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Abstract. The formal simplicity of ideal point vortex systems in two dimensions has
long attracted interest in both their exact solutions and in their capacity to simulate physical
processes. Artention here is focused on infinite, two-fold periodic vortex arrays, including
an expression for the energy density of an arbitrary vortex lattice (i.c., an arbitrary number
of vortices with arbitrary strengths in a unit cell parallelogram of arbitrary shape). For the
case of two vortices per unit cell, the morphology of stable lattices can be described
completely. A non-trivial physical realization of such lattices is a rotating mixture of 3He
and “He at temperatures so low that borh isotopic components are superfluid. The structure
of the expected lattices is quite different from the usual triangular structure. Magnetic flux
lines in high-temperature superconductors show a one-parameter family of degenerate
ground states of the lattice due to the anisotropy of the vortex-vortex interacdon. A final
topic, closely related to Josephson-junction arrays, is the case of vortices confined to a
grid. That is, the vortices interact pair-wise in the usual manner but are constrained to
occupy oniy locations on an independent periodic grid. By using vortex relaxation
methods in the continuum and then imposing the grid it is possible to find low-lying states
extremely rapidly compared to previous Monte Carlo calculations.

1. Point Vortex Lattices, per se. Consider N vortices of circulation strengths I at

positions rj, j = 1,..,N in the unbounded plane. To study their stationary configurations it
is necessary to find the extrema of the function,

N-1 N N
p._ﬂ_. )y i Lilloglri-r|-Q Y Li(l-rH- 3 c, (1)
i <j iml il

where d is the fluid density, €2 is a Lagrange multiplier (proportional to the angular
rotation) that constrains the configuration to constant angular momentum, and the ¢; are
constant self-energies for each vortex. Obviously, the ¢; do not affect the extrema and are
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included only to show where assumptions about the core structure would be buried. For
the cases considered here the cores do not overlap, so it is correct to use the logarithmic
potential - it is sufficient that F be defined within an additive conscant. Global and local
minima of F are sought; this requires vortices of the same sign, except on the grid in
Section 3(c).

The effect of €2 in Eq. (1) is to fix the vortex density n of the minimal F
configurations, n o SU/I', where I'is an average strength. On the lattice, however, the

density of vortices will be kept constant explicitly, so the Lagrange multiplier £2 cau: be
eliminated, leaving only the double sum of loglr; - rjl to be evaluated.

Before proceeding with the evaluation of the energy for a lattice it will give some
perspective on the current state of ignorance to state two open questions:

I. What is the smallest number of vortices per unit cell in a
non-triangular, stable lattice of identical vortices?

II. Are all stable, space-filling configurations lattices?

It has bee: known for some years that for equal I"J the triangular vortex lattice has the

lowest energy.[10] What is not known, or at least not proven, is the existence of any other
lattice that is a local minimum of the energy, although Tkachenko{11] suggests that all
lattices "sufficiently close to triangular” are stable. The square lattice is disqualified - it is a
saddle point of the energy. Numerical searches by the present author using elevean or fewer
vortices per unit cell have failed to find non-triangular stable lattices.

O O O O O O

O O O

Fig. 1 The triangular lattice; the only stable vortex lattice known for equal I3 .

This is quite unlike the situation with finite N for which the number of stable states grows
rapidly as N increases.[2,8] Yet, only ore stable configuration is known for a vortex
lattice, which contains an infinite number of vortices. In Oﬁpen Queston II the possibility is
raised that infinite configurations other than lattices (by definition periodic) might be stable.
These could be as exotic as an aperiodic tiling ur as prosaic as a single dislocation in an
otherwise perfect lattice. It is intuitively cbvious to crystallographers that stable
dislocations will exist in the voriex lattice. Nevertheless, there is no proof and it is not so
obvious, because the atomic interactions in crystals are short-ranged. (However,
dislocations in crystals, like vortices, interact according to logl r | which raises the
amusing prospect of studying dislocation lattices of dislocation lattices -.{ atomic 'attices.)
Returning to the energy, it is necessary to evaluate the energy density defined as

-1 N

N
E-_MIT-?JA? ;<;Z LTy log|ri-r 2

where J is the number of vortices per unit cell, M is the number of cclls, and N = /M.
Strictly speaking, E is the energy per vortex (apart from a dimensional constant) but it is
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also the energy per unit area when the vortex density is constant. To eliminate M, divide
the sum over N into sums over each of the J vortices,

N M M M
Z=2+2+---+Z. (3)
j:l j|=l jz=1 =1

The double sum in Eq. (2) consists of pairs,

EZ Falglog|rj,-rjsj=-M T, Fﬁz log|rPg~rog + Ly| , (4)

Ja s

where rOq and rp are in the same unit cell and the vector Ly, ranges over all M cells,
Lll = nlLlGl + nzbzez (5)

Here L)€, and L,e; are the generators of the unit cell and ny,np = 0,£1,12, . . ., except
that n)=ny=0 must be omitted if @ = .

L,e, (@) O
(o]
o © o
L e

Fig. 2 The unit cell containing / = 5 vortices. € e =cos ¢

In this notation, Eq. (2) becomes

-3 J
E= rzZloglL.l-Az Farpzloglr" -+ Ly, el 2. @

a<p a=l

The principal ingredients to evaluating Eq. (6) include the following. (This derivation
has appeared whem[3 6] and an elegant, independent version by O'Neil[7] is included

in these proceedings.)
i. Expansion of logixl in "box" normalization.

_ ik-x
loglx| = ;P-To Shl:zm_” S Z k—‘———2+#2 k= 21:(“. 55 M

ii. Transformation from k to "reciprocal” lattice g.

2% (ML my T /
g.sin(tb L) Vit L, vz), vie; = §jsing . 8)

iti. Elimination of g = O term in the lattice sum. Eq. (6) is formally divergent, but when
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rewritten as a sum over g this divergence is concentrated in the g = 0 term, which can
be "thrown away"”. More correctly, it can be explained away as an artifact of

neglecting the €2 term of Eq. (1), which also diverges as N — ¢o and would cancel
the g = 0 term. Vortices of the same sign require a rigid-body counter-rotation of the
background fluid to contain them, i.e., a rotating reference frame is necessary for
them to appear stationary. In the language of charges (the system here is equivalent
to a collecton of line charges of the same sign) a neutralizing background charge of
opposite sign is necessary to prevent divergence of the electrostatic energy density.

iv. Application of Glasser's method for phase modulated sums.[4] Using Jacobi's
rransformation from the theory of theta functions, Glasser shows how to reduce sums

of the form 3 €%X
- " an

v. Constraint of constant vortex density. The above ingredients give an expression for
E that contains logL, (or logL,) as a parameter. To tix the density, L must scale
properly with the number of vortices per unit cell J. This ensures that the same
energy is obtained for equivalent lattices, i.c., a lattice whose unit cell is doubled,
with no other changes, must have the same energy density as before. Multiply L

and [, by a scaling parameter ¢ and set the density to unity to obtain invariance for

equivalent lattices,
_—l_—_ = 1 = qu = —1— . (9)
qLi1qlasing V Lysing

The final result for the energy density is

E=r? é—lg sin 9 - log(Zm\/ sin ¢;Jp" log ml.i[l H (0.0.m)}

+2 ﬁr,-r, %['z—'-‘LC—zﬂLI-Zﬂ)+g-sin¢]-%log T 4

2.ij
2 om)|, (10)
i<j 4rx \sin ¢ L2

mes ..

where 2, =

27 (ro;-ro))- X ) 27 (r0;—ro;)- y L 2 L 2
L y 22, = L ,p-Lz, I‘—ltﬂ and

iml
H(z\,:2m)m 1 - 2¢'#|‘”2’"" ’i“dcos(zl +Zlgllcos ¢)+e'%|”*2’"" singl (11)

E is the relatve energy density of lattices containing fixed ratios of vortex species wath
fixed strengths. To compare the energies of lattices with different vortex species or species
ratios requires assumptions or physical information about the self-energies of the vortices.
What makes Eqs. (10) and (11) useful for numerical evaluation is the fast convergence of
the function H(zy,z7,m); m <3 is usually sufficient. Explicit pertodicity in the y-direction
has been removed for simplification, but is retained in the x-direction. Also, it is
convenient for calculating the partial derivatives of £ (used in the conjugate gradient

method) to change the unit cell variables p and ¢ to o = 2r sing/p and x = 2rt cos@ /p.
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2. The Two-vortex Lattice and Two More Questions. With the help of Eq. (10)
we may exhibit the complete morphology of the minima of £ for the case of two vortices

per unit cell; it is only necessary to consider 0 S ¥y < 1 where y=I'5/I";. The numerical
results. using the conjugate gradient method, are shown in Fig. 3. (The lattice parameters

¢ and p must be varied along with N - 1 vortex positions.)

latt
100 " 1.0 tee @
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90 1 ¢ 0.9 (o)
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70 1 2 - 0.7 vortex
Region of ]
coexistence r = equal encrgy lattice
of two lattice 60 - 0.6 B
structures. B L 5
so;l 2 105 o
0.0 4] 02 04 _ 06 0.8 1.0 )
a =L/
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Fig. 3 The morphology of the two-vortex lattice.
At small ythe strong vortex dominates, resulting in a triangvlar lattice for itself, to
which the weak vortex accommodates by choosing either of two equivalent positions 1/3 or

2/3 along the long diagonal of the unit cell (lattice ). These positions are also the centers
of the triangles formed by the strong vortices and, thus, the positions of maximum distance

from the strong vortices. At larger ythe weak vortex discontinuously switches to the center
of the unit cell (lattice ) and remains there, while the shape of the unit cell continues to
change, undl a triangular lattice is again attained at = 1, It is natural to ask if this behavior
is generic. In the space of the ;= Ij,-/ Iy, are the minima of £ never connected by a curve
on which the lattice parameters and vortex positions change continuously?

Open Question IIL Is the lattice space Ly (Y,, . . ,Yy) always disjoint?

For a given set of l} , it is natural to ask how the minima change, if at all, as the unit

cell is doubled, tripled, etc. Is there a tendency for identical vortices to clump togetner and
gain the benefit olP forming their own triangular lattice or, on the contrary, do they diffuse
as widely as possible? A disadvantage of clumping is the additdonal boundary energy
between regions of different vortices, but if these regions are not discommensurate pcrhaps

that energy penalty is small. Suppose there are m; vortices of swrength FI vJ=1,.M per
unit cell. Do larger cells have smaller energy?

Open Question IV. For what m, 1‘} iSE[(nmy < E[m)] ,n =23,.. !

It seems almost nothing is known about vortex lattices.



3. Physical Applications.
a. Lattices of unequal vortices in quantum liquids. Superfluid 4He in a
rotating container mimics the solid-body rotation of an ordinary liquid by nucleating,

parallel to €, rectilinear vortices of quanuzed strength I'y = h /my and density n =282/l
where A is Planck’s constant, m,4 the mass of a *He atom, and €2 is the angular velocity.(2]
The other isotope, 3He, also becomes superfluid at 'ow temperatures but responds te a
rotating container by nucleating vortices of a different saength, I'3 = h 2m3. ( The factor

of 121n I‘3 arises from the fermi statistics of SHe atoms; 4He atoms arc bosons.) In a

fluid mixture of 4He and 3He both components should become superfluid at sufficiently
low temperature (not yet attained) and each component will support its own type of
quantized vortex line. What will be the equilibrium vortex lattice structure in a rotating,

superfluid 3He-4He mixture? The relatve densides of the two species of vortices is n3 /ny
= Iy /Ty = 2m3 /my = 1.50700 = 3/2. Thus, for small unit cells there are 3 3He vortices
for every 2 4He vortices. Examples of energy minima for the smallest unit cell and 15/

= 2/3 are shown in Fig. 4.
o o o ° o °
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Fig. 4 Vonex lattices for 3Hc “He mixtures of equal fluid densities. Ladice (a) has lower energy.

This, however, is wrong for the physical helium mixture because it overlooks the relative
miscible densites of the isotopic components. As seen from Eq. (1) the energy of vortices
is proportional to the fluid density d. The energy of a fluid mixture is & sum of their
separate energies plus their interactuon. If the fluids were entirely noninteracting then each
would form its own, independent triangular vortex lattice. However, the helium isotopic
components interact and there is a maximum amount of 3He that can be mixed with 4He.
The energy of the system can be expressed according to Eq. (1),

2
F-_%Eﬂ loglr,--r,l—gj‘r-tzi[‘32 log|re-ril
4 3
—#%EEFSFJR log | r;-ri| - Q2(angular momentum) , (12)
1) (4

where a hydrodynamic model has been used in the third term on the right to express the
3He-4He interaction. This is equivalent to a single fluid containing vortices of strengths

Iy’ =d4' 2T and 'y" = d31/2[7y. For the maximum 3He solubility this gives the ratio
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F3‘/F4 ‘=().18. Note that the relative fluid densites do not affect the relative vortex

densities. Quite different lattices are obtained using the effective strengths corrected for the
fluid densities, as shown in Fig. 5.
° o o o
o 4 He o
o/. IHe r/. °
o

o o

o
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72| Ty

Fig. 5 Vortex lattices for 3He -‘s-le superfluid mixtures. The lattice on the left has lower energy.

These results could change further with improvements to the 3He-4He interacti~n model.

b. Lattices of anisotropic vorticity in superconductors. Type II
superconductors are another example of a quantum fluid that supports quantized vorticity.
In this case the circulating current in the vortex is charged, which creates a magnetic field

resulting in an integrated flux over a plane perpendicular to the vortex line of @, = 2.07

10-7 gauss-cm2. The current associated with a superconducting vortex or flux line does not
extend to infinity, so the interaction between flux lines is not strictly logarithmic but rather

that of the modified Bessel function Ko(l r; ~ r; 1 /A) where the so-called penetration depth A
sets the range of the current and the vortex-vortex interaction. This interaction is obtained

in Eq. (7) by setting u=1y>0 . However, if the inter-vortex spacing / is much smaller than
the range of interaction A then Eq. (10) remains a good physical approximation.

(a) (b)

Fig. 6 Flux lawices (vortices of supercurrent) in an anisotropic superconductor
arising from different orientations of a triangular lattice. All onentations
hetween (a) and (b) are possible.
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Because the new high-temperature superconductors are strongly type II (which means

A is much larger than the size of the vortex core), the condition / << A holds for a wide
range of applied magnetic field (which creates the flux lines). Unlike the traditional

superconducturs, the new ones are highly anisotropic in the sense that A is direction
dependent. What are the consequences of this for the energy and the structure of the vortex
lattices? A detailed answer would involve technical issues not appropriate here,[1] but a
major part can be deduced immediately from the earlier discussion. The anisotropy
essentially amounts to enhancing the interaction in one spatial direction, i.e., the interaction

between vortices becomes logle(xi—x;)2 + (y-y;)¥, where € is the anisotropy parameter in

the x-direction. Obviously, this can be removed by a simple scale transformation, x"= x /¢,
and everything follows as before. In particular, the minimum is the triangular lattice in the
scaled space (x",y), or a "stretched" triangular lattice in physical space (x,y). The rotational
continuum of triangular lattices in the scaled space are wrivially equivale t, but in the
physical space they are inequivanent, as shown in Fig. 6, although they have qual energy.
This degeneracy in first order allows higher order physical processes to L : studied by
experimentally observing which lattice is preferred under different conditions.

c. Lattices constrained on grids: Josephson junction arrays. A
Josephson junction array is a collection of superconductors that are interconnected by
bonds that permit imperfect supercurrent flow (tinneling supercurrent). A generic
characteristic of superconductors and superfluids is the existence of a new thermodynamic

parameter, the phase 6. The energy of two superconductors connected with such a bond

(Josephson junction) is proportional to —c0s(6,-8,). The energy of an array of Josephson
junctons is[5,9]

E,=- KO ,-l) cos (Oi—ej-w,-,-) , (13)

where <i /> are nearest neighbors,
J
;w2 | A-ds, (14)
P J;

and the vector potential A is given by the applied magnetic field, H = VxA. The integral

JA-ds is over the bond between superconductors i and /. This is illustrated schematically
in Fig. 7(a), where periodic boundary conditions are assumed. The energy function £, can
be mapped to a new function £, on the dual lattce illustrated in Fig. 7(b),

Ey=-K, 2 qigjlogri-r;|, (15)
ij

where the "charges" or vortices have mixed signs, q; = 1-f or -f. The ratio of the number
of 1-f vortices to -f vortices is simply f /(1-f), i.e., the net charge or circulation is zero.

The parameter f, the so-called filling factor, is the rativ f = H,a%/@,, where a is the length

of the grid spacing; in Fig. 7(b), f = 1/6. At this stage one could apply Eq. (10) to find the
minimum of E, by constraining the shape of the unit cell (to be square) and the positions of
the vortices to be on the grid. [Note that Eq.(10) is perfectly valid for vortices of mixed
sign, and can be used to find their minimum energy conﬁguranons in this case because the
grid constraint prevents singularities.] Some permutations of the 36 vortices would give
minimum E,. However, one can do better on two counts. First, I have found a further
mapping from the two-species to a single-species system, thereby reducing the length of
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the calculation. Second, with a system of vortices having the same sign the minimum
energy can first be found quickly in a unit cell without grid points and the resulting pattemn
then attached to the grid. (Incidentally, there is no fundamental reason to restrict either the
unit cell of grid points or their symmetry to be square.)

K
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Fig. 7 Grids representing the mapping of a Josephson junction array (0 a single-species vortex system.

To specify the mapping from (b) to (c) in Fig. 7 (ignore the arrows for the moment) let
E(I'|.I,) be the energy from Eq.(10) of two vortex species that fill all the grid points of an

I xI square grid, Ny + N5 =1 2. The filling factor (sometimes called the frustration) is f=
N/l 25 172. The principal mapping is

E(1A)=E(1,00-f2E, , (16)

and, for completeness, I list a similarone, £ (1,-1)=4E (1,00-(4f-1) Esq . Here, ESq
=—1.3105329259 is the energy of the square lattice. (For comparison, the energy of the

triangular lattice is Ey = —1.3211174284.) The two-species energy E (1,0) is simple to
evaluate compared to £ (1-f,f ) and can be further reduced to an explicitly one-species
form E (I} ) by £ (1,0) =f[E (1) - (1/2) log f] - That is, for £ (1,0) the number of
vortices per unit cell is J =/ 2, while for E (1), J = Ny.

The task of finding low energy states of the Josephson junction array has been reduced
to finding low energy states of N unit vortices on a grid. These states cannot be local
minima of the energy because, as far as we know, only the triangular lattice is a minimum
for the single-species case. Therefore, the vortex-vortex interactions will not usually cancel
at the vortex positions, but result in a “force” on each vortex [indicated by the arrows in
Fig. 7(c)] unless the configuration is a saddle point of E, which caa occur if the
configuration is particularly symmetric or "commensurate”. (These remnant forces become
important for the dynamical properties of the system.) As mentoned above, a particularly
efficient way to find low energy states is to first find minimal energy configurations of NV,
vortices in a square unit cell (obviously, such minima can never be triangular) and th=n
overlay a grid on the pattern and move each vortex to the nearest grid point. This does not
guarantee the lowest energy grid state at a given f, but typically comes close. (Another
method is to overlay a grid on the triangular lattice - in practice this actually gives relatively
poor results, i.c., high energies.) Fig. 8 shows values of low energy vortex grid states for
two hundred values of the filling factor f. The energy is normalized to the square and

triangular lattices, E; = [E (1,0) - E, 1/[[-.'sq - Ey]. Asf— 0 the vortices become dilute on
the grid and can always approach the favorable triangular and square lattices. Special



values of f allow an exact square lattice. The relative sparscness in the number of valuves
plotted at higher f merely reflects the fewer number of low energy states found there.
Obviously, an energy can be given to every f, but the problem is to find the lowest energy
states. The connectivity drawn between e (f ) values is only a guide to the eye.

20
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Fig. 8 Vortex grid energy vs. filling fraction.

4. Summary. An expression is now available that is well suited for numerical
evaluation of the energy density of arbitrary vortex lattices. The basic properties of stable
vortex lattices are currently unknown and, judging from the two-vortex lattice, their
morphology promises to be rich. Quantum fluids, in the general sense, offer a direct
application of vortex lattice theory. Further applications can be found in systems of
logarithmically interacting objects (dislocations, line currents, line charges, etc.) or by
mapping to a vortex lattice, as illustrated by the Josephson junction array.
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