MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 DOE/ET/37218-4

MASTER

Ihere is no olatiaction froct the prean priet of viaw to Hio pubsternors sy dimewthe Fiph of the bochmand (s)
*and in Ads lettor. 4 83x) 1981 By chec

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

A TWO-DIMENSIONAL, TWO-FLUID MODEL FOR SODIUM BOILING IN LMFBR FUEL ASSEMBLIES

by
Mario Roberto Granziera
, Mujid S. Kazimi
Energy Laboratory Report No. MIT-EL 80-011
May 1980

[^0]
ERRATA

A Two Dimensional, Two Fluid Model for Sodium Boiling in LMFBR Fuel Assemblies

 by
Mario Roberto Granziera Mujid S. Kazimi

page 40:

Equation 2.26 should be:

$$
A_{r}^{*}=\frac{4}{3} \Delta z\left(\frac{\sqrt{3}}{2}-\frac{A_{p i n}}{p^{2}}\right)
$$

page 69:
The denominator in the top half of equation $2.2 .14(u<0)$
should be Δr

$$
j+\frac{1}{2}
$$

Program Listing:

Subroutine READ should read:

Line

452
3 CONTINUE
$\operatorname{READ}(5,1003)$ NROW,PITCH,D,E
WRITE (7,1003) NROW,PITCH,D,E
455 C
456
457
458
LMAX=L
DO $4 \mathrm{KO}=1$, NN
QSI (KO) $=(4 . * \mathrm{D} / \mathrm{C} \operatorname{PITCH}-\mathrm{D})) * * 2$
459
4 CONTINUE
460 C

REPORTS IN REACTOR THERMAL HYDARULICS RELATED TO THE MIT ENERGY LABORATORY ELECTRIC POWER PROGRAM
A. Topical Reports
(For availability check Energy Laboratory Headquarters, Room El9-439, MIT, Cambridge, Massachusetts, 02139)

A. 1 General Applications
 A. 2 PWR Applications
 A. 3 BWR Applications
 A. 4 LMFBR Applications

A. 1 M. Massoud, "A Condensed Review of Nuclear Reactor ThermalHydraulic Computer Codes for Two-Phase Flow Analysis," MIT Energy Laboratory Report MIT-EL-79-018, February 1979.
J.E. Kelly and M.S. Kazimi, "Development and Testing of the Three Dimensional, Two-Fluid Code THERMIT for LWR Core and Subchannel Applications," MIT Energy Laboratory Report MIT-EL-79-046, December 1979.
A. 2 P. Moreno, C. Chiu, R. Bowring, E. Khan, J. Liu, N. Todreas, "Methods for Steady-State Thermal/Hydraulic Analysis of PWR Cores," MIT Energy Laboratory Report MIT-EL-76-006, Rev. 1, July 1977 (Orig. 3/77).
J.E. Kelly, J. Loomis, L. Wolf, "LWR Core Thermal-Hydraulic Analysis-Assessment and Comparison of the Range of Applicability of the Codes COBRA-IIIC/MIT and COBRA IV-1," MIT Energy Laboratory Report MIT-EL-78-026, September 1978.
J. Liu, N. Todreas, "Transient Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Model Layout," MIT Energy Laboratory Report MIT-EL-77-008, Final, February 1979, (Draft, June 1977).
J. Liu, N. Todreas, "The Comparison of Available Data on PWR Assembly Thermal Behavior with Analytic Predictions," MIT Energy Laboratory Report MIT-EL-77-009, Final, February 1979, (Draft, June 1977).
A. 3 L. Guillebaud, A. Levin, W. Boyd, A. Faya, L. Wolf, "WOSUBA Subchannel Code for Steady-State and Transient ThermalHydraulic Analysis of Boiling Water Reactor Fuel Bundles," Vol. II, Users Manual, MIT-EL-78-024. July 1977.
L. Wolf, A Faya, A. Levin, W. Boyd, L. Guillebaud, "WOSUBA Subchannel Code for Steady-State and Transient ThermalHydraulic Analysis of Boiling Water Reactor Fuel Pin Bundles," Vol. III, Assessment and Comparison, MIT-EL-78-025, October 197
L. Wolf, A. Faya, A. Levin, L. Guillebaud, "WOSUB-A Subchannel Code for Steady-State Reactor Fuel Pin Bundles," Vol. I, Model Description, MIT-EL-78-023, September 1978.
A. Faya, L. Wolf and N. Todreas, "Development of a Method for BWR Subchannel Analysis," MIT-EL-79-027, November 1979.
A. Faya, L. Wolf and N. Todreas, "CANAL User's Manual," MIT-EL-79-028, November 1979.
A. 4 W.D. Hinkle, "Water Tests for Determining Post-Voiding Behavior in the LMFBR," MIT Energy Laboratory Report MIT-EL-76-005, June 1976.
W.D. Hinkle, Ed., "LMFBR Safety and Sodium Boiling - A State of the Art Reprot," Draft DOE Report, June 1978.
M.R. Granziera, P. Griffith, W.D. Hinkle, M.S. Kazimi, A. Levin, M. Manahan, A. Schor, N. Todreas, G. Wilson, "Development of Computer Code for Multi-dimensional Analysis of Sodium Voiding in the LMFBR," Preliminary Draft Report, July 1979.
M. Granziera, P. Griffith, W. Hinkle (ed.), M. Kazimi, A. Levin, M. Manahan, A. Schor, N. Todreas, R. Vilim, G. Wilson, "Development of Computer Code Models for Analysis of Subassembly Voiding in the LMFBR," Interim Report of the MIT Sodium Boiling Project Covering Work Through September 30, 1979, MIT-EL-80-005.
A. Levin and P. Griffith, "Development of a Model to Predict Flow Oscillations in Low-Flow Sodium Boiling," MIT-EL-80-006, April 1980.
M.R. Granziera and M. Kazimi, "A Two Dimensional, Two Fluid Model for Sodium Boiling in LMFBR Assemblies," MIT-EL-80-011, May 1980.
G. Wilson and M. Kazimi, "Development of Models for the Sodium Version of the Two-Phase Three Dimensional Thermal Hydraulics Code THERMIT," MIT-EL-80-010, May 1980.
B. Papers

```
B.l General Applications
B. 2 PWR Applications
B. }3\mathrm{ BWR Applications
B.4 LMFBR Applications
```

B.l J.E. Kelly and M.S. Kazimi, "Development of the Two-Fluid Multi-Dimensional Code THERMIT for LWR Analysis," accepted for presentation 19 th National Heat Transfer Conference, Orlando, Florida, August 1980.
J.E. Kelly and M.S. Kazimi, "THERMIT, A Three-Dimensional, Two-Fluid Code for LWR Transient Analysis," accepted for presentation at Summer Annual American Nuclear Society Meeting, Las Vegas, Nevada, June 1980.
B. 2 P. Moreno, J. Kiu, E. Khan, N. Todreas, "Steady State Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Method," American Nuclear Society Transactions, Vol. 26
P. Moreno, J. Liu, E. Khan, N. Todreas, "Steady-State Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Nodal Layout," Nuclear Engineering and Design, Vol. 47, 1978, pp. 35-48.
C. Chiu, P. Moreno, R. Bowring, N. Todreas, "Enthalpy Transfer Between PWR Fuel Assemblies in Analysis by the Lumped Subchannel Model," Nuclear Engineering and Design, Vol. 53, 1979, 165-186.
B. 3 L. Wolf and A. Faya, "A BWR Subchannel Code with Drift Flux and Vapor Diffusion Transport," American Nuclear Society Transactions, Vol. 28, 1978, p. 553.
B. 4 W.D. Hinkle, (MIT), P.M Tschamper (GE), M.H. Fontana, (ORNL), R.E. Henry (ANL), and A. Padilla, (HEDL), for U.S. Department of Energy, "LMFBR Safety \& Sodium Boiling," paper presented at the ENS/ANS International Topical Meeting on Nuclear Reactor Safety, October 16-19, 1978, Brussels, Belgium.
M.I. Autruffe, G.J. Wilson, B. Stewart and M. Kazimi, "A Proposed Momentum Exchange Coefficient for Two-Phase Modeling of Sodium Boiling," Proc. Int. Meeting Fast Reactor Safety Technology, Vol. 4, 2512-2521, Seattle, Washington, August 1979.
M.R. Granziera and M.S. Kazimi, "NATOF-2D: A Two Dimensional Two-Fluid Model for Sodium Flow Transient Analysis," Trans. ANS, 33, 515, November 1979.

NOTICE

This report was prepared as an account of work sponsored by the United States Government and two of its subcontractors. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

A TWO DIMENSIONAL, TWO FLUID MODEL FOR SODIUM BOILING IN LMFBR FUEL ASSEMBLIES

by

Mario Roberto Granziera
Mujid S. Kazimi

Energy Laboratory and Department of Nuclear Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Topical Report of the MIT Sodium Boiling Project

sponsored by:
U. S. Department of Energy, General Electric Co. and Hanford Engineering Development Laboratory

A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms.

Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model.

The most important feature of the model was its ability to simulate severe conditions of sodium boiling, in particular flow reversal, which was shown in the tests performed with the model.

Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions.

Funding for this project was provided by the United States Department of Energy, the General Electric Co., and the Hanford Engineering Development Laboratory. Additional support was also provided to Mario R. Granziera by the Commisao Nacional de Energia Nuclear. This support was deeply appreciated.

The authors would also like to thank their co-workers on the MIT Sodium Boiling project for their help and contributions to this work.

A very special thanks is due to Bruce Stewart whose intimate knowledge of the concepts of numerical analysis was an invaluable resource.

The work described in this report was performed primarily by the principal author, Mario R. Granziera, who has submitted the same report in partial fulfillment for the PhD degree in Nuclear Engineering at MIT.

TABLE OF CONTENTS

Title Page1
Abstract 2
Acknowledgement 3
List of Figures 7
List of Tables 10
Nomenclature 11
Chapter 1: Introduction 13
1.1 LMFBR Safety Analysis 14
1.2 Characteristics of Numerical Models for Sodium Boiling 23
1.2.1 Dimensionality 23
1.2.2 Boundary Conditions: Pressure Vs, Inlet Velocity 26
1.2.3 Two Fluid Model 28
Chapter 2: The Conservation Equations and the Numerical Method 31
2.1 The Mass, Momentum and Energy Equations Averaged over a Control Volume 31
2.1.1 The Mass Equation 31
2.1.2 The Momentum Equation 34
2.1.3 The Energy Equation 46
2.2 The Finite Difference Equations 54
2.3 The Numerical Scheme 71
2.4 The Pressure Problem 86
2.5 Stability Analysis of the Numerical Method 93
Chapter 3: The Constitutive Equations and Functions of State 107
3.1 The Sodium Functions of State and Transport Properties 107
3.1.1 Saturation Temperature 107
3.1.2 Vapor Density 109
3.1.3 Liquid Density 110
3.1.4 Internal Energies 111
3.1.5 Transport Properties 112
3.2 Mass Exchange Rate 116
3.3 Momentum Exchange 126
3.4 Energy Exchange 131
3.4.1 Fuel Pin Heat Conduction 131
3.4.2 Fue1 Pin Material Properties 137
3.4.3 Convective Heat Transfer Coefficient 139
3.4.4 Fuel Assembly Structure Model 145
3.4.5 Interphase Heat Transfer 145
Chapter 4: Experimental Tests Simulation 148
4.1 The SLSF P3A Experiment 148
4.2 One Dimensional Analysis of the P3A Experiment 164
4.3 The W 1 Experiment 170
4.4 The GR19 Experiment 199
Chapter 5: Conclusions and Recommendations 207
5.1 Conclusions 207
5.2 Recommendations 208
References 211
Appendix A: NATOF-2D Input Data Manual 216
Appendix B: NATOF-2D Code Structure Description 228
Appendix C: NATOF-2D I/O Examples 237
Appendix D: NATOF-2D Program Listing 256

LIST OF FIGURES

No.
1.1 Possible Accident Paths and Lines of Assurance for a Potential CDA 17
1.2 Key Events and Potential Accident Paths for Unprotected Loss of Flow Accident 18
1.3 Key Events and Potential Accident Paths for Loss of Pipe Integrity Accident 19
1.4 Key Events and Potential Accident Paths for Unprotected Transient Overpower Accident 20
1.5 Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat 21
1.6 Key Events and Potential Accident Paths for Local Subassembly Accident 22
2.1 A Typical Cell Arrangement 59
2.2 Position Evaluation of Variables 60
2.3 Different Positions for the Radial Velocity 67
3.1 Condensation Coefficienct as a Function of Pressure 119
3.2 Bubbly Flow Representation 121
3.3 Low Void Fraction Bubbly Flow Representation 121
3.4 Suppression Factor Vs. Reynolds Number 141
3.5 Reynolds Number Factor 142
4.1 Pin Number Location 156
4.2 P3A: Mass Flow Rate Vs. Time 157
4.3 P3A: Experimental Mass Flow Rate 158
4.4 P3A: Temperature Vs. Time, Central Channel 159
4.5 P3A: Temperature Vs. Time; Edge Channel 160
4.6 P3A: Axial Temperature Profile 161
4.7 P A: Radial Temperature Profile 162
4.8 Void Fraction Maps for the PBA Experiment 163
4.9 P3A-1D: Temperature Vs. Time 166
4.10 P3A-1D: Temperature Vs. Time 167
4.11 P3A-1D: Axial Temperature Profile 168
4.12 P3A: Comparison Between 1D and 2D; Mass Flow Rate 169
4.13 Typical Boiling Window Flow Decay for the W1 Test 177
4.14 W1: Temperature and Mass Flow Rate for Sequence 5 178
4.15 W1: Temperature and Mass Flow Rate for Sequence 6 179
4.16 Wl: Temperature and Mass Flow Rate for Sequence 6a 180
4.17 W1: Axial Temperature Profile for Sequence 6a 181
4.18 W1: Temperature and Mass Flow Rate for Sequence 7 182
4.19 Wl: Temperature and Mass Flow Rate for Sequence 7a 183
4. 20 Wl: Axial Temperature Profile for Sequence 7a 184
4.21 W1: Temperature and Mass Flow Rate for Sequence 7a 185
4.22 Wl: Axial Temperature Profile for Sequence 7a’ 186
4.23 W1: Void Maps for Sequence 7a" 187
4.24 W1: Temperature and Mass Flow Rate for Sequence $7 b^{\text { }}$ 188
4.25 Wl: Axial Temperature Profile for Sequence 7b ${ }^{\text {- }}$ 189
4.26 Wl: Void Maps for Sequence 7b- 190
4.27 W1: Temperature and Mass Flow Rate for Sequence 3 191
4.28 W1: Axial Temperature Profile for Sequence 3 192
4.29 Wl: Temperature and Mass Flow Rate for Sequence 4 193
4.30 Wl: Axial Temperature Profile for Sequence 4 194
4.31 Wl: Void Maps for Sequence 4 195
4.32 Temperature and Mass Flow Rate for 217-Pin Bundle Under Sequence 7b- Conditions 196
4.33 Axial Temperature Profile for 217-Pin Bundle Under Sequence 7b ${ }^{\text {- Conditions }}$ 197
4.34 Void Maps for 217-Pin Bundle Under Sequence 7b- Conditions 198
4.35 GRI9: Temperature Profile for $.311 \mathrm{Kg} / \mathrm{sec}$ Mass Flow Rate 202
4.36 GRI9: Temperature Profile for $.265 \mathrm{Kg} / \mathrm{sec}$ Mass Flow Rate 203
4.37 GR19: Temperature Profile for $.260 \mathrm{Kg} / \mathrm{sec}$ Mass Flow Rate 204
4.38 GR19: Quality Contours for $.265 \mathrm{Kg} / \mathrm{sec}$ Mass Flow Rate 205
4.39 GR19: Quality Contours for $.260 \mathrm{Kg} / \mathrm{sec}$ Mass Flow Rate 206
A. 1 Cell Arrangement in the $r-z$ Plane 217
A. 2 Fuel Pin Numbering 218
A. 3 Cell Arrangement for Fuel Pin Heat Conduction 219
B. 1 NATOF-2D Subroutine Structure 229

LIST OF TABLES

No.
1.1 Sodium Boiling Issues 16
3.1 Units Used in this Work and the Correspondent Usual Ones 108
4.1 SLSF-P3A Test Bund1e Data 152
4.2 Assumed Non-Uniform Radial Power Distribution in P3A Test Bundle 154
4.3 Event Sequence Times of the P3A Experiment 155
4.4 Wl Test Bundle Data 173
4.5 Boiling Window Matrix for the Wl Experiment 175
4.6 Design Data for the GR19 Experiment 200

a	Void Fraction
p	Density
e	Internal Energy
s	Mass Exchange Rate
P	Pressure
U	Velocity
f	Friction Force
g	Gravity Acceleration
V	Volume
A	Area
M	Momentum Exchange Rate
Q	Heat Exchange Rate
D	Fuel Pin Diameter
Δr	Radial Mesh Spacing
Δz	Axial Mesh Spacing
Δt	Time Step Size

SUPERSCRIPTS

N Time Level

K Iteration Leve1

INTEGRALS

$\int_{V} \mathrm{dV} \quad$| Integral over the Volume Occupied by the Fluid Alone |
| :---: |
| (Fuel Pin and Structure Excluded) |

$\int_{A} \mathrm{dA} \quad$ Surface Integral
$\phi_{A} \mathrm{dA}$
Integral Over a Closed Surface

AVERAGES
$X=\frac{1}{V} \int_{V} X(r, z) d V=$ Volume Averaged Quantity
$X_{A}=\frac{1}{A} \int_{V} X(r, z) d A=$ Surface Averaged Quantity

I INTRODUCTION

The growing public concern about the nuclear industry places an increasingly large emphasis on the safety aspects of nuclear reactor design. In particular, commercial size liquid metal cooled fast breeder reactors (LMFBR) with its large amount of plutonium fuel, combined with its inherent safety problems, namely the potentially positive void coefficient of reactivity, and the high chemical reactivity of the liquid metal coolant with air and water, must be designed, constructed and operated with large safety margins to assure that the public risk will be acceptably low.

In order to accomplish the stringent requirements of safety, designers must have a thorough understanding of the phenomena occurring in all possible reactor situations and the adequate analytical tools to correctly predict the reactor behavior in all possible situations.

The objective of this work is to provide an analytical model capable of predicting the transient sodium boiling in LMFBR fuel assemblies under realistic conditions. In order to situate the model proposed in this work in the broad field of sodium boiling a review of LMFBR safety analysis and a general description of the accidents of principal concern will be presented, followed by a review of the present status of analytical models currently available.

1.1 LMFBR Safety Analysis

The U. S. Fast Breeder Reactor Safety Program approach is to provide four levels of protection, which are aimed at reducing both the probability and consequences of a Core Disruptive Accident (CDA) [1]. These levels of protection are referred to as Lines of Assurance (LOA). Figure 1.1 illustrates the possible accident paths for a potential core disruptive accident.

The first line of assurance aims at reducing the probability of occurrence of a serious accident. The emphasis is placed on quality assurance, inservice inspection and monitoring at the level of construction and operation, and at the level of design on providing a multilevel redundant plant protection system, which can quickly respond to faults and place the reactor in a safe shutdown condition without damage to the core $[1,2]$.

The second line of assurance assumes that in spite of the measures taken in the first line, low probability but mechanistically possible events involving failure of the first line systems will occur[1]. The strategy in this line is to provide the reactor design with features which make the system respond inherently to accidents in a way which tends to maintain reactivity control and coolability, containing the damage to a limited number of fuel assemblies.

The third and fourth lines of assurance aim at limiting the consequences of a serious accident. It is assumed that the first two lines have failed and two subsequent events form a potential sequence leading to core disruption and release of radioactivity to the environment. The objective of these last lines is to make the consequences of a core disruption accident sufficiently limited by the plant containment capability which combined with the low probability of occurrence of the failure of the first and second lines of assurance makes the risk to the public acceptably small[1,2].

Some of the issues concerning the possible accident paths are still unresolved as are some of the phenomena involved in very low probability events.

In order to assess the importance of sodium boiling and two phase flow in the general picture of LMFBR safety analysis we reproduce from a compilation of the state of the art in sodium boiling by Hinkle [2] figures 1.2 through 1.6 illustrating the path of the most serious of the postulated accidents considered in LMFBR safety analysis. In all these accidents, the occurrence of sodium boiling and the stability of two phase flow assume a crucial role in determining the path, speed of events and final consequences. In table 1.1, also reproduced from reference [2], the technical issues which must be resolved related to sodium boiling are presented.

Sodium Boiling Issues

Issue	Accidents
Effects of local blockage on single-phase flow and heat transfer - effects of location, size and composition; detectability.	Local Subassembly Accident
Stability of flow and heat transfer with local or bulk voiding due to fission gas release, molten fuel/coolant interaction and boiling - full power flow coastdown; flow and power decay following pipe rupture and scram; power increase/decrease at full flow and partial blockage; natural circulation at decay heat power level partial blockage at full power and flow	Unprotected Loss of Flow Accident Loss of Pipe Integrity Accident Unprotected Transient Overpower Accident Inadequate Natural Circulation Decay Heat Removal Accident Local Subassembly Accident
Transport of molten fuel by liquid and gas or vapor effect of molten fuel/coolant interaction and voiding dynamics on tendency for fuel sweepout or relocation to form blockage and blockage propagation	Unprotected Loss of Flow Accident Unprotected Transient Overpower Accident Local Subassembly Accident
Reentry, rewetting and sustained cooling - effect of clad/fuel temperatures, molten fuel/clad and coolant interaction, extent of fuel/clad relocation and blockage	Unprotected Loss of Flow Accident Loss of Pipe Integrity Accident Unprotected Transient Overpower Accident Local Subassembly Accident

Figure 1.1
Possible Accident Paths and Lines of Assurance For a Potential CDA
(From Reference 2)

Figure 1.2
Key Events \& Potential Accident Paths
For Unprotected Loss of Flow Accident

Figure 1.3
Key Events and Potential Accident Path
For Loss of Pipe Integrity Accident
(From Reference 2)

Figure 1.4
Key Events and Potential Accident Paths For Unprotected Transient Overpower Accident
(From Reference 2)

Figure 1.5
Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat Removal Accident

Figure 1.6
Key Events and Potential Accident Paths For Local Subassembly Accident

1.2 Characteristics of Numerical Models for Sodium Boiling

In the following paragraphs the most important characterstics of numerical models relevant to LMFBR fuel assembly fluido-dynamic analysis will be discussed, along with a comparison of the capabilities of the models presently available and the one proposed in this work.

1.2.1 Dimensionality

It is a well recognized fact that a non-flat radial temperature profile exists with steady-state conditions, as well as at the onset of boiling in loss of flow transients [3]. Calculations made for single phase flow with the COBRA III-C code [4] showed that a temperature difference as high as $450^{\circ} \mathrm{F}$ may exist between the central and peripheral channels in a typical FFTF fuel assembly (Figure 1.7). Obviously this temperature profile will force boiling to start in the central part of the fuel assembly and progress afterwards in the direction of the periphery. During this process, while part of the fuel assembly is under boiling, and the fuel pins in this region may eventually be suffering some damage, the periphery of the fuel assembly still maintains its coolability.

Figure 1.7

Here is a multidimensional effect the timing of which has a direct effect on the amount of damage resultant from the accident. Also, since this radial incoherence is an inherent design feature of all fuel assemblies, the radial void incoherence is expected to occur in every boiling transient.

Although this effect can be well represented by a two dimensional model, covering most of the transients of concern to LMFBR safety analysis, two cases present a non-radial symmetry, thus requiring a full three dimensional model for their representation, namely the transients with a non-unform power profile and an asymmetrical flow blockage.

Considering the limited number of cases requiring a three dimensional model compared to those which can be analyzed with an axial-radial representation, and also considering the necessarily larger computational time required by a three dimensional model, it seems clear that a two dimensional model has definitive advantages.

As for the present situation in computational modeling, the only existing numerical model which can claim success in applications to sodium boiling is the SAS code, which is a one dimensional code [5]. Other codes such as the HEV-2D [6], COMMIX [7], BACHUS [8], to mention only a few of them, have encountered some difficulties in representing sodium boiling up to the point of flow reversal. Therefore a new code with two dimensional capability seems to be well situated.

1.2.2 Boundary Conditions: Pressure Vs. Inlet Velocity

The boundary conditions applied to the problem are strongly related to the numerical solutions used in the model. In this way, the marching technique, where the solution of the fluido-dynamic equations is obtained successively in planes along the direction of the main flow, can only operate with inlet velocity boundary condition, whereas the simultaneous pressure matrix inversion can work with both kinds of boundary conditions.

The advantages of the marching technique are its numerical stability for arbitrary large time steps combined with its relatively quick and straightforiward numerical procedure: Its limitations lie in the assumptions necessary to the validity of the marching method: it requires that the flow be predominantly in one direction and always in that direction, making it impossible to analyze any kind of flow reversal. Also certain transport terms in the transverse momentum equations are ignored, whereas there are some doubts on the validity of these assumptions [9].

The simultaneous pressure matrix inversion method avoids the limitations of the marching technique at the price of using a smaller time step and a more laborious numerical solution. In this method, the solution of the fluido-dynamic equations is performed, at each time step, simultaneously for all mesh cells of the problem. In
general, this simultaneous solution can be reduced to a pressure matrix inversion. In this way, upstream propagations can be accounted for, and flow reversal transients can in be in principle analyzed. The method does not impose any limitation on the number of conservation equations, therefore the choice of any model, from homogeneous equilibrium to the full two-fluid model is allowed.

The disadvantages of the method are that because of the large number of unknowns involved in the matrix inversion, a fully implicit differencing scheme becomes practically impossible, and a semi-implicit method, with its consequent limitation in time step size, becomes practically the only option.

Another problem with this method arises when used in conjunction with a multidimensional model. When the conservation equations are reduced to a pressure problem, the resultant pressure matrix becomes only marginally diagonally dominant, the diagonal dominance being provided only by the compressibility terms, which in some cases may be very small. In these situations the usual techniques of matrix inyersion fail to produce a solution in a reasonable computational time, and special procedures must be introduced. Indeed, the ability of the model proposed in this work to produce results in a reasonable amount of computational time owes much to the special technique devised for this matrix inversion which is presented in section 2.4.

1.2.3 Two Fluid Model

In the early years of two phase flow modeling, much attention has been given to the homogeneous equilibrium model. This model describes the two phase flow in terms of average quantities, such as the density and velocity. In this way, these quantities are defined to represent an homogeneous mixture of the two phases (or two fluids).

There are situations during reactor core transients where the assumptions required for this modeling depart from reality, namely when either phase does not stay close to saturation conditions and more importantly when the phase velocities differ substantially. Attempts to circumvent these limitations were made with the introduction of semi-empirical correlations to describe the unequal phase velocities, the so-called slip correlations, and to allow non-saturation conditions. Because of the semi-empirical nature of these correlations, their accuracy is limited to the range of variables for which they were developed, and their generalization is restricted.

A new approach to overcome the limitations of the homogeneous equilibrium model was attempted with the drift flux model. This model stays in between the homogeneous equilibrium and two-fluid models in terms of the number of conservation equations employed. Although some variations on the particular set of equations composing the model exist, in general the drift flux model represents the two phase flow with a set of three mixture conservation equations plus two equations
for one of the pairs mass-momentum, mass-energy or energy-momentum for one of the phases.

In this model the sophistication in the direction of being closer to first principles is increased over the homogeneous mixture model, and so are the complications and size of the numerical solution technique. Indeed, there are some doubts about the computational time advantage of the drift flux model over the two-fluid model.

The two-fluid model represents the fluid flow with two complete, separate sets of consevation equations, treating individually the properties of both phases. Its clear advantage is that no assumption is made on the relationship between the properties of the two phases, and the most general situations can in principle be represented. The model requires constitutive expressions for the interaction between phases, namely the exchange of mass, momentum and energy. Unlike the slip correlation this constitutive expressions do not depend on circumstantial conditions of the particular flow situation, but on the physical principles of the transport phenomena involved.

Much work has to be done in the field of the constitutive relations required by the two fluid model, and the work presented here cannot claim to represent accurately the two phase flow phenomena without first solving the problems present in this area. Nonetheless, the model presented here can serve as a valuable tool in developing and testing the much needed constitutive relations for sodium two phase
flow. This subject will be readdressed in chapter 5, when the recomendations for future developments related to this model will be presented.

A final word has to be said about the controversial issue of the complex characteristic roots of the two fluid model, and its consequences to the stability of its numerical solution. Although this subject will be addressed at length in section 2.5 , for the moment it is sufficient to point out the inadequacy of using the techniques of partial differential equations and numerical analysis developed for linear systems in analyzing the thermo-fluido dynamic equations, which are non-linear. Therefore, any conclusion on well-posedness of the two fluid model and the stability of its numerical solution has to be drawn from an anlysis which takes into account all the characteristics of the model, in particular the damping effect of the interphase exchange terms.

The discussion of the porous body versus the subchannel approach is deliberately omitted here. It is our belief that this issue does not play any important role in the numerical treatment of reactor fluid flow. Indeed, it is possible to extend the porous body model to the limit of very small mesh cells or lump together subchannels to form larger ones. The two concepts overlap completely and no relevant distinction between them can be made in the numerical aspects of code development.
II. THE CONSERVATION EQUATIONS AND THE NUMERICAL METHOD

2.1 The Mass, Momentum and Energy Equations Averaged over

 a Control Volume.In this chapter the derivation of the differential and difference form of the conservation equations will be given. First all assumptions built into the model will be detailed, providing a clear picture of its limitations and range of validity. Secondly, the precise meaning of each term in the set of equations will be established. As will be seen later, this is particularly important with terms describing the geometry of the interacting cells.

For the sake of compactness, and to avoid being monotonous, details will be given for the equations of the vapor phase, mentioning only the final form of the equations of the liquid phase. This will cause no lack of understanding, since the two fluid model is completely symmetric with respect to the liquid and vapor phases.

2.1.1 The Mass Equation

The mass equation has the form:

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d v+\int_{A_{z+}} & -\int_{A_{z-}} \alpha \rho_{v} U_{v z} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} d A= \\
& =\int_{v}\left(S_{e}-S_{c}\right) d v \tag{2.1}
\end{align*}
$$

The density as well as its first time derivative are assumed independent of position within the volume occupied by each phase separately and the void fraction is also assumed independent of position within the control volume. It fellows that:

$$
\begin{align*}
& \int_{v} \alpha \rho_{v} d V=\left\langle\rho_{v}\right\rangle \int_{v} \alpha d V=\left\langle\rho_{v}\right\rangle\langle\alpha\rangle v \tag{2.2}\\
& \int_{A} \alpha \rho_{v} U_{v} d A=\left\langle\alpha \rho_{v} U_{v}\right\rangle A \tag{2.2}\\
& \int_{v}\left(S_{e}-S_{c}\right) d V=\left(\left\langle S_{e}\right\rangle-\left\langle S_{c}\right\rangle\right) V \tag{2.3}
\end{align*}
$$

We substitute these equations into our original mass equation, and we get

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\langle\alpha\rangle\left\langle\rho_{v}\right\rangle\right]+\frac{A_{z}}{V}\left[\left\langle\alpha \rho_{v} U_{v z}\right\rangle_{A_{z+}}-<\alpha \rho_{v} U_{v z}\right\rangle_{A_{z-}} \\
& \left.\left.\left.+\frac{A_{r+}}{V}<\alpha \rho_{v} U_{v r}\right\rangle_{A_{r+}}-\frac{A_{r-}}{V}<\alpha \rho_{v} U_{v r}\right\rangle_{A_{r-}}=\left\langle S_{e}\right\rangle-<S_{c}\right\rangle \tag{2.5}
\end{align*}
$$

In the above equation we have introduced the areas A_{z} and A_{r} bounding our control volume. The axial cross sectional area A_{z} poses no problem, since in the particular geometry of fuel assemblies of interest for LMFBR it is a constant throughout the axial length. For the radial cross sectional area however the same is not true. Here we have a highly position dependent area, not only in the macro scale, i.e., from one control volume to another, but also in the particular position with respect to the fuel pin rows chosen for this area.

So far this position can be chosen arbitrarely. Later it will be seen that for the averaged radial velocities in the momentum equations to be compatible with those in the mass and energy equations we must impose a precise value for this radial cross sectional area. The choice of this position is postponed until we have developed the momentum equations.

Finally it can be easily inferred that the liquid mass equation will undergo the same steps and present a similar form:

$$
\frac{\partial}{\partial t}\left[(1-<\alpha>) \rho_{\ell}\right]+\frac{A_{z}}{V}\left[<(1-\alpha) \rho_{\ell} U_{\ell z}>_{A_{z+}}\right.
$$

$$
-<(1-\alpha) \rho_{\ell} U_{\ell z}>_{A_{z-}}+\frac{A_{r+}}{V}<(1-\alpha) \rho_{\ell} U_{\ell r}>_{A_{r+}}
$$

$$
\begin{equation*}
\left.\left.-\frac{A_{r-}}{V}<(1-\alpha) \rho_{\ell} U_{\ell r}\right\rangle_{A_{r-}}=\left\langle S_{c}\right\rangle-<S_{e}\right\rangle \tag{2.6}
\end{equation*}
$$

2.1.2 The Momentum Equations

Following the same procedure used with the mass equation, the momentum equations in a control volume form are:

Axial Direction

$\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} U_{v z} d V+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z}^{2} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v z} U_{v r} d A$

$$
\begin{equation*}
-\oint_{A_{v}} P \cdot \hat{k} \cdot \hat{n} d A=-\int_{A_{W}} f_{v Z} d A-\int_{v} \alpha \rho_{v} g d V+\int_{v} M_{V Z} d V \tag{2.7}
\end{equation*}
$$

Radial Direction

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} U_{v r} d V+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} U_{v r} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r}^{2} d A \\
& -\oint_{A_{v}} P \cdot \hat{r} \cdot \hat{n} d A=-\int_{A_{w}} f_{v r} d A-\int_{v} M_{v r} d V \tag{2.8}
\end{align*}
$$

To obtain the momentum equations in non-conservative form the mass equation (2.1) multiplied by $\left\langle U_{V Z}\right\rangle$ and $\left\langle U_{V r}\right\rangle$ is subtracted
from equations 2.7 and 2.8 respectively:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} U_{v r} d V-\left\langle U_{v r}>\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d v+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} U_{v r} d A\right. \\
& -\left\langle U_{v r}\right\rangle \int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r}^{2} d A
\end{aligned}
$$

$$
-\left\langle U_{V r}\right\rangle \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{V} U_{V r} d A-\int_{A_{V}} P \hat{r} \cdot \hat{\mathrm{n}} \mathrm{dA}=
$$

$$
\begin{equation*}
=-\int_{A_{w}} f_{v r} d A+\int_{v} M_{v r} d v-\left\langle U_{v r}\right\rangle \int_{v}\left(s_{e}-s_{c}\right) d v \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{V} \alpha \rho_{v} U_{v Z} d V-\left\langle U_{v Z}>\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d V+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v Z}^{2} d A\right. \\
& -\left\langle U_{v Z}\right\rangle \int_{A_{z^{+}}}-\int_{A_{z^{-}}} \alpha \rho_{v} U_{v Z} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v Z} U_{v r} d A \\
& -\left\langle U_{V Z}>\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} d A-\oint_{A_{V}} P \hat{k} \cdot \hat{n} d A=\right. \\
& =-\int_{A_{W}} f_{v z} d A-g \int_{v} \alpha \rho_{v} d V+\int_{v} M_{v z} d V-\left\langle U_{v z}>\int_{v}\left(S_{e}-S_{c}\right) d V\right. \tag{2.9}
\end{align*}
$$

With the previously stated assumption of position independence of the density and its time derivative the first pair of terms in both equations become:
$\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} U_{v z} d V-<U_{v z}>\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d v=$
$=\int_{v}\left[\alpha \rho_{v} \frac{\partial U_{v z}}{\partial t}+\left(U_{v z}-\left\langle U_{v z}\right\rangle\right) \frac{\partial \alpha \rho_{v}}{\partial t}\right] d V$
$=\langle\alpha\rangle\left\langle\rho_{v}\right\rangle \frac{\partial}{\partial t}\left\langle U_{V Z}\right\rangle v$
and
$\frac{\partial}{\partial t} \int_{V} \alpha \rho_{v} U_{V r} d V-\left\langle U_{V r}\right\rangle \frac{\partial}{\partial t} \int_{V} \alpha \rho_{v} d V=\langle\alpha\rangle\left\langle\rho_{v}\right\rangle \frac{\partial}{\partial t}\left\langle U_{v r}\right\rangle V$

Next consider the convective terms. We define:

$$
\begin{align*}
& \left\langle U_{v z}\right\rangle_{A_{z}}=\left[\int_{A_{z}} \alpha \rho_{v} U_{v z}^{2} d A\right] \cdot\left[\int_{A_{z}} \alpha \rho_{v} U_{v z} d A\right]^{-1} \tag{2.13}\\
& \left\langle U_{v r}\right\rangle_{A_{z}}=\left[\int_{A_{z}} \alpha \rho_{v} U_{v Z} U_{v r} d A\right] \cdot\left[\int_{A_{z}} \alpha \rho_{v} U_{v z} d A\right]^{-1} \tag{2.14}
\end{align*}
$$

$\left\langle\alpha \rho_{v} U_{V Z}\right\rangle_{A_{z}}=\frac{1}{A_{z}} \int_{A_{z}} \alpha \rho_{v} U_{V Z} d A$
$\left\langle\alpha \rho_{v} U_{V r}\right\rangle_{A_{z}}=\frac{1}{A_{z}} \int_{A_{z}} \alpha \rho_{v} U_{v r} d A$

Assume $U_{V Z}$ is position independent in each axial cross sectional area A_{z}. Also assume that $U_{V Z}$ and $U_{V r}$ are axially variable in such a way that:
$\left\langle U_{V Z}\right\rangle=\frac{1}{2}\left(\left\langle U_{V Z}\right\rangle_{A_{z+}}+\left\langle U_{V Z}\right\rangle_{A_{z-}}\right)$
$\left\langle\mathrm{U}_{\mathrm{Vr}}\right\rangle=\frac{1}{2}\left(\left\langle\mathrm{U}_{\mathrm{Vr}}\right\rangle_{\mathrm{A}_{\mathrm{z}}}+\left\langle\mathrm{U}_{\mathrm{Vr}}\right\rangle_{\mathrm{A}_{\mathrm{z}^{-}}}\right)$
or in other words, that these velocities have a linear axial variation. The axial convective terms in both momentum equations become:

$$
\begin{align*}
& \int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z}^{2} d A-\left\langle U_{v z}\right\rangle \int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} d A \\
& =\langle\alpha\rangle\left\langle\rho_{v}\right\rangle\left\langle U_{v z}\right\rangle\left[\left\langle U_{v z}\right\rangle_{A_{z+}}-\left\langle U_{v z^{\prime}}\right\rangle_{A_{z-}}\right] \tag{2.19}
\end{align*}
$$

$$
\begin{align*}
& \int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{V Z} U_{V r} d A-<U_{v r}>\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{V Z} d A= \\
& =\langle\alpha\rangle\left\langle\rho_{v}\right\rangle\left\langle U_{V Z}\right\rangle\left[\left\langle U_{v r}\right\rangle_{A_{z+}}-\left\langle U_{v r}\right\rangle_{A_{z-}}\right] A_{z} \tag{2:20}
\end{align*}
$$

Using the same procedure to the r-convective terms, we define:

$$
\begin{align*}
& \left\langle U_{v r}\right\rangle_{A_{r}}=\left[\int_{A_{r}} \alpha \rho_{v} U_{v r}^{2} d A\right] \cdot\left[\int_{A_{r}} \alpha \rho_{v} U_{v r} d A\right]^{-1} \tag{2.21}\\
& \left\langle U_{V Z}\right\rangle_{A_{r}}=\left[\int_{A_{r}} \alpha \rho_{v} U_{v r} U_{v Z} d A\right] \cdot\left[\int_{A_{r}} \alpha \rho_{v} U_{v r} d A\right]^{-1} \tag{2.22}
\end{align*}
$$

Following the same procedure taken with the terms averaged over A_{z}, we must find an expression relating the properties averaged over the radial area and over the entire control volume. The linear variation of $U_{V Z}$ from A_{r-} to A_{r+} can be assumed without imposing simplifications beyond the level that has been used up till now. The same is also true when it is assumed that $U_{v r}$ is constant over each radial area A_{r}. But due to the particular geometry of fuel assemblies under consideration, it will not be realistic to make a linear variation
of $U_{V r}$ assumption for any arbitrary radial area, since due to the presence of fuel pins, this radial area varies drastically with radial position. Instead, A_{r+} and A_{r-} must be chosen such that:
$\left\langle U_{v r}\right\rangle=\frac{1}{2}\left(\left\langle U_{v r}\right\rangle_{A_{r+}}+\left\langle U_{v r}\right\rangle_{A_{r-}}\right)$

Introduce the quantities $U_{r}^{*}(r)$ and $A_{r}^{*}(r)$:

$$
\begin{equation*}
\left\langle U_{V r}\right\rangle_{A_{r}}(r) \cdot A_{r}(r)=U_{r}^{*}(r) A_{r}^{*} \cdot r \tag{2.24}
\end{equation*}
$$

where A_{r}^{*}. r is the average linarly radial dependent area. This is equivalent to smearing the fuel pins over the fuel assembly to produce an equivalent homogeneous porous body. The criterion to find $A_{\mathbf{r}}^{*}$ is to require the integral of A_{r}^{*}. r over one unit cell be equal to the volume occupied by the fluid:

$$
\begin{equation*}
v_{c e 11}^{k}=\int_{\mathbf{r}_{k}}^{\mathbf{r}_{k}+\xi} A_{r}^{*} \cdot r d r=A_{r}^{*}\left[\frac{\left(r_{k}+\xi\right)^{2}-r_{k}^{2}}{2}\right] \tag{2.25}
\end{equation*}
$$

where $\xi=p \cdot \frac{\sqrt{3}}{2}$

The volume $\mathrm{V}_{\mathrm{cell}}^{\mathrm{k}}$ is:
$\mathrm{v}_{\mathrm{cell}}^{\mathrm{k}}=\left(\mathrm{p}^{2} \frac{\sqrt{3}}{2}-A_{\mathrm{pin}}\right)\left(\frac{2 \mathrm{k}+1}{2}\right) \Delta z$
where $A_{p i n}$ includes the transverse area of fuel pin wire wrap and other structural materials present

$$
r_{k}=k p \frac{\sqrt{3}}{2}
$$

From equation (2.25) we get:

$$
\begin{equation*}
A_{r}^{*}=\Delta z \quad \frac{\sqrt{3}}{2}-\frac{A_{\mathrm{pin}}}{\mathrm{p}^{2}} \tag{2.26}
\end{equation*}
$$

We now can make the more acceptable assumption that $\left\langle U_{V r}{ }^{\rangle} A_{r} A_{r}(r)\right.$ $=\mathrm{U}_{\mathrm{r}}^{*}(\mathrm{r}) \mathrm{A}_{\mathrm{r}}{ }_{r} \cdot \mathrm{r}=$ constant. It follows:
$\left\langle U_{V r}\right\rangle=\frac{1}{\langle\alpha\rangle V} \int_{V} \alpha U_{v r} d V=\frac{1}{V} \int d r \int_{A_{r}} U_{V r} d A$

$$
=\frac{1}{V} \int_{r_{-}}^{r}+\left\langle U_{V r}\right\rangle_{A_{r}} A_{r}(r) d r
$$

$$
\begin{equation*}
=\mathrm{U}_{\mathbf{r}}^{*}\left(\mathrm{r}^{*}\right) \cdot \mathrm{A}_{r}^{*} \cdot \mathrm{r}^{*} \cdot \frac{\left(\mathrm{r}_{+}-\mathrm{r}_{-}\right)}{\mathrm{V}} \tag{2.27}
\end{equation*}
$$

where r^{*} is any value between r_{-}and r_{+}. Let us choose r^{*} such that

$$
\begin{equation*}
A_{\mathbf{r}}^{*} r^{*}\left(r_{+}-r_{-}\right)=V \tag{2.28}
\end{equation*}
$$

but from equation 2.25 we have:

$$
v=\int_{r_{-}}^{r_{+}} A_{r}^{*} x d r=A_{r}^{*} \frac{r_{+}^{2}-r_{-}^{2}}{2}
$$

so it follows

$$
\begin{equation*}
r^{*}=\frac{r_{+}+r_{-}}{2} \tag{2.29}
\end{equation*}
$$

Substituting for r* in equation 2.27 we have

$$
\begin{equation*}
\left\langle U_{v r}\right\rangle=U_{r}^{*}\left(r^{*}\right) \tag{2.30}
\end{equation*}
$$

but since we assumed ${\underset{X}{r}}_{*}^{*}$ is a linear function of r this is equivalent to

$$
\begin{equation*}
\left\langle U_{v r}\right\rangle=\frac{U *\left(r_{+}\right)+U *\left(r_{-}\right)}{2} \tag{2.31}
\end{equation*}
$$

Going back to equation 2.24 we have:

$$
\begin{equation*}
\left\langle U_{V r}\right\rangle=\frac{1}{2}\left[\left\langle U_{V r}\right\rangle_{A_{r+}} \frac{A_{r+}}{A^{*} r_{+}}+\left\langle U_{V r}\right\rangle_{A_{r-}} \frac{A_{r-}}{A^{*} r_{-}}\right] \tag{2.32}
\end{equation*}
$$

Finally, the desired criterion for choosing the radial cross sectional area such that the averaging procedures taken with the mass, energy and momentum equations be compatible follows immediately if $r+$ and r - are chosen to satisfy:

$$
\begin{align*}
& A_{r+}=A^{*} r+ \\
& A_{r-}=A^{*} r- \tag{2.33}
\end{align*}
$$

and
then the desired equation 2.23 is obtained

with these considerations, after a few algebraic steps, the \mathbf{r} convective terms in the momentum equations become:

$$
\begin{align*}
& \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v z} U_{v r} d A-\left\langle U_{v z}\right\rangle \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} d A= \\
& =\langle\alpha\rangle\left\langle\rho_{v}\right\rangle\left\langle U_{v r}\right\rangle\left(\left\langle U_{v z}\right\rangle_{A_{r+}}-\left\langle U_{v z}\right\rangle_{A_{r-}}\right) \frac{\left(A_{r+}+A_{r-}\right)}{2} \tag{2.34}\\
& \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r}^{2}-\left\langle U_{v r}\right\rangle \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} d A=
\end{align*}
$$

$$
\begin{equation*}
\langle\alpha\rangle\left\langle\rho_{v}\right\rangle\left\langle U_{v r}\right\rangle\left(\left\langle U_{v r}\right\rangle_{A_{r+}}-\left\langle U_{v r}\right\rangle_{A_{r-}}\right)\left(\frac{A_{r+}+A_{r-}}{2}\right) \tag{2.35}
\end{equation*}
$$

The remaining terms of the momentum equations are obtained by simple averages:

$$
\begin{align*}
& \oint_{A_{v}} P \cdot \hat{k} \cdot \hat{n} d A=A_{z}\left\langle\alpha>\langle P\rangle_{A_{z+}}-\langle P\rangle_{A_{z-}}\right) \\
& \oint_{A_{v}} P \cdot \hat{r} \cdot \hat{n} d A=\left(\frac{A_{r+}+A_{r-}}{2}\right)<\alpha>\left(\langle P\rangle_{A_{r+}}-<P>_{A_{r-}}\right) \tag{2.37}
\end{align*}
$$

t.

$$
\int_{A_{w}} f_{v z} d A=\left\langle f_{v z}\right\rangle_{A_{w}} A_{w}
$$

$$
\int_{A_{w}} f_{v r} d=\left\langle f_{v r}\right\rangle_{A_{w}} A_{w}
$$

$$
\int_{v} M_{v Z} d v-\left\langle U_{v Z}\right\rangle \int_{v}\left(s_{e}-s_{c}\right) d v=\left\langle M_{v Z}^{\prime}\right\rangle v
$$

$$
\int_{v} M_{v r} d v-\left\langle U_{v r}\right\rangle \int_{v}\left(S_{e}-S_{c}\right) d V=\left\langle M_{v r}^{\prime}\right\rangle V
$$

Where the terms M^{\prime} include buth the momentum exchange between phases due to friction and mass exchange. These terms will be analysed in detail in Chapter 3, when discussing the constitutive equations.

Equations 2.9 and 2.10 can now be rewriten as:

$$
\begin{equation*}
=-\frac{A_{w}}{V}\left\langle f_{v Z}\right\rangle-\langle\alpha\rangle\left\langle\rho_{v}\right\rangle g-\left\langle M_{v Z}^{\prime}\right\rangle \tag{2.38}
\end{equation*}
$$

$$
\begin{align*}
& \left.\left.\langle a\rangle\left\langle\rho_{v}\right\rangle\left[\frac{\partial}{\partial t}<U_{v r}\right\rangle+\frac{A_{z}}{V}<U_{v z}\right\rangle\left(\left\langle U_{v r}\right\rangle_{A_{z+}}-<U_{v r}\right\rangle_{A_{z-}}\right)+ \\
& \left.+\left(\frac{A_{r+}+A_{r-}}{2 V}\right)<U_{v r}>\left(<U_{v r}>_{A_{r+}}-<U_{v r}>_{A_{r-}}\right)\right]- \\
& \left.-\left(\frac{A_{r+}+A_{r-}}{2 V}\right)<\alpha\right\rangle\left(\langle P\rangle_{A_{r+}}-\langle P\rangle_{A_{r-}}\right)=\frac{A_{w}}{V}\left\langle f_{v r}\right\rangle-\left\langle\mathrm{Mr}_{\mathrm{Vr}}^{\prime}\right\rangle \tag{2.39}
\end{align*}
$$

$$
\begin{aligned}
& \langle\alpha\rangle\left\langle\rho_{v}\right\rangle\left[\frac{\partial}{\partial t}\left\langle U_{v Z}\right\rangle+\frac{A_{z}}{V}\left\langle U_{v Z}\right\rangle\left(\left\langle U_{v Z}\right\rangle_{A_{z+}}-\left\langle U_{v Z}\right\rangle_{A_{z-}}\right)+\right. \\
& \left.\left.+\left(\frac{A_{r+}+A_{r-}}{2 V}\right)<U_{v r}\right\rangle\left(\left\langle U_{v z}\right\rangle_{A_{r+}}-\left\langle U_{v z}\right\rangle_{A_{r-}}\right)\right]- \\
& \left.-\frac{A_{z}}{V}<\alpha>\left(\langle P\rangle_{A_{z+}}-<P\right\rangle_{A_{-}}\right)
\end{aligned}
$$

Similarly for the liquid phase:

$$
\begin{align*}
& \left.(1-<\alpha>)<\rho_{\ell}\right\rangle\left[\frac{\partial}{\partial t}\left\langle U_{\ell z}\right\rangle+\frac{A_{z}}{V}\left\langle U_{z}\right\rangle\left(\left\langle U_{\ell z}\right\rangle_{A_{z^{+}}}-\left\langle U_{\ell Z^{\prime}}\right\rangle_{A_{Z_{-}}}\right)+\right. \\
& \left.\left.\left.+\left(\frac{A_{r+}+A_{r-}}{2 V}\right)<U_{\ell r^{\prime}}\right\rangle\left(\left\langle U_{\ell z}\right\rangle_{A_{r+}}-<U_{\ell z}\right\rangle_{A_{r-}}\right)\right]- \\
& -\frac{A_{z}}{2}(1-\langle\alpha\rangle)\left(\langle P\rangle_{A_{z^{+}}}-\langle P\rangle_{A^{-}}\right)= \\
& =\frac{A_{\mathrm{w}}}{2}<f_{\ell Z}>-(1-\langle\alpha\rangle)<\rho_{\ell}>g-\left\langle M_{\ell Z}^{\prime}\right\rangle \\
& \left.\left.(1-<\alpha>)<\rho_{\ell}\right\rangle\left[\frac{\partial}{\partial t}<U_{\ell r}\right\rangle+\frac{A_{z}}{V}<U_{\ell Z}\right\rangle\left(\left\langle U_{\ell r}\right\rangle_{A_{r+}}-\right. \\
& \left.\left.\left.-<U_{\ell r}\right\rangle_{A_{r-}}\right)+\left(\frac{A_{r+}+A_{r_{-}}}{2 V}\right)<U_{\ell r}\right\rangle\left(\left\langle U_{\ell r}\right\rangle A_{r_{+}}-\left\langle U_{\ell r}\right\rangle_{A_{r-}}\right)- \\
& -\left(\frac{A_{r_{+}}+A_{r_{-}}}{2 V}\right)(1-\langle\alpha\rangle)\left(\langle P\rangle_{A_{r_{+}}}-\langle P\rangle_{A_{r_{-}}}\right)= \\
& \left.=\frac{A_{w}}{V}<f_{\ell r}\right\rangle-\left\langle M_{\ell r}^{\prime}\right\rangle \tag{2.41}
\end{align*}
$$

2.1.3 The Energy Equations

Again we start by writing the energy conservation equation in control volume form:

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{v} \alpha \rho_{v}\left(e_{v}+\frac{1 / 2}{} U_{v}^{2}\right) d V+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z}\left(e_{v}+\frac{1 / 2}{U_{v}^{2}}\right) d A+ \\
& +\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r}\left(e_{v}+\frac{1}{2} U_{v}^{2}\right) d A= \\
& =\int_{v} Q_{v} d v-\int_{v} \alpha \rho_{v} g U_{v z} d v-\int_{A_{w}} \vec{U}_{v} \cdot \vec{f}_{v} d A+\int_{A_{v}} P \cdot \hat{n}^{2} \cdot \vec{U}_{v} d A- \\
& -\int_{v} P \frac{\partial \alpha}{\partial t} d V \tag{2.42}
\end{align*}
$$

Before proceding with the averaging process, some algebraic manipulations will be made in order to eliminate the kinetic energy terms. Subtract from equation 2.42 equations 2.9 multiplied by $<U_{v z}>$ and 2.10 multiplied by $\left\langle\mathrm{U}_{\mathrm{vr}}\right\rangle$, and rearranging the result it follows

$$
\frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} e_{v} d v+\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} e_{v} d A+\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} e_{v} d A+
$$

$$
\begin{aligned}
& \int_{v}\left[\frac{\partial}{\partial t} \alpha \rho_{v} \frac{1 / 2}{U_{v}^{2}}-\left\langle U_{v z}\right\rangle \frac{\partial}{\partial t} \alpha \rho_{v} U_{v z}-\left\langle U_{v r}\right\rangle \frac{\partial}{\partial t} \alpha \rho_{v} U_{v r}\right] d v+ \\
& +\int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v}\left[U_{v Z} \quad \frac{1}{2} U_{v}^{2}-\left\langle U_{v z}>U_{v z}^{2}-<U_{v r}>U_{v z} U_{v r}\right] d A+\right. \\
& +\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v}\left[U_{v r}{ }^{\frac{1}{2}} U_{v}^{2}-\left\langle U_{v z}\right\rangle U_{v z} U_{v r}-\left\langle U_{v r}\right\rangle U_{v r}^{2}\right] d A= \\
& =\int_{v} Q_{v} d v-\int_{v} P \frac{\partial}{\partial t} d V+\oint_{A_{V}}\left[P \hat{n} \cdot \vec{u}_{v}-P \hat{n} \cdot \hat{k}<U_{v z}>-\right. \\
& \left.-P \hat{n} \cdot \hat{r}\left\langle U_{v r}\right\rangle\right] d A-\int_{A_{w}}\left[\vec{U}_{v} \cdot \vec{f}_{v}-\left\langle U_{v z}\right\rangle f_{v z}-\left\langle U_{v r}\right\rangle f_{v r}\right] d A- \\
& \int_{v}\left[\alpha \rho_{v} g U_{v Z}-\left\langle U_{v Z}\right\rangle \alpha \rho_{v} g\right] d V-\int_{v}\left[\left\langle U_{v Z}\right\rangle M_{v Z}+\left\langle U_{v r}\right\rangle M_{v r}\right] d V
\end{aligned}
$$

We will turn our attention to the terms involving the kinetic energy. To avoid the trouble of carrying over the whole expression, we will call:

$$
\int_{v}\left[\frac{\partial}{\partial t} \alpha \rho_{v} \frac{1 / 2}{} U_{v}^{2}-\left\langle U_{v z}\right\rangle-\frac{\partial}{\partial t} \alpha \rho_{v} U_{v z}-\left\langle U_{v r}\right\rangle \frac{\partial}{\partial t} \alpha \rho_{v} U_{v r}\right] d v=1 E
$$

$1 E=\int_{v}\left\{\alpha \rho_{v}\left[\frac{\partial}{\partial t}{ }^{\frac{1}{2}} U_{v}^{2}-\left\langle U_{v Z}\right\rangle \frac{\partial}{\partial t} U_{v Z}-\left\langle U_{v r}\right\rangle \frac{\partial}{\partial t} U_{v r}\right]+\right.$
$\left.+\frac{\partial \alpha \rho_{v}}{\partial t}\left[\frac{1 / 2}{2} \mathrm{U}_{\mathrm{v}}^{2}-\left\langle\mathrm{U}_{\mathrm{vz}}\right\rangle \mathrm{U}_{\mathrm{vz}}-\left\langle\mathrm{U}_{\mathrm{vr}}\right\rangle \mathrm{U}_{\mathrm{vr}}\right]\right\} \mathrm{dv}$

It must be assumed that the spatial variation of $U_{v z}$ and $U_{V r}$ around their mean values are small or in other words, if $U_{V Z}$ is written as:

$$
U_{V Z}(z, r)=\left\langle U_{V Z}\right\rangle+\varepsilon(z, r)
$$

then
$\left\langle U_{v^{z}}^{2}\right\rangle=\frac{1}{V} \int_{V}\left[\left\langle U_{V Z}\right\rangle+\varepsilon(z, r)\right]^{2} d V=\left\langle U_{V Z}\right\rangle^{2}+\frac{1}{V} \int_{V} \varepsilon^{2}(z, r) d V$

The requirement that $\frac{1}{V} \int_{V} \varepsilon^{2} d V$ be small compared to $\left\langle U_{V Z}\right\rangle^{2}$,
would lead to:

$$
\begin{equation*}
\left\langle\mathrm{U}_{\mathrm{Vz}}^{2}\right\rangle \simeq\left\langle\mathrm{U}_{\mathrm{VZ}}\right\rangle^{2} \tag{2.45}
\end{equation*}
$$

if we recall that $U_{v}^{2}=U_{v z}^{2}+U_{v r}^{2}$, equation 2.44 becomes:

$$
\begin{aligned}
& \operatorname{IE}=\mathrm{V}\langle\alpha\rangle\left\langle\rho_{\mathrm{v}}\right\rangle\left[\frac{\partial}{\partial t}{ }^{\frac{1}{2}}\left(\left\langle\mathrm{U}_{\mathrm{vz}}^{2}\right\rangle+\left\langle\mathrm{U}_{\mathrm{vr}}^{2}\right\rangle\right)-\right. \\
& \left.-\left\langle U_{v Z}\right\rangle \frac{\partial}{\partial t}\left\langle U_{v Z}\right\rangle-\left\langle U_{v r}\right\rangle \frac{\partial}{\partial t}\left\langle U_{v r}\right\rangle\right]+ \\
& +\left[1 / 2\left(\left\langle U_{v z}^{2}\right\rangle+\left\langle U_{v r}\right\rangle^{2}\right)-\left\langle U_{v Z}\right\rangle^{2}-\left\langle U_{v r}\right\rangle^{2}\right] \frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d v
\end{aligned}
$$

and in view of equation 2.45 this becomes:

$$
\begin{equation*}
1 E=-1 / 2\left(\left\langle U_{v z}^{2}\right\rangle+\left\langle U_{v r}^{2}\right\rangle\right) \frac{\partial}{\partial t} \int_{v} \alpha \rho_{v} d V \tag{2.46}
\end{equation*}
$$

the convective terms of the kinetic energy equation, which will be called 2E and 3 E are:

$$
\begin{align*}
& 2 E=\int_{A_{z+}}-\int_{A_{Z-}} d A \alpha \rho_{v}\left[U_{v Z} \quad \frac{1}{2} U_{v}^{2}-\left\langle U_{v Z}\right\rangle U_{v Z}^{2}-\left\langle U_{v r}\right\rangle U_{v Z} U_{v r}\right] \tag{2,47}\\
& 3 E=\int_{A_{r+}}-\int_{A_{r-}} d A \alpha \rho_{v}\left[U_{v r} \quad \frac{1 / 2}{U_{v}^{2}-\left\langle U_{v Z}>U_{v Z} U_{v r}-\left\langle U_{v r}\right\rangle U_{v r}^{2}\right]}\right. \tag{2.48}
\end{align*}
$$

Define:
$\left\langle U_{v}^{2}\right\rangle_{A_{z}}=\left\langle U_{v z}^{2}\right\rangle_{A_{z}}+\left\langle U_{v r}^{2}\right\rangle_{A_{z}}=\int_{A_{z}} \alpha \rho_{v} U_{v z} U_{v}^{2} d A / \int_{A_{z}} \alpha \rho_{v} U_{v z} d A$
and equations 2.47 and 2.48 become:

$$
\begin{align*}
& 2 E=\left[\frac{1 / 2}{2}\left\langle U_{v}^{2}\right\rangle_{A_{z+}}-\left\langle U_{V Z}\right\rangle\left\langle U_{V Z}\right\rangle_{A_{z+}}{ }^{-}\right. \\
& \left.-\left\langle U_{v r}\right\rangle\left\langle U_{v r}\right\rangle_{A_{z^{+}}}\right] \int_{A_{z^{+}}} \alpha \rho_{v} U_{v z} d A- \\
& -\left[{ }^{\frac{1}{2}}\left\langle U_{v}^{2}\right\rangle_{A_{z-}}-\left\langle U_{v z}\right\rangle\left\langle U_{v z^{-}}\right\rangle_{A_{Z_{-}}}\right. \\
& \left.-\left\langle U_{v r}\right\rangle\left\langle U_{v r}\right\rangle_{A_{z^{-}}}\right] \int_{A_{z_{-}}} \alpha \rho_{v} U_{V Z} d A \tag{2.49}
\end{align*}
$$

$$
\begin{align*}
& 3 E=\left[\frac{1 / 2}{2}\left\langle\mathrm{U}^{2}\right\rangle_{\mathrm{A}_{\mathrm{r}+}}-\left\langle\mathrm{U}_{\mathrm{Vr}}\right\rangle\left\langle\mathrm{U}_{\mathrm{Vr}}\right\rangle_{\mathrm{A}_{\mathrm{r}}}-\right. \\
& \left.-\left\langle U_{v z}\right\rangle\left\langle U_{v z}\right\rangle_{A_{r+}}\right] \int_{A_{r+}} \alpha \rho_{v} U_{v r} d A- \\
& -\left[{ }^{\frac{1}{2}}\left\langle U_{v}^{2}\right\rangle_{A_{r-}}-\left\langle U_{V r}\right\rangle\left\langle U_{V r}\right\rangle_{A_{r-}}-\right. \\
& \left.-\left\langle U_{V Z}\right\rangle\left\langle U_{v Z}\right\rangle_{A_{r-}}\right] \int_{A_{r-}} \alpha \rho_{v} U_{v r} d A \tag{2.50}
\end{align*}
$$

and from equations $2.17,2.18$ and 2.2323 get:

$$
\begin{aligned}
& \left.2 E=-\frac{1}{2}\left[\left\langle U_{v z}\right\rangle_{A_{z+}}\left\langle U_{v z}\right\rangle_{A_{z^{-}}}+\left\langle U_{v r}\right\rangle\right\rangle_{z^{+}}\left\langle U_{v r}\right\rangle A_{z_{-}}\right] \int_{A_{z^{+}}}-\int_{A_{z-}} \alpha \rho_{v^{-}} U_{v z} d A \\
& 3 E=-\frac{1 / 2}{[2}\left[\left\langle U_{V r}\right\rangle_{A_{r+}}\left\langle U_{V r}\right\rangle_{A_{r-}}+\left\langle U_{V Z}\right\rangle A_{r+}\left\langle U_{V Z}\right\rangle A_{r-}\right] \int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{V} U_{V r} d A
\end{aligned}
$$

In view of the previous assumption that deviation of the velocities from their averages are small we get

$$
\begin{align*}
& \left\langle U_{v Z}\right\rangle_{A_{z+}}\left\langle U_{v Z}\right\rangle_{A_{z-}} \simeq\left\langle U_{v Z}^{2}\right\rangle \text { etc, and it follows } \\
& 2 E=-\frac{1}{2}\left\langle U_{v}^{2}\right\rangle \int_{A_{z+}}-\int_{A_{z-}} \alpha \rho_{v} U_{v z} d A \tag{2.51}\\
& 3 E=-\frac{1}{2}<U_{v}^{2}>\int_{A_{r+}}-\int_{A_{r-}} \alpha \rho_{v} U_{v r} d A \tag{2.52}
\end{align*}
$$

Combining the terms $1 \mathrm{E}, 2 \mathrm{E}$ and 3 E , and recalling equation 2.1 , we have:

$$
\begin{equation*}
1 \mathrm{E}+2 \mathrm{E}+3 \mathrm{E}=-\frac{1 / 2}{2}\left(\left\langle\mathrm{~S}_{\mathrm{e}}\right\rangle-\left\langle\mathrm{S}_{\mathrm{c}}\right\rangle\right)\left\langle U_{\mathrm{V}}^{2}\right\rangle \tag{2.53}
\end{equation*}
$$

We proceed by noting that some terms in equation 2.43 will vanish uppon the performance of the integrals. These terms are:

$$
\begin{align*}
& \int_{v}\left[\alpha \rho_{v} g U_{v z}-<U_{v z}>\alpha \rho_{v} g\right] d V=0 \tag{2.54}\\
& \oint_{A_{v}}\left[P \hat{n} \cdot \vec{U}_{v}-P \hat{n} \cdot \hat{k}<U_{v z}>-P \hat{n} \cdot \hat{r}<U_{v r}>\right] d A=0 \tag{2.55}\\
& \int_{A_{W}}\left[\vec{U}_{v} \cdot \vec{f}_{v}-<U_{v z}>f_{v z}-<U_{v r}>f_{v r}\right] d A=0 \tag{2.56}
\end{align*}
$$

The next step would be to define average properties and obtain the final form of the energy equation. Since this procedure is completely similar to that used for the mass equation, only the resultant energy equations are presented here:
$\frac{\partial}{\partial t}\left[\left\langle\alpha><\rho_{v}><e_{v}>\right]+\frac{A_{z}}{v}\left[\left\langle\alpha \rho_{v} e_{v} U_{v z}>_{A_{z+}}-<\alpha \rho_{v} e_{v} U_{v z}\right\rangle_{A_{z-}}\right]\right.$

$$
\begin{align*}
& \left.+\frac{A_{r+}}{V}<\alpha \rho_{v} e_{v} U_{v r}>_{A_{r+}}-\frac{A_{r-}}{V}<\alpha \rho_{v} e_{v} U_{v r}\right\rangle_{A_{r-}}= \\
& =\left\langle Q_{v}\right\rangle-<P>\frac{D \alpha}{D t}-\left\langle Q_{\ell v}\right\rangle \tag{2.57}
\end{align*}
$$

where the energy exchange between phases has been grouped under the $\operatorname{term} Q_{\ell v}$.

For the liquid phase the nergy equation is:

$$
\begin{gather*}
\left.\left.\frac{\partial}{\partial t}[(1-<\alpha\rangle)<\rho_{\ell}><e_{\ell}\right\rangle\right]+\frac{A_{z}}{V}\left[\left\langle(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell Z}\right\rangle_{A_{z+}}-\left\langle(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell Z}\right\rangle_{A_{z-}}\right] \\
\left.\left.+\frac{A_{r+}}{V}<(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell r}\right\rangle_{A_{r+}}-\frac{A_{r-}}{V}<(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell r}\right\rangle_{A_{r-}}= \\
=\left\langle Q_{\ell}\right\rangle+\left\langle P>\frac{D \alpha}{D t}+\left\langle Q_{\ell V}\right\rangle\right. \tag{2.58}
\end{gather*}
$$

2.2 The Finite Difference Equations

Having established the properly averaged differential equations, the next step is to approximate the conservation equations by a set of algebraic equations suitable for the numerical solution. Before choosing any particular scheme, it is appropriate to discuss in general terms the various applicable finite difference approaches and identify the kind of problems we expect to solve with our model.

For the spacial discretization very little can be said in general: the idea to be followed is that one can find the best spacial differen iation to suit a particular time discretization.

There are three broad categories concerning the time level at which the variables are to be evaluated: fully implicit, fully explicit and semi-implicit (or semi-explicit). Associated with each of these categories there is a stability criterion which will relate the time step size with the characteristic roots of the set of equations.

A fully implicit method is the one in which all spacial derivatives, as well as all the exchange terms are evaluated at the new time level. With this time discretization it is possible in general to find a spacial arrangement which makes the whole method unconditionally stable, thus enabling the problem to be solved with a time step as large (or as small) as desired. As an exemple, a one dimensional mass equation in this scheme is:
$\frac{\alpha_{i}^{n+1} \rho_{v i}^{n+1}-\alpha_{i}^{n} \rho_{v i}^{n}}{\Delta t}+\frac{\left(\alpha \rho_{v} U_{v}\right)_{i+\frac{1}{2}}^{n+1}-\left(\alpha \rho_{v} U_{v}\right)_{i-\frac{1}{2}}^{n+1}}{\Delta z}=s_{i}^{n+1}$

Note that the convective terms are evaluated at different locations than the other terms.

Since they are evaluated at the new time level, they are unknown, which means the solution at one particular cell is coupled to the solution at its neighbors, thus requiring the numerical solution to be made simultaneously in all locations and all variables. This poses a very complex matrix inversion problem, using relatively large computational times.

On the other side is the fully explicit method, in which the spacial derivatives and the exchange terms are evaluated at the old time level. The mass equation would look like:

We can see in this case the terms which are evaluated at locations other than the cell i are in the old time level, and so they are known. The solution at each cell is independent of its neighbors and the numerical solution of the set of equations will be relatively simple. The penalty for that simple solution is that the stability criterion for this category is severe, requiring in general very small time step sizes. Typically it would require that a pressure or temperature perturbation travel no farther than one mesh space in one time step, or in mathematical words it would require:

$$
\Delta t<\frac{\Delta z}{c}
$$

where c is a sonic speed. Typical values are on the order of 10^{-2} to $10^{-1} \mathrm{~m}$ for the mesh spacing and $10^{3} \mathrm{~m} / \mathrm{sec}$ for the sonic speed. Thus, we can expect to be limited to time step sizes of the order of 10^{-4} or 10^{-5} seconds with this method.

In between these two extremes, the semi implicit methods are those in which some terms are treated implicitly while others explicitly. If liquid convection is treated explicitly, the time step restriction for this class of schemes is the convective limit

$$
\Delta t<\frac{\Delta z}{v}
$$

where v is the phase velocity.
The general idea behind this category is to devise a particular balance between implicit and explicit terms which would make the solution of the particular set of equations simple compared to that of the fully implicit method, combined with a less restrictive stability criterion compared to the fully explicit method.

Here a very large number of possibilities exist, and a general analysis would prove to be of little value since what might be the best solution for a particular problem may not be a good one for another.

Thus, instead of a general study of semi-implicit methods we will just analyse the particular scheme used in our model and show the motivation for its choice. One important consideration for this choice is the time scale of the phenomena to be analysed with the model.

A typical loss of flow two-phase transient lasts from onset of boiling to flow reversal for about one second. Therefore a sufficient detailed description of this transient requires that the solution scheme
produces information with a time interval of about 10^{-1} to 10^{-2} second. In this kind of transient we can expect to have axial velocities on the order of 10 meter per second. Thus using a axial mesh spacing on the order of 10^{-1} meter, the convective limit $\Delta z / v$ characteristic of the semi-implicit method will be of the same order of magnitude of the time interval in which we want information, and a method with such time step limitation would fit perfectly our purpose.

Much longer simulations can be expected in the case of natural convection decay heat removal. But in this class of phenomena the phase velocities would be much smaller, and again in this case, a time step restriction connected to the phase velocity is of the same order of magnitude of the required information interval.

Therefore, with the semi-implicit method we take advantage of a simpler solution of the fluid flow equations, with smaller number of operations performed per time step without increasing the number of time steps required to cover the whole transient.

After this brief outline of the general features of numerical methods, we proceed with a detailed description of the particular scheme adopted for the model, explaining how this particularly fits our set of equations and insures the stability of the method.

We start by dividing the fuel assembly to be simulated into a two dimensional $r-z$ grid. To allow flexibility of application and a more efficient allocation of time and memory space, this division is made to accept variable mesh spacing in both directions, with the sole restriction that at each radial or axial level the mesh spacing corre-
sponding to that direction remains the same for all cells in that level. With this restriction, each cell, except the boundaries cells, will have only one neighbor at each of its four sides. Figure 2.1 shows a typical arrangement of cells.

All unknowns of the problem, with the exception of the velocities, are evaluated at the center of the mesh cells, while the velocities are evaluated at the faces of these cells. Figure 2.2 shows a typical mesh cell where this is illustrated. This figure also shows the subscript convention used in the difference equations. In this convention subscripts i and j indicate position in the center of a cell along the axial and radial axis respectively, while subscripts $i+\frac{1}{2}$ and $j+\frac{1}{2}$ indicates position at the faces of the cells corresponding to the z and r directions respectively.

Superscripts are used to indicate the time level in which the variables are evaluated. Superscript n indicates evaluation at the old time level, thus corresponding to a known quantity, and $n+1$ indicates a variable in the new time level, to be determined in this step. The exchange terms, which are in general function of both new and old time variables do not carry any superscript. They will be discussed at length in Chapter 3.

With these conventions established, the difference form of the mass and energy equations, which are differentiated about the center of the mesh cells are:

Figure 2.1 A Typical Cell Arrangement

Figure 2.2 Position Evaluation of Variables

Vapor Mass:

$$
\begin{align*}
& \frac{\left(\alpha^{n+1} \rho_{v}^{n+1}-\alpha^{n} \rho_{v}^{n}\right)_{i, j}}{\Delta t}+\frac{\left(\alpha^{n} \rho_{v}^{n} U_{v z}^{n+1}\right)_{i+\frac{1}{2}, j}-\left(\alpha^{n} \rho_{v}^{n} U_{v z}^{n+1}\right)_{i-\frac{1}{2}, j}}{\Delta z i}+ \\
& +\left(A_{r} / v \alpha^{n} \rho_{v}^{n} U_{v r}^{n+1}\right)_{i, j+\frac{1}{2}}-\left(A_{r} / v \alpha^{n} \rho_{v}^{n} U_{v r}^{n+1}\right)_{i, j-\frac{1}{2}}=s_{e}-s_{c} \tag{2.2.1}
\end{align*}
$$

Vapor Energy:

$$
\frac{\left(\alpha^{n+1} \rho_{v}^{n+1} e_{v}^{n+1}-\alpha^{n} \rho_{v}^{n} e_{v}^{n}\right)_{i, j}}{\Delta t}+\frac{\left(\alpha^{n} \rho_{v}^{n} e_{v}^{n} U_{v z}^{n+1}\right)_{i+\frac{1}{2}, j}}{\Delta z_{i}}-
$$

$$
-\frac{\left(\alpha^{n} \rho_{v}^{n} e_{v}^{n} U_{v z}^{n+1}\right)_{i-\frac{1}{2}, i}}{\Delta z}+\left(A_{r} / v \alpha^{n} \rho_{v}^{n} e_{v}^{n} U_{v r}^{n+1}\right)_{i, j+\frac{1}{2}}
$$

$$
-\left(A_{r} / v \alpha^{n} \rho_{v}^{n} e_{v}^{n} U_{v r}^{n+1}\right)_{i, j-\frac{1}{2}}+p_{i j}^{n}\left[\frac{\left(\alpha^{n+1}-\rho^{n}\right)_{i, j}}{\Delta t}+\right.
$$

$$
+\frac{\left(x^{n} U_{v z}^{n+1}\right)_{i+\frac{1}{2}, j}-\left(\alpha^{n} \rho U_{v z}^{n+1}\right)_{i-\frac{1}{2}, j}}{\Delta z_{i}}+\left(A_{r} / v \alpha^{n} u_{v r}^{n+1}\right)_{i, j+\frac{1}{2}}-
$$

$$
\begin{equation*}
\left.-\left(A_{r} / V \alpha^{n} U_{v r}^{n+1}\right)_{i, j-\frac{1}{2}}\right]=Q_{w v}+Q_{\ell v} \tag{2.2.2}
\end{equation*}
$$

Liquid hiss:

$$
\begin{align*}
& \frac{\left[\left(1-\alpha^{n+1}\right) \rho_{\ell}^{n+1}-\left(1-\alpha^{n}\right) \rho_{\ell}^{n}\right]_{i, j}}{\Delta t} \frac{\left[\left(1-\alpha^{n}\right) \rho_{\ell}^{n} U_{\ell z}^{n+1}\right]_{i+\frac{1}{2}, j}-\left[\left(1-\alpha^{n}\right) \rho_{\ell}^{n} U_{\ell z}^{n+1}\right]_{i-\frac{1}{2}, j}}{\Delta z}+ \\
& +\left[A_{i} / V\left(1-\alpha^{n}\right) \rho_{\ell}^{n} U_{\ell r}^{n+1}\right]_{i, j+\frac{1}{2}}-\left[A_{r} / v\left(1-\alpha^{n}\right) \rho_{\ell}^{n} U_{\ell r}^{n+1}\right]_{i, j-\frac{1}{2}}=-s_{e}+s_{c} \tag{2.2.3}
\end{align*}
$$

Liquid Energy:

$$
\begin{align*}
& \frac{\left[\left(1-\alpha^{n+1}\right) \rho_{\ell}^{n+1} e_{\ell}^{n+1}-\left(1-\alpha^{n}\right) \rho_{\ell}^{n} e_{\ell}^{n}\right]}{\Delta t}+\frac{\left[\left(1-\alpha^{n}\right) \rho_{\ell}^{n} e_{\ell}^{n} U_{\ell z}^{n+1}\right]_{i+\frac{1}{2}, j}}{\Delta z_{i}} \\
& -\left[\left(1-\alpha^{n}\right) \rho_{\ell}^{n} e_{l}^{n} U_{l z}^{n+1}\right]_{i-\frac{1}{2}, j}+\left[A_{r} / v\left(1-\alpha^{n}\right) \rho_{\ell}^{n} e_{l}^{n} U_{l r}^{n+1}\right]_{i, j+\frac{1}{2}}- \\
& -\left[A_{r} / v\left(1-\alpha^{n}\right) \rho_{\ell}^{n} e_{l}^{n} U_{\ell r}^{n+1}\right]_{i, j-\frac{1}{2}}+p_{i j}^{n}\left\{\frac{\left(\alpha^{n+1}-\alpha^{n}\right) i_{j}}{\Delta t}+\right. \\
& +\frac{\left[\left(1-\alpha^{n}\right) U_{\ell z}^{n+1}\right]_{i+\frac{1}{2}, j}-\left[\left(1-\alpha^{n}\right) U_{\ell z}^{n+1}\right]_{i-\frac{1}{2}, j}}{\Delta z_{i}}+\left[A_{r} / v\left(1-\alpha^{n}\right) U_{\ell r}^{n+1}\right]_{i, j+\frac{1}{2}} \\
& \left.-\left[A r / v\left(1-\alpha^{n}\right) U_{\ell r}^{n+1}\right]_{i, j-\frac{1}{2}}\right\}=Q_{w \ell}-Q_{\ell v} \tag{2.2.4}
\end{align*}
$$

Some variables in the above equations are used in a location other than the place where they are primarely defined (see figure 2.2.2). For instance, the void fraction α, which is a cell-centered quantity, appears in the convective terms of all four equations located in the cell's faces. So in order to make these equations completely determined we must establish a rule to transport the value of these variables from the center to the faces of the cells. In our model we have used a relationship known as donor-cell differencing. Later on, in section 2.4 we will see that this scheme has an important effect on the stability of the method. To illustrate how this technique works, let a general variable X stand for any cell centered quantity such as $\alpha, \rho_{v}, \rho_{\ell}, e_{v}$, e_{ℓ}. The face centered value $X_{i+\frac{1}{2}}$ will be given by:

$$
x_{i+\frac{1}{2}}=\left\{\begin{array}{lll}
x_{i} & \text { if } & U_{z i+\frac{1}{2}} \geq 0 \tag{2.2.5}\\
x_{i+1} & \text { if } & U_{z i+\frac{1}{2}}<0
\end{array}\right.
$$

In the above rule we have used the axial direction as an example. A similar rule is used to dislocate the variables in the radial direction. The final ambiguity to be removed is in the evaluation of the void fraction. Though it is obvious which of the phase velocities we should use to evaluate the densities and internal energies, this choice is not clear when we refer to the void fraction, which appears in both the liquid and vapor equations. To remove this ambiguity we state that the velocity to be used in the decision of equation 2.2 .5 is the one corresponding to the equation in which the variable will appear. Thus for the vapor equations the void fraction
will be calculated using the vapor velocity in equation 2.2 .5 , while for the liquid equation, the liquid velocity will serve in the decision. As a final remark, we note that the donor cell rule is used only to locate quantities at time level n, never at time level $n+1$, thus the velocity used in the decision is always a known quantity. Further more, the rule of equation 2.2 .5 places a cell centered variable x in the cell's face where the velocity used in the decision is defined, so that we will never have ambiguity in this decision.

We now turn our attention to the momentum equations. Here a difference with respect to the mass and energy equations should be noted since the velocities are primarely defined at the faces of the mesh cells, Let those faces be the reference points for the differencing of the momentum equations.

Then the vapor momentum equations are:

$$
\left(\alpha \rho_{v}\right)_{i+\frac{1}{2}, j}^{n}\left[\frac{\left(U_{v z}^{n+1}-U_{v z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta t}+U_{v z i+\frac{1}{2}, j}^{n} \frac{\left(\Delta_{z} u_{v z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta z}+\right.
$$

$$
\left.+U_{v r i+\frac{1}{2}, j}^{n} \frac{\left(\Delta_{r} U_{v z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta r}\right]+\alpha_{i+\frac{1}{2}, j}^{n} \frac{\left(P_{i+1, j}^{n+1}-P_{i j}^{n+1}\right)}{\Delta z_{i+\frac{1}{2}}}+
$$

$$
\begin{equation*}
+\left(\alpha \rho_{v}\right)_{i+\frac{1}{2}, j}^{n} g=-\left(M_{w z v}+M_{\ell v z}\right)_{i+\frac{1}{2}, j} \tag{2.2.6}
\end{equation*}
$$

$$
\begin{align*}
& \left(\alpha_{v}\right)_{i+\frac{1}{2}, j}^{n}\left[\frac{\left(u_{v r}^{n+1}-u_{v r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta t}+u_{v z i, j+\frac{1}{2}}^{n} \frac{\left(\Delta_{z} u_{v r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta z}+\right. \\
& \left.+u_{v r i, j+\frac{1}{2}}^{n} \frac{\left(\Delta_{r} u_{v r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta r}\right]+{\underset{i, j+\frac{1}{2}}{n} \frac{\left(P_{i, j+1}^{n+1}-P_{i j}^{n+1}\right)}{\Delta r_{j+\frac{1}{2}}}=}_{=-\left(M_{w r v}+M_{\ell v r}\right)_{i, j+\frac{1}{2}}}=
\end{align*}
$$

And the liquid momentum equations:

$$
\begin{align*}
& {\left[(1-\alpha) \rho_{\ell}\right]_{i+\frac{1}{2}, j}^{n}\left[\frac{\left(U_{\ell z}^{n+1}-U_{\ell z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta t}+U_{\ell z i+\frac{1}{2}, j}^{n} \frac{\left(\Delta_{z} U_{\ell z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta z}+\right.} \\
& \left.+U_{\ell r i+\frac{1}{2}, j}^{n} \frac{\left(\Delta_{r} U_{z}^{n}\right)_{i+\frac{1}{2}, j}}{\Delta r}\right]+\left(1-\alpha_{i+\frac{1}{2}, j}^{n}\right) \frac{\left(P_{i+1, j}^{n+1}-P_{i, j}^{n+1}\right)}{\Delta z z_{i+\frac{1}{2}}}+ \\
& +\left[(1-\alpha) \rho_{\ell}\right]_{i+\frac{1}{2}, j}^{n} g=-\left(M_{w z \ell}-M_{\ell v z}\right)_{i+\frac{1}{2}, j} \tag{2.2.8}\\
& {\left[(1-\alpha) \rho_{\ell}\right]_{i, j+\frac{1}{2}}^{n}\left[\frac{\left(U_{\ell r}^{n+1}-U_{\ell r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta_{l}}+U_{\ell z i, j+\frac{1}{2}}^{n} \frac{\left(\Delta_{z} U_{\ell r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta z}+\right.}
\end{align*}
$$

$$
\begin{align*}
& \left.+U_{\ell r i, j+\frac{1}{2}}^{n} \frac{\left(\Delta_{r} U_{r}^{n}\right)_{i, j+\frac{1}{2}}}{\Delta r}\right]+\left(1-\alpha_{i j+\frac{1}{2}}^{n}\right) \frac{\left(P_{i, j+1}^{n+1}-P_{i, j}^{n+1}\right)}{\Delta r_{j+\frac{1}{2}}}= \\
& =-\left(M_{w r \ell}-M_{\ell v r}\right)_{i, j+\frac{1}{2}} \tag{2.2.9}
\end{align*}
$$

Again in the momentum equations some variables are used at a location different from where they were primarily defined. The question is how are these quantities evaluated? First; consider the void fraction α and the densities ρ_{v} and ρ_{ℓ}. Contrary to the mass and energy equations, these quantities do not appear in the momentum equation as difference terms. Thus, they do not influence the stability of the method the way they did in equations 2.2 .1 through 2.2.4, and we can use a simple averaging rule such as:

$$
\begin{equation*}
x_{i+\frac{1}{2}}=\frac{x_{i+1} \Delta z_{i+1}+x_{i} \Delta z_{i}}{\Delta z_{i+1}+\Delta z_{i}} \tag{2.2.10}
\end{equation*}
$$

where X stands for the void fraction α and the two densities ρ_{v} and ρ_{ℓ}. A similar rule is used to transfer the variables to the faces $j+\frac{1}{2}$ in the radial direction, with Δr replacing $\Delta \mathrm{Z}$.

We next consider the velocities appearing in our momentum equations. First we look at the velocities $U_{v r i+\frac{1}{2}, j}, U_{\ell r} i+\frac{1}{2}, j$,

Figure 2.3 Different Positions for the Radial Velocity
$U_{V r i+\frac{1}{2}, j}$ compared with the location where $U_{v r}$ is primarily defined. Again these velocities do not appear as difference terms and asimple averaging procedure can be used without compromising the stability of the method. Thus we define:

$$
\begin{align*}
& U_{v z i, j+\frac{1}{2}}=\frac{1}{4}\left[U_{v z i+\frac{1}{2}, j}+U_{v z i-\frac{1}{2}, j}+U_{v z i+\frac{1}{2}, j+1}+\right. \\
&\left.+U_{v z i-\frac{1}{2}, j+1}\right] \tag{2.2.11}\\
& \\
& U_{v r i+\frac{1}{2}, j}=\frac{1 / 4}{}\left[U_{v r} i, j+\frac{1}{2}\right.+U_{v r i, j-\frac{1}{2}}+U_{v r i+1, j+\frac{1}{2}}+ \tag{2.2.12}\\
&\left.+U_{v r i+\frac{1}{2}, j+\frac{1}{2}}\right]
\end{align*}
$$

and a similar pair of relationships for the liquid phase.
Finally those velocities appearing in the difference terms must be evaluated. Here a simple averaging procedure would lead to a differencing scheme unstable. Therefore these velocities are evaluated with the donor cell technique. In this way, the expressions for the difference terms are:

$$
\left(\frac{\Delta_{z} U_{v z}}{\Delta Z}\right)_{i+\frac{1}{2}, j}= \begin{cases}\frac{U_{v z i+3 / 2, j}-U_{v z i+\frac{1}{2}, j}}{\Delta Z_{i+1}} & \text { if } U_{v z i+\frac{1}{2}, j}<0 \tag{2.2.13}\\ \frac{U_{v z i+\frac{1}{2}, j}-U_{v z i-\frac{1}{2}, j}}{\Delta z_{i}} & \text { if } U_{v z i+\frac{1}{2} j} \geq 0\end{cases}
$$

where the mesh spacings $z_{i+\frac{1}{2}}$ and $r_{j+\frac{1}{2}}$ appearing in the above expressions are defined as:

$$
\begin{align*}
\Delta z_{i+\frac{1}{2}} & =\frac{\Delta z_{i+1}+\Delta z_{i}}{2} \tag{2.2.17}\\
\Delta r_{j+\frac{1}{2}} & =\frac{\Delta r_{j+1}+\Delta r_{j}}{2} \tag{2.2.18}
\end{align*}
$$

and similar expressions apply to the liquid phase.
With those rules the differencing scheme for the fluid flow conservation equations is completed. To complete the set of algebraic equations we need only to specify the relationships for the exchange terms and the equations of state. These will be discussed in Chapter 3. We now turn our attention to the numerical solution of the set of algebraic equations, equations 2.2.1 through 2.2.4 and 2.2.6 through 2.2.9.

2.3 The Numerical Scheme

In the above difference equations all variables evaluated at the time level n were determine in the previous time level, thus in the present level $n+1$ they are known quantities. The problem is to extract from that set of equations the variables at time level n+1. A quick look at those equations reveal they are non linear, complicate equations, and a numerical iterative technique is practically the only option for their solution.

The equations of state represent unique relationships of the densities and internal energies for a given pair of pressure and temperature. We will replace these densities and internal energies by the liquid and vapor temperatures as primary variables, thus reducing the number of unknown to eight, namely the void fraction, the pressure, the vapor and liquid temperatures and the four velocity components.

The technique used in the solution of algebraic equation is a multidimensional extension of the Newton iterative solution of algebraic equations. Let us first define a vector whose components are the unknowns of the problem. Then:

$$
\begin{equation*}
X=\left[\alpha, P, T_{v}, T_{\ell}, U_{v Z}, U_{v r}, U_{\ell Z}, U_{\ell r}\right]^{n+1} \tag{2.3.1}
\end{equation*}
$$

and the equations 2.2 .1 through 2.2 .4 and 2.2 .6 through 2.2 .9 can be written in abreviated form as:

$$
\begin{equation*}
F_{p}(X)=0, p=1, \ldots 8 \tag{2.3.2}
\end{equation*}
$$

Now suppose that at a certain iteration k we have come up with an approximate solution of $2.3 .2 \mathrm{X}^{\mathrm{k}}$. Since this is not the exact solution, the left hand side of $2.3 .2 \mathrm{~F}_{\mathrm{p}}\left(\mathrm{X}^{k}\right)$ is not necessarely equal to zero. Then, let us make a Taylor expansion of $F(X)$ around the point X^{k} :

$$
\begin{equation*}
F_{p}\left(x^{k+1}\right)=F_{p}\left(x^{k}\right)+\sum_{q=1}^{8}\left(\frac{\partial F_{p}}{\partial x_{q}}\right)_{x^{k}}\left(x_{q}^{k+1}-x_{q}^{k}\right) \tag{2.3.3}
\end{equation*}
$$

$$
\mathrm{P}=1,8
$$

If $\mathrm{X}^{\mathrm{k}+1}$ is required to be the solution of equation 2.3 .2 it
follows:

$$
\begin{equation*}
\sum_{q=1}^{8}\left(\frac{\partial F_{p}}{\partial x_{q}}\right)_{x^{k}}\left(x_{q}^{k+1}-x_{q}^{k}\right)=-F_{p}\left(x^{k}\right), P=1, \ldots 8 \tag{2.3.4}
\end{equation*}
$$

With equation 2.3.4 the iterative procedure is defined. Note that this set of equations is now linear in the unknowns $\delta x_{q}=x_{q}^{k+1}-x_{q}^{k}$ If equation 2.3.4 are written explicitly, it follows:

$$
\left[\frac{\rho_{v}^{k}}{\Delta t}-\frac{\partial S}{\partial \alpha}\right] \delta \alpha+\left[\frac{\alpha^{k}}{\Delta t} \frac{\partial \rho_{v}}{\partial P}-\frac{\partial S}{\partial P}\right] \delta P_{i j}+\left[\frac{\alpha^{k}}{\Delta t} \frac{\partial \rho_{v}}{\partial T_{v}}-\frac{\partial S}{\partial T_{v}}\right] \delta T_{v}-
$$

$$
\begin{aligned}
& -\frac{\partial S}{\partial T} \delta T_{\ell}+\frac{\left(\alpha \rho_{v}\right)_{i+\frac{1}{2}, j}}{\Delta z i} \delta U_{v z i+\frac{1}{2}, j}-\frac{\left(\alpha \rho_{v}\right)_{i-\frac{1}{2}, j}}{\Delta z i} \delta U_{v z i-\frac{1}{2}, j}+ \\
& +\left(A r / V \alpha \rho_{v}\right)_{i j+\frac{1}{2}} \delta U_{v r i j+\frac{1}{2}}-\left(\operatorname{Ar} / v \alpha \rho_{v}\right)_{i, j-\frac{1}{2}} \delta U_{v r i, j-\frac{1}{2}}=-F_{1}^{k}
\end{aligned}
$$

$$
\begin{equation*}
\left[\frac{\rho_{v}^{k} e_{v}^{k}+P^{k}}{\Delta t}-\frac{\partial Q_{v}}{\partial \alpha}\right] \delta \alpha+\left[\left(\alpha^{k} \rho_{v}^{k} \frac{\partial e_{v}}{\partial P}+\alpha^{k} e_{v}^{k} \frac{\partial \rho_{v}}{\partial P}\right) \frac{1}{\Delta t}-\frac{\partial Q_{v}}{\partial P}\right] \delta P_{i j}+ \tag{2.3.5}
\end{equation*}
$$

$$
+\left[\frac{\alpha^{k}}{\Delta t}\left(\rho_{v}^{k} \frac{\partial e_{v}}{\partial T_{v}}+e_{v}^{k} \frac{\partial \rho_{v}}{\partial T_{v}}\right)-\frac{\partial Q_{v}}{\partial T_{v}}\right] \delta T_{v}-\frac{\partial Q_{v}}{\partial T} \delta T_{\ell}+
$$

$$
+\left[\frac{\alpha_{i+\frac{1}{2}, j}}{\Delta z i}\left(P_{i j}+\left(\rho_{v} e_{v}\right)_{i+\frac{1}{2}, j}\right)\right] \delta U_{v z i+\frac{1}{2}, j}-\left[\frac { \alpha _ { i - \frac { 1 } { 2 } , j } } { \Delta z i } \left(P_{i j}+\right.\right.
$$

$$
\left.\left.+\left(\rho_{v} e_{v}\right)_{i-\frac{1}{2}, j}\right)\right] \delta U_{v z i-\frac{1}{2}, j}+\left[(\operatorname{Ar} / v \alpha)_{i, j+\frac{1}{2}}\left(P_{i j}+\left(\rho_{v} e_{v}\right)_{i, j+\frac{1}{2}}\right)\right] \delta U_{v r i, j+\frac{1}{2}}
$$

$$
-\left[(\operatorname{Ar} / v \alpha)_{i, j-\frac{1}{2}}\left(P_{i j}+\left(\rho_{v} e_{v}\right)_{i, j-\frac{1}{2}}\right)\right] \delta U_{v r i, j-\frac{1}{2}}=-F_{2}^{k}
$$

$$
\begin{aligned}
& -\left[\frac{\rho_{\ell}^{k}}{\Delta t}-\frac{\partial S}{\partial \alpha}\right] \delta \alpha+\left[\frac{\left(1-\alpha^{k}\right)}{\Delta t} \frac{\partial \rho_{\ell}}{\partial P}+\frac{\partial S}{\partial P}\right] \delta P_{i j}+\frac{\partial S}{\partial T_{v}} \delta T_{v}+ \\
& +\left[\frac{\left(1-\alpha^{k}\right)}{\Delta t} \frac{\partial \rho_{\ell}}{\partial T_{\ell}}+\frac{\partial S}{\partial T_{\ell}}\right] \partial T_{\ell}+\left[(1-\alpha) \rho_{\ell}\right]_{i+\frac{1}{2}, j} \delta U_{\ell z i+\frac{1}{2}, j}- \\
& -\left[(1-\alpha) \rho_{\ell}\right]_{i-\frac{1}{2}, j} \stackrel{\delta U}{\ell z i-\frac{1}{2}, j}+\left[\operatorname{Ar} / \mathrm{V}(1-\alpha) \rho_{\ell}\right]_{i, j+\frac{1}{2}} \delta U_{\ell r} i, j+\frac{1}{2}- \\
& -\left[A r / V(1-\alpha) \rho_{\ell}\right]_{i, j-\frac{1}{2}} \delta U_{V r ~ i, j-\frac{1}{2}}=-F_{3}^{k} \\
& -\left[\frac{\rho_{\ell}^{k} e_{\ell}^{k}+P}{\Delta t}-\frac{\partial Q}{\partial \alpha}\right] \delta \alpha+\left[\frac{(1-\alpha)}{\Delta t}\left(\rho_{\ell}^{k} \frac{\partial e_{\ell}^{k}}{\partial P}+e_{\ell}^{k} \frac{\partial \rho_{\ell}}{\partial P}\right)-\frac{\partial Q_{\ell}}{\partial P}\right] \delta P_{i j}- \\
& -\frac{\partial Q_{\ell}}{\partial T_{v}} \delta T_{v}+\left[\frac{\left(1-\alpha^{k}\right)}{\Delta t}\left(\rho_{\ell}^{k} \frac{\partial e_{\ell}}{\partial T_{\ell}}+e_{\ell}^{k} \frac{\partial \rho_{\ell}}{\partial T_{\ell}}\right)-\frac{\partial Q_{\ell}}{\partial T_{\ell}}\right] \delta T_{\ell}+ \\
& +\left[\frac{\left(1-\alpha_{i+\frac{1}{2}, j}\right)}{\Delta z_{i}}\left(P_{i j}+\left(\rho_{\ell} e_{\ell}\right)_{i+\frac{1}{2}, j}\right)\right] \delta U_{\ell z i+\frac{1}{2}, j}-\frac{\left(1-\alpha_{i-\frac{1}{2}, j}\right)}{\Delta z_{i}}\left[\left(P_{i j}+\right.\right. \\
& \left.\left.+\left(\rho_{\ell} e_{\ell}\right)_{i-\frac{1}{2}, j}\right)\right] \delta U_{\ell z i-\frac{1}{2}, j}+\left[(A r / V(1-\alpha))_{i, j+\frac{1}{2}}\left(P_{i j}+\left(\rho_{\ell} e_{\ell}\right)_{i, j+\frac{1}{2}}\right)\right] \delta U_{\ell r i, j+\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& -\left[(A r / v(1-\alpha))_{i, j-\frac{1}{2}}\left(P_{i j}+\left(\rho_{\ell} e_{\ell}\right)_{i, j-\frac{1}{2}}\right)\right] \delta U_{\ell x i, j-\frac{1}{2}}=-F_{4}^{k} \tag{2.3.8}\\
& {\left[\frac{\left(\alpha \rho_{v}\right)_{i+\frac{1}{2}, j}}{\Delta t}+\frac{\partial M_{v}}{\partial U_{v z}}\right] \delta U_{v z i,+\frac{1}{2}, j}+\frac{\partial M_{v}}{\partial U_{\ell z}} \delta U_{\ell z i+\frac{1}{2}, j}+} \\
& +\frac{\alpha_{i+\frac{1}{2}, j}}{\Delta z_{i+\frac{1}{2}}}\left(\delta P_{i+1, j}-\delta P_{i j}\right)=-F_{5}^{k} \tag{2.3.9}
\end{align*}
$$

$$
\left[\frac{\left[(1-\alpha) \rho_{\ell}\right]_{i+\frac{1}{2}, j}}{\Delta t}+\frac{\partial M_{\ell}}{\partial U_{\ell z}}\right] \delta U_{\ell z i+\frac{1}{2}, j}+\frac{\partial M_{\ell}}{\partial U_{v z}} \delta U_{v z i+\frac{1}{2}, j}+
$$

$$
\begin{equation*}
+\frac{\left(1-\alpha_{i+\frac{1}{2}, j}\right)}{\Delta z_{i+\frac{1}{2}}}\left(\delta P_{i+1, j}-\delta P_{i j}\right)=-F_{6}^{k} \tag{2.3.10}
\end{equation*}
$$

$$
\left[\frac{\left(\alpha \rho_{v}\right)_{i, j+\frac{1}{2}}}{\Delta t}+\frac{\partial M_{v}}{\partial U_{v r}}\right] \delta U_{v r i, j+\frac{1}{2}}+\frac{\partial M_{v}}{\partial U_{\ell r}} \delta U_{\ell r i, j+\frac{1}{2}}+
$$

$$
\begin{equation*}
+\frac{\alpha_{i, j+\frac{1}{2}}}{\Delta r_{j+\frac{1}{2}}}\left(\delta P_{i, j+1}-\delta P_{i j}\right)=F_{7}^{k} \tag{2.3.11}
\end{equation*}
$$

$$
\left.\left[\frac{(1-\alpha) \rho_{\ell}}{\Delta t}+j+\frac{1}{2}\right) \frac{\partial M_{\ell}}{\partial U_{\ell r}}\right] \delta U_{\ell r} i, j+\frac{1}{2}+\frac{\partial M_{\ell}}{\partial U_{v r}} \delta U_{v r i, j+\frac{1}{2}}+
$$

$$
\begin{equation*}
+\frac{\left(1-\alpha_{i, j+\frac{1}{2}}\right)}{\Delta r_{j+\frac{1}{2}}}\left(\delta P_{i, j+1}-\delta P_{i j}\right)=-F_{8}^{k} \tag{2.3.12}
\end{equation*}
$$

Note that the last four of the above equations depend only on pressures and the four velocity components. Grouping equations 2.3.9 and 2.3.10 in a pair and again $2 \cdot 3.11$ and $2 \cdot 3.12$ we can without difficulty isolate the velocity components in the left hand side:
$\delta U_{v z i+\frac{1}{2}, j}=W_{v z i+\frac{1}{2}, j}\left(\delta P_{i+1, j}-\delta P_{i j}\right)+f_{u v z}$
$\delta U_{l z i+\frac{1}{2}, j}=W_{l Z i+\frac{1}{2}, j}\left(\delta P_{i+1, j}-\delta P_{i j}\right)+f_{u l Z}$
$\delta U_{v r i, j+\frac{1}{2}}=W_{v r i, j+\frac{1}{2}}\left(\delta P_{i, j+1}-\delta P_{i j}\right)+f_{u v r}$
$\delta U_{\ell r i, j+\frac{1}{2}}=W_{\ell r i, j+\frac{1}{2}}\left(\delta P_{i, j+1}-\delta P_{i j}\right)+f_{u \ell r}$
where the coefficients W are given by:

$$
\begin{gather*}
W_{v z i+\frac{1}{2}, j}=-\left[\frac{\alpha}{\Delta z}\left(\frac{(1-\alpha) \rho_{\ell}}{\Delta t}+\frac{\partial M_{\ell}}{\partial U_{\ell z}}\right)+\frac{(1-\alpha)}{\Delta z} \frac{\partial M_{v}}{\partial U_{v z}}\right]_{i+\frac{1}{2}, j} x \\
{\left[\left(\frac{(1-\alpha) \rho_{\ell}}{\Delta t}+\frac{\partial M_{\ell}}{\partial U_{\ell z}}\right)\left(\frac{\alpha \rho_{v}}{\Delta t}+\frac{\partial M_{v}}{\partial U_{v}}\right)-\frac{\partial M_{\ell}}{\partial U_{\ell z}} \frac{\partial M_{v}}{\partial U_{v z}}\right]_{i+\frac{1}{2}, j}^{-1}} \tag{2.3.17}
\end{gather*}
$$

and similar expressions for the other component velocities.
Now, with equation 2.3.13 through 2.3 .16 we can eliminate
all velocities in equations 2.3.5 through 2.3.8. Rearranging these equations, they can be written in the matrice form:

The expressions for the coefficients a^{\prime} s and b's are not given here for brevity. We will return to them and show representatives of them when we discuss the diagonal dominance of the pressure problem and the limiting case of only one phase present.

If we transform the matrix of the coefficients a in equation
2.3.18 into an upper triangular matrix, this equation becomes:

The last line of the above equation is an expression involving only pressures. Since this expression relates the pressure at a cell (i, j) to its four neighbors' pressure, this equation must be solved simultaneously for all mesh cells. The solution of this pressure problem is the subject of section 2.4 .

It is important to point out that this solution technique reduces the inversion of a matrix with dimensions 8 N by 8 N , with N being the number of mesh cells, to the inversion of a matrix of dimensions N by N by performing for each mesh cell the inversion of two 2 by 2 matrices and one 4 by 4 matrix.

Before the closing of this section, it is appropriate to make three comments. The first one concerns the limiting case of single phase flow. The transformation of equation 2.3.18 into equation 2.3.19 requires that all diagonal elements of matrix of the coefficients a be non-zero. We will explore how those coefficients behave as the void fraction assumes the values $\alpha=0$ and $\alpha=1$, and the mass exchange rate $\mathrm{S}=0$.

First let us consider the case $\alpha=0$. If we look back into equation 2.3 .5 we can see that in the first line of equation 2.3 .18 all coefficients $b_{1 q}$, as well as all $a_{1 q}$, with the exception of a_{11} have a factor α on them. Therefore, except for a_{11}, all those coefficients are zero. If we look into equation 2.2 .1 we see that the right hand side of 2.3 .5 is also zero, and the first line of 2.3 .18 corresponds to the equation:

$$
\frac{\rho_{\mathrm{v}}^{\mathrm{k}}}{\Delta \mathrm{t}} \delta \alpha=0
$$

Now, consider equation 2.3.6. It is seen that without the presence of vapor this equation is trivial, and all coefficients $a_{2 q}$ and $b_{2 q}$ in second line of 2.3 .18 are zero. But in this case, a trivial equation would cause us a problem, since an element of the diagonal of the matrix of coefficients a in 2.3 .18 would be zero, thus invalidating the triangularization of this matrix. To avoid this problem, we impose that the interphase heat exchange term be in the form:

$$
Q_{\ell v}=h\left(T_{\ell}^{n+1}-T_{n}^{n+1}\right)
$$

with the coefficient h being non-zero even if one of the phases is not present. In this way, equation 2.3 .6 reduces to:

$$
h \partial T_{v}-h \partial T_{\ell}=h\left(T_{v}^{k}-T_{\ell}^{k}\right)
$$

which implies the model will force the vapor temperature to be equal to the liquid temperature when we have one of the phases absent.

If we repeat this analysis for the vapor single phase flow, it is easy to see that we will reach the same conclusions. Therefore
we can be confident that the matrix of coefficients a in 2.3.18 does not have a diagonal element equal to zero and the triangularization of this matrix is always possible.

One last question in this subject concerns the inversion of the submatrices of the velocity components. If we look into equation 2.3.17 we will see that the absence of one phase would lead to a division by zero. We again avoid this problem by imposing the interphase momentum exchange term to be in the form:

$$
M_{\ell v}=K\left(U_{\ell}^{n+1}-U_{v}^{n+1}\right)
$$

again with the coefficient K being non-zero even if one of the phases is not present. As for the energy equation, this will force the vapor velocity to be equal ot the liquid velocity when one of the phases is not present.

The second question we would like to discuss concerns the diagonal dominance of the pressure problem. The solution of this problem requires that the diagonal element of the pressure problem matrix be greater or equal to the sum of the absolute value of the elements in the line corresponding to that diagonal element. In terms of the coefficients of equation 2.3.19 this translate to:

$$
\left|b_{41}^{\prime}\right|+\left|b_{42}^{\prime}\right|+\left|b_{43}^{\prime}\right|+\left|b_{44}^{\prime}\right| \leq 1
$$

An exact proof that this condition is satisfied would require a prohibitive amount of algebraic work. So instead of trying to follow this line, we will present only a partial view, which can bring
some understanding to this problem. Then, let us consider the elements of the first two lines of the matrix of the coefficients b in equation 2.3.18. We evaluate these coefficients with the help of equations $2.3 .5,2.3 .6,2.3 .13$ and 2.3.15. We get the expressions:

$$
\begin{aligned}
& b_{11}=\left(\frac{\alpha \rho_{v}}{\Delta z} W_{v z}\right)_{i-\frac{1}{2}, j} \\
& b_{12}=\left(\frac{A r}{v} \alpha \rho_{v} w_{v r}\right)_{i, j-\frac{1}{2}} \\
& b_{13}=\left(\frac{A r}{v} \alpha \rho_{v} w_{v r}\right)_{i, j+\frac{1}{2}} \\
& b_{14}=\left(\frac{\alpha \rho_{v}}{\Delta z} w_{v z}\right)_{i+\frac{1}{2}, j} \\
& b_{21}=\left[\frac{\alpha}{\Delta z}\left(\rho_{v} e_{v}+P\right) W_{v z}\right]_{i-\frac{1}{2}, j} \\
& b_{22}=\left[\frac{A r}{v} \alpha\left(\rho_{v} e_{v}+P\right) W_{v r}\right]_{i, j+\frac{1}{2}} \\
& b_{23}=\left[\frac{A r}{v} \alpha\left(\rho_{v} e_{v}+P\right) W_{v r}\right]_{i, j+\frac{1}{2}} \\
& b_{24}=\left[\frac{\alpha}{\Delta z}\left(\rho_{v} e_{v}+P\right) W_{v z}\right]_{i+\frac{1}{2}, j}
\end{aligned}
$$

From the expression for the value of the coefficients W, equation 2.3 .17 we can see that all these coefficients \underline{b} are negative.

Now consider the coefficients of the central pressure, coefficients a_{14} and a_{24} in equation 2.3.18. From the same equations we used before we get:

$$
\begin{aligned}
& a_{14}=\frac{\alpha}{\Delta t} \frac{\partial \rho_{v}}{\partial P}-\frac{\partial S}{\partial P}-\left(b_{11}+b_{12}+b_{13}+b_{14}\right) \\
& a_{24}=\frac{\alpha}{\Delta t} \rho_{v} \frac{\partial e v}{\partial P}+e_{v} \frac{\partial \rho_{v}}{\partial P}-\frac{\partial Q}{\partial P}-\left(b_{21}+b_{22}+b_{23}+b_{24}\right)
\end{aligned}
$$

Let us examine in detail each of these coefficients. The way equation 2.2 .1 was written the mass exchange rate S is positive when we have evaporation. It is easy to see that an increment in pressure will produce a decrease in the rate of evaporation, so the term $\partial S / \partial P$ is negative. The other term making a_{14} is the vapor compressibility, which is a positive quantity. Therefore we conclude:

$$
a_{14}>\left|b_{11}\right|+\left|b_{12}\right|+\left|b_{13}\right|+\left|b_{14}\right|
$$

Consider next the coefficient ${ }^{2}{ }_{24}$. The first term in a_{24} is $\partial e_{v} / \partial P$, which is a very small quantity. Indeed the equation of state used in our model puts a zero in this derivative. The other term $\partial \rho_{\mathbf{v}} / \partial P$ we have already investigated and seen it is a positive quantity. Finally we have the term $\partial Q_{V} / \partial P$. The heat transfers equations used in the model have only one term in the heat exchange rate dependent on the pressure, representing the heat transferred due to evaporation or condensation. In this way $\partial Q_{v} / \partial P$ has the same sign as $\partial S / \partial P$, which we saw
before is a negative quantity. We thus conclude again:

$$
a_{24}>\left|b_{21}\right|+\left|b_{22}\right|+\left|b_{23}\right|+\left|b_{24}\right|
$$

We omit here a similar analysis of the coefficients appearing in the liquid equations. The general form of them is the same, on following a similar reasoning we would reach the same conclusions as we did for the vapor equations.

Now, since the pressure problem equation (the last line of equation 2.3.19) was obtained as a linear combination of equations whose coefficient of the central pressure exceeds the sum of the absolute value of the coefficients of the neighboring pressures, this pressure problem equation also has this same property, which shows us the pressure problem matrix is diagonal dominant.

Finally there is the question of the boundary conditions. We start with the radial direction. At the fuel assembly centerline there is simply the zero radial flow condition at $r=0$. This is accomplished by just putting a zero in the terms $U_{r i, \frac{1}{2}}$ appearing in the divergent differences. At the other radial boundary, corresponding to the fuel assembly hexcan there is also a zero flow boundary condition, which is translated in the model by setting the radial velocities at that boundary equal to zero. Note that since these velocities are identically zero, there is no need to evaluate the momentum equations at these nodes $\mathrm{J}+\frac{1}{2}$, thus there will be only $\mathrm{J}-1$ radial momentum equations at each level i. Besides the flow conditions at this boundary,
there is also a thermal boundary condition, taking into account the heat transferred between the fluid and the structure, represented in the code by the hex can model. This model will be fully analysed in Chapter 3.

For the axial direction more complicated conditions appear. To explain this refer to figure 2.4 It can be seen in that figure that two fictitious cells were added to the actual fuel assembly. In these cells the conditions determining a particular problem must be specified. Thus the user of the model needs to specify as a function of time, an outlet pressure in cells $i=I+1$ and inlet pressure, vapor and liquid temperatures and the void fraction in cells $i=0$. For the momentum equations in cells $i=\frac{1}{2}$ and $i=I+\frac{1}{2}$ the following conditions are imposed

$$
\begin{aligned}
& \mathrm{U}-\frac{1}{2}, \mathrm{j}=\mathrm{U} \frac{1}{2}, \mathrm{j} \\
& \mathrm{U}_{\mathrm{I}+3 / 2, \mathrm{j}}=\mathrm{U}_{\mathrm{I}+\frac{3}{2}, \mathrm{j}}
\end{aligned}
$$

Finally, to completely determine the particular problem to be studied, the user also needs to specify the fuel pin heat generation rate as a function of time.

Figure 2.4 The Ficticious Cells

2.4 The Pressure Problem

So far, we have collapsed the eight conservation equations, the equation of state and the equations governing the exchange terms into a single equation (i.e. one for each mesh cell), involving the pressure in the cell itself and its neighbours. Because of this coupling between cells, those equations must be solved simultaneously. Since this matrix inversion rests inside an iterative process, which is to be repeated for each time step, it is clear that the overall efficiency of the model is strongly dependent on the way this pressure problem solution is done.

The approach to the problem was to take advantage of two particular characteristics of the case at hand. The first one is the fact that most of the elements of the matrix are zeros, the non-zeros being only the elements on five diagonals. The second one has to do with the fact that LMFBR fuel assemblies have one of its dimensions, the axial one, much larger than the other. This has a surprisingly strong effect on the time required for the matrix inversion, as explained in the following paragraphs.

The large number of zeros in the matrix was used to our advantage by adopting an iterative solution known as block-tri-diagonal, which is an extension of the Gauss-Siedel iterative technique (see Ref.).

Recalling the pressure equation, for each mesh cell we have:

$$
\begin{equation*}
A_{i j} P_{i j-1}+B_{i j} P_{i-1 j}+C_{i j} P_{i j}+D_{i j} P_{i+1 j}+E_{i j} P_{i j+1}=R_{i j} \tag{2.4.1}
\end{equation*}
$$

To perform the kth iteration in the cells at level i, we pass to the right-hand side of the equation the terms containing the pressure at the bottom and tope of cell (i,j).

$$
\begin{equation*}
A_{i j} P_{i j-1}^{k}+C_{i j} P_{i j}^{k}+E_{i j} P_{i j+1}^{k}=R_{i j}-B_{i j} P_{i-l j}^{k}-D_{i j} P_{i+1 j}^{k-1} \tag{2.4.2}
\end{equation*}
$$

Note that the term in $P_{i-1 j}$ takes the value obtained at iteration k. This is a known quantity since it was obtained in the previous step of the calculation, when this procedure was applied for the cells at level i-1.

With this manipulation, we ended with only three unknowns in the equation, and we now can use the tridiagonal matrix inversion technique (Ref. 42) which gives the exact solution of equation 2.4 .2 for all values of j, with a very f ew operations.

This procedure is repeated for all values of the subscript i, and the pass over all cells is repeated again until the desired convergence is obtained.

The second characteristic which was taken into consideration influences the number of passes required to attain convergence.

An iterative solution sets arbitrary initial values for the unknowns, and by recalculating these unknowns with the appropriate set of equations aims to reduce the error contained in the previous value of the unknowns. The smaller the error carried from one pass to the other, the fewer the number of passes necessary to meet the required convergence criterion.

In the technique used in the model, the new value obtained for the pressure will have an error because in the right-hand side of equation 2.4 .2 the values of the pressure are not the exact solution of the problem, but for each level i, the values of the pressure will have the correct relationship between themselves, since the tri-diagonal technique will give the exact solution for a given right-hand side. If we could make our scheme in such a way as to minimize the influence of the error carried into the right-hand side of equation 2.4.2, we would have the iterations converging quickly. The difference in dimensions for the axial and radial directions provides this way.

When a fuel assembly is divided into mesh cells, the radial dimension of these mesh cells will be a few pitches in length, or for usual LMFBR fuel assemblies, this dimension will be of the order of one centimeter. On the other hand, typically a fuel assembly is a few meters in length, and in order to keep the number of cells at a minimum, to shorten the time required for the calculations, we expect the axial dimension of a mesh cell to be of the order of tens of centimenter.

In this situation, the pressure at radially neighbouring cells must have a very close value, or in other words, a small increment in the pressure in one cell would be propagated to its radial neighbours almost in full. On the other hand, for the axial direction this propagation of error would not be so strong, since the larger distance between cells would act in the sense of atenuating the propagation.

We will try next to express the previous statement in mathematical terms. To avoid the formidable algebraic complication of
working with the full set of two fluid equations, we will use a simplified model, keeping only the parts relevant to this analysis.

We will consider only the mass and momentum equations for a single phase. We also put all explicit terms, which are not relevant to this problem into a generic term R^{n}. Then the conservation equations become:

$$
\begin{align*}
& \frac{\partial}{\partial t} \rho+\nabla \cdot \rho \vec{U}=0 \tag{2.4.3}\\
& \frac{\partial \vec{U}}{\partial t}+\vec{U} \nabla \vec{U}+\frac{1}{\rho} \nabla p=-k \vec{U} \tag{2.4.4}
\end{align*}
$$

and the equation of state:

$$
\begin{equation*}
\frac{\partial \rho}{\partial P}=\frac{1}{c^{2}} \tag{2.4.5}
\end{equation*}
$$

with c being the sonic speed.
Applying the differentiating scheme to these equations we get:
$\frac{P_{i j}^{n+1}-P_{i j}^{n}}{c^{2} \Delta t}+\frac{\left(\rho U_{z}^{n+1}\right)_{i+\frac{1}{2} j}-\left(\rho U_{z}^{n+1}\right)_{i-\frac{1}{2} j}}{\Delta z}+\frac{\left(\rho U_{r}^{n+1}\right)_{i j+\frac{1}{2}}-\left(\rho U_{r}^{n+1}\right)_{i j-\frac{1}{2}}}{\Delta r}=0$.
$\frac{\left(U_{z}^{n+1}-U_{z}^{n}\right)}{\Delta t} i+\frac{1}{2} j+\frac{1}{\rho_{i+\frac{1}{2} j}} \frac{P_{i+1 j}^{n+1}-P_{i j}^{n+1}}{\Delta z}+k_{z}^{U_{z i+\frac{1}{2} j}^{n+1}=R_{z}^{n}, ~\left(\frac{1}{n}\right.}$
$\frac{\left(U_{r}^{n+1}-U_{r}^{n}\right)}{\Delta t} i j+\frac{1}{2}+\frac{1}{\rho_{i j+\frac{1}{2}}} \frac{P_{i+1 j}^{n+1}-P_{i j}^{n+1}}{\Delta r}+k_{r} U_{r i j+\frac{1}{2}}^{n+1}=R_{r}^{n}$

We isolate U_{z}^{n+1} and U_{r}^{n+1} in equations 2.4.7 and 2.4.8:

$$
\begin{equation*}
\left(U_{z}^{n+1}\right) i+\frac{1}{2} j=\frac{1}{\rho_{i j+1 / 2}} \frac{\Delta t}{\Delta z} \frac{1}{1+k_{z} \Delta t}\left(P_{i j}^{n+1}-P_{i+1 j}^{n+1}\right)+R_{z}^{n} \tag{2.4.9}
\end{equation*}
$$

$$
\begin{equation*}
\left(U_{r}^{n+1}\right) i j+\frac{1}{2}=\frac{1}{\rho_{i j+\frac{1}{2}}} \frac{\Delta t}{\Delta z} \frac{1}{1+k_{r} \Delta t}\left(P_{i j}^{n+1} \cdots P_{i j+1}^{n+1}\right)+R_{r}^{n} \tag{2.4.10}
\end{equation*}
$$

It is possible now to eliminate the velocities in equation
2.4.6 to get an expression involving the pressure alone. If this equation is put in the form of equation 2.4 .1 we then have the expression for the coefficients of the pressure problem matrix:

$$
\begin{align*}
& A_{i j}=-\left(\frac{\Delta t}{\Delta r}\right)^{2} \frac{1}{1+k_{r} \Delta t} \tag{2.4.11a}\\
& B_{i j}=-\left(\frac{\Delta t}{\Delta z}\right)^{2} \frac{1}{1+k_{z} \Delta t} \tag{2.4.11b}\\
& C_{i j}=-A_{i j}-B_{i j}-D_{i j}-E_{i j}+\frac{1}{c^{2}} \tag{2.4.11c}\\
& D_{i j}=-\left(\frac{\Delta t}{\Delta z}\right)^{2} \frac{1}{1+k_{z} \Delta t} \tag{2.4.11d}\\
& E_{i j}=-\left(\frac{\Delta t}{\Delta r}\right)^{2} \frac{1}{1+k_{r} \Delta t} \tag{2.4.11e}
\end{align*}
$$

The first point to be considered in these equations is the coefficient $C_{i j}$ in equation 2.4.11c: Note that $C_{i j}$ exceeds the sum of
the absolute values of the other coefficients by the factor $1 / \mathrm{c}^{2}$. In the numerical analysis language this means that the matrix of the coefficients is diagonal dominant, and it guarantees that the numerical inversion of this matrix will converge. Later on, when discussing the equations of state, we will insist that the equation for the density of both phases reflect some sort of compressibility, or in other words, that the derivative of the density with respect to the pressure be always a real positive number. Looking at equation 2.4 .11 c it can be seen that this requirement guarantees the diagonal dominance of the pressure problem matrix.

We now compare the coefficients $A_{i j}$ and $B_{i j}$ (which are in all similar to the pair of coefficients $D_{i j}$ and $E_{i j}$): As it has been established before, Δz is ten or more times larger than Δr, which means $B_{i j}$ will be one hundred or more times smaller than $A_{i j}$. If we go back to equation 2.4 .2 it can be seen that in the proposed scheme the errors contained in the pressure terms in the right-hand side will be multiplied by a coefficient which is very small compared to the coefficients in the left-hand side; therefore, the influence of these errors will be minimized, and the convergence of the scheme will be drastically improved.

In the comparison we have just made, the friction terms $\frac{1}{1+k \Delta t}$ were neglected. This was done first because their influences are small, being the product $k \Delta t$ not a large number compared to one.

Second, their influence is in the direction to enhance the disparity between the coefficients $A_{i j}$ and $B_{i j}$. Clearly in all situations of practical interest the axial velocity will be two or three orders of magnitude larger than the radial velocity, which means the axial friction factor k_{z} will be larger than its radial counterpart.

Finally, to illustrate this point we ran a case with
mesh cells whose dimensions were $\Delta \mathrm{z}=30 \mathrm{~cm}$ and $\Delta \mathrm{r}=1 \mathrm{~cm}$, with the proposed scheme and with one which did the same procedure but exchanged the z axis by the r axis. In the first case we attained a convergence criterion of 10^{-6} in less that 10 iterations. While with the second scheme the same convergence criterion could not be attained in ten thousand iterations.

2.5 Stability Analysis of the Numerical Method.

This chapter would not be complete without a study on the stability of the numerical method, and in the following paragraphs we will attempt to fulfill this requirement. We want to emphasize at this point that the following analysis is not rigorous in the mathematical sense, nor is it a definitive proof of the two fluid model stability. Because the tools of numerical analysis known to date were developed for systems of linear equations, they cannot be applied to the nonlinear thermohydraulic equations without a few assumptions and simplifications, made to fit into the limitations of our tools. Even with this "local-linear" treatment of the system of equations, sometimes the algebraic complication of the study imposed a few approximations in order that we could have an intelligible conclusion. Nonetheless, this analysis gives a picture, if not rigorous, at least sufficiently clear for the understanding of the stability problems of the two-fluid model.

We will be following in this study a line developed by Stewart/ 51 / in which the stabilizing effects of the exchange terms are identified.

The first simplification made in this analysis was to reduce the full set of eight equations which make the two-dimensional, twofluid problem to a system of only four equations, by taking the momentum equations in only one direction and neglecting the energy equations. Physically this situation corresponds to a one-dimensional, isothermal flow.

As we shall see later, we will be solving in this study, determinants and algebraic equations whose order is equal to the number of equations in our model. It is easy to understand that the algebraic difficulty of working with eighth order determinants and equations would be large enough to make it nearly impossible to visualize any kind of conclusion.

We will not be loosing the desired degree of generalization with these simplifications, since the momentum equations are exactly the same for both directions, and the energy equations are differentiated in all similar to the mass equations. Therefore, all the characteristics of the eight-equation model will be represented in this analysis and the simplified system of equations will be, from the numerical point of view, analogous to the full two-fluid model.

We then write down the fluid-dynamic equations as:

$$
\begin{align*}
& \frac{\partial}{\partial t} \alpha \rho_{v}+\frac{\partial}{\partial z} \alpha \rho_{v} U_{v}=s \tag{2.5.1}\\
& \frac{\partial}{\partial t}(1-\alpha) \rho_{\ell}+\frac{\partial}{\partial z}(1-\alpha) \rho_{\ell} U_{\ell}=-S \tag{2.5.2}\\
& \alpha \rho_{v}\left[\frac{\partial U_{v}}{\partial t}+U_{v} \frac{\partial U_{v}}{\partial z}\right]+\alpha \frac{\partial P}{\partial z}=k\left(U_{\ell}-U_{v}\right) \tag{2.5.3}\\
& (1-\alpha) \rho_{\ell}\left[\frac{\partial U_{\ell}}{\partial t}+U_{\ell} \frac{\partial U_{\ell}}{\partial z}\right]+(I-\alpha) \frac{\partial P}{\partial z}=k\left(U_{v}-U_{\ell}\right) \tag{2.5.4}
\end{align*}
$$

and the equations of state:

$$
\begin{align*}
& \frac{\partial \rho_{v}}{\partial P}=\frac{1}{c_{v}^{2}} \tag{2.5.5}\\
& \frac{\partial \rho_{\ell}}{\partial P}=\frac{1}{c_{\ell}^{2}} \tag{2.5.6}
\end{align*}
$$

In the canonical form the above equations would appear as:
$A \frac{\partial X}{\partial t}+B \frac{\partial X}{\partial z}=f(X)$
with
$X=\left[\alpha, P, U_{v}, U_{\ell}\right]^{T}$
$A=\left[\begin{array}{cccc}\rho_{v} & \alpha / c_{v}^{2} & 0 & 0 \\ -\rho_{\ell} & (1-\alpha) / c_{\ell}^{2} & 0 & 0 \\ 0 & 0 & \alpha \rho_{v} & 0 \\ 0 & 0 & 0 & (1-\alpha) \rho_{\ell}\end{array}\right]$
$B=\left[\begin{array}{cccc}\rho_{v} U_{v} & \alpha U_{v} / c_{v}^{2} & \alpha \rho_{v} & 0 \\ -\rho_{\ell} U_{\ell} & (1-\alpha) U_{\ell} / c_{\ell} & 0 & (1-\alpha) \rho_{\ell} \\ 0 & \alpha & \alpha_{v} U_{v} & 0 \\ 0 & (1-\alpha) & 0 & (1-\alpha) \rho_{\ell} U_{\ell}\end{array}\right]$

With this formalism the characteristic roots of the system can be found, which are solutions of the equation:
$\operatorname{det}[B-\lambda A]=0$

The reduction of this characteristic determinant results in the algebraic equation:
$\alpha \rho_{\ell}\left(U_{\ell}-\lambda\right)^{2}+(1-\alpha) \rho_{v}\left(U_{v}-\lambda\right)^{2}-\left[\frac{\alpha \rho_{\ell}}{c_{v}^{2}}+\frac{(1-\alpha) \rho_{v}}{c_{\ell}^{2}}\right]\left(U_{v}-\lambda\right)^{2}\left(U_{\ell}-\lambda\right)^{2}=0$

Since we are interested only in the qualitative aspect of the roots of this equation, rather than its precise value, we will make some approximations, in order to get a solution of 2.5 .12 which are representative of the true value. We note that for the cases of practical interest the liquid density is much higher than the vapor density. Then it is reasonable to neglect the terms in ρ_{v}, and two real roots are obtained, which are approximately:

$$
\begin{equation*}
\lambda \simeq U_{v} \pm c_{v} \tag{2.5.13}
\end{equation*}
$$

On the other hand, with this model we intend to study only sub-sonic flow, hence both U_{v} and U_{ℓ} are much smaller than the sonic velocities. Then, if the terms in $1 / c_{v}^{2}$ and $1 / c_{l}^{2}$ are neglected, the two other roots become:
$\lambda \simeq \frac{U_{\ell}+\varepsilon^{2} U_{v}}{1+\varepsilon^{2}} \pm \frac{i \varepsilon\left(U_{v}-U_{l}\right)}{1+\varepsilon^{2}}$
with

$$
\begin{equation*}
\varepsilon^{2}=\frac{(1-\alpha) \rho_{v}}{\alpha \rho_{\ell}} \tag{2.5.15}
\end{equation*}
$$

It can be seen that whenever the phase velocities are different, the system will have two complex characteristic roots. This means the system of equations is not hyperbolic and consequently not well posed as an initial value problem. Nonetheless, with this conclusion it can only be said that the two-fluid problem failed to meet a sufficient condition, but it cannot be concluded that the problem is necessarily unstable. The previous analysis did not take into consideration the important stabilizing effect of the interphase exchange terms, and as we shall see later on, these terms are responsible for the stability of the two-fluid models.

To verify this effect, we will proceed with the Von Neumann analysis of the numerical scheme. The difference equations corresponding to equations 2.5.1 through 2.5 .6 are:

$$
\begin{equation*}
\frac{\alpha_{j}^{n+1} \rho_{v j}^{n+1}-\alpha_{j}^{n} \rho_{v j}^{n}}{\Delta t}+\frac{\alpha_{j}^{n} \rho_{v j}^{n} u_{v j+\frac{1}{2}}^{n+1}-\alpha_{j-1}^{n} \rho_{v j-1}^{n} U_{v j-\frac{1}{2}}^{n+1}}{\Delta z}=S \tag{2.5.16}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\left(1-\alpha_{j}^{n+1}\right) \rho_{l j}^{n+1}-\left(1-\alpha_{j}^{n}\right) \rho_{l j}^{n}}{\Delta t}+\frac{\left(1-\alpha_{j}^{n}\right) \rho_{l j}^{n} U_{l j+\frac{1}{2}}^{n+1}-\alpha_{j-1}^{n} \rho_{v j-1}^{n} U_{l j-\frac{1}{2}}^{n+1}}{\Delta z}=-s \tag{2.5.17}\\
& \alpha_{j}^{n} \rho_{v j}^{n}\left[\frac{U_{v j+\frac{1}{2}}^{n+1}-U_{v j+\frac{1}{2}}^{n}}{\Delta t}+U_{v j+\frac{1}{2}}^{n} \frac{\left(U_{v j+\frac{1}{2}}^{n}-U_{v j-\frac{1}{2}}^{n}\right)}{\Delta z}\right]+ \\
& \quad+\alpha_{j}^{n} \frac{\left(P_{j+1}^{n+1}-P_{j}^{n+1}\right)}{\Delta z}=k_{j+\frac{1}{2} /}\left(U_{l j+\frac{1}{2}}^{n+1}-U_{v j+\frac{1}{2}}^{n+1}\right) \tag{2.5.18}\\
& \left(1-\alpha_{j}^{n}\right) \rho_{l j}^{n}\left[\frac{U_{l j+\frac{1}{2}}^{n+1}-U_{l j+\frac{1}{2}}^{n}}{\Delta t}+U_{l j+\frac{1}{2}}^{n} \frac{\left(U_{l j+\frac{1}{2}}^{n}-U_{l j-\frac{1}{2}}^{n}\right)}{\Delta z}\right]+ \\
& \quad+\left(1-\alpha_{j}^{n}\right) \frac{\left(P_{j+1}^{n+1}-P_{j}^{n+1}\right)}{\Delta z}=k_{j+\frac{1}{2}}\left(U_{v j+\frac{1}{2}}^{n+1}-U_{l j+\frac{1}{2}}^{n+1}\right) \tag{2.5.19}
\end{align*}
$$

The convective terms in the mass and momentum equations involve donor cell differenciating, so the above equations are written for both U_{v} and U_{ℓ} positive. To apply the Von Neumann method these equations must first be linearized. We thus expand the differences In terms of differences of the four basic variables individually, and treat the coefficient of these differences as constant. For simplicity we will neglect the liquid compressibility, so that we can substitute the difference terms in pressure by terms involving the vapor density alone and treat this variable as a basic one. If we recall the Von Neumann method, the error of any variable at a given time and location is expressed as:
$\varepsilon_{x j+s}^{n+r}=\varepsilon_{x j}^{n} \xi^{r} e^{i s \theta}$
where
$\theta=\pi / \mathrm{m}$ is the wave number.
Applying this formalism to equations 2.5.16 through 2.5.19 it
follows:

$$
\frac{\alpha}{\Delta t}(\xi-1) \varepsilon_{\rho v j}^{n}+\frac{\rho_{v}}{\Delta t}(\xi-1) \varepsilon_{\alpha j}^{n}+\frac{\alpha \rho_{v}}{\Delta z}\left(1-e^{-i \theta}\right) \xi \varepsilon_{U v j+\frac{1}{2}}^{n}+\frac{\alpha U_{v}}{\Delta z}\left(1-e^{-i \theta}\right) \varepsilon_{\rho v j}^{n}+
$$

$$
\begin{equation*}
+\frac{\rho_{v} U_{v}}{\Delta z}\left(1-e^{-i \theta}\right) \varepsilon_{\alpha j}^{n}=0 \tag{2.5.20}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{\rho_{\ell}}{\Delta t}(\xi-1) \varepsilon_{\alpha j}^{n}+\frac{(1-\alpha) \rho_{\ell}}{\Delta z}\left(1-\mathrm{e}^{-i \theta}\right) \xi \varepsilon_{U \ell j+\frac{1}{2}}^{n}-\frac{\rho_{\ell} U_{\ell}}{\Delta z}\left(1-e^{-i \theta}\right) \varepsilon_{\alpha j}^{n}=0 \tag{2.5.21}
\end{equation*}
$$

$$
\alpha \rho_{v}\left[\frac{(\xi-1)}{\Delta t} \varepsilon_{U v j+\frac{1}{2}}^{n}+\frac{U_{v}}{\Delta z}\left(1-e^{-i \theta}\right) \varepsilon_{U v j+\frac{1}{2}}^{n}\right]+\frac{\alpha c_{v}^{2}}{\Delta z}\left(e^{i \theta}-1\right) \xi \varepsilon_{\rho v j}^{n}=k \xi\left(\varepsilon_{U \ell j+\frac{1}{2}}^{n}-\varepsilon_{U v j+\frac{1}{2}}^{n}\right)
$$

$$
\begin{equation*}
(1-\alpha) \rho_{\ell}\left[\frac{(\xi-1)}{\Delta t} \varepsilon_{U \ell j+\frac{1}{2}}^{n}+\frac{U_{\ell}}{\Delta z}\left(1-e^{-i \theta}\right) \varepsilon_{U \ell j+\frac{1}{2}}^{n}\right]+\frac{(1-\alpha) C_{v}^{2}}{\Delta z}\left(e^{i \theta}-1\right) \xi_{\rho v j}^{n}= \tag{2.5.22}
\end{equation*}
$$

$=k \xi\left(\varepsilon_{U v j+\frac{3}{2}}^{n}-\varepsilon_{U \ell j+\frac{1}{2}}^{n}\right)$

Rearranging these equations and putting them into matrix form
it follows:
$\mathrm{A} \times \mathrm{E}=0$
with
$E=\left[\varepsilon_{\rho v}, \varepsilon_{\alpha}, \varepsilon_{U V}, \varepsilon_{U \ell}\right]_{U, j}^{T}$
and
$\mathbb{A}=\left[\begin{array}{cccc}\alpha\left(\xi-1+\tilde{U}_{v}\right) & \rho_{v}\left(\xi-1+\tilde{U}_{v}\right) & \xi \frac{\Delta t}{\Delta z} \alpha \rho_{v} i \tilde{\theta} & 0 \\ 0 & -\rho_{\ell}\left(\xi-1+\widetilde{U}_{\ell}\right) & 0 & \xi \frac{\Delta t}{\Delta z}(1-\alpha) \rho_{\ell} i \theta \\ \xi c_{m}^{2 \Delta \frac{\Delta z}{\Delta t} i \theta} & 0 & \rho_{v}\left(\xi-1+\widetilde{U}_{v}\right)+\xi \rho_{v} k & -\xi \rho_{v} k \\ \xi C_{m}^{2 \Delta z} \Delta t i \theta & 0 & -\xi \rho_{v} k & \rho_{\ell}\left(\xi-1+\widetilde{U}_{\ell}\right)+\xi \rho_{v} k\end{array}\right]$

Where we have abbreviated
$\widetilde{\mathrm{U}}_{\mathrm{V}}=\mathrm{U}_{\mathrm{v}} \frac{\Delta t}{\Delta z}\left(1-\mathrm{e}^{-i \theta}\right)$
$U_{\ell}=U_{\ell} \frac{\Delta t}{\Delta z}\left(1-\mathrm{e}^{-\mathrm{i} \theta}\right)$
$\theta=2 \sin \theta / 2$
$C_{m}=\frac{C_{v \Delta t}}{\Delta z} \cdot 2 \sin \theta / 2$
$K=k \Delta t / \rho_{\ell}$
$\varepsilon^{2}=\frac{(1-\alpha) \rho_{v}}{\alpha \rho_{\ell}}$

In order for the errors in the basic variables not to grow geometrically, the absolute value of the eigenvalues ξ of the amplification matrix \mathbb{A} must be all less than one. To find these eigenvalues we solve the equation $\operatorname{det}[A]=0$. After reducing this determinant we end up with the algebraic equation

$$
\begin{align*}
& \xi^{2} \mathrm{C}_{\mathrm{m}}^{2}\left[\left(\xi-1+\tilde{\mathrm{U}}_{\mathrm{v}}+2 \xi \kappa\right)\left(\xi-1+\widetilde{U}_{\mathrm{v}}\right) \varepsilon^{2}+\left(\xi-1+\widetilde{U}_{\ell}\right)\left(\xi-1+\mathrm{U}_{\ell}+2 \xi \kappa\right)+\right. \\
& \quad+\left(\xi-1+\tilde{U}_{v}\right)\left(\xi-1+\tilde{U}_{\ell}\right)\left[\left(\xi-1+\tilde{U}_{v}+\xi \kappa\right)\left(\xi-1+U_{\ell}+\xi_{\mathrm{K}} \rho_{v} / \rho_{\ell}\right)-\left(\xi_{K}\right)^{2} \rho_{v} / \rho_{\ell}\right]=0 \tag{2.5.24}
\end{align*}
$$

The next step in the analysis would be to find the roots of this characteristic equation and see if their values would be less than one. But the expressions for the exact solution of the quartic equation are so complicated that it would be almost impossible to draw any conclusion from them. Instead we prefer to make some approximations which would give reasonably good values for the roots we are searching, but with the advantage of simple expressions which can give a clear visualization of them.

Since we want to emphasize the importance of the interphase exchange terms, we will first evaluate the characteristic roots of 2.5.24 with the momentum exchange coefficient k set to zero, and afterwards compare the results of this analysis with those obtained with a positive real non-zero value of k.

With k set to zero, equation 2.5.24 reduces to

$$
\begin{equation*}
\xi^{2} C_{m}^{2}\left[\left(\xi-1+\tilde{U}_{v}\right)^{2} \varepsilon^{2}+\left(\xi-1+\tilde{U}_{\ell}\right)^{2}\right]+\left(\xi-1+\tilde{U}_{v}\right)^{2}\left(\xi-1+\tilde{U}_{\ell}\right)^{2}=0 \tag{2.5.25}
\end{equation*}
$$

First consider the high frequency behavior. As has been said before, the model uses the time step size Δt equal to the convective limit: $\quad \Delta t=\min \left(\Delta z / U_{v}, \Delta z / U_{\ell}\right)$

Also notice that the phase velocities are small compared to the vapor sonic velocity. Thus $C_{v} \Delta t / \Delta z \gg 1$ and for small m,
$C_{m}^{2} \gg 1$. It follows that equation 2.5 .25 will have two roots of magnitude approximately $\xi \simeq \pm 1 / C_{m}$, which are smaller than one. The other two roots approximately satisfy:
or

$$
\begin{equation*}
\xi \simeq \frac{1-\tilde{U}_{\ell}\left(1 \pm i \varepsilon \tilde{U}_{v} / \tilde{U}_{\ell}\right)}{1 \pm i \varepsilon} \tag{2.5.26}
\end{equation*}
$$

In the complex plane this is represented by a circle of radius $U_{l} \Delta t / \Delta z$, touching the point one, tilted by an angle \pm arctan $\left(\varepsilon \tilde{U}_{v} / \tilde{U}_{\ell}\right)$ and back through an angle $\pm \arctan \varepsilon$. Clearly, with small m, points on this circle will not be outside the unit circle if the limit is satisfied:

$$
\begin{equation*}
\frac{\mathrm{U}_{\ell} \Delta t}{\Delta z} \leq 1 \tag{2.5.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U_{v} \Delta t}{\Delta z} \leq 1 \tag{2.5.28}
\end{equation*}
$$

We then conclude that even without momentum exchange the high frequency modes will not grow geometrically if the convective limit is observed.

Now let us turn to the low frequency modes. As $m \rightarrow \infty$, $\left.C_{m} \rightarrow 0\right)$ and in the limit the roots of 2.5 .25 will be:

$$
\begin{equation*}
\xi= \pm 1-\tilde{U}_{v} \tag{2.5.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi= \pm 1-\tilde{\mathrm{U}}_{\ell} \tag{2.5.30}
\end{equation*}
$$

Then, let us say that for m large but finite the roots of 2.5.25 are:

$$
\begin{equation*}
\xi=1-\tilde{U}_{\ell}+\delta \tag{2.5.31}
\end{equation*}
$$

We can evaluate this perturbation δ by substituting
2.5.31 into 2.5.25, and neglecting the terms of order higher than δ^{2}. The resulting quadratic equation will be:

$$
\begin{equation*}
\left[1+\varepsilon^{2}-\frac{\left(\tilde{U}_{v}-\tilde{D}_{\ell}\right)^{2}}{c_{m}^{2}}\right] \delta^{2}-2 \varepsilon^{2}\left(1-\tilde{U}_{\ell}\right)\left(\tilde{U}_{v}-\tilde{U}_{\ell}\right) \delta-\varepsilon^{2}\left(1-\tilde{U}_{\ell}\right)^{2}\left(\tilde{U}_{v}-\tilde{\theta}_{\ell}\right)^{2}=0 \tag{2.5.32}
\end{equation*}
$$

and the roots of this equation are:

$$
\begin{equation*}
\delta=\left(1-\tilde{U}_{\ell}\right)\left(\tilde{U}_{v}-\theta_{\ell}\right)\left[\frac{\varepsilon^{2} \pm i \varepsilon \sqrt{1-\left(U_{v}-U_{\ell}\right) / C_{m}^{2}}}{1+\varepsilon^{2}-\left(U_{v}-U_{\ell}\right)^{2} / C_{m}^{2}}\right] \tag{2.5.33}
\end{equation*}
$$

and again using the fact that $\left(U_{v}-U_{\ell}\right) / C_{v} \ll 1$ we can write the expression for the characteristic root ξ as:

$$
\begin{equation*}
\xi \simeq\left(1-\tilde{U}_{\ell}\right)\left[1-\frac{\left(\tilde{v}_{v}-\tilde{\theta}_{\ell}\right) \varepsilon(\varepsilon \pm i)}{1+\varepsilon^{2}}\right] \tag{2.5.34}
\end{equation*}
$$

Since $\left|1-\tilde{U}_{\ell}\right|$ and $\left|1+\left(\tilde{U}_{v}-\tilde{U}_{\ell}\right)\right|$ are of the same order of magnitude for some value of ε one root ξ may lie outside the unit circle. Therefore, without the momentum exchange term k, the low frequency modes will grow geometrically and the method would be unstable. Nonetheless, with very few spacial mesh cells, i.e., with small m the model may have a well behaved solution even without the momentum exchange term.

We now return to equation 2.5 .24 to verify the effect of the momentum exchange term. For the high frequency modes, the same considerations are made as in the previous analysis with k equal to zero and it is clear that the roots will be of the same form, only multiplied by a factor which is approximately $1 /(1+\kappa)$. Since in that analysis we concluded that the characteristic roots were less than one in magnitude, we can extend with confidence this result to the present case and conclude that for small values of m the model will present a well behaved solution.

To study the low frequency behavior again consider the limiting case as $m \rightarrow \infty$ and then introduce a perturbation of order $1 / \mathrm{m}$. Then, for $m \rightarrow \infty$ equation 2.5.24 becomes:

$$
\begin{equation*}
\left(\xi-1+\tilde{U}_{v}\right)\left(\xi-1+\tilde{U}_{\ell}\right)_{x}\left[\left(\xi-1+\tilde{U}_{v}+\xi \kappa\right)\left(\xi-1+\tilde{U}_{\ell}+\xi \kappa \rho_{v} / \rho_{\ell}\right)-\xi^{2} k^{2} \rho_{v} / \rho_{\ell}\right]=0 \tag{2.5.35}
\end{equation*}
$$

and the roots of this equation are:

$$
\begin{align*}
& \xi=1-\tilde{\mathrm{U}}_{\mathrm{v}} \tag{2.5.36a}\\
& \xi=1-\tilde{\mathrm{U}}_{\ell} \tag{2.5.36b}\\
& \xi=\sqrt{\left(1-\tilde{\mathrm{U}}_{\mathrm{v}}\right)\left(1-\tilde{U}_{\ell}\right)} \\
& \xi=\sqrt{\frac{\left(1-\tilde{\mathrm{U}}_{\mathrm{v}}\right)\left(1-\tilde{U}_{\ell}\right)}{1+\kappa \rho_{\mathrm{v}} / \rho_{\ell}}} \tag{2.5.36d}
\end{align*}
$$

Recall that when the difference equations 2.5.16-2.5.19 were formed a donor cell scheme was used, which guarantees the reduced velocities \tilde{U}_{v} and \tilde{U}_{ℓ} are always positive, so all four characteristic roots in 2.5 .36 are always real positive and strictly less than one.

As done before we will investigate the effect of a perturbation δ in those roots, which stands for a large but finite value of m . It is clear from the expressions of equations 2.5 .36 that if we analyze the effect of the perturbation in one of the first two values of ξ, the conclusion obtained in this way will stand for all the other three roots.

We then substitute $\xi=1-\tilde{U}_{v}+\delta$ into equation 2.5 .24 and keep only the first order terms in δ. This will give a first order equation, and the single root of this equation gives an expression for ξ as:

$$
\begin{equation*}
\xi=\left(1-\tilde{U}_{v}\right) \frac{\kappa+C_{m}^{2}}{\kappa+2 C_{m}^{2}} \tag{2.5.37}
\end{equation*}
$$

which is strictly less than unity. To get this result we have assumed:

$$
\begin{equation*}
\rho_{\ell}\left|\tilde{u}_{\ell}-\tilde{u}_{v}\right| \ll \rho_{v} k \tag{2.5.38}
\end{equation*}
$$

This condition establishes a minimum value for the momentum exchange coefficient, in order to avoid exponentially growing modes. Stewart / 51 / showed that the condition in 2.5.38 implies that the wave length $m \Delta z$ will not have a growing mode if it is larger than a certain multiple of the radius of an individual bubble or droplet.

To summarize, in this section we have seen that although the two-fluid formulation have at least two complex characteristic roots, this does not imply that a well behaved solution cannot be achieved. With the Von Neumann stability analysis we have shown that the numerical scheme used in our model, with a donor cell differencing will have non-growing high frequency modes for any value of the momentum exchange coefficient, and for the low frequency modes a well behaved solution requires a minimum value for k, expressed in 2.5.38.
III. THE CONSTITUTIVE EQUATIONS AND FUNCTIONS OF STATE

3.1 The Sodium Functions of State and Transport Properties.

The basic source for the sodium properties is a compilation by Golden and Tokar / 46 /, dated 1966. This source has been used extensively since then in sodium technology with great success. Although a recent compilation by the Argonne National Laboratory / 15 / has come to our knowledge, but not yet published, we decided to stay with that of Golden and Tckar on the basis of its wide use and acceptance. A comparison between the new compilation and the one used by us showed a wider range of validity in terms of temperatures and pressure in favor of the new one, but no significant disagreement between them.

A few modifications were made in the original expressions to satisfy program requirements, and all properties were converted to S I units. To help a quick reference to these properties we list them in table 3.1, with the correspondence to usual units.

3.1.1 Saturation Temperature

From the several correlations for the saturation temperature insted in / 46 /, the one which showed the best agreement in the most important range of temperatures $870-1100^{\circ} \mathrm{C}\left(1600-2000^{\circ} \mathrm{F}\right)$ is the one from Makansi et al, which is valid in the range $620-1150^{\circ} \mathrm{C}$.

Table 3.1
Units Used in this Work and the Correspondent Usual Ones

Property	SI Units	Equal to
Temperature	${ }^{\circ} \mathrm{K}$	${ }^{\circ} \mathrm{C}+273.15$
Pressure	Pa	$14.05 \times 10^{-5} 1 \mathrm{bf} / \mathrm{in}^{2}$
Density	$\mathrm{kg} / \mathrm{m}^{3}$	$0.06243 \mathrm{lbm} / \mathrm{ft}^{3}$
Internal Energy	J/kg	$4.2992 \times 10^{-4} \mathrm{BTU} / \mathrm{lbm}$
Viscosity	kg/m-sec	$0.672 \mathrm{lbm} / \mathrm{ft} \mathrm{sec}$
Thermal Conductivity	$\mathrm{W} / \mathrm{m}{ }^{\circ} \mathrm{K}$	$0.5778 \mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}$
Specific Heat	$\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{K}$	$2.3884 \times 10^{-4} \mathrm{BTU} / 1 \mathrm{bm}{ }^{\circ} \mathrm{F}$
Surface Tension	N / m	

The expression is:

$$
T_{\text {sat }}(P)=\frac{a}{b-\ln P}
$$

with

$$
\begin{aligned}
& a=1.2020 \times 10^{4} \\
& b=21.9358
\end{aligned}
$$

valid for

$$
4.8 \times 10^{3}<\mathrm{P}<6.6 \times 10^{5}
$$

3.1.2 Vapor Density

For the vapor density the expression which gives the density at saturation conditions was used and a perfect gas behaviour in the superheated zone was assumed:

$$
\rho_{v}(P, T)=\left(r v_{0}+r v_{1} P+r v_{2} P^{2}\right) \frac{T \text { sat }(P)}{T}
$$

with

$$
\begin{aligned}
& r v_{0}=1.605 \times 10^{-2} \\
& r v_{1}=2.510 \times 10^{-6} \\
& r v_{2}=3.230 \times 10^{-13}
\end{aligned}
$$

valid for

$$
3.4 \times 10^{4}<\mathrm{P}<2.3 \times 10^{6}
$$

3.1.3 Liquid Density

From all correlations we have reviewed for the liquid density none showed a pressure dependence. This can be explained because the compressibility effect for the liquid phase is very small, usually smaller than the accuracy of the expressions themselves. Therefore it is reasonable, if one is interested only in the absolute value of that property, to neglect the liquid compressibility. But as seen in chapter 2, the model requires not only the value of the properties but also their derivatives with respect to pressure and temperature. It is clear from the physical point of view that however small, a liquid compressibility exists (otherwise the sonic speed would be infinity).

The estimate of liquid compressibility does not have to be very accurate, since as said before its effect is smaller than the accuracy of the equation of state. Therefore, a simple expression will satisfy the program requirements. With this idea in mind, the approximation was used:

$$
\left(\frac{\partial \rho}{\partial P}\right)_{\substack{\text { constant } \\ \text { temperature }}}=\left(\frac{\partial \rho}{\partial P}\right)_{\substack{\text { constant } \\ \text { entropy }}}=\frac{1}{\mathrm{c}^{2}}
$$

where C is the speed of sound.
A constant sonic speed was taken, equal to $2,100 \mathrm{~m} / \mathrm{sec}$, which corresponds to a temperature of approximatly $900^{\circ} \mathrm{C}$, and the expression for the liquid density becomes:

$$
\rho_{\ell}(P, T)=r \ell_{0}+r \ell_{1} T+r \ell_{2} T^{2}+r \ell_{3} T^{3}+r \ell_{4} p
$$

with

$$
\begin{aligned}
& r \ell_{0}=1.0116 \times 10^{3} \\
& r \ell_{1}=-0.2205 \\
& r \ell_{2}=-1.9224 \times 10^{-5} \\
& r \ell_{3}=5.6377 \times 10^{-9} \\
& r \ell_{4}=2.26 \times 10^{-7}
\end{aligned}
$$

which is valid in the range

$$
100<\mathrm{T}<1370^{\circ} \mathrm{C}
$$

3.1.4 Internal Energies

The source of sodium properties gives only the expressions for the enthalpies. Therefore the internal energies were derived as

$$
e=h-P / \rho
$$

For the liquid enthalpy the following expression has been
used:

$$
h_{\ell}(T)=h \ell \ell_{0}+h \ell_{1} T+h \ell_{2} T^{2}+h \ell_{3} T^{3}
$$

with:

$$
\begin{aligned}
& h \ell_{0}=-6.7507 \times 10^{4} \\
& h \ell_{1}=1.6301 \times 10^{3} \\
& h \ell_{2}=-0.41672 \\
& h \ell_{3}=1.5427 \times 10^{-4}
\end{aligned}
$$

valid in the range

$$
100<T<1500^{\circ} \mathrm{C}
$$

The vapor enthalpy is derived from the liquid expression. Again a perfect gas behavior is assumed for the vapor phase, in which the enthalpy of the super heated vapor is equal to that of saturated vapor at the same temperature. It follows:

$$
h_{v}(T)=h \ell(T)+h v_{0}+h v_{1} T
$$

with

$$
\begin{aligned}
& h v_{o}=5.089 \times 10^{6} \\
& h v_{1}=-1.043 \times 10^{3}
\end{aligned}
$$

valid for

3.1.5 Transport Properties

Following a list of the transport properties used in the model, again from reference / 46 / is presented

Liquid Thermal Conductivity

$\mathrm{K}_{\ell}(\mathrm{T})=\mathrm{C} \ell_{0}+\mathrm{C} \ell_{1} \mathrm{~T}+\mathrm{C} \ell_{2} \mathrm{~T}^{2}$
with

$$
C \ell_{0}=1.0969 \times 10^{2}
$$

$$
C \ell_{1}=-6.4494 \times 10^{-2}
$$

$$
C \ell_{2}=1.1727 \times 10^{-5}
$$

valid for
$100<\mathrm{T}<1370^{\circ} \mathrm{C}$

Vapor Thermal Conductivity
$\mathrm{K}_{\mathrm{V}}(\mathrm{T})=\mathrm{Cv}_{\mathrm{o}}+\mathrm{Cv}_{1} \mathrm{~T}+\mathrm{Cv}_{2} \mathrm{~T}^{2}$
with
$C v_{0}=-3.2349 \times 10^{-2}$
$C v_{1}=1.5167 \times 10^{-4}$
$C v_{2}=-5.4376 \times 10^{-8}$
for
$700<\mathrm{T}<5000^{\circ} \mathrm{C}$

Liquid Viscosity

$(T)=\exp \left[V \ell_{0}+\frac{\mathrm{V} \ell_{1}}{T}+V \ell_{2} \ell \mathrm{n} T\right]$
with
$v_{\ell_{0}}=-5.732$
$\mathbf{v} \ell_{1}=508.7$
$v_{\ell}=-0.4925$
for
$100<T<1370^{\circ} \mathrm{C}$

Vapor Viscosity

$\eta_{v}(T)=v v_{0}+v v_{1} T$
with
$\mathrm{vv}_{\mathrm{o}}=1.261 \times 10^{-5}$
$\mathrm{vv}_{1}=6.085 \times 10^{-9}$
for
$700<\mathrm{T}<5000^{\circ} \mathrm{C}$

Liquid Specific Heat

$C_{p \ell}(T)=C_{p l} \ell_{0}+C_{p l} l_{1} T+C_{p l}{ }_{2} T^{2}$
with
$C_{p} \ell_{o}=1.6301 \times 10^{3}$
$C_{p_{1}}=-0.83344$
$C_{p l} \ell_{2}=4.6281 \times 10^{-4}$
for
$100<\mathrm{T}<1500^{\circ} \mathrm{C}$

Vapor Specific Heat
$C_{p v}(T)=C_{p} v_{o}+C_{p} v_{1} T+C_{p} v_{2} T^{2}$
with
$C_{p} v_{0}=0.5871 \times 10^{3}$
$C_{p} v_{1}=-0.83344$
$C_{p} v_{2}=4.6281 \times 10^{-4}$
for
$600<\mathrm{T}<1200^{\circ} \mathrm{C}$

Surface Tension

$$
\sigma(T)=s t_{0}+s t_{1} T
$$

with
$s t_{0}=0.18$
$s t_{1}=-1.0 \times 10^{-4}$
in the range
$100<\mathrm{T}<1370^{\circ} \mathrm{C}$

Finally we observed that the vapor Prandtl number showed a very smooth variation with temperature. Thus in order to save computation time a quadratic expression for the Prandtl number was fited

$$
\operatorname{Prv}(T)=p v_{0}+p v_{1}\left(T-p v_{2}\right)^{2}
$$

with

$$
\mathrm{pv}_{\mathrm{o}}=0.7596
$$

$$
p v_{1}=0.810 \times 10^{-6}
$$

$$
\mathrm{pv}_{2}=844.4
$$

where the range of validity for this expression is taken as the smallest of the ranges of the properties composing this dimensionless number:

$$
600<T<1200^{\circ} \mathrm{C}
$$

3.2 Mass Exchange Rate

It has been stated in Chapter 2 that the interphase exchange terms play a key role in the stability of the Two-Fluid Model. Of all exchange terms, the mass exchange rate is the most critical one to the code stability. Because of the large difference in densities between the liquid and vapor phases for the usual range of pressures encountered in sodium technology, a small amount of mass transferred between phases corresponds to a very large volume change, and consequently large pressure and velocity variations.

In particular for this model, where the solution of the fluid dynamic equations is reduced to a pressure problem, these large pressure variations must be handled with extreme care. To insure the code stability, a choice is to be made of an adequate model for the mass exchange rate and its most strongly varying terms are to be implicitly treated.

In general, the mass exchange rate S will be a function of the void fraction, pressure, temperatures and velocities, evaluated both at the old and new time levels. If the solution technique of chapter 2 is recalled, the derivatives of S with respect to the properties at the new time value are required, therefore the mass exchange rate is to be a continuous, differenciable function in these variables.

The mass exchange model used in the code is derived from the principles of the kinetic theory, in which the net mass flux j crossing an imaginary plane between phases is given by:

$$
\begin{equation*}
j=\sqrt{\frac{M}{2 \pi R}} \frac{P v}{\sqrt{T}}-\frac{P \ell}{\sqrt{T}} \tag{3.2.1}
\end{equation*}
$$

where
$J=$ mass flux (mass per unit time per unit area)
$\mathrm{M}=$ molecular weight
$R=$ universal gas constant
P and $T=$ absolute pressure and temperature for both phases.
For small differences in pressure and temperature, the
above expression can be reduced to:

$$
\begin{equation*}
j=\sqrt{\frac{M}{2 \pi R}} \frac{P}{\sqrt{T_{s}}}\left[\frac{\Delta P}{P}-\frac{\Delta T}{2 T_{s}}\right] \tag{3.2.2}
\end{equation*}
$$

the Clayperon equation

$$
\begin{equation*}
\left.\frac{d P}{d T}\right)_{\text {sat }}=\frac{h_{f g}}{T v_{f g}} \tag{3.2.3}
\end{equation*}
$$

is used to eliminate ΔP in equation 3.2.2 leading to:

$$
\begin{equation*}
j=\sqrt{\frac{R}{2 \pi M}} \rho v\left(\frac{h_{f g}}{P v_{f g}}-\frac{1}{2}\right) \frac{\Delta T}{\sqrt{T}} \tag{3.2.4}
\end{equation*}
$$

where
$\mathbf{h}_{\mathrm{fg}}=$ difference in enthalpy between phases
$\mathbf{v}_{\mathrm{fg}}=$ difference in specific volume between phases
and where the simplification was made:

$$
v=\frac{P}{R T / M}
$$

For the particular case of sodium, a few more simplifications in equation 3.2 .4 can be made. First note that $\rho l \gg \rho v$, thus:

$$
v_{f g}=\frac{1}{\rho_{v}}-\frac{1}{\rho_{\ell}} \simeq \frac{1}{\rho_{v}}
$$

second, for the actual values of $h_{f g}, P$ and $v_{f g}$ if follows

$$
\frac{h_{f g}}{P v_{f g}} \gg \frac{1}{2}
$$

Therefore equation 3.2 .4 becomes:

$$
\begin{equation*}
j=\sqrt{\frac{R}{2 \pi M}} \frac{\rho_{v}^{2} h_{f g}}{P} \quad \frac{\Delta T}{\sqrt{T}} \tag{3.2.5}
\end{equation*}
$$

The above equation was obtained with the assumptions of ideal conditions embodied in the kinetic theory. Although this model's predictions are in good agreement with experimental data for evaporation, large discrepancies appear when condensation is considered. Silver and Simpson /41/ suggested a correction factor, which modifies equation 3.2 .5 for condensation:

$$
\begin{equation*}
j_{c}=\frac{2 \sigma}{2-\sigma} \sqrt{\frac{R}{2 \pi M}} \frac{\rho_{v}^{2} h_{f g}}{P} \frac{\Delta T}{\sqrt{T_{s}}} \tag{3.2.6}
\end{equation*}
$$

Figure 3.1 reproduced from reference 41 shows the value of σ as a function of pressure. From this figure, it can be seen that for the range of pressures expected to be encountered in LMFBR safety analysis, the value of σ is relatively small, thus the simplification can be made:

$$
\frac{2 \sigma}{2-\sigma} \simeq \sigma
$$

Figure 3.l Condensation Coefficient as a Function of Pressure
(From Reference 41)

Considering also the small variation of σ with the pressure, and the uncertainties involved in obtaining this coefficient, a reasonable approximation is to take a constant value for σ. Thus, for the pressure equal to one atmosphere the value of σ is:

$$
\sigma=0.005
$$

The next factor to be evaluated in the mass exchange rate is the specific area between phases. Wilson / 11/proposed a model which takes into account three flow regimes - bubbly, anular flow and dry out. For the bubbly regime, with void fraction less than 0.6 , he assumes the bubbles forming in the middle of each subchannel, packed on top of each other. (Figure 3.2) With this assumption, the expression for the specific area becomes:

$$
\begin{equation*}
\frac{A}{V}=\frac{4}{D} \sqrt{\frac{3 \pi \alpha}{2 \sqrt{3(P / D)^{2}-\pi}}} \alpha<0.6 \tag{3.2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
D & =\text { fuel pin diameter } \\
P / D & =\text { pitch to diameter ratio }
\end{aligned}
$$

Although this model predicts reasonable values for the specific area at high values of the quality, for small void fractions this model would postulate the existance of unreasonalby small vapor bubbles, thus overestimating the specific area. To correct this we introduced a minimum value for the bubble radius, so that for

Figure 3.2 Bubbly Flow Representation

$\because \because$ Vapor
\square Fuel Pin
Figure 3.3 Low Void Fraction Bubbly Flow Representation
small void fractions the model would be pictured as in Figure 3.3. The expression for the specific area becomes:

$$
\begin{equation*}
\frac{A}{V}=\frac{3 \alpha}{r_{m}} \quad \alpha<\alpha_{m} \tag{3.2.8}
\end{equation*}
$$

where

$$
\alpha_{m}=\frac{8}{3}\left(\frac{r}{D}\right)^{2} \frac{\pi}{\sqrt{3}(P / P)^{2}-\pi / 2}
$$

were α_{m} was chosen so that the two expressions of equations 3.2.7 and 3.2 .8 be continuous at α_{m}, and r_{m} is the minimum bubble radius, which was taken in our model equal to $6 \times 10^{-4} \mathrm{~m}$.

For the anular flow, all the liquid is assumed to be flowing in a circular annulus around the fuel rods, and the expression for the specific area becomes:

$$
\begin{equation*}
\frac{A}{V}=\frac{4}{D} \sqrt{\frac{2 \sqrt{3} \pi(P / D)^{2}}{\left[2 \sqrt{3}(P / D)^{2}-\pi\right]^{2}}-\frac{\pi \alpha}{2 \sqrt{3}(P / D)^{2}-\pi}} \tag{3.2.9}
\end{equation*}
$$

for $0.6<\alpha<0.957$

Finally in the dryout regime a partial contact of the vapor with the fuel pin walls is assumed, and the expression for the area becomes:

for $\alpha>0.957$
where the dryout transition point were taken from the work by Autruffe/50/ analysing the KFK experiments / 52/.

Note that the transition from bubbly to annular flow presents a discontinuity in the specific area, whose magnitude is a function of the pitch to diameter ratio. The transition at $\alpha=0.6$ was choosen to minimize this discontinuity for the usual pitch to diameter ratio of 1.25 . Finally note that in the limiting case $\alpha=0$ or $\alpha=1$ the interphase area is obviously zero. This would prevent the initiation of boiling or condensation. To overcome this difficulty a "seed" void fraction is introduced to account for the initiation of phase transition. In this way α is substituted in equations 3.2 .8 and 3.2 .10 by $\hat{\alpha}$ which is defined as:

$$
\begin{aligned}
& \hat{\alpha}=\left\{\begin{array}{lll}
\alpha & \text { if } & \alpha>10^{-4} \\
10^{-4} & \text { if } & \alpha \leq 10^{-4}
\end{array}\right. \\
& \hat{\alpha}=\left\{\begin{array}{lll}
\alpha & \text { if } & \alpha<.9999 \\
.9999 & \text { if } & \alpha \geq .9999
\end{array}\right.
\end{aligned}
$$

Now the question of determining which terms are to be evaluated at the new or old time level can be addressed. The specific area must be evaluated at the old time level since the discontinuity in the transition from bubbly to annular flow makes it impossible to obtain the derivative of the mass exchange rate.

Both the enthalpy of vaporization $h_{f g}$ and the vapor density does not show a marked dependence on the primary variables pressure and temperatures, therefore they can also be evaluated at the old time level.

On the other hand, the temperatures and pressure appearing in the expression of the mass flux have a very important dependence, thus they must be taken at the new time value.

Following is a summary of the equations used for the mass exchange rate:

$$
\begin{gather*}
S=S_{e}-S_{c} \tag{3.2,11}\\
S_{e}=\quad A \alpha_{\sigma_{e}} \sqrt{\frac{R}{2 \pi M}}\left[\frac{\rho_{v}^{2} h_{f g}}{P}\right]^{n}\left[\frac{\left(T_{\ell}-T_{s}\right.}{T_{s}}(1-\alpha)\right]^{n+1} \tag{3.2.12}\\
S_{c}=A(1-\alpha) \sigma_{c} \sqrt{\frac{R}{2 \pi M}}\left[\frac{\rho^{2} v^{2} h_{f g}}{P}\right]^{n}\left[\frac{\left(T T_{s}-T_{v}\right) \alpha}{T_{s}}\right]^{n+1} \tag{3.2.13}
\end{gather*}
$$

where

$$
\begin{align*}
& \sigma_{e}=\left\{\begin{array}{lll}
0 & \text { if } & T_{\ell}<T_{s} \\
1.0 & \text { if } & T_{\ell} \geq T_{s}
\end{array}\right. \tag{3.2.14}\\
& \sigma_{c}=\left\{\begin{array}{lll}
0 & \text { if } & T_{v}>T_{s} \\
0.005 & T_{v} \leq T_{s}
\end{array}\right. \tag{3.2.15}
\end{align*}
$$

$$
\begin{aligned}
& A=\frac{3 \hat{\alpha}}{r_{m}} \quad \text { for } \quad \alpha<\alpha_{m} \\
& \alpha_{m}=\frac{8}{3}\left(\frac{r_{m}}{D}\right)^{2} \frac{\pi}{\sqrt{3}(P / D)^{2}-\pi / 2} \\
& A=\frac{4}{D} \sqrt{\frac{3 \pi \alpha}{2 \sqrt{3}(P / D)^{2}-\pi}} \quad \alpha_{m}<\alpha<0.6 \\
& A=\frac{4}{D} \sqrt{\frac{2 \sqrt{3} \pi(P / D)^{2}}{\left.2 \sqrt{3}(P / D)^{2}-\pi\right)^{2}}-\frac{\pi \alpha}{2 \sqrt{3}(P / D)^{2}-\pi}} \\
& A=\frac{4}{D} \sqrt{\left[\frac{2 \sqrt{3} \pi(P / D)^{2}}{\left(2 \sqrt{3}(P / D)^{2}-\pi\right)^{2}}-\frac{\pi \alpha}{2 \sqrt{3}(P / D)^{2}-\pi}\right]\left[\frac{\pi}{1-\hat{\alpha}} 1\right]} \\
& \alpha>0.957 \\
& \hat{\alpha}=\left\{\begin{array}{llc}
10^{-4} & \text { if } & \alpha \leq 10^{-4} \\
\alpha & \text { if } & 10^{-4}<\alpha<.9999 \\
.9999 & \text { if } & \alpha \geq .9999
\end{array}\right. \\
& r_{m}=6 \times 10^{-4} \mathrm{~m} \\
& \frac{R}{M}=361.30 \quad \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{K}
\end{aligned}
$$

3.3 Momentum Exchange

In this section we identify two kinds of momentum transfer in the fluids dynamic equations. One represents the interaction of the fluid with the fuel pins and fuel assembly structure, and the second one accounts for the momentum exchange between the phases themselves. Furthermore, because the fuel assembly geometry presents a very marked difference in the flow path for the axial and radial directions, we will have a different set of correlations for each direction.

Starting with the axial direction, a set of correlations developed by Autruffe/ 50 / analyzing the KFK experiments/ 52 / is used. The experiments were a series of steady state, single tube tests for several mass flow rates and qualities. Studying the pressure drop in the unheated zone (thus with no change in quality) the following correlations were proposed.

Liguid wall friction: axial direction

$$
\begin{align*}
& F_{\ell z}=\left[\frac{0.18}{2 D_{H}} \operatorname{Re}_{\ell}^{-.2} \rho \ell\left|U_{\ell z}\right|\right]^{n} \quad U_{\ell z}^{n+1} \quad \alpha<\alpha \tag{3.3.1}\\
& F_{\ell z}=\left[\frac{0.18}{2 D_{H}} \operatorname{Re}_{\ell}^{-.2} \rho_{l}\left|U_{\ell z}\right| \frac{(1-\alpha)}{\left(1-\alpha_{d r y}\right)}\right]^{n} \quad U_{l z}^{n+1} \quad \alpha \geqslant \alpha_{d r y} \tag{3.3.2}
\end{align*}
$$

with

$$
\begin{equation*}
\operatorname{Re}_{\ell}=\frac{(1-\alpha) \rho \ell\left|U_{\ell Z}\right| D_{H}}{n_{\ell}} \tag{3.3.3}
\end{equation*}
$$

$$
\begin{aligned}
& D_{H}=4 \times \frac{\text { free volume in tube bank }}{\text { exposed surface area of tubes }} \\
& \alpha_{\text {dry }}=0.957
\end{aligned}
$$

Vapor wall friction: axial direction

$$
\begin{array}{ll}
F_{v z}=0 & \alpha \leqslant \alpha_{d r y} \\
F_{v z}=\left[\frac{0.2}{2 D_{H}} \operatorname{Rev}^{-.2} \alpha_{v}\left|U_{v z}\right|\right]^{n} U_{v z}^{n+1} \quad \alpha>\alpha_{d r y} \tag{3.3.4}
\end{array}
$$

with

$$
\begin{equation*}
\operatorname{Re}_{v}=\frac{\alpha \rho_{v}\left|U_{v z}\right| D_{H}}{\eta_{v}} \tag{3.3.5}
\end{equation*}
$$

Interphase momentum exchange: axial direction

$$
\begin{equation*}
M_{z}=K_{z}^{n}\left(U_{v z}-U_{\ell z}\right)^{n+1} \tag{3.3.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\left.K_{z}=\left.\frac{4.31}{2 D_{H}} \rho_{V}\right|_{V Z}-U_{\ell Z} \right\rvert\,[(1-\alpha)(1+75(1-\alpha))]^{.95} \tag{3.3.7}
\end{equation*}
$$

Wilson/ 11 / introduced another term in the expression for the interphase momentum exchange, taking into account the momentum transport associated with the interphase mass exchange. In this formulation, the equation for the momentum exchange becomes:

$$
\begin{equation*}
M_{z}=\left(K_{z}+S\right)^{n}\left(U_{v z}-U_{\ell z}\right)^{n+1} \tag{3.3.8}
\end{equation*}
$$

where S is the mass exchange rate.

We also introduced in the above set of equations a term to represent a localized pressure drop, thus enabling the model to simulate fuel pin spacers or blockages. The expression, which adds up to the liquid wall friction is:

$$
\begin{equation*}
\Delta P_{L}=\left[K_{L}\left|U_{l z}\right|\right]^{n} \quad U_{l z}^{n+1} \tag{3.3.9}
\end{equation*}
$$

where K_{L} is an input parameter.
If for the axial direction momentum exchange we could find in the literature a number of sodium experiments, for the radial direction this abundance of data does not exist. But if we look into the dimensionless numbers involved in the momentum exchange models, we note the absence of the Prandtl number. Indeed, this number represents the energy transfer associated with momentum transport, and does not influence the pure momentum transfer we are interested here. Since of all dimensionless numbers involved in transport processes the Prandtl number is the only one which differenciates sodium from the other usually encountered fluids, we can expect to have good results if we use for our sodium momentum exchange a model developed for another fluid.

For the wall friction two correlations widely accepted in heat exchanges and boiler technology, were considered. One is by Kays and London/ 48 /and the other by Gunter and Shaw/ 49 /. Both correlations present approximately the same value for the friction factor, thus we made our choice in favor of the second one because its formulation is more conveniently adapted to our code. The correlations adopted are:

Liquid wall friction: radial direction

$$
\begin{equation*}
F_{\ell r}=\left[\frac{f_{\ell r}}{2 D_{H}} \rho \ell\left|U_{\ell r}^{m}\right|\right]^{n} \quad\left(U_{\ell r}^{m}\right)^{n+1} \tag{3.3.10}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{f}_{\ell \mathrm{r}}= \begin{cases}\frac{180}{\mathrm{Re}_{\ell \mathrm{r}}} & \mathrm{Re}_{\ell \mathrm{r}} \leq 202.5 \\
1.92 \operatorname{Re}_{\ell \mathrm{r}}^{-.145} & \mathrm{Re}_{\ell \mathrm{r}} \geqslant 202.5\end{cases} \tag{3.3.11}\\
& \operatorname{Re}_{\ell \mathrm{r}}=\frac{\rho l\left|U_{\ell \mathrm{r}}^{\mathrm{m}}\right| D_{H}}{\eta_{\ell}} \tag{3.3.12}
\end{align*}
$$

and $U_{l r}^{m}$ is the radial velocity at the point of maximum flow constriction between rods, and the hydraulic diameter D_{H} is the same as for the axial direction.

For the vapor wall friction and interphase momentum exchange we found very little in the literature. Therefore we proposed a formulation for these terms consistent with the one used for the other terms.

Vapor wall friction: radial direction

$$
\begin{array}{ll}
F_{v r}=0 & \alpha \leqslant \alpha_{d r y} \\
F_{v_{r}}=\left[\left.\frac{f^{v r}}{2 D_{H}} \rho v V_{V r}^{m} \right\rvert\,\right] & \left(U_{v r}^{n+1}\right)^{n+1} \tag{3.3.13}
\end{array}
$$

with

$$
f_{v r}= \begin{cases}\frac{180}{\operatorname{Re}_{v r}} & \operatorname{Re}_{\mathrm{vr}} \leqslant 202.5 \tag{3.3.14}\\ 1.92 \operatorname{Re}_{\mathrm{vr}}^{-.145} & \operatorname{Re}_{\mathrm{vr}}>202.5\end{cases}
$$

with

$$
\begin{equation*}
\operatorname{Re}_{v r}=\frac{\rho v\left|v_{v r}^{m}\right| D_{H}}{\eta_{v}} \tag{3.3.15}
\end{equation*}
$$

and here again, $U_{v r}^{m}$ is the vapor radial velocity at the point of maximum constriction between the fuel pins.

Interphase momentum exchange: radial direction

$$
\begin{equation*}
M_{r}=K_{r}^{n}\left(U_{v r}^{m}-U_{l r}^{m}\right)^{n+1} \tag{3.3.16}
\end{equation*}
$$

with

$$
\begin{equation*}
K_{r}=\frac{4.31}{2 D_{H}} \rho_{v}\left|u_{v_{r}}^{m}-U_{\ell r}^{m}\right|[(1-\alpha)(1+75(1-\alpha))]^{.95} \tag{3.3.17}
\end{equation*}
$$

To evaluate the velocities at the point of minimum transverse flow area we recall Chapter Two, where the primary radial velocities were defined as being the volume average velocities in the cell. One of the assumptions made in the derivations of that chapter was:

$$
U_{r}(r) A_{r}(r)=\text { constant }
$$

Thus the average velocity in the cell is:

$$
\begin{aligned}
& \left\langle U_{r}\right\rangle=\frac{1}{V} \int_{V} U_{r}(r) d V=\frac{1}{V} \int_{r_{k}}^{r_{k+1}} U_{r}(r)_{A_{r}}(r) d r \\
& \left\langle U_{r}\right\rangle=\frac{U_{r}^{m} A_{r}^{m}}{V}\left(r_{k+1}-r_{k}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
U_{r}^{m}=\frac{V}{A_{r}^{m}\left(r_{k+1}-r_{k}\right)} \quad<U_{r}> \tag{3.3.18}
\end{equation*}
$$

3.4 Energy Exchange

As done for the momentum exchange, here again we divide the energy interactions into two parts, the energy exchange between phases and the heat exchange between fluid and fuel pins and structural materials. For the latter, we identify three subdivisions, the fuel pin heat conduction, the convective heat transfer between the fuel pin walls and the fluid, and finally the fuel assembly structure model.

3.4.1 Fuel Pin Heat Conduction

A single rod in each volume (node) is selected to represent the fuel pin heat conduction, which is assumed to be thermally equivalent to any other rod in that cell. Axial heat conduction is neglected, so that the radial heat conduction equation is:

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}-\frac{1}{r} \frac{\partial}{\partial r}\left(r K \frac{\partial T}{\partial t}\right)=q^{\prime \prime \prime} \tag{3.4.1}
\end{equation*}
$$

For the time being all material properties are assumed to be known quantities and we proceed to analyze the solution of equation 3.4.1. Later in section 3.4.2 these material properties are discussed.

The fuel and the clad are now divided into mesh cells, the number of these cells being an input parameter. We only impose that all mesh spacings in the same region, whether fuel or clad, be of the same size, but mesh spacings may be different in different regions. One
cell is assumed for the gap. Fuel temperatures are located at the boundaries of mesh cells, represented by the subscript k. Fuel pin properties are evaluated in the center of mesh cells, and are represented with the subscript $k+\frac{1}{2}$. If we integrate equation 3.4.1 between the center of two adjacent cells we get:

$$
\begin{equation*}
\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}}\left[r \rho C_{p} \frac{\partial T}{\partial t}-\frac{\partial}{\partial r}\left(r K \frac{\partial T}{\partial t}\right)\right] d r=\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} q^{\prime \prime \prime} r d r \tag{3.4.2}
\end{equation*}
$$

Using the approximation:

$$
\begin{equation*}
\left\langle\rho C_{p}\right\rangle_{k}=\frac{r_{k+\frac{1}{2}}^{2}-r_{k}^{2}}{2}\left(\rho C_{p}\right)_{k+\frac{1}{2}}+\frac{r_{k}^{2}-r_{k-\frac{1}{2}}^{2}}{2}\left(\rho C_{p}\right)_{k-\frac{1}{2}} \tag{3.4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} \mathrm{rpC}_{p} \frac{\partial T}{\partial t} d r=\left\langle\rho C_{p}\right\rangle \frac{\partial T_{k}}{\partial t} \tag{3.4.4}
\end{equation*}
$$

Also in equation 3.4 .2 we have:

$$
\begin{align*}
& \int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}}\left[\frac{\partial}{\partial r} r K \frac{\partial T}{\partial t}\right] d r=\left[r K \frac{\partial T}{\partial r}\right]_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} \\
& =(r K)_{k+\frac{1}{2}} \frac{T_{k+1}-T_{k}}{\Delta r_{k+\frac{1}{2}}}-(r K)_{k-\frac{1}{2}} \frac{T_{k}-T_{k-1}}{\Delta r_{k-\frac{1}{2}}} \tag{3.4.5}
\end{align*}
$$

Finally, the right hand side of equation 3.4 .2 becomes:

$$
\begin{equation*}
\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} q^{\prime \prime \prime} r d r=\frac{r_{k+\frac{1}{2}}^{2}-r_{k}^{2}}{2} q_{k+\frac{1}{2}}^{\prime \prime \prime}+\frac{r_{k}^{2}-r_{k-\frac{1}{2}}^{2}}{2} q_{k-\frac{1}{2}}^{\prime \prime \prime} \tag{3.4.6}
\end{equation*}
$$

and the difference equation corresponding to equation 3.4 .2 becomes:

$$
\begin{align*}
& <\rho C_{p}>{ }_{k}^{n}\left(\frac{T_{k}^{n+1}-T_{k}^{n}}{\Delta t}\right)-\left(\frac{r K}{\Delta r}\right)_{k+\frac{1}{2}}^{n}\left(T_{k+1}^{n+1}-T_{k}^{n+1}\right)+\left(\frac{r K}{\Delta r}\right)_{k-\frac{1}{2}}^{n}\left(T_{k}^{n+1}-T_{k-1}^{n+1}\right) \\
& =\left[\frac{r_{k+\frac{1}{2}}^{2}-r_{k}^{2}}{2} q_{k+\frac{1}{2}}^{\prime \prime \prime}+\frac{r_{k}^{2}-r_{k-\frac{1}{2}}^{2}}{2} q_{k-\frac{1}{2}}^{\prime \prime \prime}\right]^{n} \tag{3.4.7}
\end{align*}
$$

There are four locations where equation 3.4 .7 must be modified to accomodate boundary conditions. For the center of the fuel pin, equation 3.4 .1 is integrated from $r=r_{\frac{1}{2}}=0$ to $r=r_{1 \frac{1}{2}}$, and the resulting equation is:

$$
\begin{equation*}
\left\langle\rho C_{p}>_{1}\left(\frac{T_{1}^{n+1}-T_{1}^{n}}{\Delta t}\right)-\left(\frac{r K}{\Delta r}\right)_{1^{\frac{1}{2}}}^{n}\left(T_{2}^{n+1}-T_{1}^{n+1}\right)=\frac{r_{1 \frac{1}{2}}^{2}}{2} q_{1 \frac{1}{2}}^{\prime \prime \prime}\right. \tag{3.4.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle\rho C_{p}\right\rangle=\frac{r_{1 \frac{1}{2}}^{2}}{2}\left(\rho C_{p}\right)_{1 \frac{1}{2}} \tag{3.4.9}
\end{equation*}
$$

For the clad outside surface we obtain the difference equation by integrating equation 3.4.1 from $r=r_{N-\frac{1}{2}}$ to $r=r_{N}=$ outside fuel pin radius, and introducing the clad surface heat flux q ". We obtain the equation:

$$
\begin{align*}
& <\rho C_{p}>{ }_{N}\left(\frac{T_{N}^{n+1}-T_{N}^{n}}{\Delta t}\right)+\left(\frac{r K}{\Delta r}\right)_{N-\frac{1}{2}}^{n}\left(T_{N}^{n+1}-r_{N-1}^{n+1}\right)+q^{\prime \prime} r_{N} \\
& =\frac{r_{N}^{2}-r_{N-\frac{1}{2}}^{2}}{2} q_{N-\frac{1}{2}}^{\prime \prime \prime} \tag{3.4.10}
\end{align*}
$$

with

$$
\begin{equation*}
\left\langle\rho C_{p}\right\rangle_{N}=\frac{r_{N}^{2}-r_{N-\frac{1}{2}}^{2}}{2}\left(\rho C_{p}\right)_{N-\frac{1}{2}}^{n} \tag{3.4.11}
\end{equation*}
$$

The general expression for the heat flux $\mathrm{q}^{\prime \prime}$ (later in section 3.5 the correlations for the heat flux will be discussed in detail) is:

$$
\begin{equation*}
q^{\prime \prime}=h_{l}^{n}\left(T_{w}^{n+1}-T_{l}^{n+1}\right)+h_{v}^{n}\left(T_{w}^{n+1}-T_{v}^{n+1}\right)+h_{N B}^{n}\left(T_{w}^{n+1}-T_{S}^{n+1}\right) \tag{3.4.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{w}=T_{N}=\text { outside clad temperature } \\
& T_{\ell}, T_{v}, T_{s}=\text { liquid, vapor and saturation temperatures } \\
& h_{\ell}, h_{v}, h_{N B}=\text { heat transfer coefficients }
\end{aligned}
$$

Finally for the two equations involving gap properties the term $\frac{k}{\Delta r}$ is replaced by $h_{G A P}$, the gap conductance.

Returning to equation 3.4 .7 note that a fully implicit differentiating scheme was used in this equation. This difference equation can be shown to be unconditionally stable. In this way we ensure that a time step determined by the fluid equations stability does not cause any stability problem for the heat conduction problem.

Equation 3.4 .7 couples the temperature at a cell k with its neighbors $k+1$ and $k-1$, thus the temperature for all cells must be solved simultaneously. We incorporate an efficient technique to save computational time for this solution. This technique, proposed by Reed and Stewart / 21 / is a modification of the tridiagonal matrix inversion.

In matrix form, the set of equations 3.4 .7 become:

$$
\left[\begin{array}{llllll}
a_{11} & a_{12} & 0 & \ldots & 0 \tag{3.4.13}\\
a_{21} & a_{22} & a_{31} & 0 & \ldots & 0 \\
0 & a_{31} & a_{33} & a_{34} & \ldots & 0 \\
\vdots & 0 & & & & \vdots \\
0 & \vdots & & & & \vdots \\
0 & 0 & & a_{N-1, N} & a_{N N}
\end{array}\right] \times\left[\begin{array}{l}
T_{1}^{n+1} \\
T_{2}^{n+1} \\
\vdots \\
\vdots \\
\vdots \\
T_{T}^{n+1}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
\vdots \\
f_{N}
\end{array}\right]
$$

where the coefficients a^{\prime} 's and f's depend only on the fuel geometry, the power density and material properties. All these quantities are evaluated at the old time step, therefore they do not change during the new time step iterations.

The usual tridiagonal solution for this equation replaces the matrix of coefficients a's (which we will call by the capital letter A) by a product:

$$
\mathbb{A}=\mathbb{C} \times \mathbf{B}
$$

with

$$
\mathbf{C}=\left[\begin{array}{lllllll}
1 & 0 & 0 & \ldots & \ldots & 0 & 0 \\
\mathrm{C}_{21} & 1 & 0 & \ldots & \ldots & 0 & 0 \\
0 & \mathrm{C}_{31} & 1 & 0 & \ldots & & \\
\vdots & 0 & & & & & \\
\vdots & \vdots & & & & & \\
\vdots & 0 & \ldots & \ldots & \ldots & \mathrm{C}_{\mathrm{N}, \mathrm{~N}-1} & 1
\end{array}\right]
$$

and
$B=\left[\begin{array}{llllll}b_{11} & b_{12} & 0 & 0 & \ldots & 0 \\ 0 & b_{22} & b_{23} & 0 & \ldots & 0 \\ \vdots & 0 & b_{33} & & \\ \vdots & \vdots & \vdots & b_{N-1, N-1} & b_{N-1, N} \\ \vdots & \vdots & \vdots & 0 & b_{N N}\end{array}\right]$

In order for this factorization to be true, we must require:
$b_{11}=a_{11}$
$b_{12}=a_{12}$
:
$c_{p, p-1}=a_{p, p-1} / b_{p-1, p-1}$
$b_{p p}=a_{p p}-c_{p, p-1} b_{p-1, p}$
$b_{p, p+1}=a_{p, p+1}$
Now define a vector X such that:
$\mathbb{F}=\mathbf{C} \times \mathrm{X}$
where \mathbb{E} is the vector of coefficients f 's in equation 3.4.13. This factorization requires:

$$
\begin{aligned}
& x_{1}=f_{1} \\
& \vdots \\
& x_{p}=f_{p}-c_{p, p-1} x_{p-1}
\end{aligned}
$$

In this way, equation 3.4 .13 becomes:

$$
\begin{equation*}
\mathbb{B} \times \mathbf{T}=\mathrm{X} \tag{3.4.14}
\end{equation*}
$$

where B is an upper triangular matrix, and once we have gotten the value of $T_{N, N}^{n+1}$, all other temperatures are easily obtained by backward substitution.

The important characteristic of all these operations is that they are performed only on explicit terms. Thus this procedure must be carried only once, at the beginning of the new time step.

The last line of equation 3.4 .14 is the one used to determine the clad outside wall temperature. This is the only equation which involves implicit temperatures in the right hand side. If we recall equations 3.4 .10 and 3.4 .12 , we can write this equation for the wall temperature, isolating the implicit terms:

$$
\begin{equation*}
b_{N N} T_{N N}^{n+1}=f_{N}^{n}+h_{\ell}^{n} T_{\ell}^{n+1}+\underset{v}{h_{v}}{ }_{T}^{n+1}+h_{N B}^{n} T_{s}^{n+1} \tag{3.4.15}
\end{equation*}
$$

Then, after any Newton iteration k we use equation 3.4 .15 to calculate the new wall temperature T_{NN}, without the need for calculating all the other temperatures, and only after the Newton iteration has converged we return to equation (3.4.14) to calculate the fuel temperatures.

3.4.2 Fuel Pin Material Properties

For the clad heat capacity and thermal conductivity the properties of stainless steel are incorporated in the code. From reference / 53 / the following expressions were selected:

$$
\begin{align*}
& \left(\rho C_{p}\right)_{c l a d}=a_{0}+a_{1} T+a_{2} T^{2} \tag{3.4.16}\\
& K_{\text {clad }}=b_{0}+b_{1} T \tag{3.4.17}
\end{align*}
$$

with

$$
\begin{aligned}
& a_{0}=4.28 \cdot 10^{6} \\
& a_{1}=3.75 \cdot 10^{2} \\
& a_{2}=7.45 \cdot 10^{3} \\
& b_{0}=16.27 \\
& b_{1}=1.204 \cdot 10^{-2}
\end{aligned}
$$

Two axially different zones are implemented in the code to represent the fuel itself. One with the properties of Plutonium-Uranium oxides to represent the active core region, and the second one to simulate the fission gas upper plenum.

From reference / 21 / the following expressions were selected to represent the fuel region:

$$
\begin{align*}
& \left(O C_{p}\right)_{\text {FUEL }}=\left(a_{0}+a_{1} T+a_{2} T^{2}+a_{3} T^{3}\right)\left(1+0.045 \theta_{p u}\right) \cdot \theta_{d} \tag{3.4.18}\\
& K_{\text {FUEL }}=\left(b_{0}+b_{1} T+b_{2} T^{2}\right)\left(1-\left(1-\theta_{d}\right) \cdot X\right) \tag{3.4.19}
\end{align*}
$$

with

$$
x=2.74-5.8 \times 10^{-4} \mathrm{~T}
$$

$\theta_{p u}=$ fraction of PuO_{2} in the mixed oxide fuel
$\theta_{d}=$ fraction of theoretical density
$a_{0}=1.81 \times 10^{6}$
$a_{1}=3.72 \times 10^{3}$
$a_{2}=-2.51$
$a_{3}=6.59 \times 10^{-4}$
$b_{0}=10.8$
$b_{1}=-8.84 \times 10^{-3}$
$b_{2}=2.25 \times 10^{-6}$

The fission gas plenum is simulated with a zero heat capacity. The gap heat capacity is also assumed to be zero. For its conductance the following expression was incorporated, from reference / 5 /:

$$
\begin{equation*}
h_{\text {Gap }}=h_{c}+h_{r} \tag{3.4.20}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{r}=\left(T_{f}^{2}+T_{c}^{2}\right)\left(T_{f}+T_{c}\right) 1.70 \times 10^{-8} \tag{3.4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{c}=\left[\frac{d g+1.32 \times 10^{-4}}{C g}+0.61 \times 10^{-4}\right]^{-1}+1.8 \times 10^{3} \tag{3.4.22}
\end{equation*}
$$

with

$$
\mathrm{Cg}=15 . \times 2^{\mathrm{dil}}
$$

where
dg = gap thickness
dil $=$ fraction of helium in gap composition
T_{f} and $T_{c}=$ outside fuel pellet and inside clad temperature

3.4.3 Convective Heat Transfer Coefficient

It has been mentioned in the previous section the expression for the heat transfer between the fluid and the fuel pins as:

$$
q^{\prime \prime}=h_{\ell}^{n}\left(T_{w}^{n+1}-T_{\ell}^{n+1}\right)+h_{v}^{n}\left(T_{w}^{n+1}-T_{v}^{n+1}\right)+h_{N B}^{n}\left(T_{w}^{n+1}-T_{s}^{n+1}\right)
$$

This expression is an extension of the correlations proposed by Chen / 23 / for non-metallic coolants. Although this correlation
has not been verified by comparison with experimental data, we anticipate good agreement with experiments, based on the great success the assumptions of micro and macro-convective heat transfer mechanism has encountered for non-metallic coolants. Nevertheless, only an extensive experimental program could give a definitive confirmation of this model.

The conditions for validity of the correlation are stable, vertical, axial convective flow of saturated liquid, with wetted heat transfer surface. These conditions are in general encountered in convective boiling in annular or mist-annular flow. The model is based on the postulate that there are two mechanisms contributing to the total heat transfer, and these mechanisms interact with each other. The macro-convective mechanism is associated with overall flow heat transfer, and the micro-convective mechanism is associated with bubble growth in the annular liquid film.

The expression for the micro-convective heat transfer coefficient is:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{NB}}=0.00122 \frac{\mathrm{~K}_{\ell}^{.79} \mathrm{C}_{\mathrm{pl}}^{.45} \rho_{\ell}^{.49} \Delta \mathrm{p}}{.75} \mathrm{~S}_{\mathrm{f}}\left(\frac{\Delta \mathrm{~T}}{\mathrm{o}^{.5} \eta_{\ell} .29}\right)^{\circ} \cdot 24 \tag{3.4.23}
\end{equation*}
$$

where S_{f} the suppression factor defined as:

$$
S_{f}=\left(\frac{\Delta T_{e}}{\Delta T}\right) \cdot 99
$$

Figure 3.4 Supression Factor vs. Reynolds Number

Figure 3.5 The Reynolds Number Factor
with
$\Delta T_{e}=$ effective superheat for bubble growth in annular liquid $\Delta T=$ difference between wall temperature and saturation temperature
$\Delta p=$ difference between pressure at the wall and liquid temperature

Figure 3.4 shows the dependence of S on the Reynolds number. From that figure, we extract the correlation for S_{f} :

$$
S_{f}=\left\{\begin{array}{cl}
\left(1+.12 \operatorname{Re}_{\mathrm{TP}}^{1.14}\right)^{-1} & \mathrm{Re}_{\mathrm{TP}} \leqslant 32.5 \tag{3.4.24}\\
\left(1+.42 \mathrm{Re}_{\mathrm{TP}}^{.78}\right)^{-1} & 32.5<\mathrm{Re}_{\mathrm{TP}} \leqslant 70 \\
0.1 & \mathrm{Re}_{\mathrm{TP}}>70
\end{array}\right.
$$

and the two phase Reynolds number is defined as:

$$
\begin{equation*}
\mathrm{Re}_{\mathrm{TP}}=\mathrm{F}^{1.25} \frac{(1-\alpha) \rho_{\ell} \mathrm{U}_{\ell} D_{H}}{\eta_{\ell}} \tag{3.4.25}
\end{equation*}
$$

where F is the Reynolds number factor, shown in Figure 3.5. The analytical expression from this figure is:

$$
\begin{array}{ll}
F=2.35\left(.213+\frac{1}{X_{t t}}\right) .736 & X_{t t}<10 . \tag{3.4.26}\\
F=1.0 & X_{t t} \geqslant 10 .
\end{array}
$$

and

$$
\begin{align*}
& x_{t t} \text { is the Martinelli parameter: } \\
& x_{t t}=\left(\frac{1-x}{}\right)^{9}\left(\frac{\rho_{v}}{\rho_{\ell}}\right)^{-5}\left(\frac{n_{l}}{n_{v}}\right)^{-1} \tag{3.4.27}
\end{align*}
$$

For the macroscopic heat transfer coefficient, Manahen / $11 /$ proposed a modified form of the Lyon-Martinelli equation:

$$
\begin{equation*}
\mathrm{h}_{\ell}=\mathrm{F} \cdot{ }^{375} \mathrm{~h}_{\ell \mathrm{sp}} \tag{3.4.28}
\end{equation*}
$$

whre F is the same Reynolds number factor used for the microscopic heat tranfer coefficient and $h_{l s p}$ is the liquid single phase heat transfer coefficient. The CHAD correlation was used for this single phase heat transfer coefficient:

$$
h_{\ell s p}=N_{u} \frac{k_{\ell}}{D_{H}}
$$

with

$$
N_{u}=\begin{array}{ll}
4.5 \mathrm{R} & \mathrm{Pe} \leqslant 150 \tag{3.4.29}\\
\mathrm{RPP} e^{.3} & \mathrm{Pe}>150
\end{array}
$$

with

$$
\begin{equation*}
R=-16.15+24.96(P / d)-8.55(P / d)^{2} \tag{3.4.30}
\end{equation*}
$$

and Pe is the Perclet number $=\operatorname{RePr}$
Finally, for the vapor single phase heat transfer coefficient the Dittus-Boelter correlation is used

$$
\begin{equation*}
h_{v}=0.023 \operatorname{Re}_{v}^{.8} \operatorname{Pr}_{v} \cdot 4 \frac{k_{v}}{D_{H}} \tag{3.4.31}
\end{equation*}
$$

3.4.4 Fuel Assembly Structure Models

For the structural materials in fuel assembly two elements are considered: the wire wrap and the fuel assembly hex can.

The wire wrap is modeled by assuming it has the same temperature as the outside clad surface. In this way, a thin layer of stainless steel, corresponding to the wire wrap heat capacity is added to the heat capacity of the last cell of the clad in the fuel pin model.

Presently the model considers the fuel assembly hex can as an adiabatic boundary condition, modeling only the effect of its heat capacity in transients, although the model was designed to accomodate changes which would consider a heat sink outside the hex can.

The equation used to model the hex can heat capacity is:

$$
\begin{align*}
& \left(\rho c_{p}\right)_{c}\left(\frac{T_{c}^{n+1}-T_{c}^{n}}{\Delta t}\right)+h_{\ell}^{n}\left(T_{c}^{n+1}-T_{\ell}^{n+1}\right)+h_{v}^{n}\left(T_{c}^{n+1}-T_{v}^{n+1}\right) \\
& +h_{N B}^{n}\left(T_{c}^{n+1}-T_{s}^{n+1}\right)=0 \tag{3.4.32}
\end{align*}
$$

where
$h_{\ell}, h_{v}, h_{N B}$ are the heat transfer coefficients discussed in the previous section;
$T_{c}, T_{\ell}, T_{v}, T_{s}$ are the hex can, liquid, vapor and saturation temperatures.

3.4.5 Interphase Heat Exchange

Of all models presented in this section, the interphase heat exchange is the least developed. Whereas other constitutive equations,
like those for the momentum exchange or fuel pin heat transfer, are applied to all models of two phase flow, the interphase heat exchange constitutive equation has its only application in the two-fluid model, which has been given attention only in recent years.

Thus, because of the lack of experimental data, we had to rely on a purely theoretical basis to produce a correlation for this exchange term.

Two mechanisms can be identified in which heat is transferred between phases. One represents the enthalpy transported by the mass exchange between phases, and the other accounts for the convective heat transfer. Then, we propose the following expression for this exchange term:

$$
\begin{equation*}
q_{l v}=s_{e}^{n+1}{\underset{v}{n}}_{n+1}^{s}-s_{c} h_{l s}^{n+1}+H A^{n+1}\left(T_{l}^{n+1}-T_{v}^{n+1}\right) \tag{3.4.33}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{e}=\text { evaporation rate } \\
& S_{c}=\text { condensation rate } \\
& h_{v}=\text { enthalpy for the saturated vapor } \\
& h_{\ell s}=\text { enthalpy for the saturated liquid } \\
& H=\text { overall heat transfer coefficient } \\
& A=\text { interfacial area }
\end{aligned}
$$

For the interfacial area, the same model developed for the mass exchange rate is used, and the expressions to evaluate this interfacial area can be found in equations 3.2.7 to 3.2.10.

In general, the overall heat transfer coefficient H can be written as:

$$
\mathrm{H}=\frac{\mathrm{Nu} \mathrm{~K}_{\ell}}{\mathrm{D}_{\mathrm{H}}}
$$

where
$K_{\ell}=$ liquid thermal conductivity
$\mathrm{D}_{\mathrm{H}}=$ hydraulic diamter
$\mathrm{Nu}=\mathrm{Nussel} \mathrm{t}$ number

A great deal of uncertainty is embodied in the Nusselt number used in this model, which cannot be resolved without a consistent set of experimental data on the heat exchange between phases. Therefore, we tentatively recommend the value $\mathrm{Nu}=100$.

CHAPTER 4

Experimental Tests Simulation

The models and methods presented in the two previous chapters were assembled into a computer program named NATOF-2D.

In order to evaluate the model results, as well as to test the program capabilities, three tests were simulated with NATOF-2D.

The first experiment simulated was the SLSF P3A test which was used to evaluate the performance of the constitutive equations and to determine the sensibility of the code to these equations.

Next the $\mathrm{W}-1$ experiment was simulated, a test which has been completed recently. Finally a steady-state experiment, the GR19 was analyzed.
4.1 The P3A Experiment

The Sodium Loop Safety Facility P3A Experiment was an in-pile test performed in the Engineering Test Reactor in the period July 16, 1977 to September 11, 1977. The experiment was made with a 37 -pin bundle simulating an FFTR unprotected loss of flow accident. The test bundle
was irradiated for 26 full power says prior to the final experiment. The subassembly power was 1240 KW with a mass flow rate of $9.21 \mathrm{bm} / \mathrm{sec}$ (4.173 Kg/sec).

Coolant boiling was detected at 8.8 seconds into the test. Inlet flow reversal occurred at 10 seconds, followed by inlet flow and temperature oscillations. Non-condensable gas passing through the bundle exit flow meter at 10.8 seconds was indicative of clad failure. Table 4.1 summarizes the design and steady-state operational data for the test.

Steady-state measurements made prior to the test indicated the existence of a discrepancy between the actual thermocouple readings and their expected values. A temperature gradient in the radial direction was observed which did not agree with the predicted values. This discrepancy was attributed to a non-uniform radial power distribution in the bundle, due to a non-uniform neutronic flux across the test bundle. Therefore a radial power distribution was assumed in the numerical simulation of the test. Table 4.2 shows the assumed radial power profile [39].

An inlet pressure decay was imposed to simulate the loss of flow transient. The expression used was:

$$
P_{i u}(\text { bar })=1.7187+7.4380 \exp (-.21 t)
$$

Table 4.3 shows the timing of events for the NATOF-2D predictions, along with the experimental results and the values obtained with SOBOIL code [10].

Following a series of figures showing the results obtained with NATGF-2D is presented.

Figure 4.2 shows the inlet mass flow rate as a function of time. The flow oscillations observed in the test were also predicted by NATOF-2D. Figure 4.3 shows the curve for the mass flow rate obtained from the experimental data.

Figures 4.4 and 4.5 show the temperature evolution at the top of the heated zone for the central and the edge channels respectively. Here again the oscillations after the flow reversal encountered in the experiment are also observed.

Figures 4.6 and 4.7 show the axial temperature profile at the central channel and the radial temperature profile at the top of the heated zone for different times. In this last figure once can observe an increase in the radial temperature gradient up to the time 9.0 seconds. This is attributed to the effect of the duct wall heat capacity. After 9.0 seconds the boiling in the central channels creates a strong radial flow, with the effect of reducing again the radial temperature gradient.

```
Finally figure 4.8 shows the void fraction maps for the three radial channels.
```

From the numerical method point of view, the most encouraging result was the ability of the model to represent the transient beyond the point of flow reversal without numerical instability, a flow condition which has challenged the sodium two phase flow modeling for years.

Table 4.1: SLSF-P3A Test Bundle Data

Geometry

Number of Pins	37	.1945	
Fuel Pellet OD (m)	4.94×10^{-3}		
Clad OD (m)	5.842×10^{-3}	. 230	in
Clad ID (m)	5.080×10^{-3}	. 200	in
Wire Wrap OD (m)			
inner pins	1.422×10^{-3}	. 056	in
outer pins	7.11×10^{-4}	. 028	in
Flat to Flat (m)	4.501×10^{-2}	1.772	in
Duct Wall Thickness (m)	3.048×10^{-3}	. 12	in
Length of Fuel		36.0	in
Inlet to Bottom of Fuel (m)	1.857×10^{-1}	7.31	in
Top of Fuel to End Cap (m)	5.334	210.0	in
Wire Wrap Lead (m)	3.048×10^{-1}	12.0	In
Fill Gas	Helium, 1 at tag gas	${ }^{\circ} \mathrm{C} \text { with } \mathrm{x}$	non
Fuel	Uranium-Plut Pu 25\% of to	xed oxid	

Table 4.1 continued

Thermo-Hydraulics

Inlet Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	422	$792^{\circ} \mathrm{F}$
Outlet Temperature at Steady State	$\left({ }^{\circ} \mathrm{C}\right)$	658	$1216^{\circ} \mathrm{F}$
Bundle Power	(kw)	1240	
Test Bundle Flow	$(\mathrm{kg} / \mathrm{sec})$	4.173	$9.20 \mathrm{lbm} / \mathrm{sec}$
Pressure at Top of Heated Zone	(atm)	4.27	62.7 psia
Cover Gas Pressure	(atm)	.957	14.1 psia
Net Pump Head	(atm)	7.619	112 psi

Numerics of Simulation

Number of Axial Mesh Cells 10
Number of Radial Mesh Cells 3

Table 4.2

Assumed Non-Uniform Radial Power

Distribution in P3A Test Bundle

Pin Number*

1 . 90

2
.95
3
1.07

4
1.156

*see figure 4.1 for Pin Number location

Table 4.3
Event Sequence Times (Seconds) of the P3A Experiment

NATOF-2D		SOBOIL	
		Experiment	
8.9	8.9	8.8	
10.08	9.9	10.15	

Figure 4.1
Pin Number Location

Figure 4.2: P3A: Mass Flow Rate Vs. Time

Figure 4.3
Experimental Inlet Mass Flow Rate

Figure 4.4: P3A - Temperature Vs. Time: Central Channel

Figure 4.5: P3A - Temperature Vs. Time Edge Channel

Figure 4.6: P3A: Axial Temperature Profile

Figure 4.7
P3A: Radial Temperature Profile

CENTRAL CHANNEL

MIDDI,F CHANNEL

EDGE CHANNEL

Figure 4.8: Void Fraction Maps for the P3A Experiments
4.2 One Dimensional Analysis of the P3A Experiment

In order to determine the importance of the two dimensional characteristic of NATOF-2D, a comparison of the results presented in the previous section was made with a one dimensional analysis of the same test.

NATOF-2D was modified to allow a one dimensional representation of the fuel assembly, and the P3A test was reanalyzed under the same conditions.

Figure 4.9 shows the inlet mass flow rate as a function of time, figure 4.10 the temperature evolution at the top of the heated zone an and figure 4.11 the axial temperature profile for this one dimensional analysis. Finally figure 4.12 shows the inlet mass flow rate for both one and two dimensional representations in the boiling period.

These figures show two interesting results. The onset of boiling occurred at 9.2 seconds for the one dimensional analysis, a delay of 0.3 seconds with respect to the two dimensional case. This can be explained by the fact that in the $1 D$ case, both the central and the edge channels are represented by a single average temperature which is less than the maximum fluid temperature encountered in the central channel, and it takes longer for the average temperature to reach the saturation conditions.

The second result which differed from the two dimensional representation was the time of flow reversal, which occurred at 9.8 seconds, 0.28 seconds before the 2D result. This is explained by the fact that while voiding is taking place in the central channels, the edge channel which is relatively colder maintains a substantial liquid flow for a longer time, thus providing a path for an upwards liquid flow. This effect is lost with the one dimensional representation.

Figure 4.9: P3A - 1D: Mass Flow Rate Vs. Time

Figure 4.11: P3A-1D: Temperature Profiles

Figure 4.12: P3A: Comparison Between 1D and 2D: Mass Flow Rate

```
4.2 Wl - SLSF Test
```

The Wl experiment is a test recently conducted under the direction of the Hanford Engineering Development Laboratory. Although the test has been completed, their results are not yet made public.

The test was divided in two parts. The first one aimed at determining the fuel pin heat released characteristics during a loss of pipe integrity accident. This part of the test does not involve boiling.

The second part of the test was directed to determine stable boiling and recovery limits as a function of fuel pin power. This part is the object of the numerical simulation presented in this section. Table 4.4 shows the relevant design data for the test [36], [38].

A series of flow transients were performed with several values of bundle power and flow decrease. Figure 4.12 is the graph of a typical Boiling Window Test flow transient. Table 4.5 shows the bundle power and percentage of full flow for each of the tests.

Following a series of figures present the results of the NATOF-2D simulation of the tests. For each case analyzed a figure shows the evolution in time of the saturation temperature, clad and fluid temperatures for the central channel and the fluid temperature for the edge channel. For sequences $6 a, 7 a^{\wedge}, 7 b^{\wedge}, 3$ and 4 the axial temperature profile for the central channel is also shown. Finally
for the cases where substantial voiding occurred, namely sequences $7 \mathrm{a}^{\prime}$, $7 b^{-}$and 4 a figure showing the void maps for the three channels is also presented.

In general the results obtained for the high power tests ($14.4 \mathrm{kw} / \mathrm{ft}$) seem to present values which agree with the predictions of the test plan (Table 4.5). On the other hand, for the lower power (and longer) tests, NATOF-2D predicted boiling conditions more severe than the expected in the test plan. One possible explanation for this discrepancy is an overestimating of the gap conductance by NATOF-2D, but of course an analysis of the results will be conclusive only when the test results are made available.

As an extension of the test, a 217-pin bundle simulation was performed under the same conditions of test sequence $7 b^{*}$. The simulation was made with five radial mesh cells and the same geometric and fuel pin design parameters as the ones used for the $W 1$ test. The results are presented in figures 4.31 through 4.33. Comparing these figures with the correspondent figures for the $19-p i n$ test, figures 4.23 through 4.25 , the following conclusions can be drawn:
π The onset of boiling occurred at approximately the same time.
\| The flow reversal occurred earlier and the voiding of the subassembly were much sharper for the 217 -pin bundle.

These results confirm what was expected, since the onset of boiling occurs in the central channel and is not influenced by the size of the subassembly. The second conclusion was also expected, since in a large fuel assembly, the edge channel which is submitted to a smaller heat flux and also has the hexcan wall as a heat sink, occupies a fraction of the total flow area which is much smaller than the correspondent edge channel for a 19-pin bundle.

TABLE 4.4

W1 Test Bundle Data

Geometry

Number of Pins	19	
Fuel Pellet OD (m)	4.94×10^{-3}	. 1945 in
Clad OD (m)	5.842×10^{-3}	. 230 in
Clad ID (m)	5.030×10^{-3}	. 200 in
Wire Wrap OD (m)		
inner pins	1.422×10^{-3}	. 056 in
outer pins	7.11×10^{-4}	. 028 in
Flat to Flat (m)	3.26×10^{-2}	1.283 in
Duct Wall Thickness (m)	1.016×10^{-4}	. 040 in
Length of Fuel (m)	. 9144	36.0 in
Inlet to Bottom of Fuel (m)	. 279	11 in
Top of Fuel to End of Pins (m)	1.27	50 in
Wire Wrap Lead (m)	. 3048	12.0 in
Fill Gas	Helium-Neon at $68^{\circ} \mathrm{F}$	psia
Fuel	Uranium-Plu Pu 25\% of t	oxide,

Table 4.4 continued

Inlet Temperature $\left({ }^{\circ} \mathrm{C}\right)$	388	$732^{\circ} \mathrm{F}$
Test Bundle Flow (kg/sec)	1.95	$4.29 \mathrm{lbm} / \mathrm{sec}$
Cover Gas Pressure (atm)	1.18	17 psia
Inlet Pressure (atm)	6.42	91.8 psia

Number of Axial Mesh Cells 12
Number of Radial Mesh Cells 3

Fuel Bundle Power $=348 \mathrm{kw}$
Peak Pin Power $=7.5 \mathrm{kw} / \mathrm{ft}$

Percentage of Full Flow

$$
\Delta t z
$$

Test Sequence

Fuel Bundle Power $=662 \mathrm{kw}$Peak Pin Power $=14.4 \mathrm{kw} / \mathrm{ft}$
Approach to Boiling
Incipient Boiling53
Normal Procedure 453.06
Fallback Procedure A 45
5.0 $6 a$
Fallback Procedure B 43
2.5 6b
Dryout or Fuel Pin Failure
Normal Procedure A 42
2.07
Norma1 Procedure B 40
2.0 7
Fallback Procedure A 423.0$7 a$
Fallback Procedure B 4038
Fallback Procedure D
Percentage of Full Flow$\Delta t z$
Test Sequence
5.0 5Dryout or Fuel Pin Failure
40
Fallback Procedure C3.0$7 a^{*}$
3.0 7b
3.0 $7 b^{*}$

Figure 4.13
Typical Boiling Window Flow Decay for the W1 Test

Figure 4.14: W1: Temperatures and Mass Flow Rate for the Sequence 5

Figure 4.15: Wl: Temperature and Mass Flow Rate for Sequence 6

Figure 4.16: W1: Temperatures and Mass Flow Rate for the Sequence 6a

Figure 4.17: W1: Axial Temperature Profile for Sequence 6a

Figure 4.18: Wl: Temperature and Mass Flow Rate for Sequence 7

Figure 4.19: W1: Temperature and Mass Flow Rate for Sequence 7a

Figure 4.20: W1: Axial Temperature Profile for Sequence 7a

Figure 4.21: W1: Temperatures and Mass Flow Rate for Sequence 7a

Figure 4.22: Axial Temperature Profile for Sequence 7a-

Figure 4.23: W1: Void Maps for Sequence 7a

Figure 4.24: W1: Temperatures and Mass Flow Rate for Sequence 7b

Figure 4.25: W1: Axial Temperature Profile for Sequence 7b

Figure 4.27: W1: Temperature and Mass Flow Rate for Sequence 3

Figure 4.28: W1: Axial Temperature Profile for Sequence 3

Figure 4.29: W1: Temperature and Mass Flow Rate for Sequence 4

Figure 4. 30: W1: Axial Temperature Profile for Sequence 4

Figure 4.31: W1: Void Maps for Sequence 4

Figure 4.32: Temperature and Mass Flow Rate for 217-Pin Bundle Under Sequence $7 \mathrm{~b}^{\prime}$ Conditions

Figure 4.33: Axial Temperature Profile for 217-Pin Bundle Under Sequence $7 b^{\prime}$ Conditions

4.3 The GR19 Experiment

As a final test of NATOF-2D the GR19 Experiment was simulated. This is a 19-pin, electrically heated, steady-state test performed on the CFNa loop, France. The test was analyzed with the BACCHUS code [35], and their results are presented here for comparison.

Table 4.6 presents the significant design data of the test. Table 4.7 shows the mass flow rate for the different tests performed, along with the measured maximum temperature and the NATOF-2D results.

Figures 4.32 through 4.34 show the axial temperature profile for these values of the mass flow rate. Figures 4.35 and 4.36 show the quality contours obtained for the values 0.265 and $0.260 \mathrm{~kg} / \mathrm{sec}$ of the mass flow rate, along with the results of the BACCHUS code.

One interesting feature encountered in this simulation was a stable oscillation of the void fraction for the mass flow rate around the value $.320 \mathrm{~kg} / \mathrm{sec}$, with the void fraction ranging from 10 to 50%, indicating the presence of a slug flow.

TABLE 4.6

Design Data for the GR19 Experiment

Number of Pins 19
Clad OD (m)
Heated Length (m)
Downstream Unheated Length (m) 0.494
Upstream Unheated Length (m) 0.12
Wire Wrap OD (m)8.65×10^{-3}
0.6
Flat to Flat (m)1.28×10^{-3}
Inlet Temperature $\left({ }^{\circ} \mathrm{C}\right)$ 400
Saturation Temperature at the Top of Heated Zone (${ }^{\circ} \mathrm{C}$) 920
Power (kw) 170

TABLE 4.7

Mass Flow Rate And Temperatures for the GR19 Experiment

FLOW ($\mathrm{kg} / \mathrm{sec}$)
$\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$
(MEASURED)
$\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$
(NATOF-2D)
.606693
694
$.476 \quad 766$
768
$.405 \quad 825$
827
$.350 \quad 890$
892
.329
918
923
920(Boiling)
.311
921
$.293 \quad 926$
921
$.277 \quad 926$
922
.265
926
925
. 260
944
927

Figure 4.37: GR19: Temperature Profiles For $.260 \mathrm{~kg} / \mathrm{sec}$ Mass Flow Rate

Figure 4.38

GR19 Quality Contours for $0.265 \mathrm{~kg} / \mathrm{sec}$ Mass Flow Rate

Figure 4.39

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

A two dimensional computer code for the simulation of sodium boiling transients was developed using the two fluid model of conservation equations. A semi-implicit numerical differencing scheme, capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid model was used, which took advantage of the dumping effect of the exchange terms. The stability of the method was demonstrated theoretically in Section 2.5 and also by the practical results obtained with the model, shown in Chapter 4. The stability of the model imposes an upper limit on the time step size, which is related to the mesh spacing the phase velocity by the expression

$$
\Delta t<\max \left[\Delta z / \mu_{2}, \Delta r / \mu r\right]
$$

Of particular interest in the development of the model was the identification of the numerical problem used by the strong disparity between the axial and radial dimensions of fuel assemblies used in the current design of Liquid Metal Fast Breeder Reactors. A solution to this problem was found, which used the particular geometry of fuel assemblies to its advantage, reducing drastically the computation time. Most of the constitutive equations incorporated in the model were
obtained through previous work. In general, adequate models were found for most equations, but for a few of them no satisfactory correlations could be produced. These models involve areas of the sodium technology not yet fully understood, and a substantial effort of development must be done in these areas. These models are identified and discussed in the recommendations of this work.

The models and methods of this work were incorporated into the computer program called NATOF-2D. With this program three series of experiments were simulated in order to demonstrate the model capabilities. The results of this simulation, which were presented in Chapter 4 showed good agreement with the experimental results obtained in the tests. One important capability demonstrated in these simulations was the ability of the model to represent the most severe boiling conditions, including flow reversal.

5.2 Recommendations

A word of caution must be said to the eventual users of NATOF-2D. The purpose of this work was to develop a numerical framework capable of solving the set of conservation equations of fluid flow under severe conditions of transient sodium boiling. In this way, most of the effort put into the work was dedicated to developing and organizing the numerical methods and models for solving this set of equations.

Of course the system of equations of fluid flow is not closed unless the constitutive relations describing the interaction of the fluids with the structural components and with themselves is provided, and a
set of constitutive equations were incorporated into NATOF-2D.
Some judgment was exercised in order to select constitutive equations representative of the sodium beahvior, especially those characterizing the explosive volume change associated with sodim boiling at low pressure. This part of the code development was treated as complimentary to the numerical model construction. Therefore, the constitutive models may not be as realistic as the correct representation of sodium boiling in LMFBR fuel assemblies would require, and the overall results of simulations with NATOF-2D may be improved by the eventual improvement of some of the constitutive models incorporated in the code. Thus, this word of caution.

The relatively superficial treatment of the constitutive models is not incidental. Only recently did the interest in LMFBR safety reach the point where extensive investigation of sodium boiling became justified, and a substantial amount of research is yet to be done. Therefore, the present status of knowledge of the physical phenomena associated with sodium boiling does not lead immediately to significantly accurate models of the constitutive equations involved in sodium boiling. The task of developing these models is not a simple one, requiring a considerable effort in theoretical analysis and experimental work, well beyond the scope of this work.

But if NATOF-2D cannot claim to be a complete analytical model for sodium boiling simulation, because of the uncertainties contained in the constitutive models, it is an invaluable tool for the development of these models, where they can be implemented and tested against experimental results.

One of the most important benefits which NATOF-2D can provide to the development of sodium boiling is to identify, by the execution of sensitivity analysis, those constitutive models which affect most of the overall results, thus directing the research effort of sodium boiling to the directions which will lead to more fruitful results.

From the experience we had with NATOF-2D calculations, by far the most important model affecting the end results of sodium boiling simulation is the one for the interphase mass exchange rate (which unfortunately is the one that showed the widest disagreement between authors). Therefore, we recommend as a first step in the continuation of the work presented here that a substantial effort be made in developing a dependable model for the interphase mass exchange rate.

Of the same magnitude in importance is the two phase heat transfer coefficients. Here again the presently available models are few and incomplete. Thus a theoretical and experimental work in this area is recommended, in order to acquire a thorough understanding of the sodium boiling curve.

Another area which could be the object of future investigation is the one related to the interphase heat transfer. Although the direct effect of this exchange term on the overall results is not very marked, the relatively simple model incorporated in NATOF-2D could be replaced by a more refined one. The close relationship between this exchange term and the two previously mentioned would make this model a natural by product of the development of the above-mentioned ones.

REFERENCES

1. Griffith, J. D., "Safety Considerations in Commercial Fast Breeder Reactor Plant Design," MIT summer course - Fast Breeder Reactor Safety, July 1977
2. Hinkle, W. D., LMFBR "Safety and Sodium Boiling, A State of the Art Report," draft, MIT, December 1977
3. Chawla, T. C., and Fauske, H. K., "On the Incoherence in Subassembly Voiding in FTR and its Possible Effects on the Loss of Flow Accident Sequence," Trans Am Nucl Soc 17, p285, November 1973
4. Rowe, D.S., COBRA III-C: "A Digital Computer Program for Steady-State and Transient Thermo-hydraulic Analysis for Rod Bundle Nuclear Fuel Elements," BNWL 1695, March 1973
5. Bohl, W.R., et al, "An Analysis of Transient Undercooling and Transient Overpower Accidents without Scram in the Clinch River Breeder Reactor," ANL/RAS 75-29, July 1975
6. Miao, C., and Theofanous, "A Numerical Simulation of the Two-Dimensional Boiling (Voiding) in LMFBR Fuel Subassemblies," Purdue University
7. Sha, W.T., et al, COMMIX1: "A Three Dimensional Transient Single-Phase Component Computer Program for Thermal Hydraulic Analysis," MIREG-CR 0415, ANL-77-96, September 1978
8. Grand, D., and Basque, G., "Two-Dimensional Calculation of Sodium Boiling in Sub-Assemblies," Service des Transferts Thermique, Centre d'Etude Nucleaires de Grenoble
9. Stewart, H.B., "Fractional Step Methods for Thermo-hydraulic Calculation, "Brookhaven National Laboratory, March 1980
10. Shih, T.A., "The SOBOIL Program, A Transient, Multichannel Two Phase Flow Model for Analysis of Sodium Boiling in LMFBR Fuel Assemblies," Technical Note ST-TN-79008, March 1979
11. Hinkle, W.D., et al, "MIT Sodium Boiling Project FY 1979 Interim Report," draft, 1979
12. Shah, et al, "A Numerical Procedure for Calculating Steady/Unsteady Single-Phase/Two-Phase Three-Dimensional Fluid Flow with Heat Transfer," ANL-CT-79-31, June 1979
13. Ishii, M., "One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes," ANL 77-47, October 1977
14. Grolmes, M.A., and Henry, R.E., "Heat Transfer in Nuclear Power Reactors, Part II: Safety of Liquid Metal Cooled Fast Breeder Reactors," Argonne National Laboratory
15. Weber, M., et al, "Reactor Development Program," Progress Report ANL-RDP-78, December 1978.
16. Carter, J.C., et al, SAS1A, "A Computer Code for the Analysis of Fast Reactor Power and Flow Transients," ANL7607, October 1970
17. Dunn, F.E., "The SAS3A LMFBR Accident Analysis Computer Code," ANL/RAS 75-17, 1975
18. The Separate Flow Model of Two Phase Flow, EPRI NP275, December 1976
19. Agrawal, A.K., et al, "Simulation of Transients in Liquid Metal Fast Breeder Reactor Systems," Nuclear Science and Engineering, Vol 64, 480-491, 1977
20. Boure, J.A., and Latrobe, A., "On Well-Posedness of Two Phase Flow Problems," 16th National Heat Transfer Conference, August 1976
21. Reed, Wm. H., and Stewart, H.B., "THERMIT, A Computer Program For Three-Dimensional Thermal-Hydraulic Analysis of Light Water Reactor Cores, MIT, 1978
22. Rivard, W.C. and Torrey, M.D., "Numerical Calculation of Flashing from Long Pipers Using a Two Field Model," LA6104-MS, Los Alamos, November 1975
23. Chen, J.C., "A Proposed Mechanism and Method of Correlation for Convective Boiling Heat Transfer with Liquid Metals," BNL 7319, August 1973
24. Chao, B.T., Sha, W.T., and Soo, S.L., "On Inertial Coupling in Dynamic Equations of Components in a Mixture," Int J Multiphase Flow, Vol 4, pp219-223, 1978
25. Fabic, S., "Computer Codes in Water Reactor Safety: Problems in Modeling of Loss-of-Coolant Accident," I Mech E Conference, Manchester, 13-15 September 1977
26. Chawla, T.C., and Ishii, M., "Equations of Motion for Two-Phase Flow in a Pin Bundle of a Nuclear Reactor," J Heat Mass Transfer, Vol 21, pp1057-1068, 1978
27. Ramshaw, J.D., and Trapp, J.A., "Characteristics, Stability and Short Wavelength Phenomena in Two-Phase Flow Equations Systems," Nuclear Science and Engineering, Vol 66, pp93-102, 1978
28. Murray, S.E., and Smith, L.L., "Two Dimensional Sodium Voiding Analysis with SIMMER-I," LA-NUREG-6342-PR, June 1977
29. Lyczkowsky, R.W., and Solbrig, C.W., "Calculation of the Governing Equations for Seriated Unequal Velocity, Equal Temperature Two-Phase Flow, Nat Heat Transfer Conference 1977
30. Jones, O.C., Jr., and Pradip, S., "Non-Equilibrium Aspects of Water Reactor Safety," Brookhaven National Laboratory
31. Nigmatulin, R.I., "Equations of Hydromechanics and Compression Shock in Two Velocity and Two Temperature Continuum with Phase Transformation," Fluid Dynamics, Vol 2, No 5, 1967
32. Rohsenow, W.M., and Sukhatme, S.P., "Condensation," Massachusetts Institute of Technology
33. Brinkmann, K.J. and deVries, J.E., "Survey of Local Boiling Investigations in Sodium at ECN-Petten," Netherlands Energy Research Foundation ECN
34. Garrison, P.W., "Superheat Simulation Requirements for the Next Generation of LMFBR Codes," Oak Ridge National Laboratory, March 1979
35. Basque, G., Grand, D., and Menant, B., "Theoretical Analysis and Experimental Evidence of Three Types of Thermohydraulic Incoherence In Undisturbed Cluster Geometry," Kalsruhe, 1979
36. Baker, A.N., et al, "SLSF W-1 Experiment Test Predictions," GEFR 00047-9(L), December 1977
37. Knight, D.D., "SLSF W-1 LODI Experiments Preliminary Evaluation Data," ST-TN-80015, October 1979
38. Henderson, J.M., "Sodium Loop Safety Facility Test Plan HEDL W-1 SLSF Experiment," Hanford Engineering Development Laboratory, September 1978
39. Thompson, D.H., et al, "SLSF In-Reactor Experiment P3A," Interim Post Test Report, Argonne National Laboratory, November 1977
40. Kraft, T.E., et al, "Simulations of an Unprotected Loss-of-Flow Accident with a 37-Pin Bundle in the Sodium Loop Safety Facility," Argonne National Laboratory
41. Collier, J.G., Convective Boiling and Condensation, McGraw-Hill, United Kingdom, 1972
42. Clark, M., Jr., and Hansen, K.F., Numerical Methods of Reactor Analysis, Academic Press, New York, 1964
43. Richtmeyer, R.D., and Morton, K.W., Differential Methods for Initial Value Problems, Interscience, New Yörk, 1967
44. Wallis, G.B., One Dimensional Two Phase Flow, McGraw-Hill, New York, 1969
45. Courant, R., and Hilbert, D., Methods of Mathematical Physics, Interscience, New York 1962
46. Golden, G.H., and Tokar, J.V., Thermophysical Properties of Sodium, ANL 7323, August 1967
47. Van Wylen, G.J., and Sonntag, R.E., Fundamentals of Classical Thermodynamics, John Wiley \& Sons, New York, 1973
48. Kays, W., and London, A.L., Compact Heat Exchanges, McGraw-Hi11, New York, 1964
49. Gunter, A.Y., and Shaw, W.A., A General Correlation of Friction Factors for Various Types of Surfaces in Crossflow, ASME Transactions, 67, pp643-660, 1945
50. Autruffe, M.A., Theoretical Study of Thermohydraulic Phenomena for LMFBR Accident Analysis, MIT thesis, September 1978
51. Stewart, H.B., "Stability of Two Phase Flow Calculations Using Two Fluid Mode1," Journal of Computational Physics, Vol 33, No 2, November 1979
52. Kaiser, A., and Peppler, W., "Sodium Boiling Experiments in an Annular Test Section under Flow Rundown Conditions," KFK 2389, March 1977
53. E1 Wakil, M.M., "Nuclear Heat Transport," International Textbook Company, 1971
54. Fink, J.K., and Leibowitz, L., "Thermophysical Properties of Sodium," ANL-CEN-RSD-79-1, May 1979
55. Gantmacher, F.R., "The Theory of Matrices," Chelesea Publishing Company, 1977
56. Varga, R.S., "Matrix Iterative Analysis," Prentice Hall, 1962
57. Rohsenow, W.M., and Choi, H., "Heat, Mass and Momentum Transfer," Prentice Hall, 1961
58. Poter, M.C., and Foss, J.F., "Fluid Mechanics," Ronald Press, 1975
59. "CRC Handbook of Chemistry and Physics," 58th Edition, CRC Press, 1978
60. Thompson,D.H., et al."SLSF In-Reactor Experiment P3A - Interim Posttest Report",ANL/RAS 77-48, November 1977

In this section the user supplied information necessary to operate NATOF-2D is presented. Before showing the description of the input cards, it is useful to review the array structure of the code. Figure A. 1 shows an example of a full assembly and the corresponding cell arrangement in a r-z plane. Quantities appearing in this figure are:
$N I=$ number of mesh cells in the axial direction. It includes two fictitious half-cells in the top and bottom of fuel assembly.

NJ = number of mesh cells in the radial direction.

All dimensioned variables appear in the program with only one index, therefore a single number identifies each cell in full assembly. The cells are numbered from bottom to top and radially from center to hex can.

Figure A. 2 shows a cross section of the fuel assembly indicating the numbering of the fuel pins. Fuel pin rows are numbered from center to hex can, and the boundary between cells is indicated by the row number where this boundary lies.

Figure A. 3 shows schematically the cell arrangement for the fuel pin heat conduction. The quantities describing this cell arrangement are:

```
NCF = number of mesh cells in fuel.
NCLD = number of mesh cells in clad.
```


Figure Al. Cell Arrangement in the R-Z Plane

Figure A. 2 Fuel Pin Numbering

Figure A3. Cell Arrangement for Fuel Pin Heat Conduction

A single cell is assumed by the code for the gap between fuel and clad.

Following is a presentation of the sequence of cards in the input data. Following the list of variables, in parenthesis, is the corresponding format for these variables.

1. General Description of the Problem

1st CARD: NI, NJ, NCF, NCLD

NI = number of mesh cells in axial direction
$\mathrm{NJ}=$ number of mesh cells in radial direction
NCF = number of mesh cells in fuel
NCLD $=$ number of mesh cells in clad

2nd CARD: NSET, TSET (I5, E15.4)

This card contains information which controls the printed output. the code will print NSET times the flow map, with a time interval _TSET. - This card can be repeated up to 49 times, so that the time interval between prints can be varied to reflect the desired degree of information at each time. Following these cards, a card containing only zeros in the position corresponding to NSET must be placed, to indicate the end of this subset.

3rd CARD: ITM, IGAUSS, DTMAX, EPS1, EPS2
(2I10, 3E15.9)

ITM = maximum number of iterations in the Newton iterative solution.

IGAUSS $=$ maximum number of iterations in the pressure problem solution.

DTMAX = maximum value for the time step increment. EPS1 = convergence criterion for the Newton iteration. EPS2 = convergence criterion for the pressure problem. EPSI and EPS2 are criteria on the absolute value of the pressure. Their unit is $\mathrm{N} / \mathrm{m} 2$.

2. Boundary Conditions

The next group of cards contains information governing the boundary conditions of the problem as a function of time. The simulation time is divided in up to 50 segments in which different functions can be prescribed for the boundary conditions. For a generic time segment L, the formulas used by the program for the boundary condition are:

$$
X=\left(X_{1}(L) * D T I M E+X_{2}(L)\right) * \exp (O M X(L) * D T I M E)+X_{3}(L)
$$

where:

DTIME $=$ TIME $-\mathrm{TB}(\mathrm{L}-1)$
$L=$ Index of current time segment
$T B(L)=$ Time at the end of segment L
$X_{1}, X_{2}, X_{3}, O M X=$ Input parameters
and X stands for:

PNB $=$ Pressure at the bottom of fuel assembly ($\mathrm{N} / \mathrm{m}^{2}$)
PNT $=$ Pressure at the top of fuel assembly ($\mathrm{N} / \mathrm{m}^{2}$)

ALB $=$ Void fraction at the inlet of fuel assembly.
TVB $=$ Vapor temperature at inlet $\left({ }^{\circ} \mathrm{K}\right)$.
TLB $=$ Liquid temperature at inlet (${ }^{\circ} \mathrm{K}$).
HNW = Power density in fuel pins ($\mathrm{W} / \mathrm{m}^{3}$)

In order to save time, the code has an option to eliminate the exponencial part in the formula to calculate the boundary condition. Thus, whenever the logical parameter LP is
.TRUE., the boundary conditions are calculated as:
$\mathrm{X}=\mathrm{X}_{1}(\mathrm{~L}) *$ DTIME $+\mathrm{X}_{2}(\mathrm{~L})$
lst CARD: LP, TB (L1, F15.5)
2nd CARD: PNB1, PND2, PNB3, OMP (4E15.9)
3rd CARD: PNT1, PNT2, PNT3, OMT (4E15.9)
4th CARD: ALB1, ALB2, ALB3, OMA (4E15.9)
5th CARD: TVB1, TVB2, TVB3, OMV (4E15.9)
6th CARD: TLB1, TLB2, TLB3, OML (4E15.9)
7th CARD: HNB 1 , HNB2, $\mathrm{HNB} 3, \mathrm{OMH}$ - (4E15.9)

This group of seven cards can be repeated for as much as the number of segments desired. To indicate the end of this subset, a card containing only a ' F ' in the first position must be placed following the data.
3. Geometric Description of the Problem

1st CARD: NROW, PITCH, D, E (I5, 3E15.9)

NROW = Number of rows of fuel pins in fuel assembly.
PITCH $=$ Distance between fuel pin centerlines (m).
$D=$ Fuel pin diameter (m).
$E=$ Minimun distance between fuel pin surface and hex can wall (m).
(see Figure A.2)

2nd CARD: $N(J), J=1,20$
$\mathrm{N}(\mathrm{J})$ is the row number where the boundary between cell J and cell J + l lies.
(see Figure A.2)

3rd CARD: LDATA, DZ (K) (L1, 5E15.9)

In this group of cards the axial mesh spacing $D Z$ are written sequentially from 1 to NI, five per card. The logical parameter LDATA must have a .TRUE. value in each card where DZ is written. Following this group of cards, a card containing an ' F ' in the first position must be placed to indicate the end of this set of data.

4th CARD: LDATA, CAN (K) (L1, 5E15.9)

The same arrangement of the previous group of cards.
CAN $=$ Heat capacity of the hex can per unit area, for each axial mesh cell $\left(\mathrm{J} / \mathrm{m}^{2}{ }^{\circ} \mathrm{K}\right)$. There must be one value for each axial mesh cell.

5th CARD: LDATA, SHAPE(K) (L1, 5E15.9)

The same arrangement as the previous group of cards.
SHAPE = Power density shape in fuel assembly. There must be one value of SHAPE for each mesh cell in fuel assembly.

6th CARD: LDATA, $\operatorname{SPPD}(\mathrm{K})$ (L1, 5E15.9)

The same arrangement as the previous group of cards.
SPPD $=$ Spacer pressure drop. There must be one value of
SPPD for each mesh cell in fuel assembly. The code will
treat the spacer pressure drop as:
$\Delta \mathrm{p}=\mathrm{SPPD} * \frac{\rho \mathrm{U}^{2}}{-2}$

7th CARD: LDATA, PPP(K) (L1, 5E15.9)

The same arrangement as the previous group of cards.
PPP = Radial power profile inside fuel pin. There must be one value of PPP for each fuel pin mesh cell, including gap and clad (i.e., there is NCF $+1+$ NCLD values).

The power clensity at each fuel pin mesh cell will be the product of the power density specified in the boundary conditions, multiplied by the value of SHAPE for the corresponding fuel assembly mesh cell, multiplied by the value of PPP for the corresponding fuel pin mesh cell.

8th CARD: AD, APU, DIL (3E15.9)
$A D=$ Fraction of theoretical density of fuel.
APU $=$ Fraction of plutonium in full.
DIL $=$ Fraction of helium in gap composition.

9th CARD: LPLNM(I), $I=1, N I$

LPLNM is an integer which indicates the axial composition of fuel pin. LPLNM $=0$ indicates gas composition (for upper plenum). LPLNM $=1$ indicates mixed oxide $\mathrm{U}, \mathrm{PuO}_{2}$. There must be one value of LPLNM for each axial node.

10th CARD: PADR, THC, THG
(3E15.9)

RADR $=$ Fuel pin outside radius (m).
THC $=$ Clad thickness (m).
THG $=$ Gap thickness (m).

4. Initial Conditions

lst CARD: LSS, TINIT (LI, E15.9)

> LSS is a logical parameter to indicate steady-state or transient problem.

LSS $=$.FAISE. indicates transient problem.
LSS $=$. TRUE. indicates steady-state problem.

In case LSS is .TRUE., the remaining initial condition input data resume to the next card:

2nd CARD: PIN, POUT, TIN, TAV

PIN $=$ Pressure at fuel assembly inlet ($\mathrm{N} / \mathrm{m}^{2}$)
POUT $=$ Pressure at fuel assembly outlet ($\mathrm{N} / \mathrm{m}^{2}$)
TIN $=$ Inlet 1 iquid temperature $\left({ }^{\circ} \mathrm{K}\right)$
$T A V=$ An estimate of the average temperature in fuel assembly (${ }^{\circ} \mathrm{K}$)

In case LSS $=$.FALSE., the next cards follow:

2nd CARD: KO, TV, TL, P. ALFA (I5, 4E15.9)
3rd CARD: KO, UVZ, ULZ, UVR, ULR (I5, 4E15.9)

KO is the cell number. It appears in both cards to put a check in the input data. Each pair of cards correspond to the same mesh cell. The group is to be repeated for as many as the number of mesh cells.

TV = Vapor temperature $\left({ }^{\circ} \mathrm{K}\right)$
$\mathrm{TL}=$ Liquid temperature $\left({ }^{\circ} \mathrm{K}\right)$
$P=$ Pressure

ALFA $=$ Void fraction
UVZ = Axial vapor velocity (m/sec)
UVR $=$ Radial vapor velocity (m/sec)

URR = Radial liquid velocity (m/sec)

4th CARD: LDATA, TR(K) (Ll, 5E15.9)

The same arrangement as the group of cards for DZ .
$T R=$ Fuel pin temperature (${ }^{\circ} \mathrm{K}$).
This array must contain one value for each fuel pin mesh cell. The values of $T R$ are ordered as: $\operatorname{TR}(1)=$ Fuel centerline temperature at cell number 1. $\operatorname{TR}(\mathrm{NCF}+1+\mathrm{NCLD})=$ Surface clad temperature at cell number 1.
$T R(N C F+1+N C L D+1)=$ Fuel centerline temperature at cell number 2.
etc.

5th CARD: LDATA, TCAN(K) (Ll, 5E15.9)

The same arrangement as the previous group of cards.
TCAN $=$ Hex can initial temperature (${ }^{\circ} \mathrm{K}$).
There must be one value of TCAN for each axial node.

APPENDIX B

NATOF - 2D Programming Information

When NATOF-2D was programmed, it was recognized that the field of sodium boiling is presently the subject of a large effort of research, and therefore it can be expected that in the future this research will produce better correlations for the constitutive laws governing the sodium two-phase flow. In order to make changes in the program as easy as possible, NATOF-2D was programmed with its subroutines in a modular structure, particularly the parts of the program dealing with the constitutive laws.

In this way, the programmer working on modification of one particular subroutine does not have to worry about the rest of the program, provided the expressions introduced in that subroutine meet the requirements of consistency of the derivatives with respect to new time variables, which were discussed in chapter 2.

Following is a description of NATOF-2D subroutines, their functions and structure. The reader is referred to figure Bl , which shows the structure of NATOF-2D.

Figure B1. NATOF-2D Subroutine Structure

The main program's only function is to allocate memory storage space for the dimensioned arrays and transfer the control of the program to subroutine HEAD.

All arrays whose dimensions are a function of the number of mesh cells are placed within a single array ORBI. Individual arrays are located by pointers which determine the first element of each array. These pointers are grouped into the integer array M, and the correlation of the pointer to the variable is as following:
$M(1)=P=$ New time, pressure, cell centered
$M(2)=P O=$ Old time, pressure, cell centered
$M(3)=T V=$ Vapor temperature, new time, cell centered
$M(4)=T V O=$ Vapor temperature, old time, cell centered
$M(5)=T \overline{\text { L }}=$ Liquid temperature, new time, cell centered
$M(6)=T L O=$ Liquid temperature, old time, cell centered
$M(7)=$ ALFAN $=$ Void fraction, new time, cell centered
$M(8)=$ ALFAO $=$ Void fraction, old time, cell centered
$M(9)=$ ALFAZ $=$ Void fraction, axial face centered
$M(10)=$ ALFAR $=$ Void fraction radial face centered
$M(11)=$ RHOV $=$ Vapor density, cell centered
$M(12)=$ RHOL $=$ Liquid density, cell centered

M (13)	$=\mathrm{RHOVZ}$	$=$ Vapor density, axial face centered
M (14)	$=$ RHOLZ	$=$ Liquid density, axial face centered
M(15)	$=$ RHOVR	$=$ Vapor density, radial face centered
M (16)	$=$ RHOLR	$=$ Liquid density, radial face centered
M(17)	$=\mathrm{EV}$	$=$ Vapor internal energy, cell centered
M(18)	EL	$=$ Liquid internal energy, cell centered
M(19)	$=\mathrm{EVZ}$	$=$ Vapor internal energy, axial face centered
M (20)	ELZ	$=$ Liquid internal energy, axial face centered
M(21)	$=\mathrm{EVR}$	$=$ Vapor internal energy, radial face centered
M(22)	$=E L R$	$=$ Liquid internal energy, radial face centered
M(23)	$=$ UVZN	$=$ Axial vapor velocity, new time, axial face centered
M(24)	ULZN	= Axial liquid velocity, new time, axial face centered
M (25)	UVRN	$=$ Radial vapor velocity, new time, radial face centered
M (26)	$=$ ULRN	$=$ Radial liquid velocity, new time, radial face centered
M(27)	$=$ UVZO	$=$ Axial vapor velocity, old time, axial face centered
M (28)	$=$ ULZO	$=$ Axial liquid velocity, old time, axial face centered
M(29)	$=$ UVRO	$=$ Radial vapor velocity, old time, radial face centered
M(30)	$=$ ULRO	$=$ Radial liquid velocity, old time, radial face centered
M(31)	$=\mathrm{UVRZ}$	$=$ Radial vapor velocity, axial face centered
M(32)	ULRZ	$=$ Radial liquid velocity, axial face centered

M(33)	$=$ UVZR		Axial vapor velocity, radial face centered
M(34)	$=$ ULZR	$=$	Axial liquid velocity, radial race centered
M (35)	to M(62)	$=$	Implicit terms for the conservation equations
M(63)	$=\mathrm{DH}$	$=$	Axial flow hydraulic diameter
M (64)	$=\mathrm{DHR}$	$=$	Radial flow hydraulic diameter
M(65)	$=\mathrm{DV}$	$=$	Fuel pin specific surface area
M(66)	$=\mathrm{QSI}$	$=$	Maximum-to-average radial velocity coefficient
M(67)	$=\mathrm{TS}$	=	Saturation temperature, new time
M (68)	$=\mathrm{TW}$	$=$	Fuel pin wall temperature, new time
M(69)	$=\mathrm{DTW}$	=	Increment in heat transfer for unit increment in TW
M (70)	$=$ HCONV	$=$	Vapor heat transfer coefficient
M(71)	$=$ HCONL	\cdots	Macroscopic liquid heat transfer coefficient
M(72)	$=$ HNB	$=$	Microscopic liquid heat transfer coefficient
M(73)	to M(79)	$=$	Coefficients for the pressure problem
M(80)	$=T R$	$=$	Fuel pin temperature
M(81)	$=$ DTR	_=	Auxiliary array for fuel pin heat conduction
M(82)	$=\mathrm{TWO}$	$=$	Fuel pin wall temperature, old time
M(83)	to M(89)	$=$	Auxiliary arrays
M(90)	$=\mathrm{SPPD}$	$=$	Localized pressure drop coefficienct
M(91)	$=\mathrm{TCAN}$	=	Hex can temperature

The storage space required by the array $O R B I$ is given in double precision storage word by the formula:

$$
[135+2(\mathrm{NCF}+\mathrm{NCLD})] \mathrm{NI} \cdot \mathrm{NJ}
$$

HEAD :	- Defines the pointers of array ORBI - Controls the duration of the run - Controls the printouts
READ 1:	- Reads arrays' dimensions
READ 2:	- Reads all other information - Writes in FILE07 the input data for a restart - Calculate parameters which will remain constant throughout the problem
SS:	- Performs an initial guess for the steady-state problem
TMSTEP:	- Advances one time step - Controls convergence of the Newton iteration - Controls time step size. The time step is always kept below the connective limit. If an instability occurs during the run, such as non-convergence of the iterative procedures or a variable outside range of validity, TMSTEP reduces the time step size by a factor of ten and the run is resumed. the difficulty is removed, the time step will be increased slowly towards the convective limit again. If after three time step reductions the instability still persists, an error message will be printed and the execution terminated.
DONOR:	- Transfers all centered quantities to face centered positions - Calculates explicit terms in momentum equation
WS:	- Calculates explicit terms for mass and energy equations

```
ONESTP: - Performs one step of Newton iteration
    - Calculates new values of implicit variables
    - Checks variables against range of validity
COEFF: - Calculates momentum exchange coefficients
BC: - Calculates boundary conditions as a function of time
HTCF: - Calculates heat transfer coefficients
STATE: - Calculates sodium thermodynamic properties and its
        derivatives. The code stability imposes two
        requirements on the expressions for the sodium
        functions of state: the expressions for the
        densities must account for the pressure dependence
        which corresponds to a real, positive, finite
                sonic speed.
            The expressions for the property derivatives with
                respect to new time variables must be the analytic
                or numerical derivative of the expressions of
                the properties (but not approximated expressions).
```

NONEQ: - Calculates the mass and energy exchange rates and its derivatives. The same requirement applied to the derivatives of the properties in STATE also applies here.

CONDT: - Calculates the heat transfer between fluid and fuel pin and its derivatives. The requirement concerning the derivatives described above also applies here.

HEXCAN: - Calculates the heat transfer between fluid and hexcan walls, and its derivatives. The requirement concerning the derivatives described above also applies here.

```
FPROP: - Finds the fuel pin transport properties
FUEL: - Transport properties of fuel
GAP: - Transport properties of gap
CLAD: - Transport properties of clad
FPIN: - Solves first part of heat conduction in fuel pin
FTP: - Solves second part of heat conduction in fuel pin
THXCN: - Solves the first part of hexcan heat conduction
THXCNO: - Solves the second part of hexcan heat conduction
POWER: - Calculates the power density as a function of time
```

GAUSIE: - Solves the pressure problem
ERRMES: - Prints error messages
SAVER: - Saves fluid flow variables at the end of run for
eventual restart,

Functions

CONDL - Liquid thermal conductivity as function of temperature
CONDV - Vapor thermal conductivity as function of temperature
CPL - Liquid specific heat as function of temperature
HFG - Enthalpy of vaporization as function of pressure
PRL - Liquid Prandtl number as function of temperature
PRV - Vapor Prandtl number as function of temperature
SAT - Saturation temperature as function of pressure
DTSDP - Pressure derivative of saturation temperature as
SURTEN - Surface tension as function of temperature
VISCV - Vapor viscosity as function of temperature
VISCL - Liquid viscosity as function of temperature

APPENDIX C

NATOF - 2D I/O EXAMPLES

Fortran unit numbers for the data files are as follows:
5 is the standard input unit
6 is for the printed output
7 is the dump file to restart

After a successful run, the program creates in file 7 an input data set corresponding to an initial value problem starting at the time the last run was finished. This is particularly useful in generating a transient problem input data set, which requires a substantial amount of information for the initial conditions. In this way, a steady-state problem, which requires a relatively small amount of information, produces in file 7 the input data for the transient problem. The user must only change the cards which describe the boundary conditions, to represent the desired transient conditions, and the desired sequence of printouts.

Following is an example of the input data set for a steady state problem, a transient problem, and an example of the printed output. These examples were taken from the 217 -pin simulation described in section 4.

```
    12 5 4 2
    20.1500000000+01
    20.1500000000+01
        8 4.40000
```


T

$0.0000000000+000.6757500000+060.0000000000+000.0000000000+00$ $0.0000000000+000.27760000 c D+060.0000000000+000.0000000000+00$ $0.0000000000+000.0000000000+000.0000000000+090.0000000000+00$ $0.0000000000+000.661+400000+030.0000000000+000.0000000000+00$ $0.0000000000+000.6611400000+030.0000000000+000.0000000000+00$ $0.0000000000+000.244508686 D+100.0000000000+000.0000000000+00$ T 0.00000
50.7264400000-020.5842000000-020.7112000000-03
 T0. $1829000000+000.1829000000+000.1829000000+000.182900000 \mathrm{D}+000.182900000 \mathrm{D}+00$ TO. $182900000 \mathrm{D}+000.1829000000+000.1829000000+000.182900000 \mathrm{D}+000.1829000000+00$ T0. $182900000 \mathrm{D}+000.182900000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ FO. $0000000000+000.000000000 D+000.000000000 D+C .00 .000000000 D+000.000000000 D+00$ r0. $850000000 \mathrm{D}+040.850000000 \mathrm{D}+040.850000000 \mathrm{D}+040.850000000 \mathrm{D}+040.850000000 \mathrm{D}+04$ $\mathrm{TO} .85000000 \mathrm{CD}+0.40 .850000000 \mathrm{D}+\mathrm{C40.0000000000+000.000000000D+000.000000000D+00}$ r0. $0000000000 \mathrm{D}+0.00 .000000000 \mathrm{D}+000.000000000 \mathrm{D}+\mathrm{C} 00.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ FO. $000000000 D+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+\mathrm{C00.0000COOCOD+090.000000000D+00O}$ T0.000000000D+000.000000000D+000.6774030C0D+CC0.8387C2000D+000.100000000D+01 T0. $838702000 \mathrm{D}+000.6774030 \mathrm{CeD}+000.000000000 \mathrm{D}+000.00000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ r0.000000000D+000.000000000D+000.000000000D+000.001000000D+000.677403000D+00 T0. $838702000 \mathrm{D}+000.100000000 \mathrm{D}+010.838702000 \mathrm{D}+000.677103000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $10.000000009 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0.0000000000+000.6774030000+000.8337020000+000. $1000000000+010.8367020000+00$ T0. $677403000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+\mathrm{C} 00.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0.0009 $100000+090.0000000000+000.0000000000+C 00.677103000 \mathrm{D}+000.8387020000+00$ T0. $1000000000+010.8387020000+000.6774030000+000.00 .3000000 \mathrm{D}+000.0000000000+00$ T0. $0000000000+000.030000000 \mathrm{D}+000.0000000000+000.0 \mathrm{C}=000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0. $677403000 \mathrm{D}+000.8387020000+000.100000000 \mathrm{D}+010.832702000 \mathrm{D}+000.577403000 \mathrm{D}+00$ T

. $000000000+000.000000000 D+000.0000000000+000.0000000000+000.0000000000+00$

 T0. $000000000 \mathrm{D}+000.610000000 \mathrm{D}+020.0000000000+000.0000000000+000.0000000000+00$ T0. 0 C0000000D $+000.0000000005+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+0.00 .0000000000 \div 000.6100000000+020.0000000000 \div 00$ TO. $0000000000 \mathrm{D}+\mathrm{COC} .000000000 \mathrm{D}+000.000000000 \mathrm{D}+\mathrm{C} 00.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ ro. $0 \mathrm{Cc} 0000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+0 \mathrm{cc} 0.000000000 \mathrm{D}+\mathrm{CO}$ $10.6100000000+020.000000000 D+000.0000000000+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0.0000000000+000.000000000D+000.0000000000+000.000000000D+000.000000000D+00 r0. $000000500 \mathrm{D}+000.090000000 \mathrm{D}+\mathrm{C000.6100000000+120.0000000000+0000.000000000D+00}$ r0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000+000.000000000 \mathrm{D}+0000.000000000 \mathrm{D}+00$ TO. $0000000000+000.0000000000+000.0000000000+000.000000000 D+000.8690000000+02$FO. $0000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000 \mathrm{t}+000.000000000 \mathrm{D}+000.0000000000+00$
T0. $100000000 D+010.100000000 D+010.1000000000+010.100000000 D+010.000000000 D+00$ T0. $000000000 \mathrm{D}+000.0000000000+000.0000000000+000.000000000 \mathrm{D}+000.000000000 D+00$
$F 0.000000000 D+000.0000000000+000.0000000000+000.000000000 D+000.000000000 D+00$
$0.9540000000+000.250000000 \mathrm{D}+000.9000000000+00$
 0.2921000000-020.3810000000-030.6000000000-04

T0. $0000000000+00$
$0.6757500000+060.2776000000+060.6611400000+030.9000000000+03$

TRANSIENT INPUT DATA SET

EXAMPLE

```
    12 5 4 4
    350.10000000000+00
    00.0000000000+00
        8
```

$\xrightarrow{I}-.8220800000+060.6757500000+060.0000000000+000.0000000000+00$
$-.822080000 D+060.675750000 D+060.0000000000+000.0000000000+00$
$-.180800000 D+060.2776000000+060.0000000000+000.0000000000+00$
$0.0000000000+000.0000000000+000.0000000000+000.000000000 D+00$
$0.0000000000+000.6611400000+030.0000000000+000.0000000000+00$
$0.0000000000+000.6611400000+030.0000000000+000.0000000000+00$
$0.0000000000+000.2445086880+100.0000000000+000.0000000000+00$
T
$0.0000000000+000.264710000 \mathrm{D}+06$
$0.0000000000+000.1872000000+06$
$0.0000020000+000.0000000000+00$
$0.0000000000+000.6611400000+03$
$0.0000000000+000.6611400000+03$
$0.0000000000+000.244508688 D+10$
T
4.0
$0.806340000 \mathrm{D}+060.2725600000+06$
$0.1768000000+060.1892000000+06$
$0.0000000000+000.0000000000+00$
$0.0000000000+000.6611400000+03$
$0.0000000000+000.6611400000+03$
$-.4645665100+100.2445086880+10$
r 9.0
$0.0000000000+000.6757500000+06$ $0.0000000000+000.2776000000+06$ $0.0000000000+000.000000000 D+00$ $0.000000 n 000+000.6611400000+03$ $0.0000000000+000.6611400000+03$ $0.0000000000+000.1222543300+09$ r 0.00000 90.7204400000-020.5842000000-020.7112000000~03
$\begin{array}{lllllllllllllllll}8 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ T0. $182900000 \mathrm{D}+000.182900000 \mathrm{D}+000.1829000000+000.182900000 \mathrm{D}+000.1829000000+00$ T0. $182900000 \mathrm{D}+000.182900000 \mathrm{D}+000.1829000000+000.182900000 \mathrm{D}+000.182900000 \mathrm{D}+00$ T0. $1829000000+000.1829000000+0.00 \cdot 0000000000+000.0000000000+000.0000000000+00$ FC. $0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ T0. $8500000000+040.850000000 D+040.8500000000+040.850000000 D+040.9500000000+04$ T0. $8500000000+040.850000000 D+040.0000000000+000.0000000000+000.0000000000+00$ $10.0000000000+000.0000000000 \div 000.0000000000+000.00 c 0000000+000.0000000000+00$ $F 0.0000000000+000.0000000000+000.0000000000+000.0000000000+000.000000000 D+00$ ro. $0000000000+000.0000000000+000.6774030000+000.8387020000+000.1000000000+01$ T0. $8387020000+000.6774030000+000.0000000000+000.000000000 D+000.000000000 D+00$

T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000+000.000000000 \mathrm{D}+000.677403000 \mathrm{D}+00$ T0. $838702000 \mathrm{D}+000.100000000 \mathrm{D}+010.838702000 \mathrm{D}+000.677103000 \mathrm{D}+000.0000000000 \mathrm{D}+00$ T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0. $000000000 \mathrm{D}+000.677403000 \mathrm{D}+000.838702000 \mathrm{D}+000.100000000 \mathrm{D}+010.838702000 \mathrm{D}+00$ $10.677403000 D+0.00 .0000000000+000.0000000000+000.0000000000+000.0000000000+00$ r0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.6771030000+000.838702000 \mathrm{D}+\mathrm{CO}$ T0. $100000000 \mathrm{D}+010.8387020000+000.677403000 \mathrm{D}+\mathrm{C} 00.0000000000+000.000000000 \mathrm{D}+00$ $10.0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ T0. $677403000 \mathrm{D}+000.8387020000+000.10000000 C D+C 10.8387020000+000.6774 .03000 J+00$ $10.0000000000+000.0000000000+000.000000000 \mathrm{D}+000.0500000000+000.000000000 \mathrm{D}+00$ $F 0.000000000 D+000.0000000000+000.000000000 D+000.0000000000+000.0000000000+00$ T0. $0000000000+000.6100000000+020.0000000000+C 00.0000000000+000.0000000000+00$ T0. $000000000 \mathrm{D}+000.0000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000+000.000000000 \mathrm{D}+00$ T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+\mathrm{C} 00.610000000 \mathrm{D}+020.00 .0000000 \mathrm{D}+00$ $10.0000000000+000.0000000000+000.000000000 D+000.0000000000 \mathrm{D}+000.000000000 D+00$ T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ T0. $6100000000+020.0000000000+000.0000000000+000.00000000000+000.00000000000+00$ $T 0.0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ T0. $0000000000+000.0000000000+000.6100000000+020.0000000000+000.0000000000+00$ T0. $0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ T0. $0000000000+000.0000000000+000.000000000 D+000.000000000 D+000.8690000000+02$ $10.0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ T0. $000000000 \mathrm{D}+000.000000000 \mathrm{D}+000.0000000000+\mathrm{C} 00.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $F 0.0000000000+000.0000000000+000.0000000000+000.0000000000+000.0000000000+00$ $10.1000000000+010.1000000000+010.1000000000+010.100000000 D+010.0000000000+00$ $10.0000000000+000.00000000 \mathrm{D}+000.000000000+0.00 .000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ F0. $000000000 D+000.000000000 D+000.0000000000+000.000000000 D+000.000000000 D+00$ $0.9540000000+000.2500000000+000.9000000000+00$
111111111000000000000000000000000000000 0.292100000D-020.3810000000-030.6000000000-04

F0. $0000000000+00$
$10.6611400000+030.6611400000+030.6757500000+060.0000000000+00$ $10.6453642800+010.645364280 \mathrm{D}+010.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $20.66113997 C D+030.661139976 \mathrm{D}+030.457953361 \mathrm{D}+060.000000000 \mathrm{D}+00$ $20.64536428 C D+010.6453642800+010.9443920500-030.9443920500-03$ $30.70901819 .4 \mathrm{D}+030.709018194 \mathrm{D}+030.440294610 \mathrm{D}+060.0000000000 \mathrm{D}+00$ $30.6440284540+010.6440284540+010.624381194 D-030.6243811940-03$ $40.7688165550+030.7688169550+030.422317592 D+060.0000000000+00$ $40.6518137040+010.6518137040+010.3601116390-030.3601116390-03$ $50.84061269 \mathrm{CD}+030.8406126930 \div 030.40431180$ ¢D $+060.0000000000+00$ $50.062503 C 530+010.6625030590+010.2682898020-030.2682898020-03$ $60.901049391 \mathrm{D}+030.901049391 \mathrm{D}+030.386078761 \mathrm{D}+060.000000000 \mathrm{D}+00$ $60.676132297 D+010.6761322970+010.1248164710-030.1248164710-03$ $70.949882204 D+030.949882204 D+030.367828564 D+060.0000000000+00$ $70.6882486700+010.6882486700+010.267044809 D-040.2670448090-04$
$80.9498821460+030.9498821460+030.3493551770+060.000000000 D+00$ $80.698495222 \mathrm{D}+010.698495222 \mathrm{D}+01-.2482585430-03-.2482585430-03$ $90.9498821350+030.9498821350+030.33141314 G D+060.000000000 D+00$ $90.6988597890+010.6988597890+01-.9917327070-04-.9917327070-04$ $100.9498821480+030.9498821480+030.313474029 D+050.0000000000+00$ $100.6990075330+010.6990075385+01-.3576223350-04-.3576223350-04$ $110.9498821210+030.9498321210+030.2955364950+060.0000000000+00$ $110.6990631111 D+010.6990631111 D+01-.8213268830-05-.8213263830-05$ $120.9498821210+030.9498821210+030.2776000000+060.0000000000+00$ $120.6990786380+010.699078638 \mathrm{D}+010.0000000000+000.0000000000+00$ $130.6611400000+030.661140000 D+030.6757500000+060.0000000000+00$ $130.6454035260+010.6454035260+010.0000000000+000.0000000000+00$ $140.6611399760+030.661139976 D+030.4579449460+060.0000000000+00$ $140.6454035260+010.6454035260+010.134087592 D-020.1340875920-02$ $150.7090054300+030.7090054300+030.440286939 D+060.0000000000+00$ $150.644199773 D+010.644199773 D+010.9282518480-030.9282518480-03$ $160.7687868080+030.768786808 D+030.4223136400+060.0000000000+00$ $160.651999493 D+010.6519994930+010.5488213100-030.5488213100-03$ $170.840563281 D+030.840563281 D+030.4043090990+060.0000000000+00$ $170.662673574 D+010.662673574 D+010.427459315 D-030.4274593150-03$ $180.900987733 \mathrm{D}+030.9009877330+030.3860776510+060.0000000000+00$ $180.676253771 \mathrm{D}+010.676258771 \mathrm{D}+010.2157174030-030.215717403 \mathrm{D}-03$ $190.949814287 D+030.949814287 D+030.3678283790+C 50.0000000000+00$ $190.682324996 D+010.6883249960+010.945914321 D-040.945914321 D-04$ $200.949814277 D+030.949814277 D+030.3493575750+060.0000000000+00$ $200.698476007 D+010.6984760070+01-.3560414570-03-.3560414670-03$ $210.9498142350+030.9498142850+030.3314139500+060.0000000000+00$ $210.698812060 D+010.6988120600+01-.1499521010-03-.1499521010-03$ $220.949814304 D+030.949814304 D+030.3134743160+060.000000000 D+00$ $220.698961839 D+010.693961889 D+01-.5971750170-04-.5971750170-04$ $230.9498142790+030.9495142790+030.2955365540+060.0000000000+00$ $230.699028057 \mathrm{D}+010.699028057 \mathrm{C}+01-.1820373190-04-.182037349 \mathrm{D}-04$ $240.9498142790+030.9498142790+030.2776000000+060.0000000000+00$ $240.699053343 D+010.699053848 D+010.0000000000+000.0000000000+00$ $250.6611400000+030.6611400000+030.6757500000+060.0000000000+00$ $250.6454178450+010.645417845 D+010.0000000000+000.0000000000+00$ $260.661139976 D+030.6611399760+030.4579354250+060.0000000000+00$ $260.6454178450+010.6454178450+010.1559790970-020.1559790870-02$ $270.7090076510+030.7090076510+030.4402812980+060.0000000000+00$ $270.6441596880+010.644169688 D+010.108494207 D-020.108494207 D-02$ $280.768792981 D+030.768792981 D+030.422310628 D+060.0000000000+00$ $280.651956761 D+010.6519567610+010.638818786 D-030.6388187860-03$ $290.840572981 D+030.840572981 D+030.4043069360+060.0000000000+00$ $290.662642196 D+010.6626421960+010.5040137530-030.5040137530-03$ $300.901000145 D+030.901000145 \mathrm{D}+030.386076682 \mathrm{D}+060.0000000000+00$
$300.6762302430+010.6762302430+010.2562526010-030.2562526010-03$ $310.9498283290+030.949828329 D+030.3678279860+060.0000000000+00$ $310.6883042990+010.6883042990+010.1275194960-030.1275194960-03$ $320.9498280940+030.949823094 D+030.349359311 D+060.0000000000+00$ 320.69844393 ЭD $+010.698443939 \mathrm{D}+01-.41977659$ GD-03-. $419776596 \mathrm{D}-03$ $330.949827962 \mathrm{D}+030.949827962 \mathrm{D}+030.331414574 \mathrm{D}+060.0000000000+00$ 330.69880642 AD $+010.698806424 \mathrm{D}+01-.1775931080-03-.1775931080-03$ $340.949827916 \mathrm{D}+030.9498279160+030.3134745600+060.000000000 \mathrm{D}+00$ $340.6989636220+010.6989636220+01-.7185433160-04-.7185483160-04$ $350.949827871 \mathrm{D}+030.949827871 \mathrm{D}+030.295536625 \mathrm{D}+060.0000000000+00$ $350.699031921 \mathrm{D}+010.699031921 \mathrm{D}+01-.227451 \mathrm{GEGD}-04-.22745168 \mathrm{GD}-04$ $360.9498278710+030.949827871 D+030.2776000000+060.0000000000+00$ $360.6990573700+010.6990578700+010.0000000000+000.0000000000+00$ $370.6611400000+030.6611400000+030.6757500000+060.0000000000+00$ $370.645428949 D+010.645428949 D+010.000000000 D+000.0000000000+00$ $380.6611399760+030.6611399760+030.4579280410+060.0000000000+00$ $380.645428949 \mathrm{D}+010.645428949 \mathrm{D}+010.179030824 \mathrm{D}-020.179030824 \mathrm{D}-02$ $390.709009385 D+030.709009335 D+030.440276865 D+060.0000000000+00$ $390.6441464470+010.644146447 D+010.1244681690-020.1244681690-02$ $400.7687978310+030.768797831 \mathrm{C}+030.4223082920+060.0000000000+00$ $400.6519233590+010.651923359 D+010.7260552930-030.7260552830-03$ $410.8405805940+030.8405805940+030.4043052350+060.0000000000+00$ $410.662617911 \mathrm{D}+010.6626179110+010.5793003770-030.5793003770-03$ $420.901009838 D+030.901 C 09888 D+.030 .386075914 D+060.0000000000+00$ $420.676203049 \mathrm{D}+010.676208049 \mathrm{D}+010.29418672 \mathrm{CO}-030.294186726 \mathrm{D}-03$ $430.949839319 \mathrm{D}+030.949839319 \mathrm{D}+030.36782762 \mathrm{GD}+060.000000000 \mathrm{D}+00$ $430.688288602 \mathrm{D}+010.6882886020+010.1777539700-030.1777539700-03$ $440.9497142240+030.9497148240+030.34936067 \varepsilon D+060.0000000000+00$ $440.698368498 D+010.6933684980+01-.461539051 D-03-.461539051 \mathrm{D}-03$ $450.9496 \leq 83 \in 90+030.9496589680+030.3314150 \varepsilon 30+060.0000000000+00$ $450.6986639320+010.698663932 D+01-.20741425$ GD-03-. $207414256 \mathrm{D}-03$ $460.949634152 \mathrm{D}+030.9496341520+030.313474756 \mathrm{D}+060.0000000000+00$ $460.6988286210+010.6988236210+01-.9226422600-04-.9226422600-04$ $470.949624131 D+030.9496241310+030.2955365840+060.0000000000+00$ $470.698923257 D+010.698923257 \mathrm{D}+01-.37156879$ 4D-04-.3715687940-04 $480.949624131 D+030.949624131 D+030.277600 c 000+060.0000000000+00$ $480.698980314 D+010.698950314 D+010.0000000000+000.0000000000+00$ $490.6611400000+030.66114000 .00+030.6757500000+060.0000000000+00$ $490.5419704900+010.541970490 D+010.000000000 D+000.0000000000+00$ $500.661139976 D+030.6611399760+030.4579213790+060.0000000000+00$ $500.541970490 D+010.5419704900+010.0000000000+000.0000000000+00$ $510.699646325 D+030.6996463250+030.4402728500+060.0000000000+00$ $510.5488415790+010.5488415790+010.0000000000+000.0000000000+00$ $520.747216772 D+030.747216772 D+030.4223061950+060.0000000000+00$ $520.559525484 D+010.559525484 D+010.0000000000+000.000000000 D+00$
$530.8039988420+030.8039988420+030.404303690 D+060.0000000000+00$ $530.559885826 D+010.569885826 D+010.0000000000+000.0000000000+00$ $540.851601173 D+030.851601173 D+030.336075215 D+060.000000000 D+00$ $540.5814984490+010.5814984490+0+0.0000000300+000.0000000000+00$ $550.890021705 \mathrm{D}+030.890031705 \mathrm{D}+030.367827221 \mathrm{D}+060.000000000 \mathrm{D}+00$ $550.590800788 D+010.590800788 \mathrm{D}+010.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $560.890031690 D+030.8900316900+030.349361862 D+060.0000000000+00$ $560.598279362 \mathrm{D}+010.598279362 \mathrm{D}+010.0000 \mathrm{C00000}+000.000000000 \mathrm{D}+00$ $570.89003169 .4 D+030.890031694 D+030.331415520 D+060.000000000 D+00$ $570.596519113 D+010.5965191130+010.0000000000+000.0000000000+00$ $580.8500316990+030.8900316990+030.313474959 D+060.0000000000+00$ $580.5957295760+010.595729676 \mathrm{D}+010.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $590.8900316880+030.890031688 D+030.295536764 D+050.0000000000+00$ $590.595380175 \mathrm{D}+010.595380175 \mathrm{D}+010.000000000 \mathrm{D}+000.000000000 \mathrm{D}+00$ $600.8900316880+030.8900316880+030.2776000000+060.0000000000+00$ $600.5952412150+010.5952412150+010.0000000000+000.0000000000+00$ T0. $661139976 D+030.66113997 E D+030.661139976 D+030.661139976 D+030.661139976 D+03$ T0. $661139976 \mathrm{D}+030.661139976 \mathrm{D}+030.6611399760+030.177692822 \mathrm{D}+040.1699453580+04$ T0. 148493467D $+040.119305137 \mathrm{D}+040.8871632850+030.7522813430+030.7396505190+03$ 10. $718545367 \mathrm{D}+030.229407525 \mathrm{D}+040.220226250 \mathrm{D}+\mathrm{C} 40.190408012 \mathrm{D}+040.143965213 \mathrm{D}+04$ T0. $989632560 \mathrm{D}+030.835144320 \mathrm{D}+030.807124783 \mathrm{D}+030.780994205 \mathrm{D}+030.270225402 \mathrm{D}+04$ T0. $2624964660+040.235072460 \mathrm{D}+040.175835324 \mathrm{D}+040.110423196 \mathrm{D}+040.920248747 \mathrm{D}+03$ ro. $886840533 \mathrm{D}+030.855684557 \mathrm{D}+030.2499155380+040.242058256 \mathrm{D}+040.2151479770+04$ Y0. $165030075 \mathrm{D}+040.112246557 \mathrm{D}+040.968224687 \mathrm{D}+030.940205151 \mathrm{D}+030.9140745720+03$ T0. $223810093 \mathrm{D}+040.216193092 \mathrm{D}+040.1920561290+040.153494856 \mathrm{D}+040.1128931540+04$ T0. $100439023 \mathrm{D}+040.981759701 \mathrm{D}+030.960554249 \mathrm{D}+\mathrm{C} 30.949382146 \mathrm{D}+030.9408321460+03$ T0. $949882146 \mathrm{D}+030.949882146 \mathrm{D}+030.9498821460+030.9498821460+030.9498221460+03$ ro. $9498221450+030.9498821350+030.9498321350+030.94913821350+030.9493821350+03$ T0. $9493821350+030.9498821350+030.949882135 \mathrm{D}+030.943082135 \mathrm{D}+030.949882148 \mathrm{D}+03$ T0. $9498821480+030.949852148 \mathrm{D}+030.9498821480+030.9491982140 \mathrm{D}+030.9498821480+03$ T0. $949832148 \mathrm{D}+030.949882148 \mathrm{D}+030.949882121 \mathrm{D}+\mathrm{C} 30.949482121 \mathrm{D}+030.94988212+\mathrm{D}+03$ T0. $9498321210+030.9498821210+030.9498321210+030.949332121 \mathrm{D}+030.9498821210+03$ $10.661139976 \mathrm{~J}+030.651139976 \mathrm{D}+030.661139976 \mathrm{D}+030.661139976 \mathrm{D}+030.661139976 \mathrm{D}+03$ T0. $6611329760+030.6611399760+030.6611399760+030.1776399400+040.1699725690+04$ T0. $1444910470+040.1193032840+040.8871496750+030.7622677180+030.739636593 D+03$ T0. $718531742 \mathrm{D}+030.229401948 \mathrm{D}+040.2202203650+040.190401737 \mathrm{D}+040.143960338 \mathrm{D}+04$ 10. $989601252 \mathrm{D}+030.8351129610+030.8070934250+030.7809628460+030.270219726 D+04$ T0. $262490331 \mathrm{D}+040.235064620 \mathrm{D}+040.175826399 \mathrm{D}+040.110418122 \mathrm{D}+040.920197885 \mathrm{D}+03$ T0. $866789671 \mathrm{D}+030.855633695 \mathrm{D}+030.249507233 \mathrm{D}+040.242049368 \mathrm{D}+040.215137401 \mathrm{D}+04$ T0. $165020046 \mathrm{D}+040.112240299 \mathrm{D}+040.968161977 \mathrm{D}+030.940142441 \mathrm{D}+030.914011862 \mathrm{D}+03$ T0. $223799226 \mathrm{D}+040.216186803 \mathrm{D}+040.192044307 \mathrm{D}+040.153484906 \mathrm{D}+040.1128853180+04$ T0. $1004321750+040.981690925 \mathrm{D}+030.9605857730+030.949314277 \mathrm{D}+030.9498142770+03$ T0. $949814277 \mathrm{D}+030.949814277 \mathrm{D}+030.949814277 \mathrm{D}+030.949814277 \mathrm{D}+030.949844277 \mathrm{D}+03$ T0. $9493142770+030.949814285 \mathrm{D}+030.949814285 \mathrm{D}+030.9498142850+030.949814285 \mathrm{D}+03$ T0. $9498142850+030.9498142850+030.9498142850+030.949314285 D+030.9498143040+03$

T0. $949814304 D+030.949814304 D+030.9498143040+030.949114304 D+030.949814304 D+03$ TO. $9498143040+030.949814304 \mathrm{D}+030.949814279 \mathrm{D}+030.9490142790+030.9458142790+03$ TO. $949814279 D+030.949814279 D+030.9498142790+G 30.949114279 D+030.9491142790+03$ T0.6611399760 $+030.6611399760+030.6611399760+130.661139976 D+030.6611399760+03$ T0.661139976D+030.661139976D+030.661139976D+030.1776S0446D+040.169943059D+04 T0. $148491472 \mathrm{D}+040.119303609 \mathrm{D}+040.887152066 \mathrm{D}+030.762270112 \mathrm{D}+030.739639288 \mathrm{D}+03$ T0.718534136D+030.229403090D+040.220221571D $+040.190103022 D+040.1439613370+04$ T0. $9896076660+030.835119386 \mathrm{D}+030.8070998490+030.780969270 \mathrm{D}+030.270220841 \mathrm{D}+04$ T0. $262491536 \mathrm{D}+040.235066159 \mathrm{D}+040.175828151 \mathrm{D}+0$ 10. $1110419118 \mathrm{D}+040.920207874 \mathrm{D}+03$ T0. $885799659 \mathrm{D}+030.855643684 \mathrm{D}+030.249908909 \mathrm{D}+040.242051161 \mathrm{D}+040.215139534 \mathrm{D}+04$ T0. $165022069 \mathrm{D}+040.112241561 \mathrm{D}+040.968174625 \mathrm{D}+030.940155089 \mathrm{D}+030.9140245100+03$ Y0. $2238014880+040.2161891530+040.1920467680+040.1534469770+040.1128877410+04$ T0. $100433600 \mathrm{D}+040.981705178 \mathrm{D}+030.960600027 \mathrm{D}+030.949828094 \mathrm{D}+030.949828094 \mathrm{D}+03$ T0. $949828094 \mathrm{D}+030.949828094 \mathrm{D}+030.949828094 \mathrm{D}+030.949828094 \mathrm{D}+030.949828094 \mathrm{D}+03$ T0. $949828094 \mathrm{D}+030.949827962 \mathrm{D}+030.9498279620+030.9498279620+030.9498279620+03$ T0. $949827962 \mathrm{D}+030.949827962 \mathrm{D}+030.949827962 \mathrm{D}+030.949827962 \mathrm{D}+030.949827916 \mathrm{D}+03$ TO. $949827916 \mathrm{D}+030.949827916 \mathrm{D}+030.949827916 \mathrm{D}+030.949827916 \mathrm{D}+030.949827916 \mathrm{D}+03$ T0. $949827916 \mathrm{D}+030.949827916 \mathrm{D}+030.9498278710+030.949327871 \mathrm{D}+030.949827871 \mathrm{D}+03$ 10.9498278710 $+030.9498278710+030.9498278710+030.949827871 \mathrm{D}+030.949827871 \mathrm{D}+03$ T0.661139976D $+030.661139976 \mathrm{D}+030.6611399760+030.661139976 \mathrm{D}+030.661139976 \mathrm{D}+03$ T0. $661139976 \mathrm{D}+030.661139976 \mathrm{D}+030.661139976 \mathrm{D}+030.177690842 \mathrm{D}+040.169943441 \mathrm{D}+04$ T0. $148491804 \mathrm{D}+040.119303864 \mathrm{D}+040.887153934 \mathrm{D}+030.762271982 \mathrm{D}+030.739641157 \mathrm{D}+03$ T0. $718536005 \mathrm{D}+030.229403988 \mathrm{D}+040.2202225180+040.190404032 \mathrm{D}+040.143962121 \mathrm{D}+04$ T0. $989612704 \mathrm{D}+030.8351244310+030.8071048950+030.7809743160+030.270221716 \mathrm{D}+04$ ro. $2624924820+040.2350673680+040.1758295270+040.1104195000+040.9202157120+03$ 10. $8306074970+030.8556515220+030.2499102230+040.2420 r_{2} 25670+040.2151412080+04$ T0. $165023657 \mathrm{D}+040.112242552 \mathrm{D}+040.968184552 \mathrm{D}+030.940165015 \mathrm{D}+030.914034436 \mathrm{D}+03$ TO. $223603277 \mathrm{D}+040.216191012 \mathrm{D}+040.192048714 \mathrm{D}+040.153488615 \mathrm{D}+040.112388866 \mathrm{D}+04$ ro. $100434727 \mathrm{D}+040.981716450 \mathrm{D}+030.960611298 \mathrm{D}+030.9497148240+030.949714824 \mathrm{D}+03$ T0. $9497148240+030.9497149240+030.9497148240+030.9497148240+030.9497148240+03$ T0. $949714824 \mathrm{D}+030.949659965 \mathrm{D}+03 \mathrm{D} .949658968 \mathrm{D}+\mathrm{C} 30.949658968 \mathrm{D}+030.949658968 \mathrm{D}+03$ T0. $9496589680+030.9496589680+030.949658968 \mathrm{D}+\mathrm{C} 30.949 \mathrm{C} 58968 \mathrm{D}+030.949634152 \mathrm{D}+03$ T0. $9496341520+030.9496341520+030.9496341520+C 30.9496341520+030.9496341520+03$ $10.9496341520+030.9496341520+030.9496241310+030.9496241310+030.9496241310+03$ T0. $9495241310+030.949624131 \mathrm{D}+030.949624131 \mathrm{D}+030.949624131 \mathrm{D}+030.949624131 \mathrm{D}+03$ T0. $6611399760+030.661139976 D+030.6611399760+030.661139976 D+030.661139976 D+03$ T0. $6611399760+030.6611399760+030.6611399760+030.1751969580+040.1678237930+04$ 10. 1466561790 $+040.1178977410+040.876804866 \mathrm{D}+030.751911989 \mathrm{D}+030.729281164 \mathrm{D}+03$ T0.708176013D+030.225221059D+040.215821163D+040.185774891D+040.140409633D+04 T0. $966699134 \mathrm{D}+030.812174698 \mathrm{D}+030.784155162 \mathrm{D}+030.758024583 \mathrm{D} \div 030.265753179 \mathrm{D}+\mathrm{C} 4$ T0.257657755D+040.228898081D $+040.1690799420+040.1065889780+040.8818190190+03$ T0. $848410804 D+030.817254929 D+030.2427507500+040.2343985300+040.2061644600+04$ T0. $1568735960+040.107147044 D+040.9171267270+030.889107191 D+030.862976612 D+03$ T0. $213527169 \mathrm{D}+040.205587076 \mathrm{D}+040.1812424100+040.144635784 \mathrm{D}+040.10677701 \mathrm{SD}+04$ $10.9431261930+030.920495368 D+030.8993902170+030.890031690 D+030.8900316900+03$

T0. $8900316900+030.890031690 D+030.890031690 D+030.890031690 D+030.890031690 D+03$ T0. $890031690 D+030.890031694 D+030.890031694 D+030.890031694 D+030.8900316940+03$ T0. $890031694 D+030.890031694 D+030.890031694 D+030.890031694 D+030.890031699 D+03$ T0.890031699D+030.890031699D+030.890031699D+030.890031699D+030.8900316990+03 T0. $8900316990+030.8900316990+030.890031688 D+030.8900316880+030.8900316880+03$ T0. $8900316880+030.890031688 D+030.890031688 D+030.890031689 D+030.8900316880+03$ $T 0.8900316880+030.890031688 D+030.8900316880+030.8900316880+030.8900316880+03$
r0. $661139976 D+030.661139976 D+030.6996463250+030.747216772 D+030.8039988420+03$ $T 0.8516011730+030.8900317050+030.8900316900+030.8900316940+030.8900316990+03$ T0.890031688D+030.890031688D+030.890031690D+030.890031694D+030.890031699D+03 F

PRINTED OUTPUT EXAMPLE

flow map at time $=1.9007 \mathrm{sec}$

| 10 | 1.9211 | 0.002928 | 741.112 | 741.112 | 957.157 | 735.525 | 741.112 | 4.04090 | 3.87783 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 2.0910 | 0.029919 | 803.879 | 803.879 | 967.923 | 795.314 | 803.879 | 8.19941 | 7.51813 |
| 8 | 2.2099 | 0.328978 | 856.139 | 856.136 | 975.053 | 846.926 | 856.136 | 6.59102 | 5.76649 |
| 7 | 2.2942 | 0.215748 | 862.126 | 862.123 | 979.923 | 867.617 | 841.491 | 2.56718 | 1.85150 |
| 6 | 2.4244 | 0.000000 | 783.632 | 783.632 | 987.179 | 793.138 | 767.650 | 0.86239 | 0.86239 |
| 5 | 2.4625 | 0.000000 | 710.987 | 710.987 | 989.240 | 724.489 | 700.308 | 0.71430 | 0.71430 |
| 4 | 2.4988 | 0.000000 | 603.494 | 603.494 | 991.181 | 614.395 | 595.840 | 0.66470 | 0.66470 |
| 3 | 2.5366 | 0.000000 | 499.709 | 499.709 | 993.182 | 508.341 | 494.512 | 0.63937 | 0.63937 |
| 2 | 2.5759 | 0.000000 | 388.000 | 388.000 | 995.238 | 308.000 | 388.000 | 0.67691 | 0.67691 |
| 1 | 2.6471 | 0.000000 | 388.000 | 388.000 | 1138.947 | 388.000 | 388.000 | 0.67691 | 0.67691 |

flow map at time $=2.0013 \mathrm{sec}$.

inl out tot	mass flo t mass fl heat tra	$\begin{aligned} & \text { rate } \\ & \text { iw rate } \\ & \text { isfered } \end{aligned}$	$\begin{aligned} & 271222 \mathrm{D}+ \\ & 754283 \mathrm{D}+ \\ & .562540 \mathrm{t} \end{aligned}$	kg/sec $\mathrm{kg} / \mathrm{sec}$ watt	inlet outie	onthalpy onthalpy	$\begin{aligned} & w=-.24 \\ & o w=0.10 \end{aligned}$	60+07 wa $90+08$ wa			
				chan	el number	1					
12	$\stackrel{p}{(\operatorname{bar})}$	void	tv	$\begin{gathered} \pm 1 \\ --(\text { degre } \end{gathered}$	$\begin{gathered} \text { tsat } \\ \text { ceisius } \end{gathered}$	twall	uvz $(m / s e c)$	$\begin{gathered} \text { ulz } \\ (\mathrm{m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { uvr } \\ (\mathrm{m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { ulr } \\ (\mathrm{m} / \mathrm{sec}) \end{gathered}$	
							0.51501	3.07887	0.00000	0.00000	
12	1.8720	0.303258	861.964	861.963			$\begin{array}{r} 0.51501 \\ 15.50110 \end{array}$	8.88634	-0.14508	-0.14452	
11	1.5388	0.303258	861.964	861.963 945.344	929.841 954.065	8684.862	27.85684	3.51727	1.07253	1.05714	
10	1.8744	0.994372	945.344	945.344 956.144	954.065 955.553	8885.346	22.69684	3.38400	0.32808	0.31151	
9	1.8967	0.970861 0.973085	956.143	956.144	955.553 957.394	918.024	16.03301	2.50611	0.27615	0.26388	N
8	1.9247	0.973085 0.971530	958.142	958.403	958.410	1102.302	6.95722	1.05196	0.33247	0.31702	w
7	1.9403	0.971530 0.977325	959.403 959.525	959.403 959.525	958.641	1055.607	1.96098	-2.71013	0.37385	0.37203	
5	1.9863	0.276728	961.461	961.461	961.380	965.323	-0.53806	-1.36656	. 12127		
4	2.1552	0.003745	806.046	806.046	971.812	803.191	-0.89807	-0.94945	00318		
3	2.3318	0.000193	637.440	637.440	982.050	634.489	-0.88206	-0.88490	0.00252	0.00068	
2	2.5118	0.000005	424.457	424.457	991.872	417.601	-0.84238	84243 84243	0.00068	0.00000	
1	2.6471	0.000000	388.000	388.000	1138.947	417.601	-0.84	0.84243	0.00000		
				cha	el' number	2					
12	$\stackrel{p}{p}_{\text {(bar) }}$	void	tv	$\begin{gathered} \text { tl } \\ - \text { degr } \end{gathered}$	celsius	twall	uvz $(m / s e c)$	ulz (m/sec)	$\begin{gathered} \text { uvr } \\ (\mathrm{m} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \text { ulr } \\ (\mathrm{m} / \mathrm{sec}) \end{gathered}$	
				859.177	1005.330	859.009	2.07274	3.82092	0.00000		
12	1.8720 1.5528	0.267247 0.267247	859.178 859.178	859.177	930.932	859.009	15.03800	9.07103	-0.25991	$\begin{array}{r} -0.25926 \\ 1.58285 \end{array}$	
110	1.5528 1.8534	0.993174	944.524	944.524	952.657	883.012	27.19286	3.42531	1.60127 0.43395	0.41368	
9	1.8781	0.961646	954.645	954.645	954.316	878.283	21.72918	3.35962	0.42054	0.39789	
8	1.9107	0.969096	957.194	957.194	956.473	923.430	13.99242	2.38723	0.56712	0.54060	
7	1. 9230	0.973095	958.282	958.282	957.287	\$093.160	6.96456	-2.64147	0.77521	0.77175	
6	1.9263	0.980335	958.405	958.405	957.497	1049.437	6.78303	-1.16214	-0.06259	-0.06248	
5	1.9771	0.190750	960.883	960.883	960.787 971.809	964.921 801.283	$\begin{array}{r} -0.35509 \\ -0.84814 \end{array}$	-0.89399	0.00015	0.00015	
4	2.1552	0.003013	803.565	803.565	971.809		-0.84814	-0.86327	0.00200	0.00200	
3	2.3316	0.000176	636.337	636.337	982.037	633.663 417.296	-0.84150	-0.84154	-0.00216	-0.00216	
2	2.5118	0.000005	424.035	424.035	991.876	417.296	-0.84150	-0.84154			

10	1.7879	0.020460	823.341	823.341	948.180	816.611	823.341	6.65369	6.37594
9	1.8577	0.105617	859.689	859.688	952.946	853.058	859.688	5.87165	5.69386
8	1.8855	0.093630	877.018	877.017	954.806	872.255	877.017	4.81453	$\mathbf{4 . 7 6 6 0 5}$
7	1.8880	0.308404	892.240	892.239	954.977	899.516	879.397	1.42155	1.66511
6	1.8766	0.318665	847.592	847.590	954.213	856.880	815.256	-1.69625	-2.11925
5	1.9834	0.007083	750.548	750.548	961.195	760.944	727.796	-0.84139	-0.88960
4	2.1554	0.000247	634.591	634.590	971.823	643.339	618.204	-0.82661	-0.82885
3	2.3314	0.000007	526.750	526.750	982.029	533.441	513.420	-0.81987	-0.81992
2	2.5122	0.000000	400.197	400.197	991.897	399.065	394.352	-0.61606	-0.61606
1	2.6471	0.000000	388.000	388.000	1138.947	399.065	394.352	-0.61606	-0.61606

APPENDIX D

NATOF - 2D PROGRAM LISTING

```
COMPILATION LISTING OF NATOF (>user_dir_dir>BOIL>Granziera>NATOF,fortran)
Compiled by: Multics New Fortran Compiler. Release G
Compiled on: 04/29/80 1304.9 edt Tue
    Options: table card relocatable map
                                    Main Program
```



```
MAIN PROGRAM
THE MAIN PROGRAM HAS THE ONLY FUNCTION OF ALOCATING
POSITIONS IN THE mEmORY FOR THE VARIABLES.
THE COMAND 'DIMENSION ORBI( }x(xxx)' ALOCATES MEMORY FOR
ALL THE VARIABLES.FOR EACH PROBLEM, THE USER SHDULD
SUPLY IYS DIMENSION,WHICH VALUE IS CALCULATED AS :
XXXX = (131 + 2*(NCF + NCLD))*NI*NJ
WITH :
NI = NUMBER OF AXIAL MESH POINTS
NJ = NUMBER OF RADIAL MESH POINTS
IMPLICIT REAL*B (A-H,O-Z)
DIMENSION ORBI(12000)
NORBI = 12000
DO 10 II = 1,NORBI
10 ORBI(II) = 0.00
CALL HEAD(ORBI,NORBI)
STOP
END
```

Block Data

BLOCK DATA
COMMON /NUMBER/ ZERO, ONE,BIG, SMALL
COMMON /NUMBER/ ZERO,ONE,BIG.SMALL
REAL*B ZERO/O.DO/.ONE/1.DO/.BIG/1.D+07/.SMALL/1.D-08/
END

```
    SUBROUTINE HEAD(ORBI,NORBI)
    MPLICIT REAL*8 (A-H,O-Z)
    COMMON /BCX/ ULO
    COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
    COMMON /ERROR/ IERR
    COMMON/RHEA/ TSET (40),TSHSET (40),DTMAX,DTM1
    COMMON /REA/ NN,NP,NB,NW,NTR,NPIN,NPM1,NSET(40),NSHSET (40)
    COMMON /DIM/ DZ(40),DZ1(40),DRO(40),DR1(40),DR2(40),DR3(40).
    * OR4(40),NI,NJ,NIM1,NIM2,NJM1,NHI,NNU,NNJJ
        COMMON /CNTRL/ EPS1.EPS2,RES.IT1,IT2,IT3,ITM1,ITM2,IGAUSS
    CQMMON /TEMPO/ TIME,DT,DTO,DTLS,NDY
    COMMON /PNTR1/ K(100),M(100)
    DIMENSION ORBI(NORBI)
    THE MATRIX M CONTAINS POINTERS TO THE MATRIX DRBI
    WHICH CORRESPOND TO THE FIRST ELEMENT OF THE VARIABLE
    DIMENSIONED ARAYS IN THE FOLLOWING EQUIVALENCE:
M(1)}=P=
M( 3)=TV
M(7) = ALFAN
M( 9) = ALFAZ
M(11) = RHOV
M(13)=RHOVZ
M(15) = RHOVR
M(17) = HV
M(19)=HVZ
(19) = HVZ
M(21) = HVR
H(23)= UVZN
A(25) = UVRN
M(27) = UVZO
M(29) = UVRO
M(31) = UVRZ
M(33) = UVZR
M(35) = FUVZN
M(37) = FUVRN
M(39) =W(K(1))
M(41)}=W(K(3)
M(43) =W(K(5))
M(45) =W(K(7))
M(47) =W(K(9) )
M( 2) = PO
M(4) = TVO
M( 6) = TLO
M( 8) = ALFAO
M(8)}=\mp@code{ALFAO
M(10)=ALFAR
M(12)=RHOL
M(16)=RHOLR
M(18) = HL
M(20)}=HL
M(22)}=HL
M(22)}=\mp@code{HLR
M(24)=ULZN
M(26)=ULRN
M(28)=ULZO
M(30) = ULRO
M(32) = ULRZ
M(34) = ULZR
M(34)=ULZR
M(36)=FULZN
M(38)=FULRN
M(40)=W(K( 3))
M(42)=w(K(4))
M(44) = W(K( 6))
M(46)=W(K( 8)
M(46)=W(K(8))
M(48)=W(K(10))
```

75	C	$M(51)=W(K(13))$	M(52)	$=W(K(14))$
76	C	$M(53)=W(K(15))$	M (54)	$=W(K(16))$
77	C	$M(55)=W(K(17))$	M (56)	$=W(K(18))$
73	\checkmark	$M(57)=W(K(19))$	M (58)	$=W(K(20))$
79	C	$M(59)=W(K(21))$	M (60)	$=W(K(22))$
80	C	$M(61)=W(K(23))$	M (62)	$=W(K(24))$
81	C	$\mathrm{M}(63)=\mathrm{DH}$	M (64)	a DHR
82	C	$M(65)=D V$	M (66)	= OSI
83	C	$M(67)=T S$	M (68)	= TW
84	C	M(69) $=$ DTW	M (70)	$=$ HCONV
85	C	$M(71)=$ HCONL	M (72)	$=$ HNB
86	C	M 73) $=$ DPN	M (74)	$=A 1$
87	C	$M(75)=A 2$	M (76)	$=A 3$
88	C	$M(77)=A 4$	M (78)	$=Y P$
89	C	$M(79)=B$	M (80)	$=T R$
90	C	$\mathrm{M}(81)=$ DTR	M(82)	= TWOLD
91	C	$M(83)=B E T A$	M (84)	= GAMMA
92	C	M 85 ($=$ QPP C	M(36)	$=$ AVZD
93	C	$M(87)=A L Z D \quad C$	M (88)	$=A V R D$
94	C	$M(89)=A L R D$	M(90)	= SPPD
95	C	$M(91)=$ TCAN	M(92)	$=$
96	C			
97		CALL READ1		
98	C			
99		$M(1)=1$		
100		DO $1001 \mathrm{~L}=2.79$		
101	1001	$M(L)=M(L-1)+N N$		
102		$M(80)=M(79)+N B$		
103		$M(81)=M(80)+N T R$		
104		$M(82)=M(81)+$ NTR		
105		$M(83)=M(82)+N N$		
106		$M(84)=\mathrm{Ml}(83)+\mathrm{NN}$		
107		$M(85)=M(84)+N N$		
108		$M(86)=M(85)+N N$		
109		$M(87)=M(86)+N N$		
110		$M(88)=M(87)+N N$		
111		$M(89)=M(88)+N N$		
112		$M(90)=M(89)+N N$		
113		$M(91)=M(90)+N N$		
114		NCAN $=4 * N \mathrm{~N}$		
115		M 92$)=M(91)+$ NCAN		
116	C			
117	C			
118	C			
119		TIME = ZERO		

```
            CALL READ2(ORBI(M(1)),ORBI(M(3)),ORBI(M(5)),ORBI(M(7)),
    NPRI = 0
    TPRI = TINIT + TSET(1)
    TSHPRI = TINIT + TSHSET(1)
    LSH=1
    L=1
    NTS=0
    NIT=0
    TIME = TINIT
    LPRI = 0
    LPRI=0
    1 LSHPRI =
    CONT INUE
    NDT = 0
    IT3 = 0
    CALL TMSTEP(ORBI,NORBI 
    * NN,NP,NB,NW,NTR,NPIN,NPMI,NCAN)
    NIT = NIT + IT3
    NTS = NTS + I
    IF(IERR.NE.O) GO TO 7
    IF(TIME.LT.TPRI) GO TO 1
```

```
165C
167
163C
169
170
171
172
173
174
175
176
176
177
178
179
180
181
182
182
183
184
185
187
187
188
189
190
191
192
193
193
194
195
196
197C
198
199
200
200
201
202
203
204
205
206
206
207
ここEC
GO TO 8
```



```
71
72
    IF(LPRI-NSET(L))3.4.4
3 TPRI = TPRI + TSET(L)
GO TO 1
4L=L+1
NPRI = NPRI + LPRI
IF(NSET(L))6,6,5
5LPRI=0
LPRI = O
GO TO 1
6 CALL SAVER(ORBI(M(1)),ORBI(M(3)),ORBI(M(5)),ORBI(M(7)),
* ORBI(M(23)),ORBI(M(24)),ORBI(M(25)),ORBI(M(26))
*
                    ORBI(M(80)),ORBI(M(91)).TIME,NTR,NN,NCAN,NI)
    RETURN
    7 CALL ERRMES(TIME)
8 CONTINUE
    QT = ZERO
    FMI = ZERO
    FME = ZERO
    FHI = ZERO
    FHI = ZERO
    FHE=Z
    OO 9 J = 1.NJ
    KI = (J-i)*NI +
    KI = (J-i 
    KE = J*NI
    IF(ORBI(M(24)+KI-1).LT.ZERO) KI=KI +1
CONTINUE
    LPRI = LPRRI + 
C
    TV = ORBI(M(3)+KI-1)
    TL=CRBI (M(5)+KI-1)
    PP=ORBI(M(1)+KI-1)
    PP=ORBI(M(1)+KI-1)
    UV = OR8I(M(23)+KI-1)
    UL = ORBI(M(2.4)+KI-1)
    UL=ORBI(M(2.4)+KI-1)
    RV = ORBI(M(11)+KI-1)
    RL=ORBI(M(12)+KI-1)
    EV = OROI(M(17)+KI-1)
    EV = OREI(M(17)+KI-1)
    EL=ORSI(M(18)+KI-1)
```

```
FMVJ = AA*RV*UV*DR4(J)
```

FMVJ = AA*RV*UV*DR4(J)
FMLJ = (ONE - AA)*RL*UL*DR4(J)
FMLJ = (ONE - AA)*RL*UL*DR4(J)
HV =EV + PP/RV
HV =EV + PP/RV
HL=EL + PP/RL
HL=EL + PP/RL
FMI = FMI + FMVJ + FMLJ
FMI = FMI + FMVJ + FMLJ
FHI =FHI + FMVJ*HV + FMLU*HL
FHI =FHI + FMVJ*HV + FMLU*HL
TV = ORBI(M(3)+KE-1)
TV = ORBI(M(3)+KE-1)
TL=ORSI(M(5)+KE-1)
TL=ORSI(M(5)+KE-1)
PP =ORBI (M(1)+KE-1)
PP =ORBI (M(1)+KE-1)
AA = ORBI (M(7)+KE-2)
AA = ORBI (M(7)+KE-2)
UV = ORBI (M(23)+KE-1)
UV = ORBI (M(23)+KE-1)
UL = ORBI (M(24)+KE-1)
UL = ORBI (M(24)+KE-1)
RV = ORBI (M(11)+KE-1)
RV = ORBI (M(11)+KE-1)
RL = ORBI (M(12)+KE-1)
RL = ORBI (M(12)+KE-1)
EV = ORBI(M(17)+KE-1)
EV = ORBI(M(17)+KE-1)
EL=ORBI(M(18)+KE-1)
EL=ORBI(M(18)+KE-1)
FMVJ = AA*RV*UV*DR4 (J)
FMVJ = AA*RV*UV*DR4 (J)
FMLU = (ONE - AA)*RL*UL*DR4(J)
FMLU = (ONE - AA)*RL*UL*DR4(J)
HV = EV + PP/RV
HV = EV + PP/RV
HL = EL + PP/RL
HL = EL + PP/RL
FME = FME + FMVJ + FMLJ
FME = FME + FMVJ + FMLJ
FHE = FHE + FMVJ*HV + FMLJ*HLL
FHE = FHE + FMVJ*HV + FMLJ*HLL
009I=1.NIM2
009I=1.NIM2
KP = KP +i
KP = KP +i
KO = (v-1)*NI + I
KO = (v-1)*NI + I
QT=QT + ORBI (M(85)+KP-1)*ORBI(M(65)+KO)*DZ(I+1)*DR4(U)
QT=QT + ORBI (M(85)+KP-1)*ORBI(M(65)+KO)*DZ(I+1)*DR4(U)
9 CONTINUE
9 CONTINUE
WRITE(6,200) TIME
WRITE(6,200) TIME
WRITE(G.201) NTS.NIT.OT
WRITE(G.201) NTS.NIT.OT
WRITE(6,202) FMI,FHI,FME,FHE,OT
WRITE(6,202) FMI,FHI,FME,FHE,OT
DO 10 J=1,NJM1
DO 10 J=1,NJM1
WRITE(6.203) U
WRITE(6.203) U
WRITE(6.204)
WRITE(6.204)
DO 10 I=1.NI
DO 10 I=1.NI
KI =NI - I +1
KI =NI - I +1
KO = (J-1)*NI +KI
KO = (J-1)*NI +KI
KP=KO (2*J + 1

```
KP=KO (2*J + 1
```



```
300
301
302
303
304
305
306
306
308
309
310
311
312
313
314
314
GO TD 2
206 FORMAT(1X, 'IZ',5X,'P', 10X, VOID', 7X, 'TV', 8X,'TL',7X,'TSAT',
    * 5X,'TWALL',7X,'TCAN',GX,'UVZ',9X, 'ULZ'/
    * 6x,'(BAR)',19X,',
    * '--m-----------'.2(5X,'(M/SEC)')/)
    207 FORMAT(1X,12,2X,F9.4,2X,F8.6,5(2X,F8.3).2(2X,F10.5))
    200 FORMAT(1H1,10X,'FLOW MAP AT YIME = '.F10.4,' SEC.'/)
    201 FORMAT(IX, 'NUMBER OF TIME STEPS = , I10/
    * IX,'NUMBER OF ITERATIONS = .110/
    * 1X,'TIME STEP SIZE = DI0.A, i SEC.'%)
    202 FORMAT(1X,'INLET MASS FLOW RATE = ',012.6,' KG/SEC'.
    * 6X,'INLET ENTHALPY FLOW = '.012.G,' WATT'/
    * IX, OUTLET MASS FLON RATE = '012.6; KG/SEC
    * 1X,'TOTAL HEAT TRANSFERED = ',D12.6." WATY'/)
203 FORMAT(1HO,40X,'CHANNEL NUMBER ',I5/)
204 FORMAT(1X,'IZ',5X,'P',10X,'VOID', 7X,'TV', 8X,'TL',7X,'TSAT',
    * 5X,'TWALL',7X,'UVZ'.9X,'ULZ'.9X,'UVR',9X,'ULR'/
    * 6X,'(BAR)'.19X,'
    05 FORMAT(1X,I2,2X,F9.4,2X,F8.6.4(2X,F8.3),4(2X,F10.5))
    C
    END
```

SUBROUTINE READI
IMPL ICIT REAL*B (A-H, O-Z)
COMMON /RHEA/ TSET (40). TSHSET (40). DTMAX, DTMI
COMMON /REA/ NN,NP,NB,NW,NTR,NPIN,NPMI,NSET(40).NSHSET(40)
COMPAON /DIM/ DZ (40), OZ1 (40), DRO(40), DR1 (40), DR2 (40), DR3(40).

* DR4(40),NI,NJ,NIMI,NIM2,NJMI, NNI, NNJ, NNJJ

COMMON /GRVTY/ GZ,GR
COMMON /CNTRL/ EPS1, EPS2,RES.IT1,IT2,IT3,ITM1.ITM2.IGAUSS
CCMMON /GAUSS/ NZ,NR,NZMI
COMMON /TEMPO/ TIME.DT,DTO.OTLS,NDT
CCMMON /ICONST/ NCF,NCC,NG
READ (5,118) NI,NJ,NCF,NCLD
WRITE(7,118)NI,NJ,NCF,NCLO
$N N=N I * N J$
NIMI $=$ NI -
NIM2 $=$ NI -2
NJMI $=$ NJ -1
$N P=(N I-2) * N J$
$N B=21 * N N$
$N W=24 * N N$
NNJ $=N N-N I$
NNJJ = NNJ - NI
$N N I=N N-N J$
$N R=N J$
$N Z=N I-2$
NZM1 $=N Z-1$
$N G=N C F+1$
$N C C=N G+1$
NPIN $=$ NCC + NCLD
NPM1 $=$ NPIN -1
NTR $=$ NPIN*NP
$1=1$
1 CONTINUE
READ (5, 121) NSET (L), TSET (L)
WRITE(7,121)NSET (L), TSET(L)
$L=L+1$
IF(L.GT.50) GD TO 2
IF(NSET(L-1)) 2,2,1
2 CONTINUE

```
GZ =9.80665
```

367
368 C
369 C

374
375
376 119 FORMAT (2I10,3015.9)
377120 FORMAT(2015.9)
378121 FORMAT (15.015.9)
379
380 TURN
END
$G 2=9.80665$
$G R=0 . D O$

READ (5,119) ITM1, IGAUSS, DTMAX,EPS1,EPS2
WRITE(7,119)ITM1, IGAUSS, DTMAX,EPS1,EPS2
DT $=$ DTMAX

Subroutine reads

```
381
392
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
4 0 1
4 0 2
403
404
4 0 5
4 0 6
4 0 7
6)8
4 0 9 ~ C
4 1 0
4 1 1
4 1 2
413
4 1 4
4 1 5
4 1 6
417 C
4 1 8
4 1 9
4 2 0
421
422
4 2 3
*
*
                M,
                QSI,TR,DTR,TINIT,TW,SPPD,TCAN,
    NP,NTR,NPIN,NPM1,NN,NCAN)
    IMPLICIT REAL*8 (A-H,O-Z)
    LOGICAL LP,LDATA,LSS
    COMMON/NUMBER/ ZERO,ONE,BIG.SMALL
    COMMON /BCOND/ TB(51), PNB1(5i),PNB2(51), PNB3(51),OMP (51).
*
PNT1(51), PNT2(51), PNT3(51),OMT(51),ALB1(51)
ALB2(51),ALB3(51),OMA(51),OVB1(51),MVB2(51)
*
ALB2(51),ALB3(51),OMA(51),TVB1(51),TVB2(51)
* TVB3(51),OMV(51), PLB1(51), TLB2(51),TLB3(51)
* OML(51),HNW1(51),HNW2(51),HNW3(51),OMH(51).
* COMMON /PSHAPE/ SHAPE(100)
COMMON /PSHAPE/ SHAPE(100)
COMMON /DIM/ DZ(40),DZ1(40),DRO(40),DR1(40),DR2(40),DR3(40).
* DR4(40),NI,NJ,NIM1,NIM2,NJM1,NNI,NNJ,NNJJ
    COMMON /PINO/ RODR(20),VP(20),VM(20),RAOR,PPP(20)
    CONAON /GCONST/ DIL,RADFU,RADCL
    COMMON /CCONST/ CAO,CA1,CA2,CA3,CBO,CB1,CB2,CB3
COAMON /FCONST/ FAO,FA1,FA2,FA3,FBO,FB1,FB2,AD,APU,LPLNM(40)
CCMMON /ICONST/ NCF,NCC.NG
COMMON /PD/ D4,POD2
COMMON /POVERD/ R
COMMON /HXCN/ ACOV
COMMON /STST/ TAFP.LSS
DIMENSION P(NN),TV(NN),TL(NN),ALFA(NN),UVZ(NN),ULZ(NN),
*
                    UVR(NN),ULR(NN),OH(NN), DV(NN),QSI(NN),TR(NTR)
* DTR(NTR).TW(NP),SPPD(NN),TCAN(NCAN)
DIMENSION RAD(20),XIN(5),N(20)
FAO = 1.810+06
FA1 = 3.72D+03
FA2 = -2.5100
FA3 = 6.5
FA3 = 6.59D-04
FBO = 10.800
FB1 = -8.84D-03
FB2 = 2.25D-06
CAO = 4.280+06
CAO = 4.280+06
CA1 = 3.750+02
CA2 = -7.450-03
CA3 = ZERO
CBO = 16.27
CB1 = ZERO
```

```
\begin{tabular}{ll}
424 & \(C B 2=\) ZERO \\
425 & \(C B 3=\) ZERO \\
\(426 C\) & \\
\(427 C\) & \\
\(428 C\) & \\
429 & \\
430 & \(L B(1)=Z E R O\) \\
431 & \(2 C O N T I N U E\)
\end{tabular}
```

431
432
433
434
435
436
437
438
439
440
441 C
442
443
444
445
446
447
448 C
449
450
451
452
453
454
455
456
457 C
458
459
460 C
461

```
L=2
2 CONTINUE
READ (5,1001) LP(L),TB(L)
WRITE(7,1001)LP(L),TB(L)
IF(TB(L).LE.TB(L-1)) GO TO 3
READ (5,1002) PNB1(L),PNB2(L),PNB3(L),OMP(L)
READ(5.1002) PNT1(L),PNT2(L),PNT3(L),OMT(L)
READ (5,1002) ALB1(L),ALB2(L),ALB3(L),OMA (L)
READ(5,1002) TVB1(L),TVB2(L),TVB3(L), OMV(L)
READ(5,1002) TLB1(L),TLB2(L),TLB3(L),OML(L)
READ(5,1002) HNWI(L),HNW2(L),HNW3(L),OMH(L)
WRITE(7,1002)PNB1 (L), PNB2(L).,PNB3(L),OMP(L)
WRIYE(7,1002)PNT1(L),PNT2(L),PNT3(L),OMT (L)
    WRITE(7,1002)ALEI(L),ALB2(L),ALB3(L),OMA(L)
    WRITE(7,1002)TVB1 (L),TVB2(L),TVB3(L),OMV(L)
    WRITE(7,1002)TLB1(L),TLB2(L),TLB3(L),OML(L)
    WRITE(7,1002)HNW1(L),HNW2(L),HNW3(L),OMH(L)
    L=L+1
        IF(L.GT.51) GO TO 3
        GO TO 2
    3 CONTINUE
    LMAX = L
    DO 4 KO = 1,NN
    QSI(KO) = (4.*D/(PITCH - D))**2
4 CONTINUE
    READ (5,1003) NROW, PITCH,D,E
    WRITE(7,1003)NROW, PITCH,D,E
    POVD = PITCH/D
    POD2 = POVD*POVD
    D4=4.10
    R=-16.15 + 24.96*POVD - B.55*POVD*POVD
READ(5,1004) (N(J),N=1,19)
WRITE(7,1004)(N(U),U=1,19)
KRES =0
```

```
\begin{tabular}{|c|c|c|}
\hline 469 & 5 & CONT INUE \\
\hline 470 & & READ (5,1005) LDATA, (XIN(K), \(K=1.5\) ) \\
\hline 471 & & WRITE(7,1005) LDATA, (XIN(K), \(K=1.5\) ) \\
\hline 472 & & IF'(.NOT.LDATA) GO TO 205 \\
\hline 473 & & DO \(105 \mathrm{I}=1,5\) \\
\hline 474 & & \(K O=K R E S+1\) \\
\hline 475 & & IF(KO.GT.NI) GO TD 5 \\
\hline 476 & & DZ(KO) = XIN(I) \\
\hline 477 & 105 & CONTINUE \\
\hline 478 & & KRES \(=\) KRES +5 \\
\hline 479 & & GO TO 5 \\
\hline 480 & 205 & CONT INUE \\
\hline 481 & C & \\
\hline 482 & & KRES \(=3 * N\) I \\
\hline 483 & 305 & CONT INUE \\
\hline 484 & & READ ( 5,1005 ) LDATA, (XIN(K), \(K=1,5\) ) \\
\hline 485 & & WRITE (7, 1005) LDATA, (XIN(K),K=1,5) \\
\hline 486 & & IF (.NOT.LDATA) GO TO 505 \\
\hline 487 & & DO \(405 \mathrm{I}=1.5\) \\
\hline 488 & & \(K O=K R E S+I\) \\
\hline 489 & & IF(KO.GT.NCAN) GO TO 305 \\
\hline 490 & & TCAN(KO) \(=\) XIN(I) \\
\hline 491 & 405 & CONT INUE \\
\hline 492 & & KRES \(=\) KRES +5 \\
\hline 493 & & GO TO 305 \\
\hline 494 & 505 & CONT INUE \\
\hline 495 & & KRES \(=0\) \\
\hline 496 & 6 & CONT INUE \\
\hline 497 & & READ ( 5,1005 ) LDATA, (XIN(K), \(K=1,5\) ) \\
\hline 498 & & WRITE(7,1005)LDATA, (XIN(K), K=1,5) \\
\hline 499 & & IF(.NOT.LDATA) GO TO 206 \\
\hline 500 & & DO \(1061=1.5\) \\
\hline 501 & & \(K O=K\) ESS +1 \\
\hline 502 & & IF(KO.GT.NN) GO TO 6 \\
\hline 503 & & SHAPE(KO) \(=\) XIN(I) \\
\hline 504 & 106 & CONT INUE \\
\hline 505 & & KRES \(=\) KRES +5 \\
\hline 50 G & & GO TO 6 \\
\hline 507 & 206 & CONT INUE \\
\hline 508 & & KRES \(=0\) \\
\hline 509 & 306 & CONT INUE \\
\hline 510 & & READ (5,1005) LDATA, (XIN(K), \(K=1,5\) ) \\
\hline 511 & & WRITE(7,1005) LDATA, (XIN(K), \(K=1,5\) ) \\
\hline 512 & & IF (.NOT.LDATA) GO TO 506 \\
\hline 513 & & DO \(406 \mathrm{I}=1.5\) \\
\hline
\end{tabular}
```



```
559 C
564
562
6 C
6
505
566 c
C
568
569
569
570
571
572
574
575
576
577 C
57
5 7 9
530
581
582
53 C
84
585
580
587
588
89 C
```

 OR1(1)=2.DO/PITCH/A1/(N(1)-1)
    ```
    OR1(1)=2.DO/PITCH/A1/(N(1)-1)
    OR2(1)=0.00
    OR2(1)=0.00
    DRO(1) = PITCH*AI*(N(1)-1)
    DRO(1) = PITCH*AI*(N(1)-1)
    B1 = (N(NUM1) + NROW - 2)
    B1 = (N(NUM1) + NROW - 2)
    82 = (NROW - N(NJM1))
    82 = (NROW - N(NJM1))
    B3 = (NROW - 1)
    B3 = (NROW - 1)
    XX = B1*82/2.D0 + B3/2.D0 + 1.00/6.D0
    XX = B1*82/2.D0 + B3/2.D0 + 1.00/6.D0
    PT = E3*PITCH + (D/2.DO + E)/A1 + A2*D*XX*4.DO
    PT = E3*PITCH + (D/2.DO + E)/A1 + A2*D*XX*4.DO
    AC = (BI*PITCH + (D/2.OO +E)/AI)*(D2*PITCH*AI + D/2.DO +E)*
    AC = (BI*PITCH + (D/2.OO +E)/AI)*(D2*PITCH*AI + D/2.DO +E)*
    * 0.500-A2*(D*D + E*E)*XX
    * 0.500-A2*(D*D + E*E)*XX
    Y = 4.DO*AC/PT
    Y = 4.DO*AC/PT
    PP = A2*D*XX*4.DO
    PP = A2*D*XX*4.DO
    YY = PP/AC
    YY = PP/AC
    ARM = (ONE - A2/A1*(D*D + W*W)/(PITCH*PIYCH))*
    ARM = (ONE - A2/A1*(D*D + W*W)/(PITCH*PIYCH))*
    * (N(NJMI) - 1)*PITCH
    * (N(NJMI) - 1)*PITCH
    DR1(NJ) = ZERO
    DR1(NJ) = ZERO
    DR2(NJ) = ARM/AC
    DR2(NJ) = ARM/AC
    DRO(NJ) = B2*PITCH + D/2.DO + E
    DRO(NJ) = B2*PITCH + D/2.DO + E
    OR4(NJ) = AC*6.DO
    OR4(NJ) = AC*6.DO
    ACOV = (B3*PITCH + (D/2.DO + E)/A1)/AC
    ACOV = (B3*PITCH + (D/2.DO + E)/A1)/AC
    OO 10I = 1,NI
    OO 10I = 1,NI
    KO = NUM1*NI + I
    KO = NUM1*NI + I
    OH(KO) = Y
    OH(KO) = Y
    OV(KO) = YY
    OV(KO) = YY
10 CONTINUE
10 CONTINUE
    OR3(NJ)=ORO(NJ)
    OR3(NJ)=ORO(NJ)
    DO 11 J = I.NJM1
    DO 11 J = I.NJM1
    DR3(u) = (DRO(J) + DRO(v+1))/2.00
    DR3(u) = (DRO(J) + DRO(v+1))/2.00
11 CONTINUE
11 CONTINUE
    KRES = 0
    KRES = 0
2 CONTINUE
2 CONTINUE
READ (5,1005) LDATA, (XIN(K),K=1,5)
READ (5,1005) LDATA, (XIN(K),K=1,5)
WRITE(7,1005)LDATA, (XIN(K),K=1,5)
WRITE(7,1005)LDATA, (XIN(K),K=1,5)
IF(.NOT.LDATA) GO TO 212
IF(.NOT.LDATA) GO TO 212
O 112 I = 1.5
O 112 I = 1.5
KO = KRES + I
KO = KRES + I
IF(KO.GT.NPIN) GO TO 12
IF(KO.GT.NPIN) GO TO 12
PPP(KO)= XIN(I)
PPP(KO)= XIN(I)
112 CONTINUE
```

```
        KRES = KRES +
        GO TO }1
    212 CONTINUE
    C
READ(5,1006) AD,APU,DIL
    READ (5,1007) (LPLNM(K),K=1.39)
    READ(5,1008) RADR,THC,THC
    WRITE(7,1006)AD,APU,DIL
    WRITE(7,1007)(LPLNM(K),K= 1.39)
    WRITE(7,1008)RADR,THC,THG
    RADFU = RADR - THG - THC
    RADCL = RADFU + THG
    NCLD = NPIN - NCC
    ORF= RADFU/NCF
    ORC = THC/NCLD
    TAFP = RADFU*RADFU/D
    RAD(1) = ZERO
    OO 14K=1,NCF
        RAD(K+1) = RAD(K) + DRF
    14 CONTINUE
        RAD(NG+1) = RAD(NG) + THG
        DO 15 K = NCC,NPM1
        RAD(K+1) = RAD(K) + ORC
    15 CONTINUE
        DO 16 K = 1.NPM 
        IF(K.EQ.NG) RODR(K)=(RAD(K+1) + RAD(K))/2.00
        IF(K.NE.NG) RODR(K)=(RAD(K+1)+RAD(K))/(RAD(K+1)-RAD(K))/2.DO
    16 CONTINUE
    VM(1) = 2ERD
    VP(1) = DRF*DRF/8.00
    RM = (RADR + RAD(NPM1))/2.DO
    VM(NPIN) = (RADR*RADR + W*W/4.DO- RM*RM)/2.DO
    VP(NPIN) = ZERO
    O 17 K = 2.NPM1
    RP = (RAD (K+1) + RAD(K))/2.D0
    REM = (RAO(K) + RAD(K-1))/2.00
    VP(K) = (RP*RP - RAD(K)*RAD(K))/2.DO
    VM(K) = (RAD(K)*RAD(K) - RM*RM)/2.DO
17 CONTINUE
    READ(5,1009) LSS,TINIT
```

```
    TB(1) = ZERO
        IF (LSS) GO TO 19
        OO 1 KO = 1,NN
    READ(5,1000) KCHECK,TV(KO),TL(KO),P(KO), ALFA(KO)
    READ (5,1000) KCHECK,UVZ(KO), ULZ(KO),UVR(KO),ULR(KO)
    IF(KCHECK.EQ.KO)GO TO I
        IERR = 4
        RETURN
    1 CONTINUE
    KRES = 0
    13 CONTINUE
        READ(5,1005) LDATA, (XIN(K),K=1.5)
        IF(. NOT.LDATA) GO TO 213
    DO 113 I = 1.5
    KO = KRES + I
    F(KO.GT.NTR) GO TO $3
    R(KO) = XIN(I)
113 CONTINUE
    KRES = KRES + 5
    GO TO 13
213 CONT INUE
C CONTINUE:
KRES = 0
313 CONT INUE
READ (5,1005) LDATA, (XIN(K),K=1,5)
    IF(.NOT.LDATA) GO TO 513
    DO 413 I = 1.5
    KO = KRES + I
    K3 = KO + 2*NI
    IF(KO.GT.NI) GO TO 313
    TCAN (KO) = XIN(I)
    TCAN(K3) = XIN(I)
413 CONT INUE
    KRES = KRES & 5
    GO TO 313
513 CONTINUE
DO 18I= 1,NIM2
    DO 18 J=1,NJ
    KP = (J-1)*NIM2 + I
    KT = KP*NPIN
    TW(KP) = TR(KT)
    18 CONTINUE
    RETURN
    19 CONTINUE
```

```
694 READ(5,1010) PIN,POUT,TIN,TAV
695
696
6 9 9 ~ C
700 1000 FORMAT (I5,4D15.9)
701 1001 FORMAT(L1,F15.5)
02 1002 FORMAT(4D15.9)
703 1003 FORMAT (15,3015.9)
703 1003 FORMAT(15,301
705 1005 FORMAT(L1.5015.9)
706 1006 FORMAT(3015.9)
707 1007 FORMAT(3912)
708 1008 FORMAT(3D15.9)
709 1009 FORMAT(L1,D15.9)
710 1010 FORMAT(4D15.9)
7 1 1
QPP = HNW2(2)*RADFU*RADFU/RADR/2.DO
CALL SS (PIN, POUT,TIN,TAV,QPP,P,TV,TL,UVZ,ULZ,UVR,ULR,ALFA
* TW,TR,DTR,OH,DV,NN,NP,NTR,NPIN,NPMI)
RETURN
,F15.
008
ENO
```



```
    DO 3 I = 1,NI
    KO = NNJ + I
    ULZ(KO) =V
    UVZ(KO) =V
    ULR(KO) = ZERO
    UVR(KO) = ZERO
    ALFA(KO) = ZERO
3 \text { CONTINUE}
    TL(1) = TIN
    TV(1) = TIN
    P(1) = PIN
    DO 4 J = 1,NJ
    KO = J*NI - NIM1
    TL(KO) = TIN
    TV(KO) = TIN
    P(KO)=PIN
    DO 4 I =2,NI
    KO = (U-1)*NI + I
    P(KO) = P(KO-1) - DP*DZ1(I)
    UXX = ULZ(KO)
    IF(UXX,EQ.ZERO) UXX = ONE
    TL(KO) = TL(KO-1) + Q*SHAPE(KO)*OV(KO)*OZ1(I)/RHO/UXX/
    / CPL(TL(KO-1))
    TV(KO)=TL(KO)
4 CONTINUE
    DT = . 100
    DO 7 J = 1.NJ
    OO 7 I = 2,NIMI
    KO = (U-1)*NI + 1
    KP=KO + 1-J*2
    KT = (KP-1)*NPIN +1
    KR = KP*NPIN
    TW(KP) = TL(KO)
    TS = SAT(P(KO))
    CALL HTCF (P(KO),TV(KO),TL(KO), ALFA(KO), PROP(1,1)
* PROP(1,2),PROP(1,3),PROP(1,4),DH(KO),TS,TW(KP).
    PROP(1,2),PROP(1,3),PROP(1,4),DH
    DO 5 K=1,NPIN
    KTR = (KP-1)*NPIN +K
```

```
800 TR(KTR) = TW(KP)
```

801
802
803
803
805
806
807 C
808
809
809
811
812
813
814
814
815
815
816
817

TR(KTR) = TW(KP)

```
5 CONTINUE
6 CONT INUE
YTR \(=\) TR(KT)
CALL FPROP(TR(KT),NPIN,NPM1,I)
CALL FPIN (TV(KO),TL(KO), TS, TW(KP), DTW,HCONV,HCONL,HNB,
* TR(KT),DTR(KT), DT,NPIN,NPMI,KO)
\(T R(K R)=T W(K P)\)
DO \(16 \mathrm{KK}=1\), NPM1
\(K S=K R-K K\)
\(T R(K S)=T R(K S)-\operatorname{DTR}(K S) * T R(K S+1)\)
16 CONTINUE
TTR = DABS (TTR - TR(KT))/OT
IF(TTR.GT.ONE) GO TO 6
7 CONTINUE
RETURN
END
```


Subroutine tmstep

861
862 863 864 865

```
TIME = TIME+DT
DO \(104 \mathrm{KO}=1 . \mathrm{NN}\)
\(K L=K O-1\)
\(K 68=M(68)+K L\)
\(K 82=M(82)+K L\)
\(0(K 82)=O(K 68)\)
104 CONTINUE
CALL DONOR(O(M(1));O(M(2)).O(M(3)).O(M(4)).O(M(5)). * \(\quad 0(M(G)) . O(M(7)) . O(M(8)) . O(M(9)) . O(M(10))\). - O(M(11)),O(M112)),O(M(13)),O(M(14)),O(M(15)). * \(\quad 0(M(16)) . O(M(17)), O(M(18)), O(M(19)), O(M(20))\), \(O(M(16)), O(M(17)), O(M(18)), O(M(19)), O(M(20))\),
\(O(M(21)), O(M(22)), O(M(23)), O(M(24)), O(M(25))\), \(O(M(26)) . O(M(27)), O(M(28)) . O(M(29)), O(M(30))\). \(\begin{array}{ll}* & O(M(26)), O(M(27)), O(M(2 \theta)), O(M(29)), O(M(30)) . \\ * & O(M(31)), O(M(32)), O(M(33)), O(M(34)), O(M(41)) .\end{array}\) * \(\quad 0(M(42)), O(M(47)), O(M(48)), O(M(52)), O(M(53))\).
\(O(M(58)), O(M(59)), O(M(73)), O(M(86)), O(M(87))\). \(O(M(88)), O(M(89)), N N, N P)\)
1 continue
CALL \(B C(O(M(1)), O(M(3)) . O(M(5)), O(M(7)) . T I M E\).
* CALL WS(O(M( 2)), O(M(4)),O(M(6)).O(M( 8)).O(M(9)).
* \(\quad O(M(10)), O(M(11)), O(M(12)), O(M(13)), O(M(14))\).
* \(\quad 0(M(15)), O(M(16)), O(M(17)), O(M(18)), O(M(27))\), \(O(M(43)), O(M(44)), O(M(45)), O(M(46)), O(M(47))\). \(O(M(43)), O(M(44)), O(M(45)), O(M(46))\),
\(O(M(48)), O(M(49)), O(M(50)), O(M(51))\),
\(O(M(48)), O(M(49)), O(M(50)), O(M(51))\),
\(O(M(54)), O(M(55)), O(M(56)), O(M(57)), O(M(58))\).
\(O(M(54)), O(M(55)), O(M(56)), O(M(57)), O(M(58))\),
\(O(M(59)), O(M(60)), O(M(61)), O(M(62)), O(M(63))\), \(O(M(65)), O(M(66)), O(M(90)), N N)\)
DO. \(1001 \mathrm{I}=2\),NIMI
\(001001 L=2, N I M\)
\(001001 J=1, N J\)
\(K O=(J-1) * N I+I-1\)
\(K P=K O+1-J * 2\)
\(K T=K P * N P I N\)
\(K O:=M(1)+K O\)
\(K 03=M(3)+K O\)
\(K 05=M(5)+K O\)
\(K 07=M(7)+K O\)
\(K 11=M(11)+K O\)
\(K 12=M(12)+K 0\)
\(K 12=M(12)+K O\)
\(K 17=M(17)+K D\)
```

```
906
907
908
909
910
911
912
913
914
915
916
917
918
19 C
O20
921
92 C
```

 F
    ```
    F
    莍K18=M(18) + KO
    莍K18=M(18) + KO
    K23 = M(23) + KO
    K23 = M(23) + KO
        K24 =M(24) + KO
        K24 =M(24) + KO
        K63 =M(63) +KO
        K63 =M(63) +KO
        K67 =M(67) + KO
        K67 =M(67) + KO
        K68 = M(68) +KP
        K68 = M(68) +KP
        K69 =M(69) + KP
        K69 =M(69) + KP
        K70 =M(70) +KP
        K70 =M(70) +KP
        K71 =M(70) +KP
        K71 =M(70) +KP
        K71 =M(71) + KP
        K71 =M(71) + KP
        K8O =M(80) +KT
        K8O =M(80) +KT
        K81 =M(81) +KT
        K81 =M(81) +KT
    KF=KO + 1
    KF=KO + 1
        UV = (O(K23) + O(K23 + 1))/2.DO
        UV = (O(K23) + O(K23 + 1))/2.DO
        UL=(O(K24)+O(K24+1))/2.00
        UL=(O(K24)+O(K24+1))/2.00
        CALL HTCF (O(KO1).O(KO3).O(K05).O(KO7).O(K11).O(K12).
        CALL HTCF (O(KO1).O(KO3).O(K05).O(KO7).O(K11).O(K12).
        * O(K17),0(K18).0(KG3).0(K67).0(K68),0(K70).
        * O(K17),0(K18).0(KG3).0(K67).0(K68),0(K70).
    O(K71).O(K72),UV,UL)
    O(K71).O(K72),UV,UL)
    CALL FPROP(O(K8O),NPIN,NPM1,I)
    CALL FPROP(O(K8O),NPIN,NPM1,I)
    CALL FPIN (O(KO3),O(KO5),O(K67),O(K68),O(K69).O(K70),
    CALL FPIN (O(KO3),O(KO5),O(K67),O(K68),O(K69).O(K70),
    * O(K71),O(K72),O(K80),O(K81),DT,NPIN,NPM1,KF)
    * O(K71),O(K72),O(K80),O(K81),DT,NPIN,NPM1,KF)
001 CONTINUE
001 CONTINUE
    CALL THXCN(O(M(3)),O(M(5)).O(M(70)).O(M(71)),O(M(91)).
    CALL THXCN(O(M(3)),O(M(5)).O(M(70)).O(M(71)),O(M(91)).
    *
    *
        DT,NN,NI,NJ,NCAN,NIMT,NIM2)
        DT,NN,NI,NJ,NCAN,NIMT,NIM2)
    IF(IERR.NE.O) REYURN
    IF(IERR.NE.O) REYURN
    IT2=0
    IT2=0
    2 CONTINUE
    2 CONTINUE
    IT2 = IT2+1
    IT2 = IT2+1
    CALL ONESTP(O(M( 1)),O(M( 2)),O(M( 3)),O(M( 5)).O(M( 7)),
    CALL ONESTP(O(M( 1)),O(M( 2)),O(M( 3)),O(M( 5)).O(M( 7)),
    * O(M( 8)).O(M( 9)).O(M(10)).O(M(11)).O(M(12))
    * O(M( 8)).O(M( 9)).O(M(10)).O(M(11)).O(M(12))
    * * O(M(17)),O(M(18)),O(M(19)),O(M(20)),O(M(21)).
    * * O(M(17)),O(M(18)),O(M(19)),O(M(20)),O(M(21)).
    O(M(22)),O(M(23)),O(M(24)),O(M(25)),O(M(26))
    O(M(22)),O(M(23)),O(M(24)),O(M(25)),O(M(26))
    O(M(35)),O(M(36)),O(M(37)),O(M(38)),O(M(39))
    O(M(35)),O(M(36)),O(M(37)),O(M(38)),O(M(39))
    O(M(65)),O(M(67)),O(M(68)),O(M(69)),O(M(70)),
    O(M(65)),O(M(67)),O(M(68)),O(M(69)),O(M(70)),
    O(M(71)),O(M(72)),O(M(73)),O(M(74)),O(M(75)),
    O(M(71)),O(M(72)),O(M(73)),O(M(74)),O(M(75)),
    O(M(76)),O(M(77)),O(M(78)),O(M(79)).O(M(83))
    O(M(76)),O(M(77)),O(M(78)),O(M(79)).O(M(83))
    O(M(84)),O(M(86)),O(M(87)),O(M(88)).O(M(89)).
    O(M(84)),O(M(86)),O(M(87)),O(M(88)).O(M(89)).
    O(M(91)),DT,NN,NB,NP,NW,NCAN)
    O(M(91)),DT,NN,NB,NP,NW,NCAN)
    IF(IERR.NE.O) GO TO 5
    IF(IERR.NE.O) GO TO 5
    IF(IERR.NE.O) GO TO 5
    IF(IERR.NE.O) GO TO 5
    IF(RES.GT.EPSI)
```

 IF(RES.GT.EPSI)
    ```
```

951 CALL FTP(O(M(3)),O(M(5)),O(M(67)),O(M(60)),O(M(70)),
953 * NI.NJ,NN,NP,NTR,NPMI,NIM2,NPIN)
CALL THXCNO(O(M(91)),NCAN,NI)
RETURN
4 IF(IT2.LT.ITM2) GO TO 2
5 CONTINUE
NDT = NDT+1
IT3 =1T3+IT2
IT2 = 0
TIME = TIME-DT
OTO = DT
DT = DT*0.1
IF(DT.LT.1.D-07) IERR = 21
TIME = TIME+DT
OO 6 KO = 1.NN
KL=KO-1
KO1 =M(1) +KL
K02 =M(2) +KL
K03 =M(3)+KL
K04 = M(4) +KL
K05 =M(5) +KL
K06=M(6)+KL
K06 =M(6) +KL
K07 =M(7) +KL
K23 =M(23) +KL
K24=M(24)+KL
K25 =M(25)+KL
K26 =M(26)+KL
K26=M(26)+KL
K27 =M(27) +KL
K29 =M(29) +KL
K30 =M(30) +KL
K73 =M(73) +KL
K68 =M(68) +KL
K82 =M(82) +KL
O(KO3)=O(K04)
O(KO5)=O(K06)
O(K07) = O(K08)
O(K23)=O(K27)
O(K24)=O(K28)
O(K25) = O(K29)
O(K26) = O(K30)
O(K01) = O(K02)

```
```

996
998
999
O(K73) = ZERO
O(K68)=0(K82)
6 CONTINUE
CALL FTP(O(!A(3)), O(M(5)).O(M(67)).O(M(68)),O(M(70)), * $\quad O(M(71)), O(M(72)), O(M(80)), O(M(81)), O(M(85))$, * NI,NU,NN,NP,NTR,NPMI,NIM2,NPIN)
IF(IERR.GT.20) RETURN
IF(NDT.GT.3) RETURN
$I E R R=0$
GO TO 1
END

```

\section*{Subroutine donor}
```

007
008
009
009
010
1011
012
1013
1014
015
015
016
1017
018
1019
1020
1021
021
022
1023
1024
1025
1026
1027
027
028
1029
1030 C
1031
1032
033
033
034
1035 C
1036
1037
1038
1039
039
040
1041
1042
1043
1044
1044
C45
046
047
1048 C
1049
SUBROUTINE DONOR(P,PO,TV,TVO,TL,TLO,ALFAN,ALFAO,ALFAZ,ALFAR.
SUBROUTINE DONOR(P,PO,TV,TVO,TL,TLO,ALFAN,ALFAO,ALFAZ
HV,HL,HVZ,HLZ,HVR,HLR,UVZN,
ULZN,UVRN,ULRN,UVZO,ULZO,UVRO,ULRO.
ULZN,UVRN,ULRN,UVZO,ULZO,UVR
WZ7,WZ8,WR1,WR2,WR7,WR8,DPN,AVZD,ALZD,
AVRD,ALRO,NN,NP)
* IMPLICIT REAL*B (A-H,O-Z)
COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
COMMON / GRVTY/ GZ.GR
COMMON GRVTY/ GZ,GR
COMMON/DIM/ DZ(40),DZ1(40),DRO(40),DR1(40),DR2(40),DR3(40)
*
DZ(40),021(40), DRO(40), DR1(40),DR2(40), DR3
COMMON /TEMPO/ TIME,DT,DTO,OTLS,NDT
DIMENSION P(NN), PO(NN), TV(NN),TVO(NN), TL(NN),TLO(NN), ALFAN(NN),
*
RHOVZ(NN),RHOLZ(NN),RHOVR(NN),RHOLR(NN),
RHOVZ(NN),RHOLZ(NN),RHJVR(NN),RHOLR(NN),
HV(NN),HL(NN),HVZ(NN),HLZ(NN),HVR(NN),HLR(NN)
UVZN(NN),ULZN(NN),UVRN(NN),ULRN(NN),UVZO(NN),
ULZO(NN), UVRO(NN),ULRO(NN),UVRZ(NN),ULRZ(NN),
UVZR(NN),ULZR(NN),WZ1(NN),WZ2(NN),WZ7(NN),WZ8(NN),
WR1 (NN),WR2(NN),WP7(NN),WRB(NN),DPN(NN).
AVZD(NN),ALZD(NN),AVRD(NN),ALRO(NN)
DIMENSION PROP(3,4),S(5,2)
C
**
* A
* *
*
*
**
* *
UVZR(NN),ULZR(NN),WZ1(NN),WZ2(NN),WZ7(NN)
IFLAG=0
DTR = DT/OTLS
DO 101 KO = 1 NN
CALG STATE (TV(KO),TL(KO),P(KO),PROP,IFLAG)
IF(ALFAN(KO).GT.1.D-08) GO TO 100
ALFAN(KO) = ZERD
TV(KO) =
100 CONTINUE
TVO(KO)=TV(KO)
TLO(KO) = TL(KO)
PO(KO) = P(KO)
RHOV (KO) = PROP(1,1)
RHOL (KO) = PROP(1,2)
RHOL(KO) = PROP(1,2)
HV(KO)
= PROP(1,3)
HL(KO)
= PROP(1,4)
ALFAD(KO) = PROP(1,4)
IF(DABS(UVRN(KO)).LT.1.
IF(DABS(UVRN(KO)).LT.1.D-1O) UVRN(KO) = ZERO

```
\begin{tabular}{|c|c|c|}
\hline 1050 & & IF(DABS(ULRN(KO)).LT.1.D-10) ULRN(KO) = 2ERO \\
\hline 1051 & & UVZO (KO) \(=\) UVZN(KO) \\
\hline 1052 & & UVRO(KO) = UVRN(KO) \\
\hline 1053 & & ULZO (KO) \(=\) ULZN(KO) \\
\hline 1054 & & ULRO (KO) = ULRN(KO) \\
\hline 1055 & 101 & CONTINUE \\
\hline 1056 & & DO \(1101 \mathrm{~J}=1, \mathrm{NJ}\) \\
\hline 1057 & & DO \(1101 \mathrm{~L}=2, \mathrm{NIM}\) \\
\hline 1058 & & \(K O=(J-1) * N I+I\) \\
\hline 1059 & & KP \(=(\mathrm{J}-1) * N \mathrm{M} 1-\mathrm{J}+\mathrm{I}\) \\
\hline 1060 & 1101 & DPN(KP) \(=P(K O)-P O(K O)\) \\
\hline 1061 & & DO \(2101 \mathrm{I}=2 . \mathrm{NI}\) \\
\hline 1062 & & \(11=1-1\) \\
\hline 1063 & & DO \(2101 \mathrm{~J}=1, \mathrm{NJM1}\) \\
\hline 1064 & & \(\cdots \mathrm{J}=\mathrm{J}+1\) \\
\hline 1065 & & \(K O=(J-1) * N I+1\) \\
\hline 1066 & & \(K I=K O-1\) \\
\hline 1067 & & \(K J=K 0+N!\) \\
\hline 1063 & C & \\
\hline 1069 & & \(D Z M=D Z(I)+D Z(I I)\) \\
\hline 1070 & & DRM \(=\) DRD(J) + DRO(JJ) \\
\hline 1071 & C & \\
\hline 1072 & & ALFAZ(KO) \(=(\operatorname{ALFAO}(\mathrm{KO}) * D Z(I)+\operatorname{ALFAO}(\mathrm{KI}) * D Z(I I)) / D Z M\) \\
\hline 1073 & &  \\
\hline 1074 & & RHOLZ \((K O)=(R H O L(K O) * D Z(I)+R H O L(K I) * O Z(I I)) / D Z M\) \\
\hline 1075 & C & \\
\hline 1076 & & \(\operatorname{ALFAR}(\mathrm{KO})=(\operatorname{ALFAO}(\mathrm{KO}) *\) DRO(J) + ALFAO\((K J) * D R O(J J)) / D R M\) \\
\hline 1077 & & RHOVR(KO) \(=(\mathrm{RHOV}(\mathrm{KO}) * \operatorname{DRO}(\mathrm{~J})+\mathrm{RHOV}(\mathrm{KJ}) * \operatorname{DRO}(\mathrm{JJ})\) )/DRM \\
\hline 1078 & & RHOLR(KO) \(=\) (RHOL(KO)*DRO(J) + RHOL(KO)*DRO(JJ))/DRM \\
\hline 1079 & 2101 & CONT INUE \\
\hline 1080 & C & \\
\hline 1081 & & DO \(3101 \mathrm{~J}=1, \mathrm{NJ}\) \\
\hline 1082 & & \(K 0=(J-1) * N I+i\) \\
\hline 1083 & & ALFAZ \((\mathrm{KO})=\mathrm{ALFAO}(\mathrm{KO})\) \\
\hline 1084 & & RHOVZ \((K O)=\operatorname{RHOV}(K O)\) \\
\hline 1085 & & RHOLZ(KO) \(=\) RHOL(KO) \\
\hline 1086 & 3101 & CONT INUE \\
\hline 1087 & c & \\
\hline 1088 & & DO 4101 I = 2,NI \\
\hline 1089 & & \(\mathrm{KO}=\mathrm{NNJ}+\mathrm{I}\) \\
\hline 1090 & & \(I I=1-1\) \\
\hline 1091 & & \(K I=K 0-1\) \\
\hline 1092 & & DZM \(=\) DZ(I) + DZ(II) \\
\hline 1093 & C & \\
\hline 1094 & &  \\
\hline
\end{tabular}
```

1095
1096
1097
1098
O99
1095
100
1101 C
102
1103
104
1105
106 C
1107
1108
1:09
1110
1111 C
1112
1113
1114
1115
1116 C
1117
1118
1119
1120
1121
1122
1123
123
1124
1125 C
1126 C
1127
1128
1129
1130
130
1131 C
1132
1133
1134
1135
1136
136
1137C
1138C
1139
RHOVZ(KO)=(RHOV(KO)*DZ(I) + RHOV(KI)*OZ(II))/DZM
RHOLZ(KO)={RHOL(KO)*DZ(I) + RHOL(KI)*OZ(II))/DZM
410: CONTINUE
DO 102 J =2,NJM!
DO 102I = 2,NIM
KO = (J-1)*NI+I
UVRZ (KO) = (UVRO(KO) +UVRO(KO-1)+UVRO(KO-NI)+UVRO(KO-1-NI))/4.
ULRZ(KO)=(ULRO(KO)+ULRO(KO-1)+ULRO(KO-NI)+ULRO(KO-1-NI))/4.
UVZR(KO) = (UVZO(KO)+UVZO(KO+1)+UVZO(KO+NI)+UVZO(KO+1+NI))/4.
ULZR(KO)=(ULZO(KO)+ULZO(KO+1)+ULZO(KO+NI)+ULZO(KO+1+NI))/4.
KD=0
IF(UVZO(KO).GE.ZERO) KD=-1
KN = KO+KD
IO =I +KD
HVZ(KO)=HV(KN)
AVZD(KO)=ALFAO(KN)
WZI(KO) = ALFAO(KN)*RHDV(KN)
WZ1(KO) = ALFAO(KNN*RHOV(KN)
KD=0
KD=0
IO = I +KO
KN = KO+KD
HLZ(KO)=HL(KN)
ALZD(KO) = ONE - ALFAO(KN)
WZ2(KO) = (ONE-ALFAO(KN))*RHOL(KN)
WZS(KO)=(ULZO(KN+1)-ULZO(KN))/OZ(IO)*ULZO(KO)
KD = NI
IF(UVRO(KO).GE,ZERO) KD=0
NO = J + KD/NY
JO = J + KD/N
KN =KO +KD
HVR(KO)=HV(KN)
AVRD (KO) = ALFAO(KN)
WR1 (KO) = ALFAO(KN)*RHOV(KN)
WR7(KO) = (UVRO(KN)-UVRO(KN-NI))/DRO(JO)*UVRO(KO)
IF(U.EQ.NJMI) WR7(KO) = -UVRO(KN-NI)\#UVRO(KO)/DRO(UO)
KD =NI

```
```

1140 (l)
1141 JO = U + KD/NI
KN =KO+KD
HLR(KO)=HL(KN)
ALRD(KD) = ONE - ALFAO(KN)
WR2(KO) = (ONE-ALFAO(KN))*RHOL(KN)
WR8(KO)=(ULRO(KN)-ULRO(KN-NI))/DRO(JO)*ULRO(KO)
IF(U.EQ.NJMI) WRO(KO) = -ULRO(KN-NI)*ULRO(KO)/DRO(JO)
KD=NI
IF(UVRZ(KO).GE.ZERO) KD=0
KN = KO + KD
UO = J - 1 +KD/NI
WZ7(KO) = ((UVZO(KN)-UVZO(KN-NI))*UVRZ(KO)/DR3(JO) +
+ WZ7(KO) +GZ)*ALFAZ(KO)*RHOVZ(KO)
KD=NI
IF(ULRZ(KO).GE.ZERO) KD = O
KN = KO + KD
JO=J-1+KD/NI
WZg(KO)=((ULZO(KN)-ULZO(KN-NI))*ULRZ(KO)/OR3(JO) +
+ WZ8(KO) + GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO)
KD = O
IF(UVZR(KO).GE.ZERO) KD= =-1
KN = KD + KD
IO = 1 +KD + 1
WR7(KO)=((UVRO(KN+1) -UVRO(KN))*UVZR(KO)/OZ1(IO)*
* WR7(KO) + GR)*ALFAR(KO)*RHOVR(KO)
KD = 0
IF(ULZR(KO).GE.ZERO) KD:-1
KN=KO +KD
IO=I +KD + 1
WR8(KO)=((ULRO(KN+1)-ULRO(KN))*ULZR(KO)/DZ1(IO) \$
+WR8(KO) + GR)*(ONE-ALFAR(KO))*RHOLR(KO)
102 CONTINUE
182
1183 C
1184C TOP CELLS

```
```

11856
1186
1187
1188
1189
1190
1191 C
1192
193
193
1194
1195
1196
1197 C
1198 C
1199
1200
1201
1202
1203 C
1204
1204
1205
1206
1207
1208
1209 C
1210
1211
1212 C
1213C
1214 C
1214 C
1216C
217
1217
1218
12:9
1220
1221 C
1222
1223
223
1224
1225
1226 C
1227
1228
1229
C
C
2
HVZ(KO)=HV(KN)
AVZD(KO) = ALFAO(KN)
WZ1(KD)=ALFAO(KN)*RHOV(KN)
WZ7(KO) = ((UVZO(KN+1)-UVZO(KN))/DZ(10)*UVZO(KO)+GZ)*
*
DO 103 KO = NI,NN,NI
KD = 0
IF(UVZO(KO).GE.ZERO) KD=-1
KN = KO+KD
IO=NI+KD
ALFAZ(KO)*RHOVZ(KO)
KD = 0
IF(ULZO(KO).GE.ZERO) KD=-1
KN = KO+KD
IO=NI+KD
HLZ(KO)=HL(KN)
ALZD(KO) = ONE - ALFAO(KN)
WZ2(KO) = (ONE-ALFAO(KN))*RHOL(KN)
*)}\begin{array}{rl}{\mathrm{ W22(KO) = (ONE-ALFAO(KN))*RHOL(KN)}}
{WZQ(KO)=}\&{((ULZO(KN+1)-ULZO(KN))/OZ(IO)*ULZO(KO)+GZ)*}
*
(ONE-ALFAZ(KO))*RHOLZ(KO)
103 CONTINUE
THE CENTERLINE CELLS
DO 110 KO = 2.NIMI
UVRZ(KO)=(UVRO(KO)+UVRO(KO-1))/4.
URRZ(KO) = (UVRO(KO)+UVRO(KO-1))/4.
UVZR(KO)=(UVZO(KO)+UVZO(KO+1)+UVZO(KO+NI)+UVZO(KO+1+NI))/4.
UNO
KD = 0
IF(UVZO(KO).GE.ZERO) KO= =-1
KN = KO+KD
IO =KO +KD
C
HVZ(KO)=HV(KN)
AVZO(KO)=ALFAO(KN)
WZY(KO) = ALFAO(KN)*RHOV(KN)

```
\begin{tabular}{|c|c|c|}
\hline 1230 & & WZ7(KO) = (UVZO(KN+1)-UVZO(KN))/DZ(10)*UVZO(KO) \\
\hline 1231 & \multicolumn{2}{|l|}{C} \\
\hline 1232 & & \(K D=0\) \\
\hline 1233 & & IF(ULZO(KO).GE.ZERO) KD \(=-1\) \\
\hline 1234 & & \(I O=K D+K D\) \\
\hline 1235 & & \(K N=K O+K D\) \\
\hline 1236 & & \(H L Z(K O)=H L(K N)\) \\
\hline 1237 & & \(A L Z O(K O)=O N E-A L F A O(K N)\) \\
\hline 1238 & & WZ2(KO) \(=(\mathrm{ONE}-A L F A O(K N)) *\) RHOL (KN) \\
\hline 1239 & & WZ8(KO) \(=(U L Z O(K N+1)-U L Z O(K N)) / D Z(I O) * U L Z O(K O)\) \\
\hline 1240 & C & \\
\hline 1241 & C & \\
\hline 1242 & & \(K D=0\) \\
\hline 1243 & & IF(UVZR(KO).GE.ZERO) KD \(=-1\) \\
\hline 1244 & & \(K N=K O+K D\) \\
\hline 1245 & & \(10=K O+K D+1\) \\
\hline 1246 & & WR7 (KO) = (UVRO (KN+1)-UVRO (KN))*UVZR(KO)/DZ1(IO) \\
\hline \multicolumn{3}{|l|}{12.76 C} \\
\hline 1248 & & \(K D=0\) \\
\hline 1249 & & IF (ULZR(KO), GE, ZERO) \(K D=-1\) \\
\hline 1250 & & \(K N=K D+K D\) \\
\hline 1251 & & \(I O=K O+K O+1\) \\
\hline 1252 & & WRE(KO) = (ULRO(KN+1)-ULRO(KN))*ULZR(KO)/DZ1 (IO) \\
\hline 1253 & C & \\
\hline 1254 & & IF(UVRO(KO)) 104, 105,105 \\
\hline 1255 & 104 & \(K N=K O+N I\) \\
\hline 1256 & & \(J O=2\) \\
\hline 1257 & C & \\
\hline 1258 & & HVR(KO) \(=\mathrm{HV}(\mathrm{KN})\) \\
\hline 1759 & & \(A V R D(K O)=A L F A O(K N)\) \\
\hline 1250 & & WR1 (KO) \(=\) ALFAO (KN)*RHOV (KN) \\
\hline 1261 & &  \\
\hline 1262 & & + WR7 (KO)+GR)*ALFAR(KO)*RHOVR(KO) \\
\hline 1263 & C & \\
\hline 1264 & C & \\
\hline 1265 & & GO 10106 \\
\hline 1266 & 105 & HVR (KO) \(=\) HV(KO) \\
\hline 1267 & & AVRD (KO) \(=\) ALFAO (KO) \\
\hline 1268 & & WR1 (KO) = ALFAD(KD)*RHOV(KO) \\
\hline 1269 & & WR7 (KO) = (UVRO (KO)/DRO ( 1 )*UVRO(KO)+WR7 (KO)+GR)* \\
\hline 1270 & & * ALFAR(KO)*RHOVR(KO) \\
\hline 1271 & C & \\
\hline 1272 & C & \\
\hline 1273 & 106 & CONT INUE \\
\hline 1274 & & IF(ULRO(KO)) 107.108.108 \\
\hline
\end{tabular}
```

107 KN = KO+NI

```
107 KN = KO+NI
    NO=2
    NO=2
1276
HLR(KO) = HL(KN)
HLR(KO) = HL(KN)
    HLR(KO) = HL(KN)
    HLR(KO) = HL(KN)
    ALRD(KO) = ONE - ALFAO(KN)
    ALRD(KO) = ONE - ALFAO(KN)
    WR2(KO) = (ONE-ALFAO(KN))*RHOL (KN)
    WR2(KO) = (ONE-ALFAO(KN))*RHOL (KN)
    WR8(KO) % ((ULRO(KN) - ULRO(KO))/ORO(JO) *ULRO(KO) *
    WR8(KO) % ((ULRO(KN) - ULRO(KO))/ORO(JO) *ULRO(KO) *
    +
    +
                WRB (KO) +GR) % (ONE-ALFAR (KO)) * RHOLR(KO)
                WRB (KO) +GR) % (ONE-ALFAR (KO)) * RHOLR(KO)
    C
    C
        GO TO 109
        GO TO 109
    108 HLR(KO)=HL(KO)
    108 HLR(KO)=HL(KO)
        ALRD(KO) = ONE - ALFAO(KO)
        ALRD(KO) = ONE - ALFAO(KO)
        RHOLR(KO) = RHOL(KO)
        RHOLR(KO) = RHOL(KO)
        WR2(KO) = (ONE-ALFAO(KO))*RHOLR(KO)
        WR2(KO) = (ONE-ALFAO(KO))*RHOLR(KO)
        WR8(KO) = (ULRO(KO)/DRO(1)*ULRO(KO) +WR8(KO)+GR)*WR2(KO)
        WR8(KO) = (ULRO(KO)/DRO(1)*ULRO(KO) +WR8(KO)+GR)*WR2(KO)
C
C
    109 CONTINUE
    109 CONTINUE
    C
    C
    IF(UVRZ(KO)) 1108,2108,2108
    IF(UVRZ(KO)) 1108,2108,2108
    1108 WZ7(KO) = (W27(KO) + UVZO(KO+NI)*UVRZ(KO)/DR3(1) +
    1108 WZ7(KO) = (W27(KO) + UVZO(KO+NI)*UVRZ(KO)/DR3(1) +
    +
    +
    GO TO 310日
    GO TO 310日
    2108WZ7(KO) = (WZ7(KO) + UVZO(KO)*UVRZ(KO)/OR3(1) +
    2108WZ7(KO) = (WZ7(KO) + UVZO(KO)*UVRZ(KO)/OR3(1) +
    +
    +
C
C
3108 CONTINUE
3108 CONTINUE
    IF(ULRZ(KO)) 4108,5108,5108
    IF(ULRZ(KO)) 4108,5108,5108
4108WZ8(KO) = (WZ8(KO) + ULZO(KO+NY)*ULRZ(KO)/DR3(1) +
4108WZ8(KO) = (WZ8(KO) + ULZO(KO+NY)*ULRZ(KO)/DR3(1) +
    + GO GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO)
    + GO GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO)
    GO TO 6108
    GO TO 6108
5108WZ8(KO)=(WZ8(KO) + ULZO(KO)*ULRZ(KO)/OR3(1) +
5108WZ8(KO)=(WZ8(KO) + ULZO(KO)*ULRZ(KO)/OR3(1) +
    + GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO
    + GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO
6108 CONTINUE
6108 CONTINUE
C
C
110 CONTINUE
110 CONTINUE
1313
1314
1315 C
1316
1317
1318C
1319 UVRZ(KO) = (UVRO(KO-NI)+UVRO(KO-1-NI))/4.
```

1319 UVRZ(KO) = (UVRO(KO-NI)+UVRO(KO-1-NI))/4.

```
```

1320 C ULRZ(KO)=(ULRO(KO-NI)+ULRO(KO-1-NI))/4.
1322
1324
1325
1326 C
1326
1327
1329
1330
1331 C
1332
+33
1333
1334
1335
1336
1337
1338
1339
1339
1340 C
1341 C
1342
1343 1110WZ7(KO)=(WZ7(KO)-UVZO(KO)*UVRZ(KO)/OR3(3) +
1344 + GZ)*ALFAZ(KO)*RHOVZ(KO)
1345
134G 2110 WZ7(KO) = (WZ7(KO) + (UVZO(KO)-UVZO(KO-NI))*UVRZ(KO)/DR3(2) +
1347
1548 C
1349 3110 CONTINUE
1350 IF(ULRZ(KO)) 4110.5110,5110
1351 4110 WZ8(KO)=(WZ8(KO) - ULZO(KO)*ULRZ(KO)/OR3(3) +
1352
1352
1353

```

```

1355
1356 6
1357 C
1358
1358
1359
1360
111 CONTINUE
RETURN
END

```

\section*{Subroutine ws}

1361
1362
1362
1363
1364
1365
1366
1367
1368
368
1369
1370
1371
1372
1373
1374
375
1375
1376
1377
1378
1379
1380 C
1381
1382
1383
1384 C
1385
1386 C
386
1337 C
1398 C
1389 C
1390
1391
392
392
1393
1394 C
1395
1396
1397
1398 C
1399
1400
1401
1402
1403 C

SUBROUTINE WS(PO, TVO, TLO, ALFAO, ALFAZ, ALFAR,RHOV,
\begin{tabular}{ll} 
* & RHQL, RHOVZ, RHCLZ, RHOVR, RHOLR,HV,HL, \\
\(*\) & UVZO,ULZO, UVRO, ULRO, \\
* & WEV,WEL,WZ3,WZ4,WZ5,WZG,WZ7,WZ8,WZ9, \\
\(*\) & WZ10,WZ11,WR3,WR4,WR5,WRG,WR7,WR8,WR9.
\end{tabular} * WR10,WR11,DH,OV,QSI,SPPD,NN)

IMPLICIT REAL* 8 ( \(A-H, O-Z\)
COMMON /DIM/ DZ(40), DZ1(40), DRO(40), DR1 (40), DR2 (40), DR3(40). * DR4(40),NI,NJ,NIMI,NIM2, NJM1, NNI, NNJ, NNJJ

COMMON /TEMPO/ YIME,DT, DTO, DTLS,NDT
COMMON /NUNTBER/ ZERO,ONE,BIG,SMALL
DIMENSION PO(NN), TVO(NN), TLO(NN), ALFAO(NN), ALFAZ(NN),
*
ALFAR (NN), RHOV (NN), RHOL (IJN), RHOVZ (NN), RHOLZ (NN).


* WZ9(NN),WZ10(NN),WZ11(NN),WR3(NN),WR4(NN),
* WR5 (NN), WR6(NN),WF7(NN),WR8 (NN), WR9 (NN),WRIO(NN).

WRII(NN), DH(NN), DV (NN), OSI (NN), SPPD(NN)

SUBROUTINE WS COMPLETE THE EVALUATION OF THE
EXPLICIT TERMS INVOLVED IN THE SOLUTION OF
THE PROBLEM STATED WITH SUBRDUTINE DONOR
HERE ARE SET THE TERMS CONTAINING THE TIME
INCREMENT DT.IT IS WRITTEN SEPARATELY FROM
SUSPOUTINE DONOR IN ORDER TO ALLO'N A CHANGE
IN THE VALUE OF DT WHEN THE PROBLRM DOES NOT
CONVERGE WITH THE PREVIOUS DT.
(SEE NEXT COMENT IN THIS SUBROUTINE.)
```

DO 5 JO = 1.NJ

```
DO 5 IO = \(2, \mathrm{NI}\)
\(K O=(N O-1) * N I+I O\)
WWZ1 \(=\) ALFAZ (KO) *RHOVZ (KO)
WWZ2 = (ONE - ALFAZ(KO))*RHOLZ(KO)
WWR1 \(=\) ALFAR (KO)*RHOVR (KO)
WWR2 \(=\) (ONE - ALFAR(KO))*RHOLR(KO)

1404 1405
```

 CALL COEFF(TVO(KO),TLO(KO),UVZO(KO),UVRO(KO),ULZO(KO),ULRO(KO).
    ```
    CALL COEFF(TVO(KO),TLO(KO),UVZO(KO),UVRO(KO),ULZO(KO),ULRO(KO).
    * ALFAZ(KO),ALFAR(KO),RHOVZ(KO), RHOVR(KO),
    * ALFAZ(KO),ALFAR(KO),RHOVZ(KO), RHOVR(KO),
    * RHOLZ(KO),RHOLR(KO),DH(KO),DV(KO),QSI(KO),
    * RHOLZ(KO),RHOLR(KO),DH(KO),DV(KO),QSI(KO),
    SPPD(KO),WWZ1,WWZ2,WWR1,WWR2,
    SPPD(KO),WWZ1,WWZ2,WWR1,WWR2,
    FVZ,FLZ,FVR,FLR,C1Z,C\R)
    FVZ,FLZ,FVR,FLR,C1Z,C\R)
    WEV(KO) = -(RHOV (KO)*HV(KO)+PO(KO))*ALFAO(KO)/DT
    WEV(KO) = -(RHOV (KO)*HV(KO)+PO(KO))*ALFAO(KO)/DT
    WEL(KO) = -(RHOL(KO)*HL(KO) +PO(KO))*(ONE-ALFAO(KO))/DT
    WEL(KO) = -(RHOL(KO)*HL(KO) +PO(KO))*(ONE-ALFAO(KO))/DT
    IF(NDT.NE.O) GO TO 1
    IF(NDT.NE.O) GO TO 1
        SINCE THE PROGRAM ALLOWS A CHANGE IN YHE VALUE
        SINCE THE PROGRAM ALLOWS A CHANGE IN YHE VALUE
        OF THE TIME INCREMENT DT,EVEN IF THE TIME STEP
        OF THE TIME INCREMENT DT,EVEN IF THE TIME STEP
        IS NOT COMPLITED,WE PUT A CHECK HERE TO KNOW
        IS NOT COMPLITED,WE PUT A CHECK HERE TO KNOW
        IF SUCH A CHANGE DID OCCUR (IN THIS CASE NDT
        IF SUCH A CHANGE DID OCCUR (IN THIS CASE NDT
        WOULD BE DIFFERENT THAN ZERO) IN CASE THE TEST
        WOULD BE DIFFERENT THAN ZERO) IN CASE THE TEST
        BE TRUE,WE SUBTRACT THE TERMS WHICH HAVE THE
        BE TRUE,WE SUBTRACT THE TERMS WHICH HAVE THE
        OLD DT AND ADD THEM BACK WITH THE NEW VALUE
        OLD DT AND ADD THEM BACK WITH THE NEW VALUE
        OF DT.
        OF DT.
    WZ4(KO) = C1Z
    WZ4(KO) = C1Z
    WZG(KO)=C1Z
    WZG(KO)=C1Z
    WR4(KO) = CIR
    WR4(KO) = CIR
    WR6(KO) = CiR
    WR6(KO) = CiR
    WZ3(KO)=WZ4(KO) + ALFAZ(KO)*RHOVZ(KO)/DT + FVZ
    WZ3(KO)=WZ4(KO) + ALFAZ(KO)*RHOVZ(KO)/DT + FVZ
    WZ5(KO)=WZG(KO) + (ONE-ALFAZ(KO))*RHOLZ(KO)/OT + FLZ
    WZ5(KO)=WZG(KO) + (ONE-ALFAZ(KO))*RHOLZ(KO)/OT + FLZ
    WRO (KO) =WRA(KO) + ALFAR(KO)*RHOVR(KO)/DT + FVR
    WRO (KO) =WRA(KO) + ALFAR(KO)*RHOVR(KO)/DT + FVR
    WA5(KO) = WR6(KO) + (ONE-ALFAR(KO))*RHOLR(KO)/DT & FLR
    WA5(KO) = WR6(KO) + (ONE-ALFAR(KO))*RHOLR(KO)/DT & FLR
    WZ7(KO) = WZ7(KO) - UVZO(KO)/DT*ALFAZ(KO)*RHOVZ(KO)
    WZ7(KO) = WZ7(KO) - UVZO(KO)/DT*ALFAZ(KO)*RHOVZ(KO)
    WZB(KO)=WZ8(KO)-ULZO(KO)/OT*(ONE-ALFAZ(KO))*RHOLZ(KO)
    WZB(KO)=WZ8(KO)-ULZO(KO)/OT*(ONE-ALFAZ(KO))*RHOLZ(KO)
    WR7(KO) = WR7(KO) - UVRO(KO)/DT*ALFAR(KO)*RHOYR(KO)
    WR7(KO) = WR7(KO) - UVRO(KO)/DT*ALFAR(KO)*RHOYR(KO)
    WR8(KO) = W'R8(KO) - ULRO(KO)/DDT*(ONE-ALFAR(KO))*RHOLR(KO)
    WR8(KO) = W'R8(KO) - ULRO(KO)/DDT*(ONE-ALFAR(KO))*RHOLR(KO)
    GO 10 2
    GO 10 2
DTC = ONE/DTO - ONE/DT
DTC = ONE/DTO - ONE/DT
WZ7(KO) = UVZO(KO)*ALFAZ(KO)*RHOVZ(KO)*DTC + WZ7(KO)
WZ7(KO) = UVZO(KO)*ALFAZ(KO)*RHOVZ(KO)*DTC + WZ7(KO)
WZB(KO) = ULZO(KO)*(ONE-ALFAZ(KO))*RHOLZ(KO)*DTC + WZB(KO)
WZB(KO) = ULZO(KO)*(ONE-ALFAZ(KO))*RHOLZ(KO)*DTC + WZB(KO)
WR7(KO) = UVRO(KO)*ALFAR(KO)*RHOVR(KO)*DTC + WR7(KO)
WR7(KO) = UVRO(KO)*ALFAR(KO)*RHOVR(KO)*DTC + WR7(KO)
WRO(KO) = ULRO(KO)*(ONE-ALFAR(KO))*RHOLR(KO)*DTC + WRB(KO)
WRO(KO) = ULRO(KO)*(ONE-ALFAR(KO))*RHOLR(KO)*DTC + WRB(KO)
WZ3(KO) = WZ3(KO) - ALFAZ(KO)*RHOVZ(KO)*DTC
```

WZ3(KO) = WZ3(KO) - ALFAZ(KO)*RHOVZ(KO)*DTC

```

CALL COEFF (TVO(KO),TLO(KO),UVZO(KO), UVRO (KO), ULZO (KO), ULRO(KO).

* RHOLZ(KO),RHOLR(KO),OH(KO),OV(KO),OSI(KO).

SPPD(KO), WWZ1, WWZ2, WHR1, WWR2.
FVZ,FLZ,FVR,FiR,CIZ,CIR)
WEV (KO) \(=-(\) RHOV (KO) *HV (KO) +PO(KO))*ALFAO(KO)/DT
WEL \((K O)=-(R H O L(K O) * H L(K O)+P O(K O)) *(O N E-A L F A O(K O)) / D T\)
IF(NDT.NE.O) GO TO 1

SInce the program allows a change in the value OF THE TIME INCREMENT OT, EVEN IF THE TIME STEP IS NOT COMPLITED, WE PUT A CHECK HERE TO KNOW IF SUCH A CHANGE DID OCCUR (IN THIS CASE NDT WOULD BE DIFFERENT THAN ZERO) IN CASE THE TEST be true, we subtract the rerms which have the OLD DT AND ADD THEM BACK WITH THE NEW VALUE OF DT.

WZ4 (KO) \(=C 12\)
W26 (KO) \(=\) C1Z
WR4 (KO) \(=\) CIR
WR6(KO) \(=\) CIR
\(W Z 3(K O)=W Z 4(K O)+A L F A Z(K O) * R H O V Z(K O) / D T+F V Z\)
\(W Z 5(K O)=W Z 6(K O)+(O N E-A L F A Z(K O)) * R H O L Z(K O) / D T+F L Z\)
WR3 \((K O)=W R 4(K O)+A L F A R(K O) * R H O V R(K O) / D T+F V R\)
WR5 \((K O)=W R 6(K O)+(O N E-A L F A R(K O)) * R H O L R(K O) / D T+F L R\)

WZ7 (KO) = WZ7(KO) - UVZO(KO)/OT*ALFAZ(KO)*RHOVZ(KO)
WZ8 \((K O)=W Z 8(K O)-U L Z O(K O) / D T *(O N E-A L F A Z(K O)) * R H O L Z(K O)\)
WR7 (KO) \(=\) WR7 (KO) - UVRO (KO)/DT*ALFAR (KO)*RHOVR(KO)
WR8 (KO) \(=\) WR8 (KO) - ULRO (KO)/DT* (ONE-ALFAR (KO)) *RHOLR (KO)
GO TO 2
1 DTC = ONE/DTO - ONE/OT
WZ7 (KO) \(=\) UVZO (KO)*ALFAZ (KO) *RHOVZ (KO)*DTC + WZ7 (KO)
WZ8 (KO) \(=\) ULZO (KO) * (ONE-ALFAZ (KO)) *RHOLZ (KO) *DTC + WZ8 (KO)
WR7 \((K O)=U V R O(K O) * A L F A R(K O) * R H O V R(K O) * D T C+W R 7(K O)\)
WRO (KO) =ULRO(KO)*(ONE-ALFAR(KO))*RHOLR(KO)*DTC + WRB(KO)
WZ3(KO) = WZ3(KO) - ALFAZ (KO)*RHOVZ (KO)*DTC
```

1449
450
4 5 1
452
453
1453
454 C
455 C
456 C
1457 C
458 C
1459 C
460 C
460 C
461 C
4 6 2 ~ C
463
464
1465
1466
1466
1467 C
468
1469 C
1470 C
1471 C
1472C
1473 C
1474 C
1475 C
1475 C
1477 C
1478 C
1479
480
1481
1482
1433 C
1484
1485
|
486
1 4 9 1 ~ C
1492
1493 C
WZ5(KO)=WZ5(KO)-(ONE-ALFAZ(KO))*RHOLZ(KO)*DTC
WR5 (KO) =WR5(KO) - (ONE-ALFAR(KO))*RHOLR(KO)*DTC
2 IF(WZ3(KO).GT.SMALL) GO TO 3
THIS TEST IS DONE TO CHECK THE PRESENCE OF
VAPOR IN THE CELL AT THE PRESENT YIME STEP.
IN CASE THERE IS NO VAPOR NOR EVAPORATION
WZ3 = ZERO),THE VAPOR MOMENTUM EOUATION
BECOMES TRIVIAL AND THE LIOUID EQUATION
STANDS ALONE.
WZII(KO) = ZERO
WZ9(KO) = ZERO
WZ10(KO) = -(ONE-ALFAZ(KO))/DZ1(IO)/WZ5(KO)
GO YO 5
3 IF(WZ5(KO).GT.SMALL) GO TO 4
THIS TEST IS DONE TO CHECK THE PRESENCE OF
LIQUID IN THE CELL AT THE PRESENT TIME STEP.
IN CASE THERE IS NO LIQUID NOR CONOENSATION
(WZ5 = ZERO),THE LIQUID MOMENTUM EQUATION
GECONES YRIVIAL AND THE VAPOR EQUATION
STANDS ALONE.
WZ1+(KO) = ZERO
WZ1O(KO) = ZERO
WZ1O(KO) = ZERO
WZ9(KO)
4WZ11(KO) =WZ3(KO)*WZ5(KO)-WZ4(KO)*WZ6(KO)
WZ1O(KO) = - (ALFAZ(KO)*WZ6(KO)+(ONE-ALFAZ(KO))*WZ3(KO))/
/ DZI(IO)/WZ11(KO)
WZ9(KO) = -(ALFAZ(KO)*WZ5(KO)+(ONE-ALFAZ(KO))*WZ4(KO))/
AALFAZ(KO)*WZ5(KO
5 \mp@code { C O N T I N U E }
THE SAME TEST WHICH WAS DONE FOR THE

```
```

1494 C
1495
1496
1497
1498
1499 C
1500 C
1501
1502C
1503
1504
1505
1506
1507 C
1508
1509
1510
1511
1512
1513C
1514
1515
1516
1517
1518
1519 C
1520
1521
1522
1523
1524
1525
1526
1526
Z-DIRECTION (SEE COMENTS ABOVE) IS
DONE HERE FOR THE R-OIRECTION. NOTE
THAT SINCE THE MOMENTUM EQUATIONS ARE
EVALUATED AT DIFFERENT LOCATIONS FOR
EACH DIRECTION, IT IS POSSIBLE THAT
ONE PHASE IS ABSENT IN ONE DIRECTION EQUATIONS AND PRESENT IN THE OTHER OIRECTION EQUATIONS.
DO 8 JO $=1$, NJMY
DO 8 IO $=2$, NIMI
$K O=(J O-1) * N I+10$
IF(WR3(KO).GT.SMALL) GO TO 6
WR11 (KD) = ZERO
WR11 (KO) $=$ ZERO
WR9 (KO) $=$ ZERO
WR9 (KO) $=$ ZERO
WR1O (KO) $=-($ ONE-ALFAR (KO))/DR3(JO)/WR5(KO)
GO TO 8
6 IF(WRS (KO).GT.SMALL) GO TO 7
WR11 (KO) = ZERO
WR11 (KO) = ZERO
WR1O (KO) $=$ ZERO
WRIO (KO) = ZERO
WR9 (KO) = -ALFAR(KO)/DR3(JO)/WR3 (KO)
GO TO 8
7 WR1 1 (KO) = WR3 (KO) *WR5 (KO) - WR4 (KO) *WR6 (KO)
WR10 (KO) $=-($ ALFAR (KO) *WRG(KO) +(ONE-ALFAR(KO))*WR3(KO))/
$/$ ORIO(KO) $=$ OR3(JO)/WR11(KO)
WR9 (KO) $=-($ ALFAR(KO)*WRS (KO) $+(O N E-A L F A R(K O)) * W R 4(K O)) /$
8 CONTINUE DR3(UO)/WR11(KO)
8 CONTINUE
RETURN
END

```

\section*{Subroutine onestp}
```

SUBROUTINE ONESTP(PN,PO,TVN,TLN,ALFAN,ALFAO,ALFAZ,ALFAR,

* RHOV,RHOL,HV,HL,HVZ,HLZ,HVR,HLR.
* UVZN,ULZN.UVRN,ULRN,
FUVZN,FULZN, FUVRN,FULRN,W,DV,TS,
TW,OTW,HCONV,HCONL,HNB,DPN,A1,A2,A3,
A4,YP,B,BETA,GAMLMA,AVZD,ALZD,AVRD,
ALRO,TCAN,DT,NN,NB,NP,NW,NCAN)
IMPLICIT REAL*B (A-H,O-Z)
COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
COMMON /ERROR/ IERR
COMMON /OIM/ DZ(40),DZ1(40),DRO(40),DR1(40),DR2(40),DR3(40).
DR4(40),NI,NJ,NIM1,NIM2,NUM1,NNI,NNJ,NNJJ
OIMENSION EPSLON(9),RES(9)
DIMENSION PN(NN), PO(NN),TVN(NN),TLN(NN), ALFAN(NN),ALFAO(NN).
* ALFAZ(NN),ALFAR(NN),RHOV(NN),RHOL(NN),HV(NN),HL(NN),
HVZ(NN),HLZ(NN),HVR(NN),HLR(NN),
UVZN(NN),ULZN(NN),UVRN(NN).ULRN(NN),
FUVZN(NN),FULZN(NN),FUVRN(NN),FULRN(NN),
W(NW),DV(NN),TS(NN),TW(NN),DTW(NN).
HCONV(NN),HCONL(NN),HNB(NN),DPN(NN),
AI(NN),A2(NN),A3(NN),A4(NN),YP(NN),B(NB),
BETA(NN),GAMMA(NN),AVZD(NN),ALZD(NN),AVRD(NN),
ALRD(NN),TCAN(NCAN)
DIMENSION A(65),F(9),PROP(3,4),S(5,2),Q(4,2),K(30),M(30)
IFLAG = 1
THE MOMENTUM EQUATIONS (Z-DIRECTION) AT THE BOTTON
MM = NNJ + 2
OO 4 KO = 2,MM,NI
DO 1 L = 1,27
1K(L)=(L-i)*NN +KO
IF(W(K(5)).GT.SMALL) GO TO 2
ONLY LIQUID PrESENT IN the CELL

```
```

1571 C
1572
1574 C
1575
1576
1577
1578
1579
1580
581 C
1532
1583 C
1584 C
1585
585
1586
1587
1588
1569 C
1590
1591
1591
592
1593
1594
1595
1596 C
1597C
1598
1599
16c0
6 0 1
1602
1603
603
1604
1605
:EO6
\becauseF}7\textrm{C
もう:%
100y
610
610
1611
1612C
1613
1614
1615
V01 = (ONE-ALFAZ(KO))/DZ1(2)
V05 = W(K(7))
FUVZN(KO) = ZERO
FULZN(KO)=-(W(K(7))*ULZN(KO) + (PN(KO)-PN(KO-1))*VO1 +
+
W(K(10)))/V05
NERO
W(K(11))}=\mp@code{ZERO
GO TO 4
2 IF(W(K(7)).GT.SMALL)GO TO 3
ONLY VAPOR PRESENT IN THE CELL
V02 = ALFAZ(KO)/0Z1(2)
V02 = ALFA2 KO)
FUVZN(KO) = -(W(K(5))*UVZN(KO) + (PN(KO)-PN(KO-1))*VO2 +
+ W(K(9)))/V03
+ FULZN(KO) = W(KRO
W(K(11)) = -V02/V03
W(K(12)) = ZERO
GO ro 4
3. CONT INUE
VO1 = (ONE-ALFAZ(KO))/DZ1(2)
VO2 = ALFAZ(KO)/DZ1(2)
v03 = W(K(5))
v04 = W(K(6)
V04 =W(K(6))
v05 = w(k(7))
V05 =W(K(7))
V07 = V04*V06 - V03*V05
F(5)=W(K(5))*UVZN(KO) - N(K(5))*ULZN(KO) + (PN(KO)-PN(KO-1))*
* VO2 + W(K(9))
F(6) =W(K(7))*ULZN(KO)-W(K(8))*UVZN(KO) + (PN(KO)-PN(KO-1))*
**(6)= N(K(7) VO1 +W(K(10))
W(K(11))=(V05*V02+V04*VO1)/V07
W(K(12))=(V06*V02+V03*V01)/V07
FUVZN(KO)=(F(5)*V05+F(6)*V04)/V07

```

1616
1617
1618 C
\(1619 C\)
1620 C
1621
1622
1622
1623
1624
1525
1626
1627
1628
62
1629
1630
1631
```

FULZN(KO) $=(F(5) * V 06+F(6) * V 03) /$ V07
4 CONTINUE
the central cells
$A(4)=$ ZERO
$A(12)=$ ZERO
$A(20)=$ ZERD
$A(28)=$ ZERO
DO $122 \mathrm{KO}=2, \mathrm{NIM}$
DO $5 \quad L=1,27$
$5 K(L)=(L-1) * N N+K O$
$K M=K O+1$
$K P=K O-1$
CALL STATE (TVN(KO), TLN(KO), PN(KO), PROP, IFLAG)
CALL NONEQ(ALFAO (KO), ALFAN(KO), TVN(KO), YLN(KO), PN(KO),

* RHOV(KO), RHOL(KO),TS(KO), S,IFLAG)
CALL CONDT (TVN(KO), TLN(KO), PN(KO), ALFAO (KO), TS (KO), TW(KP),
* DTW(KP),HCONV(KP),HCONL(KP),HNB(KP),DV(KO),Q,KO)
CALL IPHTC (HIF,ALFAN(KO))
$V O 1=A L F A O(K O) / D T$
$V 02=(O N E-A L F A O(K O)) / D T$
V03 = ALFAN (KO)/DT
VO4 = (ONE-ALFAN(KO))/DT
$V 05=S(1,1)$
$V 06=S(2,1)$
$\vee 07=5(3,1)$
$V 08=5(4,1)$
$V 09=5(5,1)$
$V 10=W(K(3)+1) / D Z(K O)$
$V 11=W(K(3)) / D Z(K O)$
V12=W(K(14))*OR1 (1)
$V 14=w(K(4)+1) / D Z(K O)$
$V 15=W(K(4)) / D Z(K 0)$
V16=W(K(15))*DR1(1)
$V_{18}=H V Z(K M) * V 10+P O(K O) * A V Z O(K M) / D Z(K O)$
$V 19=H V Z(K O) * V 11+P O(K O) / D Z(K O) * A V Z D(K O)$
$\mathrm{V} 20=\operatorname{HVR}(K O) * V 12+P O(K O) * D R 1$ (1)*AVRD (KO)
V22 $=\mathrm{HLZ}(K M) * V 14+P O(K O) * A L Z O(K M) / D Z(K O)$
V23:HLZ(KO)*V15 + PO(KO)*ALZD(KO)/DZ(KO)
$V 24=H L R(K O) * V 16+P O(K O) * A L R D(K O) * D R 1(1)$

```
```

1661 C
1662
1663
1664
1665
1666
1667
1668
1669 C
1670 C
1672
1673
1674
1674
1675
1676
1677
1678
1679
1680
1681
1681
1682
1633
1684
1685
1686
1687
1687
1688
1689
1650 C
1691 C
1692
1693
1694
1694
1095
1696 C
1697
1698
1699
1700
1701
1701
1702C
1703
1704
1705
V26=(TVN(KO)-TLN(KO))*HIF
V27=VO3*PROP (1, 1)
V27=V03*PROP (1,1)
V29 = VOt*RHOV(KO)
V30 = V02*RHOL(KO)
V31 - HV(KO)*V29
V32 = HL(KO)*V3O
THE RESIDUALS OF CONSERVATION EQUATIONS
F(1) = V27 -V29 +UVZN(KM)*V10 -UVZN(KO)*V111 + UVRN(KO)*
* V12-V05
F(2)= PROP(1,3)*V27 - V31 +UVZN(KM)*V18-
* UVZN(KO)*V19 + UVRN(KO)*V2O - S(1,2) - Q(1.1) +
+ PO(KO)*(VO3 - VO1)
+
F(3)=
+F(4)=}\quad\operatorname{ULRN(KO)*V16+VO5
* ULZN(KO)*V23 + ULRN(KO)*V24 + S(1,2) - Q(1,2) +
+ PO(KO)*(VO4 - VO2)
F(5)=W(K(5)+1)*UVZN(KM) -W (K(6)+1)*ULZN(KM) + (PN(KM)-PN(KO))*
* ALFAZ(KM)/DZ1(KM) + W(K(9)+1)
F(6)=W(K(7)+1)*ULZN(KM)-W(K(8)+1)*UVZN(KM) + (PN(KM)-PN(KO))*
* (ONE-ALFAZ(KM))/OZ1(KM) +W(K(10)+1)
F(7)=W(K(16))*UVRN(KO)-W(K(17))*ULRN(KO) + (PN(KO+NI)-PN(KO))*
* ALFAR(KO)/DR3(1) +W(K(20))
F(8)=W(K(18))*ULRN(KO) -W(K(19))*UVRN,(KO) + (PN(KO+NI)-PN(KO))*
* (ONE-ALFAR(KO))/DR3(1) +W(K(21))
A(1) = PROP(1,1)/DT - VOS
A(9) = (PROP(1,3)*PROP(1,1) + PO(KO))/DT - S(5.2)
A(17) = - PROP(1,2)/OT + VOG
A(25)=-(PROP(1,4)*PROP(1,2) + PO(KO))/DT + S(5.2)
A(2) = PROP(2,1)*VO3-VOG
A(10)=(PROP(1,1)*PROP(2,3)+PROP(1.3)*PROP(2,1))*V03 -
- Q(2,1)-S(2,2)
A(18)=VOG
A(26)=S(2,2)-Q(2,2)
A(3) =-V07
A(11)=-S(3,2)
A(19)=PROP}(2,2)*V04+V0

```
```

1706 A(27)=(PROP(1.2)*PROP(2,4)+PROP(1,4)*PROP(2, 2))*V04 -
1707
1708
709 C
1710
1711
1712
1713
1714C
1715
1716
1717
1718
1719 C
1720
721
1721
1722
1723
1724
1725
1726
1726
727
728 C
1729
1730
1731
1732
1732
1733
1735 C
1736
1737
1739
1739
740
1740
1741
1742
1743
1744
1745
1746
1746
1747
1749
1750
A(27)=(PROP(1,2)*PROP
A(4)=ZERO
A(20) = ZERO
A(28) = ZERO
A(5)=W(K(11))*V11
A(13)=W(K(11))*V19
A(21)=W(K(12))*V15
A(29)}=W(K(12))*V2
A(7) =W(K(11)+1)*V10
A(15)=W(K(11)+1)*V18
A(15)=W(K(11)+1)*V18
A(23)=W(K(12)+1)*V144
A(31)=W(K(12)+1)*V22
A(8)=W(K(22))*V12
A(16) =W W K(22))*V20
A(24)=W(K(23))*V16
A(32) = W(K(23))*V24
A(6)=PROP(3,1)*V03-VO8-A(5)-A(7)-A(8)
A(14)=(PROP(1,1)* PRQP(3,3)+PROP(1,3)*PROP(3,1))*V03-

- S(4.2)-A(13)-A(15) - A(16)
A(22) = PROP (3,2)*V04+V08-A(21)-A(23)-A(24)
A(30)=(PROP(1,2)*PROP (3,4)+PROP(1,4)*PROP(3,2))*V04-Q(4,2)
A(30)=
IF(W(K(5)+1).GT.SMALL) GO TO 6
FUVZN(KM) = ZERO
FULZN(KM) = -F(6)/W(K(7)+1)
GO TO 8
IF
6 IF(W(K(7)+1).GT.SMALL) GO TO 7
FUVZN(KM)=-F(5)/W(K(5)+1)
FULZN(KM)=ZERO
GOTO }
7 CONT INUE
FUVZN(KM) = - (W(K(7)+1)*F(5)+W(K(6)+1)*F(6))/W(K(13)+1)
FULZN(KM) =-(W(K(8)+1)*F(5)+W(X(5)+1)*F(6))/W(K(13)+1)
8 CONTINUE
IF(W(K(16)).GT.SMALL) GO TO 9
FUVRN(KO)=ZERO
FULRN(KO)=-F(8)/W(K(18))

```
GOTO 11
9 CONTINUE
IF(W)(K(18)).GT.SMALL) GO TO 10
FUVRN(KO) \(=-F(7) / W(K(16))\)
FULRN \((K O)=\) ZERO
GO IO 11
10 CONTINUE
FUVRN(KO) \(=-(W(K(18)) * F(7)+W(K(17)) * F(8)) / W(K(24))\)
FULRN(KO) \(=-(W(K(19)) * F(7)+W(K(16)) * F(8)) / W(K(24))\)
11 CONTINUE
\(F(1)=-F(1)-F U V Z N(K M) * V 10+F U V Z N(K O) * V 11-F U V R N(K O) * V 12\) \(F(2)=-F(2)-F U V Z N(K M) * V 18+F U V Z N(K O) * V 19-F U V R N(K O) * V 20\) \(F(3)=-F(3)-F U L Z N(K M) * V 14+F U L Z N(K O) * V 15-F\) ULRN \((K O) * V 16\) \(F(4)=-F(4)-F U L Z N(K M) * V 22+F U L Z N(K O) * V 23-F U L R N(K O) * V 24\)
\(00111 L=1,27\)
\(111 K(L)=L * N N+K O\)
\(I X 2=1\)
\(0012 I X_{1}=8,24,8\)
\(A \cup X=A(I X 1+1) / A(1)\)
\(I X 2=I X 2+1\)
\(F(I \times 2)=F(I X 2)-F(1) * A U X\)
DO 12 IX3 \(=2,8\)
\(I X 4=I X 1+I X 3\)
\(12 A(I \times 4)=A(I \times 4)-A(I \times 3) * A U X\)
DO \(13 \mathrm{~L}=1.7\)
\(135(K(L))=-A(L+1) / A(1)\)
\(B(K O)=F(1) / A(1)\)
IF(DABS (A(10)).GT.SMALL) GO TO 16
ONLY LIQUID IN THE CELL
\(B(K(8))=Z E R O\)
\(B(K(9))=D N E\)
DO \(14 \mathrm{~L}=10,14\)
\(14 B(K(L))=Z E R O\)
\(B(K(15))=F(4) / A(27)\)
DO \(15 \mathrm{~L}=16,20\)
\(15 B(K(L))=-A(L+12) / A(27)\)
\(A U X=A(19) / A(27)\)
```

1796			$A \cup P=A(22)-A(30) * A U X$
1797			$A 1(K P)=(A(20)-A(28) * A U X) / A U P$
1798			$A 2(K P)=(A(21)-A(29) * A U X) / A \cup P$
1799			$A 3(K P)=(A(23)-A(31) * A U X) / A \cup P$
1800			$A 4(K P)=(A(24)-A(32) * A U X) / A \cup P$
1301			$Y P(K P)=(F(3)-F(4) * A U X) / A U P$
1802			GO TO 22
1803 C			
1804		16	CONT INUE
1805			IF(DABS(A(27)).GT.SMALL) GO TO 18
1806	C		
1807	C		ONLY VAPOR IN THE CELL
1808 C			
1809			$B(K(B))=F(2) / A(10)$
1810			$B(K(15))=B(K(8))$
1811			$B(K(9))=2 E R O$
1812			DO $17 \mathrm{~L}=10.14$
1813			$B(K(L))=-A(L+2) / A(10)$
1814			$L L=L+6$
1815		17	$B(K(L L))=B(K(L))$
1816 C			
1617			$A \cup X=A(18) / A(10)$
1818			$A \cup P=A(22)-A(14) * A U X$
1819			$A 1(K P)=(A(20)-A(12) * A \cup X) / A \cup P$
1820			$A 2(K P)=(A(21)-A(13) * A \cup X) / A \cup P$
1821			$A 3(K P)=(A(23)-A(15) * A \cup X) / A \cup P$
1822			$A 4(K P)=(A(24)-A(16) * A U X) / A \cup P$
1823			$Y P(K P)=(F(3)-F(2) * A \cup X) / A \cup P$
1824 C GOTO 22			
1826	C		BOTH PHASES PRESENT
1827 C			
1828		18	CONTINUE
1829			$B(K(8))=F(2) / A(10)$
1830			D0 $19 \mathrm{~L}=9.14$
1831		19	$B(K(L))=-A(L+2) / A(10)$
1832 C (183 C (K)			
1833			IX2 $=2$
1834			DO $20.1 \times 1=18,26,8$
1835			$A \cup X=A(I X 1) / A(10)$
1836			$I \times 2=I \times 2+1$
1837			$F(I \times 2)=F(I \times 2)-F(2) * A U X$
i838			DO 20 IX3 $=1,5$
1839			$I \times 4=I X 1+I X 3$
1840			$1 \times 5=1 \times 3+10$

```
1841
1842 C
1843 C
1844
1845
1846
1847 C
1848
1849
1850
1651
1852
1853
1853
1854
1856
1857 C
1858
1859
1860 C
1861
1862 C
1863 C
1864 C
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874 C
1875
1876
1877
1877
1878
1879
1880
1881 C
1882
1882
1883
1884
1885
20 A(IX4)=A(IX4)-A(IX5)*AUX
    B(K(15))=F(3)/A(19)
    DO 21L L L 16.20
    21B(K(L))=-A(L+4)/A(19)
    AUX =A(27)/A(19)
    AUP =A(30)-A(22)*AUX
    A1(KP)=(A(28)-A(20)*AUX)/AUP
    A1(KP)=(A(28)-A(20)*AUX)/AUP
    A3(KP) =(A(31)-A(23)*AUX)/AUP
    A4(KP)=(A(31)-A(23)*AUX)/AUP
    A4(KP) =(A(32)-A(24)*AUX)/AUP
    YP(KP)=(F(4)-F(3)*AUX)/AUP
22 CONTINUE
    DDT = DABS(A1(KP)) + DABS(A2(KP)) + DABS(A3(KP)) +DABS(A4(KP))
    IF(DDT.GT.ONE) GO TO 58
122 CONTINUE
            OUT OF THE BOUNDARIES
    DO 46 J=NI,NNU,NI
    JO=J/NI+1
    DO 46 I=2,NIM!
    KO=I +J
```



```
    KM = KO + = \ - N N NI*2
    DO 23L=1,27
    23K(L)=(L-1)*NN+KO
    3 K(L) = (L-1)*NN+KO
    IO=I+1
    CALL STATE(TVN(KO),TLN(KO),PN(KO),PROP,IFLAG)
    CALL NONEQ(ALFAO(KO),ALFAN(KO), TVN(KO),TLN(KO),PN(KO),
    * RHOV(KO),RHOL(KO),TS(KO),S,IFLAG)
    CALL CONOT(TVN(KO),TLN(KO),PN(KO),ALFAO(KO),TS(KO),TW(KP).
    *
    * (TVLN(KO),TLN(KO),PN(KO),ALFAO(KO),TS(KO), YN(KP).
    * DTW(KP),HCONV(K
    V01 = ALFAO(KO)/DT
    V02 = (ONE-ALFAO(KO))/DT
    VO3 = ALFAN(KO)/OT
    VO4 = {ONE-ALFAN(KO))/DT
```

```
    V05 = S(1,1)
    V06 = S(2,1)
    V07 =S S 3,1)
    V08 =S(4,1)
    V09=S(5,1)
    V10 =W(K(3)+1)/DZ(I)
    V11 =W(K(3))/DZ(I)
    V12 =W(K(14))*DR1(J0)
    V13 =W(K(14)-NI)*DR2(N0)
    V14 =W(K(4)+1)/DZ(I)
    V15 =W(K(4))/DZ(I)
    V16 = W(K(15))*DR1(U0)
    V17 =W(K(15)-NI)*OR2(JO)
    V18=HVZ(KM)*V10 + PO(KO)/DZ(I)*AVZD(KM)
    V19 = HVZ(KO)*V11 + PO(KO)/OZ(I)*AVZD(KO)
    V20 = HVR(KO)*V12 + PO(KO)*DR1(JO)*AVRD(KO)
    V21 = HVR(KO-NI)*V13 + PO(KO)*DR2(UO)*AVRO(KO-NI)
    V22 = HLZ(KM)*V14 + PO(KO)*ALZD(KAH)/DZ(I)
    V23 = HLZ(KO)*V15 + PO(KO)*ALZD(KO)/DZ(I)
    V24 = HLR(KO)*V1G + PO(KO)*ALRD(KO)*ORI(JO)
    V25 = HLR(KO-NI)*V17 + PO(KO)*ALRD(KO-NI)*DR2(UO)
    V26 = (TVN(KO)-TLN(KO))*HIF
    V27 = V03*PROP (1,1)
    V28 = VO4*PROP(1, 2)
    V29 = V01*RHOV(KO)
    V30 = V02*RHOL(KO)
    V31 = HV (KO)*V29
    V32 = HL(KO)*V3O
F(1)=V27-V29 + UVZN(KM)*V10 - UVZN(KO)*V11 + 
+ UVRN(KO)*V12-UVRN(KO-NI)*V13-V05
F(2)= PROP(1,3)*V27-V\1 +UVZN(KM)*V18-
PROP(1,3)*V27 - V31 +UVZN(KM)*V18 -
- S(1.2)-Q(1,1) + PO(KO)*(VO3 - VO1)
F(3)=V28-V30 + ULZN(KM)*V14-ULZN(KO)*V15 +
+ ULRN(KO)*V16-ULRN(KO-NI)*V17 + V05
    F(4) = PROP(1,4)*V28-V32 + ULZN(KM)*V22 -
+ ULZN(KO)*V23 +ULRN(KO)*V24-ULRN(KO-NI)*V25 +
    F(5)=W(K(5)+1)*UVZN(KM) - W(K(6)+1)*ULZN(KM) +
+ (PN(KM)-PN(KO))*ALFAZ(KB1)/DZ1(I+1) +W(K(9)+1)
F(6)=W(K(7)+1)*ULZN(KM) - W(K(B)+1)*UVZN(KM) +
+
(PN(KM)-PN(KO))*(ONE-ALFAZ(KM))/OZ1(I+1) +W(K(10)+1)
```

```
1931 C
1932
1933
1934
1935
1936
1937
1938
1938
1939
1940
1941
1942
1943
1944
1944
1945
1946 C
1947 C
1948 C
1949
1950
1951
951
1952
1953 C
1954
1955
1956
1957
1957
1958
1960
1961
1962
1963
1 9 6 4 ~ C
1964 C
1965
1966
1967
1908
1969
1970 C
1971
1971
1972
1973
1974
1975C
IF(J.LT.NNJ) GO TO 24
    CALL HEXCAN(TCAN(I),TCAN(NI+I),TVN(KO),TLN(KD),HCONV(KP),
    * HCONL(KP),QVC,QLC,DQCOTV,DOCDTL)
    F(2)=F(2)+OVC
    F(4)=F(4)+QQCC
    F(7) = ZERO
    F(8) = ZERO
    G0 TO 25
24 CONTINUE
    F(7) =W(K(16))*UVRN(KO) -W(K(17))*ULRN(KO) + (PN(KO+NI)-PN(KO))*
    * ALFAR(KO)/DR3(U0) + W(K(20))
    F(8)=W(K(18))*URRN(KO) -W(K(20))*UVRN(KO) + (PN(KO+NI)-PN(KO))*
    * (ONE-ALFAR(KO))/DR3(JO) + W(K(21))
25 CONTINUE
    A(1) = PROP(1,1)/OT - VO9
    A(2)=PROP (2,1)*V03-V06
    A(3) =-V07
    A(4)}=W(K(22)-NI)*V13
    A(9) ={PROP(1,3)*PROP(1,1)+PO(KO))/DT - S(5,2)
    A(10)=(PROP(1,1)*PROP(2,3)+PROP(1,3)*PROP(2,1))*V03 -
    - O(2,1) - S(2,2)
    A(11) = - S(3,2)
    A(12)=W(K(22)-NI)*V21
    A(17) =-PROP(1,2)/DT + V09
    A(18) =V06
    A(19) =PROP(2,2)*V04+V07
    A(20) =W(K(23)-NI)*V17
    A(25) = - (PROP(1,4)*PROP(1,2) + PO(KO))/DT + S(5,2)
    A(26) =S(2,2)
    A(27)=(PROP(1,2)*PROP (2,4)+PROP(1,4)*PROP(2,2))*VO4 -
    - Q(3,2)+S(3,2)
A(28) =W(K(23)-NI)*V25
    A(5) =W(K(11))**V11
    A(13)=W(K(11)))*V19
    A(21)=W(K(12))*V15
    A(29)=W(X(12))*VV23
```

```
    A(7) =W(K(11)+1)*V10
    A(15)=W(K(11)+1)*V18
    A(23)=W(K(12)+1)*V14
    A(31) =W(K(12)+1)*V22
    IF(U.GE.NNJ) GO TO 125
    A(8) = W(K(22))*V12
    A(16)=W(K(22))*V20
    A(24) =W(K(23))*V16
    A(32) =.W(K(23))*V24
    GO TO 225
125 A(8) = 2ERO
    A(16) = ZERO
    A(24) = ZERO
    A(32) = ZERO
    A(10)=A(10) + DQCOTV
    A(27)=A(27) + DQCOTL
225 CONT INUE
C
1998
1998
2000
001
2 0 0 1
2002
2003
2004
2005
2 0 0 6 C
2006 C
2007 C
2 0 0 3 ~ C
2 0 0 9
2010
2011
2012
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
1976
1978
1979
1980 C
1981
1982
19E3
1984
1985
1985
1986
1987 C
198B
198B
1990
1991
1992
1992
1993
1994
1995
1996
1 9 9 7
1999 C
    FUVZN(KM) = ZERO
        FULZN(KM)}=-F(6)/W(K(7)+1
        GO TO 2B
26IF(W(K(7)+1).GY.SMALL) GO TO 27
    FUVZN(KM)=-F(5)/W(K(5)+1)
        FULZN(K:A) = ZERO
        GO TO 28
27 CONTINUE
        FUVZN(KM) = - (W(K(7)+1)*F(5)+W(K(6)+1)*F(6))/W(K(13)+1)
        FULZN(KMM)=-(W(K(8)+1)*F(5)+W(K(5)+1)*F(6))/W(K(13)+1)
28 CONTINUE
```

```
2021
2022
2023
2024
2025
2026
2027
2028
2028
2029
2031
2032
2033
2034
2035 C
2036
2037
2038
2039
2040
2044
2041
2042
2043
2044 C
2045 C
2046
2047
2048
2049
2C50
2051
2052
2052
2053
2054
2055
2056
2057
205月
2059
2059 C
2060
2061
2062 C
2063 C
2064 C
2065
IF(JO.EQ.NJ) GO TO 3: IF(W(K(16)).GT.SMALL) GO TO 29 FUVRN(KO) = ZERO \(F U L R N(K O)=-F(8) / W(K(18))\)
GO TO 31
29 CONT INUE
IF(W(K(18)).GT.SMALL) GO TO 30
FUVRN(KO) \(=-F(7) / W(K(16))\)
FULRN(KO) \(=\) ZERO
GO TO 31
30 CONTINUE
FUVRN(KO) \(=-(W(K(18)) * F(7)+W(K(17)) * F(8)) / W(K(24))\) FULRN(KO) \(=-(W(K(19)) * F(7)+W(K(16)) * F(8)) / W(K(24))\)
31 CONT INUE
\(F(1)=-F(1)-F U V Z N(K M) * V 10+F U V Z N(K O) * V 11-F U V R N(K O) * V 12\) \(+\quad+\) FUVRN(KO-NI)*V13
\(F(2)=-F(2)-F U V Z N(K M) * V 18+F U V Z N(K O) * V 19-F\) UVRN \((K O) * V 20\) \(+\quad+\) FUVRN(KO-NI)*V2I
\(F(3)=-F(3)-F U L Z N(K M) * V 14+F U L Z N(K O) * V 15-F U L R N(K O) * V 16\)
\(+\quad+\) FULRN(KO-NI)*V17
\(F(4)=-F(4)-F U L Z N(K M) * V 22+F U L Z N(K O) * V 23-F U L R N(K O) * V 24\)
\(+\quad+\) FULRN \((K O-N 1) * V 25\)
\(0032 L=1.27\)
\(32 K(L)=L * N N+K O\)
\(I X 2=1\)
\(0033 I X I=8,24, B\)
\(A \cup X=A(I X 1+1) / A(1)\)
\(I X 2=I X 2+1\)
\(F(1 \times 2)=F(1 \times 2)-F(1) * A U X\)
DO \(331 \times 3=2,8\)
\(I \times 4=I X I+I X 3\)
\(33 \mathrm{~A}(1 \times 4)=A(I \times 4)-A(I \times 3) * A U X\)
\(0034 L=1.7\)
\(34 B(K(L))=-A(. L+1) / A(1)\)
\(B(K O)=F(1) / A(1)\)
IF(DABS(A(10)).GT.SMALL) GO TO 37 ONLY LIQUID IN THE CELL
\(B(K(8))=2 E R O\)
```

```
2066 B(K(9)) = ONE
2067 DO 35LL=10,14
2063 35 B(K(L)) = ZERO
2069 B(K(15))=F(4)/A(27)
2070 00 36L = 16.20
2071 36B(K(L))=-A(L+12)/A(27)
2072 C AUX =A(19)/A(27)
2074 AUP = A(22)-A(30)*AUX
2075 A1(KP) = (A(20) - A(28)*AUX)/AUP
    A1(KP)=(A(20)-A(28)*AUX)/AUP
    A2(KP)=(A(21)-A(29)*AUX)/AUP
    A4(KP) F (A(24)-A(32)*AUX)/AUP
    YP(KP)=(F(3)-F(4)*AUX)/AUP
    GO TO 43
2082 37 CONTINUE 
```



```
2085 C
087
2087
2088
2089
2090
2091
2092
2093
094
2094 C
2095
2096
2097
2098
2099
2100
2100
2101
2102
2103 C
2104 C
2105 C
2106
2107
2107
2108
2109
2110C
```

```
2111 
2112
2113
2114
2115
2116
2116
2117
2118
2119
2120 C
2121 C
2122
2122
2123
2124
2125 C
2126
2127
2123
2123
2129
2130
2131
2132
2133 C
2134
2135 C
2136
2137
2138 C
2139
2140 C
2141
2142C
2143 C
2144C
2145
2144
2146
2147
2148
2149
2150
2151C
2151 C
2153
2154
2155
    IN I IXI = 18,26,8
    IX2 = IX2 + 1
    F(IX2) = F(IX2) - F(2)*AUX
    DO 41 IX3 = 1.6
    IX4 = IX1 + IX3
    IX5 = IX3 + 10
41A(IX4)=A(IX4)-A(IX5)*AUX
C
    B(K(15))=F(3)/A(19)
    DO 42L L $ 16.20
42B(K(L))=-A(L+4)/A(19)
    AUX =A(27)/A(19)
    AUP = A(30) - A(22)*AUX
    A1(KP) = (A(28) - A(20)*AUX)/AUP
    A2(KP)=(A(29)-A(21)*AUX)/AUP
    A2(KP)=(A(29)-A(21)*AUX)/AUP
    A4(KP)=(A(32)-A(24)*AUX)/AUP
    YP(KP)}=(F(4)-F(3)*AUX)/A\cup
4 3 \text { CONTINUE}
```



```
    DDT = DABS(A1(KP)) + DABS(A2(KP)) + DABS(A3(KP)) +DABS(A4(KP))
    IF(ODT.GT.ONE) GO TO 58
4 6 ~ C O N T I N U E ~
    CALL GAUSIE(A1, A2,A3,A4,YP,DPN,BETA,GAMMA,NN)
CELL (2,1)
    KO =2
    KP=KO-1
    KP = KO-1
    KP =KP + NIM2
    KP = KP + NIM2
    M(L) = (L-1)*NN +KO
47K(L)=L*NN+KO
    DTL=B(K(15))+
    DTV = B(K(B)) + B(K(9))*DTL +
```

```
2156
2157
2158
2159
2160
2161
2162
2162
2183
2164
2165
2166
2167
2168
2169
2170
2171
2172C
2173
2173
2174
2175
2176
2177
2178
2179
2160 C
2181 C
2182C
2193
2184
2184
2186
2186
2187
218a
2183
2199
2190
2191
2192C
2192C
2194
2195
2196
2197
2197
2198
2199
    + BAL = B(K(14))*DPN(KQ)
    DAL=B(KO)+B(K(1))*DTV + B(K(2))*DrL +
    + B(K(5))*DPN(KP) + B(K(G))*DPN(KO) +
    + B(K(7))*DPN(KQ)
    PN(KO) = PN(KO) + DPN(KP)
    IF(PN(KO).LT.1.D+04) GO TO 59
    IF(PN(KO).LT.1.D+04) GO TO 59
    TLN(KO) = TLN(KO) + OTL
    TVN(KO) = TVN(KO) +.DTV
    ALFAN(KO) = ALFAN(KO) + DAL
    TX = SAT(PN(KO))
    DTS = TX - TS(KO)
    TS(KO) = TX
    TW(KP)=TW(KP) + (HCONV(KP)*DTV + HCONL(KP)*DTL +
    +
        = }\begin{array}{rl}{TW(KP) + (HCONV(KP)*D}\\{}&{HNB(KP)*DTS)*DTW(KP)}
    UVZN(KO)=W(M(11))*DPN(KP) + FUVZN(KO) + UVZN(KO)
    ULZN(KO)=W(M(12))*DPN(KP) + FULZN(KO) + ULZN(KO)
    ULZN(KO)=W(M(12))*DPN(KP) + FULZN(KO) + ULZN(KO)
    UVRN(KO)=W(M(22))*(OPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
    UVZN(1) = UVZN(KO)
    ULZN(1)= ULZN(KO)
                                    CELLS (I,1), I=3,NI-2
    DO 49II= 3,NIM2
    KO = I
    KP=KO-1
    KP = KO
    KQ = KP + NIM2
    KQ = KP + NIM2
    KR =KP - 1
    DO 4BL
    M(L)=(L-1)*NN +KO
48K(L)=L*NN+KO
C
    DTL = B(K(15)) + B(K(17))*DPN(KR) +
    + B(K(18))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
    DTV = B(K(8))+B(K(9))*DTL +
    + B(K(11))*DPN(KR) + B(K(12))*DPN(KP) & B(K(13))*DPN(KM) +
    + B(K(14))*DPN(KQ)
    DAL=B(KO) + B(K(1))*DTV + B(K(2))*DYL
    DAL= B(KO) & 8(K(1))*OTV & B(K(2))*DYL + + 
```

```
2201
2202
2203
2204
2205
2205
2206
2207
2208
2209
2210
2210
2211
2212
2213C
2214c
2215
2216
2216
2217
2218
2219
2220 C
2221 C
2222 C
2223
2223
2224
2225
2226
2227
2228
2228
2229
2230 C
2231
2232
2233
2234
2234
2235
2236
2237
2238
2239
2240
2241
2241
2242
2243
2244
2245
+
    + PN(KO) B(K(7))*DPN(KQ)
                B(K(7))*DPN(KQ)
        IF(PN(KO).LT.1.D+04) GO TO 59
        IF(PN(KO).GT.4.D+07) GO TO 60
        TLN(KO) = TLN(KO) + DTL
    TLN(KO) = TLN(KO) + DTL
    ALFAN(KO) = ALFAN(KO) + DAL
    ALFAN(KO) = ALFAN
    OTS = TX - TS(KO)
    TS(KO) = TX
    TW(KP)=TW(KP) + (HCONV(KP)*DTV + HCONL(KP)*DTL +
    +
                                    HNB(KP)*DTS)*DTW(KP)
C
    UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
    ULZN(KO)=W(M(12))*(DPN(KP)-DPN(KR)) & FULZN(KO) + ULZN(KO)
    UVRN(KO) =W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
    UNRN(KO)=W(M(22))*(DPN(KQ)-DPN(KP)) & FUVRN(KO) + UVRN(KO)
49 CONTINUE
                    CELL (NIM1.1)
    KO = NIMY
    KP = KO - 1
    KQ =KP + NIM2
    KR = KP - 1
    DO 148 L=1.27
    M(L) = (L-1)*NN +KO
148K(L)=L*NN+KO
    \ DTL = B(K(15)) + B(K(17))*DPN(KR) +
    + DTV = B(K(8)) + B(K(9))*DTL +
    OTV = B(K(8)) + B(K(9))*DTL +
    + B(K(11))*DPN(KR) + B(K(12))*DPN(KP) +
    + B(K(11))*DPN(KR)
    DAL = B(KO) + B(K(1))*DTV + B(K(2))*DTL +
    + B(K(4))*DPN(KR) \divB(K(5))*DPN(KP) +
    + B(K(7))*DPN(KQ)
    PN(KO) = PN(KO) + DPN(KP)
    IF(PN(KO).LT.1.D+04) GO TO 59
    IF(PN(KO).GT.4.D+07) GO TO 60
    IF(PN(KO).GT.4.D+07) GO
    ILN(KO) = TLN(KO) + DTL
    TVN(KO)=TVN(KO) + DTV 
```

```
    TX = SAT(PN(KO))
    DTS =TX - TS(KO)
    TS(KO) = TX
    TW(KP) = TW(KP) + (HCONV(KP)*DTV & HCONL(KP)*DTL +
        HNB(KP)*DTS)*DTW(KP)
    UVZN(KO) =W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
    ULZN(KO)=W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
    UVRN(KO) = W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
    ULRN(KO) =W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
        CELLS (2,J), J=2,NJ-1
    DO 51 J= NI,NNJJ,NI
    KO = U+2
    KP = KO-1-2*J/NI
    KM = KP + 1
    KQ = KP + NIM2
    KR=KP-1
    KS = KP - N1M2
    DO 50 L = 1.27
    M(L) = (L-1)*NN + KO
50K(L) = L*NN+KO
    DTL = B(K(15)) + B(K(16))*DPN(KS) +
    + B(K(18))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
    DTV = B(K(8)) +B(K(9))*DTL + B(K(10))*DPN(KS) +
    + B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
    + B(K(14))*DPN(KQ)
    DAL = B(KO) + B(K(1))*DTV + B(K(2))*OTL + B(K(3))*DPN(KS) +
    + 8(K(5))*DPN(KP) + B(K(6))*DPN(KM) +
    + B(K(7))*DPN(KQ)
    PN(KO) = PN(KD) + DPN(KP)
    IF(PN(KO).LT.1.D+04) GO rO 59
    IF(PN(KO).GT.4.D+O7) GO TO 60
    IF(PN(KO).GT.4.D+07)GO
    TVN(KO) = TVN(KO) + DTV
    ALFAN(KO) = ALFAN(KO) + DAL
    TX = SAT(PN(KO))
    DTS = YX - TS(KO)
    TS(KO) = TX
    TW(KP) = TW(KP) + (HCONV(KP)*DTV + HCONL(KP)*DTL +
```

```
2291
2293 C
2294
2295
2296
2297
2298
2298
2299
2300
2301 C
2302 C
2303 C
2304
2305
2305
2306
2307
2308
2309
2310
2311
2312
2312
2313
2314
2315 C
2317
2317
2318
2319
2320
2321
2322
2323
2324
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
```

```
    * HNB(KP)*DTS)*DTW(KP)
```

 * HNB(KP)*DTS)*DTW(KP)
 UVZN(KO) =W(M(11))*DPN(KP) + FUVZN(KO) + UVZN(KO)
 UVZN(KO) =W(M(11))*DPN(KP) + FUVZN(KO) + UVZN(KO)
 ULZN(KO) = W(MO) =W(M(12))*DPN(KO) + FUVZN(KO) + FULZN(KO) + ULZN(KO)
 ULZN(KO) = W(MO) =W(M(12))*DPN(KO) + FUVZN(KO) + FULZN(KO) + ULZN(KO)
 UVRN(KO)=W(M(22))*(DPN(KO)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
 UVRN(KO)=W(M(22))*(DPN(KO)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
 ULRN(KO) =W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
 ULRN(KO) =W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
 UVZN(KO-1) = UVZN(KO)
 UVZN(KO-1) = UVZN(KO)
 ULZN(KO-1) = ULZN(KO)
 ULZN(KO-1) = ULZN(KO)
 51 CONTINUE
51 CONTINUE
CELLS (I,U),I=3,NI-2,J=2,NU-i
CELLS (I,U),I=3,NI-2,J=2,NU-i
OO 53 J = NI,NNUU,NI
OO 53 J = NI,NNUU,NI
OO 53I = 3,NIM2
OO 53I = 3,NIM2
KO = I+J
KO = I+J
KP = KO-1-2*J/NI
KP = KO-1-2*J/NI
KM =KP + 1
KM =KP + 1
KO = KP +NIM2
KO = KP +NIM2
KR = KP - 1
KR = KP - 1
KS = KP - NIM2
KS = KP - NIM2
DO 52L=1,27
DO 52L=1,27
M(L) = (L-1)*NN +KO
M(L) = (L-1)*NN +KO
52K(L) = (L-1)*NN
52K(L) = (L-1)*NN
DTL = B(K(15)) + B(K(16))*DPN(KS) + B(K(17))*DPN(KR) +
DTL = B(K(15)) + B(K(16))*DPN(KS) + B(K(17))*DPN(KR) +
+
+
B(K(18))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
B(K(18))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
DTV = B(K(8)) +B(K(9))*DTL + B(K(10))*DPN(KS) +
DTV = B(K(8)) +B(K(9))*DTL + B(K(10))*DPN(KS) +

+ B(K(11))*DPN(KR) + B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
+ B(K(11))*DPN(KR) + B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
+ B(K(14))*DPN(KQ)
+ B(K(14))*DPN(KQ)
DAL = B(KO) + B(K(1))*DTV + B(K(2))*DTL + B(K(3))*DPN(KS) +
DAL = B(KO) + B(K(1))*DTV + B(K(2))*DTL + B(K(3))*DPN(KS) +
\& B(K(4))*DPN(KR) + B(K(5))*DPN(KP) + B(K(6))\&DPN(KM) +
\& B(K(4))*DPN(KR) + B(K(5))*DPN(KP) + B(K(6))\&DPN(KM) +
+ B(K(7))*DPN(KQ)
+ B(K(7))*DPN(KQ)
PN(KO) = PN(KO) + DPN(KP)
PN(KO) = PN(KO) + DPN(KP)
NN(KO) = PN(KO) + DPN(KP)
NN(KO) = PN(KO) + DPN(KP)
IF(PN(KO).LT.1.D+04) GO TO 59
IF(PN(KO).LT.1.D+04) GO TO 59
IF(PN(KO).GT.4.D+07) GO TO 6O
IF(PN(KO).GT.4.D+07) GO TO 6O
TLN(KO) = TLN(KO) + OTL
TLN(KO) = TLN(KO) + OTL
TVN(KO) = TVN(KO) + DTV
TVN(KO) = TVN(KO) + DTV
ALFAN(KO) = ALFAN(KO) + OAL
ALFAN(KO) = ALFAN(KO) + OAL
YX = SAT(PN(KO))
YX = SAT(PN(KO))
YX = SAT(PN(KO))
YX = SAT(PN(KO))
DrS = TX - TS(KO)
DrS = TX - TS(KO)
TS(KO) = rX
TS(KO) = rX
TW(KP)=TW(KP) + (HCONV(KP)*OTV + HCONL(KP)*DTL +
TW(KP)=TW(KP) + (HCONV(KP)*OTV + HCONL(KP)*DTL +
+ HNB(KP)*DTS)*DTW(KP)

```
                                HNB(KP)*DTS)*DTW(KP)
```

```
2336 C
2337
2338
2339
2340
2341
2342
2343 C
2344 C
2345C
2346
2347
2348
2349
2350
2350
2351
2352
2353
2354
2355
2356 C
2357 C
2358
2359
2360
2361
2362
2363
2363
2364
2365
2366
2367
2368
2369
2370
2370
2371
2372
2373
2374
2375
2376
2377 C
2377 C
2379
2380
```

```
    UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
```

 UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
 ULZN(KO) =W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
 ULZN(KO) =W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
 UVRN(KO)=W(M(22))*(DPN(KQ)-DPN(KP)) & FUVRN(KO) + UVRN(KO)
 UVRN(KO)=W(M(22))*(DPN(KQ)-DPN(KP)) & FUVRN(KO) + UVRN(KO)
 ULRN(KO)=W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
 ULRN(KO)=W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
 53 CONTINUE
 53 CONTINUE
 CELLS (NIM1,J), J=2,NJ-1
 CELLS (NIM1,J), J=2,NJ-1
 OO 153 J=NI,NNJU,NI
 OO 153 J=NI,NNJU,NI
 I= NIM1
 I= NIM1
 KO =I+J
 KO =I+J
 KP = KO-1 - 2*J/NI
 KP = KO-1 - 2*J/NI
 KO =KP +NIM2
 KO =KP +NIM2
 KR=KP - I
 KR=KP - I
 KR =KP - I
 KR =KP - I
 KS = KP - NIM2
 KS = KP - NIM2
 DO 152L=1.27
 DO 152L=1.27
 M(L)=(L-1)*NN +KO
 M(L)=(L-1)*NN +KO
 152K(L)=L*NN+KO
 152K(L)=L*NN+KO
 OTL = B(K(15)) + B(K(16))*DPN(KS) + B(K(17))*OPN(KR) +
OTL = B(K(15)) + B(K(16))*DPN(KS) + B(K(17))*OPN(KR) +
+ B(K(18))*DPN(KP) + B(K(20))*DPN(KQ)
+ B(K(18))*DPN(KP) + B(K(20))*DPN(KQ)
DTV = B(K(8))+B(K(9))*DTL + B(K(10))*DPN(KS) +
DTV = B(K(8))+B(K(9))*DTL + B(K(10))*DPN(KS) +
+ B(K(11))*DPN(KR) + B(K(12))*DPN(KP) +
+ B(K(11))*DPN(KR) + B(K(12))*DPN(KP) +
+ B(K(14))*DPN(KQ)
+ B(K(14))*DPN(KQ)
DAL = B(KQ) +B(K(1))*DTV + B(K(2))*DTL +B(K(3))*DPN(KS) +
DAL = B(KQ) +B(K(1))*DTV + B(K(2))*DTL +B(K(3))*DPN(KS) +
+ B(K(4))*DPN(KR) + B(K(5))*DPN(KP) +
+ B(K(4))*DPN(KR) + B(K(5))*DPN(KP) +
+ B(K(4))*DPN(KR)
+ B(K(4))*DPN(KR)
+PN(KO) = = PN(KD) + DPN(KP)
+PN(KO) = = PN(KD) + DPN(KP)
IF(PN(KO).LT.1.D+04) GO TO 59
IF(PN(KO).LT.1.D+04) GO TO 59
IF(PN(KO).GT.4.D+07) GO TO 60
IF(PN(KO).GT.4.D+07) GO TO 60
TLN(KO) = TLN(KO) + DTL
TLN(KO) = TLN(KO) + DTL
TVN(KO) = TVN(KO) + DTV
TVN(KO) = TVN(KO) + DTV
ALFAN(KD) = ALFAN(KO) + DAL
ALFAN(KD) = ALFAN(KO) + DAL
TX = SAT(PN(KO))
TX = SAT(PN(KO))
DTS = TX - TS(KO)
DTS = TX - TS(KO)
TS(KO) = TX
TS(KO) = TX
TW(KP)=TW(KP) + (HCONV(KP) *DTV + HCONL(KP)*DTL +
TW(KP)=TW(KP) + (HCONV(KP) *DTV + HCONL(KP)*DTL +
+
+
HNB(KP)*DTS)*DTW(KP)
HNB(KP)*DTS)*DTW(KP)
UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)

```
    UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
```

```
2381
2382
2383
2384 C
2385 C
2386 C
2387
2388
2389
2390
2391
2391
2392
2393
2394
2394
2396
2397 C
2399
2399 +
2401
2402
2403
2404
2404
2405
2406
2407
2408
2409
2409
2410
2411
2413
2414
2415
2415
2416
2417
2418C
2419 C
2420
2421
2421
2422
2423
2424
2425C
153
    UVRN(KO)=W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KD)
S3LRN(KO)=W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
153 CONTINUE
DTL = }\begin{array}{l}{B(K(15))+B(K(16))*DPN(KS) + B(K(17))*DPN(KR ) +}\\{+\quad}
    + B(K(18))*DPN(KP) + B(K(19))=DPN(KM)
    DTL= B(K(15))+B(K(16))*DPN(KS) + B(K(17)
    DTV = B(K(8)) + B(K(9))*DTL + 8(K(10))*DPN(KS) +
    + B(K(11))*DPN(KR) + B(K(12))*DPN(KP) + B(K(13))*DPN(KM)
    DAL = B(KO) + B(K(1))*DTV + B(K(2))*DTL + B(K(3))*DPN(KS) +
    + B(K(4))*DPN(KR) + E(K(5))*OPN(KP) + B(K(6))*DPN(KM)
        PN(KO) = PN(KO) + DPN(KP)
        IF(PN(KO).LT.1.D+04) GO TO 59
        IF(PN(KO).GT.4.D+07) GO TO 60
        TLN(KO) = TLN(KO) + DTL
        TVN(KO) = TVN(KO) + DTV
        ALFAN(KO) = ALFAN(KO) + DAL
        TX = SAT(PN(KO))
        TYS = TX - T
    TW(KP) = TW(KP) + (HCONV (KP)*DTV + HCONL(KP)*DTL +
    + HNB(KP)*DTS)*DTW(KP)
    + TCAN(I) = TCAN(I)*DTS)*DTW(KP)
    +
CELLS (I,NJ), I=3,NI-1
    DO 55 I = 3,NIM1
    KO =I + NNJ
    KP =KO +1-2*NJ
    KM =KP + 1
    KO =KP + NIM2
    KR = KP -1
    KR = KP -1
    KS = KP - NIM2
    KS = KP = NIM2
    M(L) = (L-1)*NN + KO
54K(L) = L*NN+KO
                    HCONL(KP)*DTL)
    UVZN(KO)=W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
    ULZN(KO)=W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
        UVRN(KO) = ZERO
        UVRN(KO) = ZERO
        ULRN (KO) = ZERO
55 CONTINUE
```

```
2426 C
2427
2428
2429
2430
2430
2432
2433
2434 C
2435
2436
2437
2438
2439
2440
2441
2441 C
2442 C
2443
2444
2445
2446
2447
24448
2448
2449
2450
2451 C
2452 C
2453
2453
2454
2.^55
2456
2457
2458
2459
2460
2461
2461
2462
2463
2463
2465
2466
2467
2467
2468
2468
2470
5
C
CELLS (NI,U), U=1.NJ
    DO 57 KO = NI,NN,NI
    KR = KO -2*KO/NI
    KR = KO-2*KO/N
    DO 56LL=1,27
56K(L)=L*NN+KO
    UVZN(KO) = FUVZN(KO) -W(M(11))#DPN(KR) + UVZN(KO)
        = FUNZN(KO)=W(M(11))#DPN(KR) + UVZN(KO)
        TLN(KO) = TLN(KO-1)
        TVN(KO) = TVN(KO-1)
        ALFAN(KO) = ALFAN(KO-1)
57 CONTINUE
    KO = NNJ CELLL (2,NU)
    KO =NNJ + 2
    KP = KO + 1-2*NJ
    KR = KP - 1
    KS :KP - NIM2
    KM = KP + 1
    DO 561 L = 1.27
    DO 561 L = 1.27
561K(L)=L*NN+KO
C
C
2460
462
    DTL = B(K(15)) + B(K(16))*DPN(KS) +
    + OTL = B(K(15) ) B(K(18))*DPN(KP) +B(K(19)) *DPN(KM)
    DTV = B(K(8))+B(K(9))*DTL + B(K(10))*OPN(KS) +
    + B(K(13))*DPN(KM) + B(K(12))*DPN(KP)
    +DAL = B(KO) + E(K(1))*OTV + B(K(2))*DTL + 8(K(3))*OPN(KS) +
    + B(K(G))*DPN(KM) + B(K(5))*OPN(KP)
    + PN(KO) = = PN(KO) + DPN(KP)
    IF(PN(KO).LT.1.D+04) GO TO 59
    IF(PN(KO).GT.4.D+07) GO TO 60
    TFN(PN(KO).GT.4(KO) = TLN(KO) + DTL
    TLN(KO) = TLN(KO) + DTL
    TVN(KO) = TVN(KO) + DTV
    ALFAN(KO) = ALFAN(KO) + DAL
    TX=SAT(PN(KO))
    DTS = TX - TS(KO)
    OTS = TX -TX
    TS(KD) =TX
    TW(KP) =TW(KP) + (HCONV(KP)*DTV + HCONL(KP)*OTL +
    TW(KP)= TW(KP) & (HCONV(KP)* 
    TCAN(2)=TCAN(2) +TCAN(NI + 2)*(HCONV(KP)*OTV +
```

```
2471 concONL(KP)*OTL)
476
2477
2478
249
2 4 8 0 ~ C ~
480
248
2482
2483
2494
2485
486
2486
2487
2488
2489
2490
2491
2492
2493
2493
2494
2495
2496
2497
49B
2498
499
2500
2501
2502
        UVRN (KO) = ZERO
        ULRN(KO) = ZERO
        UVZN(KO-1) = UVZN(KO)
    ULZN(KO-1) = ULZN(KO)
    DO 357 KO = 1,NN
    DO 357 KO = 1.NN
    IF(ALFAN(KO).GE.ZERO) GO TO 257
    IF(ALFAN(KO).LT, -1.D-05) IERA = 3
    ALFAN(KO) = ZERD
257 CONT INUE
IF(ALFAN(KO).LE.ONE) GO TO 2257
    IF(ALFAN(KO).GT.1.00001) IERR = 3
    ALFAN(KO)= ONE
257 CONTINUE
    IF(TVN(KO).LT.4.D+02) IERR = 14
    IF(TVN(KO).GT.3.D+03) IERR = 15
    IF(TLN(KO) IT 4 D+02) IERR = 16
    IF(YLN(KO).GT.3.D+03) IERR = 17
357 CONT INUE
        RETURN
    58 IERR = 2
        RETURN
    59 LERR = 12
        RETURN
    60 IERR = 13
        RETURN
        END
```


Subroutine coeff

2503		SUBROUTINE COEFF(TV,TL,UVZ, UVR, ULZ, ULR, ALFAZ, ALFAR,
2504		- RHOVZ,RHOVR,RHOLZ, RHOLR, OH, DV, QSI,
2505		SPPD, WZ1,WZ2,WR1,WR2, FRVZ, FRLZ, FRVR,
2506		* FRLR,C1Z,CiR)
2507		IMPLICIT REAL*S ($A-H, O-Z)$
2508		COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
2509		DATA TWO.PTWO,ADRY, CADRY/2.00..200..95700.0.04300/
2510	C	
2511	C	SUBROUTINE COEFF CALCULATES THE MOMENTUM EXCHANGE
2512	C	COEFFICIENTS.
2513	C	C1. ARE THE INTERPHASE MOMENTUM EXCHANGE COEFFICIENTS
2514	C	FOR THE TWO DIRECTIONS.
2515	C	FR.. ARE THE WALL FRICTION COEFFICIENTS FOR BOTH PHASES
2516	C	ANO DIRECTIONS.
2517	C	
2518		VV = VISCV (TV)
2519		$V L=V I S C L$ (TL)
2520	C	
2521		AUVZ $=$ DABS (UVZ)
2522		AUVR $=$ DABS (UVR)
2523		AULZ $=$ DABS (ULZ)
2524		AULR = DABS (ULR)
2525	C	
2526		REVZ $=W Z 1 * A U V Z * D H / V V ~+S M A L L ~$
2527		RELZ $=$ RHOLZ*AULZ*DH/VL + SMALL
2528		REVR $=$ WR1*AUVR*QSI*DH/VV + SM:ALL
2529		RELR $=$ WR2*AULR*QSI*DH/VL + SMALL
2530	C	
2531		$F V Z=0.18000 / R E V Z * * P T W O+S P P D * D H$
2532		$F L Z=0.18000 / R E L Z * * P T W O+S P P D * D H$
2533		FVR = PTWO/REVR**PTWO
2534		FLR $=$ PTWO/RELR**PTWO
2535	C	
2536		FRVZ = (ALFAZ - ADRY)/CADRY*RHOVZ*AUVZ*FVZ/TWO/OH
2537		FRVR $=(A L F A R-A D R Y) / C A D R Y * 180 . * V V /(D H * D H) * Q S I$
2538		FRLZ $=$ RHOLZ*AULZ*FLZ/TWO/DH
2539		FRLR $=180 . * V L /(D H * D H) * Q S I$
2540		$X Z=(O N E-A L F A Z) / C A D R Y$
2541		$X R=(O N E-A L F A R) / C A D R Y$
2542	c	
2543		IF(ALFAZ.GT.ADRY) GO TO I
2544		FRVZ = ZERO
2545		$X Z=$ DNE

```
2546 1 CONTINUE
2547
2548
2549
2550
2551 C
2552
2553
2554 C
2555
2556 C
2557
2558
2559
2560
2561 C
2562
2562
2563
IF(ALFAR.GT.ADRY) GO TO 2
FRVR = ZERO
XR = ONE
2 CONTINUE
FRLZ = FRLZ*XZ
FRLR = FRLR*XR
X = (ONE + (ONE-ALFAZ)*75.00)**.95*4.31
C1Z = ((ONE - ALFAZ)*DABS(UVZ - ULZ)*RHOVZ/TWO +
+}\quadVL/DH)*X/D
C1R = ((ONE - ALFAR)*DABS(UVR - ULR)*RHOVR/TWO +
+ VL/DH)*X*QSI*QSI/DH
RETURN
END
```


subroutine bc

```
2564
2565
2566
557
2568
2569
2570
2571
2572
2573
2574
575
2576 C
2577
2578
2579
2580
2581
2582
2583
2584
2585 C
2586
2587
2598
2589
2590
2591 C
2592
2592
2593 C
2594
2595
2596
2597
2598
2599 C
2600
2G01
2002
2603 C
2604
2605
2606
    SUBROUTINE BC(P,TV,TL,ALFA,TIME,UL,NN,NI,NIM1)
    IMPLICIT REAL*B (A-H,O-Z)
    LOGICAL LP
    COMMON /BCX/ ULO
    COMMON /BCOND/ TB(51),PNB1(5i),PNE2(51), PNB3(51),OMP(51)
    * PNT1(5i),PNT2(5i), PNT3(5i),OMT(5i),ALB1(5i),
    * ALS2(51),ALB3(51),ONA(51),TVB1(51),TVB2(51).
    * YVB3(51),OMV(51),TLB1(51),TLB2(51),YLB3(51).
    * OML(51),HNW1(51),HNW2(51),HNW3(51),OMH(51).
    * LMAX,LP(51)
    DIMENSION P(NN),TV(NN),TL(NN),ALFA(NN)
    L = 2
    1 CONTINUE
        IF(TIME.LE.TB(L)) GO TO 2
        L=L+1
        L = L L + I 
        IF(L.GT.
    GO TOT
    DTIME = TIME - TB(L-1)
    PNS = PNB1(L)*TIME + PNQ2(L)
    PNST = PNTI(L)*DTIME + PNT2(L)
    ALB =ALBI(L)*DTIME + ALB2(L)
    TVB = TVB1(L)*DTIME + TVB2(L)
    TLB = TLBI(L)*DTIME + TLB2(L)
    IF(LP(L)) GOTO 3
    PNB = DEXP(OMP(L)*DTIME)*PNB + PNB3(L)
    PNT = DEXP(CMT(L)*DTIME)*PNT + PNT3(L)
    ALB = DEXP(OMA(L)*DTIME)*ALB + ALB3(L)
    TVB = DEXP(OMV(L)*DTIME)*TVB + TVB3(L)
    TLB = DEXP(OML(L)*OTIME)*TLB + TL83(L)
3 \text { CONTINUE}
    DO 4 J=NI.NN,NI
    KO = J-NIM1
    P(KO) = PNB
    P(J) = PNT
    P(U) ## PNT 
```

2607
2608
2609
TV(KO) = TVB $T L(K D)=T L B$
4 CONTINUE
RETURN
END

Function viscl


```
2623 FUNCTION VISCV(T)
```

2624
2625 C
2626
2627
2628
2629 2630
2631 2632 2633

```
FUNCTION VISCV(T)
IMPLICIT REAL* 8 (A-H,O-Z)
FUNCTION VISCV RETURNS THE SODIUM VAPOR VISCOSITY
IN (KG/M/SEC), AS A FUNCTION OF THE TEMPERATURE
IN DEGREE CELSIUS
TK \(=T\)
\(V I S C V\)
VISCV \(=6.085 D-09 * T K+1.26 i 0-05\) RETURN
END
```


Function surten

2635
2536 C
2637 C
2638 C
2639 C
2649 C
2640
2641
2642
2643
2644
2645

2634 FUNCTION SURTEN (T)
IMPLICIT REAL*B (A-H, O-Z)

FUNCTION SURTEN RETURN
CORRELATION FROM GOLDEN AND TOKAR.
$T C=T-273.14$
SURTEN $=2.0670-01-1.00-04 * T C$
IF(SURTEN.LT.O.DO) SURTEN $=0.00$
RETURN
END

Function sat

2646	FUNCTICN SAT(P)
2647	
2648	
2649	IMPLICIT REAL*8 (A-H,O-Z)
2650	SAT $=12020.1(21.9358-\operatorname{DLOG(P))}$
2651	RETURN

2652		FUNCTION DTSDP(P)		
2653		IMPLICIT	REAL* 8	($A-H, 0-2$
2654	C			
2655	C		CULATES	THE DER
2656	C		PPERTURE	WITH RE
2657	C			
2658		$X=21.93$	358 - DLO	OG(P)
2659		DTSDP =	2020./($X * X * P)$
2660		RETURN		
2661		END		

Function condl

2662
2663
2664
2665
2666 C
2667

FUNCTION CONDL(T)
IMPLICIT REAL*B ($A-H, O-Z$)
DATA A1, A2, A3, X1. X2, X3 /54.306.-1.8780-02.2.0914D-06.1.800.

* $\quad 459.6700 .1 .7307001$
$T F=X 1 * T-X 2$
$T 2=T F * T F$
$C=A 1+A 2 * T F+A 3 * T 2$
CONDL $=C * X 3$
RETURN
END

Function condy

```
2673
2674
2675
2676
2677 C
2678
2679
2680
2681
2681
2682
2683
FUNCTION CONDV(T)
IMPLICIT REAL*B (A-H,O-Z)
DATA A1,A2,A3,X1,X2,X3 /16.39D-04.3.977D-05.-9.697D-09.
* 1.800.459.6700,1.730700/
\(T F=X 1 * T-X 2\)
\(T 2=T F * T F\)
\(C=A 1+A 2 * T F+A 3 * T 2\)
CONDV \(=X 3 * C\)
RETURN
END
```


Function col

2684

2689
2690
2692
2693 2694

FUNCTION CPL(T)
IMPLICIT REAL*B (A-H, O-Z)
DATA A1, A2, A3, X1, X2 /.38935200.1.10599D-04,3.41178D-08.

* $1.800 .4 .1869 \mathrm{D}+03 /$
$T R=T * X_{1}$
$T 2=T R * T R$
$C P=A 1-A 2 * T R+A 3 * T 2$
$C P L=X 2 * C P$
RETURN
END

Function prv

2695 FUNCTION PRV(T)
2690 .
2537 C
2698
2699
2799 2701
$T X=T-844.1$
$P R V=.759600+.8100-06 * T X * T X$ RETURN END

Function pri

```
2702 FUNCTION PRL(T)
2703
2704 C
2705
2705
IMPLICIT REAL*B (A-H,O-Z)
PRL \(=\) CPL(T)*VISCL(T)/CONDL(T) RETURN
END
```


Function hfg

2708	FUNCTION HFG(P)
2709	IMPLICIT REAL*B
2710 C	
2711	(A-H, O-Z)
2712	HFG $=5 A T(P)$
2713	RETURN
2714	ENO

Subroutine htcf

```
    SUBROUTINE HTCF (P,TV,TL,ALFA,RHCV,RHOL,HV,HL,DH,TS,TW,
    * HCONV,HCONL,HNB,UV,UL)
    IMPLICIT REAL*8 (A-H,O-2)
    COMMON /NUIABER/ ZERO,ONE.BIG,SMALL
    COMMON /POVERD/ R
    HCONV = ZERO
    HCONL = ZERO
    HCONL= ZERO
    VV = VISCV(TV)
    VL=VISCL(TL)
    PV = PRV(TV)
    PL = PRL(TL)
    CV = CONOV (TV)
    CL = CONDL(TL)
    AUV = DABS(UV)
    AUL = DABS(UL)
    SIG = SURTEN(TL)
            COMPUTE QUALITY
    GV = ALFA*RHOV*AUV
    GL = (ONE-ALFA)*RHOL*AUL
    G}=GV+G
    IF((UV-UL)*UL.LE.ZERO) GO TO 1
    X=GV/G
    GO TO 2
    CONT INUE
    X = ALFA*RHOV/(ALFA*RHOV + (ONE-ALFA)*RHOL)
2 CONTINUE
            SINGLE PHASE : DITTUS-BOELTER CORRELATION (VAPOR)
    IF(ALFA.LE.0.96) GO TO 3
    REV = RHOV*AUV*DH/VV
    HCONV = 0.023*REV**0.8*PV**O.4*CV/DH
    RETURN
3 cont inue
                    SINGLE PHASE : SCHAD CORRELATION (LIQUID)
    REL = RHOL*AUL*DH/VL
```

2792
2793
2794 C
2795
2796
2797
2798 C
2799
2799
2800
PEL $=R E L * P L$
IF (PEL LE, 150.) GO TO 4
HCONL $=$ PEL**O.3*R*CL/DH
GO TO 5
4 CONT INUE
HCONL $=4.5 *$ R $+C L / D H$
CONTINUE
TWO PHASES : CHEN CORRELATION
XTTI $=(X /($ ONE $-X)) * * 0.9 *($ RHOL $/$ RHOV $) * * 0.5 *(V V / V L) * * 0.1$
$F=(X T T I+.213) * * 0.736 * 2.3500$
IF (F.LT.ONE) RETURN
HCONL $=F * * 0.375 * H C O N L$
IF(TW.LE.TL) GO TO 7
$F X=O N E$
$G X=G$
IF(TL.LT.TS) GO TO 7
IF(XITI.GT.0.1) FX $=F$
$G X=G L$
6 CONTINUE
CONT INUE
REL $=G X * D H / V L$
$R E L=G X * D H / V L$
$S=0.100$
IF(RETP.LT.70.DO.AND.RETP.GE. 32.500) $S=O N E /$
/ (ONE + RETP**0.78*0.42D0)
$I F(R E T P . L T .32 .500) S=$ ONE/(ONE + .1200*RETP**1.14)
$H S=1.220-03 * S * D S Q R T(C L * C P L(T L) / S I G) / P L * * .29 *$
* RHOL**.25*(CPL(TL)*RHOL/RHOV/HFG(P))**.24
PWALL $=$ DEXP(21.9358D0-12020.DO/TW)
$Z=D A B S(P W A L L-P)$
HNB $=$ HS* (TW - TS) **. $24 * 2 * * .75$
7 CONT INUE
IF(ALFA.LE.0.88) RETURN
$F A L=12 . D 0-12.5 D 0 * A L F A$
$F A L=F A L * F A L * F A L$
REV $=R H O V * A U V * D H / V V$
REV $=$ RHO $=0.023 *(R E V * R E V * P V) * * 0.4 * C V / D H$

2803
 2804
 2805
 HCONL $=$ HCONLFFAL + HCV
 HNB = ZERO
 RETURN

END

Subroutine iphtc

```
2807 SUBROUTINE IPHTC (HIF,ALFA)
IMPLICIT REAL#B (A-H,O-Z)
2809 COMMON /NUMBER/ ZERO,ONE,BIG,5MALL
```

2810 C
2311

MPLICIT REAL*8 (A-H,O-Z)
COMMON /NUMBER/ ZERO,ONE,BIG,5MALL
HIF $=5 . D+08$
RETURN
ENO

Subroutine state

2857
2858
2859
2860
286
2861
2862
$\operatorname{PROP}(3,1)=(X 1 * \operatorname{DTSDP}(P)+(R V 22 * P+R V 1) * T S) / T V$
$\operatorname{PROP}(3,2)=\operatorname{RLP}$
$\operatorname{PROP}(3.3)=(P / P R O P(1,1) * \operatorname{PROP}(3,1)-\operatorname{ONE}) / \operatorname{PROP}(1,1)$
PROP (3.4) $=$ ZERO
RETURN
END

Subroutine noneq

2863

2864
2805
2866
2867
2368
2869
2870
2871
2872
2873
2874
2875 C
2876 C
2877 C
2877 C
2878 C
2879
2980
2881
2882 C
2883 C
2883 C
2884 C
2885 C
2896 C
2867 C
2888
2889
2890
2891 C
2892
2893
2894
2s95 C
2896
2897
2898 C
2899
2900
2901
2902
2903
2904
2905
SUBROUTINE NONEQ (ALFAO, ALFA, TV,TL,P,RHOV, RHOL, TS,S, IFLAG)
IHPLICIT REAL*B (A-H, O-Z)
COMMON /ERROR/ IERR
COMMON /NUASBER/ ZERO, ONE,BIG,SMALL
COMMON /PD/ DA, POD2
DIMENSION S(5,2)
DATA AN,RGAS /1.33333330+07,.14469D+03/.HALF /0.5D0/
DATA PI.SR3.CADRY, ADRY /3.141592654.3.464101616.0.043.0.957/
DATA HO,H1/5.089D+06,-. $1043 \mathrm{D}+04 /$
DATA RNU /6.D+03/
DATA HLO,HL1,HL2,HL3/-6.75075D+04.1.63014D+03.
- -.4167200.1.542720-04/
SUBROUTINE NONEQ CALCULATES THE MASS ANO ENERGY EXCHANGE RATES
AND ITS DERIVATIVES
$A N=4 / 3 * N, N=1.00+07$ BUBLES/CUBIC METER
RGAS $=$ SQUARE ROOT OF GAS CONSTANT FOR SODIUM OVER 2*PI
POD2 $=$ PITCH TO DIAMETER RATIO SQUARED
$S(1)=$, EXCHANGE RATE $S(, 1)=$ MASS
$S(2)=.\operatorname{D/DTV} \quad S(.1)=$ ENSSGY
$S(3)=,D / D T L$
$S(4)=.D / D P$
$S(5)=,D / D A L F A$
$A X=A L F A O$
IF (ALFAO, LT, 1, D-04) $A X=1.0-04$
IF (ALFAO.LT.1.D-04) AX $=1.0-04$
IF(ALFAO.GT.0.9999) $A X=0.9999$
$T S=S A T(P)$
HLG $=\mathrm{H} 1 * T S$ + HO
$X=O N E /(S R 3 * P O D 2-P I)$
$A M=1.20-07 * P I * X * 04 * 04$
IF(ALFAO.GT.0.6) GO TO 10
$X X=3 . * P I * A X * X$
GO TO 20
10 CONTINUE
$Y=O N E$
$I F(A X . G T . A D R Y) Y=(O N E-A X) / C A D R Y$
$X K=1.8 /(S R 3 * P O D 2 * X=0.6)$
$X X=(S R 3 * P O D 2 * X-A X) * X * Y * P I * X K$

```
2906 20 CONTINUE 
2908 C
2909 30 CONTINUE
2910 CE = A*RGAS*RHOV*RHOV
2911 CC = CE*(ONE - AX)
2912 CE = CE*AX
2913 C
2914 EL = ZERO
2915 CL = ZERO
IF(TL.GT.TS) EL = 1.000
2917 IF(TS.GT.TV)CL=5.D-03
2919 CE = CE*EL
2920 CC = CC*CL
2921 C DDP = DTSDP(P)
2922 SDP = DTSDP(P)
SRTS = DSORT(TS)
2924 
2926 C C MASS EXCHANGE RATE
2928 C SE = DTL*CE*(ONE - ALFA)
    SC = DTV*CC*ALFA
    SC = DTV*CC*ALFA
2932 C DERIVAYIVES
2934 C
2935
2936
2936
2937
2938
2939
2940
2941 C
2942 C
2943 C
2943 C U = A*CONDL(TV)*RNU*D4
2945 HL=((HL3*TS + HL2)*TS + HL1)*TS + HLO
2946
2947
2948
2948
2949 C
2950
    DTL = (TL - TS)/SRTS
    S(2,1) = CC*ALFA/SRTS
    S(3,1)=CE*(ONE-ALFA)/SRTS
    DSEVAP = CE*(ALFA-ONE)*(TS+TL)/TS/SRTS*HALF*DDP
    DSCOND = CC* ALFA*(TS+TV)/TS/SRTS*HALF*DDP
    S(4,1) = DSEVAP - DSCOND
    S(5,1) = -CE*DTL - CC*DTV
                energy exchange rate
    HV = HL + HLG
    OHLDP = ((3.*HL3*TS + 2.*HL2)*TS + HL1)*OOP
    DHVDP = DHLOP + HT*ODP
    S(1.2) = SE*HV - SC*HL * U* (TL - TV)
```

2951 C
$2952 C$
2953
2954
2955
2956
2957
2958
2959

DERIVATIVES

$S(2,2)=S(2,1) * H L-U$
$S(3,2)=S(3,1) * H V+U$
$S(4,2)=$ DSEVAP*HV + SE*DHVDP - DSCOND*HL - SC*DHLDP
$S(5,2)=-C E * \operatorname{OTL} * H V-C C * D T V * H L$
RETURN
END

2960	SUBROUTINE CONDT(TV,TL,P,ALFA,TS,TW, DTW.
2961	* HCONV,HCONL,HNB,DV,Q,KO)
2962	IMPLICIT REAL*8 (A-H,O-Z)
2963	LOGICAL LSS
2964	CCAMMON /STST/ TAFP,LSS
2955	COMMON /ERROR/ IERR
2966	COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
2967	DIMENSION Q(4,2)
2968 C	
969	$Q(1,1)=(T W-T V) * H C O N V * D V$
2970	$Q(1,2)=((T W-T L) * H C O N L+(T W-T S) * H N B) * D V$
2971	$Q(2,1)=(D T W * H C O N V ~-~ 1) * H C O N V * D V ~$
2972	O(2,2) = ZERO
2973	$Q(3,1)=$ ZERD
2974	Q(3,2) $=((H C O N L+H N B) * O T W-1) * H C O N L * D V$
2975	$Q(4,1)=$ ZERO
2976	$Q(4,2)=((H C D N L ~+~ H N B) * D T W ~-~ 1) * H N B * D V * D T S O P(P) ~$
2977	RETURN
2978	END

Subroutine hexcan

SUBROUTINE HEXCAN(TCAN, OTC,TV,TL,HCONV,HCONL, QV,QL.

2986
2987 C
2968
2989
2990
2991
2992
2992
2993
36 8 0 2983

984
294 C

2979	SUBROUTINE HEXCAN(TCAN, OTC,TV,TL,HCONV,HCONL, QV,QL.
2980	DQDTV, DQOTL)
2981	IMPLICIT REAL*8 (A-H, O-Z)
2982	COMMON/NUMBER/ ZERO,ONE, BIG, SMALL
2983	COMMON /HXCN/ ACOV
2984 C	
2985 C	SUBROUTINE HEXCAN CALCULATES THE HEAT TRANSFERED TO
2986 C	THE HEXCAN AND ITS DERIVATIVES.

IMPLICTT DEAL*B (A D, DQOTL)
COMMON /NUMBER/ ZERO,ONE, 日IG, SMALL COMMON /HXCN/ ACOV

SUBROUTINE HEXCAN CALCULATES THE HEAT TRANSFERED TO $Q V=A C O V * H C O N V *(T V-T C A N)$ $Q L=A C O V * H C O N L *(T L-T C A N)$
DQDTV $=A C O V * H C O N V *(O N E-D T C * H C O N V)$ DQDTL = ACOV*HCONL*(ONE - DTC*HCONL) RETURN
END

Subroutine fprop

```
2994 SUBROUTINE FPROP(TRN,NPIN,NPMI,I)
2995
2996
2997
2997
2998
2999
3000 C
3001 C
3002 C
3 0 0 3
3004
3004
3005
3 0 0 6
3007 C
3008 C
3009 C
3010
3011
3011
3012
3013
3014C
3015 C
3016 C
3016
3017
3018
3019
3020
    IMPLICIT REAL*S (A-H,O-Z)
    COMMON /NUPSER/ ZERO,ONE,BIG.SMALL
    COMIADN /PIN1/ CPIN(20),ROCP(20)
    COMMON /ICONST/NCF,NCC,NG
    DIMENSION TRN(NPIN)
        FUEL PROPERTIES
    DO 1 K = 1,NCF
    T = (TRN(K+1) + TRN(K))/2.DO
    CALL FUEL (T,K,I)
    CALL FUEL
        CLAD PROPERTIES
    DO 2K=NCC,NPMY
    T=(TRN(K+1) + TRN(K))/2.00
    T = (TRN(K+I) +
2 CONTINUE
    GAP CONDUCTIVITY
\(T=(\operatorname{TRN}(N G+1)+\operatorname{TRN}(N G)) / 2 . D 0\)
CALL GAP (T,TRN(NG),TRN(NG+1).NG)
RETURN
END
```


Subroutine fuel

```
3021
3022
3023
3024
3024
3025
3026
3 0 2 7 ~ C
3028
3029
3030
3031 C
3031
3032
3033
3034
3035
3036
SUBROUTINE FUEL (T,K,I)
IMPLICIT REAL#S (A-H,O-2
COMMON /NUMBER/ ZERO.ONE,BIG.SHALL
COMMON /PIN1/ CPIN(20).ROCP(20)
COMMON/FCONST/ AO,A1,A2,A3
* BO,B1,32,AD,APU,LPLNM(40)
T2 = T*T
T3 = T*T2
x = 2.7400-5.8D-04*T
CPIN(K)=(BO+B1*T+B2*T2)*(ONE-(ONE - AD)*X)
ROCP(K)=(AO + A1*T + A2*Y2 + A3*Y
IF(LPLNM
END
```


Subroutine clad

3037
3038
3039
3040
3041
3042 C
3043
3044
3045 C
3046
3047
3048 3049

```
SUBROUTINE CLAD (T,K)
IMPLICIY REAL*O (A-H,O-Z)
IMPLICIT REAL*B (A-H,O-Z)
COMMON/NUHABER/ ZERO,ONE,BIG,SMA
COMMON /PINI/ CPIN(20), ROCP(20)
COMMON/CCONST/ AO,A1,A2,A3,BO,B1,B2,B3
T2=T*T
T2=T*T
CPIN(K) = BO + 81*T + B2*T2 + B3*T3
ROCP(K) =AO + A1*T + A2*T2 + A3*T3
RETURN
END
```


Subroutine gap

```
3050
3051
3052
3053
3054
3055 C
305.6
3057
3058
3 0 5 9 ~ C
3059 C
3060
30E1 C
3062
3063
3064
3065 C
3066 C
3067 C
3068
3069
3070
3071 C
3072
3073
3074
3075
SUBROUTINE GAP (T,TF,TC,NG)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
COMMON /PINI/ CPIN(20),ROCP(20)
COMmON /GCONST/ DIL,RADFU,RADCL
DATA ESB,HMIN /1.7D-08.3.705D+03/
DATA C1.C2/2.DO.1.50+01/
DATA G1,G2,G3/1.320-04,0.61D-04,1.8D+03/
        CONDUCTION HEAT TRANSFER
    DGAP = RADCL - RADFU
    CG = C2**DIL*C1
    HG = ONE/((DGAP +G1)/CG + G2) +G3
        RAOIATION HEAT TRANSFER
    HR=(TF*TF + TC*TC)*(TF + TC)*ESB
    HGAP = HG + HR
    IF(HGAP.LT.HMIN) HGAP = HMIN
    ROCP (NG) = ZERO
    CPIN(NG) = HGAP
    CPIN(NG)
RETURN
END
```

```
3076
3077
3078
3079
3080
3081
3082
3083
30.84
3085
3086 C
3087
3088 C
3089
3090
3091 C
3091
3092
3093
3054
3095
3096
3097
3098
3098
3099
3100
3101
3102
3103 C
3104
3104
3105
3106
3107
3108
3109
3110 C
3111
3112C
3113
3114
3115
3116 C
3117
SUBROUTINE FPIN(TV,TL, TS,TW,DIW,HCONV,HCONL,HNB,
*
TR,OTR,OT,NPIN,NPM1,KO)
IMPLICIT REAL*8 (A-H,O-Z)
    LOGICAL LSS
    COMMON /NUMGER/ ZERO,ONE,BIG,SMALL
    COMMON /PINO/ RODR(20),VP(20),VM(20),RADR,PPP(20)
    COMMMON /PINO/ RODR(20),VP(20),VM
    COMMON /PIN1/ CPIN(20)
    DIMENSION A1(20),A2(20),A3(20),B1(20)
    DIMENSION TR(NPIN),DTR(NPIN)
    CALL POWER(HEAT,KO)
    DTI = ONE/DT
    IF(LSS) DTI = ZERO
    A1(1) = ZERO
    A2(1) = RODR(1)*CPIN(1) + VP(1)*ROCP(1)*DTI
    B1(1)=VP(1)*HEAT*PPP(1) + VP(1)*ROCP(1)*TR(1)*DTI
    DO 1 K = 2.NPM1
    KM! = K-1
    A1(K) = - RODR(KM1)*CPIN(KM1)
    A2(K) = -A1(K) + RODR(K)*CPIN(K) + (VP(K)*ROCP(K) +
+ VM(K)*ROCP(KMI))*DTI
B1(K)=VP(K)*HEATT*PPP(K) +VM(K)=HEAT*PPP(KM1) +
+ (VP(K)*ROCP(K) + VM(K)*ROCP(KMt))*TR(K)*DTI
1 cont INue
    A1(NPIN) = -RODR(NPM1)*CPIN(NPM1)
A2(NPIN) = -A1(NPIN) + VM(NFIN)*ROCP(NPMI)*DTI +
+ RADN*(HCONV + HCONL + HNB)
B1(NPIN) = VM(NPIN)*ROCP(NPM1)*TR(NPIN)*DTI +
+
RADR*(HCONV*TV + HCONL*TL + HNB*TS) +
VM(NPIN)*HEAT*PPP(NPMI)
A1(NPIN+1)= ZERO
A2(1)=ONE/A2(1)
A3(1)=A1(2)*A2(1)
81(1)= B1(1)*A2(1)
DO 2 K = 2,NPIN
```

```
3119 A2(K)=ONE/(A2(K)-A1(K)*A3(KM1))
3120 A3(K)=A1(K+1)*A2(K)
3121 B1(K)=(B1(K) - A1(K)*B1(KM1))*A2(K)
3122
3123 C
3124
3125
3126
3127
3128
3128
3129
3130
3131
2 CONTINUE
TW= = I'(NPIN)
OTW = A2(NPIN)*RADR
DO 3 K = 1,NPM1
TR(K) = B1(K)
DTR(K)=A3(K)
3 CONTINUE
RETURN
END
```


Subroutine ftp

```
3132
3133
3134
3135
3136
3137
3138 C
3139
3139
3140
3141 C
3142
3143
3144
3145
3145
3146
3147 C
3148
3149C
3150
3151
151
3152
3153
3154
3155
3156
3157
3158 C
3159
3160
3161
3162
3163 C
3163
3164
3165
3166
3167
3168
SUBROUTINE FTPITV,TL,TS,TW,HCONV,HCONL,HNB,TR,DTR,QPP.
    * NI,NJ,NN,NP,NYR,NPM1,NIM2,NPIN)
    * IMPLICIT REAL*B (A-H,O-Z)
    COMMON/NUMBER/ ZERO,ONE,BIG,SMALL
    DIMENSION TR(NTR),DTR(NTR),TH(NP),TS(NN),TV(NN),TL(NN),
    * HCONV(NP),HCONL(NP),HNB(NP), QPP(NN)
    TWHAAX = ZERO
    TRMAX = ZERO
    DO 3 I=1.NIM2
    DO 3 J=1,NJ
    KO = (J-1)*NI + I +
    KP = (J-1)*NIM2 + I
    KP=(J-1)*N
    TR(KR) = TW(KP)
    DO 1 KK = 1,NPM:
    KTR = KR - KK
    TR(KTR)=TR(KTR) - OTR(KTR)*TR(KTR+1)
    TR(KTR) = TR(KTR) - OTR(KTR)
    IF(YRMAX.GT.TR(
    TRMAX = TR(K
1 CONTINUE
    IF(T-WMAX.GT.TW(KP)) GO TO 2
    TWMAX = TW(KP)
    KTWMAX = KO
    2 CONTINUE
    QPP(KP) = HCONV(KP)*(TW(KP) - TV(KO)) + HCONL(KP)*
    * CONTINUE (TW(KP)-TL(KO)) + HNB(KP)*(TW(KP)-TS(KO))
3 CONTINUE
    RETURN
    END
```


Subroutine thxen

3169
3170
3171
3172
3173
3174
3175
3176 C
3177 C
3178 C
3179
3180
3181
3182
3183 C
3184
3185
3186
3187
3187
3188
3189
3190 C
3191
3192
3192
3193
3194
3195
3196
SUBROUTINE THXCN(TV,TL,HCONV,HCONL, TCAN, DT,NN,NI,NJ,NCAN,
* NIM1,NIM2)
IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL LSS
COMMON /NUTABER/ ZERO,ONE,BIG,SMALL
COMMON /STST/ TAFP.LSS
DIMENSION TV(NN), TL(NN), HCONV(NN), HCONL(NN), TCAN(NCAN)
SUBROUTINE THXCN PERFORMS THE FIRT CALCULATION OF THE
HEXCAN TEMPERATURE.
DTI = ONE/DT
$I F(L S S)$ OTI = ZERO
DO $10 I=2 . N I M I$
$K O=(N J-1) * N I+I$
$K P=(N J-1) * N I M 2+I-1$
$K 2=N I+I$
$K 3=K 2+N I$
$K 4=K 2+N I$

TCAN $(K 2)=$ ONE/(TCAN(K4)*DTI + HCONV $(K P)+$ HCONL $(K P))$
$\operatorname{TCAN}(I)=(T C A N(K 4) * T C A N(K 3) * D T I+\operatorname{HCONV}(K P) * T V(K O)+$
10^{+}CONTINUE HCONL(KP)*TL(KO)) *TCAN(K2)

0 CONTINUE
RETURN
END

Subroutine thxeno

3197
3198
3199
3200 C
3201 C
3202 C
3203 C
3204
3205
3206
3207
3208
3208
3209
3209
3210
3211

SUBROUTINE THXCNO(TCAN,NCAN, NI)
IMPLICIY REAL*8 (A-H, O-Z)
DIMENSION TCAN(NCAN)
SURROUTINE THXCNO TRANSFERS THE NEW VALUE OF THE HEXCAN TEMPERATURE TO THE OLD HEXCAN TEMPERATURE ARRAY.
$\operatorname{TCAN}(1)=\operatorname{TCAN}(2)$
$\operatorname{TCAN}(N I)=\operatorname{TCAN}(N I-1)$
$0010 I=1$,NI
$K 3=2 * N I+1$
TCAN (K3) $=$ TCAN(1)
10 CONTINUE RETURN
END

Subroutine power

```
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3221
3222
3223
3224
3225 C
3226 C
3227
3228
3229
3230
3231
3232
3233
3234
323
3235
3236
3237
3238
3239
3239
324
324
SUBROUTINE POWER (HEAT,KO)
IMPLICIT REAL*B (A-H,O-Z)
LOGICAL LP
COPAMON /ERROR/ IERR
COMMON /NUMBER/ ZERO,ONE,BIG, SMALL
COMMON /NUMBER/ ZERO,ONE,BI
COMMON /TEMPO/ TIME,DT,DTO,OTLS,NDT
COMMON /BCOND/ TB(51),PNB1(51),PNG2(51),PNB3(51),OMP(51).
PNT1(51), PNT2(51), PNT3(51),OMT(51),ALB1(51)
ALB2(51), ALB3(51)
ALB2(51), ALB3(51), OMA(51),TVB1(51),TVB2(51)
TVB3(51),OMV(51),TLB1(51),TLB2(51),YLD3(51),
OML(51),HNW1(51).HNW2(51),HNW3(51),OMH(51).
LMAX,LP(51)
L=2
1 CONTINUE
IF(TIME.LE.TB(L)) GO TO 2
L = L + 1
IF(L.GT.LMAX) RETURN
GOTO 1
2 CONTINUE
DTIME = TIME - TB(L-1)
HEAT % HNW1(L)*DTIME + HNW2(L)
IF(LP(L)) GO TO 3
HEAT = DCOS(OMH(L)*DTIME)*HEAT + HNW3(L)
3 CONT INUE
HEAT = SHAPE(KO)*HEAT
REAT =
END
```


Subroutine dausie

```
3242
3243
3244
3245
3246

SUBROUTINE GAUSIE (A1, A2, A3, A4, F,X,BETA, GAMMA,NC)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /NUMEER/ ZERO, ONE,BIG.SMALL
COMMON /GAUSS/ NZ,NR,NZMI
COMMION /ERROR/ IERR
COMtAON /CNTRL/ EPS1,EPS2,RES,IT1,IT2,IT3,ITM1,ITM2,ITRMAX
DIMENSION A1 (NC), A2(NC), A3(NC),A4(NC),F(NC),X(NC).
*
BETA(NC), GAMMA(NC)
\(I T R=0\)
1 CONTINUE
NEW SOLUTION AT THE BOTTON
\(I=1\)
GAMMA(1) \(=F(I)-A 3(I) * X(I+1)\)
BETA(1) = ONE
\(002 J=2, N R\)
\(K=(J-1) * N Z+I\)
\(K t=K-N Z\)
\(\operatorname{BETA}(J)=\) ONE \(-A 1(K) * A 4(K 1) / \operatorname{BETA}(J-1)\)
GAMMA(J) \(=(F(K)-A 3(K) * X(K+1)-A 1(K) * G A M M A(J-1)) / B E T A(J)\)
2 CONT INUE
\(K=(N R-1) * N Z+I\)
CONV \(=\operatorname{DABS}(X(K)-\operatorname{GAMMA}(N R))\)
\(X(K)=\) GAMMA (NR)
DO \(3 J=2\),NR
\(K=N R-U+\)
\(K X=(K-1) * N Z+I\)
\(X A=\) GAMMA \((K)-A 4(K X) * X(K X+N Z) / B E T A(K)\)
\(D X=O A B S(X(K X)-X A)\)
IF(DX.GT.CONV) CONV \(=D X\)
\(X(K X)=X A\)
3 CONTINUE
NEW SOLUTION OUT OF THE BOUNDARIES
DO \(61=2, N 2 M 1\)
\(\operatorname{GAMMA}(1)=F(I)-A Z(I) * X(I-1)-A 3(I) * X(I+1)\)
```

3285
3286
3297
3288 C
3289
3290
3291
3292
3293 C
3294
3294
3295
3296
3297
3298 C
3 2 9 9
3299
3300
3301
3302
3303
3304
3305
3305
3306
3307
3308 C
3 3 0 9 ~ C
3310 C
3311
3311
3312
3313
3214
3315
3316C
3317
3317
3318
3318
3319
3320
3321 C
3322
3323
3324
3325
3325
3327
3328
3329

```
```

 DO4 J=2,NR
    ```
    DO4 J=2,NR
    k=(N-1)*NZ + I
    k=(N-1)*NZ + I
    K1 = K - N2
    K1 = K - N2
    8ETA(J) = ONE - A1 (K)*A4(K1)/BETA(J-1)
    8ETA(J) = ONE - A1 (K)*A4(K1)/BETA(J-1)
    GAMMA(U)=(F(K)-A2(K)*X(K-1)-A3(K)*X(K+1) -
    GAMMA(U)=(F(K)-A2(K)*X(K-1)-A3(K)*X(K+1) -
4-continue
4-continue
    K=(NR-1)*NZ + I
    K=(NR-1)*NZ + I
    DX = DABS(X(K) - GAMMA (NR))
    DX = DABS(X(K) - GAMMA (NR))
    DX = DABS(X(K)
    DX = DABS(X(K)
    IF(DX.GT.CONV) CONV = DX
    IF(DX.GT.CONV) CONV = DX
    X(K) = GAMMA(NR)
    X(K) = GAMMA(NR)
    DO 5 J = 2,NR
    DO 5 J = 2,NR
    K=NR-j+1
    K=NR-j+1
    KX = (k-1)*NZ +I
    KX = (k-1)*NZ +I
    XA = GAMMA (K) - A4(KX)*X(KX+NZ)/BETA(K)
    XA = GAMMA (K) - A4(KX)*X(KX+NZ)/BETA(K)
    DX = OABS(X(KX) - XA)
    DX = OABS(X(KX) - XA)
    IF(DX.GT.CONV) CONV = DX
    IF(DX.GT.CONV) CONV = DX
    X(KX) = XA
    X(KX) = XA
5 CONTINUE
5 CONTINUE
6 CONTINUE
6 CONTINUE
            NEW sOlutION at the top
            NEW sOlutION at the top
    I = NZ
    I = NZ
    GAMMA(1) = F(I) - A2(I)*X(I-1)
    GAMMA(1) = F(I) - A2(I)*X(I-1)
    DO 7 J= 2,NR
    DO 7 J= 2,NR
    LO 7 J=2,NR
    LO 7 J=2,NR
    K1 = K - NZ
    K1 = K - NZ
    BETA(N) = ONE - A1(K)*A4(K1)/BETA(U-1)
    BETA(N) = ONE - A1(K)*A4(K1)/BETA(U-1)
    GAMMA(J)=(F(K)-A2(K)*X(K-1)-A1(K)*GAMMA(J-1))/
    GAMMA(J)=(F(K)-A2(K)*X(K-1)-A1(K)*GAMMA(J-1))/
    /'GMMA(J) = {F(K)BETA(U)
    /'GMMA(J) = {F(K)BETA(U)
7 CONTINUE
7 CONTINUE
    K = (NR-1)*NZ + I
    K = (NR-1)*NZ + I
    DX = DABS(X(K) - GAMMA(NR))
    DX = DABS(X(K) - GAMMA(NR))
    IF(DX.GT.CONV) CONV = DX
    IF(DX.GT.CONV) CONV = DX
    X(K) = GAMMA(NR)
    X(K) = GAMMA(NR)
    DO 8 J = 2,NR
    DO 8 J = 2,NR
    K=NR-j+1
    K=NR-j+1
    KX = (K-1)*NZ + I
```

 KX = (K-1)*NZ + I
    ```
```

3330
3331
3332
3333
3333
334
3335 C
3336 C
3337 C
3338
3339
3339
3340
3341
3342
XA = GAMMA(K) - A4(KX)*X(KX+NZ)/BETA(K)
DX = DABS (X(KX) - XA)
IF(DX.GT.CONV) CONV = DX
X(KX) = XA
8 CONTINUE
CONVERGENCE TEST
IF(CONV - EPS2) 11,11.9
9 IF(ITR - ITRMAX) 1,10,10
10 IERR = 1
l CONT INUE
DO 12L=1.NC
XX = DAGS (X(L))
IF(XX.GT.RES) RES \# XX
12 CONTINUE
RETURN
END

```

```

3392C
3393
3394
3395
3396
3397
3397
3598
3399
3400
3401
3402
3403
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3414
3415
3416
3417
3418
3420
3420
3^n\
3422
3423
3424
3425
3426
200 CONT INUE
WRITE(6,1101)
1100 FORTAAT(IH1,35(' *')//10X,'EXECUTION TERMINATED ON ERROR'.
*' CONDITION AT TIME,.F10.4//)
1001 FORMAT(IX,'THE PRESSURE MATRIX INVERSION DOES NOT CONVERGE'/
* IX,IIN THE MAXIMUM NUMBER OF ITERATIONS ALLOWED'//
* IX,'ERROR CONDITION NUMSER = 1%)
1002 FORMAT(IX, 'THE PRESSURE MATRIX IS NOT DIAGONAL DOMINANT'//

* 1X,'ERROR CONDITION NUMBER = 2%%
1003 FORMAT(1X.'THE VOID FRACTION TOOK A VALUE EITHER LOWER THAN'/
 * 1x,'ZERO OR GREATER THAN ON['//
 * 1x,'ERROR CONDITION NUMBER = 3'/)
1004 FORMAT(IX,'THE INITIAL CONDITIONS INPUT DATA IS NOT IN THE'/
 * 1X,'PROPER ORDER'//
 * 1X.'ERROR CONDITION NUABER = 4'/)
1021 FORMAT\IX. 'THE TIME STEP SIZE TOOK A VALUE TOO SMALL'/
 * FORMAT(1X,' THE PRESNDITION NUNGER = 21;%)
1022 FORMAT(1X.'THE PRESSURE TOOK A VALUE TOO SMALL'/
 * 1X,'ERROR CONDITION NUMBER = 22'/)
1023 FORMAT(IX,'THE PRESSURE TOOK A VALUE TOO HIGH'/
 * 1X,'ERROR CONOITION NUMBER = 23'/)
1024 FORMAT(IX, 'THE VAPOR TEMPERATURE TOOK A VALUE TOO SMALL'/
 * IX,'ERROR CONDITION NUMEER = 24'/)
1025 FORMAT(IX,'THE VAPOR TEMPERATURE YOOK A VALUE YOO HIGH'/
 * 1X,'ERROR CONDITIDN NUMBER = 25'/)
1026 FORMAT(1X,'THE LIQUID TEMPERATURE TOOK A VALUE TOO SMALL'/
 * 1X,'ERROR CONDITION NUMBER = 26'/)
1027 FORMAT(IX. 'THE LIQUID TEMPERATURE TOOK A VALUE TOO HIGH'/
 * 1X,'ERROR CONDITION NUMBER = 27'/)
1050 FORMAT (IX,'A QUIT SIGNAL WAS ISSUED BY THE TERMINAL OPERATOR'/
 * IX,'ERROR CONDITION NUMBER = 50%/)
1101 FORMAT(1X,35(':'))
RETURN
END

```

\section*{Subroutine saver}
\begin{tabular}{|c|c|c|}
\hline 3427 & & SUBROUTINE SAVER(P,TV, TL, ALFA, UVZ, ULZ, UVR, ULR, TR, TCAN, \\
\hline 3428 & & * TIME,NTR,NN,NCAN,NI) \\
\hline 3429 & & IMPLICIT REAL*8 ( \(A-H, 0-Z\) ) \\
\hline 3430 & & LOGICAL LDATA \\
\hline 3431 & & DIMENSION P(NN), TV(NN),TL(NN), ALFA(NN), UVZ(NN), ULZ(NN). \\
\hline 3432 & & * UVR(NN), TCAN(NCAN), TR(NTR), ULR(NN) \\
\hline 3433 & & DIMENSION XOUT(5) \\
\hline 3434 & & LDATA = .FALSE. \\
\hline 3435 & & WRITE(7,103) LDATA,TIME \\
\hline 3436 & & DO 1 KO = 1.NN * \\
\hline 3437 & & WRITE(7,100) KO, TV(KO), TL (KO), P(KO), ALFA (KO) \\
\hline 3438 & & WRITE(7,100) KO, UVZ(KO), ULZ (KO), UVR(KO), ULR(KO) \\
\hline 3439 & 1 & CONTINUE \\
\hline 3440 & & LDATA \(=\). TRUE. \\
\hline 3441 & & KRES \(=0\) \\
\hline 3442 & 2 & CONT INUE \\
\hline 3443 & & DO \(3 \mathrm{~K}=1.5\) \\
\hline 3444 & & \(K M=K R E S+K\) \\
\hline 3445 & & IF(KM.GT.NTR) GO TO 4 \\
\hline 3446 & & XOUT \((K)=T R(K M)\) \\
\hline 3447 & 3 & CONT INUE \\
\hline 3448 & & WRITE(7.101) LDATA, (XOUT (KL), KL= 1.5) \\
\hline 3449 & & KRES \(=\) KRES + 5 \\
\hline 3450 & & GO TO 2 \\
\hline 3451 & 4 & CONT INUE \\
\hline 3452 & & WRITE(7,101) LDATA, (XOUT (KL), KL=1,5) \\
\hline 3453 & & LOATA = .FALSE. \\
\hline 3454 & & WRITE(7.102) LDATA \\
\hline 3455 & & LDATA \(=\). TRUE. \\
\hline 3456 & & KRES \(=2 *\) NI \\
\hline 3457 & & K3 \(=3 * N I\) \\
\hline 3458 & 5 & CONT INUE \\
\hline 3459 & & DO \(6 \mathrm{~K}=1.5\) \\
\hline 3460 & & \(K M=K R E S+K\) \\
\hline 3451 & & IF (KM.GT.K3) GO TO 7 \\
\hline 3462 & & XOUT (K) \(=\operatorname{TCAN}(K M)\) \\
\hline 3463 & 6 & CONT INUE \\
\hline 3464 & & WRITE(7,101) LDATA, (XOUT (KL), KL \(=1,5\) ) \\
\hline 3465 & & KRES \(=\) KRES +5 \\
\hline 3466 & & GO TO 5 \\
\hline 3467 & 7 & CONT INUE \\
\hline 3458 & & WRITE(7,101) LDATA, (XOUT(KL), KL=1,5) \\
\hline 3469 & & LDATA \(=\).FALSE. \\
\hline
\end{tabular}

3470
3471
3472
3473
3474
3475
3476

WRITE(7.102) LDATA
100 FORMAT (15.4015.9)
101 FORMAT (L1,5D15.9)
102 FORMAT (L1)
103 FORMAT(L1, D15.9)
RETURN
END```


[^0]:    This book was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof nor any of their employees makes any warranty express or impled or assumes any legal tiabulity or responsibility for the accuracy comoleteness or usefulness of any information apparatus product or process disclosed or represents that its use would not infringe privately owned rights Reference heren to any specific commerrial product process or service by trade name trademark manufacturer or otherwise does nol necessarly constitute or imply its endorsement recommendation or favoring by the United States Government or any agency thereof The views and opmions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

