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USE OF T H E STELLARATOR EXPANSION 
T O INVESTIGATE 

P L A S M A EQUILIBRIUM IN MODULAR STELLARATORS 

G. Anania, J.L. Johnson,"' and K.E. Weimer 

L ._ 

ABSTRACT 

A numerical code utilising a large-aspect ratio, small-helical-distortion ex­
pansion is developed and used to investigate the effect of plasma currents on 
stellarator equilibrium. Application to modular stellarator configurations shows 
that a large rotational transform, and hence large coil deformation, is needed to 
achieve high-beta equilibria. 
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I. I N T R O D U C T I O N . 

Interest in the stellarator concept for containment of a thermonuclear plasma 
has recently been r e v i v e d . 1 , 2 This is due to progress in solving several earlier 
difficulties. Experimental results with current-free operation of WENDELSTEiN 
VII-A and HELIOTRON K have demonstra ted containment comparable with, 
or bettor than, tha t achieved in equivalent tokamaks. Transport studies using 
Monte Carlo techniques have indicated tha t losses of particles t rapped in non-
axisymmetric magnetic fields may be less severe than previously est imated. The 
development of modular c o i l s 8 - " has eliminated the problem of interconnected 
windings which arises in classical stellarator configurations and simplified the 
design problems for the support ing s t ructure . Reactor studies using conser­
vative physics a s sumpt ions 1 ' b a d to a reactor design tha t compares well with 
those of other fusion devices. With this renewed interest, there is a need for 
techniques to investigate the effect of the plasma on the magneto-hydrodynamic 
equilibrium and stability properties of the atellarator configuration. This paper 
describes how a program to do this has been implemented and applied to study 
some specific equilibria. 

Mosi of the recent, theoretical Btudies and reactor designs have used vacuum 
magnetic fields and ignored the effects of plasma pressure on the configuration. 
Three techniques have been developed for studying the actual plasma contain­
ment. Three- dimensional codes can be used to investigate the equilibrium 
properties of these systems Present computer technology i3 barely able to cope 
with these problems, so studies are restricted to relatively coarse meshes and re­
quire considerable t ime and effort. Furthermore, in the present codes, the shape 
of an outer flux Burfare, rather than the actual coil configuration, is usually 
specified. A second approach, expansion about the magnetic a x i s , 1 4 - 1 6 has 
provided considerable insight. This also suffers from having the surface shapes 
defined, as opposed to specifying the fields or currents outside the plasma. The 
third approach is to use the fact t h a t stellarators are envisioned to operate with 
a large aspect ratio so that we can employ the stellarator expansion. ' This 
technique is based on the assumption tha t the non-axiFymmetric par t of the 
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magnetic field is small and periodic over a length that is much shorter than the 
major radius of the system. Straightforward expansion provides an averaging 
over these ripples and, in lowest order, reduces the problem to an axisymmetric 
one. This expansion simplifies both the equilibrium and stability problems, 
making possible the identification of the physical issues. A time-dependent 
code 2" based on this stellarator-expansior ordering has provided information 
on some special cases. Even this code UBes a fixed, prescribed plasma surface as 
a boundary condition. 

Since the equilibrium and stability equations obtained from the stellarator 
expansion have only minor mathematical differences from those for an axisym­
metric tokamak, it is useful to modify the PEST equilibrium and stability 
codes • to treat these problems. We present th .• formulation of the equi­
librium code in the next Bection. The approach is similar to that used in an 
earlier at tempt. 2 3 Its validation is described in Sec. III. We apply the code to 
6lellarators with modular coils in Sec. IV and provide a short discussion of the 
results in Sec. V. 

H. FORMALISM. 

The stellarator model 1 8 was developed to reduce the three-dimensional 
stellarator problem to a two-dimensional one. In this model the helical magnetic 
field is considered to be much smaller than the toroidal field, with a short enough 
wave length that its effects can be incorporated into the model by an averaging 
technique. We consider a magnetic field of the form 

B = B 0 + (B,) + (B„ + B„ + B„ + B 6 4 ) + ... (1) 

with an ordering in the square root of the inverse aspect ratio, 

( ^ p ~ ^ ~ il ~ ^ ~ !*±l _ 1 < i. (2) 
Bo BQ BO BO BO R 

We use an orthogonal (r,0,c) coordinate system where the metric elements are 

>>i = 1, h2 = T, h3 = (1 + -QOSS) (S) 
H 
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Here R is the major radius of the torus and r measures the distance out from 
the axis, with r w u measure of the plasma radius. 

The lowest-order field Bo is uniform and in the {-direction. In first order, 

B 4 = v £ ^ ^ / 1 ( f t r ) B i n ( < 0 - / K ) { i ) 

i.fc 

is a vacuum field associated with current in helical coils, with / and A the 
multiplicity and wave number of the Ct,/, harmonic (we assume that ha Ra 1 with 
hR an integral number). The lowest-order effects of toroidal curvature, plasma 
pressure, aDd currents along the magnetic field, inBide or outside the plasma, are 
given by 

B , = -e t B 0 -^cosO, (5) 

B„ = - e f 4 * p ( * ) / e 0 , (6) 

B , = V; X VA(r, 6), (7) 

respectively, with <J> defining a magnetic surface. These, together with a higher-
order, f-dependeni vacuum field B^j, are second order, as is the inverse aspect 
ratio. 

Solving the equilibrium equations, order by order, reduces the problem t o 1 8 

* = *o-i|-(McB«)-V*o-!-*7M)+... . (8) 

+o = * y ( r , # ) + 2irfiJ4 l (9) 

V2A = 4 * / . = -8ir 2J2p'(¥ 0)n(r, 8) + C(* 0 ) . (10) 

Here *J/0 is the poloidal flux, 

*v = 2-^ < B 6 r I BHd< > 

„ „ T^ U.kim.hml\(hr)Im(hr) 
= THBO 2_J 12 cos(l — m)S (11) 
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measures the contribution of the vacuum multipolar fields to the magnetic sur­
faces, and 

< B | > 2r 
Q s - ^ - + s e o B t 

= E ^ ( ' ' . ( ^ i C t k r ) + ( ^ 2 + l ) / , ( f . r ) /„( t r ) )™ g l [ - m)8 + J C o S « 

(12) 
represents the effective magnetic field line curvature. The angular brackets 
represent an average over f, and primes denote derivatives with respect to the 
argument. The function G(<to) ' n Eq- (10), introduced as an arbitrary constant 
of integration in the formulation, provides the freedom to prescribe the net 
toroidal current on each magnetic surface. Thus it is often convenient to set 

C W = 8 , ! V ( * , | / l ) M ) ^ / / ^ + G ( t , ) , (13) 

with ds1 = dr1 + r^dtf1 on a constant-*!) cross section. The surface integral 
removes the net contribution to J„ arising from the pressure term so that G('I'o), 
which measures the ohmic heating current, is lero for a net-current-free stel-
larator It is useful to note that the equilibrium properties have been deter­
mined only to lowest order, but additional information about the shapes of the 
surfaces is available in the second term of Eq. (8). Evaluation of "Ĵ  (r, 6) requires 
knowledge of the magnetic fields through third order. For many configurations 
it is possible to show that this term is a function of "̂ o alone. In this paper we 
adjust it BO that the fluxes as calculated in first order are nearly the same when 
evaluated at different CTOBS sections, and the same as obtained from the zeroth 
order. The change in shape of the (-dependent part of the surfaces can be quite 
large, due to the fact that the gradients of 'I'o need not be small. 

Other quantities which are useful for equilibrium and stability considera­
tions can be evaluated by integrating around constant-<t0 contours as in Eq.(13). 1 8 

These include the rotational transform 
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aDd the rate of change of surface volume with toroidal flux 4>, 

* " ( • ) = — ( l + i S ' ( * , ) ) , (15) 

with 

5 ' (* 0 ) = B o / [ n ( r , » ) + g p ( * . ) l | ^ i . (16) 

We omit the second term in Eq )̂ for the purpose of investigating localized 
instabilities since it represents the magnetic well dug by the diamagnetic current, 
which can be carried along by an interchange and therefore does not contribute 
any stabilization. I 7 ' 2 < A negative value of V"^.($) is favorable for suppression 
of these modes. 

Equations (8) through (12) are very similar to the Grad-Shafranov equation 
which determines axisymmetric equilibrium, 

v** = *&ire + 0 = -to'A^-rfR'Bimm, (17) 
where RB0g('i')V<l> is the toroidal magnetic field and X = R + :cos#. The 
diffeiences are: (1) inclusion of the multipolar field contribution <<y in the flux 
function, (2)modification of the curvature term 0 to include the effect of the 
multipolar field, and (3) use of the cylindrical Laplacian operator V 2 rather 
than the toroidal one V" because of the large-aspect-ratio expansion. We have 
modified the PEST equilibrium code to incorporate these changes. Evaluation 
of the surface integrals in Eqs. (13) through (16) is accomplished through 
integrations using the built-in mapping routine. 

m . C O D E VALIDATION. 

We have tested the code's accuracy by two methods. Both show that tl.^ 
results agree reasonably well with those obtained using other techniques. 

The first method used for code validation involves comparison with an exact 
quadrature solution 1 8 for the special case where p('l'o) a n d G{Vo) are linear 
functions of 4>o so that Eq. (10) is linear. Two problems are encountered in 
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making this comparison. First, this special choice leads to an abrupt jump 
in the toroidal current at the plasma boundary eo that the finite-difference 
inversion techniques used to solve the Poisson equation in the PEST code become 
inadequate. Second, evaluation of the quadrature solution becomes difficult at 
high /9,where the surfaces are far from circular. The comparisons given in Table 
1 show the agreement that could be expected when we estimate the effect of 
these difficulties. Further confidence can be gained from the comparison of the 
magnetic axis shift with increasing /? = 8 T P ( 0 ) / 5 Q shown in Fig. 1. 

In the second method we compare the Bhift of the magnetic axis with 
respect to the plasma boundary as a function of beta with that obtained from 
other work. We find good agreement with an initial-value code 2 0 which utilises 
the same expansion for a model with the parameters choBen to represent the 
WBNDELSTE1N VI1-A device. Comparison of the axis shift in HELIOTRON E 
with calculations using a fully three-dimensional code also BQOWS agreement. 2 6 

IV. APPLICATION TO MODULAR S TELL ABATORS . 

In this section we use the code to investigate the properties of modular-coil 
stellarator configurations. ' We do this by utilizing Fourier decomposition of 
the current in the coils, followed by the application of the stellarator expansion. 
*t has been shown that, for large-aspect-ratio configurations, good agreement 
is obtained between the results of th'iB approach and calculations of rotational 
transforms obtained by following magnetic field lines for vacuum-field systems. 
Although the agreement can not be expected to be as good for the smaller aspect 
ratios used in this application, the information obtained from thiB model can 
provide guidance for the evaluation and comparison of the different systems. 

A limit on the harmonic content present in the field is imposed by the 
condition that the magnetic surfaces be well behaved." In our model we would 
expect to see the breakdown of this condition through the lack of closure or 
the outer first-order magnetic surfaces obtained using Eq.(8). This often occurs 
because V<l>o c&n he very large where the leroth-order surfaces are close to 
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each other. We have compared our estimates of the maximum radius at which 
separatricea occur with exact calculations following magnetic field lines ia several 
vacuum-field cases' and observed that the limits imposed by taking our resultB 
seriously when we keep fir3t-order terms are too pessimistic. As remarked earlier, 
this is due in part to our inability to evaluate <'](r,9) correctly. The use of 
an asymptotic expansion with the small parameter of the order of one-half 
also creates difficulties. Thus poor magnetic surfaces with this code should be 
accepted as an indication that a limit is being approached but should not be 
considered as providing a quantitative restriction. Numerical problems occur 
when the magnetic surfaces get closely bunched, so that in most of this work 
we have restricted ourselves to very low values of f) = Snp[0)/Bg , at which the 
shift of the magnetic axis relative to the center of the plasma surface is roughly 
equal to half the plasma radius. This value of 0 has often been taken as a figure 
of merit for equilibrium limits. Since tbe shift can be directly correlated with 
the rotational transform, this is probably an over-simplification. 

We consider the modular coil winding law 

f = f, + ^2<ijrin}(l$-0i), r = o, . = 1,2,..., AT (18) 
j 

with fi = ZnRijN, 0, = 2irmi/N ; the dj's represent the coil deformations, I 
and m are the numbers of poloida! and toroidal field periods, N is the number 
of coils, and a is tbe winding radius, which we normalise to unity. We have 
represented the coils by keeping three terms in the winding law, / = 1,2, and 
3. This law with only one harmonic, j = 1, was proposed as a way to obtain 
a stellarator configuration with a Bingle set of modular coils. 2 6 The inclusion of 
more terms in the winding law 8 " introduces additional harmonic ^ODtent into the 
magnetic field. ThiB provides an increased rotational transform but can lead to a 
reduction in the plasma volume because of the appearance of helical separatrices 
in the first-order surfaces, in this work we add a uniform vertical field as we 
increase the plasma pressure to keep tbe center of the plasma surface fixed. If 
we did not do this the plasma would move into a region where the contribution 
to the flux from the helical windings is large so that the integrity of the first-
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order surfaces would be damaged. Since our model amplifies these difficulties, 
this modification probably makes the results more meaningful and simplifies the 
comparison of cases with pressure with their vacuum-field counterparts. 

We first treat the Rehker-Wobig coil 2 8 with / = 2, m = 4, N = 38, 
Rja = 6.2854, dt/a = 0.2, d^ja = ds/a = 0, and the plasma radius r , / a = 
0.4875. ThJB coil corresponds to the solid curve in Fig. 8 of reference 9. The 
vacuum field contributions to the rotational transform coming from the major 
harmonic modes are shown in Fig. 2(e). Most of the transform can be associated 
with the sin 2{$ — 2 f jR) component of the magnetic field, the "helical mode" of 
references 8 and 9 ; the sir 2(0 + 18r//J) component, the "anti-helical mode," 
accounts for much of the res!. We assume that p varies as ty\ and we keep jero 
net current on every flux surface. The seroth-order magnetic surfaces, Figs. 2(a) 
and 2(b), together with cross sections keeping the first-order corrections, Figs. 
?(c) and 2(d), are also given for the vacuum configuration and for a case with 
0 = 2%. The shift of the axis with respect to the plasma surface is A/a = 47%. 
To prevent an excessive outward shift of the plasma surface we impose a small 
vertical field, Bv/'B0 = 0.0077 . The rotational transform t (* 0 ) and K'(<t>), 
given by Eqs. (14) and (15) [without the last term in Eq. (16) ] , are shown 
in Figs. 2(f) and 2(g). As should be expected, the major effect of introducing 
plasma pressure is the outward Bhift of the magnetic surfaces due to the local 
field produced by the Pfirsch-Schliiter current, Eq. (10) [Fig. 2(h)]. Associated 
with this shift is a distortion of the +o surfaces near the magnetic axis into 
an elliptic shape. In this region this increases the rotational transform and 
the magnetic field lines spend more time on the inside of the torus, where the 
magnetic curvature is favorable, changing the slope of V'{<t>) and producing a 
magnetic well. The fields associated with these Pfirsch-Schliiter currents are 
quite small at the edge of the plasma so that tf^o) and V'(<J>) approach their 
vacuum field values. Since there is no net current in the system and the region 
where tf^o) is the same on two fiux surfaces is in a magnetic well, the double-
valued behavior of t('I'o) iB not necessarily bad. 

As shown in the dashed curve in Fig. 8 of reference 9, the rotational 
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transform produced by modular coils can be increased without increasing the 
maximum deformation by changing d$/i$ in the winding law at the nodal points 
r = fv . A reasonable coil configuration can be modeled with I = 2, m = 4, 
N = 36, Rja = 6.2854, d,/a = 0.2128 , d2/a ^ -0.0181 , d 3 / a = 0.0128, 
and rpja = 0.4875 . The vacuum field contribution to t(*o) coming from 
the different Fourier components is given in Tig. 3. It is clear that this more 
complicated deformation has an increased harmonic content. In this figure we 
also show the magnetic surfaces, »(<I'o) > a n ( ^ V''(4>) for cases with 0 = 0 and 
p = 2.5% [Bv/Bo = 0.0083), and the Pfirach-Schliiter current. The value of 
the vacuum rotational transform is increased by about lh% above that of the 
previous coil, so that even though /9 is higher, the axis shift, A/a = 45%, it 
smaller. This happens because the higher transform reduces the Pfirseh-Sehliiter 
current. It can be observed that for this configuration the distortion of the first-
order, f-dependent magnetic surfaces is larger than for *he previous coil. 

An even higher rotational transform can be obtained from a configuration 
modeled with I = 2, m = 4, AT = 36 , R/a = 6.285-1, dja = 0.24, d 2 / a = 0, 
d 3 / a = 0.04 , and rp/a = 0.4875 (the dotted curve in Fig. 8 of reference 9) . 
The results are given in Fig. 4 for ft — 0 and £ = 1% { Bv/B„ = 0.01) . This 
coil deformation further improves the rotational transform, so that A/u = 48%. 

A much higher rotational transform can be obtained by using coils with 
a larger maximum deformation. To investigate the ef*°ct of increasing the 
deformation from 20% to 30%, we consider a configuration with 1 = 2, r,\ = 4, 
N — 38 , R/a = 6.2854, dt/a = 0.3354 , d-Ja = -0.05, o 3 /o = 0.0354 , 
and r p/fl = 0.4875. With uhese parameters the rotational transform on pxis 
i n = 1.11, so that even with 0 = 15% (corresponding to an ave "\ge beta of 
about 5%) A/a is only 48%. The figures for this case are not shown. We show 
instead those cor-e8ponding to a case that has been treated in the literature 
(Fig. 4 oi reference 8). Its coils have the same deformation parameters but R = 
6.6667, m. = 6, and N = 48. The higher number of field periods decreases the 
rotational transform on axis (now t, = 0.81) but gives a little more shear. As can 
be seen from Fig. 5, the axis shift A/a = 49%, at 0 = 8% (By/B0 = 0.013), 
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ls reasonable. As in the other cases, we see the Jevelopment of a large transform 
and deep well at the magnetic axii. 

It is frequently argued that I = 3 is the obvious choice for a reactor because 
the vacuum magnetic surfaces possess large shear, it has been noted previously 
that addition of even a small amount of plasma pressure drastically alters the 
configuration. We illustrate this by treating a system with I — 3, m = 9, 
N = 36, R/a = 0.6667,^ /a = 0.3, rf2/a = -0.101 , rf3/a = 0, and 
•pl'a = 0.33 . The results, given in Fig. 8, sbovj that even for 0 = 0.15% 
(with no added vertical field) the shapes of the magnetic surfaces and all the 
equilibrium properties have changed considerably The axis shift is A/a = 57%. 
A reasonable conclusion to draw from this treatment is that as soon as any 
pressure is introduced into an / = 3 syBtem, the plasma quickly shifts so that 
its 'J'o surfaces become elliptic and acquire a finite roiational transform near the 
axis. 

As has been noted, ihe vacuum field magnetic surfaces can be modified 
by the addition of a particular vertical field so that the Pfirsch-Schlviter cur­
rents are small. Then, increasing the pressure should havt little effect on the 
magnetic configuration. A u-iform external vertical field with Hv/SQ = 0.08 
accomplishes this for this system by making fdl/B over a periodicity length 
nearly independent of poloidal angle. A fi of 2% is easily obtained. Although 
this configuration has excellent equilibrium properties, it may not be attractive 
because the plasma lies on a magnetic hill instead of in a magnetic well. 

V. DISCUSSION, 

Interest in stellarators has generated a need for techniques to investigate 
equilibrium and stability of three-dimensional configurations. The existing fully 
three-dimensional codes are restricted in accuracy because of their coarse meshes 
and are expensive to run. Most of the current studies utiliie only vacuum-field 
configurations. The stellarator expansion approach can be a useful supplementary 
tool. Although the ideas currently being pursued lead to parameters not well 



- . r e ­

sulted to the expansion 'Lis technique can identify potential advantages and 
investigate problem', tha t may arise. 

The cases "we have shown mainly represent configurations produced by mo­
dular coils with deformations of about 20% of their winding radius. With 
these parameters , the maximum value of fi achievable before the shift of the 
magnetic axis with respect to the plasma boundary becomes appreciable is 
quite low. ThiB is due to the small rotational transform generated by the 
coils. The rotational transform can be increased by modifying the winding 
law to introduce more harmonics in the magnetic 6eid. Unless care is taken, 
this produces surface breakup thereby effectively reducing the plasma radius. 
Increasing the magni tude of the deformation increases the externally imposed 
rotational transform and thus improves the equilibrium properties. Since the 
values of the expansion parameters used in this study are large, the ^-l imits 
obtained from the model are lower than what should actually be obtained. 
Nevertheless, it must be concluded from these results that the design of a 
modular device will be difficult because plasma effects quickly become impor tant . 

Our t r ea tmen t of ( = 3 configurations should serve as a warning against 
using the vacuum configuration for system studies when there is no rotational 
transform at the axis in the vacu -m magnetic field. Extremely small pressure 
can alter the equilibrium properties dramatically. 

It has been emphasized r e c e n t l y 2 7 - that stellarators with moderate aspect 
ratio can have adequate rotational transforms, so the equilibrium limitations on 
beta due to the shifting of the magnetic surfaces are not stringent. At the same 
time, stability can be expected because of .he favorable magnetic well created 
by this shift. However, most of the otellarator stability work tha t has been 
done has " ;>,her t reated localised interchange and ballooning modes, ignoring 
the eflecl of the force-free current , or considered toknmak-like operation with 
a net current but assuming concentric, circular, lowest-order magnetic surfaces 
without pressure, to investigate kink modes. A PEST-lype stability code to 
complement this equilibrium code has been constructed. It will allow the study 
of the interaction of the forces associated with the Pfirscb-Schliiter current and 
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those related to pressure-driven interchanges and ballooning, to obtain a better 
understanding of the stability properties of stellarators. 
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Table 1. Comparison of the stream function j4(r,#) , given at equal intervals 
of A i = 0.0103 across the horizontal midplane of the plasma, inside to outside, 
as calculated by the quadrature formula Eq. 68 of Ref. 18 and by the code. The 
parameters are / = 3 , 0 = 2 .5% , R = 1 , a = 0.062, <2 = 10 , ha = 1 24, 
C(V) = G 0 + G , + , with G, = -0 .005 and G 0 = -0 .0138 , adjusted to give 
zero net total current. 

Analytical 
(io-*) 

Computational 

(io-*) 
% difference 

-1.306 -1.345 -2.98 
-1.892 -1.717 -1.46 
-1.8B3 -1.871 •0.42 
-1.753 -1.750 0.17 
-1.371 -1.364 0.48 
-0.765 -0.761 0.59 
0.000 0.000 0.00 
0.857 0.854 -0.44 
1.738 1.735 -0.20 
2.589 2.574 0.19 
3.261 3.287 0.79 
3.688 3.757 1.87 
3.646 3.806 4.40 
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Fig. 1. Shift of the magnetic axis with respect to the center of the plasma 
boundary for the / = 3 stellarator of Table 1, with Gi = — /?/5 and Co adjusted 
to give zero net total current. The solid curve is the result of the quadrature 
model of Ref. 18, while the crosses are the results obtained bj the code. 

Fig. 2. Equilibrium properties of a modular stellarator configuration with 
/ = 2, m = 4, N = 36, R/a = 8.28S4, d{/a = 0.2, d2/a = 0, dt/a = 0, 
and r/a = 0.487S, giving «„ac:(0) = 0.385. (a) Zeroth-order magnetic surfaces 
with 0 = 0. (b) Zeroth-order magnetic surfaces with f} = 2%. (c,d) Magnetic 
surfaces, keeping first-order terms, for 0 = 2% at <f> = 0° and tj> = 22.5°. 
(e) Contribution to the vacuum rotational transform from the different field 
harmonics: long-daahed curves, helical mode sin 2(8 —2$/R) (upper) and sin2(£ — 
20f/fl) (lower) ; short-dashed curve, anti-helical mode Bin 2(0 + 16f/fl) ; solid 
curve, total transform, (f) Rotational transform: dashed curve, 0 = 0 ; solid 
curve, 0 = 2%. (g) V'„a (.(*) : dashed curve, 0 = 0 ; solid curve, 0 — 2%. (h) 
Toroidal current along the horiiontal midplane, 9 = 0 and jr. 

Fig. 3. Equilibrium propeiUes of a modular stellarator configuration with 
/ = 2 , m = 4 , N = 3 6 , R/a = B.2854, d,/a = 0.2128, d2/a = -0.0181, 
d3/a = 0.0128, and r /a = 0.4875, giving »O(«(0) = 0.441. The curveB are the 
same as in Fig. 2. but with 0 = 2.5%. 

Fig. 4. Equilibrium properties of a modular stellarator configuration with 
/ = 2 , m = 4 , N = 36 , R/a = 8.2854, dja = 0.24, d2/a = 0, dz/a = 0.04, 
and r/a = 0.4875, giving t„o < :(0) = 0.554. The curves are the same as in Fig. 2, 
br.t with 0 = 4%. Since the contributions from the different helical components 
to the rotational transform were given in Fig. 9 of Ref. 9, a cortour plot of the 
Pfirsch-ScMiiter current is given in (e). 

Fig. 5. Equilibrium properties of a modular stellarator configuration with 
I = 2 , m = 6 , N = 48 , R/a = 6.8687, <f,/a = 0.3354, d2/a = -0.05, 
d3/a — 0.0;i54, and r/a = 0.4875, giving t „ c (0 ) = 0.818. The curves are the 
same as in Fig. 2, but with 0 = 8% (</> — 0°,15° ) . In (e) the long-dashed 
curves are the helical modes sin2(tf-3f/fl) (upper) and sin2(0-27f/.R) (lower), 
and the short-dashed curve is the anti-helical mode, Bin 2(0+ 21f//?) 
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Fig. 8. Equilibrium properties of a modular stellarator configuration with 
/ = 3 , m = 9 , J V = 3 8 1 R/a. = 6.6867, d,/a = 0.3, d2/a = -0.101, 
dj/tt = o, and r/a = 0.33. The curves are the same as in Fig. 2, but with 
/? = 0.15% (<t> = 20°, 10° ). In (e) the long-dashed curves are the helical modes 
sin 2(0--3<;/R) (upper) and sin2(0 — 15f//?) (lower), and the short-dashed curve 
is the anti-helical mode, sin 2(6 + 9f jR) 
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