THE SURFACE ENERGY AND THE COMPRESSIBILITY

W.D. Myers
Nuclear Science Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

†Prepared for the "Sixth Winter Workshop on Nuclear Dynamics", Jackson Hole, Wyoming, 17-24 February 1990
THE SURFACE ENERGY AND THE COMPRESSIBILITY

W.D. Myers
Nuclear Science Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

The surface energy and the compressibility are closely related since, after all, the surface energy arises in part from the fact that there is a loss of binding associated with reduced density, and the compressibility coefficient K_∞ is the quantity that governs this effect for small density deviations. In fact, we find in our work (which is the continuation of a series of Thomas-Fermi calculations using the Seyler-Blanchard interaction) that the value of K_∞ is determined by the combined requirement that the surface diffuseness correspond to the one measured in electron scattering and the surface energy is the one that corresponds to a fit of the model to nuclear masses. The effect on the surface energy of varying the diffuseness b or the compressibility K_∞ can be seen in fig. 1.

Even though K_∞ has been determined, the effective value of the compressibility K_{eff} for a finite nucleus can be quite a bit smaller because the resistance of the nucleus to changes in scale consists not only of a bulk effect but depends also on surface, curvature and higher order effects. In fig. 2 the calculated values for the binding energy per particle E/A and the effective stiffness K_{eff} for a wide range of $N = Z$ nuclei (without Coulomb energy) are compared. In both cases the values are plotted versus $A^{-1/3}$ so that a curve through the points will intersect the ordinate at the nuclear matter value of the quantity in question. The slope of the line gives the dependence on surface area and the other terms are associated with higher order effects. It is interesting to note that in both parts of this figure the higher order terms in the power series expansion tend to cancel. What this means for the quantity E/A is that a simple Liquid Drop Model consisting only of a volume and surface term can be expected to work very well. For the quantity K_{eff} it means that there is probably little point in trying to go beyond a simple two term description of the effective stiffness in terms of volume and surface effects.

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under Contract DE-AC03-76SF00098.
Fig. 1 The value of the surface energy coefficient a_2 is plotted against K for three different values of the nuclear diffuseness b. The point corresponding to our choice of parameters is in the circle in the center of the figure.

Fig. 2 A plot of the calculated energy per particle E/A versus $A^{-1/3}$ for finite $N = Z$ nuclei (without Coulomb energy) is compared with a similar plot for the quantity K_{eff}.
The effective compressibility depends not only on the size of the nucleus but also on its composition. In fig. 3 the calculated value of K_{eff} for a number of nuclei has been plotted versus the mass number A for three different cases. The open triangles correspond to values similar to those in fig. 2 with $N = Z$ and no Coulomb energy. The circles correspond to the K_{eff} values that would result if the composition of each nucleus was changed to the neutron-proton ratio holding at β stability. The square symbols correspond to also including the effect of the Coulomb energy. The effect of the neutron excess and the Coulomb repulsion can be clearly seen.

Fig. 3 The effective value of the compressibility K_{eff} for a number of nuclei is plotted versus their mass number A. The triangles correspond to $N = Z$ and have the same values as in fig. 2. The circles show the reduction that occurs when the N, Z ratio is changed to correspond to β stability. The effect of adding the Coulomb repulsion is indicated by the square symbols.

Fig. 4 The solid line corresponds to our estimate of the energy of the Giant Monopole Resonance using the hydrodynamical expression above. The circles correspond to measured values\(^3\)' whose errors are claimed to be smaller than the size of the symbols.
In addition, in fig. 4 we show our prediction for the energy of the Giant Monopole Resonance based on these values of K_{eff} and the simple hydrodynamical expression

$$E_{\text{GMR}} = \hbar \sqrt{\frac{3}{15} K_{\text{eff}}/B},$$

where $B = m\langle r^2 \rangle$, $\langle r^2 \rangle = \frac{3}{5} R^2 + 3b^2$, $R = 1.13 A^{1/3} \text{fm}$ and $b = 1 \text{fm}$. This expression was derived from eq. (6A-50) in ref. 5, which is

$$\omega = \pi u_c/R_0,$$

where $u_c = \sqrt{\frac{K}{9m}}$. To arrive at our expression, which includes a diffuseness correction, we replaced R_0 by $\sqrt{\frac{3}{5}\langle r^2 \rangle}$.

The author wishes to acknowledge discussions with W.J. Swiatecki who was responsible for a number of the ideas presented here. He also wants to acknowledge the important contribution made by P. Möller.

References

1) This paper is a shortened and slightly modified version of the paper “Aspects of Incompressibility” that will appear in The Proceedings of the Gross Properties of Nuclei and Nuclear Excitations International Workshop XVIII, Hirschegg, Austria, 15-20 January 1990.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.