectrum of underground openings, within which conditions might approximate those of a waste repository in crystalline rock.

1) The underground workings or a sufficient portion must be located in crystalline rock (intrusive igneous or medium- to high-grade metamorphic rock). Exceptions are mines located in low- to medium-grade metamorphic rocks of Precambrian age in Idaho, Michigan, Minnesota, and eastern Wyoming. These mines are considered acceptable because of: (a) their location in tectonically-stable, mid-continent regions as in the case of the Michigan, Minnesota, and eastern Wyoming sites; and (b) because a number of them have been the sites of in situ geomechanical testing, resulting in a large amount of information characterizing the sites, especially the Coeur d'Alene mines of Idaho.

2) The site must be underground, at a depth greater than 600 ft.

3) An acceptable underground working should be of sufficient size to provide for an in situ testing facility, similar in size to the Strip experimental facility in Sweden.
4) The workings should not have been closed for over 10 years, caved, sealed or flooded as reported in the literature and annual reports of mining activity.

5) It is desirable that the workings be located below the water table, though sites which have workings both above and below the water table may provide access for tests comparing rock and hydrologic properties of the saturated and unsaturated zones.

6) The workings should encompass rock with physical and mechanical properties adequate to provide good support in new excavations and long-term access for the experimental program.

In the final review of underground sites, a site was designated as "class 1" if all of the criteria were met and verified in the open literature. A site was assigned "class 2" status if the criteria were believed to be met but it was not possible to verify one or more of the parameters in the literature. Characteristics of the underground sites are summarized in Tables 1 and 2 in the following section.
II. SUMMARIES OF INFORMATION ON MINED OPENINGS IN CRYSTALLINE ROCK

The selection process detailed in the previous section identified 26 mines and 4 civil works in crystalline and high- or medium-grade metamorphic rocks as "class 1" sites for in situ testing facilities. These are listed in Table 1.

A second group of mines which appear to be suitable potential sites, but lack data on one or more established selection criteria, are listed as "class 2" sites. Table 2 summarizes information available on "class 2" sites, and indicates which key criteria for each mine could not be verified.

Several mined openings are summarized under the heading "Civil Works." These include the Helms, Dworshak Dam, and Bad Creek Pumped Storage Projects.

All of the "class 1" and "class 2" sites and the civil works are located on a map of the United States (Figure 1).

A summary description of each "class 1" site is included, alphabetically by state, in the following portion of the report. Each summary includes data on location and accessibility, geologic setting, description of mine or civil workings, and references.
FIGURE 1. Location of Underground workings on map of the United States.

Class "1" Mines
Arizona
1. Lakeshore Mine
2. Miami East Mine
3. San Manuel/Kalamazoo Mine
California
4. Pine Creek Mine
5. Climax Mine
6. Schwartzwalder Mine
7. Urad/Henderson Mine
8. Colorado School of Mines, Experimental Mine
Colorado
9. Lost Packer Mine
10. Dayrock Mine
11. Star-Morning Mine
12. Coeur Mine
Idaho
13. Black Hawk (Second Pond)-Blue Hill Mine
Minnesota
14. Minnemax Project, Ely Prospect
Montana
15. Black Pine Mine
16. Leonard Mine
17. Steward Mine
18. Granite-Bimetallic Mine
New Mexico
19. Questa Molybdenum Mine
20. Mount Hope and Scrub Oaks Mines
New York
21. Homestake Mine
22. Balmat-Edwards District Mines
23. Lyon Mountain District
South Dakota
24. Holdem Mine
Washington
25. Sunrise Mine
Wisconsin
26. Summit King Mine
27. Bagdad Mine
28. Oracle Ridge
29. Atolia District
30. Black Cloud Mine
31. Kentuck Mine
32. Silver City Region
33. Indiana Mine
34. Iroquois Mine
Michigan
35. Ely Prospect
36. Butte Highlands Mine
37. Dacotah Mine
38. Gooseberry Mine
39. Mill City Mine
40. Ruby Hill Mine
41. Searchlight District
42. Summit King Mine
43. Sutton No. 2 Mine
44. Taylor Mine
New Jersey
45. Sterling Mine
46. Continental Underground
47. Groundhog Mine
North Carolina
48. Cranberry Magnetite
49. Tungsten Queen Mine
Tennessee
50. Ducktown District
Utah
51. Ontario Mine
52. Mayflower Mine
53. Park City Mine
Washington
54. Midnite Mine
55. Sherwood Mine
56. Sunrise Breccia Deposit
Civil Works
California
57. Helms Underground Powerhouse Pumped Storage Project
Idaho
58. Dworshak Dam Site
Nevada
59. Nevada Test Site-Climax Stock
South Carolina
60. Bad Creek Pumped Storage Project
Used with permission of the Department of Geography, University of Chicago.
Table 1: "Class 1" Mines

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>STATE</th>
<th>COUNTY</th>
<th>COMMODITY MINED</th>
<th>ROCK TYPE</th>
<th>DEPTH (FT)</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arizona</td>
<td>Pinal</td>
<td>Tucson</td>
<td>Cu, Fe, Au, Ag</td>
<td>Quartz Monzonite</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>Arizona</td>
<td>Gila</td>
<td>Mesa</td>
<td>Cu, Au, Ag, Mo</td>
<td>Schist, Granite</td>
<td>3450</td>
</tr>
<tr>
<td>3</td>
<td>Arizona</td>
<td>Pinal</td>
<td>Tucson</td>
<td>Cu, Mo, Ag, Au</td>
<td>Quartz Monzonite</td>
<td>560-2410</td>
</tr>
<tr>
<td>4</td>
<td>California</td>
<td>Inyo</td>
<td>Goldfield</td>
<td>W, Mo, Cu</td>
<td>Quartz Monzonite</td>
<td>Over 1000</td>
</tr>
<tr>
<td>5</td>
<td>Colorado</td>
<td>Lake</td>
<td>Leadville</td>
<td>Mo, W, Sn, S</td>
<td>Quartz Monzonite</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>Colorado</td>
<td>Jefferson</td>
<td>Denver</td>
<td>U</td>
<td>Gneiss, Schist</td>
<td>2400</td>
</tr>
<tr>
<td>7</td>
<td>Idaho</td>
<td>Shoshone</td>
<td>Grand & Clear Creek</td>
<td>Mo</td>
<td>Precambrian Granite, Tertiary Porphyry</td>
<td>500-1000</td>
</tr>
<tr>
<td>8</td>
<td>Idaho</td>
<td>Shoshone</td>
<td>Challis</td>
<td>Cu, Co, Ag</td>
<td>Mica Schist, Granodiorite</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>Idaho</td>
<td>Custer</td>
<td>Challis</td>
<td>Au, Co, Ag</td>
<td>Mica Schist, Granodiorite</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>Idaho</td>
<td>Shoshone</td>
<td>Wallace</td>
<td>Pb, Zn, Ag, Cu, Am</td>
<td>Quartzite, Quartz Monzonite</td>
<td>4400</td>
</tr>
<tr>
<td>11</td>
<td>Idaho</td>
<td>Shoshone</td>
<td>Wallace</td>
<td>Pb, Zn, Ag, Au</td>
<td>Quartzite, Argillite</td>
<td>8500</td>
</tr>
<tr>
<td>12</td>
<td>Idaho</td>
<td>Shoshone</td>
<td>Wallace</td>
<td>Ag, Cu, Pb, Zn, Au</td>
<td>Quartzite, Slate, Argillites, Calcareous Quartzite</td>
<td>4000</td>
</tr>
<tr>
<td>13</td>
<td>Maine</td>
<td>Hancock Co., Bangor</td>
<td>Zn, Cu, Pb, Fe, Ag</td>
<td>Schist, Amphibolites, Metasandstone</td>
<td>1310</td>
<td>Inactive 1977, on standby</td>
</tr>
<tr>
<td>NUMBER</td>
<td>STATE</td>
<td>COUNTY</td>
<td>QUAD.</td>
<td>COMMODITY MINED</td>
<td>ROCK TYPE</td>
<td>DEPTH (FT)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>MINNESOTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Minnemax Project</td>
<td>St. Louis</td>
<td>Two Harbors</td>
<td>Ni, Cu, Co, Ti, Pt Group, Au, Ag</td>
<td>Troctolitic Intrusive (Gabbro)</td>
<td>1610</td>
</tr>
<tr>
<td>15</td>
<td>Black Pines Mine</td>
<td>Granite</td>
<td>Butte</td>
<td>Ag, Au, W, Cu, Pb, Zn</td>
<td>Quartzite, Granodiorite</td>
<td>2300</td>
</tr>
<tr>
<td></td>
<td>Butte District Underground Mines</td>
<td>Silver Bow</td>
<td>Butte</td>
<td>Cu</td>
<td>Quartz Monzonite</td>
<td>to 4600</td>
</tr>
<tr>
<td>16</td>
<td>Leonard Mine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Steward Mine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Granite-Bismetallic Mine</td>
<td>Granite</td>
<td>Butte</td>
<td>Ag, Au, Pb, Zn, Si</td>
<td>Granodiorite</td>
<td>2628</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ten Plute</td>
<td>Lincoln</td>
<td>Caliente</td>
<td>W, Ag, Pb, In, F, Bi, Mo</td>
<td>Dolomite, Limestone, Shale, Sandstone, Granite Stock</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Mt. Hope and Scrub Oak Mines</td>
<td>Morris</td>
<td>Scranton</td>
<td>Fe</td>
<td>Gneiss</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Questa Molybdenum Mine</td>
<td>Taos</td>
<td>Raton</td>
<td>Mo</td>
<td>Granite</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Balaat-Education District Mines</td>
<td>St. Lawrence Co.</td>
<td>Ogdensburg</td>
<td>Zn, Pb, Cd, Fe</td>
<td>Marble, Dolomite, Evaporite, Gneiss, Schist</td>
<td>2100-3100</td>
</tr>
<tr>
<td>23</td>
<td>Lyon Mountain District</td>
<td>Clinton</td>
<td>Lake Champlain</td>
<td>Fe</td>
<td>Gneiss</td>
<td>81 mine - 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Homestake Mine</td>
<td>Lawrence</td>
<td>Rapid City</td>
<td>Au, Ag</td>
<td>Schist</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Holdman Mine</td>
<td>Chelan</td>
<td>Concrete</td>
<td>Cu</td>
<td>Granite, Granodiorite</td>
<td>to 5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Sunrise Mine</td>
<td>Platte</td>
<td>Torrington</td>
<td>Fe</td>
<td>Schist</td>
<td>Probably adequate</td>
</tr>
<tr>
<td>NUMBER</td>
<td>STATE/NAME</td>
<td>COUNTY</td>
<td>ROCK TYPE</td>
<td>DEPTH (FT)</td>
<td>STATUS (10/79)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Helms Pumped - Storage Project</td>
<td>Fresno</td>
<td>Mariposa</td>
<td>~1000</td>
<td>Under construction</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Dworshak Dam Site</td>
<td>Clearwater</td>
<td>Pullman</td>
<td>to 700</td>
<td>Access questionable</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Nevada Test Site - Climax Stock</td>
<td>Nye</td>
<td>Death Valley & Las Vegas</td>
<td>~1400</td>
<td>Under construction</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Bad Creek Pumped-Storage Project</td>
<td>Oconee</td>
<td>Greenville</td>
<td>~900</td>
<td>Operating (?)</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Mine Name</td>
<td>State</td>
<td>County</td>
<td>Location</td>
<td>U.S. Geol. Survey Quad</td>
<td>Depth (ft)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>27</td>
<td>Bagdad Mine</td>
<td>Arizona</td>
<td>Yavapai</td>
<td>Prescott</td>
<td>11:250,000</td>
<td>197+?</td>
</tr>
<tr>
<td>28</td>
<td>Oracle Ridge</td>
<td>Arizona</td>
<td>Pima</td>
<td>Tucson</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Atolia District</td>
<td>California</td>
<td>San Bernandino</td>
<td>Trona</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Black Cloud Mine</td>
<td>Colorado</td>
<td>Lake</td>
<td>Leadville</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Bootstrap Mine</td>
<td>Idaho</td>
<td>Lemhi</td>
<td>Elk City</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Silver City Mine</td>
<td>Idaho</td>
<td>Dwayne</td>
<td>Valley</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Indiana Mine</td>
<td>Michigan</td>
<td>Ontonagon</td>
<td>Iron River</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Iroquois Mine</td>
<td>Michigan</td>
<td>Keweenaw</td>
<td>Hancock</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ely Prospect</td>
<td>Minnesota</td>
<td>Lake</td>
<td>Two Harbors</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Butte Highlands</td>
<td>Montana</td>
<td>Silver - Row</td>
<td>Butte</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Decatur Mine</td>
<td>Montana</td>
<td>Cascade</td>
<td>Great Falls</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Gooseberry Mine</td>
<td>Nevada</td>
<td>Storey</td>
<td>Reno</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Hill City Mine</td>
<td>Nevada</td>
<td>Pershing</td>
<td>Lovelock</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ruby Hill Mine</td>
<td>Nevada</td>
<td>Eureka</td>
<td>Millet</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Searchlight Mine</td>
<td>Nevada</td>
<td>Clark</td>
<td>Kingsbury</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Summit Mine</td>
<td>Nevada</td>
<td>Churchill</td>
<td>Reno</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sutton No. 2 Mine</td>
<td>Nevada</td>
<td>Pershing</td>
<td>Lovelock</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Taylor Mine</td>
<td>Nevada</td>
<td>White Pine</td>
<td>Elly</td>
<td>11:250,000</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Sterling Mine</td>
<td>New Jersey</td>
<td>Sussex</td>
<td>Scranton</td>
<td>New Jersey Zinc Co.</td>
<td>11:250,000</td>
</tr>
</tbody>
</table>

Table 2 - "Class 2" Mines
Table 2 - "Class 2" Mines

<table>
<thead>
<tr>
<th>No.</th>
<th>Mine Name</th>
<th>State</th>
<th>Mine Status</th>
<th>Mining Method</th>
<th>Number of Openings</th>
<th>Type of Equipment</th>
<th>Mine in "Class 2" Because:</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Bagdad Mine</td>
<td>Arizona</td>
<td>Active 1975</td>
<td>Cut and Fill, Block Caving</td>
<td>2 shafts</td>
<td>Tracks & Truck, Rubber tire LHD Units</td>
<td>Sufficient depth? Adequate workings in crystalline rock?</td>
</tr>
<tr>
<td>28</td>
<td>Oracle Ridge</td>
<td>Arizona</td>
<td>Active, Opened 1974</td>
<td>Open stoping, Room & pillar</td>
<td>2 adits</td>
<td>Ventilation Shaft</td>
<td>Depth unknown, Sufficient workings in quartz diorite?</td>
</tr>
<tr>
<td>29</td>
<td>Atolia District</td>
<td>California</td>
<td>Inactive 1973, 1976</td>
<td></td>
<td></td>
<td></td>
<td>How recently inactive?</td>
</tr>
<tr>
<td>30</td>
<td>Black Cloud</td>
<td>Colorado</td>
<td>Active 1975, Cut and fill</td>
<td></td>
<td>3 Shafts</td>
<td></td>
<td>Sufficient workings in intrusive?</td>
</tr>
<tr>
<td>31</td>
<td>Endrock Mine</td>
<td>Idaho</td>
<td>Inactive 1976</td>
<td></td>
<td>Mine volume small, on 5 levels</td>
<td>How recently inactive? Adequate size?</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Silver City</td>
<td>Idaho</td>
<td>Inactive</td>
<td></td>
<td></td>
<td>Activity? Adequate workings in crystalline rocks?</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Indiana Mine</td>
<td>Michigan</td>
<td>Developing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Iroquois Mine</td>
<td>Michigan</td>
<td>Closed</td>
<td></td>
<td></td>
<td>Note: 3.2 million tons mined over life of mine Closed when?</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ely Prospect</td>
<td>Minnesota</td>
<td>Prospect</td>
<td></td>
<td>One Shaft</td>
<td>State of development?</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Butte Highlands</td>
<td>Montana</td>
<td>Inactive</td>
<td></td>
<td>5 Shafts, 3 adits on 5 levels</td>
<td>Workings in crystalline rock?</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Dacotah Mine</td>
<td>Montana</td>
<td>Inactive 1977</td>
<td></td>
<td>Note: Small volume on 4 adit levels</td>
<td>Working in crystalline rocks? Adequate size?</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Gooseberry Mine</td>
<td>Nevada</td>
<td>Active 1978, Drifts at several levels</td>
<td></td>
<td></td>
<td>Workings in intrusive? rock stability?</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Mill City Mine</td>
<td>Nevada</td>
<td>Active 1974</td>
<td></td>
<td></td>
<td>Workings in crystalline rock?</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ruby Hill Mine</td>
<td>Nevada</td>
<td>On standby</td>
<td></td>
<td></td>
<td>Note: water inflow a major problem, plugged 1962</td>
<td>Workings in quartz diorite?</td>
</tr>
<tr>
<td>41</td>
<td>Searchlight District</td>
<td>Nevada</td>
<td>Inactive</td>
<td></td>
<td></td>
<td>How recently inactive?</td>
<td>Workings in crystalline rock?</td>
</tr>
<tr>
<td>42</td>
<td>King Mine</td>
<td>Nevada</td>
<td>Inactive</td>
<td></td>
<td></td>
<td>Adequate depth? Workings in crystalline rock?</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sutton No. 2 Mine</td>
<td>Nevada</td>
<td>Inactive</td>
<td></td>
<td></td>
<td>Depth unknown, status?</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Taylor Mine</td>
<td>Nevada</td>
<td>Active</td>
<td></td>
<td></td>
<td>Note: Small production</td>
<td>Depth unknown; workings in quartz monzonite?</td>
</tr>
<tr>
<td>45</td>
<td>Sterling Mine</td>
<td>Nevada</td>
<td>Active 1976, Cut and fill</td>
<td></td>
<td>2 openings</td>
<td></td>
<td>Workings in gneiss? Filled mine?</td>
</tr>
<tr>
<td>No.</td>
<td>Mine Name</td>
<td>Location</td>
<td>U.S. Geol. Survey Quad</td>
<td>Commodity Mined</td>
<td>Rock Type</td>
<td>Depth (ft)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Continental Underground</td>
<td>New Mexico</td>
<td>1:250,000</td>
<td>Cu, Zn, Au</td>
<td>Limestone, Marble</td>
<td>600+</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Groundhog Mine</td>
<td>New Mexico</td>
<td>Grant</td>
<td>Ag, Fe</td>
<td>Monzonite, Hornfels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Cranberry Magmatic</td>
<td>New Mexico</td>
<td>Grant</td>
<td>Zn, Pb, Cu, Ag</td>
<td>Shale, Granodiorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Tungsten Queen Mine</td>
<td>North Carolina</td>
<td>Avery</td>
<td>Cu, Zn, Au</td>
<td>Granodiorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ducktown District</td>
<td>Tennessee</td>
<td>Polk</td>
<td>Cu, Pb, Zn, Au</td>
<td>Mica Schist, Graywacke</td>
<td>1000 - 2400</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Ontario Mine</td>
<td>Utah</td>
<td>Summit Co</td>
<td>Ag, Pb, Zn, Au</td>
<td>Limestone, Quartzite, Sandstone</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Rayflower Mine</td>
<td>Utah</td>
<td>Wasatch</td>
<td>Ag, Zn, Cu</td>
<td>Limestone, Quartzite, Silicic Felsite</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Park City Mine</td>
<td>Utah</td>
<td>Summit</td>
<td>Ag, Pb, Cu</td>
<td>Limestone, Quartzite, Sandstone, Granite, Quartz Monzonite</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Middle Mine</td>
<td>Washington</td>
<td>Stevens</td>
<td>Cu</td>
<td>Quartz Monzonite, Schist, Phyllite, Quartzite</td>
<td>350 (+?)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Sherrwood Mine</td>
<td>Washington</td>
<td>Stevens</td>
<td>Cu</td>
<td>Limestone, Quartz Monzonite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 56 | Sunrise Precia Deposit | Washington | Snohomish | Co, No, Au | Hornfels, Quartz Diormite | Mineralization - 1500

ft. thick |
<table>
<thead>
<tr>
<th>No.</th>
<th>Mine Name</th>
<th>State</th>
<th>Mine Status</th>
<th>Mining Method</th>
<th>Number of Openings</th>
<th>Type of Equipment</th>
<th>Mine in "Class 2" Because:</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Continental</td>
<td>New Mexico</td>
<td>Active 1978</td>
<td>Cut and fill</td>
<td></td>
<td></td>
<td>Workings in monzonite?</td>
</tr>
<tr>
<td>47</td>
<td>Groundhog</td>
<td>New Mexico</td>
<td>Active; Reopened 1969</td>
<td>Open stoping, room and pillar, cut and fill, shrink stoping</td>
<td>2 openings</td>
<td>Rail</td>
<td>Depth? Bad ground conditions? Workings in granodiorite?</td>
</tr>
<tr>
<td>48</td>
<td>Cranberry</td>
<td>North Carolina</td>
<td>Active 1976</td>
<td>Surface and underground</td>
<td></td>
<td></td>
<td>Depth uncertain; extent of activity?</td>
</tr>
<tr>
<td>49</td>
<td>Tungsten</td>
<td>North Carolina</td>
<td>Inactive, standby</td>
<td></td>
<td></td>
<td></td>
<td>When inactive? Extent of workings?</td>
</tr>
<tr>
<td>50</td>
<td>Ducktown</td>
<td>Tennessee</td>
<td>Copper Hill</td>
<td>mine active</td>
<td></td>
<td></td>
<td>Sufficient extent of workings in crystalline rock?</td>
</tr>
<tr>
<td>51</td>
<td>Ontario Mine</td>
<td>Utah</td>
<td>Active 1979</td>
<td>Cut and fill stopes</td>
<td>4 shafts</td>
<td></td>
<td>Workings accessible in crystalline rock?</td>
</tr>
<tr>
<td>52</td>
<td>Mayflower</td>
<td>Utah</td>
<td>Inactive 1969</td>
<td>Horizontal cut and fill, some shrinkage stoping</td>
<td>1 shaft, tunnel</td>
<td></td>
<td>Rock stability and water problems; Workings accessible in crystalline rock?</td>
</tr>
<tr>
<td>53</td>
<td>Park City Mine</td>
<td>Utah</td>
<td>Closed 1978</td>
<td>Active 1976</td>
<td>Cut and fill</td>
<td>Note: closed because of high water and unstable rock</td>
<td>Rock stability problems, Workings accessible in crystalline rock?</td>
</tr>
<tr>
<td>54</td>
<td>Midnite Mine</td>
<td>Washington</td>
<td>Active 1979</td>
<td>5 ore bodies = open pit 1957</td>
<td></td>
<td></td>
<td>Are there underground workings at sufficient depth; workings in crystalline rock? Mostly open pit?</td>
</tr>
<tr>
<td>55</td>
<td>Sherwood</td>
<td>Washington</td>
<td>Active 1979</td>
<td></td>
<td></td>
<td></td>
<td>Depth unknown; Adequate underground workings? Same rock types as at Midnite Mine?</td>
</tr>
<tr>
<td>56</td>
<td>Sunrise Brec­cia Deposit</td>
<td>Washington</td>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
<td>Workings accessible in quartz diorite? Depth of workings?</td>
</tr>
</tbody>
</table>
Summary and Conclusions

Relying primarily on information in the open literature, we have identified 30 "class 1" sites in 14 states which may have potential for underground test facilities. These include, primarily, existing or recently inactive mines, and also civil works such as pumped storage facilities. The search also suggests that another 30 "class 2" sites in 14 states may have similar potential if adequate information on one or more key criteria were available. The criteria include the following considerations:

- Crystalline rock
- Depths below 600 feet
- Workings of adequate size to provide for a Strapa-sized facility
- Workings open within the past 10 years and not flooded or caved
- Workings below the water table
- Good rock support

The locations of the 60 sites are shown on the map of the U.S., Figure 1 in the preceding section. Potential underground workings range in size from a few thousand lineal feet, having employed or employing a few tens of miners, to several hundred miles, employing hundreds of miners. Depths range from near our threshold limit of 600 ft. to over 8000 ft.

"Class 1" mines or civil works in tectonically stable mid-continent or eastern regions of the United States include one in Maine, two in Minnesota, two in New Jersey, two in New York, and one in South Carolina. The remaining "class 1" sites are in the Rocky Mountain region and westward. Of the civil works, pumped-storage facilities incorporating underground
powerhouses and appurtenant galleries may offer the best prospects for in-situ test facilities because, even though they may be operating, access may still be available to test and support galleries.

It is expected that a comparable number of underground openings, primarily exploration adits, shafts, and drifts, not mentioned in the open literature but probably documented in company files, may also exist. These workings may furnish access for test facilities in crystalline rock.

Many of the workings in "class 1" mines are in hydrothermal vein deposits, at or near contacts between plutonic and older sedimentary, volcanic or metamorphic rocks. Test facilities at these sites would therefore be located relatively near the margins of crystalline rock masses. Notable exceptions are the Climax, Urad and Henderson mines in Colorado, mines in the Butte district, Montana, the San Manuel-Kalamazoo in Arizona, and mines in the Duluth Gabbro, Minnesota. All of these ore bodies are located well within plutons.

Mines within medium to high grade metamorphic rock masses include the Homestake, South Dakota, the Schwartzwalder and Colorado School of Mines' experimental mine in the Colorado Front Range, the Mt. Hope - Scrub Oaks, New Jersey, and the Lyon Mountain district, New York.

Structural settings of mining districts are dominated by the aforementioned contact zones, by strong folding and faulting in the case of mines in metamorphic rocks, and by zones of intersecting faults in the mines in plutonic rocks. Because of their stability requirements, underground hydroelectric facilities in crystalline rocks are located in relatively stable tectonic settings, usually away from the contacts with other rock types. Accessible openings associated with hydroelectric facilities may
offer rock property conditions most similar to those of potential waste isolation sites.

Recommendations

It is recommended that a program follow which would definitively evaluate the available and accessible underground workings. This program will result in the identification of one or more sites where a concordance exists between rock type and structural setting and depth, company amenability, accessibility, facilities, and hydrogeologic setting.

The recommended program would encompass the following activities:

1) The appropriate companies or governmental agencies controlling "class 1 or 2" sites would be contacted to arrange discussions with designated personnel. These discussions would explore the willingness of the companies/agencies to participate in the project and would serve to validate and increase the information developed in the preliminary description of the sites. It is expected that, following the initial company/agency contact, the number of prospective underground workings would be significantly reduced. It is also possible that information on some hitherto unknown potential sites would be obtained, resulting in some additions to the list of prospects.

2) During and following the discussions, plans would be made for the initial site visits, which would commence at the earliest convenience of company/agency personnel.

3) Concurrently, the results of the companion project (Cohen, 1979) to develop criteria for in-situ test facilities and to formulate a preliminary testing program would be incorporated, providing
criteria for assessment of the prospective sites.

4) With these criteria in mind and with the permission of and accompanied by company/agency personnel, the sites would be visited and evaluated.

5) The recommended program would culminate in a report covering:

(A) the criteria used to evaluate the sites;

(B) results of site visits:

(1) detailed descriptions of the location and accessibility of the site,

(2) detailed descriptions of the geologic settings and underground workings,

(3) geotechnical and hydrologic data base.

(4) detailed descriptions of facilities which would lend themselves to a test facility;

(C) recommendations of which sites, based on their technical merits, would best qualify for in-situ geomechanical, geochemical, and hydrogeologic tests relevant to the underground storage of radioactive wastes in crystalline rock.
IV. DESCRIPTIONS OF "class 1" MINES AND CIVIL WORKS

A description of each "class 1" site is included, alphabetically by state, in the following portion of the report. Each summary includes data on location and accessibility, geologic setting, description of mine or civil workings, and references.
LOCATION

The Lakeshore mine is located at 32°31'N, 111°54'W, within the boundaries of the Papago Indian Reservation, in Pinal County, approximately 28 miles south of Casa Grande, Arizona, and approximately 70 miles northwest of Tucson (as shown in Figure 1). The Lakeshore ore body lies under the southwest pediment of the Slate Mountains. The surface elevation in the area is approximately 1800 feet.

GEOLOGIC SETTING

Data describing the regional geologic setting were extracted from Board (1977), Hallof (1971), and Harper (1969).

Precambrian Pinal schist is the oldest exposed formation in the area, and it forms the core of the Slate Mountains. The Pinal schist is unconformably overlain by the Late Precambrian Apache Series which is exposed approximately 5 miles north of Lakeshore. The Apache Series consists of the Pioneer shale (425 feet thick), the Dripping Spring quartzite (1085 feet thick), and the Mescal limestone (200 feet thick). Diabase intrusions are common in the units.

The Paleozoic formations in the area of the Slate Mountains are represented by the Troy (or Bolsa) quartzite, the Abrigo, the Martin, the Escabrosa, and the Horquilla formations, which include a variety of sedimentary and metasedimentary rocks (quartzite, mudstone, dolomite, limestone, and siltstone). The aggregate thickness of these formations may exceed 1600 feet in the southeastern part of the Slate Mountains near the Lakeshore property.
FIGURE 1. Location map of the Lakeshore ore body, Pinal County, Arizona (Hallof and Winniski, 1971).
Recurrent volcanism and continental deposition characterized the Cretaceous and Early Tertiary in southern Arizona. The resulting thick accumulation of clastic and volcanic conglomerates and agglomerates are exposed at several locations in the Lakeshore area. Drilling at Lakeshore has intersected substantial thicknesses of andesite and andesite breccia in the immediate mine area. The andesitic volcanics unconformably overlie the Paleozoic and Upper Precambrian formations, while the andesite is overlain by a thick sequence of Tertiary fanglomerate and young Tertiary volcanics and conglomerate.

Mine Area

Information on the geologic setting of Lakeshore mine were extracted from Board (1977), Hallof (1971), Harper (1969), and EMJ (1969).

A stock of quartz diorite and related porphyritic rocks of Tertiary age have intruded the Precambrian, Paleozoic, and Cretaceous formations previously described. The northern and eastern margins of the stock are exposed on the western slope of the Slate Mountains, while the southern and western margins are obscured by alluvium. Complex faulting in a wide zone along the assumed southern and western margins of the stock further complicates the relationship between the quartz diorite and the Late Precambrian and Paleozoic rocks. Fanglomerate overlying the Cretaceous andesite thickens to 1100 feet over the western portion of the deposit.

The geology of the deposit is illustrated in Figures 2 and 3. Figure 3 is a cross-section of the deposit, looking toward the north. The andesite-metasediment sequence is bounded on the east by a steeply dipping normal fault. Quartz diorite is present east of the fault. This fault marks the eastern limit of the major subsurface deposit, as well as the
FIGURE 2. Preliminary geology of the Lakeshore mine area has been largely interpreted from drill hole data. Cross section A-A' is seen as Figure 3.

(Harper, 1969)
small open pit ore body. In the central part of the deposit, drill holes indicate that the formations strike northerly and dip westerly at about 25°.

A fine to medium grained prophyry of quartz diorite to quartz monzonite composition intrudes the metasediments and andesite. Its relationship to the quartz diorite stock is not clear. The main mass of porphyry is located in the north central part of the deposit as an irregular body with fingers which extend upward and to the east.

The metasediments in the western part of the area are displaced approximately 700 feet below those in the central part of the deposit by a postoxidation, high angle reverse fault.

The andesites, porphyry, metasediments, diabase, and upper part of the underlying intrusive have been extensively shattered and are moderately to strongly altered. The andesite, porphyry, and metasediment-diabase sequence are the primary host rocks for the mineralization. The upper portion of the underlying intrusive occasionally contains disseminated sulfides.

The ore body has been divided into three distinct zones of mineralization which have been termed: (1) oxide zone, (2) sulfide zone, and (3) tactite zone. The oxide zone occurs in the upper portions of the ore body and consists primarily of leached and oxidized quartz monzonite porphyry and Cretaceous sedimentary and volcanic rocks. The sulfide zone underlies the oxide zone and includes all quartz monzonite porphyry and Cretaceous rocks which have not been oxidized. The thickness of the sulfide zone is variable and ranges from 200-400 feet. The tactite zone occurs in a series of Paleozoic metasediments consisting of tactite, quartzite, diabase, hornfels and dikes of quartz monzonite porphyry. The tactite zone is highly variable in thickness (averaging 63 feet) and underlies
the Cretaceous volcanics and sediments throughout the mine. Figure 4 illustrates the general relationship of ore types in the mine.

MINE CHARACTERISTICS

Information concerning the mine was extracted from Board (1977), COBBS Report, EMJ (1978, 1979), and Harper (1969).

The Lakeshore mine was first brought into production as an underground mine by Hecla Mining Company in April 1976. A weak copper market prompted Hecla to close the mine for an indefinite period beginning in September 1977. Maintenance expenses at the closed mine were approximately $600,000 per month. Noranda Exploration Inc., a U.S. subsidiary of Noranda Mines Ltd. (Canada), has acquired the mine from Hecla/El Paso Natural Gas, and renegotiated leases with the Papago Indians. Noranda plans to begin mining 6000 stpd of ore by September 1979.

MINE FACILITIES

When originally opened by Hecla, the mine employed approximately 1600 people, was designed with a daily ore capacity of 16,500 tpd, and mined 1 to 10 million tons of ore per year and 1 to 10 million tons of waste per year, extracting a total volume in excesses of 180,000,000 cubic feet.

Based on its large size (½ to 1 billion tons of ore) and layered characteristics, the deposit lends itself to an extraction plan which integrates mechanized underground mining techniques. Hecla's approach to mining the ore body was to develop a block caving operation based on high-grade sulfide ore in the tectite zone underlying the deposit during the early stages of the operation. In contrast, Noranda will reopen the mine
Figure 4. North-south and east-west cross-sections of Lakeshore deposit illustrating the three zones of mineralization: oxide, sulfide, and tactite (EMJ, June, 1969).
based on extraction of copper oxide ore, while studying the sulfide ore's grade and quantity. From available data it is not known whether Noranda will be mining copper oxide ore from the open-pit or from underground workings, or from both.

Access to the mine is by a twin decline on a 15° slope providing entry to the ore body, and equipped with conveyors, provides the main ore handling facility. The length of the decline to a point beneath the central part of the deposit will be approximately 7500 feet. Information regarding the location and orientation (straight or switch-back) of the decline, and rock types penetrated was not available; the length and slope suggest that favorable rock types are among those encountered. However, published information does not indicate the extent of underground workings in crystalline rock types.

Rock Mass Properties

Table 1 lists the basic sulfide mine rock properties. Testing of the intact rock was conducted at the University of Arizona, Tucson, by White (Board, 1977).
<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Uniaxial Comp. Strength (psi)</th>
<th>Poisson's Ratio</th>
<th>Young's Modulus (x10^6 psi)</th>
<th>Internal Angle of Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tectite</td>
<td>11,798</td>
<td>0.3</td>
<td>5.42</td>
<td>53</td>
</tr>
<tr>
<td>Quartz</td>
<td>14,912</td>
<td>0.19</td>
<td>9.00</td>
<td>31</td>
</tr>
<tr>
<td>Monzonite</td>
<td>13,542</td>
<td>0.21</td>
<td>14.00</td>
<td>52</td>
</tr>
</tbody>
</table>

Board (1977)
REFERENCES

CRIB Data Base.

Engineering and Mining Journal: 1979, v.180(4) p.41
1978, v.179(9) p.314
1978, v.179(7)
1978, v.179(1) p.133
Mines Directory 1978
1969, v.170(6) p.128, 132

MIAMI EAST MINE

(OPERATED BY CITIES SERVICE COMPANY)

LOCATION

The Miami East mine is located adjacent to the town of Miami and approximately 6 miles northwest of Globe, Arizona, at 33°24'N, 110°53'W (Figure 1). The elevation at the mine is approximately 3500 feet, with several hundred feet of relief in the area.

GEOLOGIC SETTING

Regional

The regional geologic setting has been extracted from Olmstead (1966), Peterson (1962, 1954), and Rubly (1938).

The rocks of the Globe-Miami district range in age from Lower Precambrian to Recent. Figure 2 is a geologic map of the region. The Precambrian Pinal schist, diabase of possible Mesozoic age, Willow Springs granodiorite, Schultze granite, dacite, and Gila conglomerate are immediately connected with the Miami East deposit.

The Pinal schist is one of the ore deposit host rocks and is the oldest formation in the area. The Pinal schist makes up the bulk of the Pinal Range, which covers an area of 16 by 12 miles. The disseminated copper deposits of Miami occur in the northeast portion of the range. The schist consists of a sequence of metamorphosed sedimentary rocks, and is irregularly intruded by Precambrian quartz diorite, granite, and the Tertiary Schultze granite. The metamorphic sequence is composed of coarse-grained quartz-muscovite schist, fine-grained quartz-sericite-chlorite schist, and some
FIGURE 1. Index map of Arizona showing location of Globe quadrangle, (after Peterson, 1951).
fine-grained amphibole schist. The general schistosity strikes about NE0°E and dips steeply to the southeast. The outlines of the ore deposits and the intrusion of granite porphyry closely parallel the orientation of schistosity.

Tertiary diabase intruded the metamorphic and sedimentary strata as irregular sheets, sills, and dikes.

The Tertiary Willow Springs granodiorite outcrops within several thousand feet of the Miami mine; however, it has no obvious relationship to the ore bodies in the area.

The rock most directly associated with the ore deposits is the Tertiary Schultze granite, which is believed to be contemporaneous with the copper mineralization. Facies of this rock contain part of the ore deposit and often border the ore zones. The Schultze granite stock extends many miles south and west of Miami and constitutes a large portion of the northwest Pinal Mountains. Its composition varies between granodiorite, quartz monzonite, and porphyritic quartz monzonite. From the standpoint of the ore deposit, the most significant constituent of the Schultze granite is a granite porphyry, a separate marginal and younger facies of the Schultze. In some of the ore bodies in the area, half of the ore may be in granite porphyry, while the other half is in Pinal schist. The granite porphyry is a plug which intruded older facies of the Schultze granite and formed sill-like tongues in the schist.

The Tertiary dacite in the area is believed to represent the final stage of igneous activity. The massive dacite shows sheeting, which trends north-south and dips moderately to the west.

Massive thick beds of Plio-Pleistocene Gila conglomerate overlie much of the area. Bedding trends northwest-southeast and dips gently to the southwest.
MINE AREA

Data concerning the geology of the Miami East mine were not readily available in the literature. The information which was available suggested that rock-type relationships in the Miami East ore body are very similar to those in the Inspiration and Miami mines located several thousand feet to the southwest. Much of the following description of mine area geology is drawn from literature on local mines by Olmstead (1966), Peterson (1962, 1954), Rubly (1938), and Skillings (1975).

The Miami East ore body is located approximately 2500 feet northeast of Shaft No. 5, as shown in Figure 3. The mineralized area is 3000 feet long, has a width of 1400 feet, and a maximum thickness of 400 feet. The deposit has a varying dip to the north and east with a maximum pitch of 34°. The ore body is situated nearly 2000 feet east of the original Miami deposit, and its top occurs at a depth of 2500 feet.

Structures in the mine area are related to the general structure of the Precambrian schist, which trends northeasterly and dips to the southeast. Locally, granitic intrusives have distorted and obliterated the schist structure, but the schistosity prevails as the major lineation that controlled mineralizing solutions. The geology of the local mine area is shown in Figures 3a and 3b.

Faults controlled the intrusion of the granite porphyry with which the ore bodies are associated. The Miami fault (a normal fault) strikes N25°E, dips about 50°E, and drops the Gila conglomerate to the east of the exploited ore bodies, between 2000 and 3000 feet. This fault or the ancient break it followed may have had some pre-porphyry movement. East of the mining areas, the ore bodies appear to be terminated by the Miami fault, although there are some indications that the ore did not reach the fault zone or that there is
FIGURE 3b. Geologic map of the Miami East area, Gila County, Arizona (Peterson, 1962)
a leached zone near the fault. Some ore in diabase occurs at considerable depth east of the Miami fault, and one drill hole disclosed secondarily-enriched sulfides lying below low-grade primary material near a branch of the Miami fault.

MINE FACILITIES

Data related to the Miami East mine facilities were extracted from Carter (1975), Skillings (1975), and Mining Annual Review (1978).

The Miami East mine of Cities Service Company contains an estimated 50 million tons of 1.95% copper ore. Underground mining at the original Miami mine was replaced by in-place leaching in 1959. The deeper Miami East ore body was confirmed by drilling in 1969, and a program of shaft sinking and underground development was commenced. Production was expected to begin in 1976, however, after substantial development work, it was decided to place the mine on standby, which is the current status.

Two shafts were sunk on the Miami East project. The 12 ft-diameter concrete-lined No. 11 shaft, which provides downcast ventilation and serves as an escapeway bottomed at a depth below 3300 feet. The 14 ft-diameter concrete-lined No. 12 shaft, an exhaust and ventilation facility, was excavated to a final depth of 2900 feet. At the end of 1973, the existing No. 5 production shaft was deepened from 1150 feet to 3500 feet, with stations developed at the 2900 and 3200 foot levels. The development drifts on the 2900 and 3200 foot levels of No. 5 shaft have been extended approximately 2500 feet to the ore body.

The Miami East ore body is mined by the modified horizontal cut and fill method; block caving was deemed undesirable due to a potential subsidence problem at the site. Production was planned to reach 5000 tpd.
A typical stope will measure 8x11 feet in cross-section, advancing a 100 foot slot. Stopes will be developed on 16 foot centers. Highly mechanized mining equipment will be used for ore recovery. Eimco 911 and 912 LHD's will load and transport ore to the mine's main rail haulage network. Ore haulage to the No. 5 shaft will initially utilize battery-powered locomotives. As full productive capacity is neared, these will be replaced by diesel-powered units.

The main haulage levels measure 11x13 feet in cross-section. Ground support will utilize a dry process shotcrete method, with additional rock bolting over shotcrete when necessary.

* LHD = Load, haul, dump.
REFERENCES

Fletcher, J.B., 1960, Ground Movement and Subsidence from Block Caving at Miami Mine: AIME Transactions, v. 217, p. 413-422.

MAS data base.

Mining Magazine, 1975, Miami East Copper Deferred, v. 133 (Sept.), p. 157, 159.

SAN MANUEL/KALAMAZOO MINE

(OPERATED BY MAGMA COPPER COMPANY,
A SUBSIDIARY OF NEWMONT CORPORATION)

LOCATION AND ACCESSIBILITY

The San Manuel mine is located just south of Tiger, Arizona in the Old Hat mining district of Pinal County, at 32°41'N, 110°42'W (Figure 1). The San Manuel deposit is located in sections 34 and 35, T.8S., R.16E., of the Gila and Salt River meridians. The Kalamazoo deposit is located in sections 3, 4, 9, 10, T.9S., R.16E. The San Manuel/Kalamazoo mine area is approximately 35 miles (46 miles by road) northeast of Tucson. The elevation in the mine area is approximately 3,200 feet, with several hundred feet of relief in the general area. The nearest railroad is at Winkelman on the Gila River, 20 miles north of San Manuel and Tiger. Electric power and natural gas are available.

GEOLOGIC SETTING

Data describing the regional geological setting has been extracted from Creasey (1965), Lowell (1968), Kendorski (1976), Ridges (1972), Schwartz (1953), and Thomas (1966). Figure 2 illustrates a simplified regional geologic setting. There is a rather limited variety of rocks exposed either on the surface or underground. The San Manuel/Kalamazoo mine is located in an extensive area of Precambrian quartz monzonite, known as the Oracle granite, which itself is part of a much larger granite mass on the north slope of the Santa Catalina Mountains.

The Oracle granite is considered to be the result of metasomatization of earlier rocks, possibly the Pinal schist. A northeasterly grain in the Oracle is evidenced by the alignment of xenoliths in the rock mass.
FIGURE 1. Sketch map showing principal towns and topographic features in the area surrounding the San Manuel district, Arizona (Schwartz, 1953).
FIGURE 2. Geologic map of area around San Manuel and Tiger, Arizona (Schwartz, 1953).
and the foliation of feldspars and mafics. The rock varies in composition from granodiorite to granite, and is deeply weathered.

The Oracle granite was intruded by monzonite porphyry or perhaps locally metasomatized during Laramide time. A complex relationship exists between the quartz monzonite and the monzonite porphyry. Recent investigations suggest that the monzonite porphyry comprises a dike and igneous mass swarm.

The sequence of episodes which followed the formation of the monzonite porphyry consisted of: (1) intrusion of diabase dikes and irregular masses, which although altered and mineralized, appear to have acted as partial barriers to the movement of ore solutions; (2) a porphyry-type copper-molybdenum ore mineralization, associated with considerable alteration and centered on the monzonite intrusion; (3) post-ore Tertiary rhyolite, intruded in two main sheets; and (4) the deposition of the Gila conglomerate, late Tertiary and Quaternary, which, with the exception of recent alluvium, is the youngest rock in the area, and is normally unconformable to all the older rocks.

Figure 2 shows the geology of the region as described.

Mine Area

The locations of the San Manuel/Kalamazoo ore bodies are shown in Figure 3. Data for this section were extracted from Lowell (1968, 1970), Kendorski (1976), Ridges (1972), and Thomas (1966).

Alluvial deposits lie unconformably on the Gila conglomerate. The Gila conglomerate is the most widely distributed surface rock type, and reaches thicknesses in excess of 1200 feet over the mine area. The extensively tilted and deformed conglomerate has a prevailing northwest strike,
APPROXIMATE OUTLINE
SAN MANUEL STRONGLY MINERALIZED BODY (AFTER SCHWARTZ)

APPROXIMATE OUTLINE
OF KALAMAZOO DEPOSIT

SCALE IN FEET

with a dip of 25° to 45°NE. The quartz monzonite and monzonite porphyry are interrelated in such a complex manner that their detailed structural relationships are difficult to determine.

The conglomerate and underlying rocks are cut by many faults, only a small number of which have been accurately mapped. Of the recognized faults, the San Manuel fault, a normal fault, dipping 25° to 30°SW and bordering the southwest side of the exposed mineralized area, is the most significant. The San Manuel fault divided the original ore complex (which had previously experienced a tilt of approximately 70° to the northeast) into two segments: the San Manuel segment, and the Kalamazoo segment which is faulted some 8000 feet down dip in the low angle normal fault. Figure 4 illustrates schematically the possible origin of the San Manuel/Kalamazoo ore bodies.

The original pre-faulting ore complex, based on a minimum 0.5% copper content, had the general shape of a flattened cylinder with an axial length in excess of 7700 feet and a diameter between 2500-5000 feet. Mineralization and alteration form approximately coaxial cylindrical zones.

Hydrothermal alteration is characteristic of most rocks in the mine area, with the exception of the Gila conglomerate and younger rocks. Based on the characteristic mineral assemblages, four types of alteration are recognized. A detailed discussion of prophyry alteration has been presented by Lowell (1970).

Figures 5, 6, & 7, geologic maps of the 1,475 haulage level and its respective cross-sections (NW-SE and SW-NE) in the San Manuel mine are characteristic of the general rock distribution/relationships found in the San Manuel/Kalamazoo mines. The vast majority of underground workings are either in quartz monzonite or monzonite porphyry.
1. Precambrian quartz monzonite (pCam) was intruded by a Laramide age monzonite porphyry (Tkmp) dike swarm. A hollow cylindrical or pipe-shaped orebody with dimensions of approximately 8,000 x 3,500 feet was formed. It was probably nearly vertical and centered on the monzonite dike swarm. (Section line shows position of Figure 7.)

2. Tilting of the orebody was followed by erosion, then deposition of conglomerate and interbedded volcanics (Tcb?). A thin chalcocite blanket (Ccos) was formed at the water table.

3. Continued tilting was followed by erosion of conglomerate and quartz monzonite and deposition of middle Tertiary Gila Conglomerate (Tgc).

4. Orebody is now at a flat angle due to continued tilting. An erosion surface is cut on the tilted quartz monzonite and Gila Conglomerate. Incipient San Manuel fault is formed.

5. Upper portion of orebody is displaced approximately 8,000 feet down the dip of the San Manuel fault. Some imbricate displacement may have occurred in the Kalamazoo segment.

6. High-angle normal fault displacements produced small offsets in the San Manuel orebody and a large displacement on the Red Rock fault west of the Kalamazoo orebody. Erosion exposed intrusive rocks and a corner of the San Manuel orebody and produced oxidation and limited chalcocite enrichment in the upper portion of the San Manuel orebody.

FIGURE 4. Schematic drawings showing possible origin of Kalamazoo orebody (Lowell, 1968).
Mine Facilities

The data for this section were extracted from Hynd (1976), Jackson (1978), and Magma Copper Company. Magma Copper Company, a wholly owned subsidiary of Newmont Mining Corporation, opened the San Manuel mine in 1956. Over 300 million tons of ore have been hoisted since the mine opened. Production currently runs at approximately 52,000 tpd. Remaining ore reserves at San Manuel are estimated to be in excess of 600 million tons. The present mining method is block caving.

Mining at San Manuel moved progressively down from the 1,475 level to the 1,775, 2,075, and 2,375 levels. Development work is underway on the 2,675 level, which is scheduled for production in mid-1979.

All production at the mine has come from the San Manuel ore body; however, long-range development work is being done in the Kalamazoo ore body on the 2,950, 3,440, 3,530 (pump station), and 3,740 levels. Since the start of production, 224 miles of horizontal workings, 152 miles of vertical workings, and 115 acres of undercut area have been driven or excavated.

Mine

The data for this section were extracted from Hynd (1976), Jackson (1978), and Magma Copper Company. At its current rate of production, San Manuel must complete 30,000-40,000 feet of development drifting annually. Drifts outside the cave area are supported by square timber sets; H-beam caps with square timber posts; or by steel arc sets. Normal spacing of sets is 5 feet, but may vary with ground conditions.

There are about 20 drill jumbos in the San Manuel mine, including a spare for each level. There are 73 drifters in the mine, of which 50 are typically in use at one time and 23 are spares.
Ore stored in raises is transported to ore hoisting shafts by a trolley-operated railroad system. There are four hoisting shafts: 3A & 3B (equipped with 6000 hp hoists) and 3C & 3D (equipped with 7000 hp hoists). Additional transportation facilities at the mine include shafts: No. 1 (used for concrete supply, waste rock, and ventilation); No. 2 (sunk for exploration and quick development within the ore body proper, has been abandoned); No. 4 (used for ventilation and transportation of men and supplies), and No. 5 (service and development hoisting). The shafts range in depth from 2310 to 4123 feet.

Ventilation is supplied to the San Manuel mine at a rate of 1.2 million cfm of air. The ventilation department is designing a refrigeration system for the future, with a goal of maintaining a temperature of 80°F.

A total of 6600 gpm of water is pumped from the San Manuel mine, mainly from the deep shafts. Increased flow is expected at the lower levels especially in the Kalamazoo ore body. During early shaft development through the lower Kalamazoo horizon, water inflows reached 2300 gpm at a temperature of 120°F.

Rock Mass Properties

The data for this section were extracted from an article by Kendorski (1976). The fracture patterns mapped in the underground workings can be generalized as four sets: EW and NS, both vertical; N80°E to EW, vertical; and horizontal. Oriented compression and Brazilian tension tests on the quartz monzonite showed that the mappable fracture pattern is reflected in planar weaknesses in the rock. Tables 1 & 2 summarize the tests.
TABLE 1. Summary of Quartz Monzonite Brazilian Test Data

<table>
<thead>
<tr>
<th>Anisotropy planes Identification</th>
<th>Direction 1</th>
<th>Direction 2</th>
<th>Direction 3</th>
<th>Overall Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anisotropy planes</td>
<td>030, 105, 165</td>
<td>045, 150</td>
<td>060, 105, 165</td>
<td>-</td>
</tr>
<tr>
<td>Decrease in strength from %, percent</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Density, x, g/cm³</td>
<td>2.65</td>
<td>2.65</td>
<td>2.77</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensile strength, psi</th>
<th>x</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1474</td>
<td>328</td>
</tr>
<tr>
<td>S</td>
<td>1263</td>
<td>224</td>
</tr>
</tbody>
</table>

Tests in direction breaking along pre-existing planes, percent	63.9	44.4	41.7	50.0
Tests in directions that are highly altered with ragged failure, percent	16.7	16.7	27.8	20.4
Tests in direction with a clean break	19.4	38.9	30.6	29.6

x is the mean
S is the standard deviation

TABLE 2. Quartz Monzonite Compression Test Summary

Length (in.), x	4.53	4.39	4.49	4.47
Density (g/cm³), x	2.65	2.62	2.74	2.67
Uniaxial compressive strength (psi)	11129	14700	15300	13500
Modulus of elasticity	3514	2050	4600	3900
Poisson's ratio	6.9	7.0	8.4	7.4
Tests in direction failing along weakness planes, percent	0.26	0.13	0.20	0.20

x is the mean
S is the standard deviation

(KENDORSKI, 1976)
REFERENCES

COBBS Report

CRIB

Engineering and Mining Journal v. 179(1) p. 133-135.
 v. 179(4) p. 142, 144.
 v. 179(9) p. 314
Mines Directory 1978

Magma Copper Company, no date (current), Detailed Description of San Manuel Mining Operation, 32p.

MAS

REFERENCES (cont'd)

LOCATION AND ACCESSIBILITY

The Pine Creek mine is located at 37°22'N, 118°43'W, in the Bishop District on the eastern escarpment of the Sierra Nevada west of the town of Bishop, California. Figure 1 illustrates the location of Bishop, approximately midway between Reno, Nevada and Los Angeles, California. Outcrop relief exceeds 6000 feet; from an elevation of about 7400 feet on the floor of Pine Creek Canyon to a high point of 13,652 feet on the summit of Mt. Tom. Despite the high elevation, the mine is accessible year round by paved road from Bishop.

GEOLOGIC SETTING

Regional

Data for this section were extracted from Gray (1968), and Bateman (1965).

The Pine Creek pendant, which contains the Pine Creek mine, is a lens of metamorphic rock nearly 7 miles long and as much as one mile wide. As shown in Figure 2, the pendant extends from the northeast face of the Basin Mountains northward across Horton Creek, Mt. Tom, and Pine Creek, to the south end of Wheeler Crest.

Figure 2 and Table 1 summarize the age relationships of the various formations in the area. The pre-Tertiary rocks consist of a series of metasedimentary and metavolcanic rock remnants enclosed by plutonic rocks of various compositions ranging from hornblende gabbro to alaskite. The
FIGURE 1. Location map of the Bishop, California area, from Bateman (1965).
FIGURE 2. Geology of the Mount Tom Quadrangle, from Gray (1968).
TABLE 1.

Geologic Column

<table>
<thead>
<tr>
<th>Age (m.y.)</th>
<th>Geologic Age</th>
<th>Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-87</td>
<td>Quaternary</td>
<td>Alluvial fill</td>
</tr>
<tr>
<td>74-76</td>
<td></td>
<td>Glacial deposits</td>
</tr>
<tr>
<td>74-84</td>
<td></td>
<td>Volcanic deposits</td>
</tr>
<tr>
<td>84-87</td>
<td></td>
<td>Older Glacial deposits</td>
</tr>
<tr>
<td>69-99</td>
<td></td>
<td>Basalts</td>
</tr>
</tbody>
</table>

UNCONFORMITY

Fine grained quartz monzonite

- Rocks similar to the Cathedral Peak Granite
- Tungsten Hills Quartz Monzonite
- Granodiorite of Deep Canyon
- Lomark Granodiorite
- Round Valley Peak Granodiorite
- Wheeler Crest Quartz Monzonite

- Diorite, quartz diorite, and hornblende gabbro

PINE CREEK PENDANT

- Mafic meta-volcanic rocks
- Felsic meta-volcanic rocks
- Muscovite quartzite
- Marble

- Pelitic marbles, muscovite quartzite, and vitreous quartzite

(from Gray, 1968)
metasedimentary rocks (micaceous quartzite, pelitic hornfels, metachert, marble, calc-hornfels, etc.) consist of low- to intermediate-grade metamorphic equivalents of fine-grained sediments deposited during the Paleozoic era in a miogeosynclinal environment. The metavolcanics are Mesozoic in age, and were deposited in an eugeosynclinal environment, and consist of both felsic and mafic types. Strong folding followed the deposition of sediments and volcanics. During or after this time, magma intruded the folded formations.

The metasedimentary rocks are distributed in a northwest-southeast pattern east of the metavolcanics. The metavolcanics are believed to be stratigraphically higher than the metasediments based on their occurrence along the east limb of a major Paleozoic syncline. Strontium isotope ratios in the granitic rocks suggest that the magma was generated by melting sediments mixed with volcanics.

The intrusive rocks in the region are considered to be of Mesozoic age. The oldest intrusives are hornblende gabbros and quartz diorites. These were followed successively by intrusions of the Wheeler Crest Quartz Monzonite, the Lamarck Granodiorite, the Round Valley Granodiorite, the Tungsten Hills Quartz Monzonite, and alaskite dikes. The Tungsten Hills Quartz Monzonite is a light gray, medium-grained rock, porphyritic with phenocrysts of potassium feldspar. The rock is usually homogeneous, and little foliation is evident. The Wheeler Crest Quartz Monzonite is porphyritic with euhedral phenocrysts in a medium-grained groundmass. The Lamarck Granodiorite consists of quartz, orthoclase, and plagioclase, and ranges in composition from granodiorite to quartz monzonite. Planar foliation is well developed near the margins of the Lamarck, and is weaker toward the center. The Round Valley Peak Granodiorite has a composition similar to the Lamarck Granodiorite, but has a finer texture.

The contacts between intrusives are usually sharp and well-defined. Metasedimentary and metavolcanic rocks show little change as the granitic
contact is approached. The tactites which contain the Pine Creek ore bodies are a product of material exchange along thin boundaries between marble and granitic melts.

MINE AREA

Data for this section were extracted from Gray (1968) and Bateman (1956, 1965).

Figure 3 illustrates the surface geology of the mine and vicinity. The Pine Creek ore bodies outcrop along the east wall of a cirque at the head of Morgan Creek, a southward flowing tributary of Pine Creek. The deposits lie along a 3000 foot segment of the contact between quartz monzonite and the marble that flanks the west side of the north part of the Pine Creek pendant. The Pine Creek mine is comprised of six deposits as shown in the cutaway diagram in Figure 4. From north to south they are: the Loop ore body, the North ore body, the Pinnacle ore body, the Main ore body, the South ore body, and the Bend ore body. Typically, the larger deposits have average dimensions on the order of 75 feet in width, 500 feet in length, and 2000 feet in vertical extent.

The lithology and structure of the northern two-thirds of the Pine Creek pendant, of which the Pine Creek mine is part, are relatively simple. The mine area is near the north end of the pendant and on the west side of the marble, along a span where the outcrops of marble are narrowest. The width of the marble varies from 200 feet at the north end of the property to 1000 feet at the south end. Tactite is present along most of the 3000 foot extent of contact in the mine area; however, the thicker masses of tactite which contain the ore bodies compose about 1000 feet of the contact. Along the remaining 2000 feet of contact the tactite is either too thin or too low grade
to be exploited. Of the six ore bodies that make up the Pine Creek mine, only the Pinnacle ore body is totally enclosed in marble, while the others are in the margins of the marble adjacent to the Tungsten Hill Quartz Monzonite. The trace of the intrusive contact with the marble is quite distinct and generally very steep or vertical.

The primary ore control is the contact between the marble and Tungsten Hills Quartz Monzonite, where ore traps formed in irregularities in the granitic contact. The geometry of ore body extensions in the marble is frequently influenced by the original bedding.

Pre-ore faulting has not been an important element in the mineralization of the tactites. Underground post-mineral fractures are commonly parallel with a regional system of near-vertical joints developed in the quartz monzonite. The displacement on the majority of fractures is less than one foot, with occasional displacement of as much as 40 feet.

MINE FACILITIES

Data for this section were extracted from Bateman (1956, 1965) and Gray (1967).

The Pine Creek mine was discovered in 1916, and has been operated by Union Carbide Corporation since 1935. As of 1973, the mine had a production capacity of approximately 325,000 tons of ore per year containing about 6 million pounds of recoverable tungsten.

The mine is entered through adits and is developed by means of raises, levels, and sublevels. Figure 4 illustrates the mine workings and rock types as they existed in 1965. The main adits are level C, level A, the Zero adit, and the Easy-going adit, at elevations of 11,215; 10,940; 9430; and 8100 feet, respectively. Levels A and C intersect the Main, South, and North ore bodies,
FIGURE 4. Block Diagram of Pico Creek Mine, California, from Beevan (1965).
the zero adit intersects only the Main ore body, and the Easy-going adit is located about 1500 feet below the bottom of the present ore body.

The mine consists of two parts: (1) the part above level A ("old mine"), and (2) the deeper part between level A and the Zero adit. The "old mine" has been considered to be worked-out; however, higher tungsten prices may cause the reopening of the portion of the mine above level A.

The available literature does not indicate which of the ore bodies are currently being mined, however, it is very probable that at least 3 of the ore bodies are dormant. As indicated on Figure 4 and based on the available cross-sections from Bateman (1965), there are substantial workings in the quartz monzonite.
REFERENCES

MAS

CLIMAX MINE

(OPERATED BY CLIMAX MOLYBDENUM COMPANY,
A SUBSIDIARY OF AMERICAN METAL CLIMAI, INC.)

LOCATION AND ACCESSIBILITY

The Climax deposit is situated just above Fremont Pass on the west slope of the Ten Mile Range, about 12 miles northeast of Leadville and about 65 miles WSW of Denver, Colorado, at 39°22'N, 106°10'W (Figure 1). The elevation of the mine area is approximately 11,500 feet with 3500 feet of local relief. Excellent all-weather roads connect Climax with Leadville and Denver.

GEOLOGIC SETTING

Data for this section were extracted from AMAX (1974+), Vanderwilt (1955), and Wallace (1968).

As shown in Figure 2, Precambrian crystalline rocks constitute most of the Ten Mile Range for several miles to the north, east, and south of Climax.

The Precambrian biotite-quartz-feldspar schist and gneisses of the Idaho Springs Formation are the oldest rocks in the region. Locally these rocks have been metasomatized to granite, and reinjected along with scattered mafic dikes. Later in the Precambrian, the Silver Plume Granite intruded the Idaho Springs Formation, in three closely related pulses.

During the Paleozoic Era approximately 5000 feet of sediments (limestone, sandstone, and conglomerate) were deposited. These sediments were metamorphosed to quartzites and dolomites.
Mesozoic sedimentary rocks are exposed to the north and east of
Climax. There are no Mesozoic sediments, or their equivalents, preserved
in the mine area.

Tertiary dikes and stocks intruded the Precambrian crystalline rocks,
and Tertiary sills and dikes cut the Paleozoic sediments. The intrusive
bodies range in composition from quartz monzonite to diorite. Porphyry dikes
are a common feature of the crystalline rocks north of Leadville. The
porphyry dikes represent the last phase of igneous activity in the region.

MINE AREA

Data for this section were extracted from AMAX (1974), Vanderwilt (1955),
and Wallace (1968).

During the Tertiary Period three granitic stocks intruded the Climax
area. The stocks were similar in composition and in close proximity, but
were not contemporaneous. Each stock created a molybdenum/tungsten ore body,
and was characterized by intense alteration.

The Southwest Mass of the Climax Porphyry was the first stock in the
series. The intrusion caused fracturing in the adjacent country rock, which
provided channels for ore-forming hydrothermal fluids. The Ceresco molybdenum
ore body was formed in the shape of an inverted bowl, approximately 3,500 ft.
in diameter above the Southwest Mass, as shown in Figure 3a. Silicification
occurred beneath the ore body, replacing the existing rocks with nearly pure
quartz.

The area east of the Southwest Mass was intruded next by the Central
Mass of the Climax Porphyry. As in the previous intrusion, fracturing, up­
ward migration of hydrothermal fluids, and silicification were repeated, and
the Upper ore body was created. The ore body located above the Central
FIGURE 3. Diagrammatic sections showing multiple intrusions and mineralization, and progressive tilting (Anax, 1974+).
Mass as shown in Figure 3b is of similar shape but smaller than the Ceresco ore body.

The Aplitic Phase of the Climax Porphyry was the last ore-related intrusion. It is located slightly east of the Central Mass, and experienced the same series of mineralizing events. The resulting Lower ore body (and Lower ore body high-silica zone), the smallest of the three, is similar in shape to the others, and is located above the Aplitic Phase, as shown in Figure 3c.

A fourth igneous stock, the Porphyritic Granite Stock, was intruded into the Aplitic Phase of the Climax Porphyry, as shown in Figure 3d. This non-ore bearing stock has associated with it several large dikes and numerous small dikes, which cut part of the ore bodies.

The emplacement of igneous stocks was followed by intense faulting and fracturing. Major movements occurred along the Mosquito, South, and East Faults, shown on Figures 2 and 7. The Mosquito Fault is a major structural feature of Central Colorado. Movement along the Mosquito Fault had a profound effect on the Climax mine. Approximately 9000 feet of vertical displacement (west block down with respect to east block) has been recorded. The upward displaced east block, which contains the ore bodies, was subject to erosion and glaciation, which resulted in the destruction of most of the Ceresco ore body and the top of the Upper ore body. The approximate erosion surface is shown in Figure 3d and 4.

MINE FACILITIES

Data for this section were extracted from AMAX (1974+) and Vanderwilt (1955).

American Metal Climax, Inc., the owner/operator of the Climax mine, was formed by a merger of Climax Molybdenum Company and American Metal Company, Ltd., in 1957. Prior to 1957, Climax Molybdenum Company operated the mine for
about 40 years. The mine/plant employs approximately 2500 workers. The mine operates three shifts per day, seven days per week, averaging 354 working days per year. The present rate of production is between 37,000 and 48,000 tons per day, depending on market demands and plant efficiencies. As of 1972, the ore reserves at Climax were estimated to be in excess of 450 million tons, of which 64% will be recovered by block caving.

Mining began at Climax in the Upper and White levels which were abandoned in the 1930's when production shifted to the Phillipson level. In the early 1950's a major new production level, the Storke Level, was opened. The Storke Level now produces more than half the current daily production. Development of the Ceresco and lower levels was begun in the 1960's. In 1972 production started from the new 600 level. In 1973 the first open-pit production began. The Phillipson and Ceresco levels were abandoned in 1974. The current production and abandoned levels are illustrated in a cut away view of the mines in Figure 5, and individual production levels are shown in Figure 6.

A substantial amount of the mine workings must traverse igneous intrusive and metamorphic rocks, as shown in Figure 7, a geological plan view of the abandoned Phillipson Level.

The block caving mining method at the Climax mine is very efficient. The current operations are serviced by three shafts: No. 4 shaft, service and hoisting, 19 ft. diameter, 754 ft. deep, the shaft is enclosed underground and services the 600 and lower levels from the Storke level; No. 5 shaft, service, 23 ft. diameter, 670 ft. deep; and No. 7 Shaft, ventilation, 29 ft. diameter, 370 ft. deep, services Storke and lower levels. Adits service the Phillipson and Storke levels, as shown in Figures 2, 6, and 7.
FIGURE 5. Cut-away diagram of Climax mine (Amax, 1974+).
FIGURE 6. Production Levels at Climax mine (Amax, 1974+)
FIGURE 7. Phillipson Level, showing generalized geology and ore zones (Wallace, 1968).
Support is provided by 12" x 12" timber, or 5 ft. long roof bolts and shotcrete, or concrete legs with rock bolts. Haulage is by rail to the underground crushing plant, then by conveyor to the surface. Ventilation is supplied at a rate of 1.3 million cfm. All mine water is collected in flumes and pumped from the sump across the Continental Divide to be reclaimed in the closed circuit mill water supply. Water flow averages 400 gpm with 5000 gpm peaks during spring runoff.
REFERENCES

Crib

MAS

SCHWARTZWALDER MINE
(OPERATED BY COTTER CORPORATION)

LOCATION

The Schwartzwalder mine (also known as the Ralston Creek mine) is located at 39°50'N, 105°15'W in the Front Range on the southwest side of Ralston Creek in the northeastern part of the Ralston Buttes district, about 8 miles northwest of Golden, Colorado (Figure 1).

GEOLOGIC SETTING

Regional

Data for this section were extracted from Sims (1964) and Sheridan (1967).

As shown in Figure 2, metamorphic and igneous rocks of Precambrian age form most of the bedrock of the Ralston Buttes district. In the northeastern part of the district, the Precambrian rocks are overlain unconformably by sedimentary rocks of Paleozoic and Mesozoic age. An interlayered succession of mica schist, gneiss, amphibolite, and quartzite comprises the Precambrian metamorphic rocks. The rocks in this succession are of sedimentary origin, and were intruded in the western and northern parts of the district by Precambrian plutons, comprised of granodiorite-quartz monzonite, quartz monzonite, and hornblende diorite and associated hornblendite.

The predominant trend of layering, foliation, and the axial plane of major folds in the Precambrian metamorphic rocks is east to northeast. This trend is a product of major deformation accompanied by intrusion of the principal
FIGURE 1. Map of Colorado - Denver Mountain area. Basic map reproduced by permission of the American Automobile Association, copyright owner.
Sedimentary rocks
Hornblende diorite and hornblendite
Quartz monzonite
Granodiorite-quartz monzonite
Cataclastic gneisses, biotite plagioclase gneiss, mica schist, hornblende gneiss, and amphibolite, undivided
Quartzite unit
Interfered gneiss
Contact

Interlayered gneiss to predominantly basic quartz-plagioclase gneiss hornblende gneiss, amphibolite, and layered calc-silicate gneiss
Microcline quartz-plagioclase and hornblende gneiss (microcline gneiss) complexly interlayered with other rocks
Microcline-quartz-plagioclase hornblende gneiss (microcline gneiss)
Hornblende gneiss

FIGURE 2.

igneous rocks. Four prominent northwestward trending fault systems cross the district, consisting of breccia reefs, related faults, and intensely fractured areas. It is believed that these faults were active during Precambrian time and again during the Laramide revolution.

Mine

Data concerning the mine geology were extracted from Sims (1964), Sheridan (1967), and EMJ (1978).

The Schwartzwalder mine is in the transition zone along the contact between the mica schist unit and the undivided hornblende gneiss unit, as shown in Figures 3 and 4. Bedrock in the mine area is represented by three principal rock units: (1) mica schist in the southern part of the area, (2) hornblende gneiss in the central part, and (3) microcline gneiss interlayered with less abundant hornblende gneiss in the northern part. The hornblende gneiss is separated from the mica schist by a transition zone 50-300 feet wide. The mine workings are primarily in this transition zone.

The rocks in the vicinity of the mine are folded into a fairly large syncline and an adjacent anticline, the axes of which plunge steeply to the southwest. In places the syncline is tight, nearly isoclinal, and in part overturned, while elsewhere it is more open. The predominant plunge and bearing of lineations in the area are respectively 60°-70°S and 65°-70°W, approximately parallel to the major fold axes.

Numerous faults and fracture zones of the Rogers fault system lie within the area, primarily between two major bounding faults. The bounding fault north of Ralston Creek (a reverse fault) strikes northwest, dips steeply to the northeast, and has resulted in the displacement of the northeast
QUATERNARY DEPOSITS
Pegmatite
Mica schist
Garnetiferous biotite-quartz gneiss
Neatly interlayered with less abundant garnetiferous and metapelite-quartz gneiss
Biotitic amphibolite
Fine-grained mica schist
Hornblende gneiss
Predominantly layered mid-Miocene gneiss, a amphibolite, and hornblende gneiss, with minor thin layers and interstratified impure marble, and garnetiferous biotite-quartz gneiss
Microcline-quartz-phlogopite-biotite gneiss (microcline gneiss) complexly interlayered with less abundant hornblende gneiss

Contact Dashed approximately located, thick dashed where inferred

Breccia-reef, vein, fissure, showing dip

Named fault and vein features
1. Roger breccia-reef (top, 7. Montana vein (bottom)
2. Washington vein
3. Cooperation vein
5. Colorado vein (top, 6. Nebraska vein (bottom)

Strike and dip of foliation Bearing and plunge of lineation

Portal of adit

FIGURE 3.

Sims (1964)
FIGURE 4.

SIMS (1964)
block upward and to the southeast, with a lateral displacement of about 2200 feet. The other bounding fault trends northwest and lies approximately half a mile southwest of the mine. The block between the bounding faults is approximately 3500 feet wide, trends about N50°W, and is cut by a group of intricately branching and splitting faults. The history of movements along the various faults is complex, and at least three episodes of fracturing are recognized; however, the net displacement along the subsidiary faults appears to be minimal. Some of the subsidiary faults are occupied by the mineralized veins which make up the Schwartzwalder ore body.

The pitchblende mineralized veins of the Schwartzwalder mine are typically dark-colored fault breccias and adjoining fractured wallrocks which are coated, filled, and veined by ore minerals. The veins range in thickness from a fraction of an inch to as much as 8 feet, however, in places where they converge, stopes up to 35 feet wide have been mined. The locally mineralized, steeply dipping Illinois fault hosts the Schwartzwalder ores. In the mine, the fault can be seen as a breccia structure with mineralization on the second level, as an unmineralized shear zone on the ninth level, and as a mineralized coarsely crustified open fault with post-pitchblende calcite on the 11th level. The ore strike length is usually short in comparison with the mineralized dip length. The source of mineralizing fluids is unknown.

MINE FACILITIES

Data for this section were extracted from EMJ (1978).

Cotter Corporation acquired the Schwartzwalder mine in 1965, when the operation was producing about 70 tons of ore per day. Production has since expanded to 600 tpd, the maximum possible based on installed hoisting capacity.
As shown in Figure 5, three internal shafts provide access to the Schwartzwalder stopes: the No. 1 shaft, which is used only as an escape route; the No. 2, with two 60-inch compartments covering a vertical distance of 1300 feet; and the No. 3, with two 72-inch compartments covering a distance of 1000 feet. Twenty levels at 100-foot vertical intervals extend from the surface down to an elevation of about 4430 feet. Development is currently being done on the 16th level.

Shrink stope methods, with jacklegs and stopers for drilling, are used to extract steeper veins. Slushers, trackless loaders discharging into Young Buggies, and 1-cu-yd-capacity front-end loaders expedite transfer of ore and muck to ore passes.

After mining terminates in a vein, stopes are sealed off to prevent the escape of radon gas and to streamline the mine ventilation. About 250,000 cfm of air is downcast through the shafts by 75-hp fans. The air exhausts through an 8-ft diameter, 2500 ft-deep ventilation raise completed in 1977.

Along with possibly providing access for rock mechanics and hydrological testing of high-grade metamorphic rock, the Schwartzwalder mine may also offer sites for the study of natural uranium occurrences as analogs to the behavior of radioelements in a crystalline-rock waste-repository environment.
FIGURE 5. Recent Cross-Section of Schwartzwalder Mine, with level map.
REFERENCES

CRIB

MAS

URAD MINE

HENDERSON MINE

(OPERATED BY CLIMAX MOLYBDENUM COMPANY,
A SUBSIDIARY OF AMERICAN METAL CLIMAX, INC.)

LOCATION

The Urad and Henderson molybdenum mines are located at Red Mountain, about 8 miles west of the community of Empire, in the Front Range of Colorado at 39°46'N, 105°50'W. As shown in Figure 1, the mines are about 50 miles west of Denver. The smaller Urad ore body crops out at the surface, while the Henderson ore body is located about 3700 feet beneath the 12,315 foot peak of Red Mountain. The Henderson mine is about 2000 feet below the Urad mine.

GEOLOGIC SETTING

Regional

Data on the geology of the region and the ore bodies was extracted from Hoppe (1976) and Ranta (1976).

The regional geologic setting of the Urad and Henderson ore bodies can be discussed jointly because of their proximity to one another within the Red Mountain igneous complex.

The Red Mountain igneous complex was intruded into the Precambrian Silver Plume granite near the convergence of two major fault zones. The Berthoud-Loveland and Vasquez fault zones are believed to have been key structural elements in the emplacement of the Red Mountain complex. The Berthoud-Loveland fault zone has a NE trend and lies southeast of Red
FIGURE 1. Generalized surface geologic map of Red Mountain showing location of section 480H (after Ranta, 1976).
Mountain, while the Vasquez fault has a NNE trend and lies northwest of Red Mountain.

The intrusive complex is exposed at the surface over an outcrop area of 1200 by 2500 feet, at 7500 foot elevation, the diameter of the complex is approximately 5100 feet. Subvolcanic rhyolite porphyries, near the surface, change downward to mineralogically similar, fine-grained granite porphyries and to a fine- to medium-grained equigranular granite. These intrusions were emplaced in late Oligocene to early Miocene time.

Five major intrusive episodes, each with two or more phases, formed the Red Mountain intrusive complex.

Geology of the Near-Surface Urad Mine

The geology of the Urad mine was extracted from Hoppe (1976) and Ranta (1976).

The ore body originally contained approximately 13 million tons of plus 0.3% MoS₂. The maximum dimensions of the ore body are 400 feet wide, 1200 feet long, and 1000 feet high.

The Tungsten Slide complex, the East Knob Porphyry, and the Red Mountain Porphyry are the three principal Tertiary intrusions exposed at the surface. The relationship of these intrusions is shown in plan view in Figure 1 and in cross-section in Figure 2. Radial and concentric dike and explosion breccia patterns suggest that the intrusions were of a shallow, subvolcanic nature. The ore at Urad is contained in a system of fractures that transects the Precambrian Silver Plume granite and the Tungsten Slide Complex.

The Tungsten Slide Complex consists of a breccia, in close association with the Crowded Quartz Porphyry and the Square Quartz Porphyry. The
Crowded Quartz Porphyry lies directly beneath the breccia, while the rhyolitic Square Quartz Porphyry occupies a lower, core position within the Tungsten Slide Complex.

The northeastern part of the Red Mountain intrusive complex consists of Tertiary East Knob Porphyry. The rhyolitic East Knob Porphyry is strongly altered and pyritized, and locally contains presently-uneconomic mineralization.

The Red Mountain Porphyry cuts both the Tungsten Slide Complex and the East Knob Porphyry, and may have removed part of the Urad ore body. This rhyolitic porphyry plug forms the core of the Red Mountain intrusive complex, and may have fed a volcanic vent.

Geology of the Deeper-Seated Henderson Mine

Geology of the Henderson Mine was extracted from Hoppe (1976) and Ranta (1976).

The Henderson molybdenum ore body contains in excess of 300 million tons of ore, averaging 0.49% MoS₂. The deposit has the shape of an inverted cup, slightly elongate to the northeast. Ore body dimensions are approximately 3000 by 2200 feet with an average thickness of approximately 600 feet.

There is a transitional contact zone between the Red Mountain Porphyry plug and underlying Urad Porphyry, some 2500 feet beneath the surface. Also shown in Figure 2 are the Primos Porphyry and Henderson granite, which make up the core of the Urad porphyry. Primos Porphyry solidified beneath the solid crystalline hood of the Urad Porphyry intrusion, while the late Henderson granite occupies a similar position beneath the combined Urad-Primos hood. All of these deep-seated intrusions are granites.
The Urad Porphyry forms the largest volume of any igneous rock in the complex, and is the host for the bulk of the Henderson molybdenum ore body and associated alteration halos.

MINE FACILITIES - Urad Mine

General

Climax Molybdenum Company purchased the Urad mine during the mid-1960's. Mining at the Urad has been intermittent since 1920. Beginning in 1967, Climax Molybdenum Corp. produced 6.5 million lbs. per year of molybdenum at a daily ore mining rate of 5000 tons. From 1967 to 1974, the now-depleted Urad ore body produced 13.7 million tons of ore, averaging 0.49 percent MoS₂.

Mine

Data for this section were extracted from Kendrick (1970).

The literature regarding the Urad mine does not give any information concerning the present condition or type of facilities available.

The Urad ore body was made up of two distinct rock types - a Tertiary fine-grained rhyolite porphyry and a Precambrian coarse-grained granite. On the basis of these rock types, the block (inductive) caving mining plan had two major production levels. The first caving, an area of approximately 300 by 450 feet, was totally within the rhyolite porphyry. Access appears to be by adit rather than shaft. The second caving, about 300 by 300 feet, was entirely within the granite.
Climax Molybdenum Company's Henderson mine began production in July 1976. Ore production began at approximately 3000 tpd and is expected to reach 30,000 tpd by 1980. The mine employs about 1300 workers. The ore body lies 3700 to 5400 feet beneath the crest of Red Mountain, on the eastern edge of the Continental Divide. The mine plant - headframes, shops, warehouse, offices, and auxiliary facilities are situated at the foot of Red Mountain, in the Clear Creek Valley, some 1700 feet above the top of the ore body. The mine plant is located alongside U.S. Route 40, 50 miles west of Denver.

Data for this section were extracted from EMJ (January & June, 1976, September 1975).

The Henderson mine project is a significant engineering achievement based on the facts that its haulage tunnel is the third longest railroad tunnel in the world, and its production shaft, at 28 feet in diameter and 3100 feet deep, is the largest in North America.

A mechanized panel-caving mining method is being used at Henderson. In panel-caving, the ore body is divided into a series of panels that are defined by production drifts; each panel is 80 feet wide and of varying length. There are no pillars left between the panels, which are caved in sequence, progressing in two directions simultaneously. The first production level, the 8100, is 2350 feet below the collar of the access shaft. The second production level, the 7700, to be opened in later years, is 200 feet above the permanent main railroad haulage level.
The Henderson mine is serviced by 4 shafts: No. 1 with a depth of 2440 feet; No. 2, 3100 feet and offset 2500 feet from the ore body; No. 3, 2290 feet; and No. 4, 1585 feet, located several miles away, which affords exhaust ventilation for the railroad haulage tunnel.

The No. 1 and No. 3 shafts, which are 23 feet in diameter, are exhaust and intake ventilation airways. The No. 2 shaft has three-compartments and is equipped with a 24 x 9 foot man-material cage with a capacity for 100 men or a 20-ton load, a double-deck man cage with 114 man capacity, and a chippy cage for a four-man shaft inspection team.

Figure 3 is a three dimensional view of the Henderson mine workings. Total lateral development exclusive of the railroad haulage tunnel exceeds 114,000 feet, including 13,000 feet of ramps.

Henderson's main haulage way for transferring ore from the 24 loading pockets cut above the 7500 level is a 52,000 foot long railroad tunnel. Ore is transported in 30-car trains from the 7500 level at 3% grade to the western portal at elevation 8950 feet and then another 4 miles to the crusher at the mill site. The tunnel has dimensions of approximately 16 x 15 feet, and is driven through granite on the eastern, underground end, then through Precambrian schists and gneisses. The metamorphosed rocks, which made up the bulk of the western drive, caused some serious problems in tunneling through sections of wet, highly fractured, and squeezing ground.

It appears that there are substantial workings in Precambrian granitic and metamorphic rock, as well as in Tertiary granitic rock, which may furnish access for in-situ geomechanical and hydrologic testing.
FIGURE 3. The complexity and number of development openings needed for mining the Henderson are enormous. Total lateral development, excluding the haulage tunnel, will exceed 114,000 feet before production begins, including 13,000 feet of ramps, (after Hoppe, 1976).
REFERENCES

CRIB

Engineering & Mining Journal

1975, Henderson mine tunnel holed through by Amax after four and a half years work, v. 176(9) p. 37.

1965, Molybdenum, v.166 (1) p. 69.

COLORADO SCHOOL OF MINES, EXPERIMENTAL MINE

LOCATION AND ACCESSIBILITY

The experimental mine of the Colorado School of Mines is located in the Front Range, immediately northeast of the town of Idaho Springs, Clear Creek County, at latitude 39°44'N, longitude 105°31'W. The location is shown on Figure 1. Year-round access is provided by a road through Idaho Springs, approximately 1/4 mile from Interstate 70.

GEOLOGIC SETTING

The regional geologic setting has been described by Lovering and Goddard (1950), and the more localized setting by Moench (1964). Figure 2 illustrates the simplified geologic setting of the Idaho Springs area. The mine is located in the Precambrian Idaho Springs Formation, considered to be the oldest rock unit exposed in the Front Range (Lovering and Goddard, 1950). The Front Range in this area is generally composed of gneissic rocks which were intruded at least three times in the Precambrian by igneous rocks. Three principal rock types occur in the Idaho Springs area. They are, in order of importance: granite-biotite gneiss, pegmatite, and biotite gneiss. The granite-biotite gneiss is composed of interlayered granite gneiss and biotite gneiss. The pegmatite is primarily composed of quartz and feldspar, with some mica. The dark gray, fine-grained biotite gneiss is a minor rock type in the area.

Studies of the central portion of the Front Range have shown that the gneissic rocks were deformed at least twice (Moench, 1964). The first deformation was apparently plastic at high temperature and pressure, and was accompanied by regional metamorphism and the emplacement of the intrusive
FIGURE 1. Location map - Colorado School of Mines, Experimental Mine, Idaho Springs, Clear Creek County, Colorado. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Geologic Map of Idaho Springs Area
(Compiled from Lovering and Goddard, 1950).
bodies. The second deformation was cataclastic at low temperature and
pressure and was restricted to the vicinity of the Idaho Springs - Ralston
shear zone, located nearby to the south of the mine area. The first
period of deformation produced large north-northeast trending folds, and
the second produced intense cataclastic and numerous small east-northeast
trending folds. The area exhibits extensive jointing, with rehealing of
the older joints during periods of deformation.

A plan of the mine workings is shown on figure 3, and a simplified geo-
logic plan and section illustrates lithology and structural features of an
experimental area on Figure 4.

MINE CHARACTERISTICS

Rock-property data, size, facilties, and characteristics of the experi-
mental mine are summarized:

<table>
<thead>
<tr>
<th>Rock Properties</th>
<th>Unconfined</th>
<th>18.2 ± 3.6 ksi (uniaxial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength:</td>
<td>500 psi</td>
<td>21.2 (triaxial)</td>
</tr>
<tr>
<td></td>
<td>1000 psi</td>
<td>27.8 (triaxial)</td>
</tr>
<tr>
<td>Modulus (Ey)</td>
<td>8.36 ± .91x10^6 psi</td>
<td></td>
</tr>
<tr>
<td>Rock Mass Modulus:</td>
<td>4.0-4.7x10^6 psi</td>
<td></td>
</tr>
<tr>
<td>Density:</td>
<td>2.63 gm/cm^3</td>
<td></td>
</tr>
<tr>
<td>Poissons Ratio:</td>
<td>.15 ± .04</td>
<td></td>
</tr>
<tr>
<td>In Situ stress:</td>
<td>σ_V = 456 psi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ_H = 575 psi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ_XY = 43 psi (shear)</td>
<td></td>
</tr>
</tbody>
</table>

Hydrologic Conditions: probably above water table

Size: (1x7x3600 = 176,400) + (9x20x60) = 12,960 = 189,360 cu ft.
(7000m^3) Fig. 1.
FIGURE 4. Geology of the experimental room area.
Facilities:

Mechanical: Compressors
Electrical: Sufficient to conduct a large test program
Transportation: 1/4 miles on macadam/dirt road off I 70

Characteristics:

Depth: 350 - 600'
Mechanical stability: very good, some rock bolted areas
Rock type: Granite gneiss and biotite gneiss w/ pegmatite
(Figure 2)
Tectonics: Precambrian front range (Idaho Springs Fm), several episodes of deformation
Jointing and Fracturing: 3 sets

<table>
<thead>
<tr>
<th>Set</th>
<th>Strike</th>
<th>Dip</th>
<th>Spacing (ft)</th>
<th>Length(ft)</th>
<th>Block Vol (cu ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N44W</td>
<td>53S</td>
<td>1.49</td>
<td>0.67</td>
<td>0.55</td>
</tr>
<tr>
<td>B</td>
<td>N31E</td>
<td>55S</td>
<td>0.53</td>
<td>1.24</td>
<td>0.55</td>
</tr>
<tr>
<td>C</td>
<td>N73E</td>
<td>71N</td>
<td>0.70</td>
<td>1.29</td>
<td>0.55</td>
</tr>
</tbody>
</table>

The mine is presently used by students and faculty members of the Colorado School of Mines for training and research projects. As part of their mining engineering education, essentially all of the underground excavation and maintenance is done by students.
REFERENCES

THE LOST PACKER MINE
(Ivers Mining Company)

LOCATION

The Lost Packer mine, a small gold, copper, and silver operation, is located in central Custer County 28 miles north of Stanley, Idaho, at 44°37'N, 114°53'W (Figure 1). Part of the Loon Creek District located in the Salmon Mountains, the mine lies at an elevation of 8600 ft.

The mine can be reached only by three dirt roads, either from Route 93 or Route 21. Because of the altitude and the fact that Route 21 is closed in winter access may be difficult.

REGIONAL GEOLOGY

The geology of the area has been described by Ross and Forrester, 1958, and Umpleby, 1911, and is illustrated in Figure 2.

The oldest rocks in the district are Precambrian mica schist and quartzites which correlate with the Belt Series. (The Thompson Peak formation is the rock unit in the immediate mine area.) They outcrop irregularly over an area of about two square miles in the central part of the district. These rocks are truncated in most directions by late Cretaceous granodiorite and quartz-diorite outliers of the Idaho Batholith, but they are overlain to the north by quartz latite of Tertiary age (probably part of the Challis volcanic series). Few bedding planes are visible in these Precambrian rocks. Paleozoic rocks overlie the Precambrian rocks in the south central part of the district. The two age groups are usually separated by a structural unconformity, but it was not observed in the area of the Lost Packer mine. The Paleozoic rocks are fine-grained quartzites
FIGURE 1. Location map showing the Lost Packer Mine, Custer County, Idaho. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Geologic map of the Loon Creek mining district, showing the location of the Lost Packer Mine.
and blue dolomitic limestones which were considered by Ross and Forrester, (1958), to be, respectively, of Cambrian and Ordovician age. Some younger Paleozoic beds appear in other parts of Custer County. The late Cretaceous Idaho Batholith, composed of granodiorite, quartz diorite, and quartz monzonite, extends into the Leon Creek District from the west. Outliers from it appear to the east of the Precambrian metasediments and undoubtedly underlie the whole district. The granitic intrusions in the Lost Packer mine are related to the batholith. Dikes and veins of granite porphyry and diorite porphyry, probable of Eocene age, also cut the area and the mine. Bond (1978) indicates that the porphyries are capped by mixed Eocene, silicic and basaltic volcanic flows and reworked debris, surrounded by large granitic plutons and dike swarms, also Eocene age. The Idaho Batholith borders the Eocene intrusives to the west. Precambrian metasediments, low-grade mica schist and quartzite, crop out 4 miles southwest of the mine (Umpleby, 1911)(Figure 2). Based on the recent Idaho Geologic map (Bond, 1978), it appears that the metamorphic rocks may be mid- to high-grade. Gneissic rocks are found at the borders of the massive batholith intrusion (Ross and Forrester, 1958).

The direction of fracturing in the district is generally northeast to southwest (Bond, 1978). A strong schistosity in the Precambrian metasediments strikes west of north and dips southwest (Umpleby, 1911).

MINE GEOLOGY

The ore deposits of the Lost Packer mine occur in a fissure vein which is located in two host rocks: (1) a Precambrian mica schist, and (2) a Cretaceous quartz monzonite granodiorite-granite dike system. The vein is offset and the ore often crushed by granite porphyry and diorite porphyry dikes. The dikes strike roughly parallel to the fissure vein but
dip to the west less steeply than does the vein (Figure 3). The vein strikes N-S and dips 75°W. It varies in width from a few inches to 5 feet. The walls of the vein are well defined, and the vein is filled with gouge, sheeted schists, and/or lenses and stringers of ore. Ore minerals consist of coarse-textured milky-bluish white quartz with chalcopyrite; together with small amounts of pyrrhotite, pyrite, and siderite. The chalcopyrite is the main ore mineral and occurs as bunches, small patches, irregular grains, and interstitial fillings in a gangue of coarse quartz.

The gold is found mainly in the chalcopyrite and quartz. The age of mineralization is late Cretaceous to early Eocene (Umpleby, 1911; CRIB, 1974).

FACILITIES

The Lost Packer mine, owned by Ivers Mining Company (801 Tribune Building, Salt Lake City, Utah) and operated by Ivers/Finland, is inactive and consists of six claims and two fractions. There are ten tunnels with a total length of 10,000 feet reaching to a level of 1000 feet below the highest outcrop (Umpleby, 1911; CRIB, 1974). No report was found on when the mine became inactive. There is no information on the state of water in the mine.

The mine is reported as being explored in 1977 and to have three employees (Idaho Dept. of Labor and Industrial Services, 1977).

FIGURE 3. Transverse section through Lost Packer vein, Loon Creek district, Idaho, looking north. Illustrates offsets in the vein caused by the intrusion of dikes. (Umpleby, 1913)
REFERENCES

Bond, J.G., compiler, 1978, Geologic map of Idaho: Idaho Dept. of

CRIB, 1974.

Idaho Department of Labor and Industrial Services, 1977, The Mineral
Industry of Idaho.

Ross, C.P. and Forrester, J.D., 1958, Outline of the Geology of Idaho:

Umpleby, J.B., 1911, A Preliminary Account of the Ore Deposits of the

United States Department of the Interior, Bur. of Mines Memorandum, 1979,
THE COEUR D'ALENE DISTRICT, IDAHO

LOCATION

The Coeur d'Alene District contains some of the United States' deepest mines with a value of recorded base metal and silver production exceeding $2 billion. The district is located in the panhandle of Idaho at 47°30'N, 116°W, between the cities of Wallace and Kellogg, 75 miles east of Spokane, Washington (Figure 1). Though the mines are in metamorphosed argillaceous rock, they are sufficiently deep and extensive, and have been characterized by rock mechanics research, to warrant their consideration in the context of this report.

GEOLOGIC SETTING

The distribution of mines, major faults and intrusive rocks is shown on Figure 2 (from Sorensen, 1947). The rocks of the Coeur d'Alene district comprise several units of the Precambrian Belt Series; their lithology and stratigraphy have been described by Hobbs and others (1965). The Belt Series is composed predominantly of fine-grained, slightly metamorphosed quartzite and argillaceous quartzite. Small monzonitic intrusions and several varieties of dikes cut across the quartzite and vary in age from Cretaceous to late Tertiary. The Cretaceous monzonite Gem stocks and the other intrusive rocks make up only a small part of the bedrock. However, they are important because of their temporal and geographical relationship to the ore deposits.

The district is at the intersection of a north trending major anticlinal uplift and the west-northwest trending Lewis and Clark line. The Gem stocks crop out near the intersection and are aligned along the axis of the arch. The Osburn fault which strikes roughly east-west, is the dominant structural feature and bisects the district. The Osburn, a right-
FIGURE 1a. Location map of Coeur d'Alene area (from Chan, 1972).

FIGURE 1b. Location of Coeur d'Alene District in Shoshone County, Idaho. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Coeur D'Alene mining district showing mines and major faults.
(Sorenson, 1947).
lateral strike-slip fault, offsets the major folds and other faults, and separates the northern segment of the ore-bearing area from the segment to the south. The ore occurs in veins mostly in west-northwest striking fracture zones. The veins lie within a group of near-parallel separate mineral belts. Those mines north of the Osburn fault include Hecla, Hercules, Standard-Mammoth, Tamarack, Dayrock, Frisco, and Star-Morning. The group on the south side of the Osburn fault includes the Galena, Coeur, Sunshine, Crescent, Bunker Hill, and Page mines.

In general, the mine workings are in quartzite and argillaceous rocks. However, some mine workings (such as the Tamarack, Interstate, Gem, Frisco, and Dayrock mines) may extend into the Gem stocks and associated intrusives. The district includes the deepest mine in the western hemisphere, the Star mine, with workings extending to 8300 feet below the surface.

In the following sections, the lithology and structure of the district are described, followed by descriptions of three mines characteristic of the district.

Lithology

The lithology and stratigraphy of the Precambrian Belt Series have been described by Hobbs and others (1965 and 1968) and Sorenson (1947). The stratigraphic section is outlined in Table 1 and illustrated on Figure 3. The Belt Series is predominantly argillite and quartzite. Regional metamorphism is evident in the recrystallization of quartz grains and the formation of micaeous minerals, chiefly sericite. Metamorphism of sandy and muddy beds to quartzite and argillite is common, with the quartzite grading to argillite. Sedimentary structures, such as mud cracks and ripple marks, abundant throughout the sequence. These features reflect a shallow water depositional environment for much of the series and a near balance between deposition and subsidence during much of Belt time. Nowhere is the base of the Belt Series known to be exposed inside the district and
<table>
<thead>
<tr>
<th>Age</th>
<th>Formation</th>
<th>Lithology</th>
<th>Thickness (feet)</th>
<th>Oili-Flaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td>Alluvial deposits</td>
<td>Unconsolidated sands, gravels, channel deposits and glacial and glaciofluvial deposits.</td>
<td>0-150</td>
<td>No</td>
</tr>
<tr>
<td>Cretaceous</td>
<td>Lamprophyre dikes</td>
<td>Biotite, hornblende, and pyroxene rach dikes.</td>
<td>0-10+</td>
<td>Yes, but limited</td>
</tr>
<tr>
<td></td>
<td>Dikes undifferentiated</td>
<td>Includes diabase, diorite, and monzonite dikes.</td>
<td>0-10+</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Monzonite</td>
<td>Includes monzonite, gneiss, and diorite intrusive crystalline rocks.</td>
<td>0-4000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Striped Peak Formation</td>
<td>Interbedded quartzite and argillite with some arenaceous dolomitic beds.</td>
<td>1500+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mostly medium- to greenish-gray finely laminated argillite. Some arenaceous dolomite and impure quartzite, and minor green dolomite and limestone in the middle part.</td>
<td>4500-6500</td>
<td>Yes, but limited</td>
</tr>
<tr>
<td></td>
<td>Upper part</td>
<td>Light-gray core or less dolomitic quartzite interbedded with greenish-gray argillite. Ripple marks, mud cracks abundant.</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower part</td>
<td>Light-greenish-yellow to light green-gray argillite, thinly laminated. Some carbonate-bearing beds.</td>
<td>1400-2500</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>St. Regis Formation</td>
<td>Gradational from thick-bedded pure quartzite at base to interbedded argillite and impure quartzite at top. Red-purple color characteristic, some green-gray argillite. Some carbonate-bearing beds. Ripple marks, mud cracks, and mud-chip breccia common.</td>
<td>1200-3400</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Upper part</td>
<td>Thick-bedded vitreous light yellowish-gray to nearly white pure quartzite. Gradual to nearly pure quartzite at bottom and top. Cross-stratification common.</td>
<td>1200-3400</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Lower part</td>
<td>Light greenish-gray impure quartzite. Some pale red and light yellowish-gray pure to nearly pure quartzite. Ripple marks, smash marks, and pseudo-conglomerate.</td>
<td>1200-3400</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Rensers quartzite</td>
<td>Interbedded medium-gray argillite and very fine argillite and light-gray impure to pure quartzite, some mud cracks and ripple marks.</td>
<td>1200-3400</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Upper part</td>
<td>Interbedded medium-gray argillite and very fine argillite and light-gray impure to pure quartzite, some mud cracks and ripple marks.</td>
<td>12,000+</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Lower part</td>
<td>These are thick-bedded, medium-gray argillite and quartzite argillite, laminated in part. Pore filling some discontinuous quartzite zones. Oxidized</td>
<td>12,000+</td>
<td>Yes</td>
</tr>
</tbody>
</table>
FIGURE 3. Isometric drawing of regional sections centered on the Coeur d'Alene district showing the general thickening of the stratigraphic section to the north and east (Hobbs and others, 1965).
the thickest partial section, between 40,000 and 50,000 ft. (Campbell, 1960), occurs just east of the Coeur d'Alene district and trends north-northwest. The Belt Series is divided into six units. They are, from oldest to youngest: the Prichard and Burke Formations, the Revett Quartzite, and the St. Regis, Wallace, and Striped Peak Formations.

The Prichard Formation consists of dark gray to black argillite and argillaceous quartzite. A maximum thickness of 12,000 ft. is exposed; the thickness of the unexposed basal part is unknown. The upper section of the Prichard, up to 2000 ft., consists of a transitional zone of alternating argillite and quartzite.

The overlying Burke Formation is composed of 2200 to 3000 feet of greenish-gray sericitic quartzite interspersed with some fairly pure quartzite. Some argillaceous quartzite also occurs in the Burke Formation. The contact between the Burke Formation and the overlying Revett Quartzite is indefinite, and a transition zone extends 500 feet or more.

The Revett Quartzite consists of massive, thick-bedded, gray to white quartzite. Vitreous quartzite beds make the Revett the most distinctive formation in the area. Within the district, the formation thickens from about 1500 ft. in the east to about 3400 ft. in the west.

The next overlying unit is the St. Regis Formation which grades from interbedded quartzite and argillite to a dominantly thin-bedded argillite which is typically purplish-red to red in color. The upper section of the St. Regis Formation is characterized by a chert-like, finely laminated argillite. The thickness varies from 1000 - 1400 ft. in some areas.

The Wallace Formation is 4500 - 6000 ft. in thickness and consists of gray to white calcareous quartzite and gray to black calcareous argillite, dolomite, and limestone.
The uppermost formation, the Striped Peak, consists of purplish, pink, and green quartzite and argillite. Only the basal 1500 ft. of the Striped Peak lies in the district and its exposure is limited to small areas.

The Cretaceous monzonite stocks are made up of two main bodies and several smaller ones, and are associated with the Idaho batholith. The bulk of the rock is monzonite but the composition ranges from syenite to diorite. The main bodies are known as the Gem stocks and are located north of Wallace and east of the Dayrock mine (Figure 2). The contacts on the east side of the stocks are generally steep or even overhanging, whereas the west boundaries dip somewhat less steeply to the west.

Diabase and lamprophyre dikes which transect the district apparently represent two separate episodes of intrusion, and are of questionable Cretaceous and Tertiary age. The dikes commonly are located along the prominent west-northwest faults and many have been sheared subsequent to their intrusion. The diabase dikes are most numerous and most continuous south of the Osburn fault. A large dike along the Osburn fault is exposed in several mine workings and is probably fairly continuous. Another dike appears to be continuous from the Sunshine mine eastward to the Coeur d'Alene mine, a distance of about 3 miles, and it may extend farther. The lamprophyre dikes are abundantly exposed in mine workings. They are dark-colored, fine grained rocks characterized by biotite or hornblende phenocrysts. They are most numerous north of the Osburn fault. The lamprophyre dikes are devoid of ore minerals, and some dikes clearly crosscut the monzonite stocks and the veins. Presumably the lamprophyre dikes represent one of the latest igneous episodes in the area. Other dikes include some silicic and intermediate rock types that are in part direct off-shoots from the monzonite stocks and also some dikes of undetermined composition.
Rock Properties

Rock properties and in-situ deformation behavior of the Revett Quartzite and St. Regis Formation (argillaceous quartzite) have been measured by Chan and others (1972). In general, the quartzites were found to deform nearly linearly, starting at an applied stress of 5000 to 6000 psi and continuing to the ultimate strength of the rock. However, when rocks contain high percentages of carbonate, sulfide disseminations, and microfractures, or are highly argillaceous, the deformation becomes non-linear. Details of these tests and deformation behavior of rock masses in the Galena, Lucky Friday, Silver Summit, and Star mines were reported in Chan and others (1972), in the Bunker Hill mine by Conway (1972), and in the Crescent mine by Skinner (1972).

Regional Metamorphism

All Belt sedimentary rocks are weakly to moderately metamorphosed. The chlorite and biotite in the Prichard and Burke Formations, far removed from the stocks, indicate the extent of regional metamorphism and show that it was low-medium grade (Hobbs and others, 1965). Though the Belt Series rocks are predominantly quartzite and argillite, in some parts of the district, metamorphism has resulted in phyllite and schist.

Contact metamorphism has occurred around the stocks. The most widespread effect is an aureole of recrystallization, extending a few feet into the sedimentary units.

Structure

The regional structure of the Coeur d'Alene mining district is illustrated on the geologic map in Figure 2. The district is located at the intersection of the Lewis and Clark Line with a broad anticlinal arch that extends in a northerly direction from the Idaho batholith to Kimberly,
British Columbia, Canada (Hobbs and Fryklund, 1968). The Lewis and Clark Line is a prominent zone of faulting, shearing, and complex folding that trends in an east-southeast direction. The Osburn fault is the major structure of the Lewis and Clark Line in the district. The rocks of the district are intensely deformed, and Hobbs and others (1965) describe the area as a "structural knot". The rocks are tilted, sheared, and faulted, and most dip at angles of 45° or greater. Nearly vertical dips are common and many beds are overturned.

Faults are the dominant structural feature of the Coeur d'Alene district and control the location of the ore deposits. The faults have been grouped into four categories by Hobbs and others (1965):

1. low-angle reverse faults
2. early steep-dipping reverse and normal faults
3. strike-slip and related normal faults
4. late normal faults.

The Osburn fault, the major structural feature in the district, has a right-lateral displacement of 16 miles. The Osburn divides the district into two parts that differ markedly in structural characteristics (Wallace and others, 1961). North of the Osburn fault, the rocks are moderately deformed and the axes of the folds trend in a northerly direction. South of the Osburn fault, the fold axes trend westerly and the folds are tightly compressed so that beds dip vertically and in some cases are overturned.

Between the Osburn fault and the Placer Creek fault, which roughly parallels the Osburn 3 - 4 miles to the south, are numerous other faults that trend northwest. They form the connecting links between the two faults. Most dip steeply to the southwest and are reverse, normal, or strike-slip. The Crescent, Silver Summit, Consolidated Silver, and Coeur d'Alene mines
are located along these faults. Two sets of faults predominate north of Osburn fault. One set trends west-northwest and is subparallel to the Osburn fault. The Lucky Friday mine is located within this set. The second set trends north and includes the location of the Dayrock mine. (Figure 2).

Fault gouge and zones of sheared, crumpled, or highly fractured rocks are associated with all the faults. Hobbs and others (1965), report that in quartzite:

"The strain along a fault is characterized by a relatively narrow zone of gouge bordered by a zone of breccia which grades outward into small shears and joints. In comparison, along a fault of similar displacement in argillite, the strain produces a relatively wider zone of gouge surrounded by contorted and crumpled rock."

An example of zones of fault gouge and brecciation along the Osburn fault is illustrated in the Morning mine (Figure 4). Bedding-plane slippage and puckering are additional types of faulting or shearing that are common in the district.

Hobbs and others (1965) recognized differences in the structure and lithology on opposite sides of the Osburn fault and use this information to substantiate the 16 miles of right lateral strike-slip displacement along the fault. On the other hand, Full (1955) believed that the geology is too complex to explain the displacement on the Osburn fault as strike-slip. However, geologic evidence substantiates the observations that the pattern of faulting formed after the major period of folding. Displacement along strike-slip faults has offset fold-axes, and displacement on dip-slip faults has cut folds.

Mineralization is probably directly related to the structural history of the region and extends from Precambrian to Tertiary time. The veins of
FIGURE 4. Zones of fault gouge and brecciation along Osburn fault as seen in the main cross cut of the Star-Morning mine (Hobbs and others, 1965).
the major period of ore formation were probably localized along a system of throughgoing fractures that were opened after the intrusion of the monzonite stocks. Thus, the major mineralization is Cretaceous or younger.

Much of the structural pattern was present prior to the formation of the principal ore deposits; however, a major amount of strike-slip movement took place after ore emplacement. Regardless of the differences in fault pattern and orientation in the district, all the major ore bearing zones have approximately the same orientation, N65°W. The orientation of the zones of ore bodies is about 10° to 15° more northerly than the general trend of the Osburn fault.

ORE DEPOSITS OF THE COEUR D'ALENE DISTRICT

The Coeur d'Alene district ore deposits have been described by several authors, including Sorenson (1947), Campbell and others (1961), Hobbs and Fryklund (1968), and Carter and Li (1976). The definitive study is the paper by Fryklund (1964). The major ore deposits are steeply dipping tabular replacement veins containing lead, zinc and silver. The veins range in thickness from less than an inch to a yard, and locally may be several times this thickness. Individual ore shoots are known to range in length from several feet to more than 3000 feet and some may exceed this length when fully developed. The important producing veins are nearly straight, parallel to subparallel, and trend about N65°W.

There were six periods of mineralization, each distinguished by the minerals it emplaced (Fryklund, 1964). Precambrian mineralization is represented by arsenopyrite-pyrite veins cut by uranium-bearing veins. Hydrothermal alteration also occurred in the Precambrian. Late in the Cretaceous, after emplacement of the Gem stocks and monzonite, the main period of mineralization occurred. The metal-producing veins of galena, sphalerite, and tetrahedrite were intruded, and the surrounding country
rock was recrystallized. The final phases of mineralization occurred in the Tertiary period. The first was a period of base metal mineralization. A second phase is represented by stibnite and scheelite-stibnite veins; these veins are older than the Tertiary diabase dikes. A third phase includes arsenopyrite and gold veins; these veins are younger than the diabase dikes.

The mineral belts are structural features. In some places the mineral belts parallel the trends of the fold axes; in others they cut across the axes at high angles. The monzonite stocks interrupt the mineral belts but do not disturb the main trends of the belts that are aligned across them. Within the mineral belts the distribution of veins, shears, and fractures differs from place to place and apparently is affected by the physical properties of the country rock and other factors.

The length of the mineral belts ranges from 1-14 miles. The ore shoots are scattered in the mineral belts in a random pattern. The size of individual shoots covers a broad range. An example of a large ore shoot is the main ore body in the Star and Morning mines. This ore body measures 3000 ft. long and 7500 ft. from its exposure at the surface to the lowest level mined. The maximum vertical extent is not known; its width is up to 60 ft.

The mineralization is clustered in two groups on opposite sides of the Osburn fault, localized along well-defined parallel or subparallel belts. As summarized by Hobbs and Fryklund (1968), the ore belts north of the Osburn fault are zoned concentrically around the Gem stocks; the major ore minerals are galena and sphalerite. The deposits south of the Osburn fault show no evidence of concentric zoning, the gangue minerals show no orderly pattern, and the major ore minerals are sphalerite, galena, and tetrahedrite.

Among the 175 mines of the Coeur d'Alene district, which include 32 active mines (Idaho Dept. of Labor and Industrial Services, 1978), there
are many deep underground workings in metamorphic rock. Two mines north of the Osburn fault, the Dayrock and Star-Morning, and the Coeur mine south of the fault will be described because of their characteristics and potential accessibility. Other mines in the district with potential because of rock type, depth of workings, and possible accessibility are the Lucky Friday, north of the Osburn fault; and the Consolidated Silver, Silver Summit, Crescent, Galena, and Sunshine south of the fault.
REFERENCES - COEUR D'ALENE DISTRICT

Full, R.P., 1955, Structural relations north of the Osburn fault, Coeur d'Alene district, Shoshone County, Idaho; University of Idaho thesis.

The Wallace Miner: April 19, 1979
April 26, 1979
July 5, 1979
July 12, 1979.
DAYROCK MINE
(DAY MINES, INC.)

LOCATION

The Dayrock Mine lies 3 miles north of Wallace, Idaho, along Ninemile Creek Canyon, at a surface elevation of 3200 ft. Its location is shown on Figure 2 of the preceding section. The lead-silver-zinc mine is located at township 48N, range 4E, section South 10, 11, 14, and 15. It was reported active in 1978 with seven employees (Idaho Dept. of Labor and Industrial Services, 1978). Currently, the mine is inactive and is being kept open for potential exploration.

GEOLOGIC SETTING

The geologic setting of the Dayrock mine was described by Hobbs and others (1965), Farmin (1961), Fryklund (1964), and Carter and Li (1976). A generalized geologic cross section, Figure 1, shows the rock type, geologic structure, and ore bodies to a depth of 1250 feet. The host rocks are the Precambrian Belt Series argillites and quartzites. The upper three-quarters of the mine is located in St. Regis argillites and the lower quarter is in underlying Revett Quartzite. Shearing and alteration have weakened the rock and there are abundant clay minerals and sericite in the argillite.

One of the Gem stocks lies approximately 250 ft. east of the mine; however, its proximity is the result of movement on the nearby Dobson Pass fault. A few dikes cut across the mine for lengths up to 100 ft. They are altered and softened, requiring timbering in the mine.

The ore is mainly galena, pyrite, sphalerite, and tetrahedrite with subordinate amounts of gangue minerals. The ore occurs in lenses, stringers and disseminations.
STRUCTURAL SETTING

The Belt rocks in the Dayrock mine strike northwesterly and dip north­
easterly 45°-80°. The mine area is bounded by the Dobson Pass fault on
the east and the Blackcloud and Osburn faults on the south. The veins
occupy fractures or shears in the host rocks and may be traced for up to
hundreds of feet. Numerous stringers, pods, and disseminated bodies of
ore minerals are scattered between the veins.

Faulting in the Dayrock mine is complex (Hobbs and others, 1965).
Normal faults cut the veins and displace them by as much as hundreds of
feet, progressively lower to the west. Another set of faults with reverse
movement up to 90 ft. parallels the veins, complicating the geology and
mine development. The rocks and, to a lesser extent, the veins are drag­
folded, especially near faults.

MINE CHARACTERISTICS

Notes on the Dayrock mine workings and mining method are based on
few sources and a paucity of information. The workings are in quartzite
and argillite and may extend into intrusive rock. They include a 300 ft.
adit, a vertical shaft, and tunnels at the 1400 ft. and 3000 ft. levels,
and possibly others. A total of 900,000 tons of ore were extracted between
1923 and 1962 with a 3.6 million oz. silver content (Idaho Bureau of Mines
and Geology, 1963). The mine workings are fairly wet and are timbered in
the faulted and sheared areas (Acres, 1975). The lead, silver, and zinc
is vein mined by cut and fill (Cobbs, 1976). Some areas are backfilled
with quartz sand. Haulage is accomplished by rail.

The Dayrock mine was reported mined out in mid-1974 (Carter, 1976);
however, new exploratory drilling was completed in 1975 in an area west of
the mineralized zones. Results were inconclusive and additional drilling
or shaft sinking may have been undertaken.
REFERENCES - DAYROCK MINE

STAR-MORNING MINE
(BUNKER HILL-HECLA MINING COMPANIES)

LOCATION

The Star-Morning Unit represents the intersection of the Star mine workings on the west and Morning workings to the east. It is situated six miles northeast of Wallace, Idaho, and north of the Osburn fault. The mine's location is shown on Figure 2 of the preceding section. The Star-Morning ore shoot lies in rocks of the Precambrian Belt Series in township 48N, range 5E, section 21 and 22. The mine is reported active and continuing normal operations with very good results during the first quarter of 1979 (Wallace Miner, Apr. 19, 1979). There were 360 employees at the Star mine and 2 at the Morning in 1978 (Idaho Dept. of Labor and Industrial Service, 1978). The Star and Morning mines are operated as a single unit, and are accessible by interconnecting tunnels at depth.

GEOLOGIC SETTING

The geologic setting of the Star-Morning mine has been described by Hobbs and others (1965), Fryklund (1964), and Sorenson (1947). It is assumed that the geology of the Star-Morning Unit is similar to, and closely associated with, the Star and Morning mines; however, literature does not give sufficient detail to validate this assumption. The Star mine is located entirely in Precambrian Revett Quartzite, while the top of the Morning mine is in the St. Regis Formation (argillite and quartzite), but because the contact between the Revett Quartzite and St. Regis Formation dips steeply eastward, most of the mine levels are in both formations. Beds in the Star and Morning mines generally strike slightly west of north, dip
steeply, and are cut by the veins at high angles. A monzonite dike is ex­
posed in the upper level of the Star-Morning mine. Fine grained dikes with
phenocrysts transect the mine. The largest dikes extend 5500 ft. from the
top of the mine with a maximum width of 70 ft. The dikes are associated
with haloes of alteration that may extend 50 ft. or more into the country
rock on each side. The alteration includes chlorite and chloritized
quartzite.

STRUCTURAL SETTING

The Star fault cuts the Star mine veins and is subparallel to them.
The fault also offsets the monzonite dike. There is about 270 ft. of dis­
placement on the Star-Morning ore shoot with the north side moving east on
the Star 2300 level. More recent faults have developed thick gouge seams
in the vein and along the hanging wall and footwall.

MINERALIZATION

The Star-Morning ore shoot is the largest in the Coeur d'Alene dis­
trict. The vein in the Morning mine was stoped for about 6725 ft., with the
last 1000 ft. below sea level, where the vein still contains ore. The ore
shoot has not been mined to the same depth in the Star mine. Within the
ore shoot, the vein is divided by large inclusions of country rock. The
average vein width is about 10 ft.

The main ore body of the Star mine is in a nearly vertical shear zone
striking N79°W and has a maximum length of 4000 ft. and an average stoping
width of 10 ft. The competence of the ore vein is less than the wall rock.
Physical properties of the quartzites collected from the lower levels of
the mine show an average compressive strength of 26,000 psi (Chan and
others, 1972), an average modulus of elasticity of 8.5×10^6 psi, and an average tensile strength of 1500 psi (Waddell, 1966). Additional rock properties and in-situ measurements have been completed by Patricio and Beus (1976).

MINE CHARACTERISTICS

The Star-Morning Unit is mined by the horizontal cut and fill method. There are five shafts and extensive tunnelling at depths from 800 to 1400 feet below the surface. Actual ore tonnage is 282,000 short tons with a daily ore capacity of 1100 tpd and 852,000 tons proved reserves (E/MJ, 1977). The mine is a leading producer of silver, zinc, and lead, with a cumulative ore tonnage of 20 million tons (1894-1962) and 49 million ounces of silver (Idaho Bur. of Min. Geol., 1963).

The workings extend to a depth of 6720 ft. with a length of approximately 3900 ft. and width of 49 ft. (CRIB, 1976). The Star and Morning mines tunneled through the mountain and joined workings in the late 1970's; currently an exploratory tunnel is being driven to the Lucky Friday mine across the Hunter fault with five miles of tunnelling in barren rock. Recent exploration may have extended workings into plutonic rock.
REFERENCES - STAR-MORNING MINE

LOCATION

The newest silver mine in Idaho, the Coeur mine began operation June 1976 and currently ranks fifth in terms of production among underground silver mines in the United States (Wallace Miner, Apr. 26, 1979). It is located along the Polaris fault, south of the Osburn fault, and 3.5 miles west of the city of Wallace. Its location is shown on Figure 2 of the preceding section. The mine came into production after 11 years of exploration and development costing $20 million (Carter, 1976). The deposits lie in quartzites and slates, in the footwall of the Polaris fault. The mine has extensive workings to a depth of 4428 ft. and the 3400 foot level connects the Coeur to the Galena mine, 7500 ft. to the southeast.

GEOLOGIC SETTING

The geologic setting of the Coeur mine was described by Carter and Li (1972), Hobbs and others (1965), and Fryklund (1964). The Coeur ore-bearing veins lie in quartzites, argillite, and slate in the Precambrian St. Regis-Revett transition zone. The transition zone extends from near the surface to the 3700 foot level. The veins strike from the northeast to northwest, dip steeply to the south, average over 5 ft. in width, and have an average strike length of 750 ft.

The ore-bearing veins also occur along the footwall of the Polaris fault which is well exposed in several of the workings. A zone of gouge a few inches wide and several yards of sheared rock are commonly associated
with the fault. On the adit level, the zone of gouge and sheared rock along the fault is more than 10 ft. wide. Very little specific geologic information on the new mine is available in the literature.

MINERALIZATION

Most of the mineralization is contained in two veins. One vein has a strike length of 600 ft. and extends vertically for about 1000 ft. The second vein has a strike length of 800 ft. and a vertical extent of more than 1600 ft. These two veins having an average thickness of 5 ft. are the initial mining targets.

MINE CHARACTERISTICS

Conventional horizontal cut and fill methods are used to mine the ore. Drifts are being driven on the veins to further develop ore blocks by raising. From the horizontal stope cuts, ore is slushed to chutes that feed the main haulage rail system. Stopes are filled with mill tailings.

The mine workings include two shafts. The main shaft extends to a depth of 4430 ft. with the last 1134 ft. below sea level. Other mine development work includes a 2300 ft. ventilation raise and development raises. A drift has been driven from the Coeur 3400 foot level to the Galena mine 3700 foot level to serve as a secondary exit.

Production in 1977 was 118,600 short tons with daily capacity of 450 tpd (Eng. Min. J. Directory, 1977). The net production in 1978 was 152,000 tons extracted (Wallace Miner, July 5, 1979).

Recent development work has added more than 150,000 short tons of new ore to reserves (E/MJ, March 1979). Plans reported in March 1979 call for
extending working levels of the Coeur mine (E/MJ, March 1979).

Mining equipment includes a rail haulage transport system, and a double-drum hoist in the main hoisting area.
REFERENCES - COEUR MINE

Wallace Miner, July 5, 1979, District mine net profits at all-time high of $37,321,483; p. 1.
THE BLACK HAWK (SECOND POND) - BLUE HILL MINE
(Kerr American, Inc.)

LOCATION

The ore deposits are located at 44°22'N and 68°41' W in Hancock County, Maine, south of Blue Hill village which lies 14 miles west of Ellsworth and 30 air miles from Bangor (Figures 1 and 2).

REGIONAL GEOLOGY

The Hancock County area lies in the Southern Volcanic Belt (Doyle 1966). This belt is composed mostly of granite with smaller amounts of diorite and diabase. The granite of Devonian age (?) intrudes highly altered schists and amphibolites—the Ellsworth formation of Precambrian to Ordovician age (?), the oldest formation in the area and the next in abundance. The formation strikes approximately north-south (Chin-Yuan Li, 1942) (Young, 1968).

In the immediate mine area, the country rock, the Ellsworth formation, strikes approximately north-south and is almost surrounded by the intrusive granite on the east and the south. An intrusive diorite-diabase body bounds it on the west. (Figure 3)

Metamorphism and Structure

Metamorphism of the rocks is of medium to high grade. Folding and faulting is minor. This deformation is considered to be of Devonian age (MAS, 1979). The major structural features of the area strike NE-SW, parallel to the regional structural pattern of Maine. When viewed as a whole, the granite intrusions also occupy a NE-SW belt. In the mine region, the strike of the schistosity is predominantly WNW-ESE and the dip is 50°SW. However, local variation of these features can be large (Ching-Yuan Li, 1942).
FIGURE 1. Location map of Blue Hill Mine, Hancock County, Maine. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Basic geologic environments, State of Maine (Young, 1968).
FIGURE 3. Simplified geologic map of the Blue Hill area (after Smith, 1907).
Mine Geology

The Second Pond deposit occurs as a series of shallow dipping (26°) parallel ore zones wrapped around the nose of a gently folded southerly plunging anticline (CRIB, 1978). The ore bands are in highly altered schists and amphibolites of the Ellsworth formation and near granite intrusions and are thought to be genetically related to these intrusions (Young, 1968) (Ching-Yuan Li, 1942). The ore minerals are chalcopyrite, sphalerite, galena, and pyrrhotite.

Hydrology

In Maine, some tracts of land considered suitable for mineral rights staking are controlled by the state. These are usually called "public lots." Natural water bodies greater than ten acres are in this category (Young, 1968). Second Pond is one of the latter. This suggests that the mineralization is beneath a water body and is, evidently, the reason for the inclined shaft on this property. Water removal is therefore a problem in the mine because of the high water table. At present the Second Pond Mine is completely water filled. In fact, when the mine was put on standby, the water followed the departing miners (private communication).

FACILITIES

The mining property is owned and operated jointly by Kerr American Inc. (subsidiary of Kerr Addison) and Black Hawk Mining Ltd. (subsidiary of Denison Mines Ltd.), (3900 S. Tower, Royal Bank Plaza, Toronto, Ontario, Canada) which are Canadian companies. The ore reserves as of December 31, 1976, were estimated to be 140,200 tons. In 1973, ore reserves were estimated to be 670,000 tons (CRIB, 1977). In 1970, the
shaft depth was 698 feet with levels at 280, 380, 400, 580, and 680 feet.

A trackless mining method was used.

Engineering and Mining Journal (1965) stated that the company was sinking an inclined shaft to 1300 feet. Young (1968) reported that a three compartment 1300 foot shaft was sunk and several thousand feet of development completed on the 380, 480, and 580 levels. CRIB (1977) stated that in 1968, the shaft depth was 400 meters with levels of 116, 146, and 177 meters.

Operations were halted in 1977 and the mine placed on standby because of low copper and zinc prices. In 1977, the total amount of mined ore was 144,964 tons (483 tons/day) (Canadian Mines Handbook, 1978-79) (The Mineral Industry of Maine, Minerals Yearbook 1971). The Kerr Addison 1977 Annual Report indicates that mine openings were closed with concrete bulkheads at that time. Their 1978 report states that mining and milling operations were being conducted on a care and maintenance basis only.

The mine is now inactive and filled with water.
BIBLIOGRAPHY

CRIB 1977.

Engineering and Mining Journal 1965, v. 166, (1).

MAS 1978.

MINNAMAX PROJECT
(OPERATED BY AMERICAN METAL CLIMAX INCORPORATED)

LOCATION

The Minnamax project site is located approximately 5 miles SSE of Babbitt, and about 60 miles north of Duluth, Minnesota (Figure 1) at 47°37'N and 91°52'W. The elevation of the area is about 1600 feet.

GEOLOGIC SETTING

Regional

Data for this section were extracted from Bonnichson (1972), Minnesota Department of Natural Resources (1977), and Phinney (1972). The Duluth Complex of northeastern Minnesota includes about 2500 square miles of Upper Precambrian anorthositic, troctolitic, gabbroic, and granitic intrusive rocks. The complex has an arcuate pattern extending from Duluth northeastward into the northeasternmost tip of Minnesota, a distance of 150 miles. The complex was intruded along an unconformity between the overlying volcanics (North Shore Volcanic Group - mainly rhyolite) and underlying older rocks of Early and Middle Precambrian ages (Virginia Formation sediments, Biwabik Iron Formation, and Giant Range batholith). Radiometric dating indicates an age of approximately 1120 ± 15 million years for the Duluth Complex intrusives.

The region in which the Minnamax project is located is referred to as Babbitt-Hoyt Lakes, and is approximately midway along the northwestern edge of the Duluth Complex, as shown in Figure 2. The geology of the Babbitt-Hoyt Lakes region as well as the location of the Minnamax project is shown in Figure 3.
FIGURE 1. Location map of Minnamax Project, St. Louis County, Minnesota (E/MJ, 1976).
FIGURE 2. Geologic map of southern part of Duluth Complex (Bonnichsen, 1972).

Two major rock groups in the complex are recognized, a troctolitic series and an anorthosite series. The troctolitic series consists of troctolite (primarily calcic plagioclase and olivine), and augite troctolite, while the anorthositic series consists primarily of gabbroic anorthosite and troctolitic anorthosite. The troctolitic series occurs adjacent to the western margin of the complex. The anorthositic series generally is located east and southeast of the troctolitic series. Numerous inclusions of fine-grained, generally granular hornfelses, ranging in size from a few inches to thousands of feet, are present in the southern half of the complex, and are especially abundant within the troctolitic series adjacent to the western margin. Hornfelses derived from mafic volcanic rocks probably are most abundant.

MINE GEOLOGY

The data for this section were extracted from Phinney (1972), and CRIB.

Exposures are poor in the area of the Minnamax project, and the relationships among the various units are not well understood. The host basal troctolitic gabbro of the Duluth Complex varies in grain size, mineral proportions, structural attitude, and texture. The exploration shaft and accessory tunnels are apparently in the Duluth Complex intrusive. The data available suggests that the main rock types in the mine workings are medium-grained troctolite grading locally into olivine gabbro; the texture in places may be pegmatitic. The copper/nickel mineralization is in the form of a sulfide segregation in the troctolitic intrusive.

The shape of the deposit is tabular, with dimensions of approximately 6000 meters in length, 115 meters in width, and 100 meters in thickness. The ore body strikes N45°E and has a dip of 17°SE. The depth to the top of the ore body is about 430 meters.
MINE FACILITIES

The data for this section were extracted from CRIB, EMJ (1976), and USGS (1979).

The Minnamax ore body was discovered by Bear Creek Mining Company in 1957, and was later acquired by Amax Exploration, Inc. Amax has carried on a substantial amount of exploration since acquiring the property. A 14 foot diameter shaft has been sunk to a depth of 1710 feet, as illustrated in Figure 4. Approximately 6000 meters of drifting has been done from the shaft.

A decision to develop the prospect will not be made before 1980, and startup will require an additional 3 to 4 years.

Amax is permitting the U.S. Geological Survey and the University of Minnesota to use part of its Minnamax underground workings to conduct a comprehensive series of stress measurements.

ELY PROSPECT

The Ely prospect of International Nickel Company is located approximately 15 miles east of Ely, Minnesota, less than 20 miles north of the Minnamax project. The geology of the Ely prospect is likely similar to Minnamax, since both are part of the troctolitic gabbro of the Duluth Complex. The underground workings at the Ely prospect consist of a shaft approximately 1,000 ft. deep, a 400 ft. long, 8 ft. wide drift, and a 40 ft. wide, 180 ft. deep stope. A limited description of the site, along with a more complete discussion of hydraulic fracturing field tests, were given by Von Schonfeldt (1970). In this report the Ely prospect is categorized in group 2 because sufficient data are presently not available.
REFERENCES

CRIB

MAS

BLACK PINE MINE
(CONSOLIDATED COPPER CO.)

LOCATION AND ACCESSIBILITY

Black Pine Mine is an active small silver mine in the Philipsburg District, Granite County, Montana. Since 1882, it has been mined intermittently with an estimated cumulative production (1885-1964) of 2.6 million ounces of silver and 3000 ounces of gold (Krohn and Weist, 1977). Formerly called the Combination mine, it is located west of Henderson mountain at 46°27'N, 113°22'W at an elevation of 6500 ft. It is accessible by gravel road, 12 mi. northwest of the town of Philipsburg (Figure 1).

The Black Pine Mine is included among the "class 1" mines in this study, as representing an active mining district, and also for comparison with mines of the Coeur d'Alene District, Idaho. The Coeur d'Alene mines are located in quartzitic rock types similar to those of the Philipsburg district, but the structural settings of the two districts are distinctly different. The new development drifts at Black Pine may extend into the nearby intrusive rocks.

GEOLOGIC SETTING

The geology of the Black Pine mine area was briefly outlined by White (1976) and described in detail by Wallace and others (1978), Prinz (1967) and Emmons and Calkins (1913). It is an area of folded and faulted Precambrian sedimentary rocks that have been intruded by Cretaceous batholiths (Figure 2). The sedimentary rocks consist mainly of limestone, dolomite, shale, quartzite, and phosphatic quartzite which,
FIGURE 1. Location map of Black Pine mine, Granite County, Montana (Prinz, 1967).
Quaternary alluvial deposits and glacial debris

Tertiary alluvial, lacustrine and volcanic deposits

Cretaceous granitic stocks and dikes

Mississippian Madison Limestone

Precambrian Mt. Shields Formation

Unit 1-argillite, fine sandstone interbedded with quartzite

Unit 2-quartzite with coarse pebbly zone between and top

Unit 3-interbedded argillite and fine sandstone

Precambrian Snowslip Formation - argillite and siltstone interbedded with sandstone

Precambrian Helena Formation - argillaceous limestone and limy siltstone

Thrust fault, triangles on upper plate

Normal fault, balls on down-thrown side

FIGURE 2. Geologic map of the area around the Black Pine Mine, Granite County, Montana. (Wallace, 1978)
near the contacts with batholithic rocks, have been metamorphosed to marble, tactite, and hornfels. The stratigraphic sequence in the Philipsburg district is outlined in Table 1.

The oldest unit in the district is the Spokane Formation, equivalent to the Missoula Group of the Precambrian Belt Series (Ross, 1963). The Spokane Formation consists of a series of thin-bedded red to brown siltstone, massive gray to reddish brown quartzite and thin-bedded sandstone and shale, with an aggregate thickness of 5000 ft. (Ross, 1963). The Spokane Formation is the only rock unit at the mine, and the ore, so far as is known, is confined to the quartzite members. The quartzite is slightly metamorphosed. Some secondary quartz has been added by circulating waters, and white mica or sericite has been developed from the clay between the grains of sand. Otherwise, the quartzite has not been greatly metamorphosed. Other units of the Belt Series that crop out in the area, but are not exposed in the mine, are Newland limestone and shale, Ravalli quartzite, and shale and Neihart quartzite and argillite. The rocks strike approximately N30°W and dip from 10-20°SW.

Intrusive igneous rock has not been reported in the mine, but more recent exploratory drifts may have intersected intrusives. The nearest known intrusive is a granodiorite porphyry dike about 1 mile north of the mine. The Philipsburg batholith, a large granodiorite pluton, lies several miles south of the mine. The batholith is elliptical in plan and underlies an area of 45 square miles. Mineralization of the mine may be associated with the intrusion of the batholith, which is described in more detail in the section covering the Granite-Bimetallic mine.

STRUCTURE

The structural setting of the Black Pine mine is simple compared to the highly contorted and faulted conditions in the Coeur d'Alene mines.
<table>
<thead>
<tr>
<th>Rock Unit</th>
<th>Thickness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRETACEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philipsburg Batholith</td>
<td></td>
<td>Coarse grained granodiorite, even textured to porphyritic, associated stocks and dikes. Radiometric age 78-68 million years before present (Tilling et al, 1968).</td>
</tr>
<tr>
<td>PRECAMBRIAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spokane Formation</td>
<td>1525 m. (5,000 ft.)</td>
<td>Massive gray to reddish-brown quartzites, thin-bedded red to brown siltstone and thin-bedded sandstone and shale; mud cracks and ripple marks present.</td>
</tr>
<tr>
<td></td>
<td>1200 m. (4,000 ft.)</td>
<td>Calcareous shales and impure limestones characterized by buff tints on weathered surfaces.</td>
</tr>
<tr>
<td>Newland Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravalli Formation</td>
<td>600 m. (2,000 ft.)</td>
<td>Gray quartzitic sandstone with much dark shale in upper part.</td>
</tr>
<tr>
<td>Neihart Quartzite</td>
<td>300 m. (1,000 ft.)</td>
<td>Pure thick-bedded light colored quartzite.</td>
</tr>
</tbody>
</table>

TABLE 1. Generalized geologic column for the Black Pine Mine area, Philipsburg mining district, Granite County, Montana (adapted from Ross, 1963; and Emmons and Calkins, 1913).
At Black Pine, the rock units are gently dipping and the ore-bearing veins lie along the bedding planes. Several normal faults traverse the area, while no thrust or strike-slip faults occur. The normal faults strike northwesterly, paralleling the strike of the quartzite with displacements up to 33 ft. However, some faults cut the quartzite strata at right angles to its strike.

The principal structural features originated during the Laramide orogeny after broad folding of the Precambrian sediments. The Spokane quartzites were thrust eastward over younger Paleozoic rocks and folding continued. Intrusion of the Philipsburg batholith south of the mine area followed the folding and faulting. The period of ore deposition then occurred along fissure veins. Normal faulting along bedding postdates mineralization and was the last event of the orogeny.

MINERALIZATION

The Black Pine ores occur in bedding fissures of the Spokane Formation. The silver-bearing replacement veins are silica rich, and as a group range from a few inches to twenty feet in thickness. The average thickness is probably 3-5 ft. The veins are banded, and breccia zones parallel the layering and the walls in many places in the veins. The walls of the veins are generally sharp and commonly marked by fault gouge.

The Combination vein, the principal vein, is in quartzite and nearly everywhere conforms to the bedding of the country rock (Figure 3). Generally, it is a simple fissure filling deposited in an open space along a single bedding plane; locally it is divided by large slabs of the country rock. The vein dips 10°-30°SW and extends more than 3500 ft. along the strike and an equal distance down dip. The hanging wall and footwall of the Combination vein are barren and unaltered.
Quartzite

Cross section of the Combination lode, a bedding-plane fissure vein in quartzite. It is cut by normal faults across the bedding.

Cross section of Combination lode through Harper shaft to Harrison shaft.

FIGURE 3. Geologic cross section of the Combination Vein, Black Pine Mine in relation to the Spokane Formation quartzite. Displacements are shown along several faults, and early mine workings (from Emmons and Caikins, 1913).
The structure of the ore-bearing veins is comparatively simple (Figure 3). The veins follow the bedding planes of the quartzite, except in areas of post-ore faulting. On level 5, near the Harper Shaft, the main vein strikes N30°W and dips 15°SW, typical of the strike and dip of the vein at most places in the mine.

In addition to the Combination vein, three other mineralized veins are recognized: the Upper, the Tim Smith, and the Onyx. Only the Combination vein was mined extensively in the past and is now being worked. The Tim Smith vein is located 150 ft. above the Combination vein, and contains ore-grade material. Not much is known about the Onyx vein, located 400 ft. below the Combination vein, as it is largely unexplored. Nothing was reported about the Upper vein in the literature.

MINE CHARACTERISTICS

The mine was originally developed through eight vertical shafts and three tunnels (Emmons and Calkins, 1913). Four shafts and mine workings along the Combination vein are illustrated in Figure 3. The ore body is a large blanket deposit. Levels were excavated at about 100 ft. intervals down the dip of the vein and have a difference in elevation of about 20 ft. A long incline was driven on the main vein from a station near the bottom of the Harper Shaft to the Harrison Shaft. In 1913, the workings comprised in all about 12,000 ft. of intersecting drifts, inclines, and crosscuts.

In 1970, Inspiration Consolidated Copper Co. acquired the Black Pine mine (White, 1976). The exploration program included drifting in the ore and diamond drilling from the surface. The present development plan prior to stoping is reprinted from White (1976), in Figure 4. Four shafts that were sunk in the early operations are presently being used. The Harper is used today as an exhaust shaft in the ventilation system. A second shaft,
the Lewis, will be added to the ventilation system when the main haulage reaches a length of 2200 ft.

The ore body is extracted in 100 x 100 ft. ore blocks. Three panels are driven in each direction across the ore blocks with 6 x 6 ft. pillars left between panels to support the back. The stope headings are 6 ft. high by 15 ft. wide.

Rock bolting provides roof support, with landing mat strips between bolts. The ground is competent, and a number of stopes from early mining operations remain open.

The mine is essentially dry and does not require pumping for dewatering (White, 1976). However, Emmons and Calkins (1913), reported that mine workings below level 14 were flooded and above this level were accessible and in good condition after a long period of idleness (about 1897 to 1913).

Equipment includes Gardner Denver 83 jacklegs for drilling, Eimco 911 LHDS for mucking, Caterpillar 950 for loading ore, and Eimco 980T-10 for haulage. Air is circulated by two 40-hp Joy Axivane fans with a 80,000 cfm capacity. Several surface facilities are also present.
Development drifting at Black Pine mine

FIGURE 4. Recent development drifts at Black Pine mine. The main haulage drift is along Combination Vein (Figure 3) (from White, 1976).
REFERENCES

BUTTE MINING DISTRICT AND BUTTE UNDERGROUND MINES

(The Anaconda Company)

LOCATION AND ACCESSIBILITY

The Butte district is composed of underground and surface mining operations in Silver Bow County, Montana at 46°1'N, 112°33'W, (Figure 1). The mining district is located east of the city of Butte (population ~23,000), surrounded by the Tobacco Root Mountains at an elevation of 5,700 ft. The area is accessible by air, rail and highway year round.

GEOLOGY

The geology of the Butte district is described in detail by several authors; notably by Sales (1914) and more recently by Meyer and others (1968). In this review the general lithology, structure, and mineralization of the district are described, followed by brief descriptions of two accessible underground mines, the Leonard and Steward mines.

LITHOLOGY

The Butte district is underlain by the Boulder batholith which intruded into a central tectonic block bounded by faults and the Lewis and Clark lineament. The generalized geologic setting is illustrated in Figure 2 and a generalized lithologic column, vein-type and alteration sequence in Figure 3. The Boulder batholith is a composite of epizonal plutons that range in composition from gabbro to granite. The batholith and related intrusives were emplaced during a ten million year interval from 78-68 million years. Knopf (1957) and Klepper (1962) show that emplacement occurred in phases, beginning with intrusion of mafic bodies near the north and south portions of the present-day batholith, followed by massive granodiorite emplacements, and finally the Butte quartz monzonite. The Butte District is located in the
FIGURE 1. Location map of Butte underground mines, Silver Bow County, Montana. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Generalized geologic map of the Butte mining district and Boulder batholith relative to major tectonic ele­ments in Southwestern Montana (from Meyer and others, 1968).
Butte quartz monzonite which forms the main mass of the batholith. Large
dikes and smaller irregular bodies of younger quartz monzonite cut older
rocks. Late magmatic alaskite and aplite dikes cut all rock types and vary
in size, shape, and texture.

The Butte mines worked fissure veins in the Butte quartz monzonite. The
Butte quartz monzonite is medium to rather coarsely textured, homogeneous in
composition, and contains about 65 percent SiO$_2$, and equal parts of quartz
and orthoclase. Plagioclase is abundant and the mafic minerals present are
hornblende and biotite. Isolated dikes and irregular masses of aplite and
pegmatite, composed predominantly of quartz and K-feldspar, are scattered
throughout the quartz monzonite. The aplites and pegmatites are usually
closely associated and, in some places, grade into the quartz monzonite.
Most of the aplites are tabular and fill cracks in the quartz monzonite.

Quartz porphyry dikes and plugs are associated with the quartz monzonite
and were present in the district at the time of mineralization. They are
irregular porphyritic dikes with prominent quartz phenocrysts, and cut the
quartz monzonite. The dikes range from 10 to 50 ft. in width, are roughly
parallel in trend, and have nearly vertical dips. They have been observed
as deep as the 4200 foot level, still in dike-like form. The contacts of the
quartz porphyry are sinuous with only moderate fragmentation of the quartz
monzonite.

Another set of intrusives locally called the "rhyolite dikes" followed
the ore emplacement. They are rhyolitic or quartz latitic in composition
and contain quartz phenocrysts and euhedral phenocrysts of albite and K-feld-
spar in a predominantly aphanitic groundmass. The rhyolite dikes have offset
and brecciated ore veins and locally metamorphosed the vein minerals. These
dikes were intruded in two stages. The earlier stage strikes roughly east-
west and dips nearly vertically. It is essentially a single dike which
crosses the entire district. It follows pre-existing planes of weakness, such as the Anaconda fissures, and the Stewart and Middle faults. The second set of dikes, trending north-south, cuts the east-west dike, with "chilled" margins at the contact with that dike. Most of the north-south dikes extend to the surface and are a few hundred feet wide near the surface. They are less altered than the east-west dike. Radiometric dates using $^{40}\text{K}/^{40}\text{Ar}$ indicate that the east-west dike is about 48 million years old and the north-south dikes are about 40 million years old (Woakes, 1949).

STRUCTURE

The Butte district is located in a central tectonic block of an active mountain-building region. To the north, a thick sequence of Precambrian Belt Series sediments is faulted and folded along axes parallel to the regional northwesterly Rocky Mountain trend and displaced northeastward as the Lewis thrust plate. The district is bounded on the south by a stable block of gneiss, schist, and granite which has resisted deformation since the Precambrian. The central block is also bounded on the north by the Lewis and Clark lineament and on the south by an east-west lineament. This central mass has been an area of recurrent subsidence and deformation, and has migrated eastward relative to the adjacent blocks. It is postulated by Meyer and others (1968) that the eastern movement was retarded by the stable block to the south, inducing clockwise rotation. This rotational movement explains the northwesterly structural trend in the northern block, the northeasterly trend in the central block, and the northwesterly trend again in the southern block. It appears that the structural trend of the district was established before the main stage of mineralization, and the reverse "S" curvature of structural trends influenced orientation of the Boulder batholith itself.

Structural development continued during and after mineralization (Profett, 1973). Post-ore structures include intrusions, strike faulting along earlier veins, and movement along several systems of faults with accompanying
brecciation. These events are not described in more detail here as they have little effect on the underground mine workings.

In addition to the lineaments and thrust faulting in the district, there are several other fault systems. The Blue fault strikes north-westerly and offsets the Anaconda veins in a left lateral motion. The Steward fault system is the earliest of a series of northeast-striking normal faults which offset the Anaconda fissures. The Rarus fault consists of a zone of 50 ft. or more of bifurcating individual fault gouges. The Middle fault system strikes slightly north of east and steeply dips to the south; the movement is apparently normal. The chief member of the Continental fault system is a north striking normal fault, located at the eastern edge of the district. Topographic evidence indicates displacement of 1500 ft. and there are strong indications that movement since mineralization may be several times that much.

The extreme complexity of the fault patterns in the Butte district indicates that the structural epochs were not sharply defined or separated by periods of stability. There was much refaulting throughout and following mineralization.

MINERALIZATION

The main stage of mineralization occurred between phases of intrusion, uplifting and faulting. In general, mineralization in the large veins occurred as roughly concentric zones of zinc and manganese around a central zone of copper. Slightly offset from these zones and earlier structurally, is a zone of quartz-molybdenite veinlets occurring at the 2800 foot level and widening downward.

Butte is one of the world's outstanding examples of metal and mineral zoning. Three zones were outlined by Sales (1914). These zones are:
(1) A central zone occupying an area of altered granite in which the ores are characteristically free of sphalerite and manganese minerals,

(2) An intermediate zone in which the ore is predominantly copper, but is seldom free from sphalerite, and

(3) A peripheral zone in which copper has not been found in commercial quantities.

The approximate positions of these zones are illustrated in Figure 4. The line between the Central and Intermediate zones is called the "Copper Front" and delineates the area within which ores of copper may be found in major structures. The "Copper Front" includes some islands of copper ore lying outside of the zone of continuous copper mineralization. Most of these islands are connected along veins to the main copper zone at deeper levels. The association of wall-rock alteration and ore at Butte was the subject of a classic paper by Sales and Meyer (1948).

Nearly all the production from Butte has come from large veins and from zones of closely spaced fractures called "horsetail ore bodies." A plan view of three major veins is illustrated in Figure 5.

Sales (1914) reported that the east-west striking veins were the first of the large veins in the district to open and receive mineralization. He named these the Anaconda system; a cross section view of one of the Anaconda veins is shown in Figure 6. Five principal veins of the Anaconda system have been mined extensively along with 12 to 15 smaller veins and numerous splits and bifurcations. The average width of the Anaconda veins is between 20 and 30 ft., and locally the veins may extend to 100 ft. in width. These maximum widths generally occur in the zone of changing strike.

In the eastern part of the district the "horsetail zones" occur. These ore bodies are hundreds of yards long and up to 200 ft. in width, and have been mined over vertical distances as great as 2000 ft. The zones strike about N70°E, perpendicular to the small individual mineralized fractures.
FIGURE 4. Composite Plan at 2800 and 3800 Levels showing zones of mineralization within which there is no sphalerite mineralization, the zone beyond which there is no copper ore, and the outer edge of the zone of quartz-molybdenite veinlets, all in relation to the principal shafts of the district (Meyer and others, 1968).
FIGURE 5. Plan view of the State, Syndicate, and Anaconda vein systems near the center of the district at the 1800 level, high ore. The Bell-Speculator eastward extensions of the Syndicate vein system die out below this level, and the two zones which contain no Anaconda-age veins merge and expand with increasing depth (Neyer and others, 1968).
FIGURE 6. Cross section view of Anaconda Vein, looking west, showing dips of Anaconda fissures (Meyer and others, 1964).
Each small fracture or fracture zone contains a miniature ore shoot bordered on either side by gangue.

MINE DESCRIPTIONS

The Anaconda Company phased out all underground mining operations at Butte in November 1975 (Thomas, 1977). It was once the largest copper producing district in the United States, including both surface and underground workings, and has produced 16.2 billion pounds of copper, 4.8 billion pounds of zinc, and great quantities of manganese, lead, silver, gold, and other metals (Meyer and others, 1968). After almost a century of deep vein mining, more than 42 miles of vertical shafts have been sunk and thousands of miles of other underground passageways were excavated. Although the underground mines are not operating, a few deep workings are being maintained to facilitate reopening should mining become economically feasible (Thomas, 1977).

Leonard Mine

The Leonard mine was exploited for copper almost continuously from 1886 to 1967 and reopened in January, 1972. Three levels were active; the 3500, 3600, and 3800; with plans to reopen the 3400 and 3900 foot levels (Society Economic Geologists, 1973). The host rocks in the mine are Butte quartz monzonite, quartz porphyry, and aplite. The structural setting and mineralization of the area consist of N70°E trending, steeply-dipping horsetail ore bodies and east-west and northwest trending main stage veins. Post-mineral rhyolite dikes cut across the mine between the Leonard and East Colusa shafts. Left lateral movement is evident in the mine on some fault systems. Mine workings were active on veins west of the Middle fault, on horsetail ore bodies and selective veins between the Middle fault and No. 20 fault. Figures 7 and 8 illustrate the workings at the 3600 and 3800 foot levels, respectively.

EXPLANATION

- Main Stage Vein
- Fault
- Quartz Porphyry
- Rhyolite Dike
Steward Mine

The Steward mine is one of the oldest underground workings, with copper mining beginning in 1879. It had nine levels active in 1973 and was being mined at a rate of 800 to 900 tpd. The active levels were the 3400, 3800, 3900, 4000, 4100, 4200, 4400, 4500, and 4600 foot levels.

The host rocks in the Steward mine are the same as at the Leonard mine. The Steward mine illustrates the entire range of pre-Main Stage vein and alteration events. The post-mineral Rarus fault cuts northeasterly through the mine and dips northwesterly. The fault has two main strands, each offsetting Main Stage veins right-laterally. The Middle fault and smaller parallel faults strike northeasterly and dip steeply to the south in the mine. These structures cut and offset Main Stage veins 20 to 40 ft. left laterally.

In 1973, three systems of Main Stage ore-bearing veins were reported being mined at the deeper levels of Stewart. Five veins were being exploited, and development headings on the 3900 and 4000 foot levels were being extended to the southeast. Further, trackless mining equipment was assisting development on the 4500 foot level. Figures 9 and 10 indicate mining activities on the 4200 and 4400 levels, respectively.
REFERENCES

Sales, R.H., 1914, Ore deposits at Butte, Montana: AIME Trans. v. 46, p. 3-109.

GRANITE - BIMETALLIC MINE
(PETER FRANK and WILLIAM ANTONIOLI, owners)

LOCATION

The Granite-Bimetallic Mine is located 2.5 miles southeast of the town of Philipsburg, in Granite County, Montana, at 46°19'N, 113°15'W, (Figure 1). The mine is on the western slope of the Granite Mountain Range at an elevation of 6780 ft. One of the principal producers of silver in the Philipsburg district, the mine was identified as being active in 1976, with ore reserves estimated at one million tons (U.S. Geol. Survey, 1976), and was inactive in 1978 (Lawson, 1979).

GEOLOGY

The geology of the district is described by Prinz (1967), Ridge (1972), and Emmons and Calkins (1913). The Granite-Bimetallic mine is in an area of folded and faulted Precambrian and Paleozoic sedimentary rocks that were intruded by the Philipsburg batholith, stocks and dikes of Cretaceous age (Tilling and others, 1968), (Figure 2). The sedimentary rocks consist primarily of quartzite, shale and limestone, which have been metamorphosed near their contact with the batholith. The stratigraphic sequence is listed in Table 1. The oldest rocks, the Missoula Group quartzite of the Belt Series, are exposed in the core of a north-trending anticline. Above a slight unconformity is the middle Cambrian Flathead quartzite, which is overlain by the mid-Cambrian Silver Hill formation. The upper Cambrian consists of the carbonate rocks of the Hasmark and Red Lion formations. Several miogeosynclinal sedimentary units lie unconformably above the Red Lion limestone; however, they do not crop out in the mine area.
FIGURE 1. Location map - Granite-Bimetallic Mine, in Granite County, Montana. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Generalized geology of the Philipsburg batholith and surrounding area showing location of the Philipsburg district (solid outline). The Granite-Bimetallic mine is located in the southeast area of the district (from Prinz, 1967).
Table 1.—Stratigraphic succession in the Philipsburg district

<table>
<thead>
<tr>
<th>Age</th>
<th>Formation</th>
<th>Thickness (ft)</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permian</td>
<td>Undifferentiated</td>
<td>180</td>
<td>Yellowish-brown to gray sandstone and quartzite, red to brown shale, and phaneritic rock</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>Quadrant Quartzite</td>
<td>300-439</td>
<td>Massive white to brown quartzite</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Madison Limestone</td>
<td>1,000-4,100</td>
<td>Fine-grained dark-gray flintstone with some chert.</td>
</tr>
<tr>
<td>Devonian</td>
<td>Jefferson Limestone</td>
<td>1,000-1,200</td>
<td>Fine-grained gray, blue-gray, or brown calcite and dolomitic limestone; meta-morphosed to medium-grained white to gray marble near batholith.</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Maywood Formation</td>
<td>200-400</td>
<td>Fine-grained greenish or browish-gray and purple dolomitic limestone, phyllite, and sandy limestone. Gray shale at base. Some silicates and hornfels formed during metamorphism.</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Uneformity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper</td>
<td>Red Lion Formation</td>
<td>200-300</td>
<td>Thin-bedded light- to dark-gray limestone with thin shaly and siliceous layers. Mostly meta-morphosed to marble, hornfels, and tactite. Uppermost 3-4 ft is nearly pure marble (Headlight bed).</td>
</tr>
<tr>
<td>Carboniferous</td>
<td>Hasmark Formation</td>
<td>300-1,300 (average 600)</td>
<td>Medium- to coarse-grained white to buff thin-bedded dolomitic marble with a few thin beds of shale.</td>
</tr>
<tr>
<td>Middle</td>
<td>Silver Hill Formation</td>
<td>200-200</td>
<td>Limestone with irregular beds of argillaceous shale. Lower third predominantly shale, meta-morphosed to marble, tactite, and hornfels. Locally called garnet rock.</td>
</tr>
<tr>
<td>Mississippian</td>
<td>Flathead Quartzite</td>
<td>180</td>
<td>White to gray granite with some inter-bedded dark-gray flinty quartzite.</td>
</tr>
<tr>
<td>Precambrian</td>
<td>Montana Group (undifferentiated)</td>
<td></td>
<td>Gray to grayish-gray flinty quartzite with some inter-bedded dark-gray flinty quartzite.</td>
</tr>
</tbody>
</table>

(from Prinz, 1967).
The Precambrian and Paleozoic sedimentary rocks were intruded by the Philipsburg batholith, which is predominantly medium-grained granodiorite. The Philipsburg is one of the larger satellite plutons of the Boulder batholith (see the description of the Butte underground mines), and is associated with numerous stocks and dikes of similar composition. Although the bulk of the Philipsburg batholith is granodiorite there are older, more mafic masses along the margins. The batholith is elliptical in plan and extends over an area of 45 sq. mi. Most of the granodiorite is unweathered; however, it is intensely altered near the veins.

STRUCTURE

The structural setting of the region includes a broad north-northeast trending, north-plunging anticline truncated by the Philipsburg batholith. The anticline and the batholith are cut by a number of fault systems. In general, they fall into three groups: 1) pre-intrusive faults trending northwest and dipping steeply northeast, 2) post-intrusive faults striking easterly and dipping steeply south, and 3) post-intrusive faults striking northwest and dipping 45-60° southwest. The faults are normal and displacements are rarely greater than 5-30 ft. Dikes and sills of granodiorite cut the sedimentary rocks near the batholith.

MINERALIZATION

The steeply-dipping veins of the mine are located in the western portion of the Philipsburg batholith. The deposits of the Philipsburg district are divided by Prinz (1967) into four groups: (1) steeply dipping quartz veins, (2) quartz veins along bedding planes, (3) manganese-rich replacement deposits, and (4) contact metasomatic magnetite deposits. Quartz veins (1)
predominate in the Granite - Bimetallic mine. They have been mined primarily for silver, zinc and lead and cut both the batholith and the surrounding sedimentary rocks. The ore occurs as fissure-filling and as replacement deposits. In the mine, the veins strike west or northwest and dip steeply to vertical. Zoning is common. The principal ore body is a tabular mass and measures from 3-10 ft. in thickness and is about 4,600 ft. long (U.S. Geol. Survey, 1976). The deepest part of the mine is in the eastern portion where the ore extends downward more than 2600 ft. The Granite vein (Figure 3) is the largest and richest; it strikes about N78°E and dips generally about 75°S. Its average width varies from 4-8 ft., and in some places it widens to a maximum of 26 ft.

MINE CHARACTERISTICS and FACILITIES

The Granite Mountain and Bimetallic mines were worked separately until 1898; since then they have been worked together as both are located on the same ore body. During early operation the mine was worked from five drift tunnels, two deep shafts and a long adit which drains the Granite Mountain mine between the 14 and 15 levels and the Bimetallic mine at level 10. The Granite shaft is about 1550 ft. and the Bimetallic shaft is about 1800 ft. (Emmons and Calkins, 1913). The largest vein, the Granite vein, has been stoped for 4500 ft. along the strike and to depths of 2,600 ft. The aggregate length of workings reported in 1976 is 20 mi. (U.S. Geological Survey, 1976). The mine is drained by an 8,850 ft. tunnel from Douglas Creek Canyon, crossing the Bimetallic shaft at a depth of 1000 ft. and the Granite shaft at 1,450 ft. Below this level, the mine was pumped (Emmons and Calkins, 1913).
FIGURE 3. Plan and elevation of levels in Granite-Bismetalllic mine.

- Drainage tunnel to Douglas Creek. Adit drains Bismetalllic at 390 m. (1300 ft.) depth and Granite at a depth of 450 m. (1500 ft.) and runs a lateral distance of 3700 m. (12000 ft.). Below this level the mine is flooded (from Tonnaw and Callins, 1913).
REFERENCES

TEM PIUTE DISTRICT
(OPERATED BY UNION CARBIDE CORPORATION)

LOCATION

The Tem Piute mining district is located approximately 85 road miles west of Caliente and 100 miles east of Tonopah, Nevada, in the Timpahute Range at 37°38'N, 115°38'W. (Figure 1). The major tungsten deposits are located at the north end of Coyote Peak. Elevation in the mine area is approximately 6,400 feet with several hundred feet of local relief.

GEOLOGICAL SETTING

Regional

The data for this section were extracted from Tschanz (1970).

As shown in Figure 2, the geologic map of the Tem Piute district, the Timpahute Range is primarily composed of Paleozoic sediments dipping steeply to the east. Permian rocks are present on the east side of the district. Mississippian rocks at the north end of the district have been intruded by two Tertiary granite stocks, each less than one mile in diameter. The dip of the bedding steepens northward along the west side of the stocks until the rocks are overturned; this is assumed to be the result of pre-granite thrust faulting. The Devonian and older rocks in the main part of the district are thrust over the Chainman shale and younger rocks. In the southern foothills, the Devonian rocks make up the upper thrust plate, while north of Tempiute, they make up the lower plate. On the west side of the range, Middle Pennsylvanian rocks are in contact with Ordovician rocks, due either
FIGURE 1. Location map of Tempiute operations, Lincoln County, Nevada. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Geologic map of the Ton Plate district. (Tschanz, 1970).
FIGURE 3. Geologic map of Tempiute (Lincoln) mine property (Tschanz, 1970).
to thrusting or right lateral faulting.

MINE AREA

Data for this section were extracted from Tschanz (1970).

The tungsten deposits are found in or near thick bodies of tactite, at or near the contact between the Paleozoic rocks and the granite. As shown in Figure 3, there are three elongated bands of tactite parallel to the bedding of the Devonian and Mississippian limestones along the west side of the south granite stock. The south stock is conspicuously more altered and less resistant to weathering than the north stock. The granite and tactite are partially concordant with the limestone. The limestone is irregularly bleached and recrystallized as far as 700 feet from the granite contact; the tactite is irregularly developed as far away as 450 feet; and silicated limestone is found even farther from the contact. A contorted septum of Mississippian limestone 600 to 800 feet thick, which has been altered to tactite, separates the two stocks. The bedding in this septum is nearly vertical, and it strikes nearly east-west, perpendicular to the regional strike.

Two principal tactite zones are shown in Figure 3. The No. 1, or Moody, zone is located along the west contact of the southern stock. The Moody zone extends for about 6,200 feet along the contact and is 15 to 110 feet thick, averaging about 40 feet thick in the Lincoln mine. The zone consists of bands of various forms of tactites. The second principal tactite zone is less continuous, less productive and does not extend to depth. The tactite is relatively uniform in grade through a vertical range of 1,300 feet.
MINE FACILITIES

Data for this section were extracted from EMJ (1974, 1977), Cobbs (1976), and Tschanz (1970).

Tungsten mineralization was discovered in the district in 1916, but was not exploited until the mid-1950's. The mining lasted only a few years until 1957. Union Carbide became involved in the district in 1968, and made the decision to reopen the mine in 1974. A 1,000 ton per day tungsten mining operation was begun in June 1977. Approximately 2 million pounds of tungsten are produced annually.

The original Lincoln mine was developed by more than 20,000 feet of underground workings on six levels, the 100, 200, 300, 500, 700 and 900 levels, with adits on the 100, 300, and 700 levels and an inclined shaft from the surface to the 900 level. Mining was by shrinkage stopes. The workings required little support.

Data on the current mining operation are sparse. It is assumed that the Lincoln mine has been reopened and developed further. The new mine is a combination of tracked and trackless mining. The volume of the mine is at least 90 million cubic feet.

The distribution and amount of underground mine workings in the intrusive rocks are not known. However, the similarity between the Tern Piute district and the Pine Creek mine suggest that there probably are some workings in the intrusive.
REFERENCES

CRIB

Engineering and Mining Journal

--1974, Union Carbide developing Nevada Tungsten Property, v.175(11), p.13

LOCATION AND ACCESSIBILITY

The Mount Hope and Scrub Oaks mines are located in Morris County, New Jersey, in the Dover District, one of the oldest mining regions in the United States. The district, in the New Jersey highlands, is 18 miles long and 4-5 miles wide, and is within 30 miles of New York City. The Mount Hope mine is at Mount Hope, 3 miles north of Dover; the Scrub Oaks mine is 2 miles west of Dover. The approximate location is 40°54'N and 74°35'W (Figure 1).

The region has a good network of primary and secondary roads and all areas are readily accessible. (U.S. 46 and State 10 cross the district east to west and U.S. 202 and 206 extend north to south. The town of Dover is on both the Delaware, Lackwanna, and Western Railroad and the Central Railroad.)

GEOLOGIC SETTING

Regional Lithology

The geological setting of the Dover district was described by Sims (1958).

The district is part of the New England physiographic province. Topography is controlled by the effects of stream erosion on bedrock structure and lithology and consists of northeastward trending ridges separated by valleys 200 to 300 feet deep. Altitudes are 500 to 1100 feet. The Wisconsin glacial terminal moraine crosses the central part of the district.

The bedrock consists of Precambrian metasedimentary rocks, migmatites, and intrusive igneous rocks which are cut by small Triassic diabase dikes. In the northwestern portion of the district the Precambrian rocks are disconformably
FIGURE 1. Index map showing the location of the Dover District (Sims, 1958).
overlain by steeply dipping early Paleozoic sedimentary rocks. Quaternary surficial deposits cover the bedrock in a discontinuous and usually thin layer (Figure 2).

The oldest Precambrian metasedimentary rocks are widely distributed and make up about 25 percent of the bedrock. They are high-grade metamorphics: marble, pyroxene gneiss, skarn, amphibolite, biotite-quartz-feldspar gneiss, oligoclase quartz-biotite gneiss, and related types. These rocks have been isoclinally folded and intruded by igneous sheets and phacoliths. The thickness and age sequence of the metasedimentary rocks is poorly understood because of their complex structure and the abundance of younger igneous rocks.

The inferred age order (oldest to youngest) of the Precambrian intrusive rocks is quartz diorite, albite oligoclase granite (alaskite), albite quartz pegmatite, and hornblende granite plus related facies. A NW-SE traverse across the Dover District, normal to the regional strike through the Mount Hope mine area, intersects the following rock types: hornblende granite, quartz diorite and related facies, oligoclase quartz-biotite gneiss, albite oligoclase granite, hornblende granite, biotite quartz-feldspar gneiss, alaskite, hornblende granite, alaskite, oligoclase quartz-biotite gneiss, alaskite, hornblende granite (Simms, 1958). As can be noted from the presence of gneisses in the district, the metamorphism is high grade.

REGIONAL STRUCTURE

Faulting

Northeast trending faults bound the Precambrian rocks and separate them from Paleozoic and Mesozoic strata. The faults are considered to be Triassic or younger. The Green Pond fault which separates Precambrian rocks from Paleozoic rocks is the one large fault in the district. The smaller faults of
FIGURE 2. Geologic map showing the location of the Mount Hope and Scrub Oaks Mines in the Dover mining district, Morris County, New Jersey. (Sims, 1958)
the district, most exposed only in the mines, cause serious mining problems. With reference to regional trends, smaller faults can be classified as transverse, longitudinal, and oblique. Transverse faults are high angle gravity types striking northwest and dipping steeply southwest. The Mount Hope fault, striking N78°W and dipping 80°SW, is in the mine area and is a transverse fault. Longitudinal and oblique faults are reverse faults striking northeastward and dipping moderately to steeply northwestward.

Folding and Foliation

In the Dover District, the Precambrian rocks trend northeast and dip steeply southeast with considerable local variation. This pattern is produced by northeastward-trending isoclinal and open folds and conformable granite sheets on the fold limbs. The folds, ranging in width from a few feet to over a mile, plunge to the northeast. This structural pattern was developed in Proterozoic time with little subsequent deformation. The direction of principal tectonic stress was to the northwest. Metasedimentary rocks formed parallel layers or belts on fold limbs, foliation is parallel to the original bedding. Igneous rocks were intruded later into the deformed country rock, accompanied by development of skarns in pre-intrusive carbonate rocks. Dominant granitic foliation developed before the final crystallization of the magma, and in some places secondary foliation is superposed on the original foliation. All rock types show very uniform lineation which is usually parallel to the fold axes and plunges 17° N 52°E on the average.

MOUNT HOPE MINE GEOLOGIC SETTING

The Dover district contains 91 mines, 58 of which have produced iron ore. Iron ore has been mined intermittently since the early 18th century.
Many of the mines are abandoned now. There are seven ore belts in the district. The Wharton ore belt contains most of the large mines, including the Mount Hope and Scrub Oaks. This belt is 10 miles long and 900-3000 feet wide. It extends from near Ironia to about 1 mile northeast of Mount Hope Village.

The 300 year-old Mount Hope mine has workings in nine ore bodies. It is said to be the oldest operating mine in the United States with production back to 1710. It may have been worked as early as 1665. Surface and underground mining were employed.

The bedrock at the Mount Hope mine consists of metasedimentary rock, mixed metamorphic rocks, and granites. The most abundant metasedimentary rock, oligoclase-quartz-biotite gneiss, is exposed at the surface as well as throughout most of the mine. Alaskite (albite-oligoclase granite) is the most widespread rock type. The mine rocks are deformed into isoclinal folds trending and plunging northeast. The most prominent fold is the overturned Mount Hope syncline, illustrated in Figure 3. Oligoclase-quartz-biotite gneiss comprises the limbs of the syncline and ore deposits occupy both limbs. The axial trace trends N45°E and the axis plunges 12°-20°NE. The principal fault associated with the mine is the transverse Mount Hope fault. Longitudinal faults are common and cause serious mining problems, though they are not continuous for long distances.

The Mount Hope iron ore deposits are of Precambrian age and occur in various metasedimentary and igneous rocks. Massive magnetite ore (containing 35-60% iron) is found in most deposits. The ore occurs in belts or ranges forming steeply dipping vein-type bodies essentially conforming to the gneissic wall rock structure with strike and dip parallel to the foliation and plunge parallel to the lineation. The important ore bodies are mostly lath shaped.
FIGURE 3. Geologic map and section of Side Hill adit, Mount Hope mine (Sims, 1958).
Principal iron ore bodies occur as metasomatic replacement in (1) oligoclase-quartz-biotite gneiss, (2) hornblende skarn, (3) pyroxene skarn, (4) albite-oligoclase-granite (alaskite), and (5) reconstituted amphibolite and microantiperthite granite.

Low grade iron ores occur in amphibolite, interlayered biotite-hornblende-pyroxene-feldspar gneiss and granite pegmatite. The ore minerals in order of abundance are: magnetite, hematite, martite, ilmenite, pyrite, pyrrhotite, and chalcopyrite.

The Mount Hope magnetite deposits occur as replacement bodies in gneiss and hornblende skarn. Figure 4 illustrates some of the mine workings.

MOUNT HOPE MINE HYDROLOGY

Water inflow into the Mount Hope mine is approximately 350 gpm from surface runoff and seepage from local lakes. There is no information as to whether this included water introduced by mining operations (personal communication). The Acres report (1975) indicates that the inflow into the Mount Hope mine is 400 gpm above the 1700 foot level. Sims (1958) states that the Mount Hope fault in the mine workings is a shattered brecciated zone. This zone may produce water at a rate of several hundred gallons/minute when the fault is intersected, but when the fault is tapped at lower levels, the flow diminishes abruptly.

MOUNT HOPE MINE FACILITIES

The Mount Hope mine was owned, as of 1978, by Halecrest Company, Inc. (Talmadge Road, Edison, New Jersey). It is located in a rural hilly area on a three square mile site. The mine had a number of different owners, and was inactive from 1959-1977 (SRI - World Minerals Accessibility Report, 1976).
FIGURE 4. Vertical longitudinal projection of Taylor ore body, Mount Hope mine [Sims, 1958].
The Mount Hope mine was considered by the Jersey Central Power and Light Co. as a potential site for a pumped-storage hydroelectric facility. As described by Richert (1974), a surface reservoir would be connected with underground powerhouses and reservoirs which would be excavated from the mine workings. The mine was reopened in October 1977 and closed in February 1978 because of a need for more capital. It is not known if it has reopened again (Engineering and Mining Journal, 1978).

MOUNT HOPE MINE WORKINGS

The vertical three-compartment shaft is 2800 feet deep with levels at 1000, 1700, 2100, and 2500 feet. The 1000 foot level has road workings, the 1700 foot level extends one mile south and one mile north of the shaft, the 2100 foot level is one mile long, and the 2500 foot level extends 3000 feet to the northeast and southwest. Drifts and haulage ways are generally 9 x 11 feet with various larger stoped-out areas (Acres, 1975). Several types of mining methods have been employed, in order of time: (1) open pit, (2) underground open stopes (stull timbered) (3) shrinkage stoping, and (4) sublevel stoping. The mine has been kept pumped out (Acres, 1975).

MOUNT HOPE MINE EQUIPMENT

A lift and general utilities are available. The equipment is moth-balled but sound (Acres, 1975, and personal communication).

At the time of closing 150 men were employed (E/MJ, 1978).

Six thousand tons per day of ore were produced when the mine was in operation. The available ore reserves proven are 5×10^6 tons, probable 15×10^6 tons, and possible 30×10^6 tons. There is sufficient ore for twenty years operation (E/MJ Directory, 1977-1978).
SCRUB OAKS MINE GEOLOGIC SETTING

The Scrub Oaks mine, located 2 miles west of Dover, operated intermittently from 1856-1950. The bedrock in the area is covered with up to 40 feet of unconsolidated debris. The principal rocks exposed in the mine are alaskite, the host rock for the ore, and microantiperthite granite. The average strike of foliation in the mine is N33°, dip is 50°SE. The lineation plunges about 28°N, 52°E. It is thought that the mine is situated on an isoclinal fold limb. Two transverse faults offset the ore body into three segments. Figure 5 shows the faults and workings in the mine.

SCRUB OAKS MINE FACILITIES

The Scrub Oaks mine was owned by the Alan Wood Steel Company of Conshohocken, Pennsylvania in 1975 (Acres, 1975). It has been shut down and capped since May, 1966 and is probably flooded. A fault was encountered in the shaft and blasting also created many fractures in the surrounding rock. The mine workings (Figure 5) consist of a four-compartment inclined shaft 3000 feet long on a 55° dip, and six working levels 250 feet apart vertically. The shaft is in country rock and 100 feet into the ore footwall and is connected to the main haulage levels in the ore body footwall by cross cuts. Mining was done by shrinkage stoping without timbering or filling (Sims, 1958). The Acres report (1975), however, refers to mining by the longwall sublevel mining method. The total crude ore mined between 1918 and 1950 was reported to be 10.5 x 10⁶ long tons; in 1950, 6.3 x 10⁵ tons were mined.
FIGURE 5. Map and longitudinal projection of main workings at Scrub Oaks mine (Sims, 1958).
REFERENCES

LOCATION AND ACCESSIBILITY

The Questa Molybdenum Mine is located at 36°42'N, 105°30'W, on the western slope of the Taos Range in the Sangre de Cristo Mountains of northern New Mexico (Figure 1). The underground mine is adjacent to a large open pit operation, 6 miles east of the town of Questa in Taos County. The altitude of the uppermost workings of the mine is nearly 8900 feet above sea level. Both underground mine and open pit are owned and operated by Molybdenum Corporation (Molycorp Inc.).

The mine portals range in altitude from 8000 to 9000 feet. The mill, haulage adit, and dump are located along Red River Canyon, 5-6 miles east of Questa. The adits of the older workings are along Sulphur Gulch, an intermittent tributary of the Red River.

State Highway 38, a graded gravel road (in 1956), passes the mine and camp and connects the mine to Questa and Red River.

GEOLOGIC SETTING

The geologic setting is illustrated in Figure 2 and has been described in detail by Carpenter (1968), McKinley (1957), and Schilling (1960 and 1956). A generalized stratigraphic section is shown in Figure 3. The Taos Range is made up of Precambrian metamorphic and granitic rocks overlain by Tertiary volcanics and late Paleozoic sediments. Tertiary granitic rocks, including the ore bearing units, intrude the older rock and in turn are capped with Quaternary gravels and alluvium. The ore body occurs in the Tertiary Sulphur Gulch soda granite stock. Most of the veins are in contact, or close to the contact with the granite and the veins roughly parallel the contact. The ore zone is over 1500 ft. long.
FIGURE 1. Map of Taos County, New Mexico, showing location of Questa Molybdenum mine (from Schilling 1960).
FIGURE 2. Generalized geology of Questa Molybdenum mine area (from Schilling 1960).
FIGURE 3. Generalized rock section of the Questa Molybdenum mine area (from Schilling, 1956).

Molybdenite ore veins
LITHOLOGY

The Precambrian metamorphic rocks include amphibolites, schists, and quartzites. The amphibolite complex covers large areas both east and west of the mine. A detailed geologic map and cross section, parallel to the main haulage adit (Moly tunnel) is illustrated in Figure 4. For orientation a cutaway diagram of the mine (as of 1956) is shown in Figure 5. The quartz biotite schist of the amphibolite complex crops out in the main haulage adit (Moly tunnel). These rocks are found also in the long crosscuts extending south from the main drive of 2 tunnel level. The rocks range from massive to foliated, and can be separated into four varieties: (1) massive, coarse-grained; (2) massive, medium-grained; (3) gneissic; and (4) coarse-grained schist.

The Precambrian granite covers large areas in the vicinity of the mine and is exposed along the main haulage adit. It has been divided by Schilling (1956) into three varieties: (1) granite gneiss; (2) gneissic granite; and (3) massive granite. The granite intrudes the amphibolite complex and meta-quartzite. It is overlain unconformably by Pennsylvanian-Permian (?) sediments and a late Tertiary volcanic complex.

Pegmatites in dikelike bodies intrude the amphibolite complex, meta-quartzite, and, less commonly, the Precambrian granite. Several diabase dikes crop out in the vicinity of the mine. The largest dike strikes generally N60°E, with a vertical dip and an average width of 25 ft.

A thick, complex sequence of Tertiary volcanic rocks crops out at all levels in the mine. The volcanics, including andesite, quartz latite, and rhyolite flows, breccias and tuffs, are almost completely altered in some areas.

Late intrusives, ranging from monzonite to granite in composition and plutonic to transitional in texture, crosscut the volcanic sequence. As an illustration, the soda granite occurs in several areas near the mine (based on observation at the surface and 7800 ft. level (Carpenter, 1968). One
FIGURE 4. Questa Molybdenum Mine area, geologic map and D section.
FIGURE 5. Block diagram of the Questa Molybdenum mine, Taos County, New Mexico (Schilling, 1960).
north-trending occurrence, the Sulphur Gulch Stock, covers an elliptical area 0.7 x 15 miles. The top of the stock is domed with gentle dips; its sides dip more steeply. The soda granite is inequigranular to porphyritic at the margins of the stock. Coarser inequigranular granite makes up the core of the stocks. The pegmatitic and aplitic phases of soda granite, in contrast, are in sharp contact with each other. However, these phases make up less than 1% of the soda granite, by volume, and are not significant in the mine workings.

The region is capped with Quaternary gravels and alluvium. Mud flows have occurred in the Quaternary gravels and talus along many of the canyons and are of special interest because of the damage they have caused to mine facilities.

MINERALIZATION

The underground mine workings at Questa are in a group of molybdenite-bearing veins. The ore occurs in the Sulphur Gulch soda granite at or near the contact. Most veins parallel the contact and range from less than 1 inch to over 7 feet in thickness, and are largely quartz and molybdenite. The veins were deposited as fissure fillings, probably during the late Tertiary and on the basis of their mineralogy are classified as mesothermal.

STRUCTURAL SETTING

The structure of the Taos Range of the Sangre de Cristo Mountains is extremely complex. The mine is located in an east-west down-faulted zone several miles wide, in which structural features combine to form a pattern quite different from the rest of the range. This zone apparently has served to localize the soda granite intrusives.
The Taos Range has been uplifted and tilted eastward along a fault zone paralleling the western edge of the range. The high angle Frontal fault crosses east of the mine and has a total estimated displacement of 6000 ft. (Schilling, 1956). Several high angle faults were noted underground. They cut the soda granite and older rock and show horizontal displacements of a few to tens of feet. Along the soda granite contact several post-soda granite dikes are intruded along these faults. Thrust faulting, though common to the Taos Range, was not observed in the vicinity of the mine.

The Sulphur Gulch soda granite is extensively fractured. The fracturing is roughly parallel to the contact and is called sheeting. It is concentrated in the outer 50 feet of the granite and commonly cuts across irregularities. Some of the sheeting fractures curve toward the contact, reversing in dip as they approach the contact. This sheeting apparently was formed by the upward force of the intruding soda granite.

In the mine area, fracturing and faulting are irregular, except for the regional east-west striking, vertically dipping fractures common to the Taos Range.

Evidence of alteration at depth is found in the Moly tunnel. Here disseminated pyrite occurs in Precambrian granite. Porphyritic alteration of the rocks (indicated in Figure 4) surrounds the soda granite stocks and decreases rapidly away from the granite.

HYDROLOGY

The mine is located at 8000-9000 ft. elevation in the Taos Range. The water table is probably within a few tens of meters of the surface and the mine workings would then be tens to hundreds of feet below the water table and well within the saturated zone. Water from the levels above the
haulage adit drains by gravity, while water from the workings below the
haulage adit drains into a sump at the bottom of the tunnel shaft and is
pumped out.

MINE CHARACTERISTICS

The mine has more than 35 miles of workings with a vertical extent of
1200 feet and is divided into three areas. They are Sulphur Gulch north
workings, Sulphur Gulch south workings, and Tunnel Shaft workings. The
Sulphur Gulch south workings are mined through adits. The Tunnel Shaft
workings are mined through a vertical winze and the Moly tunnel. The main
haulage adit (location shown in Figure 5, the geologic cross-section rough­
ly parallels adit) cuts across the Precambrian granite and amphibolite com­
plex, Tertiary volcanic rocks and the soda granite. The maximum depth of
workings is 1600 feet. The depth and extent of workings as reported in
1956 are shown in Figure 5.

The mine is developed in an irregular pattern following the irregulari­
ity of the vein system. Adits, drifts, crosscuts, raises, and winzes occur
at intervals of 15-100 feet vertically. Machine mucking is used in all
easily accessible drifts. The rock, when granite, is moderately hard and
usually stands well without timbering; the altered volcanics are broken and
require timbering. Surface tracks extend from the adits to the mine ore
bins and dump.

MINE ACTIVITY

The Questa mine has been in almost continuous operation since 1920,
when the Molybdenum Corporation acquired the property. Total production
data are classified but production was estimated to exceed $10 million in
1968 (Kottlowski, 1969). The production in 1965 was estimated at 20 million lb. (Schilling, 1965).

The Molybdenum Corporation received from the Defense Minerals Exploration Administration an exploration contract for $255,250 in 1957, and the Molybdenum Corporation was required to spend an equal amount (New Mexico Bureau of Mines and Mineral Resources, 1977). An intensive exploration program was carried out in 1957, including a geochemical survey, extension of the lowest level in the mine, and core drilling both from the surface and underground. Again in 1975-76, extensive exploration was undertaken. Molybdenum Corporation joined in partnership with Kennecott and $5.7 million was spent for exploration of the Goat Hill, Log Cabin, and Southwest Zone ore bodies. Exploration included 130,000 feet of drilling (World Mining, June 1977). The Goat Hill reserves are estimated at 140 million tons, however, the known workings are located in altered volcanics, and two of the three adits had caved prior to 1960 (Schilling, 1960). The Log Cabin reserves are estimated at 50 million tons. The Log Cabin workings prior to 1960 (location shown in Figure 2) include an adit driven 750 feet into a mountain with the last 500 feet in the soda granite (Schilling, 1960). Details of the 1975-76 exploration were not available from the literature for either location. No reserve estimates were given for the southwest zone, nor was the location identifiable from the literature. Since recent exploration has been undertaken in these areas, and the Log Cabin workings are located in crystalline rock, this site may be a potential candidate.

In the summer of 1977, mud and rock slides closed the Molybdenum mine (open pit?) for the rest of the year (Wall Street Journal, Friday, December 2, 1977), costing the corporation about one half year's production (1976 production at 11.5 million lb.).
In May 1979 Molybdenum Corporation initiated a $200 million project to develop a large underground mine to begin operation in 1983 at a rate of 18,000 tons/day. At approximately the same time, 1983, the open pit operations would close. Preproduction construction for the new underground workings include shaft sinking, outfitting, and underground development. A work force of 800 will sink a 24 ft. diameter service shaft along with a 14 ft. diameter ventilation shaft (Engineering and Mining Journal, February 1979). The project is estimated to produce 18-20 million pounds per year of molybdenum for at least 20 years. Block caving methods will be used to mine the ore. An electric rail haulage system will tram ore to a decline and a conveyor will transport it to the surface. No other mine activity or equipment information was available from the literature.
REFERENCES

Engineering and Mining Journal, 1975, v.180(2) p. 11.

Wall Street Journal, December 2, 1977, p. 25
September 2, 1977, p. 22
January 4, 1978, p. 9

World Mining, June 1977.
BALMAT-EDWARDS DISTRICT MINES
(St. Joseph Zinc Co.)

LOCATION

The Balmat-Edwards district is located in the northwestern portion of the Adirondack Mountains in Lawrence County, upper New York State. General coordinates are 44°15'N, 75°15'W. Within the district are several zinc mines of interest: the Balmat #1, 2, 3, and 4; the Edwards; and the Hyatt mines. These are located about 10 miles ESE of Gouverneur, New York (Figure 1). The district extends for 10 miles from Sylvia Lake and Balmat NE to Edwards.

GEOLOGIC SETTING

The district lies in the northeast striking belt of Grenville lowlands mostly underlain by highly deformed Precambrian metasedimentary rock. It is bounded on the northwest by undisturbed Paleozoic sedimentary rock and on the southeast by igneous gneisses of the Adirondack massif. The general trend of exposed formations, topography, and structure, roughly NE-SW, is the same as that of the Grenville lowlands (Figure 2) (Lea, 1968).

The Precambrian rocks in the region range from older quartzite, quartz-biotite gneiss, and dolomitic marble to intrusive syenites and granitic gneisses of the Adirondack massif, to younger Precambrian granite gneisses. The ore bodies occur as replacements in the various types of dolomitic marble as lenses, pods, and tabular bodies. They are of Precambrian age. The ore minerals are sphalerite, pyrite, and galena, with minor amounts of pyrrhotite and chalcopyrite.
FIGURE 1. Index Map, showing location of the Balmat-Edwards District, New York. (Lea, 1968)
FIGURE 2. Generalized Geologic Map of the Balmat-Edwards District within the Northwestern Adirondacks, showing the distribution of major rock types and mineral deposits. (Lea, 1968)
Structure

The structure of the northwestern Adirondacks has been divided by Buddington (1962) into three major structural units. They are: (1) a unit of mostly granitic gneiss and minor metasedimentary rocks in the extreme northwest; (2) the Grenville lowland unit, a broad belt 25-30 miles wide composed of 70% metasedimentary rocks with minor granitic intrusions, in the southeast; and (3) the main igneous complex southeast of the lowlands.

The Grenville unit is considered by Engel and Engel (1958) to be anticlinorial. In the Balmat-Edwards area, the southeastern flank of the dominant anticlinorium is overturned to the northwest. There were two major Precambrian folding deformations in the area: (1) a primary one which produced the regional northeast trend (fold axes) with a northwest dip and (2) a secondary folding which produced crossfolds intersecting the regional trend and plunging north to northwest. The ore bodies are located in the complex folds (in overturned limbs of anticlines or synclines) developed by the interaction of the two deformations, in competent and incompetent beds (Buddington, 1962, Brown, 1956).

Metamorphism

The relatively high grade of metamorphism is indicated by the gneisses and also by high-temperature features of the mineralization. The mineralization is thought, however, to originally have been premetamorphic, and later remobilized by the metamorphism.

Hydrology

No general information on the district water table and water regime was found. However, an article in the Engineering and Mining Journal
November 1976 states that all three of the mines in the Balmat area produce 750 gpm and that most mine water originates above the 1300 foot level underground. There is no information as to how much of this inflow is due to mining activity. Lea, (1968) reports that there has been a water problem in the Balmat #3 mine because of the location of an aquifer, the Potsdam sandstone, above it.

MINE FACILITIES

The Balmat-Edwards district mines are owned and operated by St. Joseph Zinc Co. (Oliver Plaza, Pittsburg, Pa. 15222) a subsidiary of St. Joseph Mineral Corp. (250 Park Avenue, New York, 10017, 212/953-5000). Four mines were actively in operation as of 1976 (E/MJ 1976); they were the Edwards mine (Figures 3-5) (depth almost a mile down dip at an average 40° plunge), Balmat #2 (at least 2300 feet), Balmat #3 (883 feet), and Balmat #4 (Figure 6) (2500 feet). Balmat #2 and 3 mines are connected to Balmat #4 and their ore along with that of #4 is hoisted through the #4 shaft. The main Balmat ore bodies may be seen in Figure 6 in projection. The Edwards mine was inoperative from June 1978 to at least the first quarter of 1979 because of a strike (St. Joseph Minerals Corp. 1978 Annual Report and St. Joseph release 1979). CRIB (1977) reports that the Edwards mine would be exhausted by 1980.

In 1977, \(1.1945 \times 10^5\) tons (3982 tons/day) were mined (St. Joseph Minerals Corp. Annual Report 1977). As of 1971, the proven ore reserves were \(5.4 \times 10^6\) tons. Therefore at the 1977 tonnage removal rate, the present reserves will be depleted in about 3 years. It should be noted, however, that the ore bodies are erratically located because of regional complex folding and faulting.
FIGURE 6 Generalized geologic section through the No. 4 shaft includes projections of the main Balmat ore bodies and haulage levels onto the plane of the section. The Grenville series, in which the Balmat ores occur, is characterized by a sequence of almost pure dolomites and strongly silicized units, as follows (oldest to youngest): 1) dolomitic marble, 2) pyritic schists, 3) dolomitic marble, 4) diopside, quartz, dolomitic marble, 6) stilpnomelane diopside, quartz, dolomitic marble, 7) gray fuchsite dolomites, diopside, quartz, dolomitic marble; 9) dolomitic marble, 10) anhydrite, gypsum, talcose diopside, 11) diopside, calcite and dolomitic marble, quartz, and 11a) locally anhydrite, 12) dolomitic marble, locally anhydrite, 13) tremolite schists, anhydrite; 14a) serpentinized dolomitic and calcitic marbles, diopside, stilpnomelane diopside; 14b) calcitic marble, quartz augite, 14c) quartz-diopside rock, minor dolomite; 15) phlogopitic stilpnomelane calcitic marble; 16) medium gneiss: quartz-mica-feldspar; 16a)...serpentinized dolomitic marble, minor quartz-diopside rock, calcitic marble, tremolite-anhydrite.

It is expected that more ore may be located in the future. Probable reserves may be 8.4×10^6 tons as of 1976 (E/MJ 1976). Engineering and Mining Journal (1976) reports that St. Joseph can be expected to be mining the Balmat District until the end of this century.

MINE OPERATIONS

Slusher stopes to large room and pillar stoping are used because of the complexity of the ore body. Drifts which are arched may be in either the footwall, hanging wall, or in ore, because of ore location variability. Roof bolts are usually the only support necessary. They are 5/8 inch diameter and 4-6 feet long with 6x6 inch plates on a 4x4 foot pattern. In soft ground resin bolts are used. In fractured areas, chain link fence and/or roof mats with bolts are needed. Trackless hauling is used with battery locomotives, Plymouth 6-8 ton diesel locomotives, and Sien 10 ton trucks. Hoisting equipment for Balmat mines are for #2 - 8.5 ton hoist, #3 - 3 ton hoist, #4 - 11 ton hoist. The latter can handle 287 tph. No. 4 shaft also has a 10 ton service hoist (E/MJ 1976).

The Edwards mine cross-section and plan views (Figures 4 and 5) show that some workings extend into the gneissic rock. While the other mines may also have such drifts into the gneiss, the maps available do not show such workings. The Hyatt mine, while of small production, is operating and may be a prime candidate since, from MAS data (1978), gneiss and schist lie over and under the ore.
BIBLIOGRAPHY

CRIIB

MAS

LYON MOUNTAIN DISTRICT

LOCATION AND ACCESSIBILITY

The magnetite deposits of the Lyon Mountain district are located in far northeastern New York State, at 44°44'N, 73°55'W, 25 miles slightly north of west from Plattsburg and 145 miles slightly west of north from Albany. Access is by State Highway 374, an all weather road. Two mines, the Chateaugay, located in the village of Lyon Mountain, and the 81 mine, approximately 1 mile NNE of Standish, have been worked in recent years (Figure 1).

GEOLOGIC SETTING

Lithology

The geologic setting of the Lyon Mountain district was described by Postel (1952).

Four major ore bodies comprise the district: the 81, the Chateaugay, the Parkhurst mines, and the Phillips vein, located in the southwest-northeast trending Lyon Mountain ore belt (Figure 2). Most of the metamorphic and igneous rocks of the district have gneissic structures as a result of the Grenville metamorphic episode. The oldest rocks in the district are sedimentary rocks of the Precambrian Grenville Series but these rocks do not occur in the mineralized area. The oldest felsic igneous rock in the district is the Hawkeye granite gneiss, outcropping 1 to 1.5 miles southeast of the ore belt; its axis is oriented roughly parallel to the ore belt. A younger quartz syenite gneiss crops out 10 miles south of the ore belt. The youngest rock in the district is the Lyon Mountain granite gneiss which contains the ore belt. Pegmatites are common in the district and are found in all mines. Dikes of varying composition also transect the area and are all younger than
FIGURE 1. Map showing locations of the Chateaugay and 81 Mines, Clinton County, New York. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Geologic map of the Lyon Mountains area, Clinton County, New York, showing the location of the Chateaugay and 81 Mines. (Postel, 1952)
the Lyon Mountain granite gneiss. Numerical rock ages do not appear in the literature on the ore belt area or its surroundings. Metamorphism and intrusive relationships suggest that the ore bodies developed at the time of Grenville orogeny, about 1 million years ago (Ridge, 1972, Postel, 1952). The presence of schist and gneiss indicates that metamorphism was medium to high grade. The principal ore mineral is magnetite. The ore deposits probably were formed by hydrothermal solutions derived from the granitic magmas (Ridge, 1972).

The Precambrian rocks are encompassed in isoclinal, overturned, and open folds. Generally, the folds plunge to the north or northeast but a few also plunge to the south. Some synclines in the Lyon Mountain granite gneiss are economically important because many of the district ore bodies are located in their limbs. For example, the 81 mine ore body occurs in the 81 syncline north of the town of Standish, and the ore in the Chateaugay mine in the village of Lyon Mountain occupies two synclines, the east and west, which are separated by an anticline.

Both large and small faults transect Clinton County. Small normal and reverse faults with a few inches of displacement are noted in the ore district. The evidence for the large faults, all normal, is based on the presence of brecciation, discordant strike of gneisses, and topographic features. An example is the Chazy Lake Fault which strikes NNW, east of Lyon Mountain. In the Chateaugay mine two sets of faults are found. One set strikes east while the other strikes northeast, both having vertical dips.

Foliation occurs in varying degrees in all Precambrian rocks in Clinton County. In general, the direction of foliation is northeast, especially
in the ore district areas. Lineation usually trends northward or a little east of north with a moderate plunge in the same direction. This trend is usually close to the strike of the foliation plane in which the lineation occurs (Postel, 1952).

MINE GEOLOGY - Chateaugay, 81, and Parkhurst Mines

The ore at Chateaugay mine is a replacement of a pyroxene-contaminated microcline-microperthite granite gneiss and plagioclase granite gneiss, and occurs as cigar-like shoots in two synclinal structures which plunge in a northeast direction. The ore bearing limbs strike N30°E and dip 60-65°NW. The ore at the 81 mine replaces plagioclase granite gneiss, and occurs on the heel and northwest limb of a syncline; the limb strikes N45°E. There is a small anticlinal fold between the southeast limb at the 81 mine and the Chateaugay mine. The host rock has a strong mineral lineation which plunges 20°NE. The ore body at the Parkhurst mine is reported to be walled by schist (Postel, 1952).

FACILITIES

Very little information was found on facilities. The total ore output from the Chateaugay mine in the period 1871-1948 was 15×10^6 long tons. In 1948, the output was 1.5×10^6 long tons. Postel states that the mine geologist for Republic Steel Corporation at Lyon Mountain Village was planning a detailed description of the Chateaugay and 81 mines which would undoubtedly give pertinent information. The mine was still producing in 1956 (Minerals Yearbook, 1956). The mine was permanently closed in 1967 (Minerals Yearbook, 1967).
The 81 mine was opened in 1840 but not mined continuously until 1848. It was shut down in 1902. In the late 1940's, Republic Steel Corp. investigated the deposit again and started production in 1948-1949. Contracts were let to build a six-compartment vertical shaft to 2500 feet underground (Skillings Mining Review, August 28, 1948).

There is no information on the Phillips' vein. It may never have been mined. No further information has been found on the Parkhurst mine other than the fact that it is flooded, and produced 4×10^4 tons of ore between 1889 and 1892.
REFERENCES

Postel, A.W., 1952, Geology of Clinton County Magnetite District,

Ridge, J.D., ed., 1972, Annotated Bibliographies of Mineral Deposits-
Western Hemisphere, Geol. Soc. Amer. Mem. 131, Boulder, Colo.,
681 pp.
LOCATION AND ACCESSIBILITY

The Homestake mine is located at Lead (pronounced "leed"), Lawrence County, in the Black Hills of southwestern South Dakota at 44°15'N and 103°50'W.

Lead is 35 miles northwest of Rapid City, South Dakota from which it is readily reached by Highways 90 and 14 (Figure 1).

The mine, which extends to a depth of 8000 ft., is the largest gold producer in the western hemisphere and has operated almost continuously since 1876. It produces native gold, with silver as a major accessory metal and a small amount of copper (CRIB, 1974; E/MJ, 1976; Slaughter, 1968).

GEOL OGIC SETTING

The geologic setting of the Lead district is illustrated in Figure 2. The Homestake mine is located in Precambrian schists, formerly mudstones which, along with other rock types, were folded and intruded by igneous rocks and then metamorphosed. The total thickness of the schists at Lead is about 2000 feet. Great compression of the schists resulted in a plastic rock flow and the production of tightly closed isoclinal folds. Refolding and deformation of the isoclinal folds resulted in the present configuration of a complex synclinorium. Most metamorphism took place in the Precambrian time during or following the first folding period. The metamorphosed rocks were severely eroded and covered with Paleozoic and Mesozoic sediments. In early Tertiary time large amounts of igneous rocks intruded this rock sequence. The whole region was then uplifted and eroded so as to produce the present surface (Slaughter, 1978; Nobel and Harder, 1948).
FIGURE 1. Location maps of the Homestake Mine, Lawrence County, South Dakota (upper map from Slaughter, 1968; lower map, basic map reproduced by permission of the American Automobile Association, copyright owner).
FIGURE 2. Geologic Map of the Lead District. The surrounding Cambrian Deadwood Formation is stippled. Tertiary intrusive rocks are within the dotted outlines. Sills in the Cambrian strata, small dikes, and Tertiary gravel deposits are omitted. The Precambrian Homestake Formation is shown in solid black. The white areas within the stippled areas are mine workings in the Cambrian rocks, both open pit and underground. (Slaughter, 1968).
Noble and Harder (1948) have established the following stratigraphic column for this region:

Tertiary, Quaternary, and Recent gravel deposits
(at least 90 ft.)

------------- unconformity -------------

Tertiary intrusive rocks \(\sim 6 \times 10^6 \) years

Cambrian Deadwood Formation (300-500 ft.)

------------- unconformity -------------

Precambrian intrusive rocks

Precambrian sedimentary rocks -

Grizzly Formation
(5000 ft. or more)

Flagrock Formation
(possibly 5000 ft.)

------------- unconformity -------------

Northwestern Formation
(possibly 4000 ft.)

Ellison Formation
(3000-5000 ft.)

Homestake Formation
(200-300 ft.)

Poorman Formation
(possibly more than 2000 ft.)

A description of the rock units, from oldest to youngest, follows. The oldest formation, the Poorman, is mainly a gray phyllite, but some parts of it are slaty and schistose. The Homestake Formation is a
sideroplesite-quartz-cummingtonite schist, having a reddish to brownish hue, sometimes green (due to chlorite). Small white quartz veins, and pods and seams of gray to white quartz are common. The Homestake ore bodies occur in this formation. The Ellison Formation is composed of phyllites and schists with large amounts of dark quartzite. The phyllites have a sandy texture. Primary structural features such as bedding, cross-bedding, or other types are not found. The Northwestern Formation is made up of phyllites, schists, and a little slate. Most of this formation is also structureless.

The Flagrock Formation is composed of many rock types. The most abundant is a light gray sericitic phyllite or schist. There are also soft sooty black schists or phyllite with pyrite, quartzite, and sideroplesite schist (converted to cummingtonite in some places). A fine grained sericitic gray to dark gray phyllite is the common rock in the Grizzly Formation which also has very few bedding structures.

The Precambrian intrusive rocks are amphibolites, thought to have originally been gabbro. Above the unconformable contact with the Precambrian, the Upper Cambrian Deadwood formation consists of a quartz pebble conglomerate which grades upward into a light brown quartzite, overlain in turn by a brown sandy dolomite with thin partings of green shale. The remainder of the Deadwood formation in the Lead District is thin-bedded green and gray glauconitic shale with some beds of limestone and dolomite and some intraformational limestone conglomerate.

The Tertiary intrusives are of granitic and syenitic composition and are fairly abundant in the Lead district (Figures 2 and 3) (Slaughter, 1968; Nobel and Harder, 1948).
sideroplesite-quartz-cummingtonite schist, having a reddish to brownish hue, sometimes green (due to chlorite). Small white quartz veins, and pods and seams of gray to white quartz are common. The Homestake ore bodies occur in this formation. The Ellison Formation is composed of phyllites and schists with large amounts of dark quartzite. The phyllites have a sandy texture. Primary structural features such as bedding, cross-bedding, or other types are not found. The Northwestern Formation is made up of phyllites, schists, and a little slate. Most of this formation is also structureless. The Flagrock Formation is composed of many rock types. The most abundant is a light gray sericitic phyllite or schist. There are also soft sooty black schists or phyllite with pyrite, quartzite, and sideroplesite schist (converted to cummingtonite in some places). A fine grained sericitic gray to dark gray phyllite is the common rock in the Grizzly Formation which also has very few bedding structures.

The Precambrian intrusive rocks are amphibolites, thought to have originally been gabbro. Above the unconformable contact with the Precambrian, the Upper Cambrian Deadwood formation consists of a quartz pebble conglomerate which grades upward into a light brown quartzite, overlain in turn by a brown sandy dolomite with thin partings of green shale. The remainder of the Deadwood formation in the Lead District is thin-bedded green and gray glauconitic shale with some beds of limestone and dolomite and some intraformational limestone conglomerate.

The Tertiary intrusives are of granitic and syenitic composition and are fairly abundant in the Lead district (Figures 2 and 3) (Slaughter, 1968; Nobel and Harder, 1948).
METAMORPHISM

The Precambrian rocks in the Lead district have been progressively regionally metamorphosed. The degree of metamorphism increases from southwest to northeast across the district (Figure 4), from a biotite zone representing low to medium grade, to a garnet zone of middle to high grade, to a high-grade staurolite-kyanite zone.

The ore bodies are found only in the biotite and garnet zones. The carbonate, sideroplesite of the Homestake formation, is altered to cummingtonite (amphibole) on the garnet isograd. The cummingtonite isograd determined by Nobel and Harder (1948) is very close to the garnet isograd. There is also some evidence for retrogressive metamorphism, as shown by the alteration of garnet to quartz-sericite and iron oxide, and of biotite to sericite (Noble and Harder, 1948; Slaughter, 1968).

REGIONAL STRUCTURE

The Lead District is located in one of the roughly east-west oriented domes of the northern Black Hills, whose dimensions are 10 x 12 miles. In the center of the dome is the Cutting stock, a Tertiary granite porphyry, which intruded the Precambrian and Paleozoic rocks. The Deadwood Formation and other Paleozoic rocks have been domed and faulted by the Tertiary porphyry intrusions. Dikes of the porphyry intruded along many of the faults. The Precambrian rocks are not strongly faulted; the other deformations present are most likely due to the Tertiary intrusions (Noble, Harder and Slaughter, 1949; Slaughter, 1968).

The primary Precambrian rock structure in the Lead district (shown in Figure 3) is dominated by the Poorman anticline and the Lead syncline. The axial plane of the Poorman strikes a little west of north, dips east, and
FIGURE 4. Distribution of the pre-Cambrian sedimentary rocks and the metamorphic zones in those rocks in the Lead district. Large amphibolites are in solid black. Faults are shown by dashed lines. Poorman formation, pmf; Ellison formation, ef; Northwestern formation, nwf; Flag Rock formation, frf; Grizzly formation, gf; Homestake formation, cross hatched. (Noble, 1948). (Reprinted with permission of the Geological Society of America.)
plunges 25°SE. The limb between the Poorman anticline and the structure to the east, the Lead syncline, contains many very narrow smaller anticlines and synclines. To the east of these structures are the tight isoclinal folds of the Independence anticline, the De Smet syncline, the Pierce anticline, and the Caledonia syncline. All axial planes and fold limbs dip about 65°-70°E and the folds plunge southeast. The overall structural relationships of the region are those of minor folds related to the dominant Poorman anticline. Two features are not in accord with this relationship. The first is that axial planes west of the Pierce anticline strike northwest but axial planes east of this anticline strike north or northeast. The second feature is the crossfolding of the isoclinal axial planes (Figure 3). This crossfolding, like the isoclinal folding, was produced by slipping along shear planes. These folding types cannot always be distinguished from each other. The crossfolding may have been caused by the Tertiary intrusion (Figure 3).

FAULTING

Major faulting is not common in the area of the Homestake mine, but one fault near the eastern edge of the district has been traced throughout the full length of the area. It strikes a little west of north and dips steeply. Small faults have been mapped at many places in the mine. They also have a strike similar to the fault mentioned above and may dip steeply east or west.

CLEAVAGE

In most of the isoclinal folds, cleavage and bedding are straight and very parallel. However, four general types of relations between
cleavage, bedding, and shear planes are found: (1) on the limbs of isoclinal folds cleavage and bedding are parallel, (2) in other isoclinal folds a second cleavage set is inclined to the first set and the bedding, (3) isoclinal folds with cleavage and/or shear planes cutting the bedding (the intersection angles may range from a few degrees to 90° on the crest of the folds), and (4) some isoclinal folds have cleavage which intersects the bedding and shear planes, intersecting both of the other structural features (Slaughter, 1968; Noble, Harder and Slaughter, 1949).

MINE GEOLOGY

The ore bodies, confined primarily to the Homestake formation, are selective Precambrian and/or Tertiary age replacements of the sideroplesite cummingtonite schist. The ore is localized in certain parts of the Homestake formation by zones of relatively high permeability thought to be caused by cross folding. Nobel and others (1949) recognized six ore-bearing structures ("ledges"); in order of importance, they are: Main Ledge (Pierce anticline), 9 Ledge (Lead syncline), Caledonia, now worked out (Caledonia syncline), 7 Ledge (Lead syncline), 11 Ledge (Lead syncline), and 5 Ledge (DeSmet syncline) (Figure 5). More recent reports indicate that eight ledges have been, or are, under production. The synclines and anticlines containing the ore bodies are tight isoclinal folds dipping steeply east and plunging southwest. They probably developed by shear folding with the possibility that earlier transverse compression bending may have also contributed. Small faults have been mapped at many places in the mine. They strike a little west of north and dip steeply east or west. The six irregular pipelike, podlike, and lenselike ore bodies are localized in areas of a second stage of crossfolding, superimposed on the original isoclinal folds. The axial planes of the isoclinal and crossfolds
FIGURE 5. Relation of Ore Bodies to Structure. The outline of the Homestake Formation is shown on 2600 and 4100 levels. The changing relationship of the ore-bearing structures to each other brings about a marked shortening of total strike length of the whole group of folds. Ore is solid black, dikes are dotted. Poorman Formation, pmf; Ellison Formation, ef. (Slaughter, 1968)
intersect at angles of 20°-30° and less in some cases. The ore bodies occur at the intersections of shear planes of the second stage folding with either limbs or axial planes of the isoclinal folds. The 5 Ledge ore body in the De Smet syncline (Figures 6 and 7) best shows this ore localization.

MINERALIZATION

The ore bodies are hydrothermal replacements of the cummingtonite or sideroplesite schist to mainly chlorite with many veins and masses of quartz with minor amounts of pyrrhotite, pyrite, and arsenopyrite. The gold is found finely disseminated in the quartz. The age of the gold mineralization is still controversial. The usual opinion is that most of the gold mineralization is of Precambrian age with minor amounts introduced in the Tertiary (Slaughter, 1968; Noble, 1950).

MINE FACILITIES

The Homestake gold mine (illustrated schematically in Figure 8) is a multilevel mine with a volume of 44,200,000 cubic feet (E/MJ, 1976; Cobbs, 1976). There are two main shafts, the Yates and Ross Shafts, which reach 5000 feet underground. There are four winzes, No. 3, from the 4100 to the 5000 foot level; No. 4, from the 4850 to the 6800 foot level; No. 6, from the 4550 to the 8000 foot level; and the No. 7 winze, from the 6800 to the 8000 foot level. All ore and waste rock is brought to the surface by the shafts and winzes. (About 1000 mine employees are raised and lowered each day.) There are also four ventilation shafts.

Mining operations are conducted on 34 levels from 1700 to 8000 feet. Levels above 1100 feet (mostly worked out) are spaced 100 feet apart. Below this level, they are spaced at 150 foot intervals. There are now over 200
FIGURE 6. Cross-Folded Structures, 2600 Level. Ore-bearing parts of the Homestake Formation are solid black; non-ore-bearing parts are stippled. Poorman Formation pmf; Ellison Formation, ef. Dikes are dotted. Traces of axial planes of the folds are shown by dashed lines. Relative directions of displacements in the crossfolded zones are shown by arrows. (Slaughter, 1968)
FIGURE 7. Cross-Folded Syncline, 2300 Level. Ore-bearing parts of Homestake Formation are solid black; non-ore-bearing parts are stippled. Poorman Formation, pmf; Ellison Formation, ef. Trace of axial plane of syncline is shown by dashed lines. Tertiary dikes are dotted. (Slaughter, 1968)
FIGURE 8. Idealized Section of Homestake Mine (Homestake Mining Company, 1976)
miles of workings on all the levels (Figure 8). Drifts and crosscuts are 7' x 7' in the upper mine levels and 7.5' x 7.5' in the lower levels. The mining of the ore bodies is mostly by horizontal cut and fill stoping, since the rock is in most cases very competent (Figure 9). Timbered cut and fill stoping, shrinkage stoping, and blast hole stoping are also used. The mined-out stopes are back filled with 'sand' from mill tailings (Homestake Centennial, 1976; Homestake Annual Report, 1977). Removal of ore is done by the use of air rock drills (Jumbos), blasting, slushers, etc. The ore is then dumped into waiting ore cars. The mine has two rail haulage systems, an 18 inch track gauge for upper levels and a 30 inch track gauge for lower levels. Electric and compressed air locomotives are used to transport the ore to the shaft ore bins. The ore is then loaded into ore skips of 9-10 ton capacity and transported to the surface by high speed hoists. There are presently 250 miles of open drift, more than 125 miles of rail and 100-120 stopes in various stages of development.

In some mine areas, rock stability problems have resulted in the use of patterned rock bolting, e.g. the 19 Ledge area. The system is a 5 x 5 foot pattern of 5 foot rock bolts overlapped by 5 x 5 foot pattern of 8 foot bolts. The reasons for the rock stability problems are: (1) some rock is less metamorphosed, and (2) the ore bodies do not have a straight but an undulating plunge which results in fractures at right angles to the ore plunge. When horizontal openings are cut in ore which plunges 30°-40°, the fractures tend to knit together, but when the plunges reach 85°, the rock is much less stable. Rock stability decreases with depth, requiring more rock bolting, chain link fencing, steel mats, and timbering to support this pressure (Homestake Centennial, 1976; Homestake Mining Annual Report, 1977).
FIGURE 9. Cross section of 9-Ledge structure, showing Open Cut-and Fill Stoping. (Homestake Mining Company, 1976)
MINE VENTILATION

Rock surface temperatures at deeper levels reach more than 130°F, accompanied by mine air of high humidity. Ventilation is accomplished by the shafts mentioned above and the use of large ventilation fans, vent tubes, and portable 30 and 60 ton air refrigeration units. As of 1976, 800,000 to 900,000 cubic feet of air was removed per minute. A new water chilling ventilation system (water at 42°-45°F) is now being tested for use at the deeper mine levels.

EXPLORATION AND DEVELOPMENT

CRIB 1974 reports that in 1973, 22,634 feet of drifting and 8150 feet of raising were completed. E/MJ, May 1976, states that drifting was to be accelerated to 67,000 feet per year, and that in 1975 the following improvements were made at the 5900 and 6800 foot levels: track drifting, 2000 feet; diamond drilling, 6500 feet; conventional raising, 318 feet; and borehole raising, 554 feet.

In 1977, mining continued in the Main, 7, 9, 11, 12, 13, 19, and 21 Ledges between the 1700 and 6800 foot levels. There were 107 active stopes at the year end. New ore was found in the upper levels of 9 Ledge and in the 12, 19, and 21 Ledges between the 5600 and 7100 foot levels. Drifting was completed between No. 6 and No. 7 shafts on the 7100 foot level. The amount of diamond drilling for the year was 72,000 feet. Drifting was being done on the 7400 and 8000 foot levels also, and No. 7 shaft was being extended from the 7100 to the 8000 foot level (Homestake Mine Annual Report, 1977).
ORE RECOVERY AND RESERVES

The Homestake mine has been in continuous operation since 1876. From that time to 1976 the total production was 1.15×10^8 tons of ore milled. Present production is $5200-5500$ tons per day.
REFERENCES

CRIB 1979

Engineering and Mining Journal, 1976 v. 177.

Hendrix, T., 1962, Guidebook, Field Geology in the Rocky Mountains (Geology G 429), Indiana University, Bloomington.

THE DUCKTOWN DISTRICT
(Cities Service Co.)

LOCATION

The Ducktown District (Copper Basin) is located in the extreme southeast corner of Tennessee in Polk County in a topographic basin somewhat greater than 100 square miles. Elevations in the basin range from 1500-1800 feet above sea level with the encircling mountains rising to 4200 feet above sea level. The latter are heavily wooded but the cover in the basin has been almost completely removed in a 36 square mile area.

The mines are located a few miles from the towns of Ducktown and Copperhill at 35°N, 84°20'W (Figure 1). The ore deposits outcrop along resistant ridges striking northeastward and occur as massive tabular sulphide bodies, ranging in size from 250,000 tons to 20 x 10^6 tons (Magee 1968).

REGIONAL GEOLOGY

Lithology

The regional geologic map (Figure 2) and the stratigraphic sequence of the Ducktown District (Table I) are taken from Magee (1968). The Athens shale and Knox Group of Ordovician age occur 15 miles northwest of the district. The Great Smoky fault zone separates them from the underlying early Cambrian Chilhowee Group (sandstone, shale, and conglomerate). The Precambrian Sandsuck formation (quartzites, phyllites, impure limestone, liny shale) of the Walden Creek Group unconformably underlies the Chilhowee Group.

The older Great Smokies Group conformably underlies the Walden Creek Group and is composed of interbedded metagraywackes, conglomerates, mica schists, quartzites, chlorite-garnet schists, and chlorite-garnet-staurolite
FIGURE 1. Location maps - Ducktown District, Polk County, Tennessee. Lower map, basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Regional Geologic Map of the Ducktown Area, compiled from the Geologic Map of Tennessee, 1966 (25); Tennessee Copper Company map, 1947; Hurst, V.J. (11, 12, 16); Hermon, R.M. (21) (Magee 1968).
<table>
<thead>
<tr>
<th>Age</th>
<th>Series</th>
<th>Group</th>
<th>Northwest formations</th>
<th>Southeast formations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordovician</td>
<td>Chickamauga</td>
<td></td>
<td>Athens Shale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Undifferentiated</td>
<td></td>
</tr>
<tr>
<td>Cambrian</td>
<td>Chickamauga</td>
<td></td>
<td>Mero Sandstone</td>
<td>Mostly Quartzite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickles Shale</td>
<td>Andrews Schist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Murphy Marble</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brasstown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tusquitee Quartzite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nantahala Slate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walden Creek</td>
<td></td>
<td>Sandesek</td>
<td>Conformable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disconformity</td>
<td></td>
</tr>
<tr>
<td>Precambrian</td>
<td>Great Smoky</td>
<td></td>
<td>[14]</td>
<td>Dean</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hughes Gap</td>
<td>Hughes Gap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slaty Unit</td>
<td>Hot House</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Copperhill</td>
<td>Copperhill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit A</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Stratigraphic sequence across the Ducktown Region of the Great Smoky Mountains (Magee 1968).
The rock types in the district are metamorphosed Precambrian sediments composed of 60 percent graywacke, 30 percent mica schist, and 10 percent metaconglomerate (meta-arkose, quartzite, chlorite-garnet schists, and chlorite-garnet-staurolite schists). Thicknesses of the metagraywackes range from a few feet to greater than 500 feet. Mica schist beds are a few inches to 20 feet thick but sometimes exceed 200 feet.

Metamorphic intensity and structural complexity increase across the Great Smoky Group from west to east.

Structure

Intense deformation and recrystallization have occurred in the area. There are two major northeast plunging folds - the Burra anticline and the Coleman syncline each of which contain smaller superposed folds. General schistosity and bedding dip from 45°-80° southwesterly and the general strike is N35°E. Small domes and basins, which may have influenced ore localization, are found in the central anticlinal area. Schists are strongly foliated and crinkled. The angle between schistosity and bedding is 0°-15° but may be greater in fold noses. The metamorphism ranges from the chlorite to kyanite grades, i.e., between low to high grade metamorphism; retrogressive metamorphism is also evident in the country-rock and ore. There are three major fault systems in the area. They strike N.E., N.W., and E.-W.

ORE DEPOSIT GEOLOGY

Ore bodies are usually of tabular shape, conforming to the regional strike and dip of the bedding. They plunge southwest in contrast to the
northwest plunge of the major anticlinal bodies. The three regional fault systems are evident in the ore bodies along with fracturing and smaller faults; crossfaulting is evident associated with the smaller ore bodies. Most ore levels and tabular bodies have a sharply-defined footwall, usually of unaltered graywacke. The hanging wall is usually schistose rock, which may be somewhat incompetent (Figures 3 & 4). Two modes of ore emplacement have been proposed: (1) hydrothermal replacement of limestone lenses (Emmons and Laney, 1926), and (2) hydrothermal replacement of favorable zones in lime-bearing schistose layers and shear breccia (Magee 1968). The latter view is presently favored.

HYDROLOGY

Nothing definite has been found in the literature with respect to water tables or percolation in the area. However, reports from Acres (1975) and Thomas Lomenick (personal communication) indicate that there is considerable water inflow in the mines since continuous pumping is necessary when operating.

MINE FACILITIES

The presently operating workings are owned and operated by Cities Service Company (110 West 7th Street, Tulsa, Oklahoma). The mine and plant at Copperhill, Polk County, Tennessee employ 2,150 men.

Underground mining is by long hole blasting. Present production is 53 tons of copper metal/day (World Mines Register 1979-80). As of 1978, there were five shafts; mining is by open stoping, haulage is by rail (International Directory of Mining and Mineral Processing Operations, 1978). The Minerals Yearbook of Tennessee (1975) states that Cu metal production was
FIGURE 3. Cross sections of the Boyd and Eureka ore deposits. The drag fold pattern of the Boyd ore body is evident (Magee, 1968).
FIGURE 4. Horizontal plan views of the Boyd and Eureka ore deposits (Magee, 1968). (Reprinted with permission of AIME, New York.)
then at a rate of 10,041 lbs./year and that the company's Copperhill operations included four mines (Boyd, Calloway, Cherokee, and Eureka Mines) at depths of 1000-3000 feet underground.

In 1965 five mines were operating with some operations at 2400 feet depths (Lloyd, 1965).

At present, it is not possible to determine from the literature the abundance or extent of underground workings in the schistose rock at Ducktown. For that reason the district is considered to be in "class 2" in this report.
REFERENCES

World Mines Register 1979-80.
LOCATION AND ACCESSIBILITY

The Holden mine in Chelan County, Washington, is situated at 48°12'N, 120°45'W, on the east slope of the Cascade Mountains on Railroad Creek, which flows eastward into Lake Chelan (Figure 1). The mine was Washington's largest producer of copper, gold, and zinc from 1938-1958. Silver, molybdenum, and other metals have also been mined. The ground facilities are now owned and operated by the Lutheran Church as a camp and retreat center. The mine was owned by Howe Sound Co. and is presently owned by the Lutheran Church.

The Holden mine is located at 3435 ft. elevation, in a rugged mountainous region with relief of 6000 ft. or more between valley floors and ridge tops. All of the valleys show evidence of glaciation. The mine is reached by a 40 mile boat or airplane trip from Chelan to Lucerne, a small resort community on the west shore of Lake Chelan, and thence by automobile 11 miles from Lucerne to Holden.

GEOLOGIC SETTING

The geologic description of the region is based principally on work by Youngberg and Wilson (1952), and also on reports by Grant (1969), and Tabor and Crowder (1969). The Holden mine is situated in gneiss, schist, and quartzite of a roof pendant cut by intrusive igneous rocks.

The oldest units whose ages are in the range Precambrian to Early Paleozoic are metasedimentary rocks of the pendant. They were divided by Youngberg and Wilson (1952) into three formations: the Martin Ridge and Buckskin schists, and Fernow gneiss; these are illustrated in Figure 2. The Martin Ridge schist is an argillaceous amphibole schist with alternat-
FIGURE 2. Geology of the Holden area (from Youngberg and Wilson, 1952).
ing bands of quartzite which vary in thickness to two inches. A persistent marble bed occurs above the contact of the Buckskin with the Martin Ridge formation. This bed varies in thickness from 2-10 feet. The total thickness of the Martin Ridge schist is about 3300 ft. The Buckskin schist is predominantly quartz-amphibole, but contains two horizons of intermittent marble beds and calcareous schists. In some areas the schist has been altered. The formation has a thickness of 3000 to 3500 feet. The Fernow gneiss has an appearance of granitic gneiss, but is made up of a thick series of quartz-amphibole gneisses. The total thickness of the formation was not reported. Youngberg and Wilson (1952) state,

"The sequence of deposition of the sediments is not clear. It would appear that the gneissic rocks of the Fernow unit are older than the less metamorphosed Buckskin schists and Martin Ridge argillites, which would require the beds to be overturned, as the Fernow gneisses now lie stratigraphically above the Buckskin and Martin Ridge schists."

The igneous rocks of the region are numerous and occur as plutons, dikes, sills, stocks, and extrusives. They vary in age from Jurassic to Pleistocene with three principal episodes during the Cenozoic. The compositional range of the intrusive rocks is broad, including peridotite, diorite, granodiorite, and aplite dikes. The three phases of Cenozoic igneous activity, as described by Tabor and Crowder (1969), are the quartz diorite Cloudy Pass batholith; andesitic to dacitic breccia, tuff, and lava of Gammo Ridge; and in late Pleistocene and Recent time, the growth of the dacitic Glacier Peak volcano, 15 miles southwest of Holden mine.

The peridotites are generally coarse-grained, massive, and hornblende-rich. They occur as dikes and elliptical bodies and cut the mine workings
at several levels. They are Jurassic in age, the oldest intrusives in the mine area.

The quartz-hornblende diorite varies in texture from medium to coarse grained and occurs as a massive body to the south of the mine ore zone. Youngberg and Wilson (1952) report the intrusive and the metamorphics around its periphery show evidence of granitization, biotization and chloritization.

The dioritic rocks, the most common plutonic rocks in the area, were intruded in two phases. The first phase, the Chelan batholith, which is Cretaceous in age, crops out on the surface east of the Holden mine area; a dike of Chelan diorite is exposed in the 1500 and 1600 foot levels of the mine. The second phase, the Cloudy Pass batholith, was emplaced in the Tertiary and is similar in composition to the Chelan batholith. It is exposed west of the mine, and at several levels in the mine, as are Cloudy Pass dioritic dikes.

Aplite and other dikes cut the dioritic rocks at numerous places in the mine. They are fine grained and vary in width from an inch to a yard. Other dikes are granodiorite and quartz diorite in composition and have chilled borders.

STRUCTURAL SETTING

The regional structure of the Holden mine and north Cascade area was described by Grant (1969) and Youngberg and Wilson (1952). The structural trend in the Holden mine area, part of the North Cascades, is predominantly northwesterly. The metamorphic rocks form the lower limb of an overturned fold with a northwest trending axis. Several small drag folds are present and some are overturned. The ore deposits are contained in the drag folds and are limited by the extent of folding. The fold axis plunges at about 60° southeast.
The region is transected by both normal and thrust faults. Figure 3 illustrates the broad regional structural trends and major faults. The Swamp Creek thrust fault is located west of the mining area, and the Lake Chelan transverse fault occurs south of the mine. Displacement on some of the normal or steeply dipping faults ranges from 60 to 1500 ft. Shear zones, which are the principal loci of mineralization, formed between the competent and incompetent metasedimentary units.

MINE GEOLOGY AND MINERALIZATION

The Holden mine ore deposit is in a roof pendant that has been intensely metamorphosed and overlies batholithic rocks. The pendant is made up of gneiss, schist, and quartzite, and is cut by granitic dikes. The rock is hard and abrasive and the geology complex. The deposits are of hydrothermal origin (Park, 1968) and are associated with the Cloudy Pass dioritic intrusions.

An idealized cross-section of the ore deposits and geology of the mine showing the 1400, 1500, and 1600 foot levels is illustrated in Figure 4. The copper-gold-silver ores are disseminated in the biotite schist and quartzite of the roof pendant. Ore minerals also occur in small quantities in the diorite. There are some masses of sulphide minerals, but, in general, the ore minerals are present as small scattered grains. The molybdenum primarily occurs in well-defined quartz veins cutting granitic rocks. Zinc mineralization is concentrated near the footwall of the ore body. Copper and gold are distributed throughout without any apparent relationship to levels or geologic structure. There has been little or no alteration of the host rocks at their contact with the veins.

The zone of mineralization has an average strike of N30°W with a dip of 60°-70°SW. The ore zone is 40 to 75 ft. wide and has an exposed length of 1400 to 1600 ft.
FIGURE 4. Idealized geologic cross section of the Holden ore body, showing ore zoning and its relationship to the wallrocks and intrusions. (After Youngberg and Wilson, 1952.)
MINE CHARACTERISTICS

The mine is located below the groundwater table; however, several workings are in dry areas. The mine extends to a depth of 5200 ft.

Workings consist of a main adit, two shafts, a ventilation shaft, and over 18,000 ft. of workings at more than sixteen levels. The main adit is on the 1500 foot level, is 10 x 10 ft. in cross-section, and extends 4800 ft. into the mountain (Figure 5). The original mine development included several intermediate levels serviced by the No. 1 shaft, a vertical shaft about 936 ft. deep. These levels were connected by several main ore passes extending above the main haulage level. A second 4-compartment shaft, sunk in 1941-44, has a cross-section of 12 1/2 x 19 ft. The hoistroom for the No. 2 shaft is in good rock and has dimensions of 100 x 50 x 40 ft. The No. 2 shaft was driven as a raise full size for 170 ft. above the main haulage level. Below this level, a series of pilot raises were driven, connecting the 1500, 1600, 1775, and 1950 foot levels and the shaft was sunk to the 2800 foot level. There is a ventilation tunnel that extends westward from the No. 2 shaft for about 5000 ft. This tunnel is about 8 x 10 ft. in section and portals to the surface. There are at least 247,566 ft. of drifts, cross-cuts, and raises, and 231,922 ft. of diamond drill holes (Huntting, 1956). The mine has been closed since 1958; however, recent exploration work, in mid-1960's and mid- to late- 1970's, indicates that many levels are accessible and dry. Levels below 1400-1500 ft. are flooded.

MINE FACILITIES

According to V.C. Stephens, consultant to Terra Tek, who managed the mine in the 1950's, the Holden Campsite is a beautiful camp consisting of sixteen large houses, six bunkhouses, hospital, large cookhouse and dining
FIGURE 5. Geologic structure of a west-east section of the Holden Mine, showing mineralization, mine levels, and No. 2 shaft. (After Youngberg and Wilson, 1952.)
facilities, and a large recreation hall. The campsite is owned and operated by the Lutheran Church. Dock, tug, barges, and all necessary facilities are available on Lake Chelan, both at the town of Chelan and the village of Lucerne, Washington.
REFERENCES

SUNRISE MINE
(OPERATED BY COLORADO FUEL AND IRON CORPORATION)

LOCATION

The Sunrise mine is located in the Hartville-Sunrise district of Platte County, Wyoming, (Figure 1) approximately 7 miles north of Guernsey and 100 miles northeast of Cheyenne at 42°20'N, 104°42'W. The surface elevation is about 4870 feet, with several hundred feet of local relief.

GEOLOGIC SETTING

Regional

The data describing the regional geologic setting were extracted from Carter (1963), Harrer (1977), and EMJ (1974).

The Precambrian rocks in the region, exposed in the Hartville uplift (oldest to youngest), are represented by the Whalen Group, which consists of the following sequence: Federick schist, minimum thickness about 3000 feet; a massive blocky to schistose dark-green rock composed of quartz, chlorite, biotite, epidote, hornblende, and plagioclase, possibly an altered pyroclastic or series of lava flows; Whalen dolomite, thickness 400 to 2000 feet; a white to pink dolomite marble, cherty in places, with minor bands of quartzite and schist; Good Fortune schist, 500 to 1000 feet thick; a white to dark-gray quartz-sericite schist, often highly graphitic and pyritic; and the "Upper Blocky" schist, up to 100 feet thick, a dark-greenish blocky quartz-biotite-chlorite schist. The entire Whalen Group has been isoclinally folded and regionally metamorphosed to approximately the greenschist facies.
FIGURE 1. Location map of the Sunrise Mine, Platte County, Wyoming. Basic map reproduced by permission of the American Automobile Association, copyright owner.
Limestone and quartzite of the Carboniferous Guernsey and Hartville Formations cap the higher hills and mesas. Sandstone of the Miocene Arikaree Formations is present sporadically in the valleys. Figure 2 is a geologic map of the region.

Local Geologic Setting

The large hematite iron-ore bodies in the Hartville-Sunrise district are within a folded and faulted belt of steep to vertically dipping metasediments of Precambrian age that crop out along the east edge of the Hartville domal uplift between Guernsey and McCann Pass, seven miles northeast. Much of the iron formation is under a flat to gently dipping cover of Paleozoic limestones - dolomites, quartzites, and sandstones. The iron ores are principally red, earthy hematite and hard, steel-gray to bluish-black specular hematite. Wall rock contacts vary from gradational to sharply defined. Bands of gangue and low-grade hematite occur in the ore bodies and require separation. The schist walls are weak and cave readily.

At the Sunrise mine, the main ore body is an S-shaped lens in plan view, 50 to 600 feet thick and 1600 to 2100 feet long, occurring in a tight synclinal fold with a general south plunge. The hematite occurs in the lower part of the Good Fortune schist, usually close to the Whalen dolomite contact. It should be noted that the rocks at the Sunrise mine are apparently low-grade metamorphics.

Mine Facilities

Data concerning the mine facilities were extracted from EMJ (1974) and Harrer (1966).
FIGURE 2. Geologic map, vicinity of Sunrise, Wyoming. (Carter, D.A., Sunrise Iron Mine, Wyoming, p. 264-266, Figure 1. From: Guidebook to the Geology of the Northern Denver Basin and Adjacent Uplifts, 1963, Rocky Mountain Association of Geologists, Denver.)
The Colorado Fuel and Iron Corporation acquired the Sunrise mine property in 1900. The mine was operated as an open pit until about 1930, when the mine was gradually converted to underground block caving with some sublevel caving. Approximately 500,000 tons of concentrates are currently produced annually at the Sunrise mine.

The deepest development is on the main ore body of the Sunrise mine. In 1966, mining was being conducted 750 feet below the surface, with known reserves continuing to greater depths.

As of 1974, new mine projects have been underway to enhance the mine's capabilities. While production has been coming from the seventh and third levels, another associated but separate ore body is also under development on the seventh level. Access to this area is being developed by a decline equipped with conveyor belt haulage. A ventilation shaft 9 feet in diameter was completed in 1974.

Block caving was introduced at Sunrise in 1929. Blocks 350 ft. sq. by 200 ft. high are undercut and blasted. Ore is then drawn out through a pattern of finger raises below the undercut level, as shown in Figure 3. Approximately 3600 tons of ore are hoisted daily to the surface by two 10-ton capacity skips.
FIGURE 3.

GENERALIZED SECTIONS OF SUNRISE MINE OPERATIONS

(Eng. Mining J. v. 175, (11), p. 151, 1974)
REFERENCES

Bull. 315, Part 1, p. 190-205.

Carter, D.A., 1963, Sunrise Iron Mine, Wyoming, in: Guidebook to the Geol-
ogy of the Northern Denver Basin and Adjacent Uplifts, Rocky Mountain
Association Geologists, 14th Field Conference, 1963, Denver, Colorado,
p. 264-286.

Engineering and Mining Journal, 1974, CF&I's Underground Sunrise Mine Sup-
plies Pueblo Mills: EMJ, v. 175(11), p. 151-152.

Circ. 8315, p. 39-42.

MAS data base.

Rupp, G.H., 1939, Block Caving at the Sunrise Iron Mine, Wyoming: AIME
INTRODUCTION

Large underground galleries and related shafts and tunnels comprise several hydroelectric generation facilities. Where they are described in the literature, the geologic settings of these facilities are usually treated in less detail and the engineering aspects given greater coverage than those of mines, because lithology and structural setting are key factors in ore location. Hydroelectric facilities incorporating underground galleries are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies.

Among hydroelectric installations, pumped storage facilities often utilize underground powerhouses. In 1974 there were 25 pumped storage facilities in the United States with 10 more under construction (Stout, 1974). In this section of the report, we briefly describe as examples two pumped storage sites in crystalline rock; Bad Creek of South Carolina in granite and Helms of California in quartz monzonite: which may contain openings accessible for in situ tests. The Dworshak dam site, Idaho, in gneiss, is also described. At Dworshak, test adits in the abutments of the dam and a large underground crushing chamber may still be accessible.

Also considered in the category of civil works is the underground spent-fuel test facility, presently under construction at the Nevada Test Site.

To assess the number, location, and availability of openings in underground hydroelectric projects, it will be necessary to contact the appropriate governmental agencies, utility companies, and/or company associations such as the Electric Power Research Institute.
REFERENCE

CIVIL WORKS

HELMS UNDERGROUND POWERHOUSE - PUMPED STORAGE PROJECT
(Pacific Gas and Electric Co.)

LOCATION

The Helms project of the Pacific Gas and Electric Co. (PG&E) is located on the North Fork of the Kings River, about 60 miles east of Fresno, California, at 37°02'N, 118°58'W, the project location is shown in Figure 1. The pumped-storage project is expected to ultimately produce 1000 MW. The underground powerhouse, as shown in Figure 2, is situated between two reservoirs: Courtright, at an elevation of 8200 feet; and Wishon, at 6550 feet (a profile of the project is shown in Figure 3). The depth to the powerhouse is approximately 1000 feet.

GEOLOGIC SETTING

The geologic setting of the Helms project area was mapped by Bateman (1965). The predominant rock unit is the Dinkey Creek hornblende granodiorite (Kdc in Figure 3). The Dinkey Creek pluton of the Sierra Nevada batholith is of Cretaceous age, and covers several hundred square miles. A small pluton, the lineated quartz monzonite of Lost Peak (Klp), intruded the Dinkey Creek granodiorite. The Dinkey Creek granodiorite is in contact with a more felsic pluton, the Mt. Givens quartz monzonite (Kmg), at the vicinity of the dam impounding Courtright Reservoir. A pendant of pre-batholithic quartzite (Qte) lies just south of, and above, the underground powerhouse workings. The workings are reportedly outside the zone of poor rock conditions associated with the contact between the granodiorite and the quartzite (Haimson, 1976). Bateman’s map (1965) indicates that the foliation of the Dinkey Creek granodiorite in the vicinity of the powerhouse strikes northwesterly and dips nearly vertically.
FIGURE 1. Location of Helms Project in California, 60 miles east of Fresno. Basic map reproduced by permission of the American Automobile Association, copyright owner.
PLÁN AND PROFILE
HELMS PUMPED STORAGE PROJECT

LEGEND:

Klp - Lineated Quartz Monzonite of Lost Peak
Kmg - Mt. Givens Quartz Monzonite and Granodiorite
Kdc - Dinkey Creek Granodiorite
Qte - Quartzite

(Geology after Bateman, 1965)
Geotechnical parameters are listed in Table 1. Rock structure and rock properties in this table were obtained from the paper by Haimson (1976). Thomas Doe, staff hydrogeologist at LBL, as a student of Haimson at Wisconsin, participated in field investigations at the Helms Project. Discussions with Doe indicate that, since the Helms pumped-storage project is still under construction [Summer, 1979], there may be access at present and in the near future for further studies of the mechanical and hydrologic properties of the granodiorite. It is also possible that discussions with PG&E may indicate that some openings will be accessible for long-term studies.
TABLE 1

Structure - Cubic joint system (2-8 m spacing)

Rock Properties - $\sigma_{\text{unc}} = 1-1.3$ kb, $E = 4-8 \times 10^5$ bars, $\nu = 0.2-0.3$, tensile strength = 100-150 bars

Stress - $\sigma_H(\text{max}) = 95$ bars, N25°E
$\sigma_H(\text{min}) = 54$ bars, N65°W
$\sigma_V = 82$ bars

Hydrology - below water table

Project Characteristics

Depth - 300 m

Volume - 98 m x 25 m x 36 m = 88,000 m3 (powerhouse), 93 m x 15 m x 15 m = 21,000 m3 (transformer chamber).

(Data from Haimson, 1976).
REFERENCES

LOCATION

The Dworshak Dam site is located on the North Fork of the Clearwater River, near the town of Orofino, Idaho (≈40 miles east of Lewiston), at 46°31'N, 116°18'W (Figure 1). The dam, with a crest length of ≈3000 feet and a height of 673 feet, was completed in 1972. It was built by the U.S. Corps of Engineers and is presently under the jurisdiction of the Bureau of Reclamation.

Prior to construction, rock-mechanics tests were done at depths of 300 to 700 feet in adits in the abutments to determine in-situ deformation properties (Deere and others, 1969). Some of these workings may still be accessible as well as a large "glory hole" and underground crushing facility for preparation of concrete aggregate from dam-site crystalline rock.

GEOLOGIC SETTING

The geologic setting of the region surrounding Dworshak Dam was described by Johnson (1947) and is illustrated in Figure 2. The rock at the site is granodiorite gneiss of the Orofino Series, considered by Johnson to have originally been a siliceous sedimentary rock of Beltian (Late-Precambrian) age, metamorphosed in the Mesozoic to its present crystalline form by hydrothermal solutions associated with the Idaho Batholith. The granodiorite gneiss is schistose and banded, its color is light to moderate gray, its granularity ranges from fine to coarse. Microscopic examination is needed to distinguish the granodiorite gneiss from hornblende and biotite quartz-diorite gneisses which also occur in the region. Occasionally quartz veins and basaltic dikes
FIGURE 1. Dworshak Dam Site in Idaho, approximately 40 miles east of Lewiston. Basic map reproduced by permission of the American Automobile Association, copyright owner.
FIGURE 2. Geologic map of the Orofino region, northern Idaho
cut the granodiorite gneiss. Petrographic examinations reported by Deere and others (1969) showed that the dam-site gneiss was foliated with biotite flakes aligned parallel to the foliation. Johnson (1947) observed that bedding in the Orofino Series was not completely obliterated by metamorphism. Regional strike ranges from nearly east-west to N45°W; dips are to the north and vary from 15° to nearly vertical. At the site, foliation strikes roughly parallel to the cross-stream axis of the dam, and dips ~50° upstream. A prominent joint set dips at ~90° to the foliation.

Rock-property data is summarized from in-situ and laboratory measurements at depths of 300 to 700 feet by Deere and others (1969):

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconfined compressive strength</td>
<td>23500 psi</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>1000 psi</td>
</tr>
<tr>
<td>Tangent modulus</td>
<td>4.05 x 10^6 psi at an axial stress of 130 psi</td>
</tr>
<tr>
<td>Dilatational wave velocity</td>
<td>12,340 ft. per second</td>
</tr>
</tbody>
</table>

Because of the possibility of access to test adits and the glory-hole-crusher workings, their availability for in-situ mechanical and hydrologic testing in crystalline rock at appropriate depths should be investigated.
REFERENCES

LOCATION

The Climax Stock at the Nevada Test Site (NTS) is located approximately 5 miles from Area 12 camp, 40 miles north of Mercury, Nevada, and 90 air-line miles northwest of Las Vegas, Nevada, at 37°14'N, 116°04'W. Figure 1 is a location map showing the Climax Stock, NTS and geographical landmarks.

GEOLOGIC SETTING

Data for these sections were extracted from Terra Tek (1975), Eckel (1968), and Ramspott (1978).

The generalized geologic setting is illustrated in Figure 2, which includes a cross section through the Climax Stock.

The NTS site is located on the northeast side of the Las Vegas-Walker Lane shear zone in a region of thick Paleozoic miogeosynclinal sedimentary accumulation. Sedimentary rocks account for approximately 30 percent of the outcrops in the region, while the remainder consists of intrusives overlain by volcanics. Regional structure is expressed in generally north trending mountain ranges in the northern part of the NTS. Several different geologic settings occurring in the region are characterized as follows:

1. Mesozoic intrusives are represented by the granodioritic quartz monzonite Climax and Gold Meadow Stocks, each exposed over several square miles.

2. The Ranier and Pahute Mesas are examples of a thick sequence of Tertiary volcanics overlying an eroded Paleozoic sedimentary basement. The Tertiary volcanics range up to 5,000 feet in thickness and may be capped by a resistant welded tuff. The tuff units range from ash-flow and ash-fall tuffs to highly welded tuffs.
FIGURE 1. Location map - Climax Stock, Nye County, Nevada. Base map used with the permission of the Nevada Department of Transportation.
FIGURE 2. Generalized geologic map of the Yucca Flat area and cross section through the Climax Stock. Unpatterned areas are surficial deposits. (Hinrichs, 1968). (Courtesy, the Geological Society of America.)
(3) Alluvial valleys are characterized by a thick sequence of underlying sedimentary rocks. At Yucca Flat the alluvium and tuff reach a thickness of 3,500 feet, and overlie Paleozoic carbonate rocks and some intrusives at depth.

The geologic structure of the region is somewhat typical of the Basin and Range province: alluvial valleys bounded by high angle normal faults. Normal faulting associated with volcanic structures occurs beneath the alluvial valleys. Several major thrust faults have been identified as significant features with respect to the distribution and movement of ground water.

A great deal of geological and geophysical work has been performed at NTS, in the form of geological mapping, joint frequency maps, geophysical borehole logging, and gravity, magnetic and seismic surveys. Much of this work has been summarized in a compendium of reports (Eckel ed., 1968).

The area is located in earthquake zone 2.

Climax Stock

The underground opening being considered as a candidate site is located in the Climax Stock. As shown on Figures 2 and 3, the stock, of Mesozoic age, intruded Precambrian and Paleozoic clastic and carbonate rocks. Geophysical evidence suggests that the Climax stock expands conically from a surface area of several square miles to an area of approximately 60 square miles at a depth of three thousand feet. The Climax stock is structurally controlled, elongate in the north-south direction, and bounded on the east and west by faults. Minor faults transect the intrusive joints typically spaced from several inches to several feet apart. The 420 m level is apparently above the regional water table, and the rock at that level appears to be unsaturated. Approximately 1 to 2 wt % water is localized in fractures and pores.
Laboratory tests of rock properties of the Climax Stock granodiorite and quartz monzonite, conducted by the Lawrence Livermore Laboratory are summarized in Table 1 and figures 4 and 5.

Underground Opening Facilities

The layout of the underground facilities and the current testing program have been described by Ramspott (1979). The shaft and tunnel complex previously constructed for the PILEDRIVER underground nuclear test, are presently being utilized for a spent fuel test facility. As shown in Figure 6, further excavation on the 420 m level has been done by Lawrence Livermore Laboratory in preparation for the spent fuel tests.

Mechanical equipment at the site includes hoist and ventilation apparatus to service the 1,400 ft. shaft and drifts on the 420 m level.
Table 1

Summary of Laboratory Tests on Climax Stock Quartz Monzonite

Physical Properties

<table>
<thead>
<tr>
<th>Sample Source</th>
<th>G-1</th>
<th>G-2</th>
<th>Large Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulk Density (gm/cm3)</td>
<td>2.635 ± .036</td>
<td>2.723 ± .027</td>
<td>3.221 ± .716</td>
</tr>
<tr>
<td>Grain Density (gm/cm3)</td>
<td>2.635 ± .036</td>
<td>2.723 ± .027</td>
<td>3.221 ± .716</td>
</tr>
<tr>
<td>Total Porosity (%)</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Permeability (µd)</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Thermal Properties

<table>
<thead>
<tr>
<th>Versus Temperature</th>
<th>G-1</th>
<th>G-2</th>
<th>Large Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (watt/m·°C)</td>
<td>3.6</td>
<td>3.7</td>
<td>2.92 @ 25°C</td>
</tr>
<tr>
<td></td>
<td>2.76 @ 100°C</td>
<td>1.95 @ 200°C</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties

<table>
<thead>
<tr>
<th>Versus Stress (GPa)</th>
<th>G-1</th>
<th>G-2</th>
<th>Large Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ σ$_3$ = 0 MPa</td>
<td>0.20 ± .03</td>
<td>0.20 ± .03</td>
<td>0.275 ± .007</td>
</tr>
<tr>
<td>@ σ$_3$ = 3.4 MPa</td>
<td>0.282 ± .044</td>
<td>0.337 ± .027</td>
<td>0.452 ± .016</td>
</tr>
<tr>
<td>@ σ$_3$ = 6.9 MPa</td>
<td>0.275 ± .007</td>
<td>0.337 ± .027</td>
<td>0.452 ± .016</td>
</tr>
<tr>
<td>@ σ$_3$ = 10.3 MPa</td>
<td>0.275 ± .007</td>
<td>0.337 ± .027</td>
<td>0.452 ± .016</td>
</tr>
<tr>
<td>@ σ$_3$ = 20.7 MPa</td>
<td>0.275 ± .007</td>
<td>0.337 ± .027</td>
<td>0.452 ± .016</td>
</tr>
<tr>
<td>@ σ$_3$ = 41.4 MPa</td>
<td>0.275 ± .007</td>
<td>0.337 ± .027</td>
<td>0.452 ± .016</td>
</tr>
</tbody>
</table>

Young's Modulus (GPa)

<table>
<thead>
<tr>
<th>Stress (MPa)</th>
<th>G-1</th>
<th>G-2</th>
<th>Large Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ σ$_3$ = 3.4 MPa</td>
<td>48 ± 5</td>
<td>51 ± 5</td>
<td>66.7 ± 5.9</td>
</tr>
<tr>
<td>@ σ$_3$ = 3.4 MPa</td>
<td>48 ± 5</td>
<td>51 ± 5</td>
<td>66.7 ± 5.9</td>
</tr>
</tbody>
</table>

1. Taken from previous test results on G-1 and G-2 core.
2. Not pressure dependent in the range of 0 to 34.5 MPa.

Pratt (1979b)
<table>
<thead>
<tr>
<th>σ_3 (MPa)</th>
<th>G-1 Static</th>
<th>G-1 Dynamic</th>
<th>LARGE CORE Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>54.4 ± 5.1</td>
<td>54.4 ± 5.1</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>61.8 ± 7.0</td>
<td>61.8 ± 7.0</td>
<td></td>
</tr>
<tr>
<td>20.7</td>
<td>63.7 ± 6.4</td>
<td>63.7 ± 6.4</td>
<td></td>
</tr>
<tr>
<td>41.4</td>
<td>66.8 ± 1.9</td>
<td>66.8 ± 1.9</td>
<td></td>
</tr>
</tbody>
</table>

Poisson's Ratio

<table>
<thead>
<tr>
<th>σ_3 (MPa)</th>
<th>0 MPa1</th>
<th>3.4 MPa</th>
<th>6.9 MPa</th>
<th>10.3 MPa</th>
<th>20.7 MPa</th>
<th>41.4 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.21 ± .02</td>
<td>0.22 ± .02</td>
<td>0.35 ± .02</td>
<td>0.27 ± .06</td>
<td>0.31 ± .05</td>
<td>0.28 ± .05</td>
</tr>
<tr>
<td>Dynamic</td>
<td>0.240</td>
<td>0.253</td>
<td>0.245 ± .012</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bulk Modulus (GPa)

| | Static | Dynamic | |
|------------|--------|---------|
| Static | 53.2 | |
| Dynamic | 49.4 | 44.5 ± 4.4|

Ultrasonic Velocities

<table>
<thead>
<tr>
<th>Wave</th>
<th>G-1 Static</th>
<th>G-1 Dynamic</th>
<th>LARGE CORE Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-wave</td>
<td>6.058</td>
<td>5.767</td>
<td>5.501 ± .208</td>
</tr>
<tr>
<td>S-wave</td>
<td>3.541</td>
<td>3.317</td>
<td>3.185 ± .080</td>
</tr>
</tbody>
</table>

Tensile Strength (MPa)3

| | 16 ± 2 | 14 ± 2 |

3Brazil test.
FIGURE 4. Failure envelopes of both intact and fractured Climax Stock granodiorite under dry and saturated conditions 240-m level. (Heard, 1971).
FIGURE 5. Failure strength as a function of confining pressure for dry samples and samples with excess water. 240-m level. (Duba and others, 1974).
Canister access hole
Canister storage drift 4.6 m wide x 6 m high
South heater drift 3.4 m x 3.4 m
North heater drift 3.4 m x 3.4 m

Existing workings
New construction

0.6-m-diam x 6-m-deep storage holes
76-mm-diam x 6-m-deep heater holes
Instrumentation alcove
3.7 m x 3.7 m Tail drift

REFERENCES

Duba, A.H., Heard, H.C., Santor, M.L. 1974, Effect of Fluid Content on Mechanical Properties of Westerly Granite, Lawrence Livermore Laboratory, Livermore, Ca., UCRL-51626.

CIVIL WORKS

THE BAD CREEK PUMPED STORAGE PROJECT
(Duke Power and Light Co.)

LOCATION

The Bad Creek project of Duke Power and Light Co., described by Hester and Edmonds (1974), is located on the southeastern edge of the Blue Ridge escarpment, approximately 40 air miles WNW of Greenville in Oconee County, South Carolina, at 34°57′N, 83°04′W. As shown in the location map (Figure 1) and the cross section (Figure 2), the underground workings are immediately west of the Whitewater River arm of Lake Jocasee. The pumped-storage project's upper reservoir is formed by impounding Bad Creek and West Bad Creek at an elevation of 2310 feet; Lake Jocasee, at an elevation of 1110 feet, serves as the lower reservoir. The underground powerhouse is situated at a depth of 900 feet, its dimensions are 90 x 445 feet in plan, its height 130 feet.

GEOLOGIC SETTING

Geologic descriptions of the site are sparse in the open literature. According to Haimson (1976), the powerhouse chamber is excavated in the Toxaway gneiss, a medium- to coarse-grained, well-foliated rock. However, plotting the location of the project on the geologic map of the crystalline rocks of South Carolina (Overstreet and Bell, 1965) indicates that the underground workings are in the Whiteside granite of the Blue Ridge belt. Overstreet and Bell (1965) describe the Whiteside granite as typically faintly to strongly gneissic, but massive in some places. It is primarily a white to light-gray biotite-muscovite granite, but phases of muscovite granite, biotite granite, and, rarely, mica-free granite are also present.
FIGURE 1. Location map of Bad Creek Project in Oconee County, South Carolina (from Overstreet and Bell, 1965).
Figure 2. Vertical section through the waterways—Bad Creek Pumped Storage Project
FIGURE 3. Simplified geologic map of the Lake Jocasse area (Overstreet and Bell, 1965).

LEGEND

• Pb - Brevard fault zone
DOwg - Whiteside granite
DOhg - Henderson gneiss
DpGr - Hornblende gneiss
pGr - Hornblende schist and gneiss
pGs - Biotite schist and gneiss
Three principal directions of foliation in the gneiss were observed by Haimson and his co-workers (Haimson, 1976). Two foliation directions conform well to the direction of measured horizontal principal stresses. Rock properties are summarized from the paper by Haimson (1976) in Table 1.

Table 1

| Maximum horizontal stress: 228 bars at a depth of 230 m.; (direction N60°E) |
| Minimum horizontal stress: 159 bars (direction N30°W) |
| The third foliation direction is approximately E-W. |
| Vertical stress: 62 bars (roughly corresponds to overburden pressure). |

More detailed information on the geologic setting, resolution of the uncertainty in nomenclature of the bedrock at the Bad Creek site, as well as information on ease of access to, and availability of, underground workings for geotechnical tests, can only be obtained by discussion with company and government geologists.
REFERENCES

This bibliography includes all the references used to furnish information on individual civil works, mines or mining districts as listed at the end of each mine description. Also included are references pertinent to underground workings not in classes 1 and 2.

The bibliography, while large, is not exhaustive. It was compiled for the specific needs of this report.
BIBLIOGRAPHY

Acres American, Inc., 1978, Review of potential host rocks for radioactive waste disposal in the southeastern United States - southern Piedmont sub-region, Acres American, Buffalo, for Savannah River Laboratory, Aiken, South Carolina.

AIME, 1970, World symposium on mining and metallurgy of lead and zinc.

Anderson, A.L., 1946, Lead-silver mineralization in the Clark Fork district, Bonner County, Idaho, Econ. Geol., v. 41, no. 2, p. 105-123.

Arizona Republic, 1969, December 30, p. 25.

Beall, J.V., 1973, Copper in the United States - A position survey, Mining Eng., v. 25, no. 4, p. 35-47.

Bennington, K.E., 1951, Paragenesis, Chewelah district metalliferous deposits, Washington State College, MS thesis.

Bingham, J.P., 1957, Grace Mine, Mining Eng., v. 9, no. 1, p. 45-48

Boutwell, J.M., 1912, Geology and ore deposits of the Park City district, Utah (with contributions by L.H. Woolsey), U.S. Geol. Survey Prof. Paper 77, 231 p.

Brimhall, G.H., Jr., 1979, Lithologic determination of mass transfer mechanisms of multiple-state porphyry copper mineralization at Butte, Montana, Vein formation by hypogene leaching and enrichment of potassium-silicate protore, Econ. Geol., v. 74, no. 3, p. 556-589.

Brown, A.C., 1971, Zoning in the White Pine copper deposit, Ontonagon County, Michigan, Econ. Geol. v. 66, no. 4, p. 543-573.

—— 1966, The pre cambrian magnetite of New York and New Jersey, Econ. Geol., v. 61, no. 3, p. 484-510.

Bureau of Mines, 1967, Ryan Lode, Heavy Metals Sit. Rept. 12 (Jan)

Bush, J.B., and Cook, D.R., 1960, The Chief Oxide-Burgin area discoveries, East Tintic district, Utah, A case history, Part II - Bear Creek Mining Company studies and exploration, Econ. Geol., v. 55, no. 7, 1507-1540.

Cairney, T., 1973, Utilization of disused coal mines as water storage reservoirs, J. Hydrol., v. 19, no. 3, p. 251-258.

Callahan, W.H., 1966, Genesis of the Franklin-Sterling, New Jersey, ore bodies, Econ. Geol., v. 61, no. 6, p. 1140-1141.

Cannon, W.F., 1976, Hard iron ore of the Marquette range, Michigan, Econ. Geol., v. 71, no. 6, p. 1012-1028.

Carter R.H., and Li, T.M., 1976, Idaho's Coeur d'Alene district sets sights on record production, Mining Eng., v. 28, no. 7, p. 49-64.

Cohen, L., Underground test facilities to resolve scientific and technical questions on isolating high-level nuclear waste in fractured rocks, Lawrence Berkeley Laboratory report LBL-9691, in preparation, 1980.

___1905, Recent development of Alaskan tin deposits, U.S. Geol. Survey Bull. 259, p. 120-127.

Colony, R.J., 1921, The magnetite iron deposits of southeastern New York, New York State Museum Bull. 249-250, p. 118-120.

Corn, R.M., 1975, Alteration-mineralization zoning, Red Mountain, Arizona, Econ. Geol., v. 70, no. 8, p. 1437-1447.

----- Geologic map of the Hancock Quadrangle, Michigan, U.S. Geol. Survey Map MF46.

Czamanske, G.K., and Hall, N.E., 1975, The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, Southern California, Econ. Geol., v. 70, no. 6, p. 1092-1110.

Davidson, A., and Wyllie, P.J., 1965, Zoned magnetite and platy magnetite in Cornwall type ore deposits, Econ. Geol. v. 60, no. 4, p. 766-772.

Dir. Reg. Standards, 1974, Classification, engineering properties and field exploration of soils, intact rock and in situ rock masses, 256 p.

Doe, T., 1978, Dry mines study notes.

1949, Geology and ore deposits of the La Plata district, Colorado (with sections by J.J. Williams, F.W. Galbraith, and others), U.S. Geol. Survey Prof. Paper 219, 179 p.

Econ. Geol., 1938, v. 33, p. 554-567.

1965, v. 166, no. 1.

1965, Molybdenum, v. 166, no. 1, p. 69.

1969, Hecla describes lakeshore ore body and general operating plans, v. 170, no. 6, p. 128, 132.

1974, Anaconda will develop Carr Fork copper deposit in Utah's Oquirrh Mountains, v. 175, no. 10, p. 21.

1974, Union Carbide developing Nevada tungsten property, v. 175, no. 11, p. 13.

1974, Sherwood undertakes new underground mine development, v. 175, no. 11, p. 21.

1974, The Dayrock Mine, v. 175, no. 6, p. 212.
1974, CF & I's underground Sunrise Mine supplies Pueblo Hills, v. 175, no. 11, p. 151, 152.

1975, Henderson Mine tunnel holed through by Amax after four and a half years work, v. 176, no. 9, p. 37.

1975, Automatic train transport at Henderson, v. 176, no. 9, p. 105-106.

1976, Climax Molybdenum's new Henderson project set to go on stream in July, v. 177, no. 6, p. 23, 27.

1976, Asarco's newly dedicated Coeur silver mine will be fourth largests in U.S., v. 177, no. 7, p. 23-27.

1976, St. Joe Minerals: Growing through diversification, v. 177, no. 11, p. 69-124

1977, Union Carbide revives Nevada tungsten mine, v. 178, no. 6, p. 129.

1978, Magma copper, v. 179, no. 4, p. 142, 144.

1978, Coeur Mine, v. 179, no. 4, p. 146.

1978, Lakeshore Mine, v. 179, no. 9, p. 314

1978, Cotter Corp. moves ahead on several fronts, v. 179, no. 11, p. 136-138.

1978, Mines Directory
1979, Noranda to reopen Lakeshore Mine on Papago Land. v. 180, no. 4, p. 41.

Evans, L.L. 1977, Geology of the Brushy Creek Mine, Viburnum Trend, southeast Missouri, Econ. Geol., v. 72, no. 3, p. 381-390.

Fletcher, J.B., 1960, Ground movement and subsidence from block caving at Miami Mine, AIME Trans., v. 217, p. 413-422.

Full, R.P., 1955, Structural relations north of the Osburn Fault, Coeur d'Alene district, Shoshone County, Idaho; University of Idaho thesis.

Fullagar, P.D., Brown, H.S., and Hagner, A.F., Geochemistry of wall rock alteration and the role of sulfurization in the formation of the Ore Knob sulfide deposit, Econ. Geol., v. 62 no. 6, p. 798-825.

____ 1955, no. 1, Appalachian, an outline of the geology in the segment in Tennessee, North Carolina, and South Carolina, Guidebook - 68th annual meeting, New Orleans.

____ 1956, no. 1, Precambrian and northeastern Minnesota, Guidebook - 69th annual meeting, Minneapolis.

____ 1959, no. 4, Mineral deposits of eastern Pennsylvania, Guidebook - 72nd annual meeting, Pittsburgh.

Geol. Soc. Amer. Southeastern Section, 1961, Geology of the Mascot-Jefferson City zinc district, Tennessee, Structural geology along the eastern Cumberland escarpment, Tennessee, Guidebook.

Georgia Univ., 1976, Geologic feasibility of talc and serpentinitic bodies from the Appalachian Mountain region of eastern United States with regard to siting of radio-active waste repositories, part I, additional conclusions, Y/DWI/SUB-4496/2, 30 p.

Gonzales, S., and Wenner, D., 1975, Comments, geologic field trip, Chatsworth, Georgia talc district, Dept Geology, Univ. Georgia, Athens, Georgia, 6 p.

Hall, W.E., 1971, Geologic setting and mineralogy of Darwin lead-silver-zinc deposits, Inyo County, California, Econ. Geol., v. 66, no. 8, p. 1267.

Han, T.M., 1968, Ore mineral relations in the Cuyuna sulphide deposit, Minnesota, mineralium deposita, v. 5, no. 2, p. 109-134. (Abstr., German).

Hendrix, T., 1962, Guidebook, Field geology in the Rocky Mountains (Geology G429), Indiana University, Bloomington.

Hickok, W.O., 4th, 1933, The iron ore deposits at Cornwall, Pennsylvania, Econ. Geol., v. 28, no. 4, p. 195-255.

Homestake, 1976, 1876 Homestake Centennial, Homestake Mining Company, 93 p.

Homestake Mining Co., 1978, Homestake Mining Co. Annual Report 1977, Form 10K.

Jamison, 1978, Mine inventory.

Judd, W.R., 1959, Geological factors in choosing underground sites, Report R341, p. 255, 266

Kelley, V.C., 1938, Geology and ore deposits of the Darwin silver-lead mining district, Inyo County, California, Calif. J. Mines Geol., v. 34, no. 4, p. 503-562.

Kerr, 1972, Geology and economic deposits of the Slate Creek area, MS thesis, Idaho State Univ.,

1969, The tectonics of North America - A discussion to accompany the tectonic map of North America, Scale 1:5,000,000, U.S. Geol. Survey Prof. Paper 628, 95 p.

1978, The cenozoic rocks; a discussion to accompany the geological map of the U.S., U.S. Geol. Survey Prof. Paper 904.

Kinkel, A.R., Jr., 1962, The Ore Knob massive sulfide copper deposit, North Carolina - An example of recrystallized ore, Econ. Geol., v. 57, no. 7, p. 1116-1121.

1957, The Boulder batholith of Montana, Amer. J. Sci., v 255, no. 2, p. 81-103

Lindgren, 1957, Utah Geol. Soc. Guidebook 17, p. 120-123.

Logan, C.A., 1922, Quartz mining in the Allegheny district, California State Mining Bur., v. 18, p. 51.

Lovering, T.G., and Heyl, A.V., 1974, Jasperoid as a guide to mineralization in the Taylor mining district and vicinity near Ely, Nevada, Econ. Geol., v. 69, no. 1, p. 46-58.

Lowell, J.D., 1958, Geology of the Kalamazoo orebody, San Manuel district, Arizona, Econ. Geol., v. 63, no. 6, p. 645-654.

Mac Boyle, E., 1918, Mines and mineral resources of Sierra County, California State Min. Bur., v. 16, p. 54-54.

Magma Copper Co., (no date, current), Detailed description of San Manuel Mining Operation, 32 p.

___1974, Mining districts and mineral deposits of California, map.

___1974, Mining districts and mineral deposits of Nevada, map.

___1976, Mining districts and mineral deposits of Oregon, map.

___1976, Mining districts and mineral deposits of Montana, map.

___1976, Mining districts and mineral deposits of Washington, map.

___1976, Mining districts and mineral deposits of Idaho, map.
1977, Mining districts and mineral deposits of Alaska, map, scale 1:2,500,000.

MAS

Miller, R.N., 1973, Production history of the Butte district and geological function, past and present, Soc. Econ. Geol. Guidebook, Butte Field Meeting, F1-F11.

1959, The mineral industry of New York.

1975, Min. Ind. Tenn.

Minnesota Department of Natural Resources, Division of Minerals, Minerals exploration section, 1977, Mineral resources of a portion of the Duluth complex and adjacent rocks in St. Louis and Lake Counties, northwestern Minnesota, Rept. 93, 74 p.

Moe, R.F., 1954, White Pine mine development, flat lying, deep seated ore calls for mobile equipment, conveyor haulage, Min. Eng., v. 6, no. 4, p. 381-386.

Moore, W.J., Lanphere, M.A., and Obradovich, J.D., 1968, Chronology of intrusion, volcanism and ore deposition at Binham, Utah, Econ. Geol. v. 63, no. 6, p. 612-621.

Nash, J.T., 1973, Geochemical studies in the Park City district, in Ore fluids in the Mayflower Mine, Con. Geol., v. 68, no. , p. 34-51.

New York State Geological Association, 1968, 40th Annual Meeting Field Trip Guidebook, Trip D., Sterling and Franklin area in the highlands of New Jersey.

Ohle, E.L., 1968, Copper mineralization in the upper part of the copper harbor conglomerate at White Pine, Michigan - Discussion, Econ. Geol., v. 63, no. 2, p. 190-191.

Pay Dirt, 1975,

___1974, Rock types, also geologic and hydrologic settings, favorable to deep placement of high-level radioactive wastes, Report Y/OWI/SUB-3745/4, 34 p.

Pratt, H.R., and others, Physical and mechanical properties of selected geologic materials - a compendium, TR 75-3.

Pratt, H.R., Lingle, R., Schranf, T., 1979, Laboratory measured material properties of quartz monzonite, climax stock, Nevada test site, TR 79-50, submitted to Lawrence Livermore Laboratory.

Pride D.E., and Robinson, C.S., 1978, Multiple intrusion and hydrothermal

Rampsott, L.D., 1979, Waste-isolation projects,

Rampsott, L.D., and others, 1979, Technical concept for a test of geologic storage of spent reactor fuel in the Climax granite.

Robertson, J.M., 1975, Geology and mineralogy of some copper sulfide deposits near Mount Bohemia, Keweenaw County, Michigan, Econ. Geol., v. 70, no 7, p. 1202-1224.

Rocky Mountain Association of Geologists - 1960 Guidebook for the Field Conference, B-3 Field Trip to Climax, Colorado, Geology of the Climax molybdenite deposit; a progress report.

Runnels, D.D., 1960, Econ. Geol., Mineralogy and sulfur isotopes of the Ruby Creek copper prospect, Burnite, Alaska, v. 64, no. 1, p. 75-90.

Sales, R.H., 1914, Ore deposits at Butte, Montana, AIME Trans., v. 46, no. 8, p. 3-109.

Sales, R.H., 1954, Genetic relation between granites, porphyries, and associated copper deposits, First Jackling Lecture, Min. Eng., v. 6, no. 5, p. 499-505.

Sims, P.K., 1976, Precambrian tectonics and mineral deposits, Lake Superior region, Econ. Geol. v. 71, no. 6, p. 1092-1127.

Skillings Mining Review, 1971, St. Joe opens new $30,000,000 complex at Balmat, N.Y., October 23, p. 11-15.

1975, (Miami East).
1975, (Miami East).

1975, Safford Phelps Dodge. v. 64, no. 8, Feb. 22, p. 1, 6.

1979, May 5.

Smith, W., 1975, Memorandum (September 6, 1940), on recommendations for exploration in the Mill City, Nevada, Tungsten district, U.S. Geol. Survey Open File Report 75-319, 15 p.

Snyder, F.G., and Emery, J.A., 1956, Geology in development and mining southeast Missouri lead belt, recommended development of three classes of orebodies, AIME Trans., v. 8, no. 12, p. 1216-1224.

Steidtmann, E., 1933, The iron ore deposits of Pilot Knob, Missouri, in Mining districts of the eastern states, 16th Int. Geol. Congr., Guidebook 2, p. 68-73.

Steven, T.S., and Eaton, G.P., 1975, Environment of Ore deposition in the Creede mining district, San Juan Mountains, Colorado, I. Geologic, hydrologic and geophysical setting, Econ. Geol., v. 70, no. 6, p. 1023-1037.

Stringham, B., 1953, Mining Eng., v. 5, no. 12, p. 1278-1282.

——— 1960, Relationship of ore to porphyry in the Basin and Range Province, U.S.A., Econ. Geol., v. 55, no. 8, p. 1622-1630.

1935, Bisbee district (section in the Copper districts of Arizona), in Copper resources of the world, 16th Int. Geological Congr., George Banda Publishing Co., Menasha, Wis., p. 221-228.

Thomas, Fundamentals of mining, Australian University.

Utah Geological Society, 1957, 12th Guidebook to the geology of Utah, Geology of the east Tintic Mountains and ore deposits of the Tintic mining districts.

Visnes, N., 1957, Sand filling at the Galena Mine, Mining Eng., v. 9, no. 1, p. 49-52.

Walschmidt, W.A., 1925, Deformation in ores, Coeur d'Alene district, Idaho, Econ. Geol., v. 20, no. 6, p. 573-586.

__September 2, 1977, p. 22
__December 2, 1977, p. 25

Wallace, S.R., and others, 1978, Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado (with a section on a comparison of these deposits with those at Climax, Colorado), Econ. Geol, v. 73, no. 3, p. 325-368.

Wallace Miner, April 19, 1979.

April 26, 1979.

1979, Sunshine mine to become major in world silver market; 3 year plan: no. 12 shaft will be developed, May 17, 1979.

July 12, 1979.

Weege, R.J., and others, 1972, The geology of two new mines in the native copper district of Michigan, Econ. Geol, v. 67, no. 5, p. 622-633.

White, B.L., 1974, Geology of the Pittsburg Landing-Big Canyon Creek area, Snake River Canyon, Idaho and Oregon, Northwest Science, v. 48, no. 1, p. 72-79.

White, W.S., and Wright, J.C., 1966, Sulfide-mineral zoning in the basal none-such shale, northern Michigan, Econ. Geol., v. 61, no. 7, p. 1171-1191.

World Mining, 1976, October.

1977, June.

1977, Continental materials and Union Miniere to develop Oracle Ridge, v. 30, no. 11, p. 171.

This index serves as a subject key to the Bibliography. The index begins with headings of a general nature. Following these listings, the index uses as subjects primarily state, region, county, mining district, and mine names. Included are listings of underground workings not in classes 1 and 2.

To make the Bibliography easier to use, author and year of publication identify each reference dealing with a specific area or site. Page numbers where given refer to information on an underground working described in the body of this report.
INDEX

<table>
<thead>
<tr>
<th>General</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres American 1975</td>
<td></td>
</tr>
<tr>
<td>Acres American 1975B</td>
<td></td>
</tr>
<tr>
<td>Acres American 1976</td>
<td></td>
</tr>
<tr>
<td>AIME, 1970</td>
<td></td>
</tr>
<tr>
<td>Anderson, 1973</td>
<td></td>
</tr>
<tr>
<td>Ash, 1974</td>
<td></td>
</tr>
<tr>
<td>Asher, 1978</td>
<td></td>
</tr>
<tr>
<td>Billings, 1942</td>
<td></td>
</tr>
<tr>
<td>Blair, 1955</td>
<td></td>
</tr>
<tr>
<td>Brown, 1970</td>
<td></td>
</tr>
<tr>
<td>Cording, 1971</td>
<td></td>
</tr>
<tr>
<td>Cording, 1975</td>
<td></td>
</tr>
<tr>
<td>Cummins, 1973</td>
<td></td>
</tr>
<tr>
<td>Deere, 1969</td>
<td></td>
</tr>
<tr>
<td>Dir. Reg. Standards, 1974</td>
<td></td>
</tr>
<tr>
<td>Doe, 1978</td>
<td></td>
</tr>
<tr>
<td>Dravo Corp., 1974</td>
<td></td>
</tr>
<tr>
<td>Edgerton, 1974</td>
<td></td>
</tr>
<tr>
<td>Flint, 1957</td>
<td></td>
</tr>
<tr>
<td>Hamilton, 1967</td>
<td></td>
</tr>
<tr>
<td>Heinrich, 1953B</td>
<td></td>
</tr>
<tr>
<td>Hunt, 1967</td>
<td></td>
</tr>
<tr>
<td>Jamison, 1978</td>
<td></td>
</tr>
<tr>
<td>Judd, 1959</td>
<td></td>
</tr>
<tr>
<td>Judd, 1969</td>
<td></td>
</tr>
<tr>
<td>Ken O'Brien Assoc., 1968</td>
<td></td>
</tr>
<tr>
<td>Ken O'Brien Assoc., 1969</td>
<td></td>
</tr>
<tr>
<td>Kerr Addison, 1977</td>
<td></td>
</tr>
<tr>
<td>Kerr Addison, 1978</td>
<td></td>
</tr>
<tr>
<td>King, 1969</td>
<td></td>
</tr>
<tr>
<td>King, 1976</td>
<td></td>
</tr>
<tr>
<td>King, 1978</td>
<td></td>
</tr>
<tr>
<td>LeGrand, 1972</td>
<td></td>
</tr>
<tr>
<td>Lindner, 1978</td>
<td></td>
</tr>
<tr>
<td>Majtenyi, 1976</td>
<td></td>
</tr>
<tr>
<td>McKinney, 1973</td>
<td></td>
</tr>
<tr>
<td>McWilliams, 1978</td>
<td></td>
</tr>
<tr>
<td>Mining Ann. Rev., 1978</td>
<td></td>
</tr>
<tr>
<td>Mining Mag. 1975</td>
<td></td>
</tr>
<tr>
<td>Misterek, 1976</td>
<td></td>
</tr>
<tr>
<td>Newmark, 1974</td>
<td></td>
</tr>
<tr>
<td>Office of the Fed. Register, 1978</td>
<td></td>
</tr>
<tr>
<td>Peters, 1978</td>
<td></td>
</tr>
<tr>
<td>Ridge, 1958</td>
<td></td>
</tr>
<tr>
<td>Ridge, 1972</td>
<td></td>
</tr>
<tr>
<td>Rudman, 1965</td>
<td></td>
</tr>
<tr>
<td>Union List of Geological Field Trip Guidebooks of North Amer., 1978</td>
<td></td>
</tr>
</tbody>
</table>
General (cont.)

Wadell, 1966
Wallace Miner, Apr 19/79
Wallace Miner, Apr 26/79
Wallace Miner, May 17/79
Wallace Miner, June 7/79
Wallace Miner, July 5/79
Wallace Miner, July 12/79
Weaver, 1976
Western Mining Directory, 1978
Wheeler, 1952
Winograd, 1974
Woodward, 1968
World Mines Register, 1976
Yardley, 1975
Yardley, 1975B

Mineral Deposits
Bateman, 1949
Beall, 1973
Brown, 1968
Buddington, 1959
Buddington, 1963
Cameron, 1954
Clark, 1968
Dellinger, 1956
Elevatorski, 1978
Farquhar, 1974
Geosci. Inf. Soc., 1968
Goldich, 1968
Goth, 1979
Hilpert, 1969
Hobbs, 1968
Jahns, 1952

Nuclear Power
Desai, 1976

Waste Isolation & Storage
Ballou, 1978
Belitzky, 1977
Bostrom, 1979
Brunton, 1977
Waste Isolation & Storage (cont.)

Champlin, 1967
Cobbs, 1975
Cobbs Eng., 1976
Fenix & Scisson, 1978
Georgia Univ., 1976
Henton, 1974
Hill, 1978
IAEA, 1977
Kegel, 1975
Piper, 1974
Piper, 1975
Pratt, 1978
Winograd, 1974

Water Storage
Cairney, 1973
Alabama
 Heinrich, 1953C

Alaska
 Jansons, 1977
 Mardirosian, 1977
 Moffit, 1935
 Smith, 1937
Arctic Camp Mine
 Brosege, 1977
 Dillon, 1977
 Forbes, 1973
 Fritts, 1970
 Grybeck, 1977
 Patton, 1968
 Runnels, 1960
 Runnels, 1963
 Sichermann, 1976
Bartholomae Mine
 Brooks, 1912
 Brooks, 1921
 Brooks, 1922
 Brooks, 1923
 Brooks, 1924
 Brooks, 1925
 Chapin, 1919
 Cobb, 1972
 Hill, 1933
 Martin, 1920
 Mertie, 1918
 Smith, 1913
 Smith, 1913B
 Smith, 1930
 Smith, 1930B
 Snapp, 1975
Bornite Mine
 Berg, 1967
 Brooks, 1921
 Cobb, 1972
 Cobb, 1972B
 Cobb, 1973
 Cox, 1973
 Fritts, 1970
 Knox, 1968
 Lund, 1961
 Matzko, 1963
 Sicherman, 1976
 Smith, 1911
 Smith, 1913
 Smith, 1930
Imuruk Basin Graphite Mine
 Brooks, 1918
 Cathcart, 1922
Alaska (cont.)

Harrington, 1919
Mertie, 1918
Smith, 1908

Jualin Mine

Eakin, 1913

Lost River Mine

Adkinson, 1975
Brooks, 1907
Brooks, 1910
Brooks, 1913
Brooks, 1914
Brooks, 1915
Brooks, 1916
Brooks, 1918
Brooks, 1921
Brooks, 1921B
Brooks, 1922
Cathcart, 1922
Chapin, 1914
Collier, 1904
Collier, 1904B
Collier, 1905
Eakin, 1915
Harrington, 1919
Harrington, 1921
Hess, 1906
Hess, 1912
Hummel, 1975
Knopf, 1908
Knopf, 1908B
Martin, 1919
Martin, 1920
Mertie, 1918
Sainsbury, 1961
Smith, 1930
Smith, 1932
Smith, 1942
Steidtmann, 1922
Twenhofel, 1953

McCarty Mine
Pilkington, 1970

Arizona

Bureau of Mines, 1973
Dare, 1959
Greeley, 1978
Hunt, 1956
Hynd, 1976
Keith, 1973
Keith, 1975
Keith, 1978
Arizona (cont.)

Mardirosian, 1973
Pay Dirt, 1975
Tenney, 1935
Turney, 1978
Wilson, 1962

Ajo District
Gilluly, 1935
Gilluly, 1946

Bagdad Area
Anderson, 1955
Butler, 1938
Dunning, 1959

Banner District
Eastlick, 1968

Bisbee District
Tenney, 1935

Christmas Mine
Dunning, 1959
Eastlick, 1968
Peterson, 1956

Gila County
Simmons, 1966

Gila County/Castle Dome Area
Peterson, 1951

Globe-Miami District..37

Peterson, 1954
Peterson, 1962

Helvetia District
Creasey, 1955

Iron King Mine
Gilmour, 1968

Kalamazoo Mine..47

Lowell, 1968
Lowell, 1970
Schwartz, 1953
Thomas, 1966

Lakeshore Mine..27

Board, 1977
Cobbs, 1976
Hallof, 1971
Harper, 1969
Pay Dirt, 1970

Magma (Superior) Mine
Dunning, 1959
Ettinger, 1935
Hammer, 1968
Murray, 1973
Short, 1938
Short, 1943
Arizona (cont.)

Miami Mine...37
Rubly, 1938
Miami East Mine...37
Carter, 1975
Dunning, 1959
Fletcher, 1960
MAS
Mining Ann. Rev., 1978
Mining Mag., 1975
Olmstead, 1966
Peterson, 1951
Peterson, 1954
Peterson, 1962
Rubly, 1938
Skillings, 1973
Skillings, 1975
Wall Street Journal, 1969

Oracle Ridge
Eng. Min. J., 1974
Min. Congress Journal, 1977
Skillings Mining Rev., 1977
Skillings Mining Rev., 1978
World Mining, 1977

Pima District
Huff, 1961
Keith, 1974

Pinal County
Creasey, 1967

Ray
Phillips, 1971

Red Mountain Mine
Corn, 1975
Pay Dirt, 1970
Schrader, 1915
Skillings Mining Rev., 1977
World Mining, 1976

Safford Phelps Dodge
Robinson, 1966
Skillings Mining Rev., 1975

San Manuel Mine...47
Buchanan, 1960
Creasey, 1965
Dunning, 1959
Jackson, 1978
Kendorski, 1976
Knoerr, 1956
Lowell, 1970
Schwartz, 1953
Thomas, 1966

Arkansas
Stroud, 1969
Basin & Range
Stringham, 1958
Stringham, 1960

California
Bur. of Mines, 1973
Calif. Div. of Mines & Geol., 1979
Hotz, 1971
Mardirosian, 1974

Atolia District
Lemmon, 1940
Wiebelt, 1950

Bishop
Bateman, 1956
Bateman, 1965
Gray, 1968
Mays, 1941

Darwin Mine
Czamanske, 1975
Hall, 1953
Hall, 1962
Hall, 1971
Kelley, 1938
Mueller, 1974

French Gulch - Deadwood Dist.
Albers, 1961

Grey Eagle Mine
Aubrey, 1908
Brown, 1916
Calif. Div. of Mines & Geol., 1947
Laizure, 1921
Logan, 1925
O'Brien, 1943
O'Brien, 1947
Tucker, 1922

Helms Project
Bateman, 1965
Haimson, 1976

Inyo County
Bateman, 1950

Ivanpah Quadrangle
Hewitt, 1956

Oriental Mine
Calif. J. Min. Geol., 1956
Calson, 1956
Clark, 1970
Ferguson, 1913
Ferguson, 1932
Logan, 1922
Mac Boyle, 1918

Pine Creek Mine
Bateman, 1956
Bateman, 1965
California (cont.)

- Gray, 1968
- MAS Ridge, 1972
- West Shasta District Kinkel, 1956

Colorado

- Burbank, 1935,
- Colo. Min. Assoc., 1978
- Dare, 1959
- Dowding, 1976
- Hanley, 1950
- Heyl, 1964
- Hunt, 1956
- Tweto, 1968
- Tweto, 1977
- Tweto, Lovering, 1977

Central City District

- Sims, 1963

Chicago Creek Area

- Harrison, 1959

Climax Mine..75

- Amax, 1974
- Butler, 1933
- CRIB
- Eckel, 1947
- MAS
- Ridge, 1972
- Rocky Mountain Assn. Geol., 1966
- Vanderwilt, 1956
- Wallace, 1968

Colorado School of Mines...109

- Lovering, 1950
- Moench, 1964

Creede District

- Steven, 1965
- Steven, 1975

Cripple Creek District

- Lovering, 1950

Eagle Mine

- Radabaugh, 1968

Eastern Breckenridge Mining District

- Pride, 1978

Freeland-Lamartine District

- Harrison, 1956

Front Range

- Lovering, 1950
- Sims, 1963
- Sims, 1964

Garfield Quadrangle

- Dings, 1957
Colorado (cont.)

Gem Park Complex
Parker, 1970

Georgetown Quadrangle
Spurr, 1908

Gilman District
Lovering, 1978

Golden Gate Canyon
Adams, 1956

Henderson Mine..99
Eckel, 1947
Goth, 1979
Hoppe, 1976
Kendrick, 1970
Lovering, 1950
Ranta, 1976
Robinson, 1975

Idaho Springs-Central City Area.......................109
Rocky Mountain Assn. Geol., 1960

Idarado Mine
Hillebrand, 1957
Hillebrand, 1968
Reinking, 1973
Sanjines, 1971

La Plata District
Eckel, 1949

Leadville District
Ebbley, 1949
Emmons, 1927
Thompson, 1976
Tweto, 1968

Mountain Province
Tweto, 1968

Mosquito Range
Behre, 1953

Poncha Springs
Van Alstine, 1974

Quartz Creek Pegmatite District
Staatz, 1955

Resurrection Mine
Jonson, 1955

Rico District
McKnight, 1974

San Juan Mountains
Burbank, 1961
Burbank, 1968
Steven, 1965
Steven, 1968
Colorado (cont.)

Schwartzwalder Mine ... 89
 MAS
 Sheridan, 1967
 Sims, 1964

Sherman Mine
 Courtright, 1974

Silverton Mining Area
 Varnes, 1953

Straight Creek Tunnel
 Robinson, 1974

Tarryall Region
 Hawley, 1977

Tennmile District
 Bergendahl, 1971

Tungsten District
 Lovering, 1953

Urad Mine ... 99
 Eckel, 1947
 Goth, 1979
 Hoppe, 1976
 Kendrick, 1970
 Lovering, 1950
 Mining Ann. Rev., 1978
 Ranta, 1975
 Wallace, 1978
 Western Miner, 1967

Georgia

Cartersville District
 Kesler, 1950

Chatsworth District
 Gonzales, 1975

Hartwell District
 Griffitts, 1955

Piedmont Manganese Belt
 Beck, 1946
 Overstreet, 1965

Thomaston-Barnesville District
 Heinrich, 1953

Idaho

Bond, 1978
 Bur. Min., 1973
 Hietanen, 1963
 Idaho Dept. Labor & Ind. Services, 1977
 Idaho Dept. Labor & Ind. Services, 1978
 Johnson, 1947
 Lee, 1976
 Mardirosian, 1976
Idaho (cont.)

Ross, 1935
Ross, 1958
Stoll, 1950
Umpleby, 1924
Western Mining News, 1978-79
White, 1974

Alamo Mine
Savage, 1965

Blackbird Mine
Hawkes, 1952
McDivitt, 1956
Purdue, 1975
Sequin, 1973
Williams, 1975

Bunker Hill Mine
Caddey, 1974
Conway, 1972
Haivala, 1965
Idaho Bur. Min. Geol., 1963
McConnel, 1939
McConnel, 1961
Reid, 1976

Cago No. 12 Mine
Anderson, 1961
Staatz, 1971
Staatz, 1972

Clayton Silver Mine
Clayton Silver Mines, 1978

Coeur d'Alene District .. 125
Anderson, 1967
Carter, 1976
Chan, 1969
Chan, 1972
Conway, 1972
Crosby, 1969
Fryklund, 1961
Fryklund, 1964
Full, 1955
Gott, 1973
Gott, 1975
Hershey, 1916
Hietanen, 1963
Hobbs, 1965
Hobbs, 1968
Hosterman, 1956
Idaho Bur. Min., 1961
Idaho Bur. Min., 1963
Idaho Dept. Labor & Indust. Services, 1978
Mittram, 1952
Reid, 1961
Reid, 1976
Roales, 1973
Ross, 1935
Ross, 1958
Idaho (cont.)

Silverman, 1960
Skinner, 1972
Sorenson, 1947
Umpleby, 1924
U.S. Bur. of Mines, 1971
Wallace, 1961
Wallace Miner, 1979
Weis, 1961
White, 1978

Coeur Silver Mine..151
Carter, 1976
Fryklund, 1964
Hobbs, 1965
Wallace Miner, 1979

Conjecture Mine
Calkins, 1909
Kun, 1970
Kun, 1974
MacDonald, 1906

Copper Camp Mine
Cater, 1973

Crescent Mine
Hobbs, 1965
Skinner, 1972
Skinner, 1975

Dayrock Mine..143
Acres American, 1975
Carter, 1976
Cobbs Engineering, 1976
Farmin, 1961
Fryklund, 1964
Idaho Bur. Min. Geol., 1963

Deep Creek Mountains
Carr, 1961

Dworshak Dam Site
Deere, 1969
Johnson, 1947

Galena Mine
Ageton, 1967
Blake, 1971
Blake, 1972
Chan, 1967
Chan, 1969
Kesten, 1961
Kesten, 1963
Visnes, 1957

Golden Sunbeam Mine
Lockard, 1971
Ross, 1937

Golden Sunrise Mine
Lockard, 1971
Idaho (cont.)

Hercules Mine
Crosby, 1959
Stringham, 1953

Hecla Mine
Waldschmidt, 1925

Highland-Surprise Mine
Arnold, 1962
Fryklund, 1955

Hoodoo Mine
Kern, 1972

Ima Mine
Callaghan, 1941
Geol. Soc. Am.
Umpleby, 1913

Little Pittsburg Mine
Herdlick, 1947

Lost Packer Mine
Bond, 1978
Crib, 1974
Idaho Dept. Labor & Indust. Services, 1977
Ross, 1958
Umpleby, 1911

Lucky Friday Mine
Hobbs, 1965
Hutchinson, 1961

Monitor Mine
Roales, 1973

Murray Area
Hosterman, 1956

Page Mine
Idaho Bur. Min. Geol., 1963
Kesten, 1963

Peacock Mine
Cook, 1954

Phi Kappa Mine
Umpleby, 1930

Sidney Mine
Jones, 1920

Silver City Region
Asher, 1968
Pansza, 1971

Silver Summit Mine
Chan, 1972

South Mountain Mine
Bennett, 1975

Star-Morning Mine
Chan, 1972
Fryklund, 1964
Gott, 1975
Hobbs, 1965
Idaho Bur. Min. Geol., 1963
Idaho (cont.)
 Patricio, 1976
 Sorenson, 1947
 Waddell, 1966
 Steen Mine
 Anderson, 1953
 Ross, 1934
 Umpleby, 1913
 Success Mine
 Crosby, 1969
 Piper, 1925
 Sunshine Mine
 Colson, 1961
 Colson, 1963
 Patricio, 1976
 Whitedelph Mine
 Anderson, 1930
 Anderson, 1946
 Anderson, 1947
 Savage, 1967
 Woodrat Kyanite
 Van Noy, 1970

Illinois
 Bur. of Mines, 1973
 Heyl, 1961

Kentucky
 Heyl, 1961

Lake Superior
 Broderick, 1956
 Leith, 1935
 Marsden, 1968

Maine
 Bur. of Mines, 1973
 Dale, 1907
 Doyle, 1966
 Doyle, 1967
 Young, 1968
 Black Hawk (2nd Pond)-Blue Hill Mine
 , 155
 CRIB
 Doyle, 1966
 Kerr Addison, 1977
 Kerr Addison, 1978
 Li, 1942
 Smith, 1907
 Young, 1968
 Kerr Am. Blue Hill Joint Venture
 Earl, 1950
 Howd, 1974
 Li, 1942
Maine (cont.)

Maple & Hovey Mountains
Pavlides, 1962
Patapsco Mine
Heyl, 1965
Penobscot Bay Quadrangle
Smith, 1907

Michigan

Bur. of Mines, 1973
Cornwall, 1947
Cornwall, 1956
Cornwall, 1956B
Davidson, 1955
Eng. Min. J., 1974
Hore, 1915
Hubbard, 1975
James, 1967
Jolly, 1972
Michigan Acad. of Sci., Arts, & Letters, 1939
Reed, 1979
Sims, 1976
White, 1953
White, 1956
White, 1968
White, 1971
Yardley, 1975

Calumet
Benedict, 1952
White, 1966

Centennial Mine
Yardley, 1975

Copper District
Broderick, 1935
Broderick, 1946
Butler, 1929
Weege, 1972
White, 1956

Crystal Falls District
James, 1968

Gogebic County
Schmidt, 1976

Homestake Copper
Yardley, 1975

Hecla Mine
Benedict, 1952
Keweenaw Peninsula
Weege, 1966
Keweenaw County
Robertson, 1975

MacLeod Mine
Yardley, 1975
Michigan (cont.)

Marquette District
Anderson, 1968
Cannon, 1976

Menominee Iron-Bearing District
Bayley, 1904
Bayley, 1966
Dutton, 1968

Upper Peninsula
Brooks, 1873

White Pine Mine
Ramsey, 1953

White Pine Copper Deposit
Brown, 1971
Brown, 1973
Brown, 1974
Ensign, 1968
Hamilton, 1967
Harris, 1972
Leone, 1971
Moe, 1954
Mognessensky, 1967
Olle, 1968
White, 1954
White, 1960
White, 1971
White Pine Copper Co., 1974
Yardley, 1975

Minnesota
Bur. of Mines, 1973
Geol. Soc. Am., 1956
Minnesota Dept. of Natural Resources, 1977
Sims, 1976
Yardley, 1975B

Babbitt Lake
Bonnickson, 1972

Cuyuna Range
Beltrame, 1977
Grout, 1955
Han, 1968
Schmidt, 1963

Mesabi Iron Range
Marsden, 1968

Minnamax Project
Bonischsen, 1972
CRIB
Fairhurst, 1979
Johnson, 1978
MAS
Minnesota Dept. of Natural Resources, 1977
Phinney, 1972
Minnesota (cont.)

Von Schonfeldt, 1970
Watowick, 1978
Soudan Mine
Schwartz, 1955
Yardley, 1975

Missouri

Bur. of Mines, 1973
Mo. Dept. of Labor & Ind. Rel., 1977
Snyder, 1956
Snyder, 1969
Weigel, 1965
Brushy Creek Mine
Evans, 1977
Buick Mine
Rogers, 1977
Wharton, 1975
Fletcher Mine
Horino, 1978
Paarlberg, 1977
Wharton, 1975
Iron Mountain
Murphy, 1961
Wharton, 1974
Wharton, 1974B
Ozark Mine
Mouat, 1977
Wharton, 1975
Magmont Mine
Hagmi, 1977
Sweeney, 1977
Wharton, 1975
Pilot Knob
Johnson, 1961
Steidtmann, 1933
Wracher, 1976
Viburnum Trend
Wharton, 1975

Montana

Bur. of Mines, 1973
Johnson, 1970
Knopf, 1957
Konizeski, 1961
Konizeski, 1962
Lawson, 1979
Mardirosian, 1976
Montana College of Mineral Sci. & Tech., 1976
Stoll, 1950
Western Mining News, 1978-79
Witkind, 1973
Alta Mine
Pardee, 1953
Montana (cont.)

Belt Series
Ross, 1963

Black Pine Mine ... 171
Emmons, 1913
Holser, 1950
Krohn, 1977
Prinz, 1967
Ross, 1963
Silverman, 1965
Tilling, 1968
White, 1976

Block P. Mine
Econ. Geol., 1938

Boulder Batholith
Billingsley, 1918

Butte
Soc. Econ. Geol., 1973

Butte Manganese District
Blake, 1888
Davis, 1949
Hart, 1935
Meyer, 1968
Miller, 1973
Pardoe, 1918
Pardoe, 1922
Parent, 1941
Sales, 1914
Weed, 1912
Wetzel, 1979

Butte Mining District & Butte Underground Mines 183
Billingsley, 1918
Klepper, 1962
Knopf, 1957
Meyer, 1968
Miller, 1973
Proffett, 1973
Sales, 1914
Sales, 1948
Sales, 1954
Thomas, 1977
Woakes, 1959

Calt-Queen Mine
Weed, 1900

Granite-Bimetallic Mine 201
Emmons, 1913
Krohn, 1977
Lawson, 1979
Prinz, 1967
Ridge, 1972
Silverman, 1965
Tilling, 1968
U.S. Geol. Survey (CRIB), 1976
Montana (cont.)

Gregory Mine
Pardee, 1933
Judith Basin County
Robertson, 1951
Missoula County
Sahinon, 1957
Northern Elkhorn Mountains
Smedes, 1966
Philipsburg District
Emmons, 1913
Holser, 1950
Prinz, 1967
Ravalli County
Sahinon, 1957
Red Mountain Mine
Becraft, 1963
Pardee, 1933
Stillwater Complex
Jackson, 1969

Nevada

Bur. of Mines, 1973
Hose, 1976
Johnson, 1977
Loeltz, 1955
Longwell, 1965
Moore, 1969
Spengler, 1979
Willden, 1974
Amry Prospect
Horton, 1964
Worl, 1974
Baxter Mine
Matson, 1955
Matson, 1956
Crowell Mine
Geethan, 1946
Wood, 1972
Eureka Mining District
Nolan, 1962
Nolan, 1968
Roberts, 1967
Getchell Mine
Hutt1, 1963
Willden, 1964
Goldfield
Searls, 1948
Gooseberry Mine
Rose, 1969
Ivanpah Quadrangle
Hewitt, 1966
Lander County
Stewart, 1977
Nevada (cont.)

Majuba Hill Area
 Mac Kenzie, 1976

Mill City Tungsten District
 Hotz, 1964
 Kerr, 1934
 Lawrence, 1963
 Nevada Univ. Bull., 1934
 Smith, 1975

Mineral County
 Ross, 1961

Nevada Test Site
 Duba, 1974
 Eckel, 1968
 Heard, 1970
 Hinrichs, 1968
 Platt, 1975
 Pratt, 1979
 Ramspott, 1979
 Ramspott, 1979B

Nye County
 Cornwall, 1972

Pan American Mine
 Nevada Bur. Min., 1970

Ramsey Mine
 Rose, 1969

Ruby Hill Project
 Love, 1966

Ruth Kimberley Underground
 Adair, 1960
 Pennepacker, 1932
 Spencer, 1917

Searchlight
 Shrivastava, 1962

Silver Dyke
 Geol. Soc. Am., 1946
 Nevada Bur. of Min., 1961
 Nevada Bur. of Min., 1962

Storey County
 Bonham, 1969

Taylor District
 Drewes, 1962
 Lovering, 1974

Tem Piute Operations
 Cobbs Eng., 1976
 Eng. Min. J., 1974
 Tschanz, 1970

Washoe County
 Bonham, 1969

Yellow Pine Mine
 Geehan, 1949
New Hampshire
Page, 1962

New Jersey
Buddington, 1966
Hotz, 1954
Franklin Area
N.Y. State Geol. Assoc., 1968
Palache, 1935
Pinger, 1974
Morris County/Dover Magnetite
Sims, 1953
Sims, 1958
Mount Hope Mine and Scrub Oaks Mine
Acres American, 1975
Collins, 1968
James, 1962
Richert, 1974
Sims, 1958
Stanford Res. Inst., 1976
Sterling Mine
Callahan, 1966
Hague, 1956
Metsger, 1958
Metsger, 1962
N.Y. State Geol. Assoc., 1968
Palache, 1935
Pinger, 1974
Sussex County/Andover Mining District
Sims, 1952

New Mexico
Bur. of Mines, 1973
Hunt, 1956
Burro Chief Mine
Gillerman, 1952
Gillerman, 1964
Burro Mountains
Gillerman, 1952
N.M. Bur. of Mines
Central Mining District
Hernon, 1968
Jones, 1955
Jones, 1961
Lasky, 1950
Continental Mine
Forrester, 1972
Yousefpour, 1977
Magdalena District
Loughlin, 1942
Quinta Mine
Carpenter, 1968
New Mexico (cont.)

Kottlowski, 1969
McKinlay, 1957
Molydbenum Corp., 1972
Molydbenum Corp., 1973
Molydbenum Corp., 1974
Molydbenum Corp., 1975
Molydbenum Corp., 1976
Molydbenum Corp., 1977
New Mexico Mines & Mineral Resources, 1977
Schilling, 1956
Schilling, 1960
U.S. Geol. Survey (CRIB), 1976
Wall Street Journal, 1977
Wall Street Journal, 1978
World Mining, 1977
San Pedro Mine
 Santos, 1975
Shrine Mine
 Gillerman, 1952
 Gillerman, 1964
 N.M. Bur. of Mines,
Taos County
 Schilling, 1960
Twenty One Mine
 Goddard, 1966
 Rothrock, 1946
Twenty Seven Mine
 Kendall, 1972
 Rothrock, 1946

New York

Buddington, 1966
 Bur. of Mines, 1975
 Engel, 1953
 Luedke, 1953
 Maevis, 1976
Balmat-Edwards District... 245
Brown, 1956
 Buddington, 1962
 CRIB
 Dill, 1978
 Engel, 1953
 Lea, 1968
 NAS
 St. Joseph Minerals Special Release, 1979
 Skillings Mining Review, 1971
Benson Mines
 Crump, 1968
New York (cont.)

<table>
<thead>
<tr>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croton Magnetite Iron Mines</td>
<td>Coloney, 1921; Prucha, 1956, 1968</td>
</tr>
<tr>
<td>Lyon Mountain District</td>
<td>Alling, 1942; Minerals Yearbook, 1956, 1959, 1967; Postel, 1952; Ridge, 1972</td>
</tr>
<tr>
<td>Magnetite District</td>
<td>Hager, 1967; Leonard, 1964; Postel, 1952</td>
</tr>
<tr>
<td>St. Lawrence Co. Magnetite District</td>
<td>Buddington, 1962</td>
</tr>
<tr>
<td>Sanford Lake District</td>
<td>Gross, 1968</td>
</tr>
<tr>
<td>Sterling Lake</td>
<td>Hotz, 1953</td>
</tr>
<tr>
<td>Ridgeway-Sandy Ridge District</td>
<td>Griffitts, 1953</td>
</tr>
<tr>
<td>Shelby-Hickory District</td>
<td>Griffitts, 1953C</td>
</tr>
<tr>
<td>Tungsten Queen</td>
<td>Argyle, 1946; Espenshade, 1947; Foose, 1978; Macolin, 1962; Parker, 1963</td>
</tr>
<tr>
<td>Ohio</td>
<td>Byerly, 1976; Ohio Div. Min., 1977</td>
</tr>
</tbody>
</table>
Oregon
Bur. Min., 1973
Hotz, 1971
Mardirosian, 1976

Pacific Coastal Region
Park, 1968

Pennsylvania
Bur. Min., 1973
Geol. Soc. Am., 1959
Cornwall Mine
Davidson, 1965
Gray, 1961
Hickok, 1933
Lapham, 1962
Lapham, 1968
Lapham, 1973
Grace Mine
Agarwal, 1973
Basu, 1976
Biemesderfer, 1961
Bingham, 1957
Sims, 1968

South Carolina
Geol. Soc. Am., 1955
Bad Creek Pumped Storage Project
Haimson, 1976
Hester, 1974
Overstreet, 1965
Hartwell District
Griffitts, 1953D
Piedmont Manganese Belt
Beck, 1946
Overstreet, 1965

South Dakota
Homestake Mine.. 265
Chinn, 1970
Cobb's Eng., 1976
CRIB
Hendrix, 1962
Hobbs, 1976
Hobbs, 1978
Homestake Mining Co., 1976
Homestake Mining Co., 1977
Homestake Mining Co., 1978
Noble, 1948
Noble, 1949
Noble, 1950
Page, 1953
Sharp Bits, 1955
Siselman, 1976
Slaughter, 1968
Tesch, 1974
Southern Piedmont Region
Acres American, 1978
Pardee, 1948

Tennessee

Bur. Min., 1973
Geol. Soc. Am., 1955
Geol. SE Section, 1961
Hadley, 1963
Hamilton, 1961
King, 1964
Lloyd, 1965
Minerals Yearbook, 1965
Minerals Yearbook, 1975
Nevaman, 1965
Tennessee Div. Geol., 1977
Tennessee Div. Geol., 1969

Boyd Mine
Cammarota, 1976
Emmons, 1926
Ross, 1935

Burra Burra Mine
Cammarota, 1976
Ross, 1935

Cherokee Mine
Cammarota, 1976
Hardeman, 1970

Calloway Mine
Cammarota, 1976
Tung, 1968
Tung, 1969

Ducktown District
Acres American, 1975
Cox, 1973
Emmons, 1926
International Directory of Mining & Min. Proc. Oper., 1978
Lloyd, 1965
Magee, 1968
Minerals Yearbook of Tennessee, 1965
Simmons, 1950
World Mines Register, 1979

Elmwood
Callahan, 1977

Eureka Mine
Ross, 1935

Jefferson City Mine
Fulweiler, 1971

Ore Knob Mine
Ross, 1935

Texas
Bur. of Min., 1973
Yates, 1959
Utah

Bur. Min., 1973
Hanley, 1950
Hunt, 1956
Stowe, 1979
Stowe, 1977
Young, 1947

Apex Standard
Utah Geol. Soc., 1957

Bingham District
Cook, 1961
Hunt, 1950
Moore, 1968

Burgin Mine
Lovering, 1965
Morns, 1964

Carr Fork Mine
Ditto, 1976
Eng. Min. J., 1974
Hansen, 1961

Chief Mine
Lindgren, 1919
Morris, 1957

Cottonwood-Amer. Fork Area
Calkins, 1943

East Tintic District
Bush, 1960
Bush, 1960B
Pope, 1970
Shepard, 1968
Utah Geol. Soc., 1957

Eureka Lily
Utah Geol. Soc., 1957

Eureka Standard Mine
Utah Geol. Soc., 1957

Henry Mountains Region
Hunt, 1953

Iron King Mine
Lindgren, 1919
Lindgren, 1957

Lower Mammoth Mine
Lindgren, 1919

Mayflower Mine
Barnes, 1968
Boutwell, 1912
James, 1973
Nash, 1973
Quinlan, 1968

North Lily
Utah Geol. Soc., 1957

Ontario Mine
Barnes, 1968
Erickson, 1968
Garmoe, 1968
Utah (cont.)

Pacific Mine
 Butler, 1916
Park City District
 Price, 1972
 Quinlan, 1968
 Thompson, 1968
Tintic
 Lovering, 1949
 Morris, 1961
 Morris, 1968
 Utah Geol. Soc., 1957
Trixie Mine
 Boutwell, 1904
 Butler, 1920
 Lovering, 1965
 Pope, 1970

Vermont
 Barton, 1978
 Canney, 1965
 Tillman, 1975
Elizabeth Mine
 Griffitts, 1953B
 Howard, 1969
 McKinstry, 1954
 Skinner, 1955
Amelia District
 Lemke, 1952
Ridgeway-Sandy Ridge District
 Griffitts, 1953

Washington
 Bur. Min., 1973
 Culver, 1945
 Fox, 1977
 Grant, 1969
 Huntting, 1943
 Huntting, 1956
 Mardirosian, 1976
 Milne, 1978
 Moen, 1976
 Purdy, 1954
 Western Mining News, 1978-79

Antilon Lake Pumped Storage
 Williamson, 1974

Deer Creek Mine
 Wadell, 1963

Glacier Peak Area
 Tabor, 1969

Holden Mine
 Carzon, 1945
 Carter, 1967
Utah (cont.)

<table>
<thead>
<tr>
<th>District</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaline District</td>
<td></td>
</tr>
<tr>
<td>McConnel, 1968</td>
<td></td>
</tr>
<tr>
<td>Middle Fork</td>
<td></td>
</tr>
<tr>
<td>Grant, 1973</td>
<td></td>
</tr>
<tr>
<td>Midnight Mine</td>
<td></td>
</tr>
<tr>
<td>Becraft, 1963</td>
<td></td>
</tr>
<tr>
<td>Nash, 1978</td>
<td></td>
</tr>
<tr>
<td>Weissenborn, 1974</td>
<td></td>
</tr>
<tr>
<td>Sunrise Breccia Deposit</td>
<td></td>
</tr>
<tr>
<td>Pierce, 1977</td>
<td></td>
</tr>
<tr>
<td>United Copper Claim</td>
<td></td>
</tr>
<tr>
<td>Bancroft, 1914</td>
<td></td>
</tr>
<tr>
<td>Bennington, 1951</td>
<td></td>
</tr>
<tr>
<td>Clark, 1968</td>
<td></td>
</tr>
<tr>
<td>Van Stone Mine Area</td>
<td></td>
</tr>
<tr>
<td>Cox, 1968</td>
<td></td>
</tr>
</tbody>
</table>

Wisconsin

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bur. Min., 1973</td>
<td></td>
</tr>
<tr>
<td>Dutton, 1970</td>
<td></td>
</tr>
<tr>
<td>Hubbard, 1975</td>
<td></td>
</tr>
<tr>
<td>Sims, 1976</td>
<td></td>
</tr>
<tr>
<td>Tri-State Geol. Field Conf., 1953</td>
<td></td>
</tr>
<tr>
<td>Yardley, 1975B</td>
<td></td>
</tr>
</tbody>
</table>

Menominee Iron-Bearing District

Bayley, 1966

Wyoming

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bur. Min., 1973</td>
<td></td>
</tr>
<tr>
<td>Hanley, 1950</td>
<td></td>
</tr>
<tr>
<td>Osterwald, 1966</td>
<td></td>
</tr>
<tr>
<td>Wyoming Dis. of Manuf. and Mining, 1978</td>
<td></td>
</tr>
<tr>
<td>Wyoming Geol. Assoc., 1971</td>
<td></td>
</tr>
<tr>
<td>Wyoming Mineral Division, 1978</td>
<td></td>
</tr>
</tbody>
</table>
Wyoming (cont.)

Atlantic City District
Bayley, 1968

Big Horn Basin
Lowry, 1976

Granite Mountain Area
Love, 1970
Peterman, 1978

Mountain Province
Tweto, 1968

Sunrise Mine..307
Ball, 1907
Carter, 1963
Eng. Min. J., 1974
Harper, 1966
Hedderly-Smith, 1975
MAS
Rupp, 1939
The Minerals Availability System (MAS) data base of the U.S. Bureau of Mines is used for storage and retrieval of mineral deposit information. As described in the MAS Deposit Information Manual, 1978:

"The system provides an auditable procedure to continuously monitor the present and potential availability of mineral supplies to the United States in the context of many parameters that impinge upon supply, such as mining costs, beneficiation, smelting, refining, transportation, infrastructure, environment, land use, labor, productivity, technology efficiencies, supply specifications, operating capacities, deposit life, and political factors, including taxation, ownership, access, and international relations. MAS classifies the identified resources that are reserves and systematically outlines the factors that limit other known resources from being reserves. Resource and reserve nomenclature is used according to joint U.S. Geological Survey and Bureau of Mines agreement as published in USGS Bulletin 1450-A in 1976."

Information in the MAS data base is grouped into five data sets. These categories are: deposit location, deposit definition, development plan, product definition, and environmental assessment. Information from the first two data sets—deposit location and deposit definition—were utilized. Those data sets which are complete contain the following information, as described in the MAS Deposit Information Manual 1978:

"a. The deposit location base data set encompasses location, topography, and name of the deposit. Backup data sets include information on additional names, ownership, public land survey, references and comments.

b. The deposit definition base data sets contain information on commodities, quantities of resource, and assays of commodities in the resource. Backup data includes published reserve information, exploration and production histories, deposit geometry, lithology, and mineralogy."
The MAS data base was queried for information on all mines having data on rock type. This request produced printouts of 5929 mines, both surface and underground. Exhibit 1 is an example of the MAS printout for the San Manuel mine.

The CRIB Data Base

The U.S. Geological Survey's Computerized Resources Information Bank (CRIB) is available for public use through Information Systems Programs at the University of Oklahoma by means of the General Electric Mark III Service.

"Information in the record consists of descriptive text, numeric data, codes, and certain key words. Some topics accommodated are: Name, Location, Commodity Information, Description of deposit, Geology, Production, Reserves, Potential resources, and References. Approximately 400 data items are available, although all 400 data items are never used in a given record. Some 40 percent of the data items are organized into fixed-length fields or contain controlled information, such as key words. The remaining 60 percent contain free text entries."

General queries made to the CRIB data base included:
1) mines in crystalline rock with workings deeper than 600 feet, and
2) all information on the mines researched in detail.

A sample CRIB printout is shown in Exhibit 2.

GEOREF, the Geological Reference file compiled by the American Geological Institute, covers the geoscience literature from 3000 journals, as well as conferences, symposia and monographs, in the areas of geology, economic geology, engineering-environmental geology, geochemistry, geochronology, geomorphology, igneous and metamorphic petrology, solid earth geophysics and stratigraphy.
Coverage also includes books, government documents, special reports and theses, as well as citations from the Bibliography and Index of Geology.

The characterization of GEOREF was extracted from Orbit, A World of Information, and Orbit User Manual for GEOREF, published by SDC Search Service, Santa Monica, California.

GEOREF was queried for information on specific mine sites. A sample citation is shown in Exhibit 3.

Other Sources of Information

Other sources of information included the following publications with a list of items covered by each.

 All underground mines were listed, regardless of commodity mined.

 Information includes:

 - mine name
 - mine location
 - mine status
 - number of employees
 - kind of operation (mine, mill, concentrator, etc.)
 - products
 - Underground mine
 - number of shafts
 - haulage
 - ore tonnage
 - daily ore capacity
 - ore grade
 - mineralization
 - reserves
 - personnel in charge
 - mine manager
 - geologists

2) Published State Directories of Mining Operations.

 Various items of information - usually commodity mined and mine location.
3) Survey of Active and Inactive Mines for Possible Use in In Situ Test Facilities Y/OWI/SUB-76/16514, Cobbs Engineering, Geotechnical Consulting, 5200 South Yale, Tulsa, Oklahoma.

Data on all mines listed in this report as being in crystalline or high-grade metamorphic rock were extracted. Complete data sheets include the following information:

mine location by state and county
owner
mine name
present service (example: inactive, active, propane storage)
country rock type
mineral mined
depth in feet
volume of mine in cu. ft.
entries (type and number)
mining plan (example: room and pillar)
water production
first mining
last mining
general description (example: "The block caving will eventually reach the surface."")

Complete data sheets include the following information:

mine name
location (state and county)
ore
country rock
location and direction from nearby town or city (or section, township, and range)
owner
wells
altitude to Land Surface Datum (approx. land surface elevation of the collar of each well, given in feet above mean sea level)
depth to water table (from LSD, in feet)
EXHIBIT 1. Printout of data on the San Manuel/Kalamazoo mine from the MAS data base.
(U.S. Bureau of Mines Minerals Availability System)
Reserves Published Reserves/Resources

Quantity (Noncumulative) and Grade

Reserves

<table>
<thead>
<tr>
<th>MEASURED</th>
<th>IMPLICATED</th>
<th>INFERRED</th>
<th>UNDETERMINED</th>
</tr>
</thead>
</table>

Reserves - Remarks

COL: 01 SAN MANUEL OREBODY
COL: 02 KALAMAZOO ORE BODY

Grade

Assay/Type

<table>
<thead>
<tr>
<th>GRADE</th>
<th>UNIT</th>
<th>MINERAL</th>
<th>DATE OF LAST LINE</th>
<th>MODIFICATION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>MT-PCT 5% SULFIDE</td>
<td>JUL 03, 1978</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>GT-PCT 5% SULFIDE</td>
<td>JUL 03, 1978</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>MT 5% SULFIDE</td>
<td>DEC 05, 1978</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>G/MT</td>
<td>DEC 04, 1978</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>WT-PCT 5% SULFIDE</td>
<td>AUG 01, 1978</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>MT-PCT 5% SULFIDE</td>
<td>AUG 01, 1978</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>G/MT</td>
<td>DEC 05, 1978</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>G/MT</td>
<td>DEC 05, 1978</td>
<td>04</td>
<td></td>
</tr>
</tbody>
</table>

UNIDENTIFIED AS MEASURED, INDICATED, OR INFERRED

ALL QUANTITIES ARE EXPRESSED TIMES 10 TO THIS POWER FOR A GIVEN COLUMN.

RESERVES

REMARKS
MINERALS AVAILABILITY SYSTEM

DEPOSIT LISTING

DATE PRINTED: MAR 22, 1979

DEPOSIT NAME: SAN MANUEL / KALAMAZOO

PAGE: 562

SEQUENCE NUMBER: 0040210001

GEOMETRY - DATA SET

MATRIX NUMBER: 1 **COLUMN NUMBER:** 1

<table>
<thead>
<tr>
<th>Type of Ore Body: Disseminated: Stockwork</th>
<th>Depth to Mineralization (in meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Origin: Hydrothermal: Oxidation</td>
<td>Average: 201</td>
</tr>
<tr>
<td>Shape of Ore Body: Massive</td>
<td>Minimum: 1</td>
</tr>
<tr>
<td>Ore Controls: Igneous: Faulting</td>
<td></td>
</tr>
<tr>
<td>Degree of Wallrock Alteration: Moderate</td>
<td></td>
</tr>
<tr>
<td>Type of Wallrock Alteration: Potassic</td>
<td></td>
</tr>
</tbody>
</table>

MATRIX NUMBER: 2 **COLUMN NUMBER:** 1

<table>
<thead>
<tr>
<th>Type of Ore Body: Disseminated: Stockwork</th>
<th>Depth to Mineralization (in meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Origin: Hydrothermal: Oxidation</td>
<td>Average: 750</td>
</tr>
<tr>
<td>Shape of Ore Body: Massive</td>
<td>Minimum: 654</td>
</tr>
<tr>
<td>Ore Controls: Igneous: Faulting</td>
<td></td>
</tr>
<tr>
<td>Degree of Wallrock Alteration: Moderate</td>
<td></td>
</tr>
<tr>
<td>Type of Wallrock Alteration: Potassic</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGY - DATA SET

MATRIX NUMBER: | **RECORD NUMBER:** 1

<table>
<thead>
<tr>
<th>Formation Name: Igneous Intrusive</th>
<th>Relationship of Mineralization to Deformation: Min Preceding Def</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Formation: U Cret</td>
<td>Deformation Description: Maj Faulting</td>
</tr>
<tr>
<td>Density (in situ): 2.6</td>
<td>Age of Deformation: Paleoc</td>
</tr>
</tbody>
</table>

MINERALS - DATA SET

<table>
<thead>
<tr>
<th>Mat No.</th>
<th>RFC No.</th>
<th>Age of Mineralization</th>
<th>Overall Grain Size</th>
<th>Name</th>
<th>Class</th>
<th>Grain Size</th>
<th>Amount</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>CHALCOCITE</td>
<td>SULFIDES</td>
<td>VARIABLE</td>
<td></td>
<td></td>
<td>WT-PCT</td>
</tr>
<tr>
<td>03</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>CHRYSOCOLLA</td>
<td>SILICATES</td>
<td>VARIABLE</td>
<td></td>
<td></td>
<td>WT-PCT</td>
</tr>
<tr>
<td>04</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>CUPRITE</td>
<td>OXIDES (EXCLUDING S102)</td>
<td>VARIABLE</td>
<td></td>
<td></td>
<td>WT-PCT</td>
</tr>
<tr>
<td>05</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>MOLYBDENITE</td>
<td>SULFIDES</td>
<td>VARIABLE</td>
<td>0.02</td>
<td></td>
<td>WT-PCT</td>
</tr>
<tr>
<td>06</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>GOLD</td>
<td>UNKNOWN</td>
<td>13 G/MT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>SILVER</td>
<td>UNKNOWN</td>
<td>294 G/MT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>CHALCOPYRITE</td>
<td>SULFIDES</td>
<td>VARIABLE</td>
<td>0.70</td>
<td></td>
<td>WT-PCT</td>
</tr>
<tr>
<td>02</td>
<td>PALEOC</td>
<td>VARIABLE</td>
<td>CHALCOPYRITE</td>
<td>SULFIDES</td>
<td>VARIABLE</td>
<td>0.72</td>
<td></td>
<td>WT-PCT</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY - DATA SET

SET REFERENCE: SAN MANUEL'S NEW PROCESS FOR THE RECOVERY OF MOLYBDENITE

448
BIBLIOGRAPHY - DATA SET

004 NEW MONT MINING PROSPECTUS, 5-5-69, TONS AND GRADE FROM PUBLIC RELATIONS DEPT., "THE PLANT" AND "THE MINE"

005 GENERAL INFORMATION PUBLICATIONS - EXCELLENT INFORMATION

007 MAGMA FACTS - 7-1-77, COMPANY LITERATURE

010 ORE TRANSPORTATION AT SAN MANUEL BY C.F. CIGLIANA, MAY, 1958, MINING ENGINEERING.

014 MINING, MILLING, AND SMELTING METHODS, SAN MANUEL COPPER CORP., PINAL COUNTY, ARIZONA, BY V.B. DALE, BUREAU OF MINES, I.C. 8104, 1962.

019 SAN MANUEL-ENGINEERING AND MINING JOURNAL, APRIL, 1950, P.75
ORE MATERIALS (MINERALS, ROCKS, ETC.): PITCHBLende OR URANinite; CHALCOPRYtE; TETRAHEDRITE; GALENA; SPHALERITE

COMMUNITY COMMENTS:
MINE IS IN THE PAGE - GALENA MINERAL HILT. AVERAGED 55 OZ. AG/TON ON 3300 - 3500 FT LEVELS.

ANALYTICAL DATA (GENERAL)
2 CHANNEL SAMPLES BY USGS ASSAYED 0.026 % U AND 0.048 % U; 0.633 % U3O8
HIGHEST ASSAY; 0.19 % U3O8 AVERAGE U CONTENT.

INERAL ECONOMICS FACTORS

ECONOMIC COMMENTS:
BECAUSE OF CONTINUING DECLINE IN GRADE OF ORE MINED, B. H. EXPECTS CRESCENT MINE OPERATIONS DISCONTINUED AT END OF 1975

EXPLORATION AND DEVELOPMENT
STATUS OF EXPLOR. OR DEV.:
PROPERTY IS ACTIVE

YEAR OF DISCOVERY: 1964
NATURE OF DISCOVERY: A
PRESENT/LAST OWNER: THE BUNKER HILL CO.
PRESENT/LAST OPERATOR: THE BUNKER HILL CO.

WORK DONE BY USGS
YEAR WORK TYPE GEOLOGIST AND RESULTS
1) 1953 GEOCHEM F. C. ARMSTRONG
2) 1958 RECON WEIS AND OTHERS, HULL. 1974 - A
3) 1964 OTHER V. C. FRYKLUND, PROF. PAPER 445

WORK DONE BY OTHER ORGANIZATIONS
YEAR WORK TYPE ORGANIZATION AND RESULTS
1) 1975 COMPILE USBM, 1974 MINING ACTIVITIES LIST

EXPLOR. AND DEVELOP. COMMENTS:
7 PATENTED CLAIMS. DIAMOND DRILLING

DESCRIPTION OF DEPOSIT

DEPOSIT TYPES: VEIN
FORM/SHAPE OF DEPOSIT:
SIZE/DIRECTIONAL DATA
SIZE OF DEPOSIT: LARGE
DEPTH TO BOTTOM: 5100 FT
MAX LENGTH: 750 FT
MAX THICKNESS: 2 FT
STRIKE OF OREBODY: N 75 DEG W
DIP OF OREBODY: 80 DEG S

COMMENTS (DESCRIPTION OF DEPOSIT):
LOWER ALHAMBR A VEIN (SIDERITE - TETRAHEDR IT E) FIRST DISCOVERED 400 FT
BELOW SEA LEVEL

DESCRIPTION OF WORKINGS
UNDERGROUND

DESCRIPTION OF UNDERGROUND WORKINGS
DEPTH OF WORKINGS BELOW SURFACE: 1400 FT
LENGTH OF WORKINGS: 2452 FT

DESCRIPTION OF OPEN WORKINGS (SURFACE OR UNDERGROUND)

COMMENTS (DESCRIPTION OF WORKINGS):
DEPTH OF WORKINGS 1400 FT BELOW SEA LEVEL. MINE DEEPENDED TO 4000 FT
LEVEL IN 1970. LENGTH OF WORKINGS GIVEN ABOVE FOR DEVELOPMENT BY 1966

PRODUCTION
YES
MEDIUM PRODUCTION

ANNUAL PRODUCTION (ORE AND COMMODITIES)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACC AMOUNT THOUS. UNITS YEAR</th>
<th>GRADE OR USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AG ACC 00001400 oz</td>
<td>1967</td>
</tr>
<tr>
<td>2</td>
<td>AG ACC 0000025 TONS</td>
<td>1967</td>
</tr>
<tr>
<td>3</td>
<td>ORE ACC 00000025 TONS</td>
<td>1967</td>
</tr>
<tr>
<td>4</td>
<td>ORE SML</td>
<td>1966 40 oz AG/TON</td>
</tr>
</tbody>
</table>

SOURCE OF INFORMATION: SPOKANE CHRONICLE, JAN. 20, 1969; MAY 20, 1968;
MAR. 17, 1967

RESERVES ONLY

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACC AMOUNT THOUS. UNITS YEAR</th>
<th>GRADE OR USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ORE AG EST 00006603 TONS</td>
<td>1974 28.4 oz AG/TON PROVEN</td>
</tr>
<tr>
<td>2</td>
<td>ORE AG EST 000036.5 TONS</td>
<td>1974 28.4 oz AG/TON PROBABLE</td>
</tr>
<tr>
<td>3</td>
<td>ORE AG EST 000027.6 TONS</td>
<td>1973 34.3 oz AG/TON PROVEN</td>
</tr>
<tr>
<td>4</td>
<td>ORE AG EST 000017.2 TONS</td>
<td>1973 34.3 oz AG/TON PROBABLE</td>
</tr>
<tr>
<td>5</td>
<td>ORE AG EST 000031.4 TONS</td>
<td>1972 29.4 oz AG/TON PROVEN</td>
</tr>
<tr>
<td>6</td>
<td>ORE AG EST 000024.3 TONS</td>
<td>1972 29.4 oz AG/TON PROBABLE</td>
</tr>
</tbody>
</table>

SOURCE OF INFORMATION: GULF RESOURCES 1974 ANNUAL REPT.

EOLOGY AND MINERALOGY

AGE/NAME OF HOST ROCKS: PREC QUARTZITE

PERTINENT MINERALOGY: CALCITE; QUARTZ; SIDERITE

IMPORTANT ORE CONTROL OR LOCUS: FAULT
GEOLOGY (SUPPLEMENTARY INFORMATION)

REGIONAL GEOLOGY

MAJOR REGIONAL STRUCTURES: OSBURN FAULT

LOCAL GEOLOGY

AGE/NAMES OF FORMATIONS OR ROCK TYPES

1) PREC ST. REGIS FORMATION - QUARTZITE, ARGILLITE
2) PREC WALLACE FORMATION - CALC. QUARTZITE, ARGILLITE

SIGNIFICANT LOCAL STRUCTURES:

ALHAMBRA FAULT, BRECCIATION

SIGNIFICANT ALTERATION:

FF - OXIDES, SERICITE, PYRITE

GENERAL REFERENCES

1) COOK, E. F., 1955, PROSPECTING FOR URANIUM, THORIUM, AND TUNGSTEN IN IDAHO: IDAHO BUREAU MINES AND GEOLOGY CIRC. 102, 53 P.
3) FRYKLUND, V. C., JR., 1964, ORE DEPOSIT OF THE COEUR D'ALENE DISTRICT, SHOSHONE COUNTY, IDAHO: USGS PROF. PAPER 445, 103 P.
4) USBM, 1975, ACTIVITY OF IDAHO MINING PROPERTIES, 1974: USBM, BOISE, 61 P.
5) SPOKANE CHRONICLE, FEB. 24, 1972; MAY 25, 1970; APR. 18, 1967; MAR. 27, 1975
6) WESTERN MINING NEWS, 1974-75 DIRECTORY OF MINES IN IDAHO (COEUR D'ALENE) AND WASHINGTON, P. 33
1. Preliminary Geologic Map of the Leadville 1 Degrees X 2 Degrees Quadrangle, Northwestern Colorado

Authors: Tueto, O.; Koenig, R. H.; Reed, U. C., Jr.

Source: U. S. Geol. Surv., Misc. Field Stud. Map (USA) (XWMSDD), No. MF-760, unpaginated p., 1976, geol. map. SCALE: 1:250,000

Issue: 77-39103

2. Preliminary Map of Landslide Deposits, Leadville 1 Degrees by 2 Degrees Quadrangle, Colorado

Authors: Colton, R. B.; Holligan, J. A.; Anderson, L. W.; Patterson, P. E.

Source: U. S. Geol. Surv., Misc. Field Stud. Map (USA) (XWMSDD), No. MF-701, unpaginated p., 1975, environ. geol. map. SCALE: 1:250,000

Issue: 77-33023

3. Gravitational Spreading of Steep-Sided Ridges ("Sackung") in Colorado

Authors: Radbruch-Hall, D. H.; Varnes, D. J.; Colton, R. B.

Organizational Source: U. S. Geol. Surv. Menlo Park, Calif. USA

Issue: 77-33323

Bibliographic References Dealing with the Leadville Quadrangle, Colorado

EXHIBIT 3. Bibliographic references dealing with the Leadville quadrangle, Colorado (from the GeoRef database on SDC Search Service).
APPENDIX 2. MINES IN CRYSSTALLINE ROCKS

CONSIDERED FOR STUDY

Table 1 lists by state the numbers of underground mines, mines in rocks other than crystalline and metamorphic, and mines in crystalline or metamorphic rock. Also listed are the numbers of class 1 and class 2 mines and civil works by state.

The 285 mines and mining districts considered for study for this report are listed in table 2 in alphabetical order by mine name. Also included are the state and county in which each mine is located.
<table>
<thead>
<tr>
<th>State</th>
<th>Original total</th>
<th>Surface and underground mines</th>
<th>Mines not in crystalline rock</th>
<th>Mines in crystalline rock</th>
<th>Total mines in crystalline rock (from all sources)</th>
<th>Sites selected based on criteria</th>
<th>Sites 1</th>
<th>Sites 2</th>
<th>Sites 3</th>
<th>Sites 4</th>
<th>Sites 5</th>
<th>Total sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>93</td>
<td>39</td>
<td>6</td>
<td>33</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALASKA</td>
<td>62</td>
<td>40</td>
<td>2</td>
<td>39</td>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>97</td>
<td>58</td>
<td>10</td>
<td>42</td>
<td>52</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td>26</td>
<td>19</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>351</td>
<td>258</td>
<td>55</td>
<td>205</td>
<td>210</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>COLORADO</td>
<td>1494</td>
<td>1317</td>
<td>1088</td>
<td>220</td>
<td>220</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DELAWARE</td>
<td>-</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>104</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDAHO</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>52</td>
<td>47</td>
<td>46</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INDIANA</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IOWA</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KANSAS</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>35</td>
<td>49</td>
<td>45</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MAINE</td>
<td>44</td>
<td>15</td>
<td>1</td>
<td>14</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>33</td>
<td>29</td>
<td>4</td>
<td>25</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>63</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>MISSOURI</td>
<td>313</td>
<td>245</td>
<td>64</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MONTANA</td>
<td>265</td>
<td>224</td>
<td>4</td>
<td>220</td>
<td>220</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NEBRASKA</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NEVADA</td>
<td>168</td>
<td>109</td>
<td>49</td>
<td>79</td>
<td>97</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NEW HAMPSHIRE</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>214</td>
<td>182</td>
<td>50</td>
<td>132</td>
<td>135</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>62</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OHIO</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>119</td>
<td>106</td>
<td>116</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OREGON</td>
<td>67</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>56</td>
<td>26</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RHODE ISLAND</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SOUTH CAROLINA</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SOUTH DAKOTA</td>
<td>85</td>
<td>66</td>
<td>25</td>
<td>41</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>209</td>
<td>137</td>
<td>132</td>
<td>5</td>
<td>30</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TEXAS</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UTAH</td>
<td>1318</td>
<td>1223</td>
<td>1056</td>
<td>167</td>
<td>172</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VERMONT</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>28</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>97</td>
<td>60</td>
<td>47</td>
<td>35</td>
<td>41</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WEST VIRGINIA</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>39</td>
<td>32</td>
<td>32</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WYOMING</td>
<td>86</td>
<td>29</td>
<td>22</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTALS</td>
<td>5975</td>
<td>4783</td>
<td>3225</td>
<td>1858</td>
<td>1679</td>
<td>3</td>
<td>1</td>
<td>30</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Excludes information from the literature, private communications, and other sources.

Ducktown District
<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allouez Conglomerate No. 1.</td>
<td>Michigan</td>
<td>Houghton Co.</td>
</tr>
<tr>
<td>Alta Mine</td>
<td>Montana</td>
<td>Jefferson Co.</td>
</tr>
<tr>
<td>Amador Mine</td>
<td>Montana</td>
<td>Mineral Co.</td>
</tr>
<tr>
<td>Amalgamated Larder Mine</td>
<td>Nevada</td>
<td>Lincoln Co.</td>
</tr>
<tr>
<td>Amazon Mine</td>
<td>Idaho</td>
<td>Shoshone Co.</td>
</tr>
<tr>
<td>Amry Prospect</td>
<td>Nevada</td>
<td>Esmeralda Co.</td>
</tr>
<tr>
<td>Apex Standard Mine</td>
<td>Utah</td>
<td>Utah Co.</td>
</tr>
<tr>
<td>Arctic Camp</td>
<td>Alaska</td>
<td>Ambler River Co.</td>
</tr>
<tr>
<td>Ashland Mine</td>
<td>Oregon</td>
<td>Jackson Co.</td>
</tr>
<tr>
<td>Atlantic & Brighton</td>
<td>Colorado</td>
<td>Gilpin Co.</td>
</tr>
<tr>
<td>Atlantic Mines</td>
<td>Wyoming</td>
<td>Fremont Co.</td>
</tr>
<tr>
<td>Atolia District</td>
<td>California</td>
<td>San Bernardino, Kern Co.</td>
</tr>
<tr>
<td>Babbitt Lake Exploration Prospect</td>
<td>Minnesota</td>
<td>St. Louis Co.</td>
</tr>
<tr>
<td>Babbit Mine</td>
<td>Montana</td>
<td>Sanders Co.</td>
</tr>
<tr>
<td>Bagdad Mine Area</td>
<td>Arizona</td>
<td>Yavapai Co.</td>
</tr>
<tr>
<td>Balmat-Edwards District</td>
<td>New York</td>
<td>St. Lawrence Co.</td>
</tr>
<tr>
<td>Balmat</td>
<td>New York</td>
<td>St. Lawrence Co.</td>
</tr>
<tr>
<td>Baltic Amygdaloid</td>
<td>Michigan</td>
<td>Houghton Co.</td>
</tr>
<tr>
<td>Banner Mine</td>
<td>Idaho</td>
<td>Boise Co.</td>
</tr>
<tr>
<td>Bartholomæ</td>
<td>Alaska</td>
<td>Fairbanks Co.</td>
</tr>
<tr>
<td>Baxter Mine</td>
<td>Nevada</td>
<td>Mineral Co.</td>
</tr>
<tr>
<td>Black Cloud</td>
<td>Colorado</td>
<td>Lake Co.</td>
</tr>
<tr>
<td>Black Hawk (Second Pond) - Blue Hill Mine</td>
<td>Maine, Hancock Co.</td>
<td></td>
</tr>
<tr>
<td>Black Pine Mine</td>
<td>Montana</td>
<td>Granite Co.</td>
</tr>
<tr>
<td>Black Rock Mine</td>
<td>California</td>
<td>Mono Co.</td>
</tr>
<tr>
<td>Blackbird Mine</td>
<td>Idaho</td>
<td>Lemhi Co.</td>
</tr>
</tbody>
</table>
Block P Mine, Montana, Judith Basin Co.
Borianna Mine, Arizona, Mohave Co.
Bornite, Alaska, Ambler River Co.
Boyd Mine, Tennessee, Polk Co.
Brushy Creek Mine, Missouri, Reynolds Co.
Buffalo Mine, Idaho, Elmore Co.
Buick Mine, Missouri, Iron Co.
Bulldog Mountain Project, Colorado, Mineral Co.
Bullion District, Nevada, Lander Co.
Burgin Mine, Utah, Utah Co.
Burra Burra Mine, Tennessee, Polk Co.
Burro Chief Mine, New Mexico, Grant Co.
Butte Manganese District, Montana, Silver Bow Co.
Butte Highlands Mine, Montana, Silver Bow Co.
Butte Mining District and Butte Underground Mines, Mont., Silver Bow Co.
Cago No. 12, Idaho, Lemhi Co.
Calera Mine, Idaho, Lemhi Co.
Calloway Mine, Tennessee, Polk Co.
Calumet, No. 1, Michigan, Houghton Co.
Calumet, No. 2, Michigan, Houghton Co.
Campbird Mine, Colorado, Ouray Co.
Canistoe Mine, Minnesota, Itasca Co.
Carr Fork Mine, Utah, Tooele Co.
Centennial, No. 3-6, Michigan, Houghton Co.
Cherokee Mine, Tennessee, Polk Co.
Chief Mine, Utah, Juab Co.
Christmas Mine, Arizona, Gila Co.
Clayton Mine, Idaho, Custer Co.
Climax Mine, Colorado, Lake Co.
Coeur Mine, Idaho, Shoshone Co.
Colorado School of Mines Mine, Colorado
Conjecture Mine, Idaho, Bonner Co.
Consolidated Silver, Idaho, Shoshone Co.
Constitution Mine, Idaho, Shoshone Co.
Continental Underground, New Mexico, Grant Co.
Copper Camp, Idaho, Valley Co.
Copper Hill Operations, Tennessee, Polk Co.
Copper King, Arizona, Yavapai Co.
Cornwall Mine, Pennsylvania, Lebanon Co.
Cranberry Magnetite, North Carolina, Avery Co.
Crescent, Idaho, Shoshone Co.
Croton Magnetite Iron Mine, New York, Putnam Co.
Crowell Mine, Nevada, Nye Co.
Culchote, Tennessee, Polk Co.
Cuyuna Range Exploration Prospect, Minnesota, Crow Wing Co.
Dacotah Mine, Montana, Cascade Co.
Dan Tucker Mine, Nevada, Churchill Co.
Darwin Mine, California, Inyo County
Dayrock Mine, Idaho, Shoshone Co.
Deep Creek Mine, Washington, Stevens Co.
Deer Trail Mine, Utah, Juab Co.
Douglas Mine, Idaho, Shoshone Co.
Ducktown District, Tennessee, Polk Co.
Eagle Mine, Colorado, Gilman Co.
East Tennessee, Tennessee, Polk Co.
Edwards, New York, St. Lawrence Co.
Elizabeth Mine, Vermont, Orange Co.
Elmwood No. 1, Tennessee, Polk Co.
Ely Prospect, Minnesota, Lake Co.
Eureka Bullion Mine, Utah, Utah Co.
Eureka Lily Mine, Utah, Utah Co.
Eureka Mine, Tennessee, Polk Co.
Eureka Standard Mine, Utah, Utah Co.
Fletcher Mine, Missouri, Reynolds Co.
Florence Mine, Montana, Cascade Co.
Frisco Mine, Idaho, Shoshone Co.
Galena Unit, Idaho, Shoshone Co.
Galt-Queen, Montana, Cascade Co.
Georgia Mine, Georgia, Chatsworth Co.
Germania Mine, Washington, Stevens Co.
Getchell Mine, Nevada, Humboldt Co.
Gilman Mine, Colorado, Eagle Co.
Gold Hunter Mine, Idaho, Shoshone Co.
Golden Sunbeam, Idaho, Custer Co.
Gooseberry Mine, Nevada, Storey Co.
Grace Mine, Pennsylvania, Berks Co.
Granite-Bimetallic Mine, Montana, Granite Co.
Gregory, Montana, Jefferson Co.
Gray Eagle, California, Siskiyou Co.
Gray Eagle Mine, Montana, Jefferson Co.
Ground Hog Mine, New Mexico, Grant Co.
Hall-Interstate Mine, Idaho, Valley Co.
Hamme Tungsten District, Tungsten Queen, North Carolina, Vance Co.
Hanover Mine, New Mexico, Grant Co.
Hecia Mine, Idaho, Shoshone Co.
Henderson, Colorado, Grand & Clear Creek Cos.
Hercules Mine, Idaho, Shoshone Co.
Highland-Surprise Mine, Idaho, Shoshone Co.
Hillside Mine, Arizona, Yavapai Co.
Homestake Mine, South Dakota, Lawrence Co.
Hoo Doo, Idaho, Custer County
Houghton No. 1., Michigan, Houghton Co.
Hyatt, New York, St. Lawrence
Idarado Mine, Colorado, Ouray & San Miguel Cos.
Ilmenite Mines on Anorthosites, New York
Ima Mine, Idaho, Lemhi Co.
Imuruk Basin Graphite, Alaska, Teller Co.
Independence Mine, Nevada, Lander Co.
Indian Creek Div., Missouri, Washington Co.
Indiana, Michigan, Ontonagon Co.
Iron Dyke Mine, Oregon, Baker Co.
Iron King Mine, Utah, Utah Co.
Iron Mountain, Missouri, St. Francois Co.
Iroquois, Michigan, Keweenaw Co.
Isabella, Tennessee, Polk Co.
Jefferson City Mine, Tennessee, Polk Co.
Johnson Mine, Vermont, Lamoille Co.
Jualin, Alaska, Juneau Co.
Kalamazoo, Arizona, Pinal Co.

Kearsarge Amygdaloid No. 1., Michigan, Houghton Co.
Kearsarge Amygdaloid No. 2., Michigan, Houghton Co.

Kentuck Mine, Idaho, Lemhi Co.

Kerr American Blue Hill Joint Venture, Maine, Hancock Co.

Keystone Mine, Colorado, Gunnison County

Kingston, Michigan, Keweenaw Co.

Kingston, No. 1, Michigan, Houghton Co.

Kingston, No. 2, Michigan, Houghton Co.

Lakeshore Mine, Arizona, Pinal Co.

Last Resort Vein, Idaho, Custer Co.

Latest Out Mine, Idaho, Lemhi Co.

Leadville Unit, Colorado, Lake Co.

Liberal King Mine, Idaho, Shoshone Co.

Little Pittsburg Mine, Idaho, Shoshone Co.

London, Tennessee, Polk Co.

Lost Packer Mine, Idaho, Custer Co.

Lost Pilgrim Mine, Idaho, Valley Co.

Lost River, Alaska, Teller Co.

Lower Mammoth Mine, Utah, Juab Co.

Lucky Friday Mine, Idaho, Shoshone Co.

Lyon Mountain District New York, Clinton Co.

Magma, (Superior) Mine, Arizona, Pinal Co.

Magmont Mine, Missouri, Iron Co.

Mary, Tennessee, Polk Co.

Mather Mine, Michigan, Marquette Co.

Mather B. Mine, Michigan, Marquette Co.
Mayflower Mine, Utah, Wasatch Co.
McCarty, Alaska, Livengood Co.
Miami East, Arizona, Gila Co.
Middle Fork Property, Washington, King Co.
Midnite Mine, Washington, Stevens Co.
Mill City, Nevada, Pershing Co.
Minnamix Site, Minnesota, St. Louis Co.
Minnie Moore Mine, Idaho, Blaine Co.
Miscellaneous Amygdaloids No. 1, Michigan, Houghton Co.
Miscellaneous Amygdaloids No. 2, Michigan, Houghton Co.
Miscellaneous Fissure No. 1, Michigan, Houghton Co.
Miscellaneous Fissures No. 2, Michigan, Houghton Co.
Monarch Mine, Idaho, Elmore Co.
Monitor Mine, Idaho, Shoshone Co.
Morning Mine, Idaho, Shoshone Co.
Mt. Hope Iron Mine, New Jersey, Morris Co.
New Market Mine, Tennessee, Jefferson Co.
North Lily Mine, Utah, Utah Co.
North Pole-Columbia Lode Mine, Oregon, Baker Co.
Old Dick, Arizona, Yavapai Co.
Old Tennessee, Tennessee, Polk Co.
Old Timer Mine, Nevada, White Pine Co.
Ontario Mine, Utah, Summit Co.
Ophir Mine, Utah, Tooele Co.
Oracle Ridge, Arizona, Pima Co.
Ore Knob Mine, North Carolina, Ashe Co.
Oriental Mine, California, Sierra Co.
Osceola No. 1, Michigan, Houghton Co.
Osceola No. 2, Michigan, Houghton Co.
Ozark Mine, Missouri, Reynolds Co.
Pacific, Utah, Utah Co.
Page Mine, Idaho, Shoshone Co.
Pan American Mine, Nevada, Lincoln Co.
Park City Mine, Utah, Summit Co.
Patapsco Mines, Maryland, Carroll Co.
Pend Oreille Mine, Washington, Pend Oreille Co.
Pewabic No. 1, Michigan, Houghton Co.
Pewabic No. 2, Michigan, Houghton Co.
Phi Kappa Mine, Idaho, Custer Co.
Piedmont Manganese Belt, Ga - Sc., Georgia, Lincoln Co.
Pilot Knob Mine, Missouri, Iron Co.
Pine Creek Mine, California, Inyo Co.
Polk County, Tennessee, Polk Co.
Poorman Mine, Idaho, Owyhee Co.
Questa Mine, New Mexico, Taos Co.
Records Vault, Utah-Little Cottonwood Canyon, Salt Lake Co.
Red Bluff, Idaho, Valley Co.
Red Mountain, Montana, Lewis & Clark Co.
Red Mountain Property, Arizona, Santa Cruz Co.
Resurrection Mine, Colorado, Lake Co.
Rich Gulch Mine, Idaho, Owyhee Co.
Robinson District, Nevada, White Pine Co.
Rock Creek, Montana, Sanders Co.
Ruby Hill Mine, Nevada, Eureka Co.
Safford Phelps Dodge, Arizona, Graham Co.
San Francisco District, Utah, Beaver Co.
San Manuel, Arizona, Pinal Co.
San Pedro Mine, New Mexico, Valencia Co.
Schwartzwalder Mine, Colorado, Jefferson Co.
Scrub Oaks, New Jersey, Morris Co.
Searchlight District, Nevada, Clark Co.
Seneca, Michigan, Keweenaw Co.
September Group, California, Mono Co.
Sherman Mine, Colorado, Lake Co.
Sherman Mine, Idaho, Shoshone Co.
Sherwood Mine, Michigan, Iron Co.
Sherwood Mine, Washington, Stevens Co.
Shrine Mine, New Mexico, Grant Co.
Sidney Mine, Idaho, Shoshone Co.
Silver City Region, Idaho, Owyhee Co.
Silver Crystal Mine, Idaho, Shoshone Co.
Silver Dyke, Nevada, Mineral Co.
Silver King Mines, Nevada, Lander Co.
Silverton Operations, Colorado, San Juan Co.
Sixteen-to-one Mine, Nevada, Esmeralda Co.
Snowbird, Idaho, Valley Co.
Soudan Mine, Minnesota, Saint Louis Co.
South Mountain Mine, Idaho, Owyhee Co.
Springfield Mine, Maryland, Carroll Co.
St. Patrick Mining Co., Nevada, Lincoln Co.
Star-Morning Mine, Idaho, Shoshone Co.
Star Mine, Idaho, Shoshone Co.
Steen Mine, Idaho, Lemhi Co.
Sterling Mine, New Jersey, Sussex Co.
Success Mine, Idaho, Shoshone Co.
Sullivan Operations, Missouri, Washington Co.
Summit King Mine, Nevada, Churchill Co.
Sunbeam Mine, Utah, Juab Co.
Sunrise Breccia Deposit, Washington, Snohomish Co.
Sunrise, Wyoming, Platte Co.
Sunset Mine, Idaho, Shoshone Co.
Sunset Mine, Washington, Snohomish Co.
Sunshine Mine, Idaho, Shoshone Co.
Superior Mine, Arizona, Pinal Co.
Sutton No. 2 Mine, Nevada, Pershing Co.
Tag Mine, Nevada, Pershing Co.
Tamarack Mine, Idaho, Shoshone Co.
Taylor Mine, Nevada, White Pine Co.
Tem Piute Operations, Nevada, Lincoln Co.
Thomas "W" Mine, Nevada, Lander Co.
Tiger-Poorman Mine, Idaho, Shoshone Co.
Tilly Foster Magnetite Mine, New York, Putnam Co.
Tintic Standard Mine, Utah, Utah Co.
Trixie Mine, Utah, Utah Co.
Troy Mine, Montana, Lincoln Co.
Tungsten Group, Nevada, Pershing Co.
Tungsten Queen Mine, North Carolina, Vance Co.
Twenty-one Mine, New Mexico, Valencia Co.
Twenty-seven Mine, New Mexico, Valencia Co.
United Copper Claim, Washington, Stevens Co.
Unity Mine, Idaho, Idaho Co.
Urad Mine, Colorado, Ouray Co.
Viburnum Div., Missouri, Iron Co.
White Pine Mine, Michigan, Ontonagon Co.
Whitedelph Mine, Idaho, Bonner Co.
Woodrat Mountain Kyanite Prospect, Idaho, Idaho Co.