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USE OF THE STELLARATOR EXPANSION
TO INVESTIGATE
PLASMA EQUILIBRIUM IN MODULAR STELLARATORS

G. Anania, J.L. Jobuson,* and K.E. Weimer

AB5S5TRACT

A numerical code utilizing a large-aspect ratio, small-helical-distortion ex-
pansion i8 developed and used to investigate the effect of plasma currents on
stellarator equilibrium. Application to modular siellarator configurations shows
that a large rotational transform, and bence large coil deformation, is needed to
achieve high-beta equilibria.
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I. INTRODUCTION.

Ioterest in the stellarator concept for containment of a thermonuclear plasma
has recently been revived.!:2 This is due to progress in solving several earlier
difficulties. Experimeutal results witk current-free operation of WENDELSTEIN
VIi-A3 and HELIOTRON E* have demonstrated containment comparable with,
or better than, thal aclieved in equivalent tokamaks. Trausporl studies using
Monte Carlo techniques® =7 have indicated that losses of particles trapped in non-
axisymmetric magnetic fields may be less severe than previously estimated. The
development of modular coils® ! has eliminated the problem of interconnected
windings! which arises in classical stellarator configurations and simplified the
design probleme for the supporting structure. Reactor studies using conser-
vative physics assumptions'! lrad 10 a reactor design that compares well with
those of other fusion devices. With this renewed interest, tkere is a need for
techniques to investigate the effect of the plasma on the magneto-hydrodynamic
equiiibrium and stability properties of the stellarator configuration. This paper
describes bow a program to do this has been implemented and applied to atudy
some specific tquilibria.

Most of the recent theoretical studies und reactor designs have used vacuum
magnetic fields and ignored the effects ¢ plasma pressure on the configuration.
Three techniques have becn developed for studying the actual plasma contain-
ment. Three- dimeisional codes'? -13 can be used to investigate the equilibrium
properties of these systems Present computer techoclogy ia barely able to cope
with these problems, 5o studies are restricted tc relatively coarse meshes and re-
quire considerable time aud effort. Furthermore, in the present codes, the shape
of an outer flux surface, rather than the actual coil vonfiguration, is usually
specified. A secoud a2pproach, expansion about the magnetic axis, !4~ 10 has
provided considerable insight. This also suffcrs from having the surface shapes
defined, as opposed to specifying the fields or currents ontside the plasma. The
third approach is to nse the fact that stellarators are envisioned to operate with
a large aspect ratio so that we can employ the stellarator expansion.!? 1% This
technique is based on the assumption that tbe nog-axisymmetric part of the



magnetic field is small and periodic over a length that is much shorter than the
major radius of the system. Straightforward expansion provides an averaging
over these ripples and, in lowest order, reduces the problem to an axisymmetric
one. This expansion simplifies both the equilibrium and stability problems,!®
making possible the identification of the physical issues. A time-dependent
code?® based on this stellarator-expansior ordering has provided information
on some special cases. Even this code uses a fixed, prescribed plasma surface as
a boundary condition.

Since the equilibrium and stability equations obtained from the stellarator
expansion have only minor mathem~tical differences from those for an axisym-
metric tokamak, it is usefu! to modify the PEST equilibrium and stability
codes?!:22 1o treat these problems. We present i : formulation of the equi-
librium code in the next section. The approach is similar to that used in an
earlier attempt.2® Its validation is described in Sec. IIl. We apply the code to
stellarators with modular coils in Sec. IV and provide a short discussion of the

results in Sec. V.

O. FORMALISM.

The stellarator model'® was developed to reduce the three-dimensional
stellarator problem to a two-dimensional one. In this model the helica! magnetic
field is considered to be much smaller than the toroidal field, with a short enough
wave lenglh that its effects can be incorporated into the model by an averaging
technique. We consider a magnetic Seld of the form

B=B;+(Bs)+(B.+Bs+ 8B, +Bgs)+ ... (1)

with an ordering in the square root of the inverse aspect ratio,
(&)YN&NEEN&,\,%NE(L (2)
By By By Bq Bo R /

We use an orthogounal (r,#, ¢) coordinate system where the metric elements are

hy=1, hy=r, h3=(l+§cosﬂ)‘ (2)
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Here R is the major radius of the torus and r measures the distance out from
the axig, with r /9 a a measure of the plasma radius.

The lowest-order field By is uniform and in the ¢-direction. In first order,

B =vY B—“;ﬂ!n(hr)san(w — k) ()
Lh

is a vacuum field associated with current in helical coils, with { and A the
multiplicity and wave number of the ¢; 5 harmonic (we assume that ha /s 1 with
AR an integral number). The lowest-order effects of toroidal curvature, plasma
pressure, and currents along the magoetic field, inside or outside the plasma, are

given by
B, = ——e,BgR cos 8, (5)
Bp = —e4xp(¥)/ 8By, (6)
o = Vs X VA(r,9), M

respectively, with ¥ defining a magnetic surface. These, together with a higher-
order, ¢-dependeni vacuum field Bys, are second order, as is the inverse aspect
ratio.

Solving the equilibrium equations, order by order, reduces the problem tol®

\;::wo—Bio(/d;Baj-vwoa-w_.(r,o)+... , {8)
Vo = Vy(r,0) + 27RA, {9)
V2A = d4xJ, = —8xRp'(Wo)i(r, 8) + G(¥). (10)

Here ¥ is the poloidal flux,

2xR
vy = L < B.sr/Budf >

=xRBy Y. ‘”‘"""'"1‘ h') m{A) ot — m)o (1)
lLm.k




measures the contribution of the vacuum multipolar fields to the magnetic sur-

faces, and
<B}> o
= ——— + —cosfd
0 Bl + 7 oo
2
= E ﬁﬁ%’ﬂ(l"(hr)l’m(hr) + (}an; + l)h(hr]lm(hr)) cos({ — m)d + —R: cos @
imh

(12)
represents the efective magnetic field line curvature. The angular brackets
represent an average over ¢, and primes denote derivatives with respect to the
argument. The function G(¥y) in Eq. (10), introduced as an arbitrary constant
of integration in the formulation, provides the freedom to prescribe the net
toroidal current on each magnetic surface. Thus it is often convenient to set

C G(¥o) = 81’23;)'(\[‘(.)%0(7',9)‘—6%?(/% (V—% +T(%),  (13)
with ds? = dr? + r?d#? on a constant-Wy cross section. The surface integral
removes the net contribution to J, arising from the pressure term so that G(¥y),
which measures the ohmic beating current, is zero for a net-current-free stel-
larator. It is useful to note that the equilibrium properties have Leen deter-
mined only to lowest order, but additional information about the shapes of the
surfaces is availablc in the second term of Eq. (8). Evaluation of ¥, (r, 8) requires
knowledge of the magnetic fields through third order. For many configurations
it is possible to show that this term is a function of Wy alone. In this paper we
adjust it so that the fluxes as calculated in first order are nearly the same when
evaluated at different cross sections, and the same as obtained from the zeroth
order. The change in shape of the ¢-dependent part of the surfaces can be quite
large, due to the fact that the gradients of ¥, need not be small.

Other quantities which are useful for equilibrium and stability considera-
tions can be evaluated by integrating around constant-W, contours as in Eq.(13).18
These include the rotational transform,

—~)_ll (14)
0



and the rate of change of surface volume with toroidal flux ¢,

vie) =220 s ) (15)
0
with g
5'(%) = Bof[ﬂ[r,9)+ %p(wu)lw—‘;d. (16)

We omit the second term in Eq  R) for the purpose of invesligating localized
instabilities since it represents the magnetic weli dug by the diamagnetic current,
which can be carried along by an interchange and therefore does not contribute
any stabilitation.!7-?* A negative value of V¥, (®) is favorable for suppression
of these modes.

Equations (8) through {12) are very similar to the Grad-Shafranov equation

which determines axisymmetric equilibrium,21

. 4 18¥ 8%
V= Xﬁ YE_X— + lTZE
where RByg(V)V¢ is the toroidal magnetic field and X = R + :cosé. The
differ ences are: (1) inclusion of the multipolar field contribution Wy in the fiux
function, (2)modification of the curvature term {1 to include the effect of the
multipolar field, and (3) use of the cylindrical Laplacian operator V? rather
than the toroidal one V" because of the large-aspect-ratio expansion. We have
modified the PEST equilibrium code to incorporate these changes. Evaluation
of the surface integrals in Egs. (13) through (18) is accomplished through

iutegrations using the built-in mapping routine.

= —4x%p(V)X? — 4x*R*BYg(V)f'(¥), (17)

II. CODE VALIDATION.

We have tested the code’s accuracy by two methods. Both show that tu.
results agree reasonably we!ll with those obtained using other techniques.

The first method used for code validation involves comparison with an exact

quadrature solution!® for the special case where p(¥,) and G(W,) are linear
functions of W so that Eq. (10} is linear. Two problems are encountered 1p



making this comparison. First, this special choice leads to an abrupt jump
in the toroidal current at the plasma boundary so that the finite-difference
inversion techniques used to solve the Poisson equation in the PEST code become
inadequate. Second, evaluation of the quadrature solution becomes difficult at
high #,where the surfaces are far from circular. The comparisons given in Table
1 show the agreement that could he expected when we estimate the effect of
these difficulties. Further confidence can be gained from the comparison of the
magnetic axis shift with increasing 8 = 8xp(0)/B? shown in Fig. 1.

In the second method we compare the shift of the magnetic axis with
respect to the plasma boundary as a function of beta with that obtained from
other work. We find good agreement with an initial-value code?® which utilizes
the same expansion for a model with the parameters chosen to represent the
WENDELSTEIN VII-A device. Comparison of the axis shift in HELIOTRON E
with calculations using a fully three-dimensional code also shows agreement.2®

IV. APPLICATION TO MODULAR STELLARATORS.

In this section we use the code to investigate the properties of modular-coil
stellarator configurations ®:® We do this by utilizing Fourier decomposition of
the current in the coils, followed by the application of the stellarator expansion.
"t has been shown® that, for large-aspect-ratio configurations, good agreement
is oblained between the results of thie approach and calculaiions of rotational
trapsforme obtained by following magnetic field lines for vacuum-field systems.
Although the agreement can not be expected Lo be as good for the smaller aspect
ratios used in this application, the information obtained from this model can
provide guidance for the evaluation and comparison of the different systems.

A limit on the harmonic content present in the field is imposed by the
condition that the magnetic surfaces be well behaved.? In our model we would
expect to see the breakdown of this condition through the lack of closure of
the outer first-order magnetic surfaces obtained using Eq.(8). This often occurs
because YWy can be very large where the zeroth-order surfaces are close to
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each otber. We have compared our estimates of the maximum radius at which
separatrices occur with exact calculations following magnetic field lines in several
vacuum-field cases®? and observed that the limits imposed by taking our results
seriously when we keep firat-order terms are too pessimistic. As remarked earlier,
this is due in part to our inability to evaluate W,(r,#) correctly. The use of
an asymptotic expansion with the small parameter of the crder of one-half
also creates difficulties. Thus poor magnetic surfaces with this code should be
accepted as an indication that a limit is being approached but should not be
considered as providing a quantitative restriction. Numerical problems occur
when the magnetic surfaces get closely bunched, so that in most of this work
we have restricted ourselves to very low values of 4 = 8xp(0)/B%, at which the
shift of the magnetic axis relative to the center of the plasma surface is roughly
equal to half the plasma radius. This value of A has often been taken as a figure
of merit for equilibrium limits. Since the shift can be directly correlated with

the rotational transform, this is probably an over-simplification.

We consider the modular coil winding law

¢=gi+) dyainj(l0—6), r=a, i=12,.,N (18)
7

with ¢; = 2x Ri/N, 8, = 2xrmi/N ; the d,’s represent the coil deformations, !
and m are the numbers of poloidal and toroidal field periods, N is the number
of coils, and a is the winding radius, which we normalize lo unity. We have
represented the coils by keeping three terms in the winding law, 7 = 1,2, and
3. This Jaw with only one harmonic, 7 = 1, was proposed as a way to obtain
a stellarator configuration with a single set of modular coils.?® The inclusion of
more terms in the winding law® ? introduces additional harmonic -ontent into the
magnetic field. This provides an increased rotational transform but can lead to a
reduction in the plasma volume because of the appearance of helical separatrices
in the first-order surfaces. in this work we add a uniform vertica! field as we
increase the plasma pressure to keep the center of the plasma surface fixed. If
we did not do this the plasma would move into a region where the contribution
to the flux from the helical windings ir large sc that the integrity of the firsi-




order surfaces would be damaged. Since our mode! amplifies these difficulties,
this modification probably makes the results more meaningful and simplifies the

comparison of cases with pressure with their vacuum-field counterparta.

We firsl treat tbe Rehker-Wobig coil?® with { = 2, m = 4, N = 38,
R/a = 6.2854, d;/a = 0.2, d2/a = d3/a = 0, ard the plasma radius r,/a =
0.4875. This coil corresponds to the solid curve in Fig. 8 of reference 6. The
vacuum field contributions to the rotational transform coming from the major
harmonic modes are shown in Fig. 2(e). Most of the transform can be associated
with the sin 2(6 — 2¢/R) component of the magnetic field, the “helical mode” of
references 8 and 9 ; the sir 2(f + 16¢/R) compouent, the “anti-helical mode,”
accounts for much of the res.. We assume that p varies as W2 and we keep zero
net current on every flux surface. The zeroth-order magnetic surfaces, Figs. 2(a)
and 2(b), together with cross sections keeping the first-order corrections, Figs.
?(c) and 2(d), are also given for the vacuum configuration and for a case with
B = 2%. The shift of the axis with respect to the plasma surface is A/a = 47%.
To prevent an excessive outward shift of the plasma surface we impose a small
vertical field, By /B, = 0.0077 . The rotational transform s(¥,) and V'(®),
given by Egs. (14) and (15 [without the last term in Eq. (16) ], are shown
in Figs. 2(f) and 2(g). As should be expected, the major effect of introducing
plasma pressure is the outward shift of the magnetic surfaces due to the local
field produced by the Pfirsch-Schliter current, Eq. (10) [Fig. 2(h)]. Associated
with this shift is a distortion of the ¥y surfaces near the magnetic axir intn
an elliptic shape. In this region this increases the rotational transform. and
the magnetic field lines spend more time on the inside of the torus, where the
magoetic curvature is favorable, changing the slope of V/(®) and producing a
magnetic well. The fields associated with these Pfirsch-Schilter currents are
quite small at the edge of the plasma so that +(¥y) and V'(®) approach their
vacuum field values. Since there is no net current in the system and the region
where ¢(Wp) is the same on two flux surfaces is in a magnetic well, the double-
valued behavior of ¢(¥) is not necessarily bad.

As showp in the dashed curve in Fig. B8 of reference 9, the rotational
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transform produced by modular coils can be increased without increasing the
maximum deformation by changing d;/dé in the winding law at the nodal points
¢ = ¢; . A reasonable coil conﬁgurationo can be modeled with { = 2, m = 4,
N = 36, Rfc = 8.2854, d,/a == 0.2128 , dp/a =- —0.0181 , dy/a = 0.0198,
and rp/a = 0.4875 . The vacuum field contributior to ¢(¥s) coming from
the different Fourier components is given in Tig. 3. It is clear that this more
complicated deformation has an increased harmonic content. In this figure we
also show the magnetic surfaces, s(Wy) , and V'(®) for cases with # = 0 and
B = 2.5% (Bv/Bo = 0.0083), and the Pfirach-Schiiiter current. The value of
the vacuum rotational transform is increased by about 15% above that of the
previous coil, so that even though f is higher, the axis shift, A/a = 45%, it
smaller. This happens because the higher transform reduces the Pfirsch-Schliter
current. It can be observed that for this configuration the distortion of the first-

order, ¢-dependent magnetic surfaces is larger than for *he previcus coil.

An even higher rotational transform can be obtained from a configuration
modeled with { =2, m =4, N =36, R/a = 6.2854, d;/a =024, d;/a =0,
d3/a =004, and rp/a = 0.4875 (the dotted cuive in Fig. 8 of reference 9) .
The results are given in Fig. 4 for § =0 and 8 = 4% { By /By = 0.01) . This
coil deformation further improves the rotational transform, 8o that A/a = 48%.

A wmuch higher rotational transform can be obtained by using coils with
a larger maximum deformation. To investigate the effect of increasing the
deformation from 20% to 30%, we consider a configuiation with i =2, n1 = 4,
N =36, Rfa = 6.2854, d,/a = 0.3354 , dz/a = —0.05, d3/a = 4.0354 ,
and rpfa = 0.4875. With .hese parameters the rotational transform on »xis
;8¢ = 1.11, 8o that even with # = 15% {carresponding to an ave ~ge beta of
aboul 5%) A/a is only 48%. The figures for this case are not shown. We show
instead those corresponding to a case that has been treated in the literatuie
(Fig. 4 of reference 8). Its coils have the same deformation parameters but R =
6.8867, m = 8, and N = 48. The higher number of field periods decreases the
rotational transform on axis (now ¢ = 0.81) but gives a little more shear. As can
be seen from Fig. 5, the axis shift Aja = 49%, at § = 8% (By /B, = 0.013),

sy



_ 11~

is reasonable. As in the other cases, we see the Jevelopment of a large transform

and deep well at the magnetic axii.

It is frequently argued that { = 3 is the obvious choice for a reactor because
the vacuum magnetic surfaces possess large shear. It has been noted previously'8
that addition of even a small amount of plasma pressure drastically alters the
configuration. We jllustrate this by treating a system with [ = 3, m = 9,
N = 38, Rfa = 8.6687,d,/a = 0.3, dofa = —0.101 , d3fa = 0, and
rpfo = 0.33 . The results, given in Fig. 6, show that even for § = 0.15%
(with no added verltical field) the shapes of the magnetic surfaces and all the
equilibrium properties have changed ccnsiderably The axis shift is Afa = §7%.
A reasonable conclusion to draw from this treatment is Lthat as soon as any
pressure is introduced into an { = 3 system, the plasma quickly shifis so that
its Wy surfaces become elliptic and acquire a finite rovational transforin pear the

axis.

As has been noted,'® ihe vacuum field magnetic surfaces can be modified
by the addition of a particular vertical field so that the Pfirsch-Schhiter cur-
reuts are small. Then, increasing the pressure should have little effect on the
magnetic configuration. A u-iform external vertical feld with By /By = 0.08
accomplishes this for this system by making § di/B over a periodicity length
uearly independent of poluidal angle. A # of 293 is easily obtained. Although
this rorfiguration has excellent equilibrium properties, it may not be attractive
because the plasma lies on a magnetic hill instead of in a magnetic well.

V. PD2ISCUSSION.

Interest in stellarators has generated a need for techniques to investigate
equilibrium and stabijity of three-dimensional configurations. The existing fully
three-dimensional codes are restricted in accurzcy because of their coarse meshes
and are expensive ta run. Most of the current studies utilize only vacuum-field
configurations. The stellarator expansion approach can be a useful supplementary
tool. Although the ideas currently being pursued iesd to parameters not well

e —— ) —
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suited to the expansion this technique can identify poteutial advantages and
investigate problem«. that may arise.

The cases we have shown mainly represent configurations produced by mo-
dular coils with deformations of about 20% of their winding radius. With
these parameters, the maximum value of A achievable before the shift of the
magnetic axis with respect to the plasma boundary becomes appreciable is
quite low. This is due to the small rotational trausform generated by the
coils. The rotational transform can be increased by modifying the winding
law ta introduce more harmonics in the magnetic fieid. Unless care is taken,
this produces surface breakup thereby eflectively reducing the plasma radius.
{acreasing the magnitude of the defarmation increases the externally imposed
rotational trapsform and thus improves the equilibrium properties. Since the
values of the expansion parameters used in this study are large, the A-limits
obtained from the model are lower than what should actually be obtained.
Nevertheless, it must be concluded from these results that the design of a
modular device will be difficult because plasma effects quickly become important.

Qur treatment of { = 3 configurations should serve as a waraoing against
using the vacuum configuratior for system studies when there is no rotational
transform at the axis in the vacum magnetic field. Extremely smali pressure
can alter the equilibrium properties drawatically.

1t has been emphasized recently?? —28 that stellarators with moderate aspect
ratio can have adequale rotational transforms, 8o the equilibrium limitations on
beta due to the shifting of the magnetic surfaces are not stringent. At the same
time, glab'iily can be expected because of .he favorable magnetic well created
by this shift. However, most of the stellarator stability work that has been
done has ~ither treated localized interchange and ballooning modes, ignoring
the effect of the force-free current, or considered tokamak-like operation with
a net current bul assuming concentric, circular, lowest-order magnetic surfaces
without pressure, to investigate kink modes. A PEST-type stability code to
complement this equilibrium code has been constructed.?® It will allow the study
of the interaction of the forces associated with the Pfirsch-Schliiter current and
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those related to pressure-driven interchanges and ballocning, to obtair a better
understanding of the stability properties of stellarators.
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Table 1. Comparison of the stream function A(r, 8) , given at equal intervale
of Az = 0.0103 across the horizontal midplane of the plasma, inside to outside,
as calculated by the quadrature formula Eq. 68 of Ref. 18 and by the code. The
parametersare [ =3 , f = 25% , R =1, a = 0.082, ¢ = 10, ha = 1.24,
G(¥) = Gy + G ¥, with G; = ~0.005 and Gq = —0.0138, adjusted to give

zero nel total current.

| Analytical Computational % difference
(107%) (1079 L
-1.306 -1.345 -2.98
‘1892 | 1717 -1.46
-1.863 -1.871 0.42
-1.753 | -1.750 0.17
-1.371 ] -1.364 0.48
-0.785 0.761 0.59
0.000 0.000 .00
0.857 0.854 -0.44
1.738 1.735 -0.20
2.569 92.574 0.19
3.261 3.287 0.79
3.888 3.757 1.e7
3.646 | 3.806 | 4.40
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Fig. 1. Shift of the magnetic axis with respect to the center of the plasma
boundary for the { = 3 stellarator of Table 1, with G, = —f/5 and G¢ adjusted
to give zero net total current. The solid curve is the result of the quadrature
model of Ref. 13, while the crosses are the results obtained by the code.

Fig. 2. Equilibrium properties of a modular stellarator configuration with
=2 m=4 N =36 R/a = 62854, d,/a = 02, d2/a =0, d3/a =0,
and rfa = 0.4875, giving ¢,,.(0) = 0.385. (a) Zeroth-order magnetic surfaces
with § = 0. (b} Zeroth-order magnetic surfaces with § = 2%. (c,d) Magnetic
surfaces, keeping first-order terms, for § = 2% at ¢ = 0 and ¢ = 22.5°.
{e) Contribution to the vacuum rotational traneform from the different field
harmouics: long-dashed curves, helical mcde sin 2(6 —2¢/R) (upper) and sin 2{#—
20¢/R) (lower) ; short-dashed curve, anti-helical mode 8ir 2(¢ + 16¢/R) ; solid
curve, total transform. (f) Rotational transform: dashed curve, 8 = 0 ; solid
curve, f = 2%. (g) V',.(P) : dashed curve, § = 0 ; solid curve, § = 2%. (h)
Toroidal current along the horizontal midplane, # == 0 and .

Fig. 3. Equilibrium properiier of a modular stellarator configuration with
l=2,m=4,N =238, R/a = 62854, d,/a = 0.2128, d2/a = —0.0181,
dz/a = 0.0128, and r/a = 0.4875, giving spe.(0) = 0.441. The curves are the
same as in Fig. 2. but with § = 2.5%.

Fig. 4. Equilibrium properties of a modular stellarator configuration with
l=2,m=4,N=236,R/a =062854,d,/a =G24, ds/a =0, d3/a = 0.04,
and r/a = 0.4875, g1ving ¢4,.(0) = 0.554. The curves are the same as in Fig. 2,
bit with § = 4%. Since the contributions from the different helical components
to the rotational transform were given in Fig. @ of Ref. 8, a conrtour plot of the

Pfirsch-Schliiter current is given in (e).

Fig. 5. Equilibrium properties of a modular stellarator configuration with
=2, m=06,N =48 ,6 Rfa = 6.6667, d;/a = 0.3354, d2/a = —0.05,
dafa = 0.0854, and r/a = 0.4875, giving ¢,4.(0} = 0.818. The curves are the
same as in Fig. 2, but with § = 8% (¢ = 0°,15° ) . In (e) the long-dashed
curves are the helical modes sin 2(6 —3¢/R) (upper) and sin 2(6 —27¢/R) (lower),
and the short-dashed curve is the anti-helical mode, sin 2(8 + 21¢/R)
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Fig. 8. Equilibrium properties of a modular stellarator configuration with
l=3,m=9,N =236, R/ja = 56687, di/a = 03, dy/a = —0.101,
d3fa = 0, and r/a = 0.33. The curves are the same as in Fig. 2, but with
B =0.15% (¢ = 20°,10° ). In (e) the long-dashed curves are the helical modes
sin 2(8 -- 3¢/R) (upper) and sin 2(6 — 15¢/R} (lower), and the short-dashed curve
is the anti-helical mode, sin 2(¢ + 9¢/R)
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