ENERGY LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DOE/ET/37218-4

MASTER

there is no objection from the param point of view to the publication or discontration of the document(s) iterad in this letter.

4/5 19 8/ BY CHIL

THE COMPLETE OF THIS LACTORE & MALTANTED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

A TWO-DIMENSIONAL, TWO-FLUID MODEL FOR SODIUM BOILING IN LMFBR FUEL ASSEMBLIES

by

Mario Roberto Granziera Mujid S. Kazimi

Energy Laboratory Report No. MIT-EL 80-011

May 1980

- DISCLAIMER -

This book was prepared as an account of work sonsoried by an agency of the United States Government. Neither the United States Government nor any agency thereof nor any of their employees makes any warranty express or implied or assumes any lagal lability or responsebility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents that its use would not infringe privately owned rights Reference herein to any specific commercial product process or service by trade name trademark manufacturer or otherwise does not necessarily constitute or imply its endorsement recommendation or favoring by the United States Government or any agency thereof. The veves and optimons of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ERECTIONALITION OF THIS DOCUMENT IS UNLIMITED.

MGU

ERRATA

A Two Dimensional, Two Fluid Model for Sodium Boiling in LMFBR Fuel Assemblies

by

Mario Roberto Granziera Mujid S. Kazimi

page 40:

Equation 2.26 should be:

$$A_{r}^{*} = \frac{4}{3}\Delta z \left(\frac{\sqrt{3}}{2} - \frac{A_{pin}}{p^{2}} \right)$$

page 69:

F

r, 📣

The denominator in the top half of equation 2.2.14 (u<0) should be $\Delta r \frac{1}{j+\frac{1}{2}}$

Program Listing:

Subroutine READ should read:

Line		
452	3	CONTINUE
453		READ(5,1003) NROW,PITCH,D,E
454		WRITE(7,1003) NROW,PITCH,D,E
455 C		
456		LMAX=L
457		DO 4 KO=1,NN
458		QSI(KO) = (4.*D/C PITCH-D))**2
459	4	CONTINUE
460 C		

REPORTS IN REACTOR THERMAL HYDARULICS RELATED TO THE MIT ENERGY LABORATORY ELECTRIC POWER PROGRAM

- A. Topical Reports (For availability check Energy Laboratory Headquarters, Room E19-439, MIT, Cambridge, Massachusetts, 02139)
- A.l General Applications
- A.2 PWR Applications
- A.3 BWR Applications
- A.4 LMFBR Applications
- A.1 M. Massoud, "A Condensed Review of Nuclear Reactor Thermal-Hydraulic Computer Codes for Two-Phase Flow Analysis," MIT Energy Laboratory Report MIT-EL-79-018, February 1979.

J.E. Kelly and M.S. Kazimi, "Development and Testing of the Three Dimensional, Two-Fluid Code THERMIT for LWR Core and Subchannel Applications," MIT Energy Laboratory Report MIT-EL-79-046, December 1979.

A.2 P. Moreno, C. Chiu, R. Bowring, E. Khan, J. Liu, N. Todreas, "Methods for Steady-State Thermal/Hydraulic Analysis of PWR Cores," MIT Energy Laboratory Report MIT-EL-76-006, Rev. 1, July 1977 (Orig. 3/77).

J.E. Kelly, J. Loomis, L. Wolf, "LWR Core Thermal-Hydraulic Analysis--Assessment and Comparison of the Range of Applicability of the Codes COBRA-IIIC/MIT and COBRA IV-1," MIT Energy Laboratory Report MIT-EL-78-026, September 1978.

J. Liu, N. Todreas, "Transient Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Model Layout," MIT Energy Laboratory Report MIT-EL-77-008, Final, February 1979, (Draft, June 1977).

J. Liu, N. Todreas, "The Comparison of Available Data on PWR Assembly Thermal Behavior with Analytic Predictions," MIT Energy Laboratory Report MIT-EL-77-009, Final, February 1979, (Draft, June 1977).

A.3 L. Guillebaud, A. Levin, W. Boyd, A. Faya, L. Wolf, "WOSUB-A Subchannel Code for Steady-State and Transient Thermal-Hydraulic Analysis of Boiling Water Reactor Fuel Bundles," Vol. II, Users Manual, MIT-EL-78-024. July 1977. L. Wolf, A Faya, A. Levin, W. Boyd, L. Guillebaud, "WOSUB-A Subchannel Code for Steady-State and Transient Thermal-Hydraulic Analysis of Boiling Water Reactor Fuel Pin Bundles," Vol. III, Assessment and Comparison, MIT-EL-78-025, October 197

L. Wolf, A. Faya, A. Levin, L. Guillebaud, "WOSUB-A Subchannel Code for Steady-State Reactor Fuel Pin Bundles," Vol. I, Model Description, MIT-EL-78-023, September 1978.

A. Faya, L. Wolf and N. Todreas, "Development of a Method for BWR Subchannel Analysis," MIT-EL-79-027, November 1979.

A. Faya, L. Wolf and N. Todreas, "CANAL User's Manual," MIT-EL-79-028, November 1979.

A.4 W.D. Hinkle, "Water Tests for Determining Post-Voiding Behavior in the LMFBR," MIT Energy Laboratory Report MIT-EL-76-005, June 1976.

W.D. Hinkle, Ed., "LMFBR Safety and Sodium Boiling - A State of the Art Reprot," Draft DOE Report, June 1978.

M.R. Granziera, P. Griffith, W.D. Hinkle, M.S. Kazimi, A. Levin, M. Manahan, A. Schor, N. Todreas, G. Wilson, "Development of Computer Code for Multi-dimensional Analysis of Sodium Voiding in the LMFBR," Preliminary Draft Report, July 1979.

M. Granziera, P. Griffith, W. Hinkle (ed.), M. Kazimi, A. Levin, M. Manahan, A. Schor, N. Todreas, R. Vilim, G. Wilson, "Development of Computer Code Models for Analysis of Subassembly Voiding in the LMFBR," Interim Report of the MIT Sodium Boiling Project Covering Work Through September 30, 1979, MIT-EL-80-005.

A. Levin and P. Griffith, "Development of a Model to Predict Flow Oscillations in Low-Flow Sodium Boiling," MIT-EL-80-006, April 1980.

M.R. Granziera and M. Kazimi, "A Two Dimensional, Two Fluid Model for Sodium Boiling in LMFBR Assemblies," MIT-EL-80-011, May 1980.

G. Wilson and M. Kazimi, "Development of Models for the Sodium Version of the Two-Phase Three Dimensional Thermal Hydraulics Code THERMIT," MIT-EL-80-010, May 1980.

ii

B. Papers

- B.1 General Applications
- B.2 PWR Applications
- B.3 BWR Applications
- B.4 LMFBR Applications
- B.1 J.E. Kelly and M.S. Kazimi, "Development of the Two-Fluid Multi-Dimensional Code THERMIT for LWR Analysis," accepted for presentation 19th National Heat Transfer Conference, Orlando, Florida, August 1980.

J.E. Kelly and M.S. Kazimi, "THERMIT, A Three-Dimensional, Two-Fluid Code for LWR Transient Analysis," accepted for presentation at Summer Annual American Nuclear Society Meeting, Las Vegas, Nevada, June 1980.

B.2 P. Moreno, J. Kiu, E. Khan, N. Todreas, "Steady State Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Method," American Nuclear Society Transactions, Vol. 26

P. Moreno, J. Liu, E. Khan, N. Todreas, "Steady-State Thermal Analysis of PWR's by a Single Pass Procedure Using a Simplified Nodal Layout," <u>Nuclear Engineering</u> and Design, Vol. 47, 1978, pp. 35-48.

C. Chiu, P. Moreno, R. Bowring, N. Todreas, "Enthalpy Transfer Between PWR Fuel Assemblies in Analysis by the Lumped Subchannel Model," <u>Nuclear Engineering</u> and Design, Vol. 53, 1979, 165-186.

- B.3 L. Wolf and A. Faya, "A BWR Subchannel Code with Drift Flux and Vapor Diffusion Transport," <u>American Nuclear Society</u> <u>Transactions</u>, Vol. 28, 1978, p. 553.
- B.4 W.D. Hinkle, (MIT), P.M Tschamper (GE), M.H. Fontana, (ORNL), R.E. Henry (ANL), and A. Padilla, (HEDL), for U.S. Department of Energy, "LMFBR Safety & Sodium Boiling," paper presented at the ENS/ANS International Topical Meeting on Nuclear Reactor Safety, October 16-19, 1978, Brussels, Belgium.

M.I. Autruffe, G.J. Wilson, B. Stewart and M. Kazimi, "A Proposed Momentum Exchange Coefficient for Two-Phase Modeling of Sodium Boiling," Proc. Int. Meeting Fast Reactor Safety Technology, Vol. 4, 2512-2521, Seattle, Washington, August 1979.

M.R. Granziera and M.S. Kazimi, "NATOF-2D: A Two Dimensional Two-Fluid Model for Sodium Flow Transient Analysis," Trans. ANS, 33, 515, November 1979.

NOTICE

This report was prepared as an account of work sponsored by the United States Government and two of its subcontractors. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

÷

A TWO DIMENSIONAL, TWO FLUID MODEL FOR SODIUM BOILING IN LMFBR FUEL ASSEMBLIES

by

Mario Roberto Granziera Mujid S. Kazimi

Energy Laboratory and Department of Nuclear Engineering

Massachusetts Institute of Technology Cambridge, Massachusetts 02139

> Topical Report of the MIT Sodium Boiling Project

> > sponsored by:

U. S. Department of Energy, General Electric Co. and Hanford Engineering Development Laboratory

Energy Laboratory Report No. MIT-EL 80-011

ABSTRACT

A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms.

Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model.

The most important feature of the model was its ability to simulate severe conditions of sodium boiling, in particular flow reversal, which was shown in the tests performed with the model.

Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions.

ACKNOWLEDGEMENT

Funding for this project was provided by the United States Department of Energy, the General Electric Co., and the Hanford Engineering Development Laboratory. Additional support was also provided to Mario R. Granziera by the Commisao Nacional de Energia Nuclear. This support was deeply appreciated.

The authors would also like to thank their co-workers on the MIT Sodium Boiling project for their help and contributions to this work.

A very special thanks is due to Bruce Stewart whose intimate knowledge of the concepts of numerical analysis was an invaluable resource.

The work described in this report was performed primarily by the principal author, Mario R. Granziera, who has submitted the same report in partial fulfillment for the PhD degree in Nuclear Engineering at MIT.

TABLE OF CONTENTS

Title Page	1
Abstract	2
Acknowledgement	3
List of Figures	7
List of Tables	10
Nomenclature	11
Chapter 1: Introduction	13
1.1 LMFBR Safety Analysis	14
1.2 Characteristics of Numerical Models for Sod: Boiling	ium 23
1.2.1 Dimensionality	23
1.2.2 Boundary Conditions: Pressure Vs, In Velocity	let 26
1.2.3 Two Fluid Model	28
Chapter 2: The Conservation Equations and the Numerical Met	hod 31
2.1 The Mass, Momentum and Energy Equations Aver over a Control Volume	raged 31
2.1.1 The Mass Equation	31
2.1.2 The Momentum Equation	34
2.1.3 The Energy Equation	46

2.2	The Finite Difference Equations	54
2.3	The Numerical Scheme	71
2.4	The Pressure Problem	86
2.5	Stability Analysis of the Numerical Method	93

Chapter 3: The Constitutive	Equations	and Functions	of State	107
-----------------------------	-----------	---------------	----------	-----

	3.1	The Sodiu	m Functions of State and Transport	
		Propert	ies	107
		3.1.1 Sa	turation Temperature	107
		3.1.2 Va	por Density	109
		3.1.3 Li	quid Density	110
		3.1.4 In	ternal Energies	111
		3.1.5 Tr	ansport Properties	112
	3.2	Mass Exch	ange Rate	116
•	3.3	Momentum	Exchange	126
	3.4	Energy Ex	change	131
		3.4.1 Fu	el Pin Heat Conduction	131
		3.4.2 Fu	el Pin Material Properties	137
		3.4.3 Co	nvective Heat Transfer Coefficient	139
		3.4.4 Fu	el Assembly Structure Model	145
		3.4.5 In	terphase Heat Transfer	145

Chapter 4:	Expe	rimental Tests Simulation	148
	4.1	The SLSF P3A Experiment	148
	4.2	One Dimensional Analysis of the P3A Experiment	164
	4.3	The Wl Experiment	170
	4.4	The GR19 Experiment	199

.

•

Chapter 5:	Conclusions and Recommendations	207
	5.1 Conclusions	207
	5.2 Recommendations	208
References		211
		·
Appendix A:	NATOF-2D Input Data Manual	216
Appendix B:	NATOF-2D Code Structure Description	228
Appendix C:	NATOF-2D I/O Examples	237
Appendix D:	NATOF-2D Program Listing	256

.

LIST OF FIGURES

No.

1.1	Possible Accident Paths and Lines of Assurance for a Potential CDA	17
1.2	Key Events and Potential Accident Paths for Unprotected Loss of Flow Accident	18
1.3	Key Events and Potential Accident Paths for Loss of Pipe Integrity Accident	19
1.4	Key Events and Potential Accident Paths for Unprotected Transient Overpower Accident	20
1.5	Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat	21
1.6	Key Events and Potential Accident Paths for Local Subassembly Accident	22
2.1	A Typical Cell Arrangement	59
2.2	Position Evaluation of Variables	60
2.3	Different Positions for the Radial Velocity	67
3.1	Condensation Coefficienct as a Function of Pressure	119
3.2	Bubbly Flow Representation	121
3.3	Low Void Fraction Bubbly Flow Representation	121
3.4	Suppression Factor Vs. Reynolds Number	141
3.5	Reynolds Number Factor	142

.

4.1	Pin Number Location	156
4.2	P3A: Mass Flow Rate Vs. Time	157
4.3	P3A: Experimental Mass Flow Rate	158
4.4	P3A: Temperature Vs. Time, Central Channel	159
4.5	P3A: Temperature Vs. Time; Edge Channel	160
4.6	P3A: Axial Temperature Profile	161
4.7	P A: Radial Temperature Profile	162
4.8	Void Fraction Maps for the PBA Experiment	163
4.9	P3A-1D: Temperature Vs. Time	166
4.10	P3A-1D: Temperature Vs. Time	167
4.11	P3A-1D: Axial Temperature Profile	168
4.12	P3A: Comparison Between 1D and 2D; Mass Flow Rate	169
4.13	Typical Boiling Window Flow Decay for the Wl Test	177
4.14	W1: Temperature and Mass Flow Rate for Sequence 5	178
4.15	W1: Temperature and Mass Flow Rate for Sequence 6	179
4.16	W1: Temperature and Mass Flow Rate for Sequence 6a	180
4.17	W1: Axial Temperature Profile for Sequence 6a	181
4.18	W1: Temperature and Mass Flow Rate for Sequence 7	182
4.19	W1: Temperature and Mass Flow Rate for Sequence 7a	183
4.20	Wl: Axial Temperature Profile for Sequence 7a	184
4.21	W1: Temperature and Mass Flow Rate for Sequence 7a ⁻	185
4.22	Wl: Axial Temperature Profile for Sequence 7a	186
4.23	Wl: Void Maps for Sequence 7a'	187
4.24	Wl: Temperature and Mass Flow Rate for Sequence 7b [*]	188
4.25	Wl: Axial Temperature Profile for Sequence 7b	189

4.26	W1: Void Maps for Sequence 7b [*]	190
4.27	W1: Temperature and Mass Flow Rate for Sequence 3	191
4.28	Wl: Axial Temperature Profile for Sequence 3	192
4.29	Wl: Temperature and Mass Flow Rate for Sequence 4	193
4.30	W1: Axial Temperature Profile for Sequence 4	194
4.31	W1: Void Maps for Sequence 4	195
4.32	Temperature and Mass Flow Rate for 217-Pin Bundle Under Sequence 7b ² Conditions	196
4.33	Axial Temperature Profile for 217-Pin Bundle Under Sequence 7b ² Conditions	197
4.34	Void Maps for 217-Pin Bundle Under Sequence 7b ² Conditions	198
4.35	GR19: Temperature Profile for .311 Kg/sec Mass Flow Rate	20 2
4.36	GR19: Temperature Profile for .265 Kg/sec Mass Flow Rate	203
4.37	GR19: Temperature Profile for .260 Kg/sec Mass Flow Rate	204
4.38	GR19: Quality Contours for .265 Kg/sec Mass Flow Rate	205
4.39	GR19: Quality Contours for .260 Kg/sec Mass Flow Rate	206
A.1	Cell Arrangement in the r-z Plane	217
A.2	Fuel Pin Numbering	218
A.3	Cell Arrangement for Fuel Pin Heat Conduction	219
B.1	NATOF-2D Subroutine Structure	229

.

LIST OF TABLES

.

<u>No.</u>		
1.1	Sodium Boiling Issues	16
3.1	Units Used in this Work and the Correspondent Usual Ones	108
4.1	SLSF-P3A Test Bundle Data	152
4.2	Assumed Non-Uniform Radial Power Distribution in P3A Test Bundle	154
4.3	Event Sequence Times of the P3A Experiment	155
4.4	W1 Test Bundle Data	173
4.5	Boiling Window Matrix for the Wl Experiment	175
4.6	Design Data for the GR19 Experiment	200

.

.

NOMENCLATURE

•

a	Void Fraction
ρ	Density
e	Internal Energy
s	Mass Exchange Rate
Ρ	Pressure
U	Velocity
f	Friction Force
g	Gravity Acceleration
v	Volume
A	Area
м	Momentum Exchange Rate
Q	Heat Exchange Rate
D	Fuel Pin Diameter
Δγ	Radial Mesh Spacing
∆z	Axial Mesh Spacing
Δt	Time Step Size

SUPERSCRIPTS

N Time Level

•

K Iteration Level

INTEGRALS

AVERAGES

-

X =
$$\frac{1}{V} \int_{V} X(r,z) dV$$
 = Volume Averaged Quantity
X A = $\frac{1}{A} \int_{V} X(r,z) dA$ = Surface Averaged Quantity

I INTRODUCTION

The growing public concern about the nuclear industry places an increasingly large emphasis on the safety aspects of nuclear reactor design. In particular, commercial size liquid metal cooled fast breeder reactors (LMFBR) with its large amount of plutonium fuel, combined with its inherent safety problems, namely the potentially positive void coefficient of reactivity, and the high chemical reactivity of the liquid metal coolant with air and water, must be designed, constructed and operated with large safety margins to assure that the public risk will be acceptably low.

In order to accomplish the stringent requirements of safety, designers must have a thorough understanding of the phenomena occurring in all possible reactor situations and the adequate analytical tools to correctly predict the reactor behavior in all possible situations.

The objective of this work is to provide an analytical model capable of predicting the transient sodium boiling in LMFBR fuel assemblies under realistic conditions. In order to situate the model proposed in this work in the broad field of sodium boiling a review of LMFBR safety analysis and a general description of the accidents of principal concern will be presented, followed by a review of the present status of analytical models currently available.

1.1 LMFBR Safety Analysis

The U.S. Fast Breeder Reactor Safety Program approach is to provide four levels of protection, which are aimed at reducing both the probability and consequences of a Core Disruptive Accident (CDA)[1]. These levels of protection are referred to as Lines of Assurance (LOA). Figure 1.1 illustrates the possible accident paths for a potential core disruptive accident.

The first line of assurance aims at reducing the probability of occurrence of a serious accident. The emphasis is placed on quality assurance, inservice inspection and monitoring at the level of construction and operation, and at the level of design on providing a multilevel redundant plant protection system, which can quickly respond to faults and place the reactor in a safe shutdown condition without damage to the core[1,2].

The second line of assurance assumes that in spite of the measures taken in the first line, low probability but mechanistically possible events involving failure of the first line systems will occur[1]. The strategy in this line is to provide the reactor design with features which make the system respond inherently to accidents in a way which tends to maintain reactivity control and coolability, containing the damage to a limited number of fuel assemblies.

The third and fourth lines of assurance aim at limiting the consequences of a serious accident. It is assumed that the first two lines have failed and two subsequent events form a potential sequence leading to core disruption and release of radioactivity to the environment. The objective of these last lines is to make the consequences of a core disruption accident sufficiently limited by the plant containment capability which combined with the low probability of occurrence of the failure of the first and second lines of assurance makes the risk to the public acceptably small[1,2].

Some of the issues concerning the possible accident paths are still unresolved as are some of the phenomena involved in very low probability events.

In order to assess the importance of sodium boiling and two phase flow in the general picture of LMFBR safety analysis we reproduce from a compilation of the state of the art in sodium boiling by Hinkle [2] figures 1.2 through 1.6 illustrating the path of the most serious of the postulated accidents considered in LMFBR safety analysis. In all these accidents, the occurrence of sodium boiling and the stability of two phase flow assume a crucial role in determining the path, speed of events and final consequences. In table 1.1, also reproduced from reference [2], the technical issues which must be resolved related to sodium boiling are presented.

TABLE 1.1

Sodium Boiling Issues

Issue	Accidents
Effects of local blockage on single-phase flow and heat transfer — effects of location, size and composition; detectability.	Local Subassembly Accident
Stability of flow and heat transfer with local or bulk voiding due to fission gas release, molten fuel/coolant interaction and boiling — full power flow coastdown; flow and power decay following pipe rupture and scram; power increase/decrease at full flow and partial blockage; natural circulation at decay heat power level partial blockage at full power and flow	Unprotected Loss of Flow Accident Loss of Pipe Integrity Accident Unprotected Transient Overpower Accident Inadequate Natural Circulation Decay Heat Removal Accident Local Subassembly Accident
Transport of molten fuel by liquid and gas or vapor — effect of molten fuel/coolant interaction and voiding dynamics on tendency for fuel sweepout or relocation to form blockage and blockage propagation	Unprotected Loss of Flow Accident Unprotected Transient Overpower Accident Local Subassembly Accident
Reentry, rewetting and sustained cooling — effect of clad/fuel temperatures, molten fuel/clad and coolant interaction, extent of fuel/clad relocation and blockage	Unprotected Loss of Flow Accident Loss of Pipe Integrity Accident Unprotected Transient Overpower Accident Local Subassembly Accident

.

Figure 1.1 Possible Accident Paths and Lines of Assurance For a Potential CDA (From Reference 2)

Figure 1.2

Key Events & Potential Accident Paths For Unprotected Loss of Flow Accident

Key Events and Potential Accident Path For Loss of Pipe Integrity Accident (From Reference 2)

For Unprotected Transient Overpower Accident (From Reference 2)

Key Events and Potential Accident Paths for Inadequate Natural Circulation Decay Heat Removal Accident

Key Events and Potential Accident Paths For Local Subassembly Accident

1.2 Characteristics of Numerical Models for Sodium Boiling

In the following paragraphs the most important characterstics of numerical models relevant to LMFBR fuel assembly fluido-dynamic analysis will be discussed, along with a comparison of the capabilities of the models presently available and the one proposed in this work.

1.2.1 Dimensionality

It is a well recognized fact that a non-flat radial temperature profile exists with steady-state conditions, as well as at the onset of boiling in loss of flow transients [3]. Calculations made for single phase flow with the COBRA III-C code [4] showed that a temperature difference as high as 450°F may exist between the central and peripheral channels in a typical FFTF fuel assembly (Figure 1.7). Obviously this temperature profile will force boiling to start in the central part of the fuel assembly and progress afterwards in the direction of the periphery. During this process, while part of the fuel assembly is under boiling, and the fuel pins in this region may eventually be suffering some damage, the periphery of the fuel assembly still maintains its coolability.

Figure 1.7

Here is a multidimensional effect the timing of which has a direct effect on the amount of damage resultant from the accident. Also, since this radial incoherence is an inherent design feature of all fuel assemblies, the radial void incoherence is expected to occur in every boiling transient.

Although this effect can be well represented by a two dimensional model, covering most of the transients of concern to LMFBR safety analysis, two cases present a non-radial symmetry, thus requiring a full three dimensional model for their representation, namely the transients with a non-unform power profile and an asymmetrical flow blockage.

Considering the limited number of cases requiring a three dimensional model compared to those which can be analyzed with an axial-radial representation, and also considering the necessarily larger computational time required by a three dimensional model, it seems clear that a two dimensional model has definitive advantages.

As for the present situation in computational modeling, the only existing numerical model which can claim success in applications to sodium boiling is the SAS code, which is a one dimensional code [5]. Other codes such as the HEV-2D [6], COMMIX [7], BACHUS [8], to mention only a few of them, have encountered some difficulties in representing sodium boiling up to the point of flow reversal. Therefore a new code with two dimensional capability seems to be well situated.

1.2.2 Boundary Conditions: Pressure Vs. Inlet Velocity

The boundary conditions applied to the problem are strongly related to the numerical solutions used in the model. In this way, the marching technique, where the solution of the fluido-dynamic equations is obtained successively in planes along the direction of the main flow, can only operate with inlet velocity boundary condition, whereas the simultaneous pressure matrix inversion can work with both kinds of boundary conditions.

The advantages of the marching technique are its numerical stability for arbitrary large time steps combined with its relatively quick and straightforward numerical procedure. Its limitations lie in the assumptions necessary to the validity of the marching method: it requires that the flow be predominantly in one direction and always in that direction, making it impossible to analyze any kind of flow reversal. Also certain transport terms in the transverse momentum equations are ignored, whereas there are some doubts on the validity of these assumptions [9].

The simultaneous pressure matrix inversion method avoids the limitations of the marching technique at the price of using a smaller time step and a more laborious numerical solution. In this method, the solution of the fluido-dynamic equations is performed, at each time step, simultaneously for all mesh cells of the problem. In

general, this simultaneous solution can be reduced to a pressure matrix inversion. In this way, upstream propagations can be accounted for, and flow reversal transients can in be in principle analyzed. The method does not impose any limitation on the number of conservation equations, therefore the choice of any model, from homogeneous equilibrium to the full two-fluid model is allowed.

The disadvantages of the method are that because of the large number of unknowns involved in the matrix inversion, a fully implicit differencing scheme becomes practically impossible, and a semi-implicit method, with its consequent limitation in time step size, becomes practically the only option.

Another problem with this method arises when used in conjunction with a multidimensional model. When the conservation equations are reduced to a pressure problem, the resultant pressure matrix becomes only marginally diagonally dominant, the diagonal dominance being provided only by the compressibility terms, which in some cases may be very small. In these situations the usual techniques of matrix inversion fail to produce a solution in a reasonable computational time, and special procedures must be introduced. Indeed, the ability of the model proposed in this work to produce results in a reasonable amount of computational time owes much to the special technique devised for this matrix inversion which is presented in section 2.4.
1.2.3 Two Fluid Model

In the early years of two phase flow modeling, much attention has been given to the homogeneous equilibrium model. This model describes the two phase flow in terms of average quantities, such as the density and velocity. In this way, these quantities are defined to represent an homogeneous mixture of the two phases (or two fluids).

There are situations during reactor core transients where the assumptions required for this modeling depart from reality, namely when either phase does not stay close to saturation conditions and more importantly when the phase velocities differ substantially. Attempts to circumvent these limitations were made with the introduction of semi-empirical correlations to describe the unequal phase velocities, the so-called slip correlations, and to allow non-saturation conditions. Because of the semi-empirical nature of these correlations, their accuracy is limited to the range of variables for which they were developed, and their generalization is restricted.

A new approach to overcome the limitations of the homogeneous equilibrium model was attempted with the drift flux model. This model stays in between the homogeneous equilibrium and two-fluid models in terms of the number of conservation equations employed. Although some variations on the particular set of equations composing the model exist, in general the drift flux model represents the two phase flow with a set of three mixture conservation equations plus two equations

for one of the pairs mass-momentum, mass-energy or energy-momentum for one of the phases.

In this model the sophistication in the direction of being closer to first principles is increased over the homogeneous mixture model, and so are the complications and size of the numerical solution technique. Indeed, there are some doubts about the computational time advantage of the drift flux model over the two-fluid model.

The two-fluid model represents the fluid flow with two complete, separate sets of consevation equations, treating individually the properties of both phases. Its clear advantage is that no assumption is made on the relationship between the properties of the two phases, and the most general situations can in principle be represented. The model requires constitutive expressions for the interaction between phases, namely the exchange of mass, momentum and energy. Unlike the slip correlation this constitutive expressions do not depend on circumstantial conditions of the particular flow situation, but on the physical principles of the transport phenomena involved.

Much work has to be done in the field of the constitutive relations required by the two fluid model, and the work presented here cannot claim to represent accurately the two phase flow phenomena without first solving the problems present in this area. Nonetheless, the model presented here can serve as a valuable tool in developing and testing the much needed constitutive relations for sodium two phase

flow. This subject will be readdressed in chapter 5, when the recommendations for future developments related to this model will be presented.

A final word has to be said about the controversial issue of the complex characteristic roots of the two fluid model, and its consequences to the stability of its numerical solution. Although this subject will be addressed at length in section 2.5, for the moment it is sufficient to point out the inadequacy of using the techniques of partial differential equations and numerical analysis developed for linear systems in analyzing the thermo-fluido dynamic equations, which are non-linear. Therefore, any conclusion on well-posedness of the two fluid model and the stability of its numerical solution has to be drawn from an anlysis which takes into account all the characteristics of the model, in particular the damping effect of the interphase exchange terms.

The discussion of the porous body versus the subchannel approach is deliberately omitted here. It is our belief that this issue does not play any important role in the numerical treatment of reactor fluid flow. Indeed, it is possible to extend the porous body model to the limit of very small mesh cells or lump together subchannels to form larger ones. The two concepts overlap completely and no relevant distinction between them can be made in the numerical aspects of code development.

II. THE CONSERVATION EQUATIONS AND THE NUMERICAL METHOD

2.1 <u>The Mass, Momentum and Energy Equations Averaged over</u> <u>a Control Volume</u>.

In this chapter the derivation of the differential and difference form of the conservation equations will be given. First all assumptions built into the model will be detailed, providing a clear picture of its limitations and range of validity. Secondly, the precise meaning of each term in the set of equations will be established. As will be seen later, this is particularly important with terms describing the geometry of the interacting cells.

For the sake of compactness, and to avoid being monotonous, details will be given for the equations of the vapor phase, mentioning only the final form of the equations of the liquid phase. This will cause no lack of understanding, since the two fluid model is completely symmetric with respect to the liquid and vapor phases.

2.1.1 The Mass Equation

The mass equation has the form:

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} \, d\mathbf{v} + \int_{\mathbf{A}_{z+}} - \int_{\mathbf{A}_{z-}} \alpha \rho_{\mathbf{v}} \, \mathbf{U}_{\mathbf{v}z} \, d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r-}} \alpha \rho_{\mathbf{v}} \, \mathbf{U}_{\mathbf{v}r} \, d\mathbf{A} = \int_{\mathbf{v}} (\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{c}}) \, d\mathbf{V}$$

$$(2.1)$$

The density as well as its first time derivative are assumed independent of position within the volume occupied by each phase separately and the void fraction is also assumed independent of position within the control volume. It follows that:

$$\int_{\mathbf{V}} \alpha \rho_{\mathbf{V}} d\mathbf{V} = \langle \rho_{\mathbf{V}} \rangle \int_{\mathbf{V}} \alpha d\mathbf{V} = \langle \rho_{\mathbf{V}} \rangle \langle \alpha \rangle \mathbf{V}$$
(2.2)

$$\int_{\mathbf{A}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}} d\mathbf{A} = < \alpha \rho_{\mathbf{v}} U_{\mathbf{v}} > \mathbf{A}$$
(2.2)

$$\int_{\mathbf{v}} (\mathbf{s}_{e} - \mathbf{s}_{c}) \, d\mathbf{V} = (\langle \mathbf{s}_{e} \rangle - \langle \mathbf{s}_{c} \rangle) \, \mathbf{V}$$
(2.3)

We substitute these equations into our original mass equation, and we get

$$\frac{\partial}{\partial t} \left[< \alpha > < \rho_{v} > \right] + \frac{A_{z}}{v} \left[< \alpha \rho_{v} U_{vz} >_{A_{z+}} - < \alpha \rho_{v} U_{vz} >_{A_{z-}} \right]$$
$$+ \frac{A_{r+}}{v} < \alpha \rho_{v} U_{vr} >_{A_{r+}} - \frac{A_{r-}}{v} < \alpha \rho_{v} U_{vr} >_{A_{r-}} = < S_{e} > - < S_{c} > (2.5)$$

In the above equation we have introduced the areas A_z and A_r bounding our control volume. The axial cross sectional area A_z poses no problem, since in the particular geometry of fuel assemblies of interest for LMFBR it is a constant throughout the axial length. For the radial cross sectional area however the same is not true. Here we have a highly position dependent area, not only in the macro scale, i.e., from one control volume to another, but also in the particular position with respect to the fuel pin rows chosen for this area.

So far this position can be chosen arbitrarely. Later it will be seen that for the averaged radial velocities in the momentum equations to be compatible with those in the mass and energy equations we must impose a precise value for this radial cross sectional area. The choice of this position is postponed until we have developed the momentum equations.

Finally it can be easily inferred that the liquid mass equation will undergo the same steps and present a similar form:

$$\frac{\partial}{\partial t} \left[(1 - \langle \alpha \rangle) \rho_{\ell} \right] + \frac{A_{z}}{V} \left[\langle (1 - \alpha) \rho_{\ell} U_{\ell z} \rangle_{A_{z+1}} \right]$$

$$- \langle (1 - \alpha) \rho_{\ell} U_{\ell z} \rangle_{A_{z-}} + \frac{A_{r+}}{V} \langle (1 - \alpha) \rho_{\ell} U_{\ell r} \rangle_{A_{r+}} \\ - \frac{A_{r-}}{V} \langle (1 - \alpha) \rho_{\ell} U_{\ell r} \rangle_{A_{r-}} = \langle S_{c} \rangle - \langle S_{e} \rangle \qquad (2.6)$$

2.1.2 The Momentum Equations

Following the same procedure used with the mass equation, the momentum equations in a control volume form are:

Axial Direction

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}z} d\mathbf{v} + \int_{\mathbf{A}_{z^+}} - \int_{\mathbf{A}_{z^-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}z}^2 d\mathbf{A} + \int_{\mathbf{A}_{r^+}} - \int_{\mathbf{A}_{r^-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}z} U_{\mathbf{v}r} d\mathbf{A}$$

$$-\oint_{A_{\mathbf{v}}} \mathbf{P} \cdot \hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \, d\mathbf{A} = -\int_{A_{\mathbf{w}}} \mathbf{f}_{\mathbf{v}\mathbf{z}} \, d\mathbf{A} - \int_{\mathbf{v}} \alpha \, \rho_{\mathbf{v}} \, g \, d\mathbf{V} + \int_{\mathbf{v}} \mathbf{M}_{\mathbf{v}\mathbf{z}} \, d\mathbf{V} \qquad (2.7)$$

Radial Direction

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} U_{\mathbf{vr}} d\mathbf{V} + \int_{\mathbf{A}_{z+}} - \int_{\mathbf{A}_{z-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{vz}} U_{\mathbf{vr}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{vr}}^{2} d\mathbf{A}$$
$$- \oint \mathbf{P} \cdot \hat{\mathbf{r}} \cdot \hat{\mathbf{n}} d\mathbf{A} = - \int_{\mathbf{f}_{z+}} \mathbf{f}_{\mathbf{A}_{z-}} \int_{\mathbf{M}_{z+}} d\mathbf{V}$$
(2.8)

To obtain the momentum equations in non-conservative form the mass equation (2.1) multiplied by $\langle U_{VZ} \rangle$ and $\langle U_{VT} \rangle$ is subtracted from equations 2.7 and 2.8 respectively:

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} d\mathbf{v} - \langle U_{\mathbf{v}\mathbf{z}} \rangle \frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} d\mathbf{v} + \int_{\mathbf{A}_{\mathbf{z}+}} - \int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}}^{2} d\mathbf{A}$$

$$- \langle U_{\mathbf{v}\mathbf{z}} \rangle \int_{\mathbf{A}_{\mathbf{z}+}} - \int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} d\mathbf{A} + \int_{\mathbf{A}_{\mathbf{r}+}} - \int_{\mathbf{A}_{\mathbf{r}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} U_{\mathbf{v}\mathbf{r}} d\mathbf{A}$$

$$- \langle U_{\mathbf{v}\mathbf{z}} \rangle \int_{\mathbf{A}_{\mathbf{r}+}} - \int_{\mathbf{A}_{\mathbf{r}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{r}} d\mathbf{A} - \int_{\mathbf{A}_{\mathbf{v}}} P \hat{\mathbf{k}} \cdot \hat{\mathbf{n}} d\mathbf{A} =$$

$$= -\int_{\mathbf{A}_{\mathbf{v}}} f_{\mathbf{v}\mathbf{z}} d\mathbf{A} - g \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} d\mathbf{v} + \int_{\mathbf{v}} M_{\mathbf{v}\mathbf{z}} d\mathbf{v} - \langle U_{\mathbf{v}\mathbf{z}} \rangle \int_{\mathbf{v}} (S_{\mathbf{e}} - S_{\mathbf{c}}) d\mathbf{v} \quad (2.9)$$

$$= -\int_{\mathbf{A}_{\mathbf{v}}} f_{\mathbf{v}\mathbf{v}\mathbf{v}} d\mathbf{v} - \langle U_{\mathbf{v}\mathbf{r}} \rangle \frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} d\mathbf{v} + \int_{\mathbf{A}_{\mathbf{z}+}} -\int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} U_{\mathbf{v}\mathbf{r}} d\mathbf{A}$$

$$= \langle U_{\mathbf{v}\mathbf{r}} \rangle \int_{\mathbf{A}_{\mathbf{z}+}} -\int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} d\mathbf{A} + \int_{\mathbf{A}_{\mathbf{r}+}} A_{\mathbf{r}-} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{r}}^{2} d\mathbf{A}$$

$$= \langle U_{\mathbf{v}\mathbf{r}} \rangle \int_{\mathbf{A}_{\mathbf{z}+}} -\int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{\mathbf{r}+}} A_{\mathbf{r}-} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{r}}^{2} d\mathbf{A}$$

$$= -\langle \int_{\mathbf{A}_{\mathbf{v}}} f_{\mathbf{v}\mathbf{r}} d\mathbf{A} + \int_{\mathbf{V}} M_{\mathbf{v}\mathbf{r}} d\mathbf{v} - \langle U_{\mathbf{v}\mathbf{r}} \rangle \int_{\mathbf{v}} (S_{\mathbf{e}} - S_{\mathbf{c}}) d\mathbf{v} \quad (2.10)$$

With the previously stated assumption of position independence of the density and its time derivative the first pair of terms in both equations become:

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \ \rho_{\mathbf{v}} \ U_{\mathbf{vz}} \ dV - < U_{\mathbf{vz}} > \frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \ \rho_{\mathbf{v}} \ dV =$$

$$= \int_{\mathbf{v}} \left[\alpha \rho_{\mathbf{v}} \frac{\partial U_{\mathbf{v}z}}{\partial t} + (U_{\mathbf{v}z} - \langle U_{\mathbf{v}z} \rangle) \frac{\partial \alpha \rho_{\mathbf{v}}}{\partial t} \right] dV$$

$$= \langle \alpha \rangle \langle \rho_{v} \rangle \frac{\partial}{\partial t} \langle U_{vz} \rangle V$$
 (2.11)

and

$$\frac{\partial}{\partial t} \int_{\mathbf{V}} \alpha \rho_{\mathbf{v}} U_{\mathbf{vr}} d\mathbf{V} - \langle U_{\mathbf{vr}} \rangle \frac{\partial}{\partial t} \int_{\mathbf{V}} \alpha \rho_{\mathbf{v}} d\mathbf{V} = \langle \alpha \rangle \langle \rho_{\mathbf{v}} \rangle \frac{\partial}{\partial t} \langle U_{\mathbf{vr}} \rangle \mathbf{V}$$
(2.12)

Next consider the convective terms. We define:

$$\langle \mathbf{U}_{\mathbf{v}\mathbf{z}} \rangle_{\mathbf{A}_{\mathbf{z}}} = \left[\int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{z}}^{2} d\mathbf{A} \right] \cdot \left[\int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{z}} d\mathbf{A} \right]^{-1}$$
(2.13)

$$\langle \mathbf{U}_{\mathbf{vr}} \rangle_{\mathbf{A}_{\mathbf{z}}} = \left[\int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{vz}} \mathbf{U}_{\mathbf{vr}} d\mathbf{A} \right] \cdot \left[\int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{vz}} d\mathbf{A} \right]^{-1}$$
(2.14)

.

$$< \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} >_{\mathbf{A}_{\mathbf{z}}} = \frac{1}{\mathbf{A}_{\mathbf{z}}} \int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} dA$$
 (2.15)

$$< \alpha \rho_{\mathbf{v}} U_{\mathbf{vr}} >_{\mathbf{A}_{\mathbf{z}}} = \frac{1}{A_{\mathbf{z}}} \int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} U_{\mathbf{vr}} dA$$
 (2.16)

Assume U_{vz} is position independent in each axial cross sectional area A_z. Also assume that U_{vz} and U_{vr} are axially variable in such a way that:

$$\langle U_{vz} \rangle = \frac{1}{2} (\langle U_{vz} \rangle_{A_{z+}} + \langle U_{vz} \rangle_{A_{z-}})$$
 (2.17)

$$\langle U_{vr} \rangle = \frac{1}{2} (\langle U_{vr} \rangle_{A_{z+}} + \langle U_{vr} \rangle_{A_{z-}})$$
 (2.18)

or in other words, that these velocities have a linear axial variation.

The axial convective terms in both momentum equations become:

$$\int_{A_{z+}} -\int_{A_{z-}} \alpha \rho_{v} U_{vz}^{2} dA - \langle U_{vz} \rangle_{A_{z+}} - \int_{A_{z-}} \alpha \rho_{v} U_{vz} dA$$

$$= \langle \alpha \rangle \langle \rho_{v} \rangle \langle U_{vz} \rangle \left[\langle U_{vz} \rangle_{A_{z+}} - \langle U_{vz} \rangle_{A_{z-}} \right]$$
(2.19)

$$\int_{A_{z+}} - \int_{A_{z-}} \alpha \rho_{v} U_{vz} U_{vr} dA - \langle U_{vr} \rangle \int_{A_{z+}} - \int_{A_{z-}} \alpha \rho_{v} U_{vz} dA =$$

$$= \langle \alpha \rangle \langle \rho_{\mathbf{v}} \rangle \langle \mathbf{U}_{\mathbf{v}\mathbf{z}} \rangle \left[\langle \mathbf{U}_{\mathbf{v}\mathbf{r}} \rangle_{\mathbf{A}_{\mathbf{z}^{+}}} - \langle \mathbf{U}_{\mathbf{v}\mathbf{r}} \rangle_{\mathbf{A}_{\mathbf{z}^{-}}} \right] \mathbf{A}_{\mathbf{z}}$$
(2.20)

Using the same procedure to the r-convective terms, we define:

$$\langle \mathbf{U}_{\mathbf{vr}} \rangle_{\mathbf{A}_{\mathbf{r}}} = \left[\int_{\mathbf{A}_{\mathbf{r}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{vr}}^{2} d\mathbf{A} \right] \cdot \left[\int_{\mathbf{A}_{\mathbf{r}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{vr}} d\mathbf{A} \right]^{-1}$$
(2.21)

$$\langle \mathbf{U}_{\mathbf{v}\mathbf{z}} \rangle_{\mathbf{A}_{\mathbf{r}}} = \left[\int_{\mathbf{A}_{\mathbf{r}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{r}} \mathbf{U}_{\mathbf{v}\mathbf{z}} d\mathbf{A} \right] \cdot \left[\int_{\mathbf{A}_{\mathbf{r}}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{r}} d\mathbf{A} \right]^{-1}$$
(2.22)

Following the same procedure taken with the terms averaged over A_z , we must find an expression relating the properties averaged over the radial area and over the entire control volume. The linear variation of U_{vz} from A_{r-} to A_{r+} can be assumed without imposing simplifications beyond the level that has been used up till now. The same is also true when it is assumed that U_{vr} is constant over each radial area A_r . But due to the particular geometry of fuel assemblies under consideration, it will not be realistic to make a linear variation of U_{vr} assumption for any arbitrary radial area, since due to the presence of fuel pins, this radial area varies drastically with radial position. Instead, A_{r+} and A_{r-} must be chosen such that:

$$\langle U_{vr} \rangle = \frac{1}{2} (\langle U_{vr} \rangle_{A_{r+}} + \langle U_{vr} \rangle_{A_{r-}})$$
 (2.23)

.

Introduce the quantities $U_r^*(r)$ and $A_r^*(r)$:

$$\langle U_{vr} \rangle_{A_{v}}(r) \cdot A_{r}(r) = U_{r}^{*}(r) A_{r}^{*} \cdot r$$
 (2.24)

where A_r^* . r is the average linarly radial dependent area. This is equivalent to smearing the fuel pins over the fuel assembly to produce an equivalent homogeneous porous body. The criterion to find A_r^* is to require the integral of A_r^* . r over one unit cell be equal to the volume occupied by the fluid:

$$v_{cell}^{k} = \int_{r_{k}}^{r_{k}+\xi} A_{r}^{*} \cdot r \, dr = A_{r}^{*} \left[\frac{(r_{k}+\xi)^{2} - r_{k}^{2}}{2} \right]$$
 (2.25)

where $\xi = p \cdot \frac{\sqrt{3}}{2}$

The volume
$$V_{cell}^k$$
 is:
 $V_{cell}^k = (p^2 \frac{\sqrt{3}}{2} - A_{pin}) (\frac{2k+1}{2}) \Delta z$

where A includes the transverse area of fuel pin wire wrap and other structural materials present

$$r_k = k p \frac{\sqrt{3}}{2}$$

From equation (2.25) we get:

$$A_{r}^{*} = \Delta z \quad \frac{\sqrt{3}}{2} \quad - \quad \frac{A_{pin}}{p}$$
 (2.26)

We now can make the more acceptable assumption that $\langle U_{vr} \rangle_{A_r} A_r(r)$ = $U_r^*(r) A_r^*$. r = constant. It follows:

$$\langle U_{vr} \rangle = \frac{1}{\langle \alpha \rangle V} \int_{V}^{\alpha} U_{vr} \, dV = \frac{1}{V} \int dr \int_{A_{r}}^{A_{r}} U_{vr} \, dA$$
$$= \frac{1}{V} \int_{r_{-}}^{r_{+}} \langle U_{vr} \rangle_{A_{r}}^{A} A_{r}(r) \, dr$$
$$= U_{r}^{*}(r^{*}) \cdot A_{r}^{*} \cdot r^{*} \cdot \frac{(r_{+} - r_{-})}{V} \qquad (2.27)$$

where r^* is any value between r_{-} and r_{+} . Let us choose r^* such that

$$A_{r}^{*} r^{*} (r_{+} - r_{-}) = V \qquad (2.28)$$

but from equation 2.25 we have:

$$V = \int_{r_{-}}^{r_{+}} A_{r}^{*} r dr = A_{r}^{*} \frac{r_{+}^{2} - r_{-}^{2}}{2}$$

so it follows

$$r^* = \frac{r_+ + r_-}{2}$$
(2.29)

Substituting for r* in equation 2.27 we have

$$< U_{vr} > = U_{r}^{*}(r^{*})$$
 (2.30)

but since we assumed U_r^* is a linear function of r this is equivalent to

$$\langle U_{vr} \rangle = \frac{U^{*}(r_{+}) + U^{*}(r_{-})}{2}$$
 (2.31)

Going back to equation 2.24 we have:

$$\langle U_{vr} \rangle = \frac{1}{2} \left[\langle U_{vr} \rangle_{A_{r+}A^{*}r_{+}} + \langle U_{vr} \rangle_{A_{r-}A^{*}r_{-}} \right]$$
 (2.32)

Finally, the desired criterion for choosing the radial cross sectional area such that the averaging procedures taken with the mass, energy and momentum equations be compatible follows immediately if r+ and r- are chosen to satisfy:

$$A_{r+} = A^* r^+$$

and $A_{r-} = A^* r^-$ (2.33)

then the desired equation 2.23 is obtained

$$\langle U_{vr} \rangle = \frac{\langle U_{vr} \rangle_{A_{r+}} + \langle U_{vr} \rangle_{A_{r-}}}{2}$$

with these considerations, after a few algebraic steps, the r convective terms in the momentum equations become:

$$\int_{A_{r+}} - \int_{A_{r-}} \alpha \rho_{v} U_{vz} U_{vr} dA - \langle U_{vz} \rangle \int_{A_{r+}} - \int_{A_{r-}} \alpha \rho_{v} U_{vr} dA =$$

$$= \langle \alpha \rangle \langle \rho_{\mathbf{v}} \rangle \langle \mathbf{U}_{\mathbf{v}\mathbf{r}} \rangle \left(\langle \mathbf{U}_{\mathbf{v}\mathbf{z}} \rangle_{\mathbf{A}_{\mathbf{r}+}}^{-} - \langle \mathbf{U}_{\mathbf{v}\mathbf{z}} \rangle_{\mathbf{A}_{\mathbf{r}-}}^{-} \right) \frac{(\mathbf{A}_{\mathbf{r}+}^{+} + \mathbf{A}_{\mathbf{r}-})}{2} \quad (2.34)$$

$$\int_{A_{r+}} - \int_{A_{r-}} \alpha \rho_{v} U_{vr}^{2} - \langle U_{vr} \rangle \int_{A_{r+}} - \int_{A_{r-}} \alpha \rho_{v} U_{vr} dA =$$

$$\langle \alpha \rangle \langle \rho_{\mathbf{v}} \rangle \langle U_{\mathbf{vr}} \rangle \left(\langle U_{\mathbf{vr}} \rangle_{\mathbf{A}_{\mathbf{r}^+}} - \langle U_{\mathbf{vr}} \rangle_{\mathbf{A}_{\mathbf{r}^-}} \right) \left(\frac{\mathbf{A}_{\mathbf{r}^+} + \mathbf{A}_{\mathbf{r}^-}}{2} \right)$$
 (2.35)

The remaining terms of the momentum equations are obtained by simple averages:

$$\oint_{A_{v}} P \cdot \hat{k} \cdot \hat{n} \, dA = A_{z} < \alpha > \left(< P_{A_{z+}} - < P_{A_{z-}} \right)$$
(2.36)

$$\oint_{A_{v}} P \cdot \hat{r} \cdot \hat{n} \, dA = \left(\frac{A_{r+} + A_{r-}}{2}\right) < \alpha > \left(< P >_{A_{r+}} - < P >_{A_{r-}} \right)$$
(2.37)

$$\int_{A_{w}} f_{vz} dA = \langle f_{vz} \rangle_{A_{w}} dA = \langle f_{v$$

ŧ.

$$\int_{A_{w}} f_{vr} d = \langle f_{vr} \rangle_{A_{w}} A_{w}$$

$$\int_{\mathbf{V}} \mathbf{M}_{\mathbf{V}\mathbf{Z}} \, d\mathbf{V} - \langle \mathbf{U}_{\mathbf{V}\mathbf{Z}} \rangle \int_{\mathbf{V}} (\mathbf{s}_{\mathbf{e}} - \mathbf{S}_{\mathbf{c}}) \, d\mathbf{V} = \langle \mathbf{M}_{\mathbf{V}\mathbf{Z}}' \rangle \, \mathbf{V}$$

$$\int_{\mathbf{V}} \mathbf{M}_{\mathbf{V}\mathbf{r}} d\mathbf{V} - \langle \mathbf{U}_{\mathbf{V}\mathbf{r}} \rangle \int_{\mathbf{V}} (\mathbf{S}_{\mathbf{e}} - \mathbf{S}_{\mathbf{c}}) d\mathbf{V} = \langle \mathbf{M}'_{\mathbf{V}\mathbf{r}} \rangle \mathbf{V}$$

Where the terms M' include both the momentum exchange between phases due to friction and mass exchange. These terms will be analysed in detail in Chapter 3, when discussing the constitutive equations.

Equations 2.9 and 2.10 can now be rewriten as:

$$\langle \alpha \rangle \langle \rho_{v} \rangle \left[\frac{\partial}{\partial t} \langle U_{vz} \rangle + \frac{A_{z}}{v} \langle U_{vz} \rangle \left(\langle U_{vz} \rangle_{A_{z+}} - \langle U_{vz} \rangle_{A_{z-}} \right) + \left(\frac{A_{r+} + A_{r-}}{2v} \right) \langle U_{vr} \rangle \left(\langle U_{vz} \rangle_{A_{r+}} - \langle U_{vz} \rangle_{A_{r-}} \right) \right] - \left(\frac{A_{z}}{v} \langle \alpha \rangle \left(\langle P \rangle_{A_{z+}} - \langle P \rangle_{A_{z-}} \right) \right) \right)$$

$$= -\frac{A_{v}}{v} \langle f_{vz} \rangle - \langle \alpha \rangle \langle \rho_{v} \rangle g - \langle M_{vz}^{\dagger} \rangle$$

$$\langle \alpha \rangle \langle \rho_{v} \rangle \left[\frac{\partial}{\partial t} \langle U_{vr} \rangle + \frac{A_{z}}{v} \langle U_{vz} \rangle \left(\langle U_{vr} \rangle_{A_{z+}} - \langle U_{vr} \rangle_{A_{z-}} \right) + \left(\frac{A_{r+} + A_{r-}}{2v} \right) \langle U_{vr} \rangle \langle U_{vr} \rangle + \frac{A_{z}}{v} \langle U_{vz} \rangle \left(\langle U_{vr} \rangle_{A_{z+}} - \langle U_{vr} \rangle_{A_{z-}} \right) + \left(\frac{A_{r+} + A_{r-}}{2v} \right) \langle \alpha \rangle \left(\langle P \rangle_{A_{r+}} - \langle P \rangle_{A_{r-}} \right) = \frac{A_{v}}{v} \langle f_{vr} \rangle - \langle H_{vr}^{\dagger} \rangle$$

$$(2.39)$$

Similarly for the liquid phase:

$$(1 - \langle \alpha \rangle) \langle \rho_{\ell} \rangle = \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \langle U_{z} \rangle + \frac{A_{z}}{V} \langle U_{z} \rangle + \frac{A_{z}}{V} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} - \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{\partial}{\partial t} \langle U_{\ell z} \rangle + \frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{A_{z}}{V} \right] + \frac{A_{z}}{V} \left[\frac{A$$

.

$$+\left(\frac{\mathbf{A}_{\mathbf{r}+}+\mathbf{A}_{\mathbf{r}-}}{2\mathbf{v}}\right) < \mathbf{U}_{\boldsymbol{\ell} \mathbf{r}} > \left(< \mathbf{U}_{\boldsymbol{\ell} \mathbf{z}} >_{\mathbf{A}_{\mathbf{r}+}} - < \mathbf{U}_{\boldsymbol{\ell} \mathbf{z}} >_{\mathbf{A}_{\mathbf{r}-}} \right) \right] -$$

$$-\frac{A_{z}}{2} \left(1 - \langle \alpha \rangle\right) \left(\langle P \rangle_{A_{z^{+}}} - \langle P \rangle_{A_{z^{-}}}\right) =$$

$$= \frac{A_{\tilde{w}}}{2} \langle f_{\ell z} \rangle - (1 - \langle \alpha \rangle) \langle \rho_{\ell} \rangle g - \langle M_{\ell z}' \rangle$$
(2.40)

$$\left(1 - < \alpha >\right) < \rho_{\ell} > \left[\frac{\partial}{\partial t} < U_{\ell r} > + \frac{A_{z}}{V} < U_{\ell z} > \left(< U_{\ell r} >_{A_{r+}} - \right) \right]$$

$$- \langle \mathbf{U}_{lr} \rangle_{\mathbf{A}_{r-}} + \left(\frac{\mathbf{A}_{r+} + \mathbf{A}_{r-}}{2V} \right) \langle \mathbf{U}_{lr} \rangle \left(\langle \mathbf{U}_{lr} \rangle_{\mathbf{A}_{r+}} - \langle \mathbf{U}_{lr} \rangle_{\mathbf{A}_{r-}} \right) -$$

$$-\left(\frac{A_{r+}+A_{r-}}{2V}\right)\left(1-\langle\alpha\rangle\right)\left(\langle P\rangle_{A_{r+}}-\langle P\rangle_{A_{r-}}\right)=$$

1

i.

$$= \frac{A}{V} < f_{lr} > - < M_{lr}' >$$
(2.41)

2.1.3 The Energy Equations

Again we start by writing the energy conservation equation in control volume form:

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} \left(\mathbf{e}_{\mathbf{v}} + \frac{\mathbf{i}_{2}}{2} \mathbf{U}_{\mathbf{v}}^{2} \right) d\mathbf{V} + \int_{\mathbf{A}_{\mathbf{z}+}} - \int_{\mathbf{A}_{\mathbf{z}-}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{z}} \left(\mathbf{e}_{\mathbf{v}} + \frac{\mathbf{i}_{2}}{2} \mathbf{U}_{\mathbf{v}}^{2} \right) d\mathbf{A} + \\ + \int_{\mathbf{A}_{\mathbf{r}+}} - \int_{\mathbf{A}_{\mathbf{r}-}} \alpha \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}\mathbf{r}} \left(\mathbf{e}_{\mathbf{v}} + \frac{\mathbf{i}_{2}}{2} \mathbf{U}_{\mathbf{v}}^{2} \right) d\mathbf{A} = \\ = \int_{\mathbf{v}} \mathbf{Q}_{\mathbf{v}} d\mathbf{V} - \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} \mathbf{g} \mathbf{U}_{\mathbf{v}\mathbf{z}} d\mathbf{V} - \int_{\mathbf{A}_{\mathbf{w}}} \vec{\mathbf{U}}_{\mathbf{v}} \cdot \vec{\mathbf{f}}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{\mathbf{v}}} \mathbf{P} \cdot \hat{\mathbf{n}} \cdot \vec{\mathbf{U}}_{\mathbf{v}} d\mathbf{A} - \\ - \int_{\mathbf{v}} \mathbf{P} \frac{\partial \alpha}{\partial t} d\mathbf{V}$$
(2.42)

Before proceding with the averaging process, some algebraic manipulations will be made in order to eliminate the kinetic energy terms. Subtract from equation 2.42 equations 2.9 multiplied by $\langle U_{vz} \rangle$ and 2.10 multiplied by $\langle U_{vr} \rangle$, and rearranging the result it follows

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \alpha \rho_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} d\mathbf{V} + \int_{\mathbf{A}_{z+}} - \int_{\mathbf{A}_{z-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}z} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r-}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} - \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} \mathbf{e}_{\mathbf{v}} d\mathbf{A} + \int_{\mathbf{A}_{r+}} \alpha \rho_{\mathbf{v}} \mathbf{$$

$$\int_{\mathbf{v}} \left[\frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} \frac{1}{2} \quad U_{\mathbf{v}}^{2} - \langle U_{\mathbf{v}z} \rangle \frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}z} - \langle U_{\mathbf{v}r} \rangle \frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}r} \right] d\mathbf{v} +$$

$$+ \int_{\mathbf{A}_{z+}} -\int_{\mathbf{A}_{z-}} \alpha \rho_{\mathbf{v}} \left[U_{\mathbf{v}z} \frac{1}{2} \quad U_{\mathbf{v}}^{2} - \langle U_{\mathbf{v}z} \rangle U_{\mathbf{v}z}^{2} - \langle U_{\mathbf{v}r} \rangle \quad U_{\mathbf{v}z} \quad U_{\mathbf{v}r} \right] d\mathbf{A} +$$

$$+ \int_{\mathbf{A}_{r+}} -\int_{\mathbf{A}_{r-}} \alpha \rho_{\mathbf{v}} \left[U_{\mathbf{v}r} \frac{1}{2} \quad U_{\mathbf{v}}^{2} - \langle U_{\mathbf{v}z} \rangle \quad U_{\mathbf{v}z} \quad U_{\mathbf{v}r} - \langle U_{\mathbf{v}r} \rangle \quad U_{\mathbf{v}r} \right] d\mathbf{A} =$$

$$= \int_{\mathbf{v}} Q_{\mathbf{v}} d\mathbf{V} - \int_{\mathbf{v}} \mathbf{P} \frac{\partial}{\partial t} d\mathbf{V} + \int_{\mathbf{A}_{v}} \left[\mathbf{P} \ \hat{\mathbf{n}} \ \cdot \vec{\mathbf{u}}_{\mathbf{v}} - \mathbf{P} \ \hat{\mathbf{n}} \ \cdot \hat{\mathbf{k}} \langle U_{\mathbf{v}z} \rangle -$$

$$- \mathbf{P} \ \hat{\mathbf{n}} \ \cdot \hat{\mathbf{r}} \langle U_{\mathbf{v}r} \rangle \right] d\mathbf{A} - \int_{\mathbf{A}_{w}} \left[\vec{U}_{\mathbf{v}} \ \cdot \vec{f}_{\mathbf{v}} - \langle U_{\mathbf{v}z} \rangle f_{\mathbf{v}z} - \langle U_{\mathbf{v}r} \rangle f_{\mathbf{v}r} \right] d\mathbf{A} -$$

$$\int_{\mathbf{v}} \left[\alpha \rho_{\mathbf{v}} g \quad U_{\mathbf{v}z} - \langle U_{\mathbf{v}z} \rangle \alpha \rho_{\mathbf{v}} g \right] d\mathbf{V} - \int_{\mathbf{v}} \left[\langle U_{\mathbf{v}z} \rangle M_{\mathbf{v}z} + \langle U_{\mathbf{v}r} \rangle M_{\mathbf{v}r} \right] d\mathbf{V}$$

$$(2.43)$$

We will turn our attention to the terms involving the kinetic energy. To avoid the trouble of carrying over the whole expression, we will call:

$$\int_{\mathbf{v}} \left[\frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} \quad \frac{1}{2} \quad U_{\mathbf{v}}^2 - \langle U_{\mathbf{v}z} \rangle - \frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} \quad U_{\mathbf{v}z} - \langle U_{\mathbf{v}z} \rangle - \frac{\partial}{\partial t} \alpha \rho_{\mathbf{v}} \quad U_{\mathbf{v}r} \right] dV = 1E$$

$$1E = \int_{\mathbf{v}} \left\{ \alpha \ \rho_{\mathbf{v}} \left[\frac{\partial}{\partial t} \ ^{1}_{\mathbf{z}} \ U_{\mathbf{v}}^{2} - \langle U_{\mathbf{v}z} \rangle \frac{\partial}{\partial t} \ U_{\mathbf{v}z} - \langle U_{\mathbf{v}r} \rangle \frac{\partial}{\partial t} \ U_{\mathbf{v}r} \right] + \frac{\partial \alpha \ \rho_{\mathbf{v}}}{\partial t} \left[\ ^{1}_{\mathbf{z}} \ U_{\mathbf{v}}^{2} - \langle U_{\mathbf{v}z} \rangle U_{\mathbf{v}z} - \langle U_{\mathbf{v}r} \rangle U_{\mathbf{v}r} \right] \right\} dV \qquad (2.44)$$

It must be assumed that the spatial variation of U_{vz} and U_{vr} around their mean values are small or in other words, if U_{vz} is written as:

$$U_{VZ}$$
 (z , r) = < U_{VZ} > + $\varepsilon(z$, r)

then

$$\langle U_{vz}^{2} \rangle = \frac{1}{V} \int_{V} \left[\langle U_{vz} \rangle + \varepsilon(z, r) \right]^{2} dV = \langle U_{vz} \rangle^{2} + \frac{1}{V} \int_{V} \varepsilon^{2} (z, r) dV$$

The requirement that $\frac{1}{V} \int_{V} \varepsilon^2 dV$ be small compared to $\langle U_{VZ} \rangle^2$,

would lead to:

$$\langle U_{vz}^2 \rangle \simeq \langle U_{vz} \rangle^2$$
 (2.45)

if we recall that $U_v^2 = U_{vz}^2 + U_{vr}^2$, equation 2.44 becomes:

$$lE = V < \alpha > < \rho_{V} > \left[\frac{\partial}{\partial t} \frac{1}{2} \left(< U_{VZ}^{2} > + < U_{VT}^{2} \right) \right] -$$

$$- \langle \mathbf{U}_{\mathbf{vz}} \rangle \frac{\partial}{\partial t} \langle \mathbf{U}_{\mathbf{vz}} \rangle - \langle \mathbf{U}_{\mathbf{vr}} \rangle \frac{\partial}{\partial t} \langle \mathbf{U}_{\mathbf{vr}} \rangle +$$

+
$$\left[1/2\left(\langle U_{vz}^{2} \rangle + \langle U_{vr} \rangle^{2}\right) - \langle U_{vz} \rangle^{2} - \langle U_{vr} \rangle^{2}\right] \frac{\partial}{\partial t} \int_{V} \alpha \rho_{v} dV$$

and in view of equation 2.45 this becomes:

$$1E = -1/2 \left(\langle U_{vz}^2 \rangle + \langle U_{vr}^2 \rangle \right) \frac{\partial}{\partial t} \int_{V} \alpha \rho_{v} dV \qquad (2.46)$$

the convective terms of the kinetic energy equation, which will be called 2E and 3E are:

•

$$2E = \int_{A_{z+}} -\int_{A_{z-}} dA \alpha \rho_{v} \left[U_{vz} \quad \frac{1}{2} \quad U_{v}^{2} - \langle U_{vz} \rangle \quad U_{vz}^{2} - \langle U_{vr} \rangle \quad U_{vz} \quad U_{vr} \right]$$
(2.47)

$$3E = \int_{A_{r+}} -\int_{A_{r-}} dA \alpha \rho_{v} \left[U_{vr} \stackrel{1}{}_{2} U_{v}^{2} - \langle U_{vz} \rangle U_{vz} U_{vr} - \langle U_{vr} \rangle U_{vr}^{2} \right]$$
(2.48)

Define:

$$\langle U_{\mathbf{v}}^{2} \rangle_{\mathbf{A}_{\mathbf{z}}} = \langle U_{\mathbf{v}\mathbf{z}}^{2} \rangle_{\mathbf{A}_{\mathbf{z}}} + \langle U_{\mathbf{v}\mathbf{r}}^{2} \rangle_{\mathbf{A}_{\mathbf{z}}} = \int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} U_{\mathbf{v}}^{2} d\mathbf{A} / \int_{\mathbf{A}_{\mathbf{z}}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} d\mathbf{A}$$

and equations 2.47 and 2.48 become:

$$2E = \begin{bmatrix} \frac{1}{2} < U_{\mathbf{v}}^{2} >_{\mathbf{A}_{\mathbf{z}^{+}}} - < U_{\mathbf{v}\mathbf{z}} > < U_{\mathbf{v}\mathbf{z}} >_{\mathbf{A}_{\mathbf{z}^{+}}} - \\ - < U_{\mathbf{v}\mathbf{r}} > < U_{\mathbf{v}\mathbf{r}} >_{\mathbf{A}_{\mathbf{z}^{+}}} \end{bmatrix} \int_{\mathbf{A}_{\mathbf{z}^{+}}} \alpha \rho_{\mathbf{v}} U_{\mathbf{v}\mathbf{z}} d\mathbf{A} -$$

$$- \begin{bmatrix} \frac{1}{2} < U_{v}^{2} > - < U_{vz} > < U_{vz} > - \\ z_{z} - & vz > z_{z} - \end{bmatrix}$$

$$- \langle U_{vr} \rangle \langle U_{vr} \rangle_{A_{z-}} \int_{A_{z-}} \alpha \rho_{v} U_{vz} dA \qquad (2.49)$$

$$3E = \left[\frac{1}{2} < U^{2} >_{A_{r+}} - < U_{vr} > < U_{vr} >_{A_{r+}} - \right]$$

$$- \langle U_{vz} \rangle \langle U_{vz} \rangle_{A_{r+}} \int_{A_{r+}}^{\alpha} \rho_{v} U_{vr} dA -$$

$$- \left[\begin{array}{c} \frac{1}{2} < U_{v}^{2} >_{A_{r-}} - < U_{vr} > < U_{vr} >_{A_{r-}} - \\ & vr >_{r-} \end{array} \right]$$

$$- \langle U_{vz} \rangle \langle U_{vz} \rangle_{A_{r-}} \int_{A_{r-}} \alpha \rho_{v} U_{vr} dA \qquad (2.50)$$

and from equations 2.17, 2.18 and 2.23 23 get:

$$2E = -\frac{1}{2} \left[\left\{ U_{vz} \right\}_{A_{z+}}^{A_{z+}} \left\{ U_{vz} \right\}_{A_{z-}}^{A_{z+}} + \left\{ U_{vr} \right\}_{A_{z+}}^{A_{z+}} \left\{ U_{vr} \right\}_{A_{z+}}^{A_{z-}} \right] \int_{A_{z+}}^{A_{z+}} \int_{A_{z-}}^{A_{z+}} \int_{A_{z+}}^{A_{z+}} \int_{A_{z+}}^{A_{z+}$$

In view of the previous assumption that deviation of the velocities from their averages are small we get

$$\langle U_{vz} \rangle_{A_{z^+}}^{\langle U_{vz} \rangle} \langle U_{z^-}^{\langle Z_{z^+}} \rangle \rangle \approx \langle U_{vz}^2 \rangle$$
 etc, and it follows

$$2E = -\frac{1}{2} < U_{v}^{2} > \int_{A_{z+}} -\int_{A_{z-}} \alpha \rho_{v} U_{vz} dA \qquad (2.51)$$

$$3E = -\frac{1}{2} < U_{v}^{2} > \int_{A_{r+}} -\int_{A_{r-}} \alpha \rho_{v} U_{vr} dA \qquad (2.52)$$

Combining the terms 1E, 2E and 3E, and recalling equation 2.1, we have:

$$1E + 2E + 3E = -\frac{1}{2} (\langle S_e \rangle - \langle S_c \rangle) \langle U_v^2 \rangle$$
 (2.53)

We proceed by noting that some terms in equation 2.43 will vanish uppon the performance of the integrals. These terms are:

$$\int_{\mathbf{V}} \left[\alpha \ \rho_{\mathbf{V}} \ g \ U_{\mathbf{V}z} - \langle U_{\mathbf{V}z} \rangle \alpha \ \rho_{\mathbf{V}} \ g \right] d\mathbf{V} = 0$$
(2.54)

$$\oint_{A_{v}} \left[\hat{P} \cdot \hat{U}_{v} - \hat{P} \cdot \hat{L}_{v} + \hat{V}_{vz} - \hat{P} \cdot \hat{L}_{vz} - \hat{P} \cdot \hat{L}_{vz} - \hat{P} \cdot \hat{L}_{vz} + \hat{V}_{vz} \right] dA = 0 \quad (2.55)$$

$$\int_{A_{w}} \left[\vec{U}_{v} \cdot \vec{f}_{v} - \langle U_{vz} \rangle f_{vz} - \langle U_{vr} \rangle f_{vr} \right] dA = 0$$
(2.56)

The next step would be to define average properties and obtain the final form of the energy equation. Since this procedure is completely similar to that used for the mass equation, only the resultant energy equations are presented here:

$$\frac{\partial}{\partial t} \left[< \alpha > < \rho_{v} > < e_{v} > \right] + \frac{A_{z}}{v} \left[< \alpha \rho_{v} e_{v} U_{vz} >_{A_{z^{+}}} - < \alpha \rho_{v} e_{v} U_{vz} >_{A_{z^{-}}} \right]$$

$$+ \frac{A_{r+}}{V} < \alpha \rho_v e_v U_{vr} >_{A_{r+}} - \frac{A_{r-}}{V} < \alpha \rho_v e_v U_{vr} >_{A_{r-}} =$$

$$= \langle Q_{\mathbf{v}} \rangle - \langle P \rangle \frac{D\alpha}{Dt} - \langle Q_{\ell \mathbf{v}} \rangle$$
 (2.57)

where the energy exchange between phases has been grouped under the term $\boldsymbol{Q}_{\underline{\textbf{f}}, \textbf{v}}.$

For the liquid phase the nergy equation is:

$$\frac{\partial}{\partial t} \left[(1 - \langle \alpha \rangle) \langle \rho_{\ell} \rangle \langle e_{\ell} \rangle \right] + \frac{A_{z}}{V} \left[\langle (1 - \alpha) \rho_{\ell} e_{\ell} U_{\ell z} \rangle_{A_{z^{+}}} - \langle (1 - \alpha) \rho_{\ell} e_{\ell} U_{\ell z} \rangle_{A_{z^{-}}} \right]$$

$$+\frac{A_{r+}}{V} < (1 - \alpha) \rho_{\ell} e_{\ell} U_{\ell r} >_{A_{r+}} - \frac{A_{r-}}{V} < (1 - \alpha) \rho_{\ell} e_{\ell} U_{\ell r} >_{A_{r-}} =$$

$$= \langle Q_{\ell} \rangle + \langle P \rangle \frac{D\alpha}{Dt} + \langle Q_{\ell V} \rangle$$
(2.58)

,

2.2 The Finite Difference Equations

Having established the properly averaged differential equations, the next step is to approximate the conservation equations by a set of algebraic equations suitable for the numerical solution. Before choosing any particular scheme, it is appropriate to discuss in general terms the various applicable finite difference approaches and identify the kind of problems we expect to solve with our model.

For the spacial discretization very little can be said in general: the idea to be followed is that one can find the best spacial differen iation to suit a particular time discretization.

There are three broad categories concerning the time level at which the variables are to be evaluated: fully implicit, fully explicit and semi-implicit (or semi-explicit). Associated with each of these categories there is a stability criterion which will relate the time step size with the characteristic roots of the set of equations.

A fully implicit method is the one in which all spacial derivatives, as well as all the exchange terms are evaluated at the new time level. With this time discretization it is possible in general to find a spacial arrangement which makes the whole method unconditionally stable, thus enabling the problem to be solved with a time step as large (or as small) as desired. As an exemple, a one dimensional mass equation in this scheme is:

$$\frac{\alpha_{i}^{n+1} \rho_{vi}^{n+1} - \alpha_{i}^{n} \rho_{vi}^{n}}{\Delta t} + \frac{(\alpha \rho_{v} U_{v})_{i+l_{2}}^{n+1} - (\alpha \rho_{v} U_{v})_{i-l_{2}}^{n+1}}{\Delta z} = s_{i}^{n+1}$$

Note that the convective terms are evaluated at different locations than the other terms.

Since they are evaluated at the new time level, they are unknown, which means the solution at one particular cell is coupled to the solution at its neighbors, thus requiring the numerical solution to be made simultaneously in all locations and all variables. This poses a very complex matrix inversion problem, using relatively large computational times.

On the other side is the fully explicit method, in which the spacial derivatives and the exchange terms are evaluated at the old time level. The mass equation would look like:

$$\frac{(\alpha \rho_{v})_{i}^{n+1} - (\alpha \rho_{v})_{i}^{n}}{\Delta t} + \frac{(\alpha \rho_{v} U_{v})_{i+\frac{1}{2}}^{n} - (\alpha \rho_{v} U_{v})_{i-\frac{1}{2}}^{n}}{\Delta z} = s_{i}^{n}$$

We can see in this case the terms which are evaluated at locations other than the cell <u>i</u> are in the old time level, and so they are known. The solution at each cell is independent of its neighbors and the numerical solution of the set of equations will be relatively simple. The penalty for that simple solution is that the stability criterion for this category is severe, requiring in general very small time step sizes. Typically it would require that a pressure or temperature perturbation travel no farther than one mesh space in one time step, or in mathematical words it would require:

$$\Delta t < \frac{\Delta z}{c}$$

where c is a sonic speed. Typical values are on the order of 10^{-2} to 10^{-1} m for the mesh spacing and 10^3 m/sec for the sonic speed. Thus, we can expect to be limited to time step sizes of the order of 10^{-4} or 10^{-5} seconds with this method.

In between these two extremes, the semi implicit methods are those in which some terms are treated implicitly while others explicitly. If liquid convection is treated explicitly, the time step restriction for this class of schemes is the convective limit

$$\Delta t < \frac{\Delta z}{v}$$

where v is the phase velocity.

The general idea behind this category is to devise a particular balance between implicit and explicit terms which would make the solution of the particular set of equations simple compared to that of the fully implicit method, combined with a less restrictive stability criterion compared to the fully explicit method.

Here a very large number of possibilities exist, and a general analysis would prove to be of little value since what might be the best solution for a particular problem may not be a good one for another.

Thus, instead of a general study of semi-implicit methods we will just analyse the particular scheme used in our model and show the motivation for its choice. One important consideration for this choice is the time scale of the phenomena to be analysed with the model.

A typical loss of flow two-phase transient lasts from onset of boiling to flow reversal for about one second. Therefore a sufficient detailed description of this transient requires that the solution scheme produces information with a time interval of about 10^{-1} to 10^{-2} second. In this kind of transient we can expect to have axial velocities on the order of 10 meter per second. Thus using a axial mesh spacing on the order of 10^{-1} meter, the convective limit $\Delta z/v$ characteristic of the semi-implicit method will be of the same order of magnitude of the time interval in which we want information, and a method with such time step limitation would fit perfectly our purpose.

Much longer simulations can be expected in the case of natural convection decay heat removal. But in this class of phenomena the phase velocities would be much smaller, and again in this case, a time step restriction connected to the phase velocity is of the same order of magnitude of the required information interval.

Therefore, with the semi-implicit method we take advantage of a simpler solution of the fluid flow equations, with smaller number of operations performed per time step without increasing the number of time steps required to cover the whole transient.

After this brief outline of the general features of numerical methods, we proceed with a detailed description of the particular scheme adopted for the model, explaining how this particularly fits our set of equations and insures the stability of the method.

We start by dividing the fuel assembly to be simulated into a two dimensional r - z grid. To allow flexibility of application and a more efficient allocation of time and memory space, this division is made to accept variable mesh spacing in both directions, with the sole restriction that at each radial or axial level the mesh spacing corre-

sponding to that direction remains the same for all cells in that level. With this restriction, each cell, except the boundaries cells, will have only one neighbor at each of its four sides. Figure 2.1 shows a typical arrangement of cells.

All unknowns of the problem, with the exception of the velocities, are evaluated at the center of the mesh cells, while the velocities are evaluated at the faces of these cells. Figure 2.2 shows a typical mesh cell where this is illustrated. This figure also shows the subscript convention used in the difference equations. In this convention subscripts i and j indicate position in the center of a cell along the axial and radial axis respectively, while subscripts $i + \frac{1}{2}$ and $j + \frac{1}{2}$ indicates position at the faces of the cells corresponding to the z and r directions respectively.

Superscripts are used to indicate the time level in which the variables are evaluated. Superscript n indicates evaluation at the old time level, thus corresponding to a known quantity, and n + 1 indicates a variable in the new time level, to be determined in this step. The exchange terms, which are in general function of both new and old time variables do not carry any superscript. They will be discussed at length in Chapter 3.

With these conventions established, the difference form of the mass and energy equations, which are differentiated about the center of the mesh cells are:

Figure 2.1 A Typical Cell Arrangement

ŧ

,

Figure 2.2 Position Evaluation of Variables

Vapor Mass:

$$\frac{\left(\alpha^{n+1} \rho_{\mathbf{v}}^{n+1} - \alpha^{n} \rho_{\mathbf{v}}^{n}\right)_{\mathbf{i},\mathbf{j}}}{\Delta t} + \frac{\left(\alpha^{n} \rho_{\mathbf{v}}^{n} U_{\mathbf{v}\mathbf{z}}^{n+1}\right)_{\mathbf{i}+\frac{1}{2},\mathbf{j}} - \left(\alpha^{n} \rho_{\mathbf{v}}^{n} U_{\mathbf{v}\mathbf{z}}^{n+1}\right)_{\mathbf{i}-\frac{1}{2},\mathbf{j}}}{\Delta z_{\mathbf{i}}} +$$

+
$$(A_r/V \alpha^n \rho_v^n v_{vr}^{n+1})_{i,j+\frac{1}{2}}$$
 - $(A_r/V \alpha^n \rho_v^n v_{vr}^{n+1})_{i,j-\frac{1}{2}}$ = $S_e - S_e$ (2.2.1)

Vapor Energy:

.

$$\frac{\left(\alpha^{n+1}\rho_{\mathbf{v}}^{n+1}e_{\mathbf{v}}^{n+1}-\alpha^{n}\rho_{\mathbf{v}}^{n}e_{\mathbf{v}}^{n}\right)_{\mathbf{i},\mathbf{j}}}{\Delta t}+\frac{\left(\alpha^{n}\rho_{\mathbf{v}}^{n}e_{\mathbf{v}}^{n}U_{\mathbf{v}\mathbf{z}}^{n+1}\right)_{\mathbf{i}+\frac{1}{2},\mathbf{j}}}{\Delta z_{\mathbf{i}}}$$

$$-\frac{\left(\alpha^{n}\rho_{\mathbf{v}}^{n}e_{\mathbf{v}}^{n}U_{\mathbf{v}z}^{n+1}\right)_{\mathbf{i}-\frac{1}{2},\mathbf{j}}}{\Delta z_{\mathbf{i}}} + \left(A_{\mathbf{r}}^{\prime}/\mathbf{v}\alpha^{n}\rho_{\mathbf{v}}^{n}e_{\mathbf{v}}^{n}U_{\mathbf{v}r}^{n+1}\right)_{\mathbf{i},\mathbf{j}+\frac{1}{2}} - \frac{\Delta z_{\mathbf{i}}}{\Delta z_{\mathbf{i}}}$$

$$-\left(A_{r}^{\prime}/V\alpha^{n}\rho_{v}^{n}e_{v}^{n}U_{vr}^{n+1}\right)_{i,j-\frac{1}{2}} + P_{ij}^{n}\left[\frac{\left(\alpha^{n+1}-\rho^{n}\right)_{i,j}}{\Delta t} + \right]$$

+
$$\frac{\left(\alpha^{n} u_{vz}^{n+1}\right)_{i+\frac{1}{2},j} - \left(\alpha^{n} \rho u_{vz}^{n+1}\right)_{i-\frac{1}{2},j}}{\Delta z_{i}} + \left(A_{r} / V \alpha^{n} u_{vr}^{n+1}\right)_{i,j+\frac{1}{2}} - \frac{\Delta z_{i}}{\Delta z_{i}}$$

$$-\left(A_{r}/V\alpha^{n}U_{vr}^{n+1}\right)_{i,j-\frac{1}{2}} = Q_{wv} + Q_{lv} \qquad (2.2.2)$$

Liquid Mass:

,

$$\frac{\left[\left(1-\alpha^{n+1}\right)\rho_{\ell}^{n+1}-\left(1-\alpha^{n}\right)\rho_{\ell}^{n}\right]_{\mathbf{i},\mathbf{j}}}{\Delta t} + \frac{\left[\left(1-\alpha^{n}\right)\rho_{\ell}^{n} U_{\ell z}^{n+1}\right]_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}}-\left[\left(1-\alpha^{n}\right)\rho_{\ell}^{n} U_{\ell z}^{n+1}\right]_{\mathbf{i}-\mathbf{i}_{2},\mathbf{j}}+\right.}{\Delta z_{\mathbf{i}}} + \left[A_{\mathbf{r}}/V\left(1-\alpha^{n}\right)\rho_{\ell}^{n} U_{\ell r}^{n+1}\right]_{\mathbf{i},\mathbf{j}+\mathbf{i}_{2}} - \left[A_{\mathbf{r}}/V\left(1-\alpha^{n}\right)\rho_{\ell}^{n} U_{\ell r}^{n+1}\right]_{\mathbf{i},\mathbf{j}-\mathbf{i}_{2}} = -S_{e} + S_{c}$$

$$(2.2.3)$$

Liquid Energy:

$$\frac{\left[\left(1-\alpha^{n+1}\right)\rho_{\ell}^{n+1}e_{\ell}^{n+1}-\left(1-\alpha^{n}\right)\rho_{\ell}^{n}e_{\ell}^{n}\right]}{\Delta^{t}}+\frac{\left[\left(1-\alpha^{n}\right)\rho_{\ell}^{n}e_{\ell}^{n}U_{\ell z}^{n+1}\right]_{i+\frac{1}{2},j}}{\Delta^{z}}$$

$$-\left[\left(1-\alpha^{n}\right)\rho_{\ell}^{n}e_{\ell}^{n}U_{\ell z}^{n+1}\right]_{i-\frac{1}{2},j}+\left[A_{r}^{N}/V\left(1-\alpha^{n}\right)\rho_{\ell}^{n}e_{\ell}^{n}U_{\ell r}^{n+1}\right]_{i,j+\frac{1}{2}}$$

$$-\left[A_{r}/V\left(1-\alpha^{n}\right)\rho_{\ell}^{n}e_{\ell}^{n}U_{\ell r}^{n+1}\right]_{i,j-l_{2}}+P_{ij}^{n}\left\{-\frac{\left(\alpha^{n+1}-\alpha^{n}\right)_{ij}}{\Delta t}+\left[\left(\alpha^{n}\right)-\alpha^{n+1}\right]\right\}$$

$$+ \frac{\left[\left(1-\alpha^{n}\right) U_{\ell z}^{n+1} \right]_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}} - \left[\left(1-\alpha^{n}\right) U_{\ell z}^{n+1} \right]_{\mathbf{i}-\mathbf{l}_{2},\mathbf{j}}}{\Delta z_{\mathbf{i}}} + \left[A_{\mathbf{r}}/V \left(1-\alpha^{n}\right) U_{\ell \mathbf{r}}^{n+1} \right]_{\mathbf{i},\mathbf{j}+\mathbf{l}_{2}}$$

$$-\left[\operatorname{Ar}/\operatorname{V}\left(1-\alpha^{n}\right)\operatorname{U}_{\mathrm{kr}}^{n+1}\right]_{\mathbf{i},\mathbf{j}-\mathbf{i}_{2}}\right\} = \operatorname{Q}_{\mathrm{wl}} - \operatorname{Q}_{\mathrm{kv}}$$
(2.2.4)

Some variables in the above equations are used in a location other than the place where they are primarely defined (see figure 2.2.2). For instance, the void fraction α , which is a cell-centered quantity, appears in the convective terms of all four equations located in the cell's faces. So in order to make these equations completely determined we must establish a rule to transport the value of these variables from the center to the faces of the cells. In our model we have used a relationship known as donor-cell differencing. Later on, in section 2.4 we will see that this scheme has an important effect on the stability of the method. To illustrate how this technique works, let a general variable X stand for any cell centered quantity such as α , ρ_{v} , ρ_{g} , e_{v} , e_{g} . The face centered value $X_{i+k_{s}}$ will be given by:

$$X_{i+\frac{1}{2}} = \begin{cases} X_{i} & \text{if } U_{zi+\frac{1}{2}} \ge 0 \\ X_{i+1} & \text{if } U_{zi+\frac{1}{2}} < 0 \end{cases}$$
(2.2.5)

In the above rule we have used the axial direction as an example. A similar rule is used to dislocate the variables in the radial direction. The final ambiguity to be removed is in the evaluation of the void fraction. Though it is obvious which of the phase velocities we should use to evaluate the densities and internal energies, this choice is not clear when we refer to the void fraction, which appears in both the liquid and vapor equations. To remove this ambiguity we state that the velocity to be used in the decision of equation 2.2.5 is the one corresponding to the equation in which the variable will appear. Thus for the vapor equations the void fraction
will be calculated using the vapor velocity in equation 2.2.5, while for the liquid equation, the liquid velocity will serve in the decision.

As a final remark, we note that the donor cell rule is used only to locate quantities at time level n, never at time level n+1, thus the velocity used in the decision is always a known quantity. Further more, the rule of equation 2.2.5 places a cell centered variable x in the cell's face where the velocity used in the decision is defined, so that we will never have ambiguity in this decision.

We now turn our attention to the momentum equations. Here a difference with respect to the mass and energy equations should be noted since the velocities are primarely defined at the faces of the mesh cells. Let those faces be the reference points for the differencing of the momentum equations.

Then the vapor momentum equations are:

$$(\alpha \rho_{\mathbf{v}})_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}}^{\mathbf{n}} \begin{bmatrix} \begin{pmatrix} U_{\mathbf{v}z}^{\mathbf{n}+\mathbf{l}} - U_{\mathbf{v}z}^{\mathbf{n}} \\ \vdots \\ \vdots \\ \Delta t \end{pmatrix}_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}}^{\mathbf{n}} & \begin{pmatrix} \Delta_{z} & U_{\mathbf{v}z}^{\mathbf{n}} \\ \vdots \\ \vdots \\ \vdots \\ \Delta z \end{pmatrix}_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}}^{\mathbf{n}} & \Delta z \end{bmatrix}$$

$$+ \mathbf{U}_{\mathbf{vr} \mathbf{i}+\mathbf{l}_{2},\mathbf{j}}^{\mathbf{n}} \frac{\left(\Delta_{\mathbf{r}} \mathbf{U}_{\mathbf{vz}}^{\mathbf{n}}\right)_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}}}{\Delta \mathbf{r}} + \alpha_{\mathbf{i}+\mathbf{l}_{2},\mathbf{j}}^{\mathbf{n}} \frac{\left(\mathbf{P}_{\mathbf{i}+\mathbf{l},\mathbf{j}}^{\mathbf{n}+\mathbf{l}} - \mathbf{P}_{\mathbf{ij}}^{\mathbf{n}+\mathbf{l}}\right)}{\Delta \mathbf{z}_{\mathbf{i}+\mathbf{l}_{2}}} +$$

+
$$(\alpha \rho_v)_{i+l_2,j}^n g = -(M_{wzv} + M_{lvz})_{i+l_2,j}$$
 (2.2.6)

$$(\alpha \rho_{v})_{i+l_{2},j}^{n} \left[\frac{(U_{vr}^{n+1} - U_{vr}^{n})_{i,j+l_{2}}}{\Delta t} + U_{vz}^{n} + U_{vz}^{n} \frac{(\Delta_{z} U_{vr}^{n})_{i,j+l_{2}}}{\Delta z} + U_{vz}^{n} + U_{vz}^{n} \frac{(\Delta_{r} U_{vr}^{n})_{i,j+l_{2}}}{\Delta z} + U_{vr}^{n} + U_{vr}^{n} \frac{(\Delta_{r} U_{vr}^{n})_{i,j+l_{2}}}{\Delta r} + u_{vr}^{n} + u_{vr}^{n} \frac{(\Delta_{r} U_{vr}^{n})_{i,j+l_{2}}}{\Delta r} + u_{i,j+l_{2}}^{n} \frac{(P_{i,j+1}^{n+1} - P_{ij}^{n+1})}{\Delta r} = (2.2.7)$$

$$= - (M_{wrv} + M_{lvr})_{i,j+\frac{1}{2}}$$
(2.2.7)

$$\left[(1-\alpha)\rho_{\ell} \right]_{i+\frac{1}{2},j}^{n} \left[\frac{(U_{\ell_{z}}^{n+1} - U_{\ell_{z}}^{n})_{i+\frac{1}{2},j}}{\Delta t} + U_{\ell_{z}}^{n} + U_{\ell_{z}}^{n} \frac{(\Delta_{z} U_{\ell_{z}}^{n})_{i+\frac{1}{2},j}}{\Delta z} + \right]$$

+
$$U_{\ell r \ i+l_{2},j}^{n}$$
 $\frac{(\Delta_{r} \ U_{2}^{n})_{i+l_{2},j}}{\Delta r}$] + $(1-\alpha_{i+l_{2},j}^{n})$ $\frac{(P_{i+1,j}^{n+1} - P_{i,j}^{n+1})}{\Delta z_{i+l_{2}}}$ +

$$+ \left[(1-\alpha) \rho_{l} \right]_{i+l_{2},j}^{n} g = - (M_{wzl} - M_{lvz})_{i+l_{2},j}$$
(2.2.8)

$$\left[(1-\alpha)\rho_{\ell}\right]_{i,j+\frac{1}{2}}^{n}\left[\frac{(U_{\ell r}^{n+1}-U_{\ell r}^{n})_{i,j+\frac{1}{2}}}{\Delta t}+U_{\ell z \ i,j+\frac{1}{2}}^{n}+\frac{(\Delta_{z} U_{\ell r}^{n})_{i,j+\frac{1}{2}}}{\Delta z}+\right]$$

+
$$U_{lr i, j+\frac{1}{2}}^{n} \frac{(\Delta_{r} U_{r, j+\frac{1}{2}}^{n})_{i, j+\frac{1}{2}}}{\Delta r} + (1-\alpha_{ij+\frac{1}{2}}^{n}) \frac{(P_{i, j+1}^{n+1} - P_{i, j}^{n+1})}{\Delta r_{j+\frac{1}{2}}} =$$

$$= - (M_{wrl} - M_{lvr})_{i, j+\frac{1}{2}}$$
(2.2.9)

Again in the momentum equations some variables are used at a location different from where they were primarily defined. The question is how are these quantities evaluated? First, consider the void fraction α and the densities ρ_v and ρ_l . Contrary to the mass and energy equations, these quantities do not appear in the momentum equation as difference terms. Thus, they do not influence the stability of the method the way they did in equations 2.2.1 through 2.2.4, and we can use a simple averaging rule such as:

$$X_{i+\frac{1}{2}} = \frac{X_{i+1} \Delta Z_{i+1} + X_i \Delta Z_i}{\Delta Z_{i+1} + \Delta Z_i}$$
(2.2.10)

where X stands for the void fraction α and the two densities $\rho_{\mathbf{v}}$ and $\rho_{\boldsymbol{\ell}}$. A similar rule is used to transfer the variables to the faces $\mathbf{j}+\mathbf{j}_{\mathbf{z}}$ in the radial direction, with $\Delta \mathbf{r}$ replacing $\Delta \mathbf{Z}$.

We next consider the velocities appearing in our momentum equations. First we look at the velocities $U_{vr i+\frac{1}{2},j}$, $U_{lr i+\frac{1}{2},j}$, $U_{vz i,j+\frac{1}{2}}$, $U_{lz i,j+\frac{1}{2}}$. Figure 2.3 shows as an example the position of

Figure 2.3 Different Positions for the Radial Velocity

 $U_{vr} i + \frac{1}{2}, j$ compared with the location where U_{vr} is primarily defined. Again these velocities do not appear as difference terms and asimple averaging procedure can be used without compromising the stability of the method. Thus we define:

$$U_{vz \ i, j+\frac{1}{2}} = \frac{1}{4} \left[U_{vz \ i+\frac{1}{2}, j} + U_{vz \ i-\frac{1}{2}, j} + U_{vz \ i+\frac{1}{2}, j+1} + U_{vz \ i-\frac{1}{2}, j+1} \right]$$
(2.2.11)

$$U_{vr i+\frac{1}{2},j} = \frac{1}{4} \left[U_{vr i,j+\frac{1}{2}} + U_{vr i,j-\frac{1}{2}} + U_{vr i+1,j+\frac{1}{2}} + U_{vr i+\frac{1}{2},j+\frac{1}{2}} \right]$$

$$+ U_{vr i+\frac{1}{2},j+\frac{1}{2}} \right]$$
(2.2.12)

and a similar pair of relationships for the liquid phase.

Finally those velocities appearing in the difference terms must be evaluated. Here a simple averaging procedure would lead to a differencing scheme unstable. Therefore these velocities are evaluated with the donor cell technique. In this way, the expressions for the difference terms are:

$$\left(\frac{\Delta_{z} \ U_{vz}}{\Delta z}\right)_{i+\frac{1}{2},j} = \begin{cases} \frac{U_{vz} \ i+3/2, j \ -U_{vz} \ i+\frac{1}{2}, j \ -U$$

$$\left(\frac{\Delta_{r} U_{vz}}{\Delta r}\right)_{i+l_{2},j} = \begin{cases} \frac{U_{vz} i+l_{2},j+1} - U_{vz} i+l_{2},j}{\Delta r} & \text{if } U_{vr} i+l_{2},j < 0 \\ & & & & & \\ & & & & \\ &$$

$$\left(\frac{\Delta_{z} \quad U_{vr}}{\Delta Z}\right)_{i,j+l_{z}} = \begin{cases} \frac{U_{vr \ i+1,j+l_{z}} - U_{vr \ i,j+l_{z}}}{\Delta Z_{i+l_{z}}} & \text{if } U_{vz \ i,j+l_{z}} < 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\$$

$$\left(\frac{\Delta_{r} \ U_{vr}}{\Delta r}\right)_{i,j+l_{2}} = \begin{cases} \frac{U_{vr \ i,j+3/2} - U_{vr \ i,j+l_{2}}}{\Delta r_{j+1}} & \text{if } U_{vr \ i,j+l_{2}} < 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & &$$

where the mesh spacings $z_{i+\frac{1}{2}}$ and $r_{j+\frac{1}{2}}$ appearing in the above expressions are defined as:

$$\Delta z_{i+\frac{1}{2}} = \frac{\Delta z_{i+1} + \Delta z_{i}}{2}$$
(2.2.17)
$$\Delta r_{j+\frac{1}{2}} = \frac{\Delta r_{j+1} + \Delta r_{j}}{2}$$
(2.2.18)

and similar expressions apply to the liquid phase.

With those rules the differencing scheme for the fluid flow conservation equations is completed. To complete the set of algebraic equations we need only to specify the relationships for the exchange terms and the equations of state. These will be discussed in Chapter 3. We now turn our attention to the numerical solution of the set of algebraic equations, equations 2.2.1 through 2.2.4 and 2.2.6 through 2.2.9.

Ļ

2.3 The Numerical Scheme

In the above difference equations all variables evaluated at the time level n were determine in the previous time level, thus in the present level n+1 they are known quantities. The problem is to extract from that set of equations the variables at time level n+1. A quick look at those equations reveal they are non linear, complicate equations, and a numerical iterative technique is practically the only option for their solution.

The equations of state represent unique relationships of the densities and internal energies for a given pair of pressure and temperature. We will replace these densities and internal energies by the liquid and vapor temperatures as primary variables, thus reducing the number of unknown to eight, namely the void fraction, the pressure, the vapor and liquid temperatures and the four velocity components.

The technique used in the solution of algebraic equation is a multidimensional extension of the Newton iterative solution of algebraic equations. Let us first define a vector whose components are the unknowns of the problem. Then:

$$X = \left[\alpha, P, T_{v}, T_{\ell}, U_{vz}, U_{vr}, U_{\ell z}, U_{\ell r}\right]^{n+1}$$
(2.3.1)

and the equations 2.2.1 through 2.2.4 and 2.2.6 through 2.2.9 can be written in abreviated form as:

$$F_p(X) = 0$$
, $p = 1, ... 8$ (2.3.2)

Now suppose that at a certain iteration k we have come up with an approximate solution of 2.3.2 X^k . Since this is not the exact solution, the left hand side of 2.3.2 $F_p(X^k)$ is not necessarely equal to zero. Then, let us make a Taylor expansion of F(X) around the point X^k :

$$F_{p}(x^{k+1}) = F_{p}(x^{k}) + \sum_{q=1}^{8} \left(\frac{\partial F_{p}}{\partial x_{q}}\right)_{x^{k}} \left(x_{q}^{k+1} - x_{q}^{k}\right)$$
(2.3.3)

P = 1, 8

If X^{k+1} is required to be the solution of equation 2.3.2 it follows:

$$\sum_{q=1}^{8} \left(\frac{\partial F_{p}}{\partial x_{q}}\right)_{X^{k}} \left(x_{q}^{k+1} - x_{q}^{k}\right) = -F_{p}(X^{k}), P = 1, \dots 8 \quad (2.3.4)$$

With equation 2.3.4 the iterative procedure is defined. Note that this set of equations is now linear in the unknowns $\delta x = x \frac{k+1}{q} - x \frac{k}{q}$ If equation 2.3.4 are written explicitly, it follows:

$$\begin{bmatrix} \frac{\rho_{\mathbf{v}}^{\mathbf{k}}}{\Delta t} - \frac{\partial S}{\partial \alpha} \end{bmatrix} \delta \alpha + \begin{bmatrix} \frac{\alpha}{\Delta t} & \frac{\partial \rho_{\mathbf{v}}}{\partial P} & - & \frac{\partial S}{\partial P} \end{bmatrix} \delta P_{\mathbf{ij}} + \begin{bmatrix} \frac{\alpha}{\Delta t} & \frac{\partial \rho_{\mathbf{v}}}{\partial T_{\mathbf{v}}} & - & \frac{\partial S}{\partial T_{\mathbf{v}}} \end{bmatrix} \delta T_{\mathbf{v}} -$$

$$-\frac{\partial S}{\partial T} \delta T_{g} + \frac{\left(\alpha \rho_{v}\right)_{1+k_{2},j}}{\Delta z I} \delta U_{vz \ 1+k_{2},j} - \frac{\left(\alpha \rho_{v}\right)_{1-k_{2},j}}{\Delta z I} \delta U_{vz \ 1-k_{2},j} \delta U_{vz \ 1-k_{2},j} + \\ + \left(Ar/V\alpha \rho_{v}\right)_{i \ j+k_{2}} \delta U_{vr \ i \ j+k_{3}} - \left(Ar/V \ \alpha \rho_{v}\right)_{i,j-k_{2}} \delta U_{vr \ i,j-k_{2}} = -r_{1}^{k}$$

$$(2.3.5)$$

$$\frac{-\rho_{v}^{k} e_{v}^{k} + p^{k}}{\Delta t} - \frac{\partial Q_{v}}{\partial \alpha} \int \delta \alpha + \left[\left(\alpha^{k} \rho_{v}^{k} \frac{\partial e_{v}}{\partial P} + \alpha^{k} e_{v}^{k} \frac{\partial \rho_{v}}{\partial P}\right) \frac{1}{\Delta t} - \frac{\partial Q_{v}}{\partial P} \right] \delta P_{ij} + \\ + \left[\frac{\alpha^{k}}{\Delta t} \left(\rho_{v}^{k} \frac{\partial e_{v}}{\partial T_{v}} + e_{v}^{k} \frac{\partial \rho_{v}}{\partial T_{v}}\right) - \frac{\partial Q_{v}}{\partial T_{v}} \int \delta T_{v} - \frac{\partial Q_{v}}{\partial T} \delta T_{\ell} + \\ + \left[\frac{\alpha^{k}_{i} \left(\rho_{v}^{k} \frac{\partial e_{v}}{\partial T_{v}} + e_{v}^{k} \frac{\partial \rho_{v}}{\partial T_{v}}\right) - \frac{\partial Q_{v}}{\partial T_{v}} \int \delta U_{vz \ i+k_{2},j} - \left[\frac{\alpha_{i-k_{2},j}}{\Delta z i} \left(P_{ij} + \right) + \\ + \left(\frac{\alpha_{i+k_{2},j}}{\Delta z i} \left(P_{ij} + \left(\rho_{v} e_{v}\right)_{i+k_{2},j}\right)\right) \delta U_{vz \ i+k_{2},j} - \left[\frac{\alpha_{i-k_{2},j}}{\Delta z i} \left(P_{ij} + \right) + \\ + \left(\frac{\alpha_{i-k_{2},j}}{\rho_{i}} \left(P_{ij} + \left(\rho_{v} e_{v}\right)_{i+k_{2},j}\right)\right) \delta U_{vz \ i+k_{2},j} - \left[\left(Ar/V \alpha\right)_{i,j+k_{2}} \right] \delta U_{vr \ i,j+k_{2}} - \left[\left(Ar/V \alpha\right)_{i,j-k_{2}} \left(P_{ij} + \left(\rho_{v} e_{v}\right)_{i,j-k_{2}}\right) \right] \delta U_{vr \ i,j-k_{2}} - r_{2}^{k}$$

T.

(2.3.6)

$$-\left[\frac{\rho_{\chi}^{k}}{\Delta t}-\frac{\partial S}{\partial \alpha}\right]\delta\alpha+\left[\frac{(1-\alpha^{k})}{\Delta t}-\frac{\partial \rho_{g}}{\partial P}+\frac{\partial S}{\partial P}\right]\deltaP_{ij}+\frac{\partial S}{\partial T_{y}}-\deltaT_{y}+\right.$$

$$+\left[\frac{(1-\alpha^{k})}{\Delta t}-\frac{\partial \rho_{g}}{\partial T_{\chi}}+\frac{\partial S}{\partial T_{g}}\right]\partialT_{\chi}+\left[(1-\alpha)\rho_{g}\right]_{i+i_{5},j}-\deltaU_{g,2}i+i_{5},j-\left.\left[(1-\alpha)\rho_{g}\right]_{i-i_{5},j}-\deltaU_{g,2}i-i_{5},j+\left[\Delta r/V(1-\alpha)\rho_{g}\right]_{i,j+i_{5}}-\deltaU_{g,2}i+i_{5},j-\left.\left[\Delta r/V(1-\alpha)\rho_{g}\right]_{i,j+i_{5}}-\deltaU_{g,2}i,j+i_{5}\right]\deltaU_{g,2}i,j+i_{5}-\left[\Delta r/V(1-\alpha)\rho_{g}\right]_{i,j-i_{5}}\deltaU_{y,2}i,j+i_{5}\right]\delta\alpha+\left[\frac{(1-\alpha)}{\Delta t}\left(\rho_{g}^{k}-\frac{\partial e_{g}^{k}}{\partial P}+e_{g}^{k}-\frac{\partial \rho_{g}}{\partial P}\right)-\frac{\partial Q_{g}}{\partial P}\right]\deltaP_{ij}-\left.\left[\frac{\rho_{\chi}^{k}-e_{\chi}^{k}+P}{\Delta t}-\frac{\partial Q}{\partial \alpha}\right]\delta\alpha+\left[\frac{(1-\alpha)}{\Delta t}\left(\rho_{g}^{k}-\frac{\partial e_{g}^{k}}{\partial P}+e_{g}^{k}-\frac{\partial \rho_{g}}{\partial P}\right)-\frac{\partial Q_{g}}{\partial P}\right]\deltaP_{ij}-\left.\left.\frac{\partial Q_{g}}{\partial T_{y}}\deltaT_{y}+\left[\frac{(1-\alpha k)}{\Delta t}\left(\rho_{g}^{k}-\frac{\partial e_{g}}{\partial T_{g}}+e_{\chi}^{k}-\frac{\partial \rho_{g}}{\partial T_{g}}\right)-\frac{\partial Q_{g}}{\partial T_{g}}\right]\deltaT_{g}+\left.\left.\left.\left[\frac{(1-\alpha k)}{\Delta z_{1}}\left(P_{ij}+(\rho_{g}-e_{g})_{1+i_{5},j}\right)\right]\delta U_{g,2}-i+i_{5},j+\left[\left(\Delta r/V(1-\alpha)\right)_{i,j+i_{5}}\left(P_{ij}+(\rho_{g}e_{g})_{1,j+i_{5}}\right)\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,1}-i,j+i_{5}\right]\delta U_{g,2}-i,j+i_{5}\right]\delta U_{g,2}-i,j+i_{5}\right]\delta$$

$$-\left[\left(Ar/V (1-\alpha)\right)_{i,j-\frac{1}{2}} \left(P_{ij} + (\rho_{\ell} e_{\ell})_{i,j-\frac{1}{2}}\right)\right] \delta U_{\ell r i,j-\frac{1}{2}} = -F_{4}^{k}$$
(2.3.8)

$$\begin{bmatrix} \frac{\left[(1-\alpha)\rho_{\ell}\right]_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}}}{\Delta t} + \frac{\partial M_{\ell}}{\partial U_{\ell z}} \delta U_{\ell z \mathbf{i}+\mathbf{i}_{2},\mathbf{j}} + \frac{\partial M_{\ell}}{\partial U_{v z}} \delta U_{v z \mathbf{i}+\mathbf{i}_{2},\mathbf{j}} + \frac{\left(1-\alpha_{\mathbf{i}+\mathbf{i}_{2},\mathbf{j}}\right)}{\Delta z_{\mathbf{i}+\mathbf{i}_{2}}} \quad (\delta P_{\mathbf{i}+1,\mathbf{j}} - \delta P_{\mathbf{i}\mathbf{j}}) = -F_{6}^{\mathbf{k}} \quad (2.3.10)$$

$$\left[\frac{(\alpha \rho_{v})_{i,j+\frac{1}{2}}}{\Delta t} + \frac{\partial M_{v}}{\partial U_{vr}}\right] \delta U_{vr} i, j+\frac{1}{2} + \frac{\partial M_{v}}{\partial U_{lr}} \delta U_{lr} i, j+\frac{1}{2} + \frac{\partial M_{v}}{\partial U_{lr}} i, j+\frac{1}{2} + \frac{\partial M_{v}}{\partial U_{lr}} i, j+\frac{1}{2} + \frac{\partial M_{v}}{\partial U_{lr}} i, j+\frac{1}{2} + \frac{\partial M_{v$$

$$+ \frac{\alpha_{i,j+\frac{1}{2}}}{\Delta r_{j+\frac{1}{2}}} (\delta P_{i,j+1} - \delta P_{ij}) = F_7^k$$
(2.3.11)

$$\begin{bmatrix} \frac{(1-\alpha)\rho_{\ell}}{\Delta t} & i, j+\frac{1}{2} + \frac{\partial M_{\ell}}{\partial U_{\ell r}} \end{bmatrix} \delta U_{\ell r} & i, j+\frac{1}{2} + \frac{\partial M_{\ell}}{\partial U_{v r}} \delta U_{v r} & i, j+\frac{1}{2} + \frac{(1-\alpha_{i,j+\frac{1}{2}})}{\Delta r_{j+\frac{1}{2}}} & (\delta P_{i,j+1} - \delta P_{ij}) = -F_{8}^{k}$$

$$(2.3.12)$$

Note that the last four of the above equations depend only on pressures and the four velocity components. Grouping equations 2.3.9 and 2.3.10 in a pair and again 2.3.11 and 2.3.12 we can without difficulty isolate the velocity components in the left hand side:

$$\delta U_{vz \ i+\frac{1}{2},j} = W_{vz \ i+\frac{1}{2},j} (\delta P_{i+1,j} - \delta P_{ij}) + f_{uvz}$$
(2.3.13)

$$\delta U_{lz \ i+\frac{1}{2},j} = W_{lz \ i+\frac{1}{2},j} (\delta P_{i+1,j} - \delta P_{ij}) + f_{ulz}$$
(2.3.14)

$$\delta U_{vr i, j+\frac{1}{2}} = W_{vr i, j+\frac{1}{2}} (\delta P_{i, j+1} - \delta P_{ij}) + f_{uvr}$$
(2.3.15)

$$\delta U_{lr \, i, j^{+}_{2}} = W_{lr \, i, j^{+}_{2}} (\delta P_{i, j^{+}_{1}} - \delta P_{ij}) + f_{ulr}$$
(2.3.16)

where the coefficients W are given by:

$$W_{vz \ i+\frac{1}{2}, j} = -\left[\frac{\alpha}{\Delta z} \left(\frac{(1-\alpha)^{\rho_{\ell}}}{\Delta t} + \frac{\partial M_{\ell}}{\partial U_{\ell z}}\right) + \frac{(1-\alpha)}{\Delta z} \quad \frac{\partial M_{v}}{\partial U_{vz}}\right]_{i+\frac{1}{2}, j} \times$$

$$\left[\left(\frac{(1-\alpha)\rho_{\ell}}{\Delta t} + \frac{\partial M_{\ell}}{\partial U_{\ell z}}\right)\left(\frac{\alpha\rho_{v}}{\Delta t} + \frac{\partial M_{v}}{\partial U_{v}}\right) - \frac{\partial M_{\ell}}{\partial U_{\ell z}} - \frac{\partial M_{v}}{\partial U_{v z}}\right]_{i+l_{2},j}^{-1}$$
(2.3.17)

and similar expressions for the other component velocities.

Now, with equation 2.3.13 through 2.3.16 we can eliminate all velocities in equations 2.3.5 through 2.3.8. Rearranging these equations, they can be written in the matrice form:

The expressions for the coefficients a's and b's are not given here for brevity. We will return to them and show representatives of them when we discuss the diagonal dominance of the pressure problem and the limiting case of only one phase present.

If we transform the matrix of the coefficients \underline{a} in equation 2.3.18 into an upper triangular matrix, this equation becomes:

$$\begin{bmatrix} 1 & a'_{12} & a'_{13} & a'_{14} \\ 0 & 1 & a'_{23} & a'_{24} \\ 0 & 0 & 1 & a'_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \delta \alpha \\ \delta T_{v} \\ + \\ \delta T_{g} \\ \delta P \\ i,j \end{bmatrix} \begin{pmatrix} b'_{11} \cdots b'_{14} \\ x \\ \delta P_{i,j-1} \\ b'_{41} \cdots b'_{44} \end{bmatrix} \times \begin{bmatrix} \delta^{P}_{i-1,j} \\ \delta^{P}_{i,j-1} \\ \delta^{P}_{i,j+1} \\ \delta^{P}_{i+1,j} \end{bmatrix} = \begin{bmatrix} f'_{1} \\ f'_{2} \\ f'_{3} \\ f'_{4} \end{bmatrix}$$

$$(2.3.19)$$

The last line of the above equation is an expression involving only pressures. Since this expression relates the pressure at a cell (i,j) to its four neighbors' pressure, this equation must be solved simultaneously for all mesh cells. The solution of this pressure problem is the subject of section 2.4.

It is important to point out that this solution technique reduces the inversion of a matrix with dimensions 8N by 8N, with N being the number of mesh cells, to the inversion of a matrix of dimensions N by N by performing for each mesh cell the inversion of two 2 by 2 matrices and one 4 by 4 matrix.

Before the closing of this section, it is appropriate to make three comments. The first one concerns the limiting case of single phase flow. The transformation of equation 2.3.18 into equation 2.3.19 requires that all diagonal elements of matrix of the coefficients <u>a</u> be non-zero. We will explore how those coefficients behave as the void fraction assumes the values $\alpha = 0$ and $\alpha = 1$, and the mass exchange rate S = 0.

١

First let us consider the case $\alpha = 0$. If we look back into equation 2.3.5 we can see that in the first line of equation 2.3.18 all coefficients b_{1q} , as well as all a_{1q} , with the exception of a_{11} have a factor α on them. Therefore, except for a_{11} , all those coefficients are zero. If we look into equation 2.2.1 we see that the right hand side of 2.3.5 is also zero, and the first line of 2.3.18 corresponds to the equation:

$$\frac{\rho_{\mathbf{v}}^{\mathbf{k}}}{\Delta t} \,\delta \alpha = 0$$

Now, consider equation 2.3.6. It is seen that without the presence of vapor this equation is trivial, and all coefficients a_{2q} and b_{2q} in second line of 2.3.18 are zero. But in this case, a trivial equation would cause us a problem, since an element of the diagonal of the matrix of coefficients <u>a</u> in 2.3.18 would be zero, thus invalidating the triangularization of this matrix. To avoid this problem, we impose that the interphase heat exchange term be in the form:

$$Q_{lv} = h (T_{l}^{n+1} - T_{n}^{n+1})$$

with the coefficient h being non-zero even if one of the phases is not present. In this way, equation 2.3.6 reduces to:

$$h \partial T_v - h \partial T_k = h (T_v^k - T_k^k)$$

which implies the model will force the vapor temperature to be equal to the liquid temperature when we have one of the phases absent.

If we repeat this analysis for the vapor single phase flow, it is easy to see that we will reach the same conclusions. Therefore we can be confident that the matrix of coefficients \underline{a} in 2.3.18 does not have a diagonal element equal to zero and the triangularization of this matrix is always possible.

Que last question in this subject concerns the inversion of the submatrices of the velocity components. If we look into equation 2.3.17 we will see that the absence of one phase would lead to a division by zero. We again avoid this problem by imposing the interphase momentum exchange term to be in the form;

$$M_{\ell v} = K (U_{\ell}^{n+1} - U_{v}^{n+1})$$

again with the coefficient K being non-zero even if one of the phases is not present. As for the energy equation, this will force the vapor velocity to be equal of the liquid velocity when one of the phases is not present.

The second question we would like to discuss concerns the diagonal dominance of the pressure problem. The solution of this problem requires that the diagonal element of the pressure problem matrix be greater or equal to the sum of the absolute value of the elements in the line corresponding to that diagonal element. In terms of the coefficients of equation 2.3.19 this translate to:

 $| b_{41}' | + | b_{42}' | + | b_{43}' | + | b_{44}' | \le 1$

An exact proof that this condition is satisfied would require a prohibitive amount of algebraic work. So instead of trying to follow this line, we will present only a partial view, which can bring some understanding to this problem. Then, let us consider the elements of the first two lines of the matrix of the coefficients <u>b</u> in equation 2.3.18. We evaluate these coefficients with the help of equations 2.3.5, 2.3.6, 2.3.13 and 2.3.15. We get the expressions:

$$b_{11} = \left(\frac{\alpha \rho_{\mathbf{v}}}{\Delta z} \quad W_{\mathbf{v}z}\right)_{\mathbf{i}-\mathbf{i}_{\mathbf{z}},\mathbf{j}}$$

$$b_{12} = \left(\frac{\mathbf{A}\mathbf{r}}{\mathbf{v}} \quad \alpha \rho_{\mathbf{v}} \quad W_{\mathbf{v}r}\right)_{\mathbf{i},\mathbf{j}-\mathbf{i}_{\mathbf{z}}}$$

$$b_{13} = \left(\frac{\mathbf{A}\mathbf{r}}{\mathbf{v}} \quad \alpha \rho_{\mathbf{v}} \quad W_{\mathbf{v}r}\right)_{\mathbf{i},\mathbf{j}+\mathbf{i}_{\mathbf{z}}}$$

$$b_{14} = \left(\frac{\alpha \rho_{\mathbf{v}}}{\Delta z} \quad W_{\mathbf{v}z}\right)_{\mathbf{i}+\mathbf{i}_{\mathbf{z}},\mathbf{j}}$$

$$b_{21} = \left[\frac{\alpha}{\Delta z} \quad (\rho_{\mathbf{v}} \quad \mathbf{e}_{\mathbf{v}} + \mathbf{P}) \quad W_{\mathbf{v}z}\right]_{\mathbf{i}-\mathbf{i}_{\mathbf{z}},\mathbf{j}}$$

$$b_{22} = \left[\frac{\mathbf{A}\mathbf{r}}{\mathbf{v}} \quad \alpha \quad (\rho_{\mathbf{v}} \quad \mathbf{e}_{\mathbf{v}} + \mathbf{P}) \quad W_{\mathbf{v}r}\right]_{\mathbf{i},\mathbf{j}+\mathbf{i}_{\mathbf{z}}}$$

$$b_{23} = \left[\frac{\mathbf{A}\mathbf{r}}{\mathbf{v}} \quad \alpha \quad (\rho_{\mathbf{v}} \quad \mathbf{e}_{\mathbf{v}} + \mathbf{P}) \quad W_{\mathbf{v}r}\right]_{\mathbf{i},\mathbf{j}+\mathbf{i}_{\mathbf{z}}}$$

$$b_{24} = \left[\frac{\alpha}{\Delta z} \quad (\rho_{\mathbf{v}} \quad \mathbf{e}_{\mathbf{v}} + \mathbf{P}) \quad W_{\mathbf{v}z}\right]_{\mathbf{i}+\mathbf{i}_{\mathbf{z}},\mathbf{j}}$$

From the expression for the value of the coefficients W, equation 2.3.17 we can see that all these coefficients \underline{b} are negative. Now consider the coefficients of the central pressure, coefficients a_{14} and a_{24} in equation 2.3.18. From the same equations we used before we get:

$$a_{14} = \frac{\alpha}{\Delta t} \quad \frac{\partial \rho_{\mathbf{v}}}{\partial P} - \frac{\partial S}{\partial P} - (b_{11} + b_{12} + b_{13} + b_{14})$$
$$a_{24} = \frac{\alpha}{\Delta t} \quad \rho_{\mathbf{v}} \quad \frac{\partial e_{\mathbf{v}}}{\partial P} + e_{\mathbf{v}} \quad \frac{\partial \rho_{\mathbf{v}}}{\partial P} - \frac{\partial Q}{\partial P} - (b_{21} + b_{22} + b_{23} + b_{24})$$

Let us examine in detail each of these coefficients. The way equation 2.2.1 was written the mass exchange rate S is positive when we have evaporation. It is easy to see that an increment in pressure will produce a decrease in the rate of evaporation, so the term $\partial S/\partial P$ is negative. The other term making a_{14} is the vapor compressibility, which is a positive quantity. Therefore we conclude:

$$a_{14} > | b_{11} | + | b_{12} | + | b_{13} | + | b_{14} |$$

Consider next the coefficient a_{24} . The first term in a_{24} is $\partial e_v/\partial P$, which is a very small quantity. Indeed the equation of state used in our model puts a zero in this derivative. The other term $\partial \rho_v/\partial P$ we have already investigated and seen it is a positive quantity. Finally we have the term $\partial Q_v/\partial P$. The heat transfers equations used in the model have only one term in the heat exchange rate dependent on the pressure, representing the heat transferred due to evaporation or condensation. In this way $\partial Q_v/\partial P$ has the same sign as $\partial S/\partial P$, which we saw before is a negative quantity. We thus conclude again:

$$a_{24} > | b_{21} | + | b_{22} | + | b_{23} | + | b_{24} |$$

We omit here a similar analysis of the coefficients appearing in the liquid equations. The general form of them is the same, on following a similar reasoning we would reach the same conclusions as we did for the vapor equations.

Now, since the pressure problem equation (the last line of equation 2.3.19) was obtained as a linear combination of equations whose coefficient of the central pressure exceeds the sum of the absolute value of the coefficients of the neighboring pressures, this pressure problem equation also has this same property, which shows us the pressure problem matrix is diagonal dominant.

Finally there is the question of the boundary conditions. We start with the radial direction. At the fuel assembly centerline there is simply the zero radial flow condition at r = 0. This is accomplished by just putting a zero in the terms $U_{ri, \frac{1}{2}}$ appearing in the divergent differences. At the other radial boundary, corresponding to the fuel assembly hexcan there is also a zero flow boundary condition, which is translated in the model by setting the radial velocities at that boundary equal to zero. Note that since these velocities are identically zero, there is no need to evaluate the momentum equations at these nodes $J+\frac{1}{2}$, thus there will be only J-1 radial momentum equations at each level i. Besides the flow conditions at this boundary, there is also a thermal boundary condition, taking into account the heat transferred between the fluid and the structure, represented in the code by the hex can model. This model will be fully analysed in Chapter 3.

For the axial direction more complicated conditions appear. To explain this refer to figure 2.4 It can be seen in that figure that two fictitious cells were added to the actual fuel assembly. In these cells the conditions determining a particular problem must be specified. Thus the user of the model needs to specify as a function of time, an outlet pressure in cells i = I + 1 and inlet pressure, vapor and liquid temperatures and the void fraction in cells i = 0. For the momentum equations in cells $i = \frac{1}{2}$ and $i = I + \frac{1}{2}$ the following conditions are imposed

> $U - \frac{1}{2}, j = U \frac{1}{2}, j$ $U_{I+3/2}, j = U_{I+\frac{1}{2}}, j$

Finally, to completely determine the particular problem to be studied, the user also needs to specify the fuel pin heat generation rate as a function of time.

Figure 2.4 The Ficticious Cells

2.4 The Pressure Problem

So far, we have collapsed the eight conservation equations, the equation of state and the equations governing the exchange terms into a single equation (i.e. one for each mesh cell), involving the pressure in the cell itself and its neighbours. Because of this coupling between cells, those equations must be solved simultaneously. Since this matrix inversion rests inside an iterative process, which is to be repeated for each time step, it is clear that the overall efficiency of the model is strongly dependent on the way this pressure problem solution is done.

The approach to the problem was to take advantage of two particular characteristics of the case at hand. The first one is the fact that most of the elements of the matrix are zeros, the non-zeros being only the elements on five diagonals. The second one has to do with the fact that LMFBR fuel assemblies have one of its dimensions, the axial one, much larger than the other. This has a surprisingly strong effect on the time required for the matrix inversion, as explained in the following paragraphs.

The large number of zeros in the matrix was used to our advantage by adopting an iterative solution known as block-tri-diagonal, which is an extension of the Gauss-Siedel iterative technique (see Ref.).

Recalling the pressure equation, for each mesh cell we have:

$$A_{ij}P_{ij-1} + B_{ij}P_{i-1j} + C_{ij}P_{ij} + D_{ij}P_{i+1j} + E_{ij}P_{ij+1} = R_{ij}$$
(2.4.1)

To perform the kth iteration in the cells at level i, we pass to the right-hand side of the equation the terms containing the pressure at the bottom and tope of cell (i,j).

$$A_{ij}P_{ij-1}^{k} + C_{ij}P_{ij}^{k} + E_{ij}P_{ij+1}^{k} = R_{ij} - B_{ij}P_{i-1j}^{k} - D_{ij}P_{i+1j}^{k-1}$$
(2.4.2)

Note that the term in P_{i-1j} takes the value obtained at iteration k. This is a known quantity since it was obtained in the previous step of the calculation, when this procedure was applied for the cells at level i-1.

With this manipulation, we ended with only three unknowns in the equation, and we now can use the tridiagonal matrix inversion technique (Ref. 42) which gives the exact solution of equation 2.4.2 for all values of j, with a very few operations.

This procedure is repeated for all values of the subscript i, and the pass over all cells is repeated again until the desired convergence is obtained.

The second characteristic which was taken into consideration influences the number of passes required to attain convergence.

An iterative solution sets arbitrary initial values for the unknowns, and by recalculating these unknowns with the appropriate set of equations aims to reduce the error contained in the previous value of the unknowns. The smaller the error carried from one pass to the other, the fewer the number of passes necessary to meet the required convergence criterion. In the technique used in the model, the new value obtained for the pressure will have an error because in the right-hand side of equation 2.4.2 the values of the pressure are not the exact solution of the problem, but for each level i, the values of the pressure will have the correct relationship between themselves, since the tri-diagonal technique will give the exact solution for a given right-hand side. If we could make our scheme in such a way as to minimize the influence of the error carried into the right-hand side of equation 2.4.2, we would have the iterations converging quickly. The difference in dimensions for the axial and radial directions provides this way.

When a fuel assembly is divided into mesh cells, the radial dimension of these mesh cells will be a few pitches in length, or for usual LMFBR fuel assemblies, this dimension will be of the order of one centimeter. On the other hand, typically a fuel assembly is a few meters in length, and in order to keep the number of cells at a minimum, to shorten the time required for the calculations, we expect the axial dimension of a mesh cell to be of the order of tens of centimenter.

In this situation, the pressure at radially neighbouring cells must have a very close value, or in other words, a small increment in the pressure in one cell would be propagated to its radial neighbours almost in full. On the other hand, for the axial direction this propagation of error would not be so strong, since the larger distance between cells would act in the sense of atenuating the propagation.

We will try next to express the previous statement in mathematical terms. To avoid the formidable algebraic complication of

working with the full set of two fluid equations, we will use a simplified model, keeping only the parts relevant to this analysis.

We will consider only the mass and momentum equations for a single phase. We also put all explicit terms, which are not relevant to this problem into a generic term Rⁿ. Then the conservation equations become:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \rho \vec{U} = 0$$
 (2.4.3)

$$\frac{\partial \vec{U}}{\partial t} + \vec{U}\nabla \vec{U} + \frac{1}{\rho}\nabla P = -k\vec{U}$$
(2.4.4)

and the equation of state:

$$\frac{\partial \rho}{\partial P} = \frac{1}{c^2}$$
(2.4.5)

with c being the sonic speed.

Applying the differentiating scheme to these equations we get:

$$\frac{P_{ij}^{n+1} - P_{ij}^{n}}{c^{2}\Delta t} + \frac{(\rho U_{z}^{n+1})_{i+\frac{1}{2}j} - (\rho U_{z}^{n+1})_{i-\frac{1}{2}j}}{\Delta z} + \frac{(\rho U_{r}^{n+1})_{ij+\frac{1}{2}} - (\rho U_{r}^{n+1})_{ij-\frac{1}{2}}}{\Delta r} = 0$$

$$\frac{(U_{z}^{n+1} - U_{z}^{n})}{\Delta t} \stackrel{i+l_{z}j}{=} + \frac{1}{\rho_{i+l_{z}j}} \frac{P_{i+l_{j}}^{n+1} - P_{ij}^{n+1}}{\Delta z} + k_{z} U_{zi+l_{z}j}^{n+1} = R_{z}^{n} \qquad (2.4.7)$$

$$\frac{(U_{r}^{n+1} - U_{r}^{n})}{\Delta t} ij + \frac{1}{\rho_{ij} + \frac{1}{2}} + \frac{1}{\rho_{ij} + \frac{1}{2}} \frac{P_{i+1j}^{n+1} - P_{ij}^{n+1}}{\Delta r} + k_{r} U_{rij+\frac{1}{2}}^{n+1} = R_{r}^{n}$$
(2.4.8)

We isolate
$$U_z^{n+1}$$
 and U_r^{n+1} in equations 2.4.7 and 2.4.8:
 $(U_z^{n+1})_{i+2j} = \frac{1}{\rho_{ij+2j}} \frac{\Delta t}{\Delta z} \frac{1}{1+k_z \Delta t} (P_{ij}^{n+1} - P_{i+1j}^{n+1}) + R_z^n$ (2.4.9)

$$(U_{r}^{n+1})_{ij+l_{2}} = \frac{1}{\rho_{ij+l_{2}}} \frac{\Delta t}{\Delta z} \frac{1}{1+k_{r}\Delta t} (P_{ij}^{n+1} - P_{ij+1}^{n+1}) + R_{r}^{n}$$
(2.4.10)

It is possible now to eliminate the velocities in equation 2.4.6 to get an expression involving the pressure alone. If this equation is put in the form of equation 2.4.1 we then have the expression for the coefficients of the pressure problem matrix:

$$A_{ij} = -\left(\frac{\Delta t}{\Delta r}\right)^2 \frac{1}{1+k_r \Delta t}$$
(2.4.11a)

$$B_{ij} = -\left(\frac{\Delta t}{\Delta z}\right)^2 \frac{1}{1 + k_z \Delta t}$$
(2.4.11b)

$$C_{ij} = -A_{ij} - B_{ij} - D_{ij} - E_{ij} + \frac{1}{c^2}$$
 (2.4.11c)

$$D_{ij} = -\left(\frac{\Delta t}{\Delta z}\right)^2 \frac{1}{1+k_z \Delta t}$$
(2.4.11d)

$$E_{ij} = -\left(\frac{\Delta t}{\Delta r}\right)^2 \frac{1}{1+k_r \Delta t}$$
(2.4.11e)

The first point to be considered in these equations is the coefficient C_{ij} in equation 2.4.11c: Note that C_{ij} exceeds the sum of

the absolute values of the other coefficients by the factor $1/c^2$. In the numerical analysis language this means that the matrix of the coefficients is diagonal dominant, and it guarantees that the numerical inversion of this matrix will converge. Later on, when discussing the equations of state, we will insist that the equation for the density of both phases reflect some sort of compressibility, or in other words, that the derivative of the density with respect to the pressure be always a real positive number. Looking at equation 2.4.11c it can be seen that this requirement guarantees the diagonal dominance of the pressure problem matrix.

We now compare the coefficients A_{ij} and B_{ij} (which are in all similar to the pair of coefficients D_{ij} and E_{ij}): As it has been established before, Δz is ten or more times larger than Δr , which means B_{ij} will be one hundred or more times smaller than A_{ij} . If we go back to equation 2.4.2 it can be seen that in the proposed scheme the errors contained in the pressure terms in the right-hand side will be multiplied by a coefficient which is very small compared to the coefficients in the left-hand side; therefore, the influence of these errors will be minimized, and the convergence of the scheme will be drastically improved.

In the comparison we have just made, the friction terms $\frac{1}{1+k\Delta t}$ were neglected. This was done first because their influences are small, being the product $k\Delta t$ not a large number compared to one.

Second, their influence is in the direction to enhance the disparity between the coefficients A_{ij} and B_{ij} . Clearly in all situations of practical interest the axial velocity will be two or three orders of magnitude larger than the radial velocity, which means the axial friction factor k_{z} will be larger than its radial counterpart.

Finally, to illustrate this point we ran a case with mesh cells whose dimensions were $\Delta z = 30$ cm and $\Delta r = 1$ cm, with the proposed scheme and with one which did the same procedure but exchanged the z axis by the r axis. In the first case we attained a convergence criterion of 10^{-6} in less that 10 iterations. While with the second scheme the same convergence criterion could not be attained in ten thousand iterations.

2.5 Stability Analysis of the Numerical Method.

This chapter would not be complete without a study on the stability of the numerical method, and in the following paragraphs we will attempt to fulfill this requirement. We want to emphasize at this point that the following analysis is not rigorous in the mathematical sense, nor is it a definitive proof of the two fluid model stability. Because the tools of numerical analysis known to date were developed for systems of linear equations, they cannot be applied to the nonlinear thermohydraulic equations without a few assumptions and simplifications, made to fit into the limitations of our tools. Even with this "local-linear" treatment of the system of equations, sometimes the algebraic complication of the study imposed a few approximations in order that we could have an intelligible conclusion. Nonetheless, this analysis gives a picture, if not rigorous, at least sufficiently clear for the understanding of the stability problems of the two-fluid model.

We will be following in this study a line developed by Stewart/ 51 / in which the stabilizing effects of the exchange terms are identified.

The first simplification made in this analysis was to reduce the full set of eight equations which make the two-dimensional, twofluid problem to a system of only four equations, by taking the momentum equations in only one direction and neglecting the energy equations. Physically this situation corresponds to a one-dimensional, isothermal flow.

As we shall see later, we will be solving in this study, determinants and algebraic equations whose order is equal to the number of equations in our model. It is easy to understand that the algebraic difficulty of working with eighth order determinants and equations would be large enough to make it nearly impossible to visualize any kind of conclusion.

We will not be loosing the desired degree of generalization with these simplifications, since the momentum equations are exactly the same for both directions, and the energy equations are differentiated in all similar to the mass equations. Therefore, all the characteristics of the eight-equation model will be represented in this analysis and the simplified system of equations will be, from the numerical point of view, analogous to the full two-fluid model.

We then write down the fluid-dynamic equations as:

$$\frac{\partial}{\partial t} \alpha \rho_{v} + \frac{\partial}{\partial z} \alpha \rho_{v} U_{v} = S$$
 (2.5.1)

$$\frac{\partial}{\partial t} (1-\alpha) \rho_{\ell} + \frac{\partial}{\partial z} (1-\alpha) \rho_{\ell} U_{\ell} = -S \qquad (2.5.2)$$

$$\alpha \rho_{\mathbf{v}} \left[\frac{\partial U_{\mathbf{v}}}{\partial t} + U_{\mathbf{v}} \frac{\partial U_{\mathbf{v}}}{\partial z} \right] + \alpha \frac{\partial P}{\partial z} = k(U_{\ell} - U_{\mathbf{v}})$$
(2.5.3)

$$(1-\alpha)\rho_{\ell}\left[\frac{\partial U}{\partial t} + U_{\ell}\frac{\partial U_{\ell}}{\partial z}\right] + (1-\alpha)\frac{\partial P}{\partial z} = k(U_{V}-U_{\ell})$$
(2.5.4)

and the equations of state:

$$\frac{\partial \rho_{\mathbf{v}}}{\partial \mathbf{P}} = \frac{1}{c_{\mathbf{v}}^2}$$
(2.5.5)
$$\frac{\partial \rho_{\boldsymbol{k}}}{\partial \mathbf{P}} = \frac{1}{c_{\boldsymbol{k}}^2}$$
(2.5.6)

In the canonical form the above equations would appear as:

$$A \frac{\partial X}{\partial t} + B \frac{\partial X}{\partial z} = f(X)$$
(2.5.7)

with

$$X = [\alpha, P, U_v, U_{\ell}]^T$$
 (2.5.8)

$$\mathbf{A} = \begin{bmatrix} \rho_{\mathbf{v}} & \alpha/c_{\mathbf{v}}^{2} & 0 & 0 \\ -\rho_{\ell} & (1-\alpha)/c_{\ell}^{2} & 0 & 0 \\ 0 & 0 & \alpha \rho_{\mathbf{v}} & 0 \\ 0 & 0 & 0 & (1-\alpha)\rho_{\ell} \end{bmatrix}$$
(2.5.9)
$$\mathbf{B} = \begin{bmatrix} \rho_{\mathbf{v}} \mathbf{U}_{\mathbf{v}} & \alpha \mathbf{U}_{\mathbf{v}}/c_{\mathbf{v}}^{2} & \alpha \rho_{\mathbf{v}} & 0 \\ -\rho_{\ell} \mathbf{U}_{\ell} & (1-\alpha)\mathbf{U}_{\ell}/c_{\ell} & 0 & (1-\alpha)\rho_{\ell} \\ 0 & \alpha & \alpha_{\mathbf{v}}\mathbf{U}_{\mathbf{v}} & 0 \\ 0 & (1-\alpha) & 0 & (1-\alpha)\rho_{\ell}\mathbf{U}_{\ell} \end{bmatrix}$$
(2.5.10)

With this formalism the characteristic roots of the system can be found, which are solutions of the equation:

$$det[B - \lambda A] = 0$$
 (2.5.11)

The reduction of this characteristic determinant results in the algebraic equation:

$$\alpha \rho_{\ell} (U_{\ell} - \lambda)^{2} + (1 - \alpha) \rho_{v} (U_{v} - \lambda)^{2} - \left[\frac{\alpha \rho_{\ell}}{c_{v}^{2}} + \frac{(1 - \alpha) \rho_{v}}{c_{\ell}^{2}}\right] (U_{v} - \lambda)^{2} (U_{\ell} - \lambda)^{2} = 0$$
(2.5.12)

Since we are interested only in the qualitative aspect of the roots of this equation, rather than its precise value, we will make some approximations, in order to get a solution of 2.5.12 which are representative of the true value. We note that for the cases of practical interest the liquid density is much higher than the vapor density. Then it is reasonable to neglect the terms in ρ_v , and two real roots are obtained, which are approximately:

$$\lambda \simeq U_{\rm v} \pm c_{\rm v} \tag{2.5.13}$$

On the other hand, with this model we intend to study only sub-sonic flow, hence both U_v and U_l are much smaller than the sonic velocities. Then, if the terms in $1/c_v^2$ and $1/c_l^2$ are neglected, the two other roots become:

$$\lambda \approx \frac{U_{\ell} + \varepsilon^2 U_{\nu}}{1 + \varepsilon^2} \pm \frac{i\varepsilon (U_{\nu} - U_{\ell})}{1 + \varepsilon^2}$$
(2.5.14)

with

$$\varepsilon^{2} = \frac{(1-\alpha)\rho_{v}}{\alpha\rho_{g}}$$
(2.5.15)

It can be seen that whenever the phase velocities are different, the system will have two complex characteristic roots. This means the system of equations is not hyperbolic and consequently not well posed as an initial value problem. Nonetheless, with this conclusion it can only be said that the two-fluid problem failed to meet a sufficient condition, but it cannot be concluded that the problem is necessarily unstable. The previous analysis did not take into consideration the important stabilizing effect of the interphase exchange terms, and as we shall see later on, these terms are responsible for the stability of the two-fluid models.

To verify this effect, we will proceed with the Von Neumann analysis of the numerical scheme. The difference equations corresponding to equations 2.5.1 through 2.5.6 are:

$$\frac{\alpha_{j}^{n+1}\rho_{j}^{n+1} - \alpha_{j}^{n}\rho_{j}^{n}}{\Delta t} + \frac{\alpha_{j}^{n}\rho_{j}^{n}U_{j+\frac{1}{2}}^{n+1} - \alpha_{j-1}^{n}\rho_{j}^{n}U_{j-\frac{1}{2}}^{n+1}}{\Delta z} = S \qquad (2.5.16)$$

$$\frac{(1-\alpha_{j}^{n+1})\rho_{\ell j}^{n+1} - (1-\alpha_{j}^{n})\rho_{\ell j}^{n}}{\Delta t} + \frac{(1-\alpha_{j}^{n})\rho_{\ell j}^{n}U_{\ell j+\ell_{2}}^{n+1} - \alpha_{j-1}^{n}\rho_{\nu j-1}^{n}U_{\ell j-\ell_{2}}^{n+1}}{\Delta z} = -S$$

$$(2.5.17)$$

$$\alpha_{j}^{n}\rho_{\nu j}^{n} \left[\frac{U_{\nu j+\ell_{2}}^{n+1} - U_{\nu j+\ell_{2}}^{n}}{\Delta t} + U_{\nu j+\ell_{2}}^{n}\frac{(U_{\nu j+\ell_{2}}^{n} - U_{\nu j-\ell_{2}}^{n})}{\Delta z}\right] +$$

$$+ \alpha_{j}^{n}\frac{(P_{j+1}^{n+1} - P_{j}^{n+1})}{\Delta z} = k_{j+\ell_{2}}(U_{\ell j+\ell_{2}}^{n+1} - U_{\nu j+\ell_{2}}^{n+1})$$

$$(2.5.18)$$

$$(1-\alpha_{j}^{n})\rho_{\ell j}^{n} \left[\frac{U_{\ell j+\ell_{2}}^{n+1} - U_{\ell j+\ell_{2}}^{n}}{\Delta t} + U_{\ell j+\ell_{2}}^{n}\frac{(U_{\ell j+\ell_{2}}^{n} - U_{\ell j-\ell_{2}}^{n})}{\Delta z}\right] +$$

+
$$(1-\alpha_{j}^{n}) \frac{(P_{j+1}^{n+1} - P_{j}^{n+1})}{\Delta z} = k_{j+\frac{1}{2}} (U_{vj+\frac{1}{2}}^{n+1} - U_{lj+\frac{1}{2}}^{n+1})$$
 (2.5.19)

The convective terms in the mass and momentum equations involve donor cell differenciating, so the above equations are written for both U_v and U_{ℓ} positive. To apply the Von Neumann method these equations must first be linearized. We thus expand the differences in terms of differences of the four basic variables individually, and treat the coefficient of these differences as constant. For simplicity we will neglect the liquid compressibility, so that we can substitute the difference terms in pressure by terms involving the vapor density alone and treat this variable as a basic one. If we recall the Von Neumann method, the error of any variable at a given time and location is expressed as:

$$\varepsilon_{xj+s}^{n+r} = \varepsilon_{xj}^{n} \xi^{r} e^{is \theta}$$

where

 $\theta = \pi/m$ is the wave number.

Applying this formalism to equations 2.5.16 through 2.5.19 it follows:

$$\frac{\alpha}{\Delta t} (\xi - 1) \varepsilon_{\rho v j}^{n} + \frac{\rho_{v}}{\Delta t} (\xi - 1) \varepsilon_{\alpha j}^{n} + \frac{\alpha \rho_{v}}{\Delta z} (1 - \overline{e}^{i\theta}) \xi \varepsilon_{U v j + \frac{1}{2}}^{n} + \frac{\alpha U_{v}}{\Delta z} (1 - \overline{e}^{i\theta}) \varepsilon_{\rho v j}^{n} + \frac{\rho_{v} U_{v}}{\Delta z} (1 - \overline{e}^{i\theta}) \varepsilon_{\alpha j}^{n} = 0 \qquad (2.5.20)$$

$$-\frac{\rho_{\ell}}{\Delta t}(\xi-1)\varepsilon_{\alpha j}^{n} + \frac{(1-\alpha)\rho_{\ell}}{\Delta z} (1-\bar{e}^{i\theta})\xi\varepsilon_{U\ell j+\frac{1}{2}}^{n} - \frac{\rho_{\ell}U_{\ell}}{\Delta z}(1-\bar{e}^{i\theta})\varepsilon_{\alpha j}^{n} = 0 \qquad (2.5.21)$$

$$\alpha \rho_{\mathbf{v}} \left[\frac{(\xi-1)}{\Delta t} \varepsilon_{\mathbf{U}\mathbf{v}\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} + \frac{U_{\mathbf{v}}}{\Delta z} (1-\overline{e}^{\mathbf{i}\theta}) \varepsilon_{\mathbf{U}\mathbf{v}\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} \right] + \frac{\alpha c_{\mathbf{v}}^{2}}{\Delta z} (e^{\mathbf{i}\theta}-1) \xi \varepsilon_{\rho \mathbf{v}\mathbf{j}}^{\mathbf{n}} = k\xi (\varepsilon_{\mathbf{U}\ell\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} - \varepsilon_{\mathbf{U}\mathbf{v}\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}})$$

$$(2.5.22)$$

$$(1-\alpha) \rho_{\ell} \left[\frac{(\xi-1)}{\Delta t} \varepsilon_{\mathbf{U}\ell\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} + \frac{U_{\ell}}{\Delta z} (1-\overline{e}^{\mathbf{i}\theta}) \varepsilon_{\mathbf{U}\ell\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} \right] + \frac{(1-\alpha) c_{\mathbf{v}}^{2}}{\Delta z} (e^{\mathbf{i}\theta}-1) \xi \varepsilon_{\rho \mathbf{v}\mathbf{j}}^{\mathbf{n}} =$$

$$= k\xi (\varepsilon_{\mathbf{U}\mathbf{v}\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}} - \varepsilon_{\mathbf{U}\ell\mathbf{j}+\mathbf{k}_{2}}^{\mathbf{n}})$$

$$(2.5.23)$$

Rearranging these equations and putting them into matrix form it follows:

 $A \times E = 0$

with

$$\mathbf{E} = [\varepsilon_{\rho \mathbf{v}}, \varepsilon_{\alpha}, \varepsilon_{U \mathbf{v}}, \varepsilon_{U \mathbf{l}}]_{U,j}^{\mathrm{T}}$$

and
$$A = \begin{bmatrix} \alpha(\xi - 1 + \tilde{\mathbf{U}}_{\mathbf{v}}) & \rho_{\mathbf{v}}(\xi - 1 + \tilde{\mathbf{U}}_{\mathbf{v}}) & \xi \frac{\Delta t}{\Delta z} \alpha \rho_{\mathbf{v}} i \tilde{\mathbf{\theta}} & 0 \\ 0 & -\rho_{\ell}(\xi - 1 + \tilde{\mathbf{U}}_{\ell}) & 0 & \xi \frac{\Delta t}{\Delta z}(1 - \alpha) \rho_{\ell} i \tilde{\mathbf{\theta}} \\ \xi c_{\mathbf{m} \Delta t}^{2\Delta z} i \tilde{\mathbf{\theta}} & 0 & \rho_{\mathbf{v}}(\xi - 1 + \tilde{\mathbf{U}}_{\mathbf{v}}) + \xi \rho_{\mathbf{v}} \kappa & -\xi \rho_{\mathbf{v}} \kappa \\ \xi c_{\mathbf{m} \Delta t}^{2\Delta z} i \tilde{\mathbf{\theta}} & 0 & -\xi \rho_{\mathbf{v}} \kappa & \rho_{\ell}(\xi - 1 + \tilde{\mathbf{U}}_{\ell}) + \xi \rho_{\mathbf{v}} \kappa \end{bmatrix}$$

Where we have abbreviated

 $\tilde{U}_{v} = U_{v\Delta z} \frac{\Delta t}{(1 - e^{i\theta})}$ $\tilde{U}_{l} = U_{l\Delta z} \frac{\Delta t}{(1 - e^{i\theta})}$ $\tilde{\theta} = 2 \sin \theta/2$ $C_{m} = \frac{C_{v\Delta t}}{\Delta z} \cdot 2 \sin \theta/2$ $\kappa = k \Delta t/\rho_{l}$ $\epsilon^{2} = \frac{(1 - \alpha)\rho_{v}}{\alpha \rho_{0}}$

In order for the errors in the basic variables not to grow geometrically, the absolute value of the eigenvalues ξ of the amplification matrix (A must be all less than one. To find these eigenvalues we solve the equation det[A] = 0. After reducing this determinant we end up with the algebraic equation

$$\xi^{2} C_{m}^{2} [(\xi - 1 + \tilde{\vartheta}_{v} + 2\xi \kappa) (\xi - 1 + \tilde{\vartheta}_{v}) \varepsilon^{2} + (\xi - 1 + \tilde{\vartheta}_{\ell}) (\xi - 1 + \vartheta_{\ell} + 2\xi \kappa) +$$

$$+ (\xi - 1 + \tilde{\vartheta}_{v}) (\xi - 1 + \tilde{\vartheta}_{\ell}) [(\xi - 1 + \tilde{\vartheta}_{v} + \xi \kappa) (\xi - 1 + \vartheta_{\ell} + \xi \kappa \rho_{v} / \rho_{\ell}) - (\xi \kappa)^{2} \rho_{v} / \rho_{\ell}] = 0$$

$$(2.5.24)$$

The next step in the analysis would be to find the roots of this characteristic equation and see if their values would be less than one. But the expressions for the exact solution of the quartic equation are so complicated that it would be almost impossible to draw any conclusion from them. Instead we prefer to make some approximations which would give reasonably good values for the roots we are searching, but with the advantage of simple expressions which can give a clear visualization of them.

Since we want to emphasize the importance of the interphase exchange terms, we will first evaluate the characteristic roots of 2.5.24 with the momentum exchange coefficient k set to zero, and afterwards compare the results of this analysis with those obtained with a positive real non-zero value of k.

With k set to zero, equation 2.5.24 reduces to

$$\xi^{2} c_{m}^{2} [(\xi - 1 + \tilde{U}_{v})^{2} \epsilon^{2} + (\xi - 1 + \tilde{U}_{l})^{2}] + (\xi - 1 + \tilde{U}_{v})^{2} (\xi - 1 + \tilde{U}_{l})^{2} = 0 \qquad (2.5.25)$$

First consider the high frequency behavior. As has been said before, the model uses the time step size Δt equal to the convective limit: $\Delta t = \min (\Delta z/U_y, \Delta z/U_g)$

Also notice that the phase velocities are small compared to the vapor sonic velocity. Thus C $\Delta t/\Delta z >> 1$ and for small m,

101

 $C_m^2 >> 1$. It follows that equation 2.5.25 will have two roots of magnitude approximately $\xi \approx \pm 1/C_m$, which are smaller than one. The other two roots approximately satisfy:

or

$$\xi \simeq \frac{1 - \tilde{U}_{\ell}(1 \pm i\varepsilon \tilde{U}_{\nu}/\tilde{U}_{\ell})}{1 \pm i\varepsilon}$$
(2.5.26)

In the complex plane this is represented by a circle of radius $U_{l}\Delta t/\Delta z$, touching the point one, tilted by an angle \pm arctan $(\epsilon \tilde{U_v}/\tilde{U_l})$ and back through an angle \pm arctan ϵ . Clearly, with small m, points on this circle will not be outside the unit circle if the limit is satisfied:

$$\frac{U_{g}\Delta t}{\Delta z} \leq 1$$
 (2.5.27)

and

$$\frac{U_{\Delta t}}{\Delta z} \leq 1$$
 (2.5.28)

We then conclude that even without momentum exchange the high frequency modes will not grow geometrically if the convective limit is observed.

Now let us turn to the low frequency modes. As $m \rightarrow \infty$, C_m \rightarrow 0) and in the limit the roots of 2.5.25 will be:

$$\xi = \pm 1 - U_{v}$$
 (2.5.29)

and

$$\xi = \pm 1 - U_{g}$$
 (2.5.30)

Then, let us say that for m large but finite the roots of 2.5.25 are:

$$\xi = 1 - \tilde{v}_{\ell} + \delta$$
 (2.5.31)

We can evaluate this perturbation δ by substituting 2.5.31 into 2.5.25, and neglecting the terms of order higher than δ^2 . The resulting quadratic equation will be:

$$[1+\varepsilon^{2}-\frac{(\overline{v}_{v}-\overline{v}_{\ell})^{2}}{c_{m}^{2}}]\delta^{2}-2\varepsilon^{2}(1-\overline{v}_{\ell})(\overline{v}_{v}-\overline{v}_{\ell})\delta-\varepsilon^{2}(1-\overline{v}_{\ell})^{2}(\overline{v}_{v}-\overline{v}_{\ell})^{2}=0$$
(2.5.32)

and the roots of this equation are:

$$\delta = (1 - \tilde{v}_{\ell}) (\tilde{v}_{v} - \tilde{v}_{\ell}) \frac{\varepsilon^{2} \pm i\varepsilon \sqrt{1 - (\tilde{v}_{v} - \tilde{v}_{\ell})/c_{m}^{2}}}{1 + \varepsilon^{2} - (\tilde{v}_{v} - \tilde{v}_{\ell})^{2}/c_{m}^{2}} \qquad (2.5.33)$$

and again using the fact that (U $_{\rm V}$ - U $_{\rm L}$) / C $_{\rm V}<$ 1 we can write the expression for the characteristic root ξ as:

$$\xi \simeq (1 - \tilde{v}_{\ell}) \left[1 - \frac{(\tilde{v}_{v} - \tilde{v}_{\ell}) \varepsilon(\varepsilon \pm i)}{1 + \varepsilon^{2}}\right] \qquad (2.5.34)$$

Since $|1 - \tilde{U}_{g}|$ and $|1 + (\tilde{U}_{v} - \tilde{U}_{g})|$ are of the same order of magnitude for some value of ε one root ξ may lie outside the unit circle. Therefore, without the momentum exchange term k, the low frequency modes will grow geometrically and the method would be unstable. Nonetheless, with very few spacial mesh cells, i.e., with small m the model may have a well behaved solution even without the momentum exchange term.

We now return to equation 2.5.24 to verify the effect of the momentum exchange term. For the high frequency modes, the same considerations are made as in the previous analysis with k equal to zero and it is clear that the roots will be of the same form, only multiplied by a factor which is approximately $1/(1+\kappa)$. Since in that analysis we concluded that the characteristic roots were less than one in magnitude, we can extend with confidence this result to the present case and conclude that for small values of m the model will present a well behaved solution.

To study the low frequency behavior again consider the limiting case as $m \rightarrow \infty$ and then introduce a perturbation of order 1/m. Then, for $m \rightarrow \infty$ equation 2.5.24 becomes:

$$(\xi - 1 + \tilde{U}_{v}) (\xi - 1 + \tilde{U}_{l})_{x} [(\xi - 1 + \tilde{U}_{v} + \xi \kappa) (\xi - 1 + \tilde{U}_{l} + \xi \kappa \rho_{v} / \rho_{l}) - \xi^{2} \kappa^{2} \rho_{v} / \rho_{l}] = 0$$
(2.5.35)

and the roots of this equation are:

$$\xi = 1 - \tilde{U}_{y}$$
 (2.5.36a)

$$\xi = 1 - \tilde{U}_{g}$$
 (2.5.36b)

$$\xi = \sqrt{(1 - \tilde{U}_v)(1 - \tilde{U}_{\ell})}$$
 (2.5.36c)

$$\xi = \sqrt{\frac{(1 - \tilde{U}_{v})(1 - \tilde{U}_{\ell})}{1 + \kappa \rho_{v} / \rho_{\ell}}}$$
(2.5.36d)

Recall that when the difference equations 2.5.16 - 2.5.19 were formed a donor cell scheme was used, which guarantees the reduced velocities \tilde{U}_v and \tilde{U}_l are always positive, so all four characteristic roots in 2.5.36 are always real positive and strictly less than one.

As done before we will investigate the effect of a perturbation δ in those roots, which stands for a large but finite value of m. It is clear from the expressions of equations 2.5.36 that if we analyze the effect of the perturbation in one of the first two values of ξ , the conclusion obtained in this way will stand for all the other three roots.

We then substitute $\xi = 1 - U_v + \delta$ into equation 2.5.24 and keep only the first order terms in δ . This will give a first order equation, and the single root of this equation gives an expression for ξ as:

$$\xi = (1 - \tilde{U}_{v}) \frac{\kappa + C_{m}^{2}}{\kappa + 2C_{m}^{2}}$$
(2.5.37)

which is strictly less than unity. To get this result we have assumed:

$$\rho_{g} | U_{g} - U_{v} | << \rho_{v} \kappa$$
 (2.5.38)

This condition establishes a minimum value for the momentum exchange coefficient, in order to avoid exponentially growing modes. Stewart / 51 / showed that the condition in 2.5.38 implies that the wave length m Δz will not have a growing mode if it is larger than a certain multiple of the radius of an individual bubble or droplet.

To summarize, in this section we have seen that although the two-fluid formulation have at least two complex characteristic roots, this does not imply that a well behaved solution cannot be achieved. With the Von Neumann stability analysis we have shown that the numerical scheme used in our model, with a donor cell differencing will have non-growing high frequency modes for any value of the momentum exchange coefficient, and for the low frequency modes a well behaved solution requires a minimum value for k, expressed in 2.5.38.

III. THE CONSTITUTIVE EQUATIONS AND FUNCTIONS OF STATE

3.1 The Sodium Functions of State and Transport Properties.

The basic source for the sodium properties is a compilation by Golden and Tokar / 46 /, dated 1966. This source has been used extensively since then in sodium technology with great success. Although a recent compilation by the Argonne National Laboratory / 15 / has come to our knowledge, but not yet published, we decided to stay with that of Golden and Tckar on the basis of its wide use and acceptance. A comparison between the new compilation and the one used by us showed a wider range of validity in terms of temperatures and pressure in favor of the new one, but no significant disagreement between them.

A few modifications were made in the original expressions to satisfy program requirements, and all properties were converted to S I units. To help a quick reference to these properties we list them in table 3.1, with the correspondence to usual units.

3.1.1 Saturation Temperature

From the several correlations for the saturation temperature listed in / 46 /, the one which showed the best agreement in the most important range of temperatures 870 - 1100°C (1600 - 2000°F) is the one from Makansi et al, which is valid in the range 620 - 1150°C.

Table 3.1

Units Used in this Work and the Correspondent Usual Ones

Property	SI Units	Equal to
Temperature	°K	°C + 273.15
Pressure	Ра	$14.05 \times 10^{-5} \text{ lbf/in}^2$
Density	kg/m ³	0.06243 lbm/ft ³
Internal Energy	J/kg	4.2992 x 10 ⁻⁴ BTU/1bm
Viscosity	kg/m-sec	0.672 lbm/ft sec
Thermal Conductivity	W/m °K	0.5778 BTU/hr ft °F
Specific Heat	J/kg °K	2.3884 x 10 ⁻⁴ BTU/1bm °F
Surface Tension	N/m	

The expression is:

$$T_{sat} (P) = \frac{a}{b - \ln P}$$

with

$$a = 1.2020 \times 10^4$$

b = 21.9358

valid for

$$4.8 \times 10^3 < P < 6.6 \times 10^5$$

3.1.2 Vapor Density

For the vapor density the expression which gives the density at saturation conditions was used and a perfect gas behaviour in the superheated zone was assumed:

$$\rho_{v}$$
 (P, T) = ($rv_{o} + rv_{1}P + rv_{2}P^{2}$) $\frac{T_{sat}}{T}$

with

$$rv_0 = 1.605 \times 10^{-2}$$

 $rv_1 = 2.510 \times 10^{-6}$
 $rv_2 = 3.230 \times 10^{-13}$

valid for

$$3.4 \times 10^4 < P < 2.3 \times 10^6$$

3.1.3 Liquid Density

From all correlations we have reviewed for the liquid density none showed a pressure dependence. This can be explained because the compressibility effect for the liquid phase is very small, usually smaller than the accuracy of the expressions themselves. Therefore it is reasonable, if one is interested only in the absolute value of that property, to neglect the liquid compressibility. But as seen in chapter 2, the model requires not only the value of the properties but also their derivatives with respect to pressure and temperature. It is clear from the physical point of view that however small, a liquid compressibility exists (otherwise the sonic speed would be infinity).

The estimate of liquid compressibility does not have to be very accurate, since as said before its effect is smaller than the accuracy of the equation of state. Therefore, a simple expression will satisfy the program requirements. With this idea in mind, the approximation was used:

$$\left(\begin{array}{c} \frac{\partial \rho}{\partial P} \end{array}\right)_{\substack{\text{constant}\\\text{temperature}}} = \left(\begin{array}{c} \frac{\partial \rho}{\partial P} \end{array}\right)_{\substack{\text{constant}\\\text{entropy}}} = \frac{1}{C^2}$$

where C is the speed of sound.

A constant sonic speed was taken, equal to 2,100 m/sec, which corresponds to a temperature of approximatly 900°C, and the expression for the liquid density becomes:

110

$$\rho_{\ell}(P,T) = r\ell_{0} + r\ell_{1}T + r\ell_{2}T^{2} + r\ell_{3}T^{3} + r\ell_{4}P$$

with

$$rl_{0} = 1.0116 \times 10^{3}$$

$$rl_{1} = -0.2205$$

$$rl_{2} = -1.9224 \times 10^{-5}$$

$$rl_{3} = 5.6377 \times 10^{-9}$$

$$rl_{4} = 2.26 \times 10^{-7}$$

which is valid in the range

$$100 < T < 1370^{\circ}C$$

3.1.4 Internal Energies

The source of sodium properties gives only the expressions for the enthalpies. Therefore the internal energies were derived as

 $e = h - P/\rho$

For the liquid enthalpy the following expression has been

used:

$$h_{\ell}(T) = h\ell_{0} + h\ell_{1} T + h\ell_{2} T^{2} + h\ell_{3} T^{3}$$

with:

$$hl_{0} = -6.7507 \times 10^{4}$$
$$hl_{1} = 1.6301 \times 10^{3}$$
$$hl_{2} = -0.41672$$
$$hl_{3} = 1.5427 \times 10^{-4}$$

valid in the range

$100 < T < 1500^{\circ}C$

The vapor enthalpy is derived from the liquid expression. Again a perfect gas behavior is assumed for the vapor phase, in which the enthalpy of the super heated vapor is equal to that of saturated vapor at the same temperature. It follows:

 $h_v (T) = hl (T) + hv_0 + hv_1 T$

with

$$hv_0 = 5.089 \times 10^6$$

 $hv_1 = -1.043 \times 10^3$

valid for 600° < T < 1200°C

3.1.5 Transport Properties

Following a list of the transport properties used in the model, again from reference / 46 / is presented

Liquid Thermal Conductivity $K_{g}(T) = C\ell_{o} + C\ell_{1} T + C\ell_{2} T^{2}$ with $C\ell_{o} = 1.0969 \times 10^{2}$ $C\ell_{1} = -6.4494 \times 10^{-2}$ $C\ell_{2} = 1.1727 \times 10^{-5}$ valid for $100 < T < 1370^{\circ}C$ <u>Vapor Thermal Conductivity</u> $K_v (T) = Cv_o + Cv_1 T + Cv_2 T^2$ with $Cv_o = -3.2349 \times 10^{-2}$ $Cv_1 = 1.5167 \times 10^{-4}$ $Cv_2 = -5.4376 \times 10^{-8}$ for 700 < T < 5000°C

```
Liquid Viscosity

(T) = \exp[v\ell_0 + \frac{v\ell_1}{T} + v\ell_2 \ln T]

with

v\ell_0 = -5.732

v\ell_1 = 508.7

v\ell_2 = -0.4925

for

100 < T < 1370^{\circ}C
```

Vapor Viscosity

$$n_v(T) = vv_o + vv_1 T$$

with
 $vv_o = 1.261 \times 10^{-5}$
 $vv_1 = 6.085 \times 10^{-9}$
for
700 < T < 5000°C

Liquid Specific Heat

 $C_{p\ell}$ (T) = $C_{p\ell_0} + C_{p\ell_1} T + C_{p\ell_2} T^2$ with $C_{p\ell_0} = 1.6301 \times 10^3$ $C_{p\ell_1} = -0.83344$ $C_{p\ell_2} = 4.6281 \times 10^{-4}$ for $100 < T < 1500^{\circ}C$

Vapor Specific Heat

 C_{pv} (T) = $C_{p}v_{o} + C_{p}v_{1} T + C_{p}v_{2} T^{2}$ with $C_{p}v_{o} = 0.5871 \times 10^{3}$ $C_{p}v_{1} = -0.83344$ $C_{p}v_{2} = 4.6281 \times 10^{-4}$ for $600 < T < 1200^{\circ}C$

Surface Tension

 $\sigma(T) = st_{0} + st_{1} T$ with $st_{0} = 0.18$ $st_{1} = -1.0 \times 10^{-4}$ in the range $100 < T < 1370^{\circ}C$ Finally we observed that the vapor Prandtl number showed a very smooth variation with temperature. Thus in order to save computation time a quadratic expression for the Prandtl number was fited

$$Prv (T) = pv_0 + pv_1 (T - pv_2)^2$$

with

$$pv_0 = 0.7596$$

 $pv_1 = 0.810 \times 10^{-6}$
 $pv_2 = 844.4$

where the range of validity for this expression is taken as the smallest of the ranges of the properties composing this dimensionless number:

3.2 Mass Exchange Rate

It has been stated in Chapter 2 that the interphase exchange terms play a key role in the stability of the Two-Fluid Model. Of all exchange terms, the mass exchange rate is the most critical one to the code stability. Because of the large difference in densities between the liquid and vapor phases for the usual range of pressures encountered in sodium technology, a small amount of mass transferred between phases corresponds to a very large volume change, and consequently large pressure and velocity variations.

In particular for this model, where the solution of the fluid dynamic equations is reduced to a pressure problem, these large pressure variations must be handled with extreme care. To insure the code stability, a choice is to be made of an adequate model for the mass exchange rate and its most strongly varying terms are to be implicitly treated.

In general, the mass exchange rate S will be a function of the void fraction, pressure, temperatures and velocities, evaluated both at the old and new time levels. If the solution technique of chapter 2 is recalled, the derivatives of S with respect to the properties at the new time value are required, therefore the mass exchange rate is to be a continuous, differenciable function in these variables.

The mass exchange model used in the code is derived from the principles of the kinetic theory, in which the net mass flux j crossing an imaginary plane between phases is given by:

116

$$j = \sqrt{\frac{M}{2\pi R}} \frac{Pv}{\sqrt{T_v}} - \frac{P\ell}{\sqrt{T_\ell}}$$
(3.2.1)

where

J = mass flux (mass per unit time per unit area)

M = molecular weight

R = universal gas constant

P and T = absolute pressure and temperature for both phases.

For small differences in pressure and temperature, the above expression can be reduced to:

$$\mathbf{j} = \sqrt{\frac{M}{2\pi R}} \frac{P}{\sqrt{T_s}} \left[\frac{\Delta P}{P} - \frac{\Delta T}{2T_s} \right]$$
(3.2.2)

the Clayperon equation

$$\frac{dP}{dT} \bigg|_{sat} = \frac{h_{fg}}{T v_{fg}}$$
(3.2.3)

is used to eliminate ΔP in equation 3.2.2 leading to:

$$\mathbf{j} = \sqrt{\frac{\mathbf{R}}{2\pi \mathbf{M}}} \rho \mathbf{v} \left(\frac{\mathbf{h}_{fg}}{\mathbf{p} \cdot \mathbf{v}_{fg}} - \frac{1}{2} \right) \frac{\Delta \mathbf{T}}{\sqrt{\mathbf{T}_{s}}}$$
(3.2.4)

where

h_{fg} = difference in enthalpy between phases

 v_{fg} = difference in specific volume between phases and where the simplification was made:

$$v = \frac{P}{RT/M}$$

For the particular case of sodium, a few more simplifications in equation 3.2.4 can be made. First note that $\rho\ell >> \rho v$, thus:

$$\mathbf{v}_{\mathbf{fg}} = \frac{1}{\rho} - \frac{1}{\rho_g} \simeq \frac{1}{\rho_g}$$

second, for the actual values of h_{fg} , P and v_{fg} if follows

$$\frac{\frac{h}{fg}}{P_{v_{fg}}} >> \frac{1}{2}$$

Therefore equation 3.2.4 becomes:

$$\mathbf{j} = \sqrt{\frac{R}{2\pi M}} \frac{\rho_v^2 \mathbf{h}_{fg}}{P} \frac{\Delta T}{\sqrt{T_s}}$$
(3.2.5)

The above equation was obtained with the assumptions of ideal conditions embodied in the kinetic theory. Although this model's predictions are in good agreement with experimental data for evaporation, large discrepancies appear when condensation is considered. Silver and Simpson /41/ suggested a correction factor, which modifies equation 3.2.5 for condensation:

$$j_{c} = \frac{2\sigma}{2-\sigma} \sqrt{\frac{R}{2\pi M}} \frac{\rho_{v}^{2} h_{fg}}{P} \frac{\Delta T}{\sqrt{T_{s}}} \qquad (3.2.6)$$

Figure 3.1 reproduced from reference 41 shows the value of σ as a function of pressure. From this figure, it can be seen that for the range of pressures expected to be encountered in LMFBR safety analysis, the value of σ is relatively small, thus the simplification can be made:

$$\frac{2\sigma}{2-\sigma} \simeq \sigma$$

(From Reference 41)

Considering also the small variation of σ with the pressure, and the uncertainties involved in obtaining this coefficient, a reasonable approximation is to take a constant value for σ . Thus, for the pressure equal to one atmosphere the value of σ is:

$$\sigma = 0.005$$

The next factor to be evaluated in the mass exchange rate is the specific area between phases. Wilson /11/proposed a model which takes into account three flow regimes - bubbly, anular flow and dry out. For the bubbly regime, with void fraction less than 0.6, he assumes the bubbles forming in the middle of each subchannel, packed on top of each other. (Figure 3.2) With this assumption, the expression for the specific area becomes:

$$\frac{A}{V} = \frac{4}{D} \sqrt{\frac{3\pi\alpha}{2\sqrt{3} (P/D)^2 - \pi}} \alpha < 0.6$$
(3.2.7)

where

D = fuel pin diameter
P/D = pitch to diameter ratio

Although this model predicts reasonable values for the specific area at high values of the quality, for small void fractions this model would postulate the existance of unreasonalby small vapor bubbles, thus overestimating the specific area. To correct this we introduced a minimum value for the bubble radius, so that for .

Figure 3.2 Bubbly Flow Representation

small void fractions the model would be pictured as in Figure 3.3. The expression for the specific area becomes:

$$\frac{A}{V} = \frac{3\alpha}{r_{m}} \qquad \alpha < \alpha_{m} \qquad (3.2.8)$$

where

$$\alpha_{\rm m} = \frac{8}{3} \left(\frac{r_{\rm m}}{D}\right)^2 \frac{\pi}{\sqrt{3} (P/P)^2 - \pi/2}$$

were α_m was chosen so that the two expressions of equations 3.2.7 and 3.2.8 be continuous at α_m , and r_m is the minimum bubble radius, which was taken in our model equal to 6 x 10 ⁻⁴ m.

For the anular flow, all the liquid is assumed to be flowing in a circular annulus around the fuel rods, and the expression for the specific area becomes:

$$\frac{A}{V} = \frac{4}{D} \sqrt{\frac{2\sqrt{3} \pi (P/D)^2}{\left[2\sqrt{3} (P/D)^2 - \pi\right]^2}} - \frac{\pi\alpha}{2\sqrt{3} (P/D)^2 - \pi}$$
(3.2.9)

for $0.6 < \alpha < 0.957$

Finally in the dryout regime a partial contact of the vapor with the fuel pin walls is assumed, and the expression for the area becomes:

$$\frac{A}{V} = \frac{4}{D} \sqrt{\left[\frac{2\sqrt{3}\pi (P/D)^2}{(2\sqrt{3}(P/D)^2 - \pi)^2} - \frac{\pi \alpha}{2\sqrt{3}(P/D)^2 - \pi}\right] \left[\frac{1 - \alpha}{1 - .957}\right]}$$
(3.2.10)

for $\alpha > 0.957$

where the dryout transition point were taken from the work by Autruffe /50/ analysing the KFK experiments / 52/.

Note that the transition from bubbly to annular flow presents a discontinuity in the specific area, whose magnitude is a function of the pitch to diameter ratio. The transition at $\alpha = 0.6$ was choosen to minimize this discontinuity for the usual pitch to diameter ratio of 1.25. Finally note that in the limiting case $\alpha = 0$ or $\alpha = 1$ the interphase area is obviously zero. This would prevent the initiation of boiling or condensation. To overcome this difficulty a "seed" void fraction is introduced to account for the initiation of phase transition. In this way α is substituted in equations 3.2.8 and 3.2.10 by $\hat{\alpha}$ which is defined as:

$$\hat{\alpha} = \begin{cases} \alpha & \text{if } \alpha > 10^{-4} \\ 10^{-4} & \text{if } \alpha \le 10^{-4} \end{cases}$$
$$\hat{\alpha} = \begin{cases} \alpha & \text{if } \alpha < .9999 \\ .9999 & \text{if } \alpha > .9999 \end{cases}$$

Now the question of determining which terms are to be evaluated at the new or old time level can be addressed. The specific area must be evaluated at the old time level since the discontinuity in the transition from bubbly to annular flow makes it impossible to obtain the derivative of the mass exchange rate.

Both the enthalpy of vaporization h_{fg} and the vapor density does not show a marked dependence on the primary variables pressure and temperatures, therefore they can also be evaluated at the old time level.

On the other hand, the temperatures and pressure appearing in the expression of the mass flux have a very important dependence, thus they must be taken at the new time value.

Following is a summary of the equations used for the mass exchange rate:

$$s = s_e - s_c$$
 (3.2.11)

$$S_{e} = A\alpha \sigma_{e} \sqrt{\frac{R}{2\pi M}} \left[\frac{\rho_{v}^{2} h_{fg}}{P} \right]^{n} \left[\frac{(T_{\ell} - T_{s})(1 - \alpha)}{T_{s}} \right]^{n+1}$$
(3.2.12)

$$S_{c} = A(1-\alpha) \sigma_{c} \sqrt{\frac{R}{2\pi M}} \left[\frac{\rho_{v}^{2}}{\frac{v^{h} fg}{P}} \right]^{n} \left[\frac{\mathfrak{C}_{s} - T_{v}}{T_{s}} \right]^{n+1}$$
(3.2.13)

where

$$\sigma_{e} = \begin{cases} 0 & \text{if} & T_{\ell} < T_{s} \\ 1.0 & \text{if} & T_{\ell} \ge T_{s} \\ 0 & \text{if} & T_{v} > T_{s} \\ \sigma_{c} = \begin{cases} 0 & \text{if} & T_{v} > T_{s} \\ 0.005 & T_{v} \le T_{s} \end{cases}$$
(3.2.14) (3.2.15)

$$A = \frac{3 \alpha}{r_m} \qquad \text{for } \alpha < \alpha_m \qquad (3.2.16)$$

$$\alpha_{\rm m} = \frac{8}{3} \left(\frac{r_{\rm m}}{\rm D}\right)^2 \frac{\pi}{\sqrt{3} (P/D)^2 - \pi/2}$$
(3.2.17)

$$A = \frac{4}{D} \sqrt{\frac{3 \pi \alpha}{2\sqrt{3} (P/D)^2 - \pi}} \qquad \alpha_m < \alpha < 0.6 \qquad (3.2.18)$$

$$A = \frac{4}{D} \sqrt{\frac{2\sqrt{3} \pi (P/D)^2}{2\sqrt{3} (P/D)^2 - \pi}^2} - \frac{\pi \alpha}{2\sqrt{3} (P/D)^2 - \pi}$$
(3.2.19)

$$A = \frac{4}{D} \sqrt{\left[\frac{2\sqrt{3} \pi (P/D)^2}{(2\sqrt{3} (P/D)^2 - \pi)^2} - \frac{\pi \alpha}{2\sqrt{3} (P/D)^2 - \pi}\right] \left[\frac{1 - \alpha}{1 - .957}\right]}$$
(3.2.20)

.α > **0.957**

$$\hat{\alpha} = \begin{cases} 10^{-4} & \text{if} & \alpha \le 10^{-4} \\ \alpha & \text{if} & 10^{-4} < \alpha < .9999 \\ .9999 & \text{if} & \alpha \ge .9999 \end{cases} (3.2.21)$$

$$r_{m} = 6 \times 10^{-4} m$$

 $\frac{R}{M} = 361.30 J/kg °K$

,

•

,

3.3 Momentum Exchange

In this section we identify two kinds of momentum transfer in the fluids dynamic equations. One represents the interaction of the fluid with the fuel pins and fuel assembly structure, and the second one accounts for the momentum exchange between the phases themselves. Furthermore, because the fuel assembly geometry presents a very marked difference in the flow path for the axial and radial directions, we will have a different set of correlations for each direction.

Starting with the axial direction, a set of correlations developed by Autruffe/ 50 / analyzing the KFK experiments/ 52 / is used. The experiments were a series of steady state, single tube tests for several mass flow rates and qualities. Studying the pressure drop in the unheated zone (thus with no change in quality) the following correlations were proposed.

Liquid wall friction: axial direction

$$F_{l_z} = \left[\frac{0.18}{2D_H} \operatorname{Re}_{l}^{-2} \rho l \left| U_{l_z} \right| \right]^n \quad U_{l_z}^{n+1} \quad \alpha < \alpha$$
(3.3.1)

$$F_{lz} = \left[\frac{0.18}{2D_{H}} \operatorname{Re}_{l}^{-.2} \rho l \left| U_{lz} \right| \frac{(1-\alpha)}{(1-\alpha_{dry})} \right]^{n} \qquad U_{lz}^{n+1} \quad \alpha \ge \alpha_{dry} \quad (3.3.2)$$

with

$$\operatorname{Re}_{\ell} = \frac{(1-\alpha) \rho \ell |U_{\ell z}| D_{H}}{n_{\ell}}$$
(3.3.3)

126

$$D_{H} = 4 \times \frac{\text{free volume in tube bank}}{\text{exposed surface area of tubes}}$$

$$\alpha$$
dry = 0.957

Vapor wall friction: axial direction

$$F_{vz} = 0 \qquad \alpha \leq \alpha_{dry}$$

$$F_{vz} = \left[\frac{0.2}{2D_{H}} \operatorname{Rev}^{-.2} \alpha \rho_{v} | U_{vz} |\right]^{n} U_{vz}^{n+1} \qquad \alpha > \alpha_{dry} \qquad (3.3.4)$$

with

$$Re_{v} = \frac{\alpha \rho_{v} |U_{vz}| D_{H}}{\eta_{v}}$$
(3.3.5)

Interphase momentum exchange: axial direction

$$M_{z} = K_{z}^{n} (U_{vz} - U_{lz})^{n+1}$$
(3.3.6)

with

$$K_{z} = \frac{4.31}{2D_{H}} \rho v |U_{vz}^{-} U_{lz}^{-}| [(1-\alpha)(1+75(1-\alpha))]$$
(3.3.7)

Wilson/ 11 / introduced another term in the expression for the interphase momentum exchange, taking into account the momentum transport associated with the interphase mass exchange. In this formulation, the equation for the momentum exchange becomes:

$$M_{z} = (K_{z} + S)^{n} (U_{vz} - U_{lz})^{n+1}$$
(3.3.8)

•

where S is the mass exchange rate.

We also introduced in the above set of equations a term to represent a localized pressure drop, thus enabling the model to simulate fuel pin spacers or blockages. The expression, which adds up to the liquid wall friction is:

$$\Delta P_{L} = [K_{L} | U_{\ell z} |]^{n} U_{\ell z}^{n+1}$$
(3.3.9)

where K_{I} is an input parameter.

If for the axial direction momentum exchange we could find in the literature a number of sodium experiments, for the radial direction this abundance of data does not exist. But if we look into the dimensionless numbers involved in the momentum exchange models, we note the absence of the Prandtl number. Indeed, this number represents the energy transfer associated with momentum transport, and does not influence the pure momentum transfer we are interested here. Since of all dimensionless numbers involved in transport processes the Prandtl number is the only one which differenciates sodium from the other usually encountered fluids, we can expect to have good results if we use for our sodium momentum exchange a model developed for another fluid.

For the wall friction two correlations widely accepted in heat exchanges and boiler technology, were considered. One is by Kays and London/ 48 /and the other by Gunter and Shaw/ 49 /. Both correlations present approximately the same value for the friction factor, thus we made our choice in favor of the second one because its formulation is more conveniently adapted to our code. The correlations adopted are:

128

Liquid wall friction: radial direction

$$F_{lr} = \left[\frac{f_{lr}}{2D_{H}} \rho l | U_{lr}^{m} | \right]^{n} (U_{lr}^{m})^{n+1}$$
(3.3.10)

where

$$f_{\ell r} = \begin{cases} \frac{180}{Re_{\ell r}} & Re_{\ell r} \leq 202.5 \\ 1.92 \ Re_{\ell r}^{-.145} & Re_{\ell r} \geq 202.5 \end{cases}$$
(3.3.11)
$$Re_{\ell r} = \frac{\rho \ell | U_{\ell r}^{m} | D_{H}}{\eta_{\ell}}$$
(3.3.12)

and U_{lr}^{m} is the radial velocity at the point of maximum flow constriction between rods, and the hydraulic diameter D_{H} is the same as for the axial direction.

For the vapor wall friction and interphase momentum exchange we found very little in the literature. Therefore we proposed a formulation for these terms consistent with the one used for the other terms.

Vapor wall friction: radial direction

$$F_{vr} = 0 \qquad \alpha \leq \alpha_{dry} \qquad (3.3.13)$$

$$F_{vr} = \left[\frac{f_{vr}}{2D_{H}} \rho \psi U_{vr}^{m}\right]^{n} \qquad (U_{vr}^{n+1})^{n+1} \qquad \alpha > \alpha_{dry}$$

with

$$f_{vr} = \begin{cases} \frac{180}{\text{Re}_{vr}} & \text{Re}_{vr} \leq 202.5 \\ 1.92 \text{ Re}_{vr}^{-.145} & \text{Re}_{vr} \geq 202.5 \end{cases}$$
(3.3.14)

with

$$Re_{vr} = \frac{\rho v \left| U_{vr}^{m} \right| D_{H}}{\eta_{v}}$$
(3.3.15)

and here again, U_{vr}^{m} is the vapor radial velocity <u>at the point of</u> maximum constriction between the fuel pins.

Interphase momentum exchange: radial direction

$$M_{r} = K_{r}^{n} (U_{vr}^{m} - U_{\ell r}^{m})^{n+1}$$
(3.3.16)

with

$$K_{r} = \frac{4.31}{2D_{H}} \rho_{v} | U_{vr}^{m} - U_{lr}^{m} | [(1-\alpha)(1+75(1-\alpha))]$$
(3.3.17)

To evaluate the velocities at the point of minimum transverse flow area we recall Chapter Two, where the primary radial velocities were defined as being the volume average velocities in the cell. One of the assumptions made in the derivations of that chapter was:

$$U_r(r)A_r(r) = constant$$

Thus the average velocity in the cell is:

or

$$U_{r}^{m} = \frac{V}{A_{r}^{m}(r_{k+1} - r_{k})} < U_{r}^{>}$$
 (3.3.18)

3.4 Energy Exchange

As done for the momentum exchange, here again we divide the energy interactions into two parts, the energy exchange between phases and the heat exchange between fluid and fuel pins and structural materials. For the latter, we identify three subdivisions, the fuel pin heat conduction, the convective heat transfer between the fuel pin walls and the fluid, and finally the fuel assembly structure model.

3.4.1 Fuel Pin Heat Conduction

A single rod in each volume (node) is selected to represent the fuel pin heat conduction, which is assumed to be thermally equivalent to any other rod in that cell. Axial heat conduction is neglected, so that the radial heat conduction equation is:

$$\rho C_{p \partial t} - \frac{1}{r} \frac{\partial}{\partial r} (r K_{\partial t}^{\partial T}) = q''' \qquad (3.4.1)$$

For the time being all material properties are assumed to be known quantities and we proceed to analyze the solution of equation 3.4.1. Later in section 3.4.2 these material properties are discussed.

The fuel and the clad are now divided into mesh cells, the number of these cells being an input parameter. We only impose that all mesh spacings in the same region, whether fuel or clad, be of the same size, but mesh spacings may be different in different regions. One

131

cell is assumed for the gap. Fuel temperatures are located at the boundaries of mesh cells, represented by the subscript k. Fuel pin properties are evaluated in the center of mesh cells, and are represented with the subscript $k+l_2$. If we integrate equation 3.4.1 between the center of two adjacent cells we get:

$$\int_{\mathbf{r}_{k-\frac{1}{2}}}^{\mathbf{r}_{k+\frac{1}{2}}} [\mathbf{r}\rho C_{p} \frac{\partial T}{\partial t} - \frac{\partial}{\partial r} (\mathbf{r}K\frac{\partial T}{\partial t})] d\mathbf{r} = \int_{\mathbf{r}_{k-\frac{1}{2}}}^{\mathbf{r}_{k+\frac{1}{2}}} q''' r d\mathbf{r}$$
(3.4.2)

Using the approximation:

$$\langle \rho C_{p} \rangle_{k} = \frac{r_{k+l_{2}}^{2} - r_{k}^{2}}{2} (\rho C_{p})_{k+l_{2}} + \frac{r_{k}^{2} - r_{k-l_{2}}^{2}}{2} (\rho C_{p})_{k-l_{2}}$$
 (3.4.3)

and

$$\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} r_{\rho}C_{p} \frac{\partial T}{\partial t} dr = \langle \rho C_{p} \rangle_{k} \frac{\partial T_{k}}{\partial t}$$
(3.4.4)

Also in equation 3.4.2 we have:

$$\int_{\mathbf{r}_{k-\frac{1}{2}}}^{\mathbf{r}_{k+\frac{1}{2}}} \left[\frac{\partial}{\partial \mathbf{r}} \mathbf{r} \mathbf{K} \frac{\partial \mathbf{T}}{\partial \mathbf{t}}\right] d\mathbf{r} = \left[\mathbf{r} \mathbf{K} \frac{\partial \mathbf{T}}{\partial \mathbf{r}}\right]_{\mathbf{r}_{k-\frac{1}{2}}}^{\mathbf{r}_{k+\frac{1}{2}}}$$
$$= \left(\mathbf{r} \mathbf{K}\right)_{\mathbf{k}+\frac{1}{2}} \frac{\mathbf{T}_{\mathbf{k}+1} - \mathbf{T}_{\mathbf{k}}}{\Delta \mathbf{r}_{\mathbf{k}+\frac{1}{2}}} - \left(\mathbf{r} \mathbf{K}\right)_{\mathbf{k}-\frac{1}{2}} \frac{\mathbf{T}_{\mathbf{k}} - \mathbf{T}_{\mathbf{k}-1}}{\Delta \mathbf{r}_{\mathbf{k}-\frac{1}{2}}} \qquad (3.4.5)$$

Finally, the right hand side of equation 3.4.2 becomes:

$$\int_{r_{k-\frac{1}{2}}}^{r_{k+\frac{1}{2}}} q''' r dr = \frac{r_{k+\frac{1}{2}}^2 - r_k^2}{2} q_{k+\frac{1}{2}}'' + \frac{r_k^2 - r_{k-\frac{1}{2}}^2}{2} q_{k-\frac{1}{2}}'' \qquad (3.4.6)$$

and the difference equation corresponding to equation 3.4.2 becomes:

$$< \rho C_{p} >_{k}^{n} \left(\frac{T_{k}^{n+1} - T_{k}^{n}}{\Delta t} \right) - \left(\frac{rK}{\Delta r} \right)_{k+\frac{1}{2}}^{n} \left(T_{k+1}^{n+1} - T_{k}^{n+1} \right) + \left(\frac{rK}{\Delta r} \right)_{k-\frac{1}{2}}^{n} \left(T_{k}^{n+1} - T_{k-1}^{n+1} \right)$$

$$= \left[\frac{r_{k+\frac{1}{2}}^{2} - r_{k}^{2}}{2} q_{k+\frac{1}{2}}^{""} + \frac{r_{k}^{2} - r_{k-\frac{1}{2}}^{2}}{2} q_{k-\frac{1}{2}}^{""} \right]^{n} \qquad (3.4.7)$$

There are four locations where equation 3.4.7 must be modified to accomodate boundary conditions. For the center of the fuel pin, equation 3.4.1 is integrated from $r = r_{\frac{1}{2}} = 0$ to $r = r_{\frac{1}{2}}$, and the resulting equation is:

$$\langle \rho C_{p} \rangle_{1}^{T_{1}^{n+1} - T_{1}^{n}} - (\frac{rK}{\Delta r})_{1\frac{1}{2}}^{n}(T_{2}^{n+1} - T_{1}^{n+1}) = \frac{r_{1\frac{1}{2}}^{2}}{2} q_{1\frac{1}{2}}^{m}$$
 (3.4.8)

with

ł

$$\langle \rho C_{p} \rangle_{1} = \frac{r_{1\frac{1}{2}}^{2}}{2} (\rho C_{p})_{1\frac{1}{2}}$$
 (3.4.9)

For the clad outside surface we obtain the difference equation by integrating equation 3.4.1 from $r = r_{N-\frac{1}{2}}$ to $r = r_{N}$ = outside fuel pin radius, and introducing the clad surface heat flux q". We obtain the equation:

$$<_{\rho}C_{p}>_{N}(\frac{T_{N}^{n+1}-T_{N}^{n}}{\Delta t}) + (\frac{rK}{\Delta r})_{N-\frac{1}{2}}^{n}(T_{N}^{n+1}-T_{N-1}^{n+1}) + q''r_{N}$$
$$= \frac{r_{N}^{2}-r_{N-\frac{1}{2}}^{2}}{2}q_{N-\frac{1}{2}}^{''} q_{N-\frac{1}{2}}^{''} \qquad (3.4.10)$$

with

$$<\rho C_{p}>_{N} = \frac{r_{N}^{2} - r_{N-\frac{1}{2}}^{2}}{2}(\rho C_{p})_{N-\frac{1}{2}}^{n}$$
(3.4.11)

The general expression for the heat flux q" (later in section 3.5 the correlations for the heat flux will be discussed in detail) is:

$$q'' = h_{\ell}^{n}(T_{w}^{n+1} - T_{\ell}^{n+1}) + h_{v}^{n}(T_{w}^{n+1} - T_{v}^{n+1}) + h_{NB}^{n}(T_{w}^{n+1} - T_{S}^{n+1})$$
(3.4.12)

where

$$T_w = T_N =$$
outside clad temperature
 T_l , T_v , $T_s =$ liquid, vapor and saturation temperatures
 h_l , h_v , $h_{NB} =$ heat transfer coefficients

Finally for the two equations involving gap properties the term $\frac{k}{\Lambda r}$ is replaced by h_{GAP}, the gap conductance.

Returning to equation 3.4.7 note that a fully implicit differentiating scheme was used in this equation. This difference equation can be shown to be unconditionally stable. In this way we ensure that a time step determined by the fluid equations stability does not cause any stability problem for the heat conduction problem.

Equation 3.4.7 couples the temperature at a cell k with its neighbors k+l and k-l, thus the temperature for all cells must be solved simultaneously. We incorporate an efficient technique to save computational time for this solution. This technique, proposed by Reed and Stewart / 21 / is a modification of the tridiagonal matrix inversion. In matrix form, the set of equations 3.4.7 become:

$$\begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & 0 \\ a_{21} & a_{22} & a_{31} & 0 & \cdots & 0 \\ 0 & a_{31} & a_{33} & a_{34} & \cdots & 0 \\ \vdots & 0 & & & \vdots \\ 0 & \vdots & & & & \vdots \\ 0 & 0 & & a_{N-1,N} & a_{NN} \end{bmatrix} \times \begin{bmatrix} T_1^{n+1} \\ T_2^{n+1} \\ \vdots \\ \vdots \\ T_T^{n+1} \\ T \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ \vdots \\ f_N \end{bmatrix}$$
(3.4.13)

where the coefficients a's and f's depend only on the fuel geometry, the power density and material properties. All these quantities are evaluated at the old time step, therefore they do not change during the new time step iterations.

The usual tridiagonal solution for this equation replaces the matrix of coefficients a's (which we will call by the capital letter A) by a product:

/A = C x B

with

Ł

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ \mathbf{C}_{21} & 1 & 0 & \dots & 0 & 0 \\ 0 & \mathbf{C}_{31} & 1 & 0 & \dots & \\ \vdots & \vdots & \vdots & \vdots & \\ 0 & 0 & \dots & \mathbf{C}_{N,N-1}, & 1 \end{bmatrix}$$
and

 $B = \begin{bmatrix} b_{11} & b_{12} & 0 & 0 & \dots & 0 \\ 0 & b_{22} & b_{23} & 0 & \dots & 0 \\ \vdots & 0 & b_{33} & \vdots & \vdots & \vdots & b_{N-1,N-1} & b_{N-1,N} \\ \vdots & \vdots & \vdots & b_{N-1,N-1} & b_{N-1,N} \\ 0 & 0 & 0 & 0 & b_{NN} \end{bmatrix}$

In order for this factorization to be true, we must require:

Now define a vector X such that:

 $\mathbf{F} = \mathbf{C} \times \mathbf{X}$

where F is the vector of coefficients f's in equation 3.4.13. This factorization requires:

$$x_{1} = f_{1}$$

$$x_{p} = f_{p} - c_{p,p-1} X_{p-1}$$

In this way, equation 3.4.13 becomes:

$$B \times T = X \qquad (3.4.14)$$

where B is an upper triangular matrix, and once we have gotten the value of $T_{N,N}^{n+1}$, all other temperatures are easily obtained by backward substitution.

The important characteristic of all these operations is that they are performed only on explicit terms. Thus this procedure must be carried only once, at the beginning of the new time step.

The last line of equation 3.4.14 is the one used to determine the clad outside wall temperature. This is the only equation which involves implicit temperatures in the right hand side. If we recall equations 3.4.10 and 3.4.12, we can write this equation for the wall temperature, isolating the implicit terms:

$$b_{NN}T_{NN}^{n+1} = f_N^n + h_\ell^n T_\ell^{n+1} + h_V^n T_V^{n+1} + h_{NB}^n T_s^{n+1}$$
 (3.4.15)

Then, after any Newton iteration k we use equation 3.4.15 to calculate the new wall temperature T_{NN} , without the need for calculating all the other temperatures, and only after the Newton iteration has converged we return to equation (3.4.14) to calculate the fuel temperatures.

3.4.2 Fuel Pin Material Properties

For the clad heat capacity and thermal conductivity the properties of stainless steel are incorporated in the code. From reference / 53 / the following expressions were selected:

$$(\rho C_p)_{clad} = a_0 + a_1 T + a_2 T^2$$
 (3.4.16)

$$K_{clad} = b_0 + b_1 T$$
 (3.4.17)

138

with

$$a_0 = 4.28 \cdot 10^6$$

 $a_1 = 3.75 \cdot 10^2$
 $a_2 = 7.45 \cdot 10^3$
 $b_0 = 16.27$
 $b_1 = 1.204 \cdot 10^{-2}$

Two axially different zones are implemented in the code to represent the fuel itself. One with the properties of Plutonium-Uranium oxides to represent the active core region, and the second one to simulate the fission gas upper plenum.

From reference / 21 / the following expressions were selected to represent the fuel region:

$$(\rho C_p)_{FUEL} = (a_0 + a_1 T + a_2 T^2 + a_3 T^3) (1 + 0.045\theta_{pu}) \cdot \theta_d$$
 (3.4.18)

$$K_{\text{FUEL}} = (b_0 + b_1 T + b_2 T^2) (1 - (1 - \theta_d) \cdot X)$$
(3.4.19)

with

$$x = 2.74 - 5.8 \times 10^{-4} T$$

$$\theta_{pu} = \text{fraction of } PuO_2 \text{ in the mixed oxide fuel}$$

$$\theta_d = \text{fraction of theoretical density}$$

$$a_0 = 1.81 \times 10^6$$

$$a_1 = 3.72 \times 10^3$$

$$a_2 = -2.51$$

$$a_3 = 6.59 \times 10^{-4}$$

$$b_0 = 10.8$$

$$b_1 = -8.84 \times 10^{-3}$$

$$b_2 = 2.25 \times 10^{-6}$$

The fission gas plenum is simulated with a zero heat capacity.

The gap heat capacity is also assumed to be zero. For its conductance the following expression was incorporated, from reference / 5 /:

$$h_{Gap} = h_c + h_r$$
 (3.4.20)

with

$$h_r = (T_f^2 + T_c^2)(T_f + T_c)1.70 \times 10^{-8}$$
 (3.4.21)

and

$$h_{c} = \left[\frac{dg + 1.32 \times 10^{-4}}{Cg} + 0.61 \times 10^{-4}\right]^{-1} + 1.8 \times 10^{3} \quad (3.4.22)$$

with

$$Cg = 15. \times 2^{d11}$$

where

dg = gap thickness dil = fraction of helium in gap composition T_f and T_c = outside fuel pellet and inside clad temperature

3.4.3 Convective Heat Transfer Coefficient

It has been mentioned in the previous section the expression for the heat transfer between the fluid and the fuel pins as:

$$q'' = h_{\ell}^{n}(T_{w}^{n+1} - T_{\ell}^{n+1}) + h_{v}^{n}(T_{w}^{n+1} - T_{v}^{n+1}) + h_{NB}^{n}(T_{w}^{n+1} - T_{s}^{n+1})$$

This expression is an extension of the correlations proposed by Chen / 23 / for non-metallic coolants. Although this correlation has not been verified by comparison with experimental data, we anticipate good agreement with experiments, based on the great success the assumptions of micro and macro-convective heat transfer mechanism has encountered for non-metallic coolants. Nevertheless, only an extensive experimental program could give a definitive confirmation of this model.

The conditions for validity of the correlation are stable, vertical, axial convective flow of saturated liquid, with wetted heat transfer surface. These conditions are in general encountered in convective boiling in annular or mist-annular flow. The model is based on the postulate that there are two mechanisms contributing to the total heat transfer, and these mechanisms interact with each other. The macro-convective mechanism is associated with overall flow heat transfer, and the micro-convective mechanism is associated with bubble growth in the annular liquid film.

The expression for the micro-convective heat transfer coefficient is:

$$h_{NB} = 0.00122 \frac{\kappa_{\ell}^{*79} c_{p\ell}^{*45} \rho_{\ell}^{*49} \Delta p^{*75} s_{f}}{\sigma^{*5} \eta_{\ell}^{*29}} (\frac{\Delta T}{h_{\ell g} \rho_{v}})^{*24}$$
(3.4.23)

where S_f the suppression factor defined as:

$$s_f = (\frac{\Delta T_e}{\Delta T})^{.99}$$

Figure 3.4 Supression Factor vs. Reynolds Number

Figure 3.5 The Reynolds Number Factor

with

- ΔT_e = effective superheat for bubble growth in annular liquid
- ΔT = difference between wall temperature and saturation temperature
- Δp = difference between pressure at the wall and liquid temperature

Figure 3.4 shows the dependence of S on the Reynolds number. From that figure, we extract the correlation for S_f :

$$\mathbf{S}_{f} = \begin{cases} (1 + .12 \ \text{Re}_{TP}^{1.14})^{-1} & \text{Re}_{TP} \leq 32.5 \\ (1 + .42 \ \text{Re}_{TP}^{.78})^{-1} & 32.5 < \text{Re}_{TP} \leq 70 \\ 0.1 & \text{Re}_{TP} > 70 \end{cases}$$
(3.4.24)

and the two phase Reynolds number is defined as:

$$Re_{TP} = F^{1.25} \frac{(1-\alpha)\rho_{\ell} U_{\ell} D_{H}}{\eta_{\ell}}$$
(3.4.25)

where F is the Reynolds number factor, shown in Figure 3.5. The analytical expression from this figure is:

$$F = 2.35(.213 + \frac{1}{X_{tt}})^{.736} \qquad X_{tt} < 10.$$

$$F = 1.0 \qquad X_{tt} \ge 10.$$
(3.4.26)

and

$$\mathbf{x}_{tt} \text{ is the Martinelli parameter:}$$
$$\mathbf{x}_{tt} = \left(\frac{1-X}{\rho_{\ell}}\right)^{9} \left(\frac{\rho_{v}}{\rho_{\ell}}\right)^{5} \left(\frac{\eta_{\ell}}{\eta_{v}}\right)^{1}$$
(3.4.27)

For the macroscopic heat transfer coefficient, Manahen / 11 / proposed a modified form of the Lyon-Martinelli equation:

$$h_{\ell} = F^{\cdot 375} h_{\ell sp}$$
 (3.4.28)

whre F is the same Reynolds number factor used for the microscopic heat tranfer coefficient and h_{lsp} is the liquid single phase heat transfer coefficient. The CHAD correlation was used for this single phase heat transfer coefficient:

$$h_{lsp} = N_u \frac{k_l}{D_H}$$

with

$$N_u = \frac{4.5R}{R Pe^{.3}}$$
 Pe > 150 (3.4.29)

with

$$R = -16.15 + 24.96(P/d) - 8.55(P/d)^2$$
 (3.4.30)

~

and Pe is the Perclet number = RePr

Finally, for the vapor single phase heat transfer coefficient the Dittus-Boelter correlation is used

$$h_v = 0.023 \text{ Re}_v^{-8} \text{Pr}_v^{-4} \frac{k_v}{D_H}$$
 (3.4.31)

3.4.4 Fuel Assembly Structure Models

For the structural materials in fuel assembly two elements are considered: the wire wrap and the fuel assembly hex can.

The wire wrap is modeled by assuming it has the same temperature as the outside clad surface. In this way, a thin layer of stainless steel, corresponding to the wire wrap heat capacity is added to the heat capacity of the last cell of the clad in the fuel pin model.

Presently the model considers the fuel assembly hex can as an adiabatic boundary condition, modeling only the effect of its heat capacity in transients, although the model was designed to accomodate changes which would consider a heat sink outside the hex can.

The equation used to model the hex can heat capacity is:

$$(\rho C_{p})_{c} \left(\frac{T_{c}^{n+1} - T_{c}^{n}}{\Delta t} \right) + h_{\ell}^{n} (T_{c}^{n+1} - T_{\ell}^{n+1}) + h_{v}^{n} (T_{c}^{n+1} - T_{v}^{n+1})$$

+ $h_{NB}^{n} (T_{c}^{n+1} - T_{s}^{n+1}) = 0$ (3.4.32)

where

t

 h_{ℓ} , h_{v} , h_{NB} are the heat transfer coefficients discussed in the previous section; T_{c} , T_{ℓ} , T_{v} , T_{s} are the hex can, liquid, vapor and saturation temperatures.

3.4.5 Interphase Heat Exchange

Of all models presented in this section, the interphase heat exchange is the least developed. Whereas other constitutive equations,

like those for the momentum exchange or fuel pin heat transfer, are applied to all models of two phase flow, the interphase heat exchange constitutive equation has its only application in the two-fluid model, which has been given attention only in recent years.

Thus, because of the lack of experimental data, we had to rely on a purely theoretical basis to produce a correlation for this exchange term.

Two mechanisms can be identified in which heat is transferred between phases. One represents the enthalpy transported by the mass exchange between phases, and the other accounts for the convective heat transfer. Then, we propose the following expression for this exchange term:

$$q_{lv} = S_{evs}^{n+1}h_{vs}^{n+1} - S_{c}h_{ls}^{n+1} + HA(T_{l}^{n+1} - T_{v}^{n+1})$$
(3.4.33)

where

 S_e = evaporation rate S_c = condensation rate h_{vs} = enthalpy for the saturated vapor h_{ls} = enthalpy for the saturated liquid H = overall heat transfer coefficient A = interfacial area

For the interfacial area, the same model developed for the mass exchange rate is used, and the expressions to evaluate this interfacial area can be found in equations 3.2.7 to 3.2.10.

In general, the overall heat transfer coefficient H can be written as:

$$H = \frac{Nu K_{\ell}}{D_{H}}$$

where

ŧ

 K_{g} = liquid thermal conductivity D_{H} = hydraulic diamter Nu = Nusselt number

A great deal of uncertainty is embodied in the Nusselt number used in this model, which cannot be resolved without a consistent set of experimental data on the heat exchange between phases. Therefore, we tentatively recommend the value Nu = 100.

CHAPTER 4

Experimental Tests Simulation

The models and methods presented in the two previous chapters were assembled into a computer program named NATOF-2D.

In order to evaluate the model results, as well as to test the program capabilities, three tests were simulated with NATOF-2D.

The first experiment simulated was the SLSF P3A test which was used to evaluate the performance of the constitutive equations and to determine the sensibility of the code to these equations.

Next the W-1 experiment was simulated, a test which has been completed recently. Finally a steady-state experiment, the GR19 was analyzed.

4.1 The P3A Experiment

1

The Sodium Loop Safety Facility P3A Experiment was an in-pile test performed in the Engineering Test Reactor in the period July 16, 1977 to September 11, 1977. The experiment was made with a 37-pin bundle simulating an FFTR unprotected loss of flow accident. The test bundle was irradiated for 26 full power says prior to the final experiment. The subassembly power was 1240 KW with a mass flow rate of 9.2 lbm/sec (4.173 Kg/sec).

Coolant boiling was detected at 8.8 seconds into the test. Inlet flow reversal occurred at 10 seconds, followed by inlet flow and temperature oscillations. Non-condensable gas passing through the bundle exit flow meter at 10.8 seconds was indicative of clad failure. Table 4.1 summarizes the design and steady-state operational data for the test.

Steady-state measurements made prior to the test indicated the existence of a discrepancy between the actual thermocouple readings and their expected values. A temperature gradient in the radial direction was observed which did not agree with the predicted values. This discrepancy was attributed to a non-uniform radial power distribution in the bundle, due to a non-uniform neutronic flux across the test bundle. Therefore a radial power distribution was assumed in the numerical simulation of the test. Table 4.2 shows the assumed radial power profile [39].

An inlet pressure decay was imposed to simulate the loss of flow transient. The expression used was:

 $P_{iu}(bar) = 1.7187 + 7.4380 \exp(-.21t)$

Table 4.3 shows the timing of events for the NATOF-2D predictions, along with the experimental results and the values obtained with SOBOIL code [10].

Following a series of figures showing the results obtained with NATOF-2D is presented.

Figure 4.2 shows the inlet mass flow rate as a function of time. The flow oscillations observed in the test were also predicted by NATOF-2D. Figure 4.3 shows the curve for the mass flow rate obtained from the experimental data.

Figures 4.4 and 4.5 show the temperature evolution at the top of the heated zone for the central and the edge channels respectively. Here again the oscillations after the flow reversal encountered in the experiment are also observed.

Figures 4.6 and 4.7 show the axial temperature profile at the central channel and the radial temperature profile at the top of the heated zone for different times. In this last figure once can observe an increase in the radial temperature gradient up to the time 9.0 seconds. This is attributed to the effect of the duct wall heat capacity. After 9.0 seconds the boiling in the central channels creates a strong radial flow, with the effect of reducing again the radial temperature gradient. Finally figure 4.8 shows the void fraction maps for the three radial channels.

From the numerical method point of view, the most encouraging result was the ability of the model to represent the transient beyond the point of flow reversal without numerical instability, a flow condition which has challenged the sodium two phase flow modeling for years. Geometry

.

(British Units)

.

.

Number of Pins	37	.1945	in
Fuel Pellet OD (m)	4.94×10^{-3}		
Clad OD (m)	5.842×10^{-3}	.230	in
Clad ID (m)	5.080×10^{-3}	.200	in
Wire Wrap OD (m)			
inner pins	1.422×10^{-3}	.056	in
outer pins	7.11 $\times 10^{-4}$.028	in
Flat to Flat (m)	4.501×10^{-2}	1.772	in
Duct Wall Thickness (m)	3.048×10^{-3}	.12	in
Length of Fuel		36.0	in
Inlet to Bottom of Fuel (m)	1.857×10^{-1}	7.31	in
Top of Fuel to End Cap (m)	5.334	210.0	in
Wire Wrap Lead (m)	3.048×10^{-1}	12.0	in
Fill Gas	Helium, l atm at 20 tag gas	°C with x	enon
Fuel	Uranium-Plutonium m Pu 25% of total mas	ixed oxid s	e,

Table 4.1 continued

Thermo-Hydraulics

Inlet Temperature	(°C)	422	792°F
Outlet Temperature at Steady State	(°C)	658	1216°F
Bundle Power	(kw)	1240	
Test Bundle Flow	(Kg/sec)	4.173	9.20 lbm/sec
Pressure at Top of Heated Zone	(atm)	4.27	62.7 psia
Cover Gas Pressure	(atm)	.957	14.1 psia
Net Pump Head	(atm)	7.619	112 psi

Numerics of Simulation

Number	of	Axial Mesh	Cells	10
Number	of	Radial Mesh	h Cells	3

Table 4.2

Assumed Non-Uniform Radial Power Distribution in P3A Test Bundle

<u>Pin Number</u> *	Power Factor
1	.90
2	.95
3	1.07
4	1.156

*see figure 4.1 for Pin Number location

Table 4.3

Event Sequence Times (Seconds) of the P3A Experiment

	NATOF-2D	SOBOIL	Experiment
Boiling Inception	8.9	8.9	8.8
Inlet Flow Reversal	10.08	9.9	10.15

Figure 4.1

Pin Number Location

Figure 4.2: P3A: Mass Flow Rate Vs. Time

Experimental Inlet Mass Flow Rate

Figure 4.4: P3A - Temperature Vs. Time: Central Channel

.

Figure 4.7

P3A: Radial Temperature Profile

4.2 One Dimensional Analysis of the P3A Experiment

In order to determine the importance of the two dimensional characteristic of NATOF-2D, a comparison of the results presented in the previous section was made with a one dimensional analysis of the same test.

NATOF-2D was modified to allow a one dimensional representation of the fuel assembly, and the P3A test was reanalyzed under the same conditions.

Figure 4.9 shows the inlet mass flow rate as a function of time, figure 4.10 the temperature evolution at the top of the heated zone an and figure 4.11 the axial temperature profile for this one dimensional analysis. Finally figure 4.12 shows the inlet mass flow rate for both one and two dimensional representations in the boiling period.

These figures show two interesting results. The onset of boiling occurred at 9.2 seconds for the one dimensional analysis, a delay of 0.3 seconds with respect to the two dimensional case. This can be explained by the fact that in the 1D case, both the central and the edge channels are represented by a single average temperature which is less than the maximum fluid temperature encountered in the central channel, and it takes longer for the average temperature to reach the saturation conditions. The second result which differed from the two dimensional representation was the time of flow reversal, which occurred at 9.8 seconds, 0.28 seconds before the 2D result. This is explained by the fact that while voiding is taking place in the central channels, the edge channel which is relatively colder maintains a substantial liquid flow for a longer time, thus providing a path for an upwards liquid flow. This effect is lost with the one dimensional representation.

Figure 4.9: P3A - 1D: Mass Flow Rate Vs. Time

.

4.2 W1 - SLSF Test

The W1 experiment is a test recently conducted under the direction of the Hanford Engineering Development Laboratory. Although the test has been completed, their results are not yet made public.

The test was divided in two parts. The first one aimed at determining the fuel pin heat released characteristics during a loss of pipe integrity accident. This part of the test does not involve boiling.

The second part of the test was directed to determine stable boiling and recovery limits as a function of fuel pin power. This part is the object of the numerical simulation presented in this section. Table 4.4 shows the relevant design data for the test [36], [38].

A series of flow transients were performed with several values of bundle power and flow decrease. Figure 4.12 is the graph of a typical Boiling Window Test flow transient. Table 4.5 shows the bundle power and percentage of full flow for each of the tests.

Following a series of figures present the results of the NATOF-2D simulation of the tests. For each case analyzed a figure shows the evolution in time of the saturation temperature, clad and fluid temperatures for the central channel and the fluid temperature for the edge channel. For sequences 6a, 7a⁻, 7b⁻, 3 and 4 the axial temperature profile for the central channel is also shown. Finally for the cases where substantial voiding occurred, namely sequences 7a', 7b' and 4 a figure showing the void maps for the three channels is also presented.

In general the results obtained for the high power tests (14.4 kw/ft) seem to present values which agree with the predictions of the test plan (Table 4.5). On the other hand, for the lower power (and longer) tests, NATOF-2D predicted boiling conditions more severe than the expected in the test plan. One possible explanation for this discrepancy is an overestimating of the gap conductance by NATOF-2D, but of course an analysis of the results will be conclusive only when the test results are made available.

As an extension of the test, a 217-pin bundle simulation was performed under the same conditions of test sequence 7b⁴. The simulation was made with five radial mesh cells and the same geometric and fuel pin design parameters as the ones used for the W1 test. The results are presented in figures 4.31 through 4.33. Comparing these figures with the correspondent figures for the 19-pin test, figures 4.23 through 4.25, the following conclusions can be drawn:

- The onset of boiling occurred at approximately the same time.
- The flow reversal occurred earlier and the voiding of the subassembly were much sharper for the 217-pin bundle.
These results confirm what was expected, since the onset of boiling occurs in the central channel and is not influenced by the size of the subassembly. The second conclusion was also expected, since in a large fuel assembly, the edge channel which is submitted to a smaller heat flux and also has the hexcan wall as a heat sink, occupies a fraction of the total flow area which is much smaller than the correspondent edge channel for a 19-pin bundle.

> ر ا

Wl Test Bundle Data

Geometry

.

.

Number of Pin	ns	19	
Fuel Pellet (OD (m)	4.94×10^{-3}	.1945 in
Clad (DD (m)	5.842×10^{-3}	.230 in
Clad	ID (m)	5.030×10^{-3}	.200 in
Wire Wrap	DD (m)		
inner p	ins	1.422×10^{-3}	.056 in
outer p	ins	7.11 × 10 ⁻⁴	.028 in
Flat to Flat	(m)	3.26×10^{-2}	1.283 in
Duct Wall Th	ickness (m)	1.016×10^{-4}	.040 in
Length of Fu	el (m)	.9144	36.0 in
Inlet to Bot	tom of Fuel (m)	.279	11 in
Top of Fuel	to End of Pins (m)	1.27	50 in
Wire Wrap Le	ad (m)	.3048	12.0 in
Fill Gas		Helium-Neon (1 at 68°F	0%), 25 psia
Fuel		Uranium-Plutor Pu 25% of tota	aium mixed oxide, al mass.

•

Table 4.4 continued

Thermo-Hydraulics

Inlet Temperature (°C)	388	732°F
Test Bundle Flow (kg/sec)	1.95	4.29 lbm/sec
Cover Gas Pressure (atm)	1.18	17 psia
Inlet Pressure (atm)	6.42	91.8 psia

.

Numerics of Simulation

Number of Axial Mesh Cells	12
Number of Radial Mesh Cells	3

Boiling Window Matrix for the Wl Experiment

Fuel Bundle Power = 348 kw Peak Pin Power = 7.5 kw/ft

.

	Percentage of Full Flow	Δtz	Test Sequence
Approach to Boiling	29	5.0	1
Incipient Boiling			
Normal Procedure	24	5.0	2
Fallback Procedure A	24	7.0	2a
Fallback Procedure B	22	4.5	2ъ

Fuel Bundle Power = 532 kw
Peak Pin Power = 11.1 kw/ft

	Percentage of Full Flow	Δtz	Test Sequence
Approach to Boiling	42	5.0	3
Incipient Boiling			
Normal Procedure	35	4.0	4
Fallback Procedure A	35	6.0	4a
Fallback Procedure B	33	3.0	4ъ

Fuel Bundle Power = 662 kw Peak Pin Power = 14.4 kw/ft

	Percentage of <u>Full Flow</u>	Δtz	Test Sequence
Approach to Boiling	53	5.0	5
Incipient Boiling			
Normal Procedure	45	3.0	6
Fallback Procedure A	45	5.0	6a
Fallback Procedure B	43	2.5	6b
Dryout or Fuel Pin Failure			
Normal Procedure A	42	2.0	7
Normal Procedure B	40	2.0	7*
Fallback Procedure A	42	3.0	7a
Fallback Procedure B	40	3.0	7a*
Fallback Procedure C	40	3.0	7ъ
Fallback Procedure D	38	3.0	76 -

.

•

Figure 4.13

Typical Boiling Window Flow Decay for the Wl Test

L

,

Figure 4.15: W1: Temperature and Mass Flow Rate for Sequence 6

, ,

Figure 4.16: W1: Temperatures and Mass Flow Rate for the Sequence 6a

Figure 4.17: W1: Axial Temperature Profile for Sequence 6a

Figure 4.19: W1: Temperature and Mass Flow Rate for Sequence 7a

Figure 4.21: W1: Temperatures and Mass Flow Rate for Sequence 7a

ł

Figure 4.22: Axial Temperature Profile for Sequence 7a*

. .

187

•

Figure 4.27: W1: Temperature and Mass Flow Rate for Sequence 3

Figure 4.28: W1: Axial Temperature Profile for Sequence 3

Figure 4.29: W1: Temperature and Mass Flow Rate for Sequence 4

195

Under Sequence 7b' Conditions

CHANNEL #1 CHANNEL #3 CHANNEL #5 .6 Distance Above Heated Zone (m) ſ -.2 -.4 1.0 2.0 3.0 4.0 1.0 3.0 4.0 1.0 2.0 3.0 2.0 4.0

Figure 4.34: Void Maps for 217-Pin Bundle Under Sequenc 7b² Conditions

TIME (sec)

TIME (sec)

198

TIME (sec)

4.3 The GR19 Experiment

As a final test of NATOF-2D the GR19 Experiment was simulated. This is a 19-pin, electrically heated, steady-state test performed on the CFNa loop, France. The test was analyzed with the BACCHUS code [35], and their results are presented here for comparison.

Table 4.6 presents the significant design data of the test. Table 4.7 shows the mass flow rate for the different tests performed, along with the measured maximum temperature and the NATOF-2D results.

Figures 4.32 through 4.34 show the axial temperature profile for these values of the mass flow rate. Figures 4.35 and 4.36 show the quality contours obtained for the values 0.265 and 0.260 kg/sec of the mass flow rate, along with the results of the BACCHUS code.

One interesting feature encountered in this simulation was a stable oscillation of the void fraction for the mass flow rate around the value .320 kg/sec, with the void fraction ranging from 10 to 50%, indicating the presence of a slug flow.

Design Data for the GR19 Experiment

Number of Pins 19 Clad OD (m) 8.65×10^{-3} Heated Length (m) 0.6 Downstream Unheated Length (m) 0.494 Upstream Unheated Length (m) 0.12 Wire Wrap OD (m) 1.28×10^{-3} Flat to Flat (m) 4.58×10^{-2} Inlet Temperature (°C) 400 Saturation Temperature at the Top of Heated Zone (°C) 920 Power (kw) 170 (axially uniform)

.

Mass Flow Rate And Temperatures for the GR19 Experiment

FLOW (kg/sec)	T _{max} (°C) (MEASURED)	T _{max} (°C) (NATOF-2D)
•606	69 3	694
.476	766	768
.405	825	827
.350	890	892
.329	918	920(Boiling)
.311	923	921
.29 3	926	921
.277	926	922
.265	926	925
.260	944	927

GR19 Quality Contours for 0.265 kg/sec Mass Flow Rate

GR19: Quality Contours for 0.260 kg/sec Mass Flow Rate

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

A two dimensional computer code for the simulation of sodium boiling transients was developed using the two fluid model of conservation equations. A semi-implicit numerical differencing scheme, capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid model was used, which took advantage of the dumping effect of the exchange terms. The stability of the method was demonstrated theoretically in Section 2.5 and also by the practical results obtained with the model, shown in Chapter 4. The stability of the model imposes an upper limit on the time step size, which is related to the mesh spacing the phase velocity by the expression

 $\Delta t < \max [\Delta z/\mu_2, \Delta r/\mu r]$

Of particular interest in the development of the model was the identification of the numerical problem used by the strong disparity between the axial and radial dimensions of fuel assemblies used in the current design of Liquid Metal Fast Breeder Reactors. A solution to this problem was found, which used the particular geometry of fuel assemblies to its advantage, reducing drastically the computation time.

Most of the constitutive equations incorporated in the model were
obtained through previous work. In general, adequate models were found for most equations, but for a few of them no satisfactory correlations could be produced. These models involve areas of the sodium technology not yet fully understood, and a substantial effort of development must be done in these areas. These models are identified and discussed in the recommendations of this work.

The models and methods of this work were incorporated into the computer program called NATOF-2D. With this program three series of experiments were simulated in order to demonstrate the model capabilities. The results of this simulation, which were presented in Chapter 4 showed good agreement with the experimental results obtained in the tests. One important capability demonstrated in these simulations was the ability of the model to represent the most severe boiling conditions, including flow reversal.

5.2 Recommendations

A word of caution must be said to the eventual users of NATOF-2D. The purpose of this work was to develop a numerical framework capable of solving the set of conservation equations of fluid flow under severe conditions of transient sodium boiling. In this way, most of the effort put into the work was dedicated to developing and organizing the numerical methods and models for solving this set of equations.

Of course the system of equations of fluid flow is not closed unless the constitutive relations describing the interaction of the fluids with the structural components and with themselves is provided, and a

set of constitutive equations were incorporated into NATOF-2D.

Some judgment was exercised in order to select constitutive equations representative of the sodium beahvior, especially those characterizing the explosive volume change associated with sodim boiling at low pressure. This part of the code development was treated as complimentary to the numerical model construction. Therefore, the constitutive models may not be as realistic as the correct representation of sodium boiling in LMFBR fuel assemblies would require, and the overall results of simulations with NATOF-2D may be improved by the eventual improvement of some of the constitutive models incorporated in the code. Thus, this word of caution.

The relatively superficial treatment of the constitutive models is not incidental. Only recently did the interest in LMFBR safety reach the point where extensive investigation of sodium boiling became justified, and a substantial amount of research is yet to be done. Therefore, the present status of knowledge of the physical phenomena associated with sodium boiling does not lead immediately to significantly accurate models of the constitutive equations involved in sodium boiling. The task of developing these models is not a simple one, requiring a considerable effort in theoretical analysis and experimental work, well beyond the scope of this work.

But if NATOF-2D cannot claim to be a complete analytical model for sodium boiling simulation, because of the uncertainties contained in the constitutive models, it is an invaluable tool for the development of these models, where they can be implemented and tested against experimental results.

One of the most important benefits which NATOF-2D can provide to the development of sodium boiling is to identify, by the execution of sensitivity analysis, those constitutive models which affect most of the overall results, thus directing the research effort of sodium boiling to the directions which will lead to more fruitful results.

From the experience we had with NATOF-2D calculations, by far the most important model affecting the end results of sodium boiling simulation is the one for the interphase mass exchange rate (which unfortunately is the one that showed the widest disagreement between authors). Therefore, we recommend as a first step in the continuation of the work presented here that a substantial effort be made in developing a dependable model for the interphase mass exchange rate.

Of the same magnitude in importance is the two phase heat transfer coefficients. Here again the presently available models are few and incomplete. Thus a theoretical and experimental work in this area is recommended, in order to acquire a thorough understanding of the sodium boiling curve.

Another area which could be the object of future investigation is the one related to the interphase heat transfer. Although the direct effect of this exchange term on the overall results is not very marked, the relatively simple model incorporated in NATOF-2D could be replaced by a more refined one. The close relationship between this exchange term and the two previously mentioned would make this model a natural by product of the development of the above-mentioned ones.

REFERENCES

- Griffith, J. D., "Safety Considerations in Commercial Fast Breeder Reactor Plant Design," MIT summer course — Fast Breeder Reactor Safety, July 1977
- 2. Hinkle, W. D., LMFBR "Safety and Sodium Boiling, A State of the Art Report," draft, MIT, December 1977
- 3. Chawla, T. C., and Fauske, H. K., "On the Incoherence in Subassembly Voiding in FTR and its Possible Effects on the Loss of Flow Accident Sequence," Trans Am Nucl Soc 17, p285, November 1973
- Rowe, D.S., COBRA III-C: "A Digital Computer Program for Steady-State and Transient Thermo-hydraulic Analysis for Rod Bundle Nuclear Fuel Elements," BNWL 1695, March 1973
- 5. Bohl, W.R., et al, "An Analysis of Transient Undercooling and Transient Overpower Accidents without Scram in the Clinch River Breeder Reactor," ANL/RAS 75-29, July 1975
- Miao, C., and Theofanous, "A Numerical Simulation of the Two-Dimensional Boiling (Voiding) in LMFBR Fuel Subassemblies," Purdue University
- Sha, W.T., et al, COMMIX1: "A Three Dimensional Transient
 Single-Phase Component Computer Program for Thermal Hydraulic Analysis," MIREG-CR 0415, ANL-77-96, September 1978
- 8. Grand, D., and Basque, G., "Two-Dimensional Calculation of Sodium Boiling in Sub-Assemblies," Service des Transferts Thermique, Centre d'Etude Nucleaires de Grenoble
- 9. Stewart, H.B., "Fractional Step Methods for Thermo-hydraulic Calculation, "Brookhaven National Laboratory, March 1980
- 10. Shih, T.A., "The SOBOIL Program, A Transient, Multichannel Two Phase Flow Model for Analysis of Sodium Boiling in LMFBR Fuel Assemblies," Technical Note ST-TN-79008, March 1979
- 11. Hinkle, W.D., et al, "MIT Sodium Boiling Project FY 1979 Interim Report," draft, 1979

- 12. Shah, et al, "A Numerical Procedure for Calculating Steady/Unsteady Single-Phase/Two-Phase Three-Dimensional Fluid Flow with Heat Transfer," ANL-CT-79-31, June 1979
- Ishii, M., "One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes," ANL 77-47, October 1977
- 14. Grolmes, M.A., and Henry, R.E., "Heat Transfer in Nuclear Power Reactors, Part II: Safety of Liquid Metal Cooled Fast Breeder Reactors," Argonne National Laboratory
- 15. Weber, M., et al, "Reactor Development Program," Progress Report ANL-RDP-78, December 1978.
- 16. Carter, J.C., et al, SASIA, "A Computer Code for the Analysis of Fast Reactor Power and Flow Transients," ANL7607, October 1970
- 17. Dunn, F.E., "The SAS3A LMFBR Accident Analysis Computer Code," ANL/RAS 75-17, 1975
- The Separate Flow Model of Two Phase Flow, EPRI NP275, December 1976
- Agrawal, A.K., et al, "Simulation of Transients in Liquid Metal Fast Breeder Reactor Systems," Nuclear Science and Engineering, Vol 64, 480-491, 1977
- 20. Boure, J.A., and Latrobe, A., "On Well-Posedness of Two Phase Flow Problems," 16th National Heat Transfer Conference, August 1976
- Reed, Wm. H., and Stewart, H.B., "THERMIT, A Computer Program For Three-Dimensional Thermal-Hydraulic Analysis of Light Water Reactor Cores, MIT, 1978
- 22. Rivard, W.C. and Torrey, M.D., "Numerical Calculation of Flashing from Long Pipers Using a Two Field Model," LA6104-MS, Los Alamos, November 1975
- Chen, J.C., "A Proposed Mechanism and Method of Correlation for Convective Boiling Heat Transfer with Liquid Metals," BNL 7319, August 1973
- 24. Chao, B.T., Sha, W.T., and Soo, S.L., "On Inertial Coupling in Dynamic Equations of Components in a Mixture," Int J Multiphase Flow, Vol 4, pp219-223, 1978

- 25. Fabic, S., "Computer Codes in Water Reactor Safety: Problems in Modeling of Loss-of-Coolant Accident," I Mech E Conference, Manchester, 13-15 September 1977
- 26. Chawla, T.C., and Ishii, M., "Equations of Motion for Two-Phase Flow in a Pin Bundle of a Nuclear Reactor," J Heat Mass Transfer, Vol 21, pp1057-1068, 1978
- 27. Ramshaw, J.D., and Trapp, J.A., "Characteristics, Stability and Short Wavelength Phenomena in Two-Phase Flow Equations Systems," Nuclear Science and Engineering, Vol 66, pp93-102, 1978
- 28. Murray, S.E., and Smith, L.L., "Two Dimensional Sodium Voiding Analysis with SIMMER-I," LA-NUREG-6342-PR, June 1977
- 29. Lyczkowsky, R.W., and Solbrig, C.W., "Calculation of the Governing Equations for Seriated Unequal Velocity, Equal Temperature Two-Phase Flow, Nat Heat Transfer Conference 1977
- 30. Jones, O.C., Jr., and Pradip, S., "Non-Equilibrium Aspects of Water Reactor Safety," Brookhaven National Laboratory
- 31. Nigmatulin, R.I., "Equations of Hydromechanics and Compression Shock in Two Velocity and Two Temperature Continuum with Phase Transformation," Fluid Dynamics, Vol 2, No 5, 1967
- 32. Rohsenow, W.M., and Sukhatme, S.P., "Condensation," Massachusetts Institute of Technology
- 33. Brinkmann, K.J. and deVries, J.E., "Survey of Local Boiling Investigations in Sodium at ECN-Petten," Netherlands Energy Research Foundation ECN
- 34. Garrison, P.W., "Superheat Simulation Requirements for the Next Generation of LMFBR Codes," Oak Ridge National Laboratory, March 1979
- 35. Basque, G., Grand, D., and Menant, B., "Theoretical Analysis and Experimental Evidence of Three Types of Thermohydraulic Incoherence in Undisturbed Cluster Geometry," Kalsruhe, 1979
- 36. Baker, A.N., et al, "SLSF W-1 Experiment Test Predictions," GEFR 00047-9(L), December 1977
- 37. Knight, D.D., "SLSF W-1 LOD1 Experiments Preliminary Evaluation Data," ST-TN-80015, October 1979
- 38. Henderson, J.M., "Sodium Loop Safety Facility Test Plan HEDL W-1 SLSF Experiment," Hanford Engineering Development Laboratory, September 1978

- 39. Thompson, D.H., et al, "SLSF In-Reactor Experiment P3A," Interim Post Test Report, Argonne National Laboratory, November 1977
- 40. Kraft, T.E., et al, "Simulations of an Unprotected Loss-of-Flow Accident with a 37-Pin Bundle in the Sodium Loop Safety Facility," Argonne National Laboratory
- 41. Collier, J.G., Convective Boiling and Condensation, McGraw-Hill, United Kingdom, 1972
- 42. Clark, M., Jr., and Hansen, K.F., Numerical Methods of Reactor Analysis, Academic Press, New York, 1964
- 43. Richtmeyer, R.D., and Morton, K.W., Differential Methods for Initial Value Problems, Interscience, New York, 1967
- 44. Wallis, G.B., One Dimensional Two Phase Flow, McGraw-Hill, New York, 1969
- 45. Courant, R., and Hilbert, D., Methods of Mathematical Physics, Interscience, New York 1962
- Golden, G.H., and Tokar, J.V., Thermophysical Properties of Sodium, ANL 7323, August 1967
- 47. Van Wylen, G.J., and Sonntag, R.E., Fundamentals of Classical Thermodynamics, John Wiley & Sons, New York, 1973
- 48. Kays, W., and London, A.L., Compact Heat Exchanges, McGraw-Hill, New York, 1964
- 49. Gunter, A.Y., and Shaw, W.A., A General Correlation of Friction Factors for Various Types of Surfaces in Crossflow, ASME Transactions, 67, pp643-660, 1945
- 50. Autruffe, M.A., Theoretical Study of Thermohydraulic Phenomena for LMFBR Accident Analysis, MIT thesis, September 1978
- 51. Stewart, H.B., "Stability of Two Phase Flow Calculations Using Two Fluid Model," Journal of Computational Physics, Vol 33, No 2, November 1979
- 52. Kaiser, A., and Peppler, W., "Sodium Boiling Experiments in an Annular Test Section under Flow Rundown Conditions," KFK 2389, March 1977
- 53. El Wakil, M.M., "Nuclear Heat Transport," International Textbook Company, 1971

- 54. Fink, J.K., and Leibowitz, L., "Thermophysical Properties of Sodium," ANL-CEN-RSD-79-1, May 1979
- 55. Gantmacher, F.R., "The Theory of Matrices," Chelesea Publishing Company, 1977
- 56. Varga, R.S., "Matrix Iterative Analysis," Prentice Hall, 1962
- 57. Rohsenow, W.M., and Choi, H., "Heat, Mass and Momentum Transfer," Prentice Hall, 1961
- 58. Poter, M.C., and Foss, J.F., "Fluid Mechanics," Ronald Press, 1975
- 59. "CRC Handbook of Chemistry and Physics," 58th Edition, CRC Press, 1978
- 60. Thompson, D.H., et al."SLSF In-Reactor Experiment P3A Interim Posttest Report", ANL/RAS 77-48, November 1977

Ł

APPENDIX A - NATOF-2D INPUT DATA MANUAL

In this section the user supplied information necessary to operate NATOF-2D is presented. Before showing the description of the input cards, it is useful to review the array structure of the code. Figure A.l shows an example of a full assembly and the corresponding cell arrangement in a r-z plane. Quantities appearing in this figure are:

NI = number of mesh cells in the axial direction. It includes two fictitious half-cells in the top and bottom of fuel assembly.

NJ = number of mesh cells in the radial direction.

All dimensioned variables appear in the program with only one index, therefore a single number identifies each cell in full assembly. The cells are numbered from bottom to top and radially from center to hex can.

Figure A.2 shows a cross section of the fuel assembly indicating the numbering of the fuel pins. Fuel pin rows are numbered from center to hex can, and the boundary between cells is indicated by the row -number where this boundary lies.

Figure A.3 shows schematically the cell arrangement for the fuel pin heat conduction. The quantities describing this cell arrangement are:

NCF = number of mesh cells in fuel. NCLD = number of mesh cells in clad.

NI	2xNI		NJXNI
NI-1	2xNI-1		NJ×NI-1
		etc.	
3	NI+3		
2	NI+2		
1 1	NI+1	1 1 1	T

Figure Al. Cell Arrangement in the R-Z Plane

Figure A.2 Fuel Pin Numbering

,

Figure A3. Cell Arrangement for Fuel Pin Heat Conduction

A single cell is assumed by the code for the gap between fuel and clad.

Following is a presentation of the sequence of cards in the input data. Following the list of variables, in parenthesis, is the corresponding format for these variables.

1. General Description of the Problem

1st CARD: NI, NJ, NCF, NCLD (415)

NI = number of mesh cells in axial direction

NJ = number of mesh cells in radial direction

NCF = number of mesh cells in fuel

NCLD = number of mesh cells in clad

2nd CARD: NSET, TSET (15, E15.4)

3rd CARD: ITM, IGAUSS, DTMAX, EPS1, EPS2 (2110, 3E15.9)

ITM = maximum number of iterations in the Newton iterative
 solution.

IGAUSS = maximum number of iterations in the pressure problem
 solution.

DTMAX = maximum value for the time step increment. EPS1 = convergence criterion for the Newton iteration. EPS2 = convergence criterion for the pressure problem. EPS1 and EPS2 are criteria on the absolute value of the pressure. Their unit is N/m2.

2. Boundary Conditions

The next group of cards contains information governing the boundary conditions of the problem as a function of time. The simulation time is divided in up to 50 segments in which different functions can be prescribed for the boundary conditions. For a generic time segment L, the formulas used by the program for the boundary condition are:

 $X = (X_1(L)*DTIME + X_2(L))*exp(OMX(L)*DTIME) + X_3(L)$ where:

DTIME = TIME - TB(L-1) L = Index of current time segment TB(L) = Time at the end of segment L $X_1, X_2, X_3, OMX = Input parameters$ and X stands for: PNB = Pressure at the bottom of fuel assembly (N/m²)

PNT = Pressure at the top of fuel assembly (N/m^2)

ALB = Void fraction at the inlet of fuel assembly. TVB = Vapor temperature at inlet (°K). TLB = Liquid temperature at inlet (°K). HNW = Power density in fuel pins (W/m^3)

In order to save time, the code has an option to eliminate the exponential part in the formula to calculate the boundary condition. Thus, whenever the logical parameter LP is .TRUE., the boundary conditions are calculated as:

 $X = X_1(L) * DTIME + X_2(L)$

1st CARD:	LP, TB (L1, F15.5)	
2nd CARD:	PNB1, PND2, PNB3, OMP	(4E15.9)
3rd CARD:	PNT1, PNT2, PNT3, OMT	(4E15.9)
4th CARD:	ALB1, ALB2, ALB3, OMA	(4E15.9)
5th CARD:	TVB1, TVB2, TVB3, OMV	(4E15.9)
6th CARD:	TLB1, TLB2, TLB3, OML	(4E15.9)
7th CARD:	HNB1, HNB2, HNB3, OMH	(4E15.9)

This group of seven cards can be repeated for as much as the number of segments desired. To indicate the end of this subset, a card containing only a 'F' in the first position must be placed following the data. 3. Geometric Description of the Problem

1st CARD: NROW, PITCH, D, E (15, 3E15.9)

NROW = Number of rows of fuel pins in fuel assembly.

PITCH = Distance between fuel pin centerlines (m).

D = Fuel pin diameter (m).

E = Minimum distance between fuel pin surface and hex can
wall (m).

(see Figure A.2)

2nd CARD: N(J), J = 1, 20 (2014)

N(J) is the row number where the boundary between cell J and cell J + 1 lies.

(see Figure A.2)

3rd CARD: LDATA, DZ(K) (L1, 5E15.9)

In this group of cards the axial mesh spacing DZ are written sequentially from 1 to NI, five per card. The logical parameter LDATA must have a .TRUE. value in each card where DZ is written. Following this group of cards, a card containing an 'F' in the first position must be placed to indicate the end of this set of data. 4th CARD: LDATA, CAN(K) (L1, 5E15.9)

The same arrangement of the previous group of cards. CAN = Heat capacity of the hex can per unit area, for each axial mesh cell $(J/m^{2} K)$. There must be one value for each axial mesh cell.

5th CARD: LDATA, SHAPE(K) (L1, 5E15.9)

The same arrangement as the previous group of cards. SHAPE = Power density shape in fuel assembly. There must be one value of SHAPE for each mesh cell in fuel assembly.

6th CARD: LDATA, SPPD(K) (L1, 5E15.9)

The same arrangement as the previous group of cards. SPPD = Spacer pressure drop. There must be one value of SPPD for each mesh cell in fuel assembly. The code will treat the spacer pressure drop as:

 $\Delta p = SPPD * \frac{\rho U^2}{2}$

7th CARD: LDATA, PPP(K) (L1, 5E15.9)

The same arrangement as the previous group of cards. PPP = Radial power profile inside fuel pin. There must be one value of PPP for each fuel pin mesh cell, including gap and clad (i.e., there is NCF + 1 + NCLD values). The power density at each fuel pin mesh cell will be the product of the power density specified in the boundary conditions, multiplied by the value of SHAPE for the corresponding fuel assembly mesh cell, multiplied by the value of PPP for the corresponding fuel pin mesh cell.

8th CARD: AD, APU, DIL (3E15.9)

AD = Fraction of theoretical density of fuel.

APU = Fraction of plutonium in full.

DIL = Fraction of helium in gap composition.

9th CARD: LPLNM(I), I = 1, NI (3912)

LPLNM is an integer which indicates the axial composition of fuel pin. LPLNM = 0 indicates gas composition (for upper plenum). LPLNM = 1 indicates mixed oxide U,PuO₂. There must be one value of LPLNM for each axial node.

10th CARD: RADR, THC, THG (3E15.9)

RADR = Fuel pin outside radius (m).
THC = Clad thickness (m).
THG = Gap thickness (m).

4. Initial Conditions

1st CARD: LSS, TINIT (L1, E15.9)

LSS is a logical parameter to indicate steady-state or transient problem.

LSS = .FALSE. indicates transient problem.

LSS = .TRUE. indicates steady-state problem.

In case LSS is .TRUE., the remaining initial condition input data resume to the next card:

2nd CARD: PIN, POUT, TIN, TAV (4E15.9)

PIN = Pressure at fuel assembly inlet (N/m^2) POUT = Pressure at fuel assembly outlet (N/m^2) TIN = Inlet liquid temperature (°K) TAV = An estimate of the average temperature in fuel

assembly (°K)

In case LSS = .FALSE., the next cards follow:

2nd CARD: KO, TV, TL, P. ALFA (15, 4E15.9) 3rd CARD: KO, UVZ, ULZ, UVR, ULR (15, 4E15.9)

KO is the cell number. It appears in both cards to put a check in the input data. Each pair of cards correspond to the same_mesh_cell. The group is to be_repeated for as many_ as the number of mesh cells.

TV = Vapor temperature (°K)

TL = Liquid temperature (°K)

P = Pressure

ALFA = Void fraction

UVZ = Axial vapor velocity (m/sec)

UVR = Radial vapor velocity (m/sec)

ULR = Radial liquid velocity (m/sec)

4th CARD: LDATA, TR(K) (L1, 5E15.9)

The same arrangement as the group of cards for DZ. TR = Fuel pin temperature (°K). This array must contain one value for each fuel pin mesh cell. The values of TR are ordered as: TR(1) = Fuel centerline temperature at cell number 1. TR(NCF + 1 + NCLD) = Surface clad temperature at cellnumber 1. TR(NCF + 1 + NCLD + 1) = Fuel centerline temperature atcell number 2. etc.

5th CARD: LDATA, TCAN(K) (L1, 5E15.9)

The same arrangement as the previous group of cards. TCAN = Hex can initial temperature (°K). There must be one value of TCAN for each axial node.

APPENDIX B

NATOF - 2D Programming Information

When NATOF-2D was programmed, it was recognized that the field of sodium boiling is presently the subject of a large effort of research, and therefore it can be expected that in the future this research will produce better correlations for the constitutive laws governing the sodium two-phase flow. In order to make changes in the program as easy as possible, NATOF-2D was programmed with its subroutines in a modular structure, particularly the parts of the program dealing with the constitutive laws.

In this way, the programmer working on modification of one particular subroutine does not have to worry about the rest of the program, provided the expressions introduced in that subroutine meet the requirements of consistency of the derivatives with respect to new time variables, which were discussed in chapter 2.

Following is a description of NATOF-2D subroutines, their functions and structure. The reader is referred to figure Bl, which shows the structure of NATOF-2D.

Figure B1. NATOF-2D Subroutine Structure

¢

Main:

The main program's only function is to allocate memory storage space for the dimensioned arrays and transfer the control of the program to subroutine HEAD.

All arrays whose dimensions are a function of the number of mesh cells are placed within a single array ORBI. Individual arrays are located by pointers which determine the first element of each array. These pointers are grouped into the integer array M, and the correlation of the pointer to the variable is as following:

M(1)	=	Р	=	New time, pressure, cell centered
M(2)	=	PO	=	Old time, pressure, cell centered
M(3)	=	TV	=	Vapor temperature, new time, cell centered
M(4)	=	TVO	-	Vapor temperature, old time, cell centered
M(5)	=	TL –	=	Liquid temperature, new time, cell centered
M(6)	=	TLO	=	Liquid temperature, old time, cell centered
M(7)	-	ALFAN	=	Void fraction, new time, cell centered
M(8)	#	ALFAO		Void fraction, old time, cell centered
M(9)	=	ALFAZ	-	Void fraction, axial face centered
M(10)	-	ALFAR	=	Void fraction radial face centered
M(11)	*	RHOV	=	Vapor density, cell centered
M(12)	E	RHOL		Liquid density, cell centered

M(13)	-	RHOVZ	=	Vapor density, axial face centered
M(14)	Ħ	RHOLZ	=	Liquid density, axial face centered
M(15)	=	RHOVR	æ	Vapor density, radial face centered
M(16)	=	RHOLR	a	Liquid density, radial face centered
M(17)	-	EV	п	Vapor internal energy, cell centered
M(18)	=	EL	=	Liquid internal energy, cell centered
M(19)	=	EVZ	=	Vapor internal energy, axial face centered
M(20)	=	ELZ	=	Liquid internal energy, axial face centered
M(21)	=	EVR	#	Vapor internal energy, radial face centered
M(22)	8	ELR	a	Liquid internal energy, radial face centered
M(23)	=	UVZN	Ħ	Axial vapor velocity, new time, axial face centered
M(24)	=	ULZN	æ	Axial liquid velocity, new time, axial face centered
M(25)	-	UVRN	ŧ	Radial vapor velocity, new time, radial face centered
M(26)	æ	ULRN	æ	Radial liquid velocity, new time, radial face centered
M(27)	=	UVZO	a	Axial vapor velocity, old time, axial face centered
M(28)	-	ULZO	æ	Axial liquid velocity, old time, axial face centered
M(29)	-	UVRO	æ	Radial vapor velocity, old time, radial face centered
M(30)	=	ULRO	a	Radial liquid velocity, old time, radial face centered
M(31)	=	UVRZ	=	Radial vapor velocity, axial face centered
M(32)	=	ULRZ	н	Radial liquid velocity, axial face centered

M(33)	=	UVZR	=	Axial vapor velocity, radial face centered
M(34)	=	ULZR	=	Axial liquid velocity, radial race centered
M(35)	to	M(62)		Implicit terms for the conservation equations
M(63)	=	DH	=	Axial flow hydraulic diameter
M(64)	=	DHR	×	Radial flow hydraulic diameter
M(65)	#	DV	22	Fuel pin specific surface area
M(66)	=	QSI	8	Maximum-to-average radial velocity coefficient
M(67)	=	TS	=	Saturation temperature, new time
M(68)	×	TW	22	Fuel pin wall temperature, new time
M(69)	=	DTW	=	Increment in heat transfer for unit increment in TW
M(70)	=	HCONV	H	Vapor heat transfer coefficient
M(71)	=	HCONL	÷	Macroscopic liquid heat transfer coefficient
M(72)	=	HNB	u	Microscopic liquid heat transfer coefficient
M(73)	to	M(79)	=	Coefficients for the pressure problem
M(80)	=	TR	8	Fuel pin temperature
<u>M(81)</u>	_=	DTR		Auxiliary array for fuel pin heat conduction
M(82)	=	TWO	=	Fuel pin wall temperature, old time
M(83)	to	M(89)	=	Auxiliary arrays
M(90)	=	SPPD	=	Localized pressure drop coefficienct
M(91)	=	TCAN	±	Hex can temperature

The storage space required by the array ORBI is given in double precision storage word by the formula:

[135 + 2(NCF + NCLD)]NI.NJ

HEAD:		Defines t	he po	ointers	of	aı	ray	ORBI
	C ertante	Controls	the	duratio	on	of	the	run
		Controls	the	printou	ıts			

READ 1: - Reads arrays' dimensions

- SS: Performs an initial guess for the steady-state problem

TMSTEP: - Advances one time step - Controls convergence of the Newton iteration

- Controls time step size. The time step is always kept below the connective limit. If an instability occurs during the run, such as non-convergence of the iterative procedures or a variable outside range of validity, TMSTEP reduces the time step size by a factor of ten and the run is resumed. If the difficulty is removed, the time step will be increased slowly towards the convective limit again. If after three time step reductions the instability still persists, an error message will be printed and the execution terminated.
- DONOR: Transfers all centered quantities to face centered positions - Calculates explicit terms in momentum equation
- WS: Calculates explicit terms for mass and energy equations

ONESTP: - Performs one step of Newton iteration - Calculates new values of implicit variables - Checks variables against range of validity

- COEFF: -- Calculates momentum exchange coefficients
- BC: Calculates boundary conditions as a function of time
- HTCF: Calculates heat transfer coefficients
- STATE: -- Calculates sodium thermodynamic properties and its derivatives. The code stability imposes two requirements on the expressions for the sodium functions of state: the expressions for the densities must account for the pressure dependence which corresponds to a real, positive, finite sonic speed.
 - The expressions for the property derivatives with respect to new time variables must be the analytic or numerical derivative of the expressions of the properties (but not approximated expressions).
- __NONEQ: -- Calculates the mass and energy_exchange rates and its_____ derivatives. The same requirement applied to the derivatives of the properties in STATE also applies here.
 - CONDT: --- Calculates the heat transfer between fluid and fuel pin and its derivatives. The requirement concerning the derivatives described above also applies here.
 - HEXCAN: -- Calculates the heat transfer between fluid and hexcan walls, and its derivatives. The requirement concerning the derivatives described above also applies here.

- FPROP: --- Finds the fuel pin transport properties
- FUEL: Transport properties of fuel
- GAP: Transport properties of gap
- CLAD: Transport properties of clad
- FPIN: Solves first part of heat conduction in fuel pin
- FTP: Solves second part of heat conduction in fuel pin
- THXCN: Solves the first part of hexcan heat conduction
- THXCNO: Solves the second part of hexcan heat conduction
- POWER: --- Calculates the power density as a function of time
- GAUSIE: Solves the pressure problem
- ERRMES: Prints error messages
- SAVER: Saves fluid flow variables at the end of run for eventual restart.*

Functions

CONDL	 Liquid thermal conductivity as function of temperature
CONDV	 Vapor thermal conductivity as function of temperature
CPL	 Liquid specific heat as function of temperature
HFG	 Enthalpy of vaporization as function of pressure
PRL	 Liquid Prandtl number as function of temperature
PRV	 Vapor Prandtl number as function of temperature
SAT	 Saturation temperature as function of pressure
DTSDP	 Pressure derivative of saturation temperature as function of pressure
SURTEN	 Surface tension as function of temperature
VISCV	 Vapor viscosity as function of temperature
VISCL	 Liquid viscosity as function of temperature

APPENDIX C

NATOF - 2D I/O EXAMPLES

Fortran unit numbers for the data files are as follows: 5 is the standard input unit 6 is for the printed output 7 is the dump file to restart

After a successful run, the program creates in file 7 an input data set corresponding to an initial value problem starting at the time the last run was finished. This is particularly useful in generating a transient problem input data set, which requires a substantial amount of information for the initial conditions. In this way, a steady-state problem, which requires a relatively small amount of information, produces in file 7 the input data for the transient problem. The user must only change the cards which describe the boundary conditions, to represent the desired transient conditions, and the desired sequence of printouts.

Following is an example of the input data set for a steady state problem, a transient problem, and an example of the printed output. These examples were taken from the 217-pin simulation described in section 4.

٦

1

STEADY-STATE INPUT DATA SET

EXAMPLE

12 5 4 2 20.150000000000000

00.00000000000+00

8 5000.10000000D+000.10000000D-010.10000000D-03 4.40000

T 4.40000

0.00000000D+000.675750000D+060.0000000D+000.0000000D+00 0.0000000D+000.277600000D+060.0000000D+000.0000000D+00 0.0000000D+000.0000000D+000.0000000D+000.0000000D+00 0.0000000D+000.661140000D+030.0000000D+000.00000000D+00 0.0000000D+000.661140000D+030.0000000D+000.00000000D+00 0.0000000D+000.661140000D+030.0000000D+000.00000000D+00 0.0000000D+000.244508686D+100.00000000D+000.00000000D+00 T 0.00000

0.000

90.726440000D-020.584200000D-020.711200000D-03

```
5
     9 0 0 0 0 0 0
  7
    8
                   0
                     0
                      n
                        n
                          Δ
T0.182903000D+000.182900000D+000.182900000D+300.182900000D+000.182900000D+00
T0.182900000D+000.182900000D+000.182900000D+000.182900000D+000.182900000D+00
T0.182900000D+000.182900000D+000.00000000D+000.0000000D+000.0000000D+00
T0.85000000D+040.85000000D+040.85000000D+040.85000000D+040.85000000D+04
T0.850000000D+040.85000000D+040.000000D+000.0000000D+000.0000000D+00
T0.838702000D+000.677403000D+000.000000D+000.000000D+000.000000D+00
T0.838702000D+000.10000000D+010.838702000D+000.677103000D+000.00000000D+00
T0.00000000D+000.0000000D+000.0000000D+000.0000000D+000.000000D+000
T0.677403000D+000.0000000D+000.000000D+000.000000D+000.000000D+00
T0.100000000+010.838702000+000.6774030000+0c0.00000000+000.00000000+00
T0.677403000D+000.83870200CD+000.10000000D+010.838702000D+000.677403000D+00
T0.0000000D+000.0000000D+000.0000000D+000.00000D+000.00000D+000.0000000D+00
T0.00000000D+000.0000000D+000.000000000+000.0000000D+000.000000D+000
```

0.675750000D+060.277600000D+060.661140000D+030.9000000D+03

٠.

TRANSIENT INPUT DATA SET

EXAMPLE

5 12 4 2 350,1000000000+00 10000.100000000+000.100000000-010.100000000-03 8 T 0.50000 -.822080000D+060.675750000D+060.000000000D+000.0000000000+00 -.180800000D+060.277600000D+060.00000000D+000.00000000D+00 0.0000000D+000.00000D+000.000000D+000.000000D+000.000000D+00 0.0000000000+000.244508688D+100.00000000D+000.00000000+00 3.5 Т 0.0000000000+000.2647100000+060.00000CC00D+000.187200000D+06 0.00000000D+000.661140000D+03 0.00000000D+000.661140000D+03 0.00000000D+000.244508688D+10 Т 4.0 0.806340000D+060.272560000D+06 0.176800000D+060.189200000D+06 0.00000000D+000.661140000D+03 0.0000000000+000.6611400000+03-.464566510D+100.244508688D+10 T. 9.0 0.0000000D+000.675750000D+06 0.00000000000000.27760000000+06 0.0000000000+000.000000000000+000.0000000000+000.6611400000+03 0.000000000000.6611400000+03 0.0000000000+000.1222543300+09T 0.00000 90.726440000D-020.584200000D-020.711200000D-03 57 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 T0.182900000D+000.182900000D+000.182900000D+000.182900000D+000.182900000D+00 T0.182900000D+000.182900000D+000.182900000D+000.182900000D+000.182900000D+00 T0.182900000D+000.182900000D+000.00000000D+000.0000000D+000.0000000D+00 T0.850000000+040.85000000D+040.85000000D+040.85000000D+040.85000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.850000000D+040.85000000D+04 T0.838702000D+000.677403000D+000.00000000D+000.00000000D+000.0000000D+000

T0.838702000D+000.10000000D+010.838702000D+000.677403000D+000.00000000D+00 T0.0000000000+000.677403000D+000.838702000D+000.10000000D+010.838702000D+00 T0,677403000D+000.00000000D+000.00000000D+000.0000000D+000.000000D+000 T0.677403000D+000.838702000D+000.1000000CD+C10.838702000D+000.677403000D+00 T0.00000C000D+000.0000000D+000.00000000D+000.0000000D+000.000000D+000.000000D+00 T0.00000000D+000.0000000D+000.0000000D+000.61000000D+020.000000D+00 T0.61000000D+020.0000000D+000.000000D+000.00000D+000.00000D+000.000000D+000 T0.100000000D+010.10000000D+010.10000000D+010.10000000D+010.0000000D+00 0.9540000000+000.2500000000+000.9000000000+00 0.292100000D-020.381000000D-030.60000000D-04 F0.00000000000+00 10.661140000D+030.661140000D+030.675750000D+060.0000000000+00 10.645364280D+010.645364280D+010.00000000D+000.000000D+00 20.661139976D+030.661139976D+030.457953361D+060.00000000D+00 20.645364280D+010.645364280D+010.944392050D-030.944392050D-03 30.709018194D+030.709018194D+030.440294610D+060.00000000D+00 30.644028454D+010.644028454D+010.624381194D-030.624381194D-03 40.768816955D+030.768816955D+030.422317592D+060.00000000D+00 40.651813704D+010.651813704D+010.360111639D-030.360111639D-03 50.840612692D+030.840612698D+030.404311805D+060.00000000D+00 50.6625030590+010.6625030590+010.2682898020-030.2682898020-03 60.901049391D+030.901049391D+030.386078761D+060.00000000D+00 60.676132297D+010.676132297D+010.124816471D-030.124816471D-03 70.949882204D+030.949882204D+030.367828564D+060.00000000D+00 70.6882486700+010.6882486700+010.2670448090-040.2670448090-04
80,949882146D+030,949882146D+030,349355177D+060,0000000D+00 80.6984952220+010.6984952220+01-.2482585430-03-.2482585430-03 90.949882135D+030.949882135D+030.331413146D+060.00000000D+00 90.6988597890+010.6988597890+01-.9917327070-04-.9917327070-04 100.949882148D+030.949882148D+030.313474029D+060.00000000D+00 100.6990075380+010.6990075380+01-.3576223350-04-.3576223350-04 110,9498821210+030,9498821210+030,2955364950+060,0000000000+00 110.699063111D+010.699063111D+01-.821326883D-05-.821326883D-05 120.9498821210+030.9498821210+030.2776000000+060.0000000000+00 120.699078638D+010.699078638D+010.000000000D+000.000000D+00 130.661140000D+030.661140000D+030.675750000D+060.00000000D+00 130.645403526D+010.645403526D+010.000000000D+000.000000D+00 140,661139976D+030.661139976D+030.457944948D+060.0000000000+00 140.6454035260+010.6454035260+010.1340875920-020.1340875920-02 150.709005430D+030.709005430D+030.440286934D+060.00000000D+00 150.644199773D+010.644199773D+010.928251848D-030.928251848D-03 160.768786508D+030.768786808D+030.422313640D+060.00000000D+00 160.651999493D+010.651999493D+010.548821310D-030.548821310D-03 170.840563281D+030.840563281D+030.404309099D+060.00000000D+00 170.6626735740+010.6626735740+010.4274593150-030.4274593150-03 180.900987733D+030.900987733D+030.386077651D+060.00000000D+00 180.676258771D+010.676258771D+010.215717403D-030.215717403D-03 190.949814287D+030.949814287D+030.367828379D+050.00000000D+00 190.688324996D+010.688324996D+010.945914321D-040.945914321D-04 200.949814277D+030.949814277D+030.349357575D+060.000000000+00 200.698476007D+010.698476007D+01-.356041467D-03-.356041467D-03 210.949814285D+030.949814285D+030.331413956D+060.0000000000+00 210.6988120600+010.6988120600+01-.1499521010-03-.1499521010-03 220.949814304D+030.949814304D+030.313474316D+060.00000000D+00 220.698961889D+010.698961889D+01-.597175017D-04-.597175017D-04 230.9498142790+030.9498142790+030.2955365540+060.000000000+00 230.699028057D+010.699028057D+01-.182037349D-04-.182037349D-04 240.949814279D+030.949814279D+030.277600000D+060.0000000D+00 240.699053848D+010.699053848D+010.00000000D+000.0000000D+00 250.661140000D+030.661140000D+030.675750000D+060.0000000D+00 250.645417845D+010.645417845D+010.00000000D+000.000000D+00 260.661139976D+030.661139976D+030.457935425D+060.00000000D+00 260.645417845D+010.645417845D+010.155979087D-020.155979087D-02 270.709007651D+030.709007651D+030.440281298D+060.00000000D+00 270,6441596880+010.6441696880+010.1084942070-020.1084942070-02 280.768792981D+030.768792981D+030.422310628D+060.00000000D+00 280.651956761D+010.651956761D+010.638818786D-030.638818786D-03 290.840572981D+030.840572981D+030.404306936D+060.0000000000+00 290.662642196D+010.662642196D+010.504013753D-030.504013753D-03 300.901000145D+030.901000145D+030.386076682D+060.00000000D+00

300.6762302430+010.6762302430+010.2562526010-030.2562526010-03 310.949828329D+030.949828329D+030.367827986D+060.000000000D+00 310.688304299D+010.688304299D+010.127519496D-030.127519496D-03 320.949828094D+030.949828094D+030.349359311D+060.00000000D+00 320.698443939D+010.698443939D+01-.419776596D-03-.419776596D-03 330.949827962D+030.949827962D+030.331414574D+060.00000000D+00 330.698806424D+010.698806424D+01-.177593108D-03-.177593108D-03 340.949827916D+030.949827916D+030.313474560D+060.00000000D+00 340.698963622D+010.698963622D+01-.718543316D-04-.718548316D-04 350.949827871D+030.949827871D+030.295536625D+060.0000000000+00 350.699031921D+010.699031921D+01-.227451686D-04-.227451686D-04 360.949827871D+030.949827871D+030.277600000D+060.0000000D+00 360.699057870D+010.699057870D+010.00000000D+000.0000000D+00 370.661140000D+030.661140000D+030.675750000D+060.00000000D+00 370.645428949D+010.645428949D+010.00000000D+000.000000D+00 380.661139976D+030.661139976D+030.457928041D+060.00000000D+00 380.645428949D+010.645428949D+010.179030824D-020.179030824D-02 390.709009385D+030.709009335D+030.440276865D+060.00000000D+00 390.644146447D+010.644146447D+010.124468169D-020.124468169D-02 400.768797831D+030.768797831D+030.422308292D+060.00000000D+00 400.6519233590+010.6519233590+010.7260552830-030.7260552830-03 410.840580594D+030.840580594D+030.404305235D+060.00000000D+00 410.662517911D+010.662617911D+010.579300377D-030.579300377D-03 420.901009888D+030.901009888D+030.386075914D+060.00000000D+00 420.676208049D+010.676208049D+010.29418672CD-030.294186726D-03 430.949839319D+030.949839319D+030.367827626D+060.000000000D+00 430.6882886020+010.6882886020+010.1777539700-030.1777539700-03 440.949714824D+030.949714824D+030.349360678D+060.00000000D+00 440.698368498D+010.698368498D+01-.461539051D-03-.461539051D-03 450.9496589690+030.9496589680+030.3314150630+060.00000000000+00 450.698663932D+010.698663932D+01-.20741425GD-03-.207414256D-03 460.949634152D+030.949634152D+030.313474756D+060.00000000D+00 460.6988286210+010.6988286210+01-.9226422600-04-.9226422600-04 470.949624131D+030.949624131D+030.295536684D+060.00000000D+00 470.698923257D+010.698923257D+01-.371568794D-04-.371568794D-04 480.949624131D+030.949624131D+030.277600000D+060.0000000000+00 480.698980314D+010.698980314D+010.000000000D+000.000000D+00 490.661140000D+030.66114000.0D+030.675750000D+060.00000000D+00 490.541970450D+010.541970490D+010.000000000D+000.0000000D+00 500.661139976D+030.661139976D+030.457921379D+060.0000000000+00 500.541970490D+010.541970490D+010.00000000D+000.000000D+00 510.6996463250+030.6996463250+030.4402728500+060.0000000000+00 510.548841579D+010.548841579D+010.000000000D+000.00000D+00 520.747216772D+030.747216772D+030.422306195D+060.00000000D+00 520.559525484D+010.559525484D+010.00000000D+000.000000D+00

530.803998842D+030.803998842D+030.404303690D+060.0000000D+00 530.569885826D+010.569885826D+010.00000000D+000.000000D+00 540.851601173D+030.851601173D+030.336075215D+060.0000000000+00 540.551498449D+010.581498449D+010.00000000D+000.000000D+00 550.890031705D+030.890031705D+030.367827221D+060.000000000D+00 550.590800788D+010.590800788D+010.0000000000D+000.0000000D+00 560.890031690D+030.890031690D+030.349361862D+060.00000000D+00 560.598279362D+010.598279362D+010.000000000D+000.000000D+00 570.890031694D+030.890031694D+030.331415520D+060.00000000D+00 570.596519113D+010.596519113D+010.00000000000+000.0000000D+00 580.890031699D+030.890031699D+030.313474959D+060.00000000D+00 580.595729676D+010.595729676D+010.00000000000+000.0000000D+00 590.890031688D+030.890031688D+030.295536764D+060.00000000000+00 590.595380175D+010.595380175D+010.00000000D+000.000000D+00 600.890031688D+030.890031688D+030.277600000D+060.00000000D+00 600.595241215D+010.595241215D+010.00000000D+000.000000D+00 T0.661139976D+030.661139976D+030.661139976D+030.661139976D+030.661139976D+030. T0.661139976D+030.661139976D+030.661139976D+030.177692822D+040.169945358D+04 T0.148493467D+040.119305137D+040.887163285D+030.762281343D+030.739650519D+03 T0.718545367D+030.229407525D+040.220226250D+C40.190408012D+040.143965213D+04 T0.989632560D+030.835144320D+030.807124783D+030.780994205D+030.270225402D+04 T0.262496466D+040.235072460D+040.175835324D+040.110423196D+040.920248747D+03 10.8868405330+030.8556845570+030.2499155380+040.2420582560+040.2151479770+04 T0.165030075D+040.112246557D+040.968224687D+030.940205151D+030.914074572D+03 T0.223810093D+040.216198092D+040.192056129D+040.153494856D+040.112893154D+04 T0.100439023D+040.981759401D+030.960654249D+030.949882146D+030.949882146D+03 T0.949882146D+030.9498 T0.949882146D+030.949882135D+030.949882135D+030.949882135D+030.949882135D+03 T0.949382135D+030.949882135D+030.949882135D+030.949882135D+030.949882148D+03 T0.949882148D+030.949862148D+030.949882148D+030.949882148D+030.949882148D+030.949882148D+03 T0.9498821480+030.9498821480+030.9498821210+030.9498 T0.949882121D+030.949882121D+030.949882121D+030.949882121D+030.949882121D+030.949882121D+03 T0.661139976D+030.661139976D+030.661139976D+030.661139976D+030.661139976D+03 10.6611399760+030.6611399760+030.6611399760+030.1776899400+040.1699425690+04 T0.148491047D+040.119303284D+040.887149675D+030.762267718D+030.739636893D+03 T0.718531742D+030.229401948D+040.220220365D+040.190401737D+040.143960338D+04 T0.989601252D+030.835112961D+030.807093425D+030.780962846D+030.270219726D+04 T0.262490331D+040.235064620D+040.175826399D+040.110418122D+040.920197885D+03 T0.886789671D+030.855633695D+030.249907233D+040.242049368D+040.215137401D+04 T0.165020046D+040.112240299D+040.968161977D+030.940142441D+030.914011862D+03 T0.223799226D+040.216186803D+040.192044307D+040.153484906D+040.112886318D+04 T0.100432175D+040.931690925D+030.960585773D+030.949814277D+030.949814277D+03 T0.9498142770+030.949814277D+030.9498 10.9498142770+030.9498142850+030.9498142850+030.9498142850+030.9498142850+03 10.9498142850+030.9498142850+030.9498142850+030.9498142850+030.9498143040+03

T0.949814304D+030.9498 T0.9498143040+030.9498143040+030.949814279D+030.949814279D+030.949814279D+030.945814279D+03 T0.949814279D+030.949814279D+030.949814279D+C30.949814279D+030.949314279D+03 T0.661139976D+030.661139976D+030.661139976D+#30.661139976D+030.661139976D+03 T0.661139976D+030.661139976D+030.661139976D+030.177690446D+040.169943059D+04 T0.148491472D+040.119303609D+040.887152066D+030.762270112D+030.739639288D+03 T0.718534136D+030.229403090D+040.220221571D+040.190403022D+040.143961337D+04 T0.9896076660+030.8351193860+030.8070998490+030.780969270D+030.270220841D+04 T0.262491536D+040.235066159D+040.175828151D+040.110419118D+040.920207874D+03 T0.886799659D+030.855643684D+030.249908909D+040.242051161D+040.215139534D+04 T0.165022069D+040.112241561D+040.968174625D+030.940155089D+030.914024510D+03 T0, 223801488D+040.216189153D+040.192046768D+040.153486977D+040.112887741D+04 T0.100433600D+040.981705178D+030.960600027D+030.949828094D+030.949828094D+03 T0.949828094D+030.949828094D+030.949828094D+030.949828094D+030.949828094D+03 T0.9498280940+030.949827962D+030.949827962D+030.949827962D+030.949827962D+03 T0.949827962D+030.949827962D+030.949827962D+030.949827962D+030.949827916D+03 T0.949827916D+030.949827916D+030.949827916D+030.949827916D+030.949827916D+03 T0.949827916D+030.949827916D+030.949827871D+030.949827871D+030.949827871D+030.949827871D+03 T0.949827871D+030.9498 T0.661139976D+030.661139976D+030.6611399760+030.661139976D+030.661139976D+03 T0.661139976D+030.661139976D+030.661139976D+030.177690842D+040.169943441D+04 T0.148491804D+040.119303864D+040.887153934D+030.762271982D+030.739641157D+03 T0.718536005D+030.229403988D+040.220222518D+040.190404032D+040.143962121D+04 T0,989612704D+030.835124431D+030.807104895D+030.780974316D+030.270221716D+04 T0.262492482D+040.235067368D+040.175829527D+040.110419500D+040.920215712D+03 T0.8866074970+030.8556515220+030.2499102230+040.2420525670+040.215141208D+04 T0.165023657D+040.112242552D+040.968184552D+030.940165015D+030.914034436D+03 T0.223503277D+040.216191012D+040.192048714D+040.153488615D+040.112888866D+04 T0.100434727D+040.981716450D+030.960611298D+030.949714824D+030.949714824D+03 T0.949714824D+030.949714824D+030.949714824D+030.949714824D+030.949714824D+030.949714824D+03 T0.949714824D+030.949658968D+03D.949658968D+C30.949658968D+030.949658968D+03 10.949658968D+030.949658968D+030.949658968D+030.949658968D+030.949634152D+03 10.9496341520+030.9496341520+030.9496341520+030.9496341520+030.9496341520+030 T0.949634152D+030.949634152D+030.949624131D+0300.949624131D+0300.949624131D+030000 T0.949624131D+0300.949624131D+0300.949624131D+030000 T0.661139976D+030.661139976D+030.661139976D+030.661139976D+030.661139976D+030.661139976D+03 T0.661139976D+030.661139976D+030.661139976D+030.175496958D+040.167823793D+04 T0.146656179D+040.117897741D+040.876804866D+030.751911989D+030.729281164D+03 10.7081760130+030.225221059D+040.215821163D+040.185774891D+040.140409633D+04 T0.966699134D+030.812174698D+030.784155162D+030.758024583D+030.265753179D+04 10.2576577550+040.2288980810+040.1690799420+040.1065889780+040.8818190190+03 T0.848410804D+030.817254829D+030.242750750D+040.234398530D+040.206164460D+04 T0.156873596D+040.107147044D+040.917126727D+030.889107191D+030.862976612D+03 T0.213527169D+040.205587076D+040.181242410D+040.144635784D+040.106777019D+04 T0.9431261930+030.920495368D+030.899390217D+030.890031690D+030.890031690D+03

T0.890031690D+030.890031690D+030.890031690D+030.890031690D+030.890031690D+03 T0.890031690D+030.890031694D+030.890031694D+030.890031694D+030.890031694D+03 T0.890031694D+030.890031694D+030.890031694D+030.890031694D+030.890031699D+03 T0.890031699D+030.890031699D+030.890031699D+030.890031699D+030.890031699D+03 T0.890031699D+030.890031699D+030.890031688D+030.890031688D+030.890031688D+03 T0.890031688D+030.890031688D+030.890031688D+030.890031688D+030.890031688D+03 T0.890031688D+030.890031688D+030.890031688D+030.890031688D+030.890031688D+03 T0.890031688D+030.8900

T0.661139976D+030.661139976D+030.699646325D+030.747216772D+030.803998842D+03 T0.851601173D+030.890031705D+030.890031690D+030.890031694D+030.890031699D+03 T0.890031688D+030.890031688D+030.890031690D+030.890031694D+030.890031699D+03 F

PRINTED OUTPUT EXAMPLE

.

flow map at time = 1.9007 sec.

number of time steps = 192 number of iterations = 770 time step size = 0.1454D-02 sec.

9

8

7

6

5

4

3

2

2.1451

2.2468

2.3659

2.4288

2.4630

2.4989

2.5366

0.990050

0.942923

0.941946

0.000272

0.000000

0.000000

0.000000

2.5758 0.000000

963.998

974.842

985.341

985.940

885.666

717.325

559.447

388.000

885.666

717.325

559.447

388.000

inlet mass flow rate = 0.268297D+01 kg/sec inlet enthalpy flow = 0.234219D+07 watt outlet mass flow rate = 0.914200D+01 kg/sec outlet enthalpy flow = 0.131079D+08 watt total heat transfered = 0.272580D+07 watt

				char	inel number	• 1				
iz	p (bar)	vo i d	tv 	tl (degre	tsat e celsius)	twall	uvz (m/sec)	ulz (m/sec)	uvr (m/sec)	ulr (m/sec)
12	1.8720	0.010783	851.598	851.598	1005.330	849.091	3.43381	3.37281	0.00000	0.00000
11	1.9192	0.010783	851.598	851.598	957.036	849.091	3.80309	3.92908	0.01375	0.01375
10	1.9053	0.120591	877.980	877.979	956.123	876.620	10.80335	8.29518	-0.04234	-0.04234
9	2.0836	0.77 899 9	897.775	897.773	967.469	895.300	24.55758	8.75392	-0.80572	-0.79020
8	2.2962	0.983274	980.388	980.388	980.036	925.166	34.95135	5.32153	0.97598	0,93946
7	2.3966	0.939780	987.087	987.087	985.655	1070.378	3.46065	0.50722	0,40586	0.40327
6	2.4354	0.010680	989.274	989.274	987.774	997.784	0.85252	0.83565	0.06171	0.06170
5	2.4638	0.00000	886.795	886.795	989.308	898.459	0.89817	0.89817	0.00957	0.00957
4	2.4990	0.000000	717.602	717.602	991.196	726.899	0.86429	0.86429	0.00200	0.00200
3	2.5366	0.000000	559.583	559.583	993.184	567.597	0.81454	0.81454	0.00031	0.00031
2	2.5758	0.000000	388.000	388.000	995.231	388.000	0.81165	0.81165	-0.00020	-0.00020
1	2.6471	0.000000	388.000	388.000	1138.947	388.000	0.81165	0.81165	0.00000	0.00000
				chan	nel number	2				
iz	, p	void	tv	t1	tsat	twall	uvz	ulz	uvr	ulr
	(Dar)			(degre	e celsius)		(m/sec)	(m/sec)	(m/sec)	(m/sec)
12	1.8720	0.013694	850.618	850.618	1005.330	848.367	3.37639	3.30393	0.00000	0.00000
11	1.9180	0.013694	850.618	850.618	956.956	848.367	3.67583	3.82623	0.00991	0.00990
10	1.9052	0.161033	875.160	875.158	956.112	874.532	12.36248	8.03308	-0.17664	-0.17638

875.158 12.36248 955.112 874.532 963.999 971.209 888.852 41.74311 6.83830 974.842 977.205 924.136 28.65856 6.20831 985.341 7.71611 983.957 1056.445 0.77429 985.940 994.873 0.98653 987.414 0.98567

897.504

726.660

567.473

388.000

0.93446

0.87301

0.81773

0.81125

٠.

0.93446

0.87301

0.81773

0.81125

.

989.268

991.187

993.183

995.233

1.21714

0.16972

0.90757

0.05649

0.00144

0.00015

-0.00050

· 0.00790

1.28744

0.17670

0.91280

0.05649

0.00790

0.00144

0.00015

-0.00050

1	2.6471	0.000000	388.000	388.000	1138.947	388.000	0.81125	0.81125	0.00000	0.00000
				chan	nel number	3				
iz	p	void	tv	tl	tsat	twall	uvz	ulz	uvr	ulr
	(bar)			(degre	e celsius)		(m/sec)	(m/sec)	(m/sec)	(m/sec)
12	1.8720	0.008960	850.006	850.006	1005.330	847.885	3.31343	3.26321	0.00000	0.00000
11	1.9174	0.008960	850.006	850.006	956.916	847.885	3.71564	3.73243	0.01519	0.01519
10	1.9146	0.103637	871.035	871.034	956.734	871.663	9.99655	7.42375	-0.16207	-0.16200
9	2.1012	0.825045	889.776	889.775	968.551	886.600	22.08457	7.60331	0.54027	0.53450
8	2.2408	0.983656	977.425	977.426	976.855	924.390	34.67865	5.82414	0.72068	0.70740
7	2.3347	0.937245	983.685	983.685	982.215	1047.662	4.36154	1.16028	1.11469	1.10838
6	2.4263	0.000089	984.672	984.672	987.277	993.807	1.05234	1.05201	0.04685	0.04685
5	2.4627	0.000000	885.371	885.371	989.251	897.267	0.94564	0.94564	0.00587	0.00587
4	2.4988	0.000000	717.242	717.242	991.183	726.593	0.87624	0.87624	0.00104	0.00104
3	2.5366	0.000000	559.346	559.346	993.182	567.384	0.82035	0.82035	0.00008	0.00008
2	2.5758	0.000000	388.000	388.000	995.234	388.000	0.81083	0.81083	-0.00073	-0.00073
1	2.6471	0.000000	388.000	388.000	1138.947	388.000	0.81083	0.81083	0.00000	0.00000
				chan	nel number	4				
iz	p	void	tv	tl	tsat	twall	uvz	ulz	uvr	uln N
	(bar)		*****	(degre	e celsius)		(m/sec)	(m/sec)	(m/sec)	(m/sec)
12	1.8720	0.002959	843.195	843.195	1005.330	842.154	3.07388	3.05353	0.0000	0.00000
11	1.9169	0.002959	843.195	843.195	956.883	842.154	3.16124	3.15590	0.01478	0.01478
10	1.9199	0.021862	850.868	850.868	957.078	854.891	7.19584	6.58415	-0.05237	-0.05237
9	2.0887	0.164075	850.842	850.840	967.783	848.647	11.37246	8.19370	-0.03159	-0.03150
8	2.2308	0.987239	976.981	976.981	976.449	918.343	32.79295	5.62849	1.45981	1.40642
7	2.3097	0.931968	981.770	981.770	980.801	1048.771	4.75434	1.59974	1.00605	1.00252
6	2.4250	0.000007	983.910	983.910	987.207	993.180	1.09089	1.09087	0.02652	0.02652
5	2.4626	0.000000	885.240	885.240	989.243	897.164	0.95099	0.95099	0.00315	0.00315
4	2.4988	0.000000	717.213	717.213	991.182	726.570	0.87760	0.87760	0.00058	0.00058
3	2.5366	0.000000	559.321	559.321	993.182	567.360	0.82085	0.82085	-0.00001	-0.00001
2	2.5759	0.000000	388.000	388.000	995.236	388.000	0.81020	0.81020	-0.00098	-0.00098
1	2.6471	0.000000	388.000	388.000	1138.947	388.000	0.81020	0.81020	0.00000	0.00000
			·	chan	nel number	5				
iz	P	void	tv	tl	tsat	twall	tcan	uvz	ulz	
	(bar)			******	degree cel	sius)		(m/sec)	(m/sec)	
12 11	t.8720 1.9166	0.000327 0.000327	713.043 713.043	713.043 713.043	1005.330 956.861	709.701 709.701	713.043 713.043	2.29313 1.75293	2.29167 1.75221	

.

-

•

10	1.9211	0.002928	741.112	741.112	957.157	735.525	741.112	4.04090	3.87783
ġ.	2.0910	0.029919	803.879	803.879	967.923	795.314	803.879	8.19941	7.51813
8	2 2099	0.328978	856,139	856.136	975.053	846.926	856.136	6.59102	5.76649
7	2 2023	0 215748	862.126	862.123	979,923	867.617	841.491	2.56718	1.85150
é	2 A 2 3 4 4	0.000000	783.632	783.632	987.179	793.138	767.650	0.86239	0.86239
5	9 4625	0.000000	710.987	710.987	989.240	724.489	700.308	0.71430	0.71430
<u>л</u>	2.4025	0.000000	603.494	603.494	991.181	614.385	595.840	0.66470	0.66470
7	2 5366	0.000000	499.709	499.709	993.182	508.341	494.512	0.63937	0.63937
5	2.5500	0.000000	388.000	388.000	995.238	388,000	388.000	0.67691	0.67691
1	2.6471	0.000000	388.000	388.000	1138.947	388.000	388.000	0.67691	0.67691

.

.

.

•

.

•

_

-- .

.

flow map at time = 2.0013 sec.

number of time steps = 265 number of iterations = 1138 time step size = 0.3378D-02 sec.

•

inlet mass flow rate = -.271222D+01 kg/sec outlet mass flow rate = 0.754283D+01 kg/sec total heat transfered = -.562540D+06 watt inlet enthalpy flow = -.248236D+07 watt outlet enthalpy flow = 0.109099D+08 watt

.

-

channel	number	1

iz	p	void	tv	tl (dogra	tsat	twall	uvz (m/sec)	ulz (m/sec)	uvr (m/sec)	ulr (m/sec)	
	(bar)			(degre	e cersius)		(, 000)				
_			004 004	061 067	1005 220	860.980	0.51501	3.07887	0.00000	0.00000	
12	1.8720	0.303258	801.904	061.903	020 041	860.980	15.50110	8.88634	-0.14508	-0.14452	
11	1.5388	0.303258	861.964	045 244	929.041	984 862	27.85684	3.51727	1.07253	1.05714	
10	1.8744	0.994372	945.344	943.344	954.005	095 346	22.69684	3.38400	0.32808	0.31151	
9	1.8967	0.970861	956.143	956.144	955.553	019 024	16.03301	2.50611	0.27615	0.26388	N
8	1.9247	0.973085	958.142	958.142	957.394	4402 202	6.95722	1.05196	0.33247	0.31702	- Ci
7	1.9403	0.971530	959.403	959.403	958.410	1102.302	4 06008	-2.71013	0.37385	0.37203	-
6	1.9438	0.977325	959.525	959.525	958.641	1055.007	-0 53806	-1.36656	0.12127	0.12115	
5	1,9863	0.276728	961.461	961.461	961.380	905.323		-0.94945	0.00318	0.00318	
4	2.1552	0.003745	806.046	806.046	971.812	803.191	-0.03007	-0.88490	0.00252	0.00252	
3	2.3318	0.000193	637.440	637.440	982.050	634.489	-0.00200	-0 84243	-0.00068	-0.00068	
2	2.5118	0.000005	424.457	424.457	991.872	417.601	-0.84238	-0.04243	0 00000	0.00000	
1	2.6471	0.000000	388.000	388.000	1138.947	417.601	-0.84238	-0.04245			
				chan	nel'number	2					
•	_	void	+ v	t 1	tsat	twall	uvz	ulz	uvr	ulr	
12	p (bar)	voru		(degre	e celsius)		(m/sec)	(m/sec)	(m/sec)	(m/sec)	
	()							2 82002	0.0000	0.00000	
12	1.8720	0.267247	859.178	859.177	1005.330	859.009	2.0/2/4	0.07103	-0 25991	-0.25926	
11	1.5528	0.267247	859.178	859.177	930.932	859.009	15.03800	3.07103	1 60127	1.58285	
10	1.8534	0.993174	944.524	944.524	952.657	883.012	27.19280	3 25950	0 43395	0.41368	
9	1.8781	0.961646	954.645	954.645	954.316	878.283	21./2918	3.35500	0.42054	0.39789	
8	1.9107	0.969096	957.194	957.194	956.473	923.430	13.99242	4 07655	0.56712	0.54060	
7	1.9230	0.973095	958.282	958.282	957.287	1093.160	6,90450	-0 64147	0.77521	0.77175	
6	1.9263	0.980335	958.405	958.405	957.497	1049.437	6.78303	-2.04147	-0.06259	-0.06248	
5	1.9771	0.190750	960.883	960.883	960.787	964.921	-0.35509	-0.80300	0.00015	0.00015	
4	2.1552	0.003013	803.565	803.565	971.809	801.283	-U.84814	-0.86327	0.00200	0.00200	
3	2.3316	0.000176	636.337	636.337	982.037	633.663	-0.00000	-0.84154	-0.00216	-0.00216	
2	2.5118	0.000005	424.035	424.035	991.876	417.296	-0.04130	-4104104		-	

1	2.6471	0.000000	388.000	388.000	1138.947	417.296	-0.84150	-0.84154	0.00000	0.00000
				chan	nel number	3				
iz	q	void	tv	t1	tsat	twall	uvz	ulz	uvr	ulr
	(bar)		ا چه مو چه ده ده	(degre	e celsius)		(m/sec)	(m/sec)	(m/sec)	(m/sec)
12	1.8720	0.194987	847.012	847.011	1005.330	849.999	1.93011	3.94404	0.00000	0.00000
11	1.5650	0.194987	847.012	847.011	931.873	849.999	13.82167	8.91571	· 0,29528	-0.29487
10	1.8382	0.992186	937.570	937.571	951.627	873.235	31.75979	3.99577	2.07276	1.95726
9	1.8649	0.962474	953.507	953.50 7	953.433	875.425	19.54338	3.28950	0.14674	0.14020
8	1.8976	0.955072	955.987	955.987	955.609	929.787	10.60926	2.26209	0.42229	0.40286
7	1.9086	0.972566	957.333	957.333	956.340	1083.821	2.22228	0.93556	0.63869	0.60924
6	1.9089	0.981059	957.346	957.346	956.360	1046.766	1.84264	-2,38606	0.95529	0.95168
5	1.9822	0.235475	961.237	961.237	961.115	965.307	-0.35914	-1.06574	0.02240	0.02241
4	2.1553	0.002785	802.564	802.564	971.816	800.549	-0.81983	-0.86247	-0.00133	-0.00133
3	2.3315	0.000164	635.795	635.795	982.032	633.262	-0.84754	-0.84997	0.00136	0.00136
2	2.5120	0.000004	423.787	423.787	991.883	417.115	-0.84167	-0.84170	-0.00321	-0.00321
1	2.6471	0.000000	388.000	388.000	1138.947	417.115	-0.84167	-0.84170	0.00000	0.00000
				chan	nel number	4				
iz	D	void	tv	tl	tsat	twall	uvz	ulz	uvr	ulr
	(bar)			(degre	e celsius)	**-**	(m/sec)	(m/sec)	(m/sec)	(m/sec)
12	1.8720	0.057287	826.273	826.273	1005.330	830.661	2.56785	3.32214	0.00000	0.00000
11	1.5759	0.057287	826.273	826.273	932.711	830.661	9.94701	8.60545	-0.14279	-0.14277
10	1.7882	0.464318	845.903	845.899	948.201	841.528	9.54023	5.16638	0.03636	0.03632
9	1.8619	0.952944	935.220	935.219	95 3.233	860.605	11.26089	3.51069	0.24239	0.23809
8	1.8862	0.875778	927.424	927.424	954.991	926.111	7.09710	2.66816	0.16310	0.16036
7	1.8981	0.973212	956.609	956.609	955.648	1074.430	-2 .40832	0.77884	0,64798	0.61870
6	1.8962	0.983523	956.620	956.620	955.518	1045.606	-0.37324	-2.25866	1.18517	1.17979
5	1.9827	0.091832	948.708	948.708	961.145	957.131	-0. 58589	-0.98588	-0.01629	-0.01628
4	2.1554	0.002370	801.594	801.594	971.822	799.919	-0.80536	-0.84113	-0.00068	-0.00068
З	2.3314	0.000131	635.521	635.521	982.029	633.080	-0 .84035	-0.84221	0.00045	0. 00045
2	2.5121	0.000003	423.420	423.420	991.890	416.859	-0. 84098	-0.84100	-0.00438	-0.00438
1	2.6471	0.000000	388.000	388.000	1138.947	416.859	-0.84098	-0.84100	0.00000	0.00000
			•	chan	net number	5				
iz	p	void	tv	tl	tsat	twall	tcan	uvz	ulz	
	(bar)			***********	degree cel	sius)		(m/sec)	(m/sec)	
12	1.8720	0.003825	763.699	763.699	1005.330	753.066	763.699	1.16509	1.25295	
11	1.5793	0.003825	763.699	763.699	932.972	753.066	763.699	6.99345	6.85619	

· · ·

.

.

10	1,7879	0.020460	823.341	823.341	948.180	816.611	823.341	6.65369	6.37594
9	1.8577	0.105617	859.689	859.688	952.946	853.058	859.688	5.87165	5.69386
8	1.8855	0.093630	877.018	877.017	954.806	872.255	877.017	4.81453	4.76605
7	1.8880	0.308404	892.240	892.239	954.977	899.516	879.397	1.42155	1.66511
6	1.8766	0.318665	847.592	847.590	954.213	856.880	815.256	-1.69625	-2.11925
5	1.9834	0.007083	750.548	750.548	961.195	760.944	727.796	-0.84139	-0.88960
4	2.1554	0.000247	634.591	634.590	971.823	643.339	618.204	-0.82661	-0.82885
3	2.3314	0.000007	526.750	526.750	982.029	533.441	513.420	-0.81987	-0.81992
2	2.5122	0.000000	400,197	400.197	991.897	399.065	394.352	-0.61606	-0.61606
1	2.6471	0.000000	388.000	388.000	1138.947	399.065	394.352	-0.61606	-0.61606

·

.

.

•

APPENDIX D

NATOF - 2D PROGRAM LISTING

COMPILATION LISTING OF NATOF (>user_dir_dir>BOIL>Granziera>NATOF.fortran)

Compiled by: Multics New Fortran Compiler, Release 6 Compiled on: 04/29/80 1304.9 edt Tue Options: table card relocatable map

•

Main Program

٠

1	С		MAIN PROGRAM
2	С		
3	С		THE MAIN PROGRAM HAS THE ONLY FUNCTION OF ALOCATING
- 4	С		POSITIONS IN THE MEMORY FOR THE VARIABLES.
5	С		
6	С		THE COMAND 'DIMENSION ORBI(XXXX)' ALOCATES MEMORY FOR
7	С		ALL THE VARIABLES.FOR EACH PROBLEM, THE USER SHOULD
8	С		SUPLY ITS DIMENSION, WHICH VALUE IS CALCULATED AS :
9	Ç		
10	С		XXXX = (131 + 2*(NCF + NCLD))*NI*NJ
11	С		
12	Ç		WITH :
13	С		
14	С		NI = NUMBER OF AXIAL MESH POINTS
15	С		NJ = NUMBER OF RADIAL MESH POINTS
16	С		
17	С		
18			IMPLICIT REAL+8 (A-H,O-Z)
19	С		
20			DIMENSION ORBI(12000)
21			NORBI = 12000
22			DO 10 II = 1,NORBI
23		10	ORBI(II) = 0.00
24	С		
25			CALL HEAD(ORBI,NORBI)
26			STOP
27			END

٠

Block Data

.

-145

28	BLOCK	DATA
----	-------	------

- 29 30 31
- COMMON /NUMBER/ ZERO,ONE,BIG,SMALL REAL+8 ZERO/0.D0/,DNE/1.D0/,BIG/1.D+07/,SMALL/1.D-08/ END

Subroutine head

32	SUBROUTINE HEAD(ORBI.N	IORBI)
33	IMPLICIT REAL*8 (A-H.O)-Z)
34	COMMON /BCX/ ULD	
35	COMMON /NUMBER/ ZERO, O	INE BIG SMALL
36	COMMON /ERROR/ LERR	
37	COMMON /RHEA/ TSET(40)	TSHSET(40) DIMAX DIM1
38	COMMON /REA/ NN NP.NB	NW.NTR NPIN NPM1 NSET(40).NSHSET(40)
30	COMMON /DIM / D7(40), D7	(1(40), DR0(40), DR1(40), DR2(40), DR3(40),
40	* DE4(40).N	IT.NJ NIMI NIMO NJMI NNI NNJ NNJJ
41	COMMON /CNTRL/ EPS1 EP	S2 RES IT1 IT2 IT3 ITM1 ITM2 IGAUSS
42	COMMON /TEMPO/ TIME DT	DTO DTIS NOT
43	COMMON /PNTR1/ K(100).	M(100)
44	DIMENSION ORBI (NORBI)	
45 C		
46 C	THE MATRIX M CONT	AINS POINTERS TO THE MATRIX ORBI
47 C	WHICH CORRESPOND	TO THE FIRST FIEMENT OF THE VARIABLE
48 C	DIMENSIONED ARAYS	IN THE FOLLOWING EQUIVALENCE :
49 C	- · · · · · · · · · · · · · · · · · · ·	
50 C	M(1) = P	M(2) = PO
51 C	M(3) = TV	M(4) = TVO
52 C	M(5) = TL	M(6) = TLO
53 C	M(7) = ALFAN	M(8) = ALFAO
54 C	M(9) = ALFAZ	M(10) = ALFAR
55 C	M(11) = RHOV	M(12) = RHOL
56 C	M(13) = RHOVZ	M(14) = RHOLZ
57 C	M(15) = RHOVR	M(16) = RHOLR
58 C	M(17) = HV	M(18) = HL
59 C	M(19) = HVZ	M(20) = HLZ
60 C	M(21) = HVR	M(22) = HLR
61 C	M(23) = UVZN	M(24) = ULZN
62 C	M(25) = UVRN	M(26) = ULRN
63 C	M(27) = UVZO	M(28) = ULZO
64 C	M(29) = UVRO	M(30) = ULRO
65 C	M(31) = UVRZ	M(32) = ULRZ
66 C	M(33) = UVZR	M(34) = ULZR
67 C	$M(35) \approx FUVZN$	M(36) = FULZN
68 C ·	M(37) = FUVRN	M(38) = FULRN
69 C	M(39) = W(K(1))	M(40) = W(X(3))
70 C	M(41) = W(K(3))	M(42) = W(K(4))
71 C	M(43) = W(K(5))	M(44) = W(K(6))
72 C	M(45) = W(K(7))	M(46) = W(K(8))
73 C	M(47) = W(K(9))	M(48) = W(K(10))
74 C	M(49) = W(K(11))	M(50) = W(K(12))

-

•

	-	
-	-	•

•

÷

75 C C C C C C C C C C C C C C C C C C C	M(51) = W(K(13)) M(53) = W(K(15)) M(55) = W(K(17)) M(57) = W(K(19)) M(59) = W(K(21)) M(61) = W(K(23)) M(63) = DH M(65) = DV M(67) = TS M(69) = DTW M(71) = HCONL M(73) = DPN M(71) = A2 M(77) = A4 M(79) = B M(81) = DTR M(83) = BETA M(85(= QPP C M(87) = ALZD C M(89) = ALRD M(91) = TCAN CALL READ1	M(52) M(54) M(56) M(58) M(60) M(62) M(64) M(66) M(68) M(70) M(72) M(74) M(76) M(72) M(74) M(76) M(78) M(82) M(84) M(86) M(88) M(90) M(92)	 W(K(14)) W(K(16)) W(K(18)) W(K(20)) W(K(22)) W(K(24)) DHR QSI TW HCONV HNB A1 A3 YP TR TW TW DLD GAMMA AVZD AVRD SPPD
98 C 99	M(1) = 1		
100	DO 1001 L = 2,79		
101 1001	M(L) = M(L-1) + NN		
102	M(80) = M(79) + NB		
103	M(81) = M(80) + NTR		
104	M(82) = M(81) + NTR		
105	M(83) = M(82) + NN		
106	M(84) = M(83) + NN		
107	M(85) = M(85) + NN M(85) = M(85) + NN		
109	M(87) = M(86) + NN		
110	M(88) = M(87) + NN		
111	M(89) = M(88) + NN		
112	M(90) = M(89) + NN		
113	M(91) = M(90) + NN		
114	NCAN = 4*NI		
115	M(92) = M(91) + NCAN		
116 C			
117 C			
118 C			
119	TIME = ZERO		

.

•

-

 $\widehat{}$

120 CALL READ2(ORBI(M(1)), ORBI(M(3)), ORBI(M(5)), ORBI(M(7)), 121 ORBI(M(23)),ORBI(M(24)),ORBI(M(25)),ORBI(M(26)), 122 ORBI(M(63)), ORBI(M(65)), ORBI(M(66)), ORBI(M(80)), * 123 * ORBI(M(81)),TINIT,ORBI(M(68)),ORBI(M(90)),ORBI(M(91)), 124 NP.NTR.NPIN.NPM1.NN.NCAN) DO 104 KO = 1.NN125 KL = KO - 1126 127 DD 103 L = 1,67103 K(L) = M(L) + KL128 129 C 130 ORBI(K(67)) = SAT(ORBI(K(1)))131 ORBI(K(2)) = ORBI(K(1))132 ORBI(K(4)) = ORBI(K(3))133 ORBI(K(6)) = ORBI(K(5))ORSI(K(8)) = ORBI(K(7))134 135 ORBI(K(30)) = ORBI(K(26))136 ORBI(K(27)) = ORBI(K(23))ORBI(K(28)) = ORBI(K(24))137 ORBI(K(29)) = ORBI(K(25))138 139 104 CONTINUE 140 C 141 C 142 C 143 C NPRI = 0144 145 TPRI = TINIT + TSET(1)146 TSHPRI = TINIT + TSHSET(1) 147 LSH = 1148 L = 1 149 NTS = 0150 NIT = 0TIME = TINIT 151 152 LPRI = 0LSHPRI = 0153 **1 CONTINUE** 154 155 NDT = 0156 IT3 = 0CALL TMSTEP(ORBI,NORBI, 157 NN, NP, NB, NW, NTR, NPIN, NPM1, NCAN) 158 * 159 C 160 NIT = NIT + IT3161 NTS = NTS + 1 162 C 163 IF(IERR.NE.0) GO TO 7 164 IF(TIME.LT.TPRI) GO TO 1

16	5 C	
16	6 (GO TO 8
16	7 2 (CONTINUE
. 16	3 C	
16	9 C	
17	0 t	.PRI = LPRI + 1
17	1 1	LF(LPRI-NSET(L))3,4,4
. 17	2 31	(PRI = TPRI + TSET(L)
17	3 (SO TO 1
17	4 4 t	_ = L + 1 .
17	5 N	VPRI = NPRI + LPRI
17	6 1	IF(NSET(L))6,6,5
17	7 5 L	PRI = 0
17	8 1	IPRI = TPRI + TSET(L)
17	9 0	
18	0 6 0	CALL SAVER(ORBI(M(1)),ORBI(M(3)),ORBI(M(5)),ORBI(M(7)),
18	1 *	ORBI(M(23)),ORBI(M(24)),ORBI(M(25)),ORBI(M(26)),
18	2 *	ORBI(M(80)),ORBI(M(91)),TIME,NTR,NN,NCAN,NI)
18	3 F	RETURN
18	4 70	CALL ERRMES(TIME)
18	5 80	CONTINUE
18	6 C	
18	7 🤇	DT = ZERO
18	8 F	MI = ZERO
18	9 F	ME = ZERO
19	0 F	HI = ZERO
19	1 F	HE = ZERO
19	2 K	(P = 0
19	3 <u>[</u>	0.9 J = 1, NJ
19	4 ¥	(I = (J-1) + NI + 1)
19	5 1	(E = J*NI
19	6 1	F(GRBI(M(24)+KI-1).LT.ZERO) KI = KI + 1
19	7 C	
19	8 1	V = URB1(M(3)+K1-1)
19	9 1	L = ORBI(M(5)+K(-1))
20		P = 0RB1(M(1)+K1-1)
20		V = 0RBI(M(23)+KI-1)
20		JL = URB1(M(24)+K1-1)
20	3 P A T	$A = URBI(m(7)+KI^{-1})$
20	4 R F F	$(V = URDI(M(1))+KI^{-1})$
20		(L = UKDI(M(12)+KI=1) (N = OBDI(M(12)+KI=1)
20	0 U 7 U	Y = 0R01(M(17)TRI-1)
20	é n	$\mathbf{L} = \mathbf{D} \mathbf{D} \mathbf{L} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$
∠ ↓	3 6	

.

.

٠.

•

262

-

_

```
210
           FMVJ = AA + RV + UV + DR4(J)
211
           FMLJ = (ONE - AA) * RL * UL * DR4(J)
212
           HV = EV + PP/RV
213
           HL = EL + PP/RL
214 C
215
           FMI = FMI + FMVJ + FMLJ
           FHI = FHI + FMVJ*HV + FMLJ*HL
216
217 C
           TV = ORBI(M(3)+KE-1)
218
219
           TL = ORBI(M(5)+KE-1)
           PP = ORBI(M(1)+KE-1)
220
           AA = ORBI(M(7)+KE-2)
221
222
           UV = ORBI(M(23)+KE-1)
223
           UL = ORBI(M(24)+KE-1)
224
           RV = ORBI(M(11)+KE-1)
225
           RL = ORBI(M(12)+KE-1)
226
           EV = ORBI(M(17)+KE-1)
           EL = ORBI(M(18)+KE-1)
227
228 C
229 C
230
           FMVJ = AA * RV * UV * DR4(J)
231
           FMLJ = (ONE - AA) * RL * UL * DR4(J)
232
           HV = EV + PP/RV
233
           HL = EL + PP/RL
234 C
235
           FME = FME + FMVJ + FMLJ
           FHE = FHE + FMVJ*HV + FMLJ*HL
236
237 C
238
           DO 9 I = 1.NIM2
239
           KP = KP + 1
240
           KO = (J-1) * NI + I
241
           QT = QT + ORBI(M(85)+KP-1)*ORBI(M(65)+KO)*DZ(I+1)*DR4(J)
242
        9 CONTINUE
243
          WRITE(6,200) TIME
244
          WRITE(6,201) NTS,NIT,DT
245
          WRITE(6,202) FMI, FHI, FME, FHE, QT
246
          DO 10 J = 1,NJM1
247 C
248
          WRITE(6,203) J
249
          WRITE(6,204)
250 C
251
          DO 10 I = 1.NI
252
          KI = NI - I + 1
```

2

e

6

263

```
255
          IF(KI.EQ.1) KP = KP + 1
256
          IF(KI.EQ.NI)KP = KP - 1
257 C
258
          PP = ORBI(M(1)+KO-1)/1.D+05
259
          TVP = ORBI(M(3)+KO-1) - 273.14
260
          TLP = ORBI(M(5)+KO-1) - 273.14
261
          TSP = ORBI(M(67)+KO-1) - 273.14
262
          TWP = ORBI(M(68)+KP-1) - 273.14
263
          AP = ORBI(M(7)+KO-1)
264
          UVZ = ORBI(M(23)+KO-1)
265
          ULZ = ORBI(M(24)+KO-1)
266
          UVR = ORBI(M(25)+KO-1)
267
          ULR = ORBI(M(26)+KO-1)
268 C
269
          WRITE(6,205) KI, PP, AP, TVP, TLP, TSP, TWP,
270
         *
                        UVZ,ULZ,UVR,ULR
271
       10 CONTINUE
272 C
273
          J = NJ
274 C
          WRITE(6,203) J
275
276
          WRITE(6.206)
277 C
278
          DO 11 I = 1.NI
279
          KI = NI - I + 1
280
          KO = (J-1) * NI + KI
281
          KP = KO - 2 + J + 1
282
          IF(KI.EQ.1) KP = KP + 1
293
          IF(KI.EQ.NI)KP = KP - 1
284 C
285
          PP = ORBI(M(1)+KO-1)/1, D+05
286
          TVP = ORBI(M(3)+KO-1) - 273.14
287
          TLP = ORBI(M(5)+KO-1) - 273.14
          TSP = ORBI(M(67)+KO-1) - 273.14
288
289
          TWP = ORBI(M(63)+KP-1) - 273.14
290
          TCP = ORBI(M(91)+KI-1) - 273.14
291
          AP = ORBI(M(7)+KO-1)
292
          UVZ = ORBI(M(23)+KO-1)
293
          ULZ = ORBI(M(24)+KO-1)
294 C
          WRITE(6,207) KI, PP, AP, TVP, TLP, TSP, TWP, TCP,
295
296
         *
                        UVZ,ULZ
297
       11 CONTINUE
298 C
299
          IF(IERR.NE.0) GO TO 6
```

```
264
```

-

```
\overline{}
```

300 GO TO 2 206 FORMAT(1X,'IZ',5X,'P',10X,'VOID',7X,'TV',8X,'TL',7X,'TSAT', 301 5X, 'TWALL', 7X, 'TCAN', 6X, 'UVZ', 9X, 'ULZ'/ 302 * 6X, '(BAR)', 19X, '-----(DEGREE CELSIUS)', 303 '----',2(5X,'(M/SEC)')/) 304 305 207 FORMAT(1X, I2, 2X, F9.4, 2X, F8.6, 5(2X, F8.3), 2(2X, F10.5)) 306 200 FORMAT(1H1,10X, 'FLOW MAP AT TIME = '.F10.4, ' SEC.'/) 307 201 FORMAT(1X, 'NUMBER OF TIME STEPS = ', I10/ 308 1X, 'NUMBER OF ITERATIONS = '.110/ * 309 1X, 'TIME STEP SIZE = 'D10.4, ' SEC.'/) 202 FORMAT(1X, 'INLET MASS FLOW RATE = ',D12.6, ' KG/SEC', 310 311 6X, 'INLET ENTHALPY FLOW = ',D12.6,' WATT'/ * 1X, 'DUTLET MASS FLOW RATE = ',D12.6, ' KG/SEC', 312 6X, 'OUTLET ENTHALPY FLOW = ',D12.6, ' WATT'/ 313 314 1X, 'TOTAL HEAT TRANSFERED = ', D12.6, ' WATT'/) 315 203 FORMAT(1H0,40X, 'CHANNEL NUMBER ',15/) 204 FORMAT(1X, 'IZ', 5X, 'P', 10X, 'VOID', 7X, 'TV', 8X, 'TL', 7X, 'TSAT', 316 317 5X, 'TWALL', 7X, 'UVZ', 9X, 'ULZ', 9X, 'UVR', 9X, 'ULR'/ 6X, '(BAR)', 19X, '-----(DEGREE CELSIUS)-----', 318 4(5X,'(M/SEC)')/) 319 320 205 FORMAT(1X, I2, 2X, F9.4, 2X, F8.6, 4(2X, F8.3), 4(2X, F10.5)) 321 C 322 END

265

-

Subroutine read1

.

~

3:	23		SUBROUTINE READI
3:	24		IMPLICIT REAL+8 (A-H.O-Z)
3:	25		COMMON /RHEA/ TSET(40), TSHSET(40), DTMAX, DTM1
3:	26		COMMON /REA/ NN.NP.NB.NW.NTR.NPIN.NPM1.NSET(40).NSHSET(40)
3:	27		COMMON /DIM/ DZ(40).DZ1(40).DR0(40).DR1(40).DR2(40).DR3(40).
3:	28		* DR4(40).NI.NJ.NIM1.NIM2.NJM1.NNI.NNJ.NNJJ
3:	29		COMMON /GRVTY/ GZ.GR
3:	30		COMMON /CNTRL/ EPS1.EPS2.RES.IT1.IT2.IT3.ITM1.ITM2.IGAUSS
3:	31		CCMMON /GAUSS/ NZ.NR.NZM1
3:	32		COMMON /TEMPO/ TIME.DT.DTO.DTLS.NDT
3:	33		COMMON /ICONST/ NCF.NCC.NG
33	34 0	2	
3:	35	-	READ (5.118) NI.NJ.NCF.NCLD
33	36		WRITE(7.118)NI.NJ.NCF.NCLD
33	37		NN = NI + NJ
33	38		NIM1 = NI - 1
3:	39		NIM2 = NI - 2
34	40		NJM1 = NJ - 1
34	41		NP = (NI - 2) * NJ
34	42		NB = 21 + NN
3-	13		NW = 24 + NN
34	44		NNJ = NN - NI
34	45		NI = NI
34	46		NNI = NN - NJ
34	47		NR = NJ
34	48		NZ = NI - 2
34	49		NZM1 = NZ - 1
35	50		NG = NCF + 1
35	51		NCC = NG + 1
35	52		NPIN = NCC + NCLD
35	53		NPM1 = NPIN - 1
35	54		NTR = NPIN+NP
35	55 (2	
35	56 0		
35	57		L = 1
39	58	1	CONTINUE
35	59		READ(5.121) NSET(L).TSET(L)
36	50		WRITE(7.121)NSET(L).TSET(L)
36	61		
36	52		IF(L.GT.50) GO TO 2
36	53		IF(NSET(L-1)) 2.2.1
36	64	2	CONTINUE
36	65 (; -	

.

.

٠

and .

366		GZ = 9.80665
367		GR = 0.D0
368 C		
369 C		
370		READ(5,119) ITM1, IGAUSS, DTMAX, EPS1, EPS2
371		WRITE(7,119)ITM1, IGAUSS, DTMAX, EPS1, EPS2
372		DT = DTMAX
373 C		
374		ITM2 = ITM1
375	118	FORMAT(415)
376	119	FORMAT(2110,3015.9)
377	120	FORMAT(2015.9)
378	121	FORMAT(15,015.9)
379		RETURN
380		END

-

267

.

χ.

.

٠

•

Subroutine read2

~

381	SUBROUTINE READ2(P,TV,TL,ALFA,UVZ,ULZ,UVR,ULR,DH,DV,
392	QSI,TR,DTR,TINIT,TW,SPPD,TCAN,
383	* NP,NTR,NPIN,NPM1,NN,NCAN)
384	IMPLICIT REAL+8 (A-H,O-Z)
385	LOGICAL LP,LDATA,LSS
386	COMMON /NUMBER/ ZERO,ONE,BIG.SMALL
387	COMMON /BCOND/ TB(51), PNB1(51), PNB2(51), PNB3(51), OMP(51),
388	PNT1(51), PNT2(51), PNT3(51), OMT(51), ALB1(51),
389	* ALB2(51), ALB3(51), OMA(51), TVB1(51), TVB2(51).
390	TVB3(51).OMV(51).TLB1(51).TLB2(51).TLB3(51).
391	* OML(51), HNW1(51), HNW2(51), HNW3(51), OMH(51),
392	* LMAX.LP(51)
393	COMMON /PSHAPE/ SHAPE(100)
394	COMMON /DIM/ DZ(40).DZ1(40).DR0(40).DR1(40).DR2(40).DR3(40).
395	* DR4(40).NI.NJ.NIM1.NIM2.NJM1.NNI.NNJ.
396	COMMON /PINO/ RODR(20), $VP(20)$, $VM(20)$, RADR, PPP(20)
397	COWMON /GCONST/ DIL. RADEU, RADEL
398	COMMON /CCONST/ CA0.CA1.CA2.CA3.CB0.CB1.CB2.CB3
399	COMMON / FCONST/ FAO, FA1, FA2, FA3, FB0, FB1, FB2, AD, APIL, 1 P(NM(40))
400	COMMON /ICONST/ NCF.NCC.NG
401	COMMON /PD/ D4, PDD2
402	
403	
403	COMMON / ACT / ALE ISS
405	DIMINICAL STATE (S_{1}) and S_{2} (S_{2}) and S_{2} (S_{1}) and S_{2} (S_{2} (S_{2}) and S_{2} (S_{2} (S_{2} (S_{2}) (S_{2} ($S_$
406	$+ \frac{11}{1000} \frac{1}{1000} \frac{1}{1$
407	$\star \qquad \qquad$
407	$\sum_{n=1}^{\infty} \frac{1}{n} $
200 C	
409 0	540 - 1 910±08
410	FAV = 7.010700
410	[A] = -2
412	$\begin{bmatrix} A & A \end{bmatrix} = \begin{bmatrix} A & A \end{bmatrix} \begin{bmatrix} A & A \end{bmatrix}$
413	$FA3 = 0.0290^{-0.4}$
414	$F_{0} = 10.800$
415	FB1 = -8.840 - 03
416	F82 = 2.250 - 06
417 0	
418	CA0 = 4.280+06
419	CA1 = 3.750 + 02
420	CA2 = -7.450 - 03
421	CA3 = ZERO
422	CBO = 16.27
423	UDI = ZEKU

 \sim

-

.

•

 $\widehat{}$

.

*

424 425 426	с		CB2 = ZERO CB3 = ZERO
427	č		
428	Č		
429			TB(1) = ZERO
430			L = 2
431		2	CONTINUE
432			READ(5,1001) LP(L),TB(L)
433			WRITE(7,1001)LP(L),TB(L)
434			IF(TB(L).LE.TB(L-1)) GO TO 3
435			READ(5,1002) PNB1(L), PNB2(L), PNB3(L), OMP(L)
436			READ(5,1002) PNT1(L), PNT2(L), PNT3(L), OMT(L)
437			READ(5,1002) ALB1(L),ALB2(L),ALB3(L),OMA(L)
438			READ(5,1002) TVB1(L), TVB2(L), TVB3(L), OMV(L)
439			READ (5,1002) TLB1(L), TLB2(L), TLB3(L), OML(L)
440	_		READ(5,1002) HNW1(L),HNW2(L),HNW3(L),OMH(L)
441	С		
442			WRITE(7,1002)PNB1(L),PNB2(L),PNB3(L),OMP(L)
443			WRITE(7,1002)PNT1(L),PNT2(L),PNT3(L),OMT(L)
444			WRITE(7,1002)ALB1(L),ALB2(L),ALB3(L),OMA(L)
445			WRI1E(7,1002) VB1(L), IV02(L), IV03(L), 0MV(L)
440			WRITE(7,1002)(LB1(L),1LB2(L),1LB3(L),0ML(L))
447	~		WRITE(7,1002) HNWT(L), HNW2(L), HNW3(L), OMH(L)
448	C		1 - 1 + 1
445			L = L = 1 IE(1 CT E(1) CO TO 3
450			
452		3	
453		Ŭ	
454			DO 4 KO = 1.NN
455			QSI(KQ) = (4.*D/(PITCH - D))**2
456		4	CONTINUE
457	С		
458			READ(5,1003) NROW,PITCH,D,E
459			WRITE(7,1003)NROW,PITCH,D,E
460	С		
461			POVD = PITCH/D
462			POD2 = POVD + POVD
463			D4 = 4./D
464			R = -16.15 + 24.96 + POVD - 8.55 + POVD + POVD
465	C		
466			READ(5,1004) (N(J), J=1,19)
467			WRITE(7,1004)(N(J),J=1,19)
468			KKES = U

-

٠

 $\widehat{}$

269

.

•

-

•

•

469 5 CONTINUE 470 READ(5,1005) LDATA, (XIN(K), K=1,5) 471 WRITE(7,1005)LDATA.(XIN(K),K=1,5) 472 IF(.NOT.LDATA) GO TO 205 473 $D0 \ 105 \ I = 1.5$ 474 KO = KRES + IIF(KO.GT.NI) GO TO 5 475 476 DZ(KO) = XIN(I)477 105 CONTINUE 478 KRES = KRES + 5479 GO TO 5 205 CONTINUE 480 481 C 482 KRES = 3*NI 483 305 CONTINUE 484 READ(5,1005) LDATA, (XIN(K), K=1,5) 485 WRITE(7,1005)LDATA,(XIN(K),K=1,5) 486 IF(.NOT.LDATA) GO TO 505 487 $DO \ 405 \ I = 1,5$ 488 KO = KRES + I489 IF(KO.GT.NCAN) GO TO 305 490 TCAN(KO) = XIN(I)491 405 CONTINUE 492 KRES = KRES + 5 493 GO TO 305 505 CONTINUE 494 495 KRES = 0496 6 CONTINUE 497 READ (5,1005) LDATA, (XIN(K), K=1,5) 498 WRITE(7,1005)LDATA,(XIN(K),K=1,5) 499 IF(.NOT.LDATA) GO TO 206 500 $DO \ 106 \ I = 1.5$ KO = KRES + I501 502 IF(KO.GT.NN) GO TO 6 503 SHAPE(KO) = XIN(I)504 **106 CONTINUE** 505 KRES = KRES + 5 506 GO TO 6 507 206 CONTINUE 508 KRES = 0509 306 CONTINUE 510 READ(5,1005) LDATA, (XIN(K), K=1,5) 511 WRITE(7,1005)LDATA,(XIN(K),K=1,5) 512 IF(.NOT.LDATA) GD TO 506 513 D0 406 I = 1.5

```
514
           KO = KRES + I
 515
           IF(KO.GT.NN) GO TO 306
 516
           SPPD(KO) = XIN(I)
 517
       406 CONTINUE
 518
           KRES = KRES + 5
 519
           GO TO 306
       506 CONTINUE
 520
 521 C
 522
           DZ1(1) = DZ(1)
 523
           DO 7 I = 2.NI
 524
           DZ1(I) = (DZ(I) + DZ(I-1))/2, D0
525
         7 CONTINUE
526 C
527
           A1 = DSQRT(3.D0)/2.D0
528
           A2 = 3.1415927/4.00
529
           W = PITCH - D
530 C
           X = (PITCH*PITCH*A1 - (D*D + W*W)*A2)/A2/D
531
532
           XI = 4.D0/X
533 C
534
           DO 8 J = 1.NJM1
535
           DO 8 I = 1.NI
536
           KO = (J-1) + NI + I
537
           DH(KO) = X
538
           DV(KO) = XI
539
         8 CONTINUE
540 C
541
           DO 9 J = 2.NJM1
542 C
543
           N41 = N(J) - 1
           N42 = N(J-1) - 1
544
545
           DN4 = N41 + N41 - N42 + N42
546
           DR4(J) = DN4 + X + A2 + D + 3, D0
547 C
548
          NX = N(J) - N(J-1)
549
          NX1 = 2*N41
550
          NX2 = (2*N42 + NX)*NX
551
          DNX1 = NX1
552
          DR1(J) = DNX1/NX2/PITCH/A1
553
          DR2(J) = 2.00 + N42/NX2/PITCH/A1
554
          DRO(J) = PITCH + A1 + NX
555
        9 CONTINUE
556 C
557
          DN4 = (N(1) - 1) * (N(1) - 1)
558
          DR4(1) = DN4 * X * A2 * D * 3. D0
```

```
559 C
560
          DR1(1) = 2.D0/PITCH/A1/(N(1)-1)
561
          DR2(1) = 0.00
562
          DRO(1) = PITCH + A1 + (N(1)-1)
563 C
564
          B1 = (N(NJM1) + NROW - 2)
          B2 = (NROW - N(NJM1))
565
566
          B3 = (NROW - 1)
567 C ·
568
          XX = B1 + B2/2.D0 + B3/2.D0 + 1.D0/6.D0
569
          PT = B3 \neq PITCH + (D/2.D0 + E)/A1 + A2 + D + XX + 4.D0
570
          AC = (B1*PITCH + (D/2.D0 + E)/A1)*(B2*PITCH*A1 + D/2.D0 + E)*
571
                 0.500 - A2*(D*D + E*E)*XX
         *
          Y = 4.D0 + AC/PT
572
573
          PP = A2*D*XX*4.D0
574
          YY = PP/AC
          ARM = (ONE - A2/A1*(D*D + W*W)/(PITCH*PITCH))*
575
576
         *
                (N(NJM1) - 1)*PITCH
577 C
578
          DR1(NJ) = ZERO
579
          DR2(NJ) = ARM/AC
580
          DRO(NJ) = B2*PITCH + D/2.D0 + E
581
          DR4(NJ) = AC+6.D0
582
          ACOV = (B3*PITCH + (D/2.D0 + E)/A1)/AC
583 C
584
          DO 10 I = 1, NI
585
          KO = NJM1 + I
580
          DH(KO) = Y
587
          DV(KO) = YY
588
       10 CONTINUE
589 C
590
          DR3(NJ) = DRO(NJ)
591
          DO 11 J = 1.NJM1
592
          DR3(J) = (DRO(J) + DRO(J+1))/2.00
593
       11 CONTINUE
594
          KRES = 0
595
       12 CONTINUE
596
          READ (5,1005) LDATA, (XIN(K), K=1,5)
597
          WRITE(7,1005)LDATA,(XIN(K),K=1,5)
598
          IF(.NOT.LDATA) GO TO 212
599
          DO 112 I = 1.5
600
          KO = KRES + I
601
          IF(KO.GT.NPIN) GO TO 12
602
          PPP(XO) = XIN(I)
603
     112 CONTINUE
```

.

.

 $\widehat{}$

```
\sim
```

604 KRES = KRES + 5 GO TO 12 605 212 CONTINUE 606 607 C 608 READ (5,1006) AD, APU, DIL-609 READ(5,1007) (LPLNM(K), K = 1,39) 610 READ (5,100B) RADR, THC, THG 611 C 612 WRITE(7,1006)AD, APU, DIL 613 WRITE(7, 1007)(LPLNM(K), K = 1, 39)614 WRITE(7,1008)RADR, THC, THG 615 C 616 RADFU = RADR - THG - THC 617 . RADCL = RADFU + THG 618 NCLD = NPIN - NCC 619 DRF = RADFU/NCF 620 DRC = THC/NCLD621 TAFP = RADFU*RADFU/D 622 C 623 RAD(1) = ZERO624 DO 14 K = 1.NCF625 RAD(K+1) = RAD(K) + DRF626 14 CONTINUE 627 RAD(NG+1) = RAD(NG) + THG628 DO 15 K = NCC.NPM1629 RAD(K+1) = RAD(K) + DRC630 **15 CONTINUE** 631 DO 16 K = 1, NPM1632 IF(K.EQ.NG) RODR(K) = (RAD(K+1) + RAD(K))/2.DO633 IF(K.NE.NG) RODR(K) = (RAD(K+1)+RAD(K))/(RAD(K+1)-RAD(K))/2.DO634 16 CONTINUE 635 C 636 VM(1) = ZERO637 VP(1) = DRF * DRF / 8.00638 RM = (RADR + RAD(NPM1))/2.DO639 VM(NPIN) = (RADR*RADR + W*W/4.DO- RM*RM)/2.DO 640 VP(NPIN) = ZERO641 DO 17 K = 2, NPM1 642 RP = (RAD(K+1) + RAD(K))/2.00643 RM = (RAD(K) + RAD(K-1))/2.00644 VP(K) = (RP*RP - RAD(K)*RAD(K))/2.00VM(K) = (RAD(K)*RAD(K) - RM*RM)/2.00645 646 17 CONTINUE 647 C 648 READ(5,1009) LSS, TINIT

```
649
          TB(1) = ZERO
650
          IF (LSS) GO TO 19
          DO 1 KO = 1,NN
651
652
          READ(5,1000) KCHECK, TV(KO), TL(KO), P(KO), ALFA(KO)
          READ (5,1000) KCHECK, UVZ(KO), ULZ(KO), UVR(KO), ULR(KO)
653
654
          IF(KCHECK.EQ.KO)GO TO 1
655
          IERR = 4
656
          RETURN
657
        1 CONTINUE
658
          KRES = 0
659
       13 CONTINUE
660
          READ(5,1005) LDATA, (XIN(K), K=1,5)
661
          IF(.NOT.LDATA) GO TO 213
662
          DO 113 I = 1,5
663
          KO = KRES + I
664
          IF(KO.GT.NTR) GO TO 13
665
          TR(KO) = XIN(I)
666
      113 CONTINUE
          KRES = KRES + 5
667
668
          GO TO 13
669
      213 CONTINUE
670 È
671
          KRES = 0
672
      313 CONTINUE
673
          READ(5,1005) LDATA, (XIN(K), K=1,5)
674
          IF(.NOT.LDATA) GO TO 513
675
          DO 413 I = 1.5
676
          KO = KRES + I
          K3 = K0 + 2 + NI
677
£78
          IF(KO.GT.NI) GO TO 313
679
          TCAN(KO) = XIN(I)
680
          TCAN(K3) = XIN(I)
68 t
      413 CONTINUE
682
          KRES = KRES + 5
683
          GO TO 313
684
      513 CONTINUE
685 C
686
          DO 18 I = 1.NIM2
687
          DO 18 J = 1, NJ
688
          KP = (J-1) * NIM2 + I
689
          KT = KP*NPIN
690
          TW(KP) = TR(KT)
691
       18 CONTINUE
692
          RETURN
693
       19 CONTINUE
```

•

274

-

.

694 READ(5,1010) PIN, POUT, TIN, TAV 695 QPP = HNW2(2)*RADFU*RADFU/RADR/2.DO 696 CALL SS (PIN, POUT, TIN, TAV, QPP, P, TV, TL, UVZ, ULZ, UVR, ULR, ALFA, 697 * TW.TR, DTR, OH, DV, NN, NP, NTR, NPIN, NPM1) RETURN 698 699 C 700 1000 FORMAT(15,4D15.9) 701 1001 FORMAT(L1, F15.5) 702 1002 FORMAT(4D15.9) 703 1003 FORMAT(15,3015.9) 704 1004 FORMAT(1914) 705 1005 FORMAT(L1,5D15.9) 706 1006 FORMAT(3015.9) 707 1007 FORMAT(3912) 708 1008 FORMAT(3D15.9) 709 1009 FORMAT(L1,D15.9) 710 1010 FORMAT(4015.9)

711 END

٠

...

Subroutine ss

.

• -

 \sim

712			SUBROUTINE SS(PIN, POUT, TIN, TAV, O. P. TV. TL, UVZ, ULZ, UVR, ULR, ALFA.
713			* TW, TR, DTR, DH, DV, NN, NP, NTR, NPIN, NPM1)
714			IMPLICIT REAL+8 (A-H.O-Z)
715			COMMON /NUMBER/ ZERD.ONE.BIG.SMALL
716			COMMON / DIM / DZ(40), DZ1(40), DBD(40), DD1(40), DD2(40), DD3(40)
717			* $DPA(40)$ NI N.I N.I N.I N.I N.I N.I N.I N.I N.I
718			COMMON /SCHADE/ SHADE/ SHA
710			COMMON / CAVAY / CA
719			
720			DIMENSION PROP(3,4)
721			DIMENSION P(NN), IV(NN), IL(NN), UVZ(NN), ULZ(NN), UVR(NN), ULR(NN),
722	-		<pre># ALFA(NN),TW(NP),TR(NTR),DTR(NTR),DH(NN),DV(NN)</pre>
723	C		
724	С		SUBROUTINE SS PUTS AN INITIAL GUESS IN THE VARIABLES
725	С		TV,TL,P,UVZ,ULZ,UVR,ULR,ALFA AND TR, IN ORDER TO
726	С		ACCELERATE THE CONVERGENCE TO THE STEADY STATE PROBLEM.
727	С		
728			H = ZERO
729			DO 1 I = 2.NI
730			H = H + DZ1(4)
731		1	CONTINUE
732		•	DP = (PIN = PONT)/H
733	c		
724	~		CALL STATE (TAV TAV DAN DOOD A)
734			
135			RTU = FRUP(1,2)
/30			DPG = DP - RHO*GZ
737	C		
738			A = (RHU+DH(2)/VISCL(TAV))++.2+DH(2)/RHO/.1D0
739			X = ONE/1.800
740			V = (A+DPG)++X
741	C		
742			DO 2 J = 1, NJM!
743			DO 2 I = 1,NI
744			KO = (J-1) + NI + I
745			ULZ(KD) = V
746			V Z (KO) = V
747			ULR(KO) = ZFRO
748			
740			
750		2	
750	~	2	CONTINUE
731	L.		
/52			A = (KHUTUH(NNJ+2)/VISCL(TAV))**.2*DH(NNJ+2)/RHO/.100
753	_		V = (A+DPG)++X
754	C		

۲

 \sim

 $\widehat{}$

 $\widehat{}$

er 8

755 DO 3 I = 1.NI756 KO = NNJ + I757 ULZ(KO) = V758 UVZ(KO) = V759 ULR(KO) = ZERO760 UVR(KO) = ZERO761 ALFA(KO) = ZERO3 CONTINUE 762 . . 763 C 764 TL(1) = TIN765 TV(1) = TIN766 P(1) = PIN767 DD 4 J = 1, NJ763 KO = J + NI - NIM1769 TL(KO) = TIN770 TV(KO) = TIN771 P(KO) = PIN772 C 773 DO 4 I = 2.NI774 KO = (J-1) + NI + I. 775 P(KO) = P(KO-1) - DP + DZ1(I)UXX = ULZ(KO)776 777 IF(UXX.EQ.ZERO) UXX = ONE 778 TL(KO) = TL(KO-1) + Q*SHAPE(KO)*DV(KO)*DZ1(I)/RHO/UXX/779 CPL(TL(KO-1)) 1 780 TV(KO) = TL(KO)4 CONTINUE 781 782 C • DT = .1D0783 794 C 785 DO 7 J = 1.NJ 786 DO 7 I = 2, NIM1XO = (J-1) * NI + I787 788 KP = KO + 1 - J = 2KT = (KP-1) * NPIN + 1789 KR = KP + NPIN790 791 C 792 TW(KP) = TL(KO)793 TS = SAT(P(KO))CALL HTCF (P(KO), TV(KO), TL(KO), ALFA(KO), PROP(1,1), 794 PROP(1,2), PROP(1,3), PROP(1,4), DH(KO), TS, TW(KP), 795 * HCONV, HCONL, HNB, UVZ(KO), ULZ(KO)) 796 ٠ 797 C 798 DO 5 K = 1, NPIN799 KTR = (KP-1) + NPIN + K

800	TR(KTR) = TW(KP)
801	5 CONTINUE
802	6 CONTINUE
803	TTR = TR(KT)
804	CALL FPROP(TR(KT),NPIN,NPM1,I)
805	CALL FPIN (TV(KO),TL(KO),TS,TW(KP),DTW,HCONV,HCONL,HNB,
806	TR(KT), DTR(KT), DT, NPIN, NPM1, KO)
807 C	
808	TR(KR) = TW(KP)
809	DO 16 KK = 1,NPM1
810	KS = KR - KK
811	TR(KS) = TR(KS) - DTR(KS) + TR(KS+1)
812	16 CONTINUE
813	TTR = DABS(TTR - TR(KT))/DT
814	IF(TTR.GT.ONE) GD TO 6
815	7 CONTINUE
816	RETURN
817	END

.

•

.

278

,

·***

.

.

.

Subroutine tmstep

.

.

 \sim

818	SUBROUTINE TMSTEP(0,NO,
819	<pre>* NN,NP,NB,NW,NTR,NPIN,NPM1,NCAN)</pre>
820	IMPLICIT REAL+8 (A-H,O-Z)
821	COMMON /ERROR/ IERR
822	COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
823	COMMON /RHEA/ TSET(40),TSHSET(40),DTMAX,DTM1
824	COMMON /CNTRL/ EPS1, EPS2, RES, IT1, IT2, IT3, ITM1, ITM2, IGAUSS
825	COMMON /DIM/ DZ(40),DZ1(40),DR0(40),DR1(40),DR2(40),DR3(40),
826	DR4(40), NI, NJ, NIM1, NIM2, NJM1, NNI, NNJ, NNJJ
827	COMMON /TEMPO/ TIME, DT, DTO, DTLS, NDT
828	COMMON /PNTR1/K(100),M(100)
829 C	
830 C	
831	DIMENSION O(NO)
832 C	
833 C	
834 C	
835	DTLS = DT
836	TMS = ZERO
837	IERR = O
838	DO 100 J = 1, NJ
839	DO 100 I = 2.NI
840	KO = (J-1) + NI + I - 1
841	K23 = K0 + M(23)
842	K24 = K0 + M(24)
843	K25 = KO + M(25)
844	b ≠ 0
845 C	
846	TSVZ = DABS(O(K23)/DZ1(I))
847	TSLZ = DABS(O(K24)/DZ1(I))
848	TSVR = DABS(O(K25)/DR3(J))
849 C	
850	TMS_= DMAX1(TSVZ,TSLZ,TSVR,TMS)
851 100	CONTINUE
852 C	
853	IF(TMS) 101,101,102
854 101	DT = DTMAX
855	GO TO 103
656 102	DT = 0.95D0/TMS
857	DT = DMIN1(DTMAX, DT, 2.0 + DTLS)
858 103	CONTINUE
859	II2 = 0
860	NDT = 0

.

~

.

 $\overline{}$

_

861	_		TIME = TIME+DT
862	C		
863			$\frac{1}{100} \frac{1}{100} \frac{1}$
864			$\mathbf{M} = \mathbf{M} = \mathbf{M}$
865			KOO = M(OO) + KL
860			no2 = m(o2) + nc
867			
868	~	104	CONTINUE
869	C		O(M(-3)) = O(M(-3)) = O(M(-3)) = O(M(-3)) = O(M(-5)).
870			CALL DUNOR(O(M(-1)),O(M(-2)),O(M(-3)),O(M(-9)),O(M(10)),
871			O(M(15)), O(M(12)), O(M(12)), O(M(14)), O(M(15)),
872			= O(M(17)), O(M(17)), O(M(13)), O(M(19)), O(M(20)), O(
873			= O(M(10)), O(M(17)), O(M(10)), O(M(23)), O(M(25)), O(
874			= O(M(27)), O(M(27)), O(M(23)), O(M(29)), O(M(20)), O(M(30)), O(
875			= O(M(20)), O(M(27)), O(M(20)), O(M(20)), O(M(20)), O(M(41)), O(M(41))), O(M(41)), O(M(41)), O(M(41)), O(M(41))), O(M(41)), O(M(41)), O(M(41))), O(M(41)), O(M(41))), O(M(41)), O(M(41))), O(M(41)), O(M(41))), O(M(41))), O(M(41))), O(M(41)), O(M(41))), O(M(41))), O(M(41))), O(M(41))), O(M(41))), O(M(41))), O(M(41)))), O(M(41))), O(M(41))))
876			= 0(M(31)), 0(M(32)), 0(M(33)), 0(M(53)), 0(
877			= 0(M(42)), 0(M(47)), 0(M(43)), 0(M(32)), 0(M(32)), 0(M(87)), 0(
878			+ O(M(55)),O(M(55)),O(M(75)),O
879	~		
880	C		CONTINUE
831			C(M(1)) = C(D(M(1))) = D(M(1)) = D
082			$+ \qquad \qquad$
883			(M(24)), M(M(2)), O(M(-4)), O(M(-6)), O(M(-8)), O(M(-9)), O(M(-9))), O(M(-9)), O(M(-
884			+ $O(M(10)) O(M(11)) O(M(12)) O(M(13)) O(M(14))$
885			+ $O(M(15)), O(M(16)), O(M(17)), O(M(18)), O(M(27)),$
880			+ $O(M(28)), O(M(29)), O(M(30)), O(M(39)), O(M(40)),$
287			+ $O(M(43)) O(M(44)) O(M(45)) O(M(46)) O(M(47))$
800			+ $O(M(48)), O(M(49)), O(M(50)), O(M(51)).$
000			<pre></pre>
0.40			<pre></pre>
691			* O(M(65)),O(M(66)),O(M(90)),NN)
074	c		
001			$DO_{1001} I = 2.01M1$
0054			DD = 1.001 J = 1.NJ
099			KO = (J-1) + NI + I = 1
007			KP = K(1 + 1 - 1 + 2)
007			KT = KP * NPIN
800			KO1 = M(1) + KO
900			$KO3 \neq M(3) + KO$
901			K05 = M(5) + K0
901			K07 = M(-7) + K0
902			K11 = M(11) + K0
904			K12 = M(12) + K0
905			K17 = M(17) + K0

.

-

280

.

.

 $\widehat{}$

		Ĩ																															
906		下版	K18		M(18) -	F #	0																								
907			K23	z	M(23) -	F #	0																								
908			K24	2	Μ(24) •	⊦ ≯	0																								
909			K63	z	M (63) -	F P	0																								
910			K67	3	- M (67) -	F 4	0																								
911			K68	=	M (68		F #	P																								
912			N09	=	NI (29	, . \ .	r (1 L L	0																								
912			K71	-	M	71) - } -	г с - И	(P																								
915			K72	2	M	72	ś.	 	P																								
916			K80	=	M	80	j.	Η	T																								
917			K81	Ħ	M (81) -	F H	(T																								
918			KF	=)	KO	+	1																										
919	C								_						、																		
920			00	*	(0(K2	3)	+		K:	23	+		1)	$\frac{1}{2}$	12	- 1	20															
921	c		UL	a	(0(N2	4)	+	01	. .	24	-	•	17		2	• •	50															
923	6		CAL	L I	нтс	F	(0)	KC	1		07	ка	13	١.	0(ĸ	05	5)	.0	11	(0)	7	.0	0	(1	1)	. () (K1	2)			
924		,	*			•	ÌO	(K1	7		ōì	KI	8	j.	0	K	63	3)	.0	(F	(6)	7ý	.0	()	(6	8)	. (5ì	K7	10)) .		
925		1	k .				0	(K7	1)	.,	D(K7	2),	υV	1,	U	L)		•		•	-										
926			CAL	LI	FPR	OP	(0)	KE	0	1,1	NP	IN	ι,Ι	NP	M1	•	I ()															
927			CAL	LI	FPI	N	(0)	KC	3)	• • •	0(KO)5).	0(K	67	7)	,0	()	6	3)	,0	()	(6	9))(K7	(0)		- 、	
928		^	* • • • • • •	.			0	(K7	(1)	•••	0(K7	2),	0(X	80))	,0	()	(8)	()	, D	T	, N	PI	N	, N	PN	11.	, KI	-)	
929	ر م	100	CUN	1 11	NUE	,																											
930	Ļ		CAL		гнх	CN	()	M	31	• •	. ი	I N	17	5)	١.	n	1.		70	11	1	٦C	м/	71	1	۱.	n	(M	(9	• • •	i٩.		
932				-		•	נם	. N	IN .	Ń	i.	NJ		NĆ	AN	1.	Ň	LM	1.	Ń	M	2)		•		<i>.</i> .	•	(
933	C								,		- •					•						- /											
934			IF(ΙEF	R.	NE	.0	R	EI	'UI	RN																						
935			172	=	0																												
936		2	CON	TIN	10Ē																												
937			112	, ,		2+ (CT)	1 0/1	. / N		•	• •	0			-	• •	、	~	/ 14	,	2	• •	~	1		5	•		n /	м/		, , ,	•
<i>d30</i>			CAL:	ե ե	JINC	311	רונ ז) (N		ล่)) \\	.n		" \ N (q	1	1	. n	(M	11	0	5	0	(A	11	11	5	5.	01	Mf	ាន	21	Ś.
940							Č) (N	i i t	7	śś	lõ	(мì	18	ij.	í.	ō	(M	ù	ġ	ŝŝ.	lõ	(h	iÈ	20	ś	5.	ōč	M	21	i) i).
941							C) (M	(2	2	jj	,0	(1	MÌ	23	Ú,	j.	Ō	ÌM)	(2	4	ij.	, o	(N	١Ċ	25) j),	0(M(26	5))),
942			•				C)(N	(3	15)))	,0)(1	VI (36	5)),	,0	(M	(3	7))	,0	(۸	١(38)),	0(Μ(35)))).
943		•	¢				C)(N	(6	5))	,0	()) N	67)),	,0	(M	(0	8))	,0	()	1(69		•	0(M(70))	
944			•				ç)(M	(7	1))	,0		M(72	!)).	0,0	(M	(7	3		, <u>o</u>	()	1(74		,	0(M (75		! •
945		اد د	F F)(N \/N	1 7	0	"	,0	() ()	₩Т(М. f	17		ζ.	,U 0	(M 7 N	17	8	R	, U	(A (A	1 (1 ()	19 80	3	•	0 (n /	M (M (80	2)) 111	1
940		1	-				- r	2 (W) (M) 1) 1	5	, u	17 17	יינ _ N	N	N	, в	. U	(141 P.	(C N'A	1.5	10	, U מא)	•	00	5.	•		nn (03		7 *
948		-	IFC	IES	R .	NE	. 0]	G	ò	τć	j,	; 5		414					•		• •		-	,									
949			IF	RES	;.G	Τ.	EPS	51)	Ē	iÓ.	7	Ó	4																				
950			ITS	×	IT	з.	+ 1	12																									

-

951	CALL FTP(0(M(3)),0(M(5)),0(M(67)),0(M(68)),0(M(70)),
952	<pre>* 0(M(71)),0(M(72)),0(M(80)),0(M(81)),0(M(85)),</pre>
953	+ NI,NJ,NN,NP,NTR,NPM1,NIM2,NPIN)
954	CALL THXCNO(O(M(91)),NCAN,NI)
955	RETURN
956	4 IF(IT2.LT.ITM2) GO TO 2
957	5 CONTINUE
958	NDT = NDT+1
959	113 =113+112
0.00	
961	TIME = TIME-DT
962	
963	DT = DT = 0.1
964	IF(0T, 1T, 1, D-07) (FRP = 21
965	TIME = TIME + DT
966	DD = 6 K C = 1.NN
967	$K_{i} = K_{i} = 1$
968	$K_0 = K_0 + K_1$
969	$K_{00} = M(2) + K_{1}$
970	K03 = W(3) + K1
970	KOA = M(A) + KI
971	$K_{05} = M(5) + K_{1}$
073	$K_{00} = M(-6) + K_{1}$
974	KO7 = M(7) + KI
075	K08 = M(R) + K1
975	$K_{00} = M(0) + K_{00}$
970	$K_{2} = m(23) + K_{1}$
079	$K_{24} = M(24) + K_{1}$
570	$K_{20} = M(20) + K_{1}$
5/5	$K_{20} = M(20) + K_{1}$
900	$K_{2} = M(20) + K_{1}$
092	$K_{20} = M(20) + K_{1}$
962	$K_{20} = M(20) + K_{1}$
984	K30 = M(30) + K1
695	K68 = M(68) + K1
986	K82 = M(82) + K1
097 r	
008	O(KO3) = O(KO4)
990	O(KOS) = O(KOS)
909	$\Omega(K07) = \Omega(K08)$
001	$O(k_{2}3) = O(k_{2}7)$
997	$O(K_2 3) = O(K_2 3)$
952	$\Omega(K_2 + \gamma) = O(K_2 + \gamma)$
233	$0(k_2 6) = 0(k_2 0)$
334 005	O(k01) = O(k00)
333	$\omega(n v_1) = \omega(n v_2)$

• -

282

.

.

·

	996	0(K73) = ZER0
	997	O(K68) = O(K82)
	9 98	6 CONTINUE
	999	CALL FTP(0(M(3)),0(M(5)),0(M(67)),0(M(68)),0(M(70)),
	1000	* $O(M(71)), O(M(72)), O(M(80)), O(M(81)), O(M(85)).$
	1001	* NI, NJ, NN, NP, NTR, NPM1, NIM2, NPIN)
	1002	IF(IERR.GT.20) RETURN
•	1003	IF(NDT.GT.3) RETURN
	1004	IERR = 0
	1005	GO TO 1
	1006	END

•

.

.

,

Subroutine donor

. .

.

-

.

 \sim

·

1007	SURPONTINE DONOS/P DO TV TVO TI TIO ALEAN ALEAD ALEAZ ALEAR.
1007	
1000	
1010	
1010	
1012	
1012	
1013	
1014	COMMON (AUMRED/ SED ONE RIG SMALL
1015	COMMON / CONTY / CZ CD
1010	$\begin{array}{c} \text{COMMON} & \mathcal{A} \in \{1, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$
1017	$= \frac{1}{2} $
1010	COMMON /TEMPO/ TIME DT DTO DTIS NONT, NAT, NAU, NAU
1019	DIMENTON / TEMPO/ TIME, DI, DIO, DIO, DIO, NOI
1020	Dimension $P(NN), PO(NN), IV(NN), IV($
1021	 ALFAC(NN), ALFAC(NN), ALFAR(NN), KOOV(NN), KOOL(NN), DEGVZ(NN) DEGVZ(NN) DEGVZ(NN) DEGVZ(NN)
1022	
1023	$= nv(nv), nL(nv), nV2(nv), nL2(nv), nVx(nv), nLx(nv), \\ = uv2n(nv), uv2n(n$
1024	$+ \qquad \qquad$
1025	= 0L2U(NN), 0VRO(NN), 0URO(NN), 0VR2(NN), 0LR2(NN), 0 = 0V2D(NN), 012 O(NN), 021(NN), 022(NN), 022
1020	$ = \qquad $
1027	* $WR(N), WR2(NN), WR3(NN), WR3(NN), URN(NN), WR3(NN), W$
1020	TIMENSION DOD(2) ALEU(NN), AVRU(NN), ALEU(NN)
1029	DIMENSION PROP(3,4),3(3,2)
1030 C	
1031	
1032	
1033	$C_{ALL} = C_{ALL} + C_{A$
1034	CALL STATE (TV(KU), TL(KU), F(KU), FRUP, IFLAG)
1035 0	$I_{\text{E}}(A) \in AN(UO)$ GT 1 D-09 GO TO 100
1030	IF(A LFAN(RO), GI, I, O'O'O) GO IO IOO
1037	$\frac{1}{2} \frac{1}{2} \frac{1}$
1030	
1039	
1040	$T_{10}(x_0) = T_{10}(x_0)$
1041	$p_{O(KO)} = p_{V(KO)}$
1042	
1043	$R_{1} = R_{1} = R_{1$
1044	RDL(RO) = ROP(1,2)
1045	H(KO) = PROP(1,3)
1040	
1047	ALFAU(AU) - ALFAN(AU)
1048 6	15/0405/11/08/401) IT 1 0-101 11/08/401 - 7500
1049	TECONDECEANE(VO)].FILLID_IO) DAKK(VO) = FEVO

284

.....

 $\widehat{}$

ç 1050 IF(DABS(ULRN(KO)).LT.1.D-10) ULRN(KO) = ZERO UVZO(KO) = UVZN(KO)1051 UVRO(KO) = UVRN(KO)1052 1053 ULZO(KO) = ULZN(KO)1054 ULRO(KO) = ULRN(KO)1055 101 CONTINUE 1056 DO 1101 J = 1.NJDO 1101 I = 2.NIM11057 105B KO = (J-1) * NI + I1059 KP = (J-1) * NIM1 - J + I1060 1101 DPN(KP) = P(KO) - PO(KO)1061 DO 2101 I = 2.NI1062 II = I - 11063 DO 2101 J = 1.NJM11064 JJ = J + 11065 KO = (J - 1) * NI + I1066 KI = KO - 11067 KJ = KO + NI1068 C 1069 DZM = DZ(I) + DZ(II)1070 DRM = DRO(J) + DRO(JJ)1071 C 1072 ALFAZ(KO) = (ALFAO(KO) * DZ(I) + ALFAO(KI) * DZ(II))/DZM1073 RHOVZ(KO) = (RHOV(KO)*DZ(I) + RHOV(KI)*DZ(II))/DZMRHOLZ(KO) = (RHOL(KO) * DZ(I) + RHOL(KI) * DZ(II))/DZM1074 1075 C 1076 ALFAR(KO) = (ALFAO(KO) * DRO(J) + ALFAO(KJ) * DRO(JJ))/DRM1077 RHOVR(KO) = (RHOV(KO) * DRO(J) + RHOV(KJ) * DRO(JJ))/DRM1078 RHOLR(KO) = (RHOL(KO) * DRO(J) + RHOL(KO) * DRO(JJ))/DRM2101 CONTINUE 1079 1080 C 1081 DO 3101 J = 1.NJ1082 KO = (J - 1) * NI + 11083 ALFAZ(KO) = ALFAO(KO)RHOVZ(KO) = RHOV(KO)1084 1085 RHOLZ(KO) = RHOL(KO)3101 CONTINUE 1086 1087 C 1088 DO 4101 I = 2.NI1089 KO = NNJ + III = I - 11090 1091 KI = KO - 11092 DZM = DZ(I) + DZ(II)1093 C 1094 ALFAZ(KO) = (ALFAO(KO) * DZ(I) + ALFAO(KI) * DZ(II))/DZM

RHOVZ(KO) = (RHOV(KO) + DZ(I) + RHOV(KI) + DZ(II))/DZM1095 1096 RHOLZ(KO) = (RHOL(KO) * DZ(I) + RHOL(KI) * DZ(II))/DZM1097 4101 CONTINUE 1098 DO 102 J = 2.NJM1DO 102 I = 2.NIM11099 1100 KO = (J-1) * NI + I1101 C 1102 UVRZ(KO) = (UVRO(KO)+UVRO(KO-1)+UVRO(KO-NI)+UVRO(KO-1-NI))/4.1103 ULRZ(KO) = (ULRO(KO)+ULRO(KO-1)+ULRO(KO-NI)+ULRO(KO-1-NI))/4.1104 UVZR(KD) = (UVZO(KD)+UVZO(KO+1)+UVZO(KO+NI)+UVZO(KO+1+NI))/4.1105 ULZR(KO) = (ULZO(KO)+ULZO(KO+1)+ULZO(KO+NI)+ULZO(KO+1+NI))/4.1106 C 1107 KD = 01108 IF(UVZO(KO), GE, ZERO) KD = -11109 KN = KO+KDIO = I + KD1110 1111 C 1112 HVZ(KO) = HV(KN)1113 AVZD(KO) = ALFAO(KN)1114 WZ1(KO) = ALFAO(KN) * RHOV(KN)1115 WZ7(KO) = (UVZO(KN+1) - UVZO(KN))/DZ(IO) + UVZO(KO)1116 C 1117 KD = 0IF(ULZO(KO).GE.ZERO) KD = -11118 1119 IO = I+KO1120 KN = KO+KD1121 HLZ(KO) = HL(KN)1122 ALZD(KO) = ONE - ALFAO(KN)WZ2(KO) = (ONE-ALFAO(KN))*RHOL(KN)1123 1124 WZ9(KO) = (ULZO(KN+1)-ULZO(KN))/DZ(IO)+ULZO(KO)1125 C 1126 C KD = NI1127 IF(UVRO(KO).GE.ZERO) KD = 0 1128 1129 JO = J + KD/NIKN = KO + KD1130 1131 C 1132 HVR(KO) = HV(KN)1133 AVRD(KO) = ALFAO(KN)1134 WR1(KO) = ALFAO(KN) + RHOV(KN) 1135 WR7(KO) = (UVRO(KN) - UVRO(KN - NI))/DRO(JO) + UVRO(KO)IF(J.EQ.NJM1) WR7(KO) = -UVRO(KN-NI) + UVRO(KO)/DRO(JO)1136 1137 C 1138 C 1139 KD = NI

1140 IF(ULRO(KO).GE.ZERO) KD = 01141 JO = J + KD/NI1142 KN = KO+KO1143 C 1144 HLR(KO) = HL(KN)1145 ALRD(KO) = ONE - ALFAO(KN)1146 WR2(KO) = (ONE-ALFAO(KN))*RHOL(KN)1147 WR8(KO) = (ULRO(KN) - ULRO(KN - NI)) / DRO(JO) + ULRO(KO)IF(J.EQ.NJM1) WR8(KO) = -ULRO(KN-NI) + ULRO(KO)/DRO(JO)1148 1149 C 1150 C 1151 KD = NI1152 IF(UVRZ(KO), GE, ZERO) KD = 01153 KN = KO + KD1154 JO = J - 1 + KD/NI1155 C WZ7(KO) = ((UVZO(KN)-UVZO(KN-NI))*UVRZ(KO)/DR3(JO) +1156 1157 + WZ7(KO) + GZ)*ALFAZ(KO)*RHOVZ(KO) 1158 C 1159 KD = NI1160 IF(ULRZ(KO).GE.ZERO) KD = 01161 KN = KO + KD1162 JO = J - 1 + KD/NI1163 C 1164 WZ8(KO) = ((ULZO(KN)-ULZO(KN-NI))*ULRZ(KO)/DR3(JO) ++ 1165 WZ8(KO) + GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO) 1166 C 1167 KD = 01168 IF(UVZR(KO).GE.ZERO) KD = -11169 KN = KO + KDIO = I + KD + 11170 1171 C 1172 WR7(KO) = ((UVRO(KN+1)-UVRO(KN))+UVZR(KO)/DZ1(IO) +1173 + WR7(KO) + GR) * ALFAR(KO) * RHOVR(KO) 1174 C 1175 KD = 01176 IF(ULZR(KO).GE.ZERO) KD = -1 1177 KN = KO + KD1178 IO = I + KD + 11179 C 1180 WR8(KO) = ((ULRO(KN+1)-ULRO(KN))*ULZR(KO)/DZ1(IO) +WR8(KO) + GR)*(ONE-ALFAR(KO))*RHOLR(KO) 1181 + 102 CONTINUE 1182 1183 C 1184 C TOP CELLS

•

,

 $\widehat{}$

1185 C 1186 DO 103 KO = NI.NN.NI 1187 KD = 0IF(UVZO(KO).GE.ZERO) KD = -11188 1189 KN = KO+KDIO = NI+KD1190 1191 C 1192 HVZ(KO) = HV(KN)1193 AVZD(KO) = ALFAO(KN)1194 WZ1(KO) = ALFAO(KN) * RHOV(KN)1195 WZ7(KO) = ((UVZO(KN+1)-UVZO(KN))/DZ(IO)+UVZO(KO)+GZ)** 1196 ALFAZ(KO)*RHOVZ(KO) 1197 C 1198 C 1199 KD = 01200 IF(ULZO(KO).GE.ZERO) KD = -11201 KN = KO+KD1202 IO = NI+KD1203 C 1204 HLZ(KO) = HL(KN)1205 ALZD(KO) = ONE - ALFAO(KN)1206 WZ2(KO) = (ONE-ALFAO(KN))*RHOL(KN)1207 WZ8(KO) = ((ULZO(KN+1)-ULZO(KN))/DZ(IO)*ULZO(KO)+GZ)*1208 * (ONE-ALFAZ(KO))*RHOLZ(KO) 1209 C 1210 C 1211 **103 CONTINUE** 1212 C THE CENTERLINE CELLS 1213 C 1214 C 1215 DO 110 KO = 2,NIM11216 C 1217 UVRZ(KO) = (UVRO(KO)+UVRO(KO-1))/4.1218 ULRZ(KO) = (ULRO(KO) + ULRO(KO-1))/4.UVZR(KO) = (UVZO(KO)+UVZO(KO+1)+UVZO(KO+NI)+UVZO(KO+1+NI))/4.12:9 ULZR(KO) = (ULZO(KO)+ULZO(KO+1)+ULZO(KO+NI)+ULZO(KO+1+NI))/4.1220 1221 C 1222 KD = 0IF(UVZO(KO).GE.ZERO) KD = -11223 1224 KN = KO+KDIO = KO + KD1225 1226 C 1227 HVZ(KO) = HV(KN)AVZD(KD) = ALFAD(KN)1228 1229 WZ1(KO) = ALFAO(KN) * RHOV(KN)

•

288

A

 $\overline{}$

```
1230
            WZ7(KO) = (UVZO(KN+1)-UVZO(KN))/DZ(IO)*UVZO(KO)
1231 C
1232
            KD = 0
            IF(ULZO(KO).GE.ZERO) KD = -1
1233
1234
            IO = KO + KD
            KN = KO+KD
1235
1236
            HLZ(KO) = HL(KN)
1237
            ALZD(KO) = ONE - ALFAO(KN)
            WZ2(KO) = (ONE-ALFAO(KN)) * RHOL(KN)
1238
1239
            WZ8(KO) = (ULZO(KN+1)-ULZO(KN))/DZ(IO) + ULZO(KD)
1240 C
1241 C
1242
            KD = 0
1243
            IF(UVZR(KO).GE.ZERO) KD = -1
1244
            KN = KO + KD
1245
            IO = KO + KD + 1
1246
            WR7(KO) = (UVRO(KN+1) - UVRO(KN)) + UVZR(KO) / DZ1(IO)
1247 C
1248
            KD = 0
            IF(ULZR(KO).GE.ZERO) KD = -1
1249
            KN = KO + KD
1250
1251
            IO = KO + KO + 1
1252
            WR8(KO) = (ULRO(KN+1)-ULRO(KN)) * ULZR(KO)/DZ1(IO)
1253 C
            IF(UVRO(KO))104,105,105
1254
1255
       104 \text{ KN} = \text{KO+NI}
1256
           JÜ = 2
1257 C
1258
           HVR(KO) = HV(KN)
1259
           AVRD(KO) = ALFAO(KN)
1260
           WR1(KO) = ALFAO(KN) * RHOV(KN)
1261
           WR7(KO) = ((UVRO(KN) - UVRO(KO))/DRO(JO) * UVRO(KO) +
1262
          +
                        WR7(KO)+GR)*ALFAR(KO)*RHOVR(KO)
1263 C
1264 C
1265
           GO TO 106
1266
       105 HVR(KO) = HV(KO)
1267
           AVRD(KO) = ALFAO(KO)
1268
           WR1(KO) = ALFAO(KO) * RHOV(KO)
1269
           WR7(KO) = (UVRO(KO)/DRO(1) + UVRO(KO) + WR7(KO) + GR) +
1270
                      ALFAR(KO) * RHOVR(KO)
          *
1271 C
1272 C
1273
       106 CONTINUE
1274
           IF(ULRO(KO)) 107,108,108
```

```
107 KN = KO+NI
1275
           JO = 2
1276
1277 C
1278
           HLR(KO) = HL(KN)
1279
           ALRD(KO) = ONE - ALFAO(KN)
1290
           WR2(KO) = (ONE-ALFAO(KN))*RHOL(KN)
           WR8(KO) = ((ULRO(KN) - ULRO(KO))/DRO(JO) + ULRO(KO) +
1281
1282
          +
                        WR8(KO)+GR) * (ONE-ALFAR(KO)) * RHOLR(KO)
1283 C
1284 C
           GO TO 109
1285
       108 HLR(KO) = HL(KO)
1286
1287
           ALRD(KO) = ONE - ALFAO(KO)
1298
           RHOLR(KO) = RHOL(KO)
1289
           WR2(KO) = (ONE-ALFAO(KO))*RHOLR(KO)
           WR8(KO) = (ULRO(KO)/DRO(1) * ULRO(KO) + WR8(KO) + GR) * WR2(KO)
1290
1291 C
1292 C
1293
     109 CONTINUE
1294 C
1295
           IF(UVRZ(KO)) 1108,2108,2108
1296 1108 WZ7(KO) = (WZ7(KO) + UVZO(KO+NI)+UVRZ(KO)/DR3(1) +
1297
                       GZ) * ALFAZ(KO) * RHOVZ(KO)
          +
           GO TO 3108
1298
      2108 WZ7(KO) = (WZ7(KO) + UVZO(KO) + UVRZ(KO)/DR3(1) +
1299
                       GZ) + A LFAZ(KO) + RHOVZ(KO)
1300
          +
1301 C
1302 3108 CONTINUE
1303
           IF(ULRZ(KO)) 4108,5108,5108
1304
      4108 WZ8(KO) = (WZ8(KO) + ULZO(KO+NI)+ULRZ(KO)/DR3(1) +
1305
                       GZ) + ( ONE-ALFAZ(KO ) ) + RHOLZ(KO )
          +
1306
           GO TO 6108
      5108 WZ8(KO) = (WZ8(KO) + ULZO(KO) + ULRZ(KO)/DR3(1) +
1307
1308
                       GZ) + (ONE-ALFAZ(KO)) + RHOLZ(KO)
          +
1309 6108 CONTINUE
1310 C
1311 C
1312 110 CONTINUE
1313 C
1314 C
                   THE WALL CELLS
1315 C
1316
           DO 111 I = 2.NIM1
1317
           XO = NNJ+I
1318 C
1319
           UVRZ(KO) = (UVRO(KO-NI)+UVRO(KO-1-NI))/4.
```

-

.

5

```
1320
           ULRZ(KO) = (ULRO(KO-NI)+ULRO(KO-1-NI))/4.
1321 C
1322
           KD = 0
1323
           IF(UVZO(KO).GE.ZERO) KD = -1
1324
           KN = KO+KD
1325
           IO = I + KD
1326 C
1327
           HVZ(KO) = HV(KN)
1328
           AVZD(KO) = ALFAO(KN)
1329
           WZ1(KO) = ALFAO(KN) + RHOV(KN)
1330
           WZ7(KO) = (UVZO(KN+1)-UVZO(KN))/DZ(IO) + UVZO(KO)
1331 C
1332
           KD = 0
1333
           IF(ULZO(KO).GE.ZERO) KD = -1
1334
           IO = I+KD
1335
           KN = KO+KD
1336
           HLZ(KO) = HL(KN)
           ALZD(KO) = ONE - ALFAO(KN)
1337
1338
           WZ2(KO) = (ONE-ALFAO(KN))*RHOL(KN)
1339
           WZ8(KO) = (ULZO(KN+1)-ULZO(KN))/DZ(IO)+ULZO(KO)
1340 C
1341 C
1342
           IF(UVRZ(KO)) 1110,2110,2110
1343
      1110 WZ7(KO) = (WZ7(KO) - UVZO(KO)*UVRZ(KO)/DR3(3) +
1344
          +
                       GZ)*ALFAZ(KO)*RHOVZ(KO)
1345
           GO TO 3110
      2110 WZ7(KO) = (WZ7(KO) + (UVZO(KO)-UVZO(KO-NI))*UVRZ(KO)/DR3(2) +
1346
1347
          +
                       GZ)*ALFAZ(KO)*RHOVZ(KO)
1348 C
1349
      3110 CONTINUE
1350
           IF(ULRZ(KO)) 4110,5110,5110
1351
      4110 WZ8(KO) = (WZ8(KO) - ULZO(KO)+ULRZ(KO)/DR3(3) +
1352
                       GZ)*(ONE-ALFAZ(KO))*RHOLZ(KO)
          +
1353
           GO TO 6110
1354
      5110 WZ8(KO) = (WZ8(KO) + (ULZ0(KO)-ULZ0(KO-NI))+ULRZ(KO)/DR3(3) +
1355
                       GZ) + (ONE-ALFAZ(KO)) + RHOLZ(KO)
1356 6110 CONTINUE
1357 C
1358
       111 CONTINUE
1359
           RETURN
1360
           END
```

T.

Subroutine ws

.

.

-

~

1361	SUBROUTINE WS(PO,TVO,TLO,ALFAO,ALFAZ,ALFAR,RHOV,
1362	 RHQL, RHOVZ, RHCLZ, RHOVR, RHOLR, HV, HL,
1363	UVZO,ULZO,UVRO,ULRO,
1364	* WEV, WEL, WZ3, WZ4, WZ5, WZ6, WZ7, WZ8, WZ9.
1365	* WZ10, WZ11, WR3, WR4, WR5, WRG, WR7, WR8, WR9,
1366	* WR10, WR11, DH, DV, OSI, SPPD, NN)
1367	IMPLICIT REAL *8 (A-H.O-Z)
1368	COMMON / DIM / DZ(40), DZ1(40), DR0(40), DR1(40), DR2(40), DR3(40),
1369	* DR4 (40) . N I . NJ . N IM1 . N IM2 . NJM1 . NNI . NNJ . NNJ .
1370	COMMON /TEMPO/ TIME.DT.DTO.DTIS.NDT
1371	COMMON /NUMBER/ ZERD. ONE. BIG. SMALL
1372	DIMENSION PO(NN), TVO(NN), TUO(NN), ALEAO(NN), ALEAZ(NN),
1373	+ ALEAR(NN), RHOV(NN), RHOU(UN), RHOVZ(NN), RHOUZ(NN),
1374	* $BHOVE(NN) \cdot BHOLE(NN) \cdot HV(NN) \cdot HI(NN) \cdot HVZO(NN) \cdot$
1375	+ $U(ZO(NN), UVBO(NN), U(BO(NN), WEV(NN), WEL(NN),$
1376	+ $WZ_3(NN) - WZ_4(NN) - WZ_5(NN) - WZ_6(NN) - WZ_7(NN) - WZ_8(NN) - WZ_8(NN$
1377	* $WZ9(NN), WZ10(NN), WZ11(NN), WB3(NN), WB4(NN)$
1378	+ $WBG(NN), WBG(NN), WB7(NN), WB9(NN), WB10(NN),$
1379	* WP11(NN) DH(NN) DV(NN) OST(NN) SPPD(NN)
1380 C	
1381 C	
1392 0	
1393 0	SURDOUTINE WS COMPLETE THE EVALUATION OF THE
1304 0	EVELOCIT TEDMS INVOLVED IN THE CONTINUE
1305 0	THE BOODERN STATED WITH CORDUCTIVE DOMOG
1305 0	HE FRODER STATED WITH SUDROVINE DUNOR.
1300 0	INCREMENT DE TELLE LENARD CONTAINING INCLINE
1307 0	SUBDUITING DONOR IN ODED TO ALLOW A CHANCE
1050 0	THE VALUE OF DE WHEN THE ROOPLON DECENDE
1389 0	IN THE VALUE OF DI WHEN THE PRODERM DOES NOT
1390 C	CONVERGE WITH THE PROVIDED DI.
1391 C	(SEE NEXT COMENT IN THIS SUBROUTINE.)
1392 C	
1393 0	
1394 6	
1395	
1396	$V_0 = 2, N_1$
1397	KU = (3U-1) + N1 + 10
1398 6	
1399	WW21 = $ALFAZ(KU)$ = $KEVZ(KU)$ WW20 = $IONE = AFEVZ(KO)$ = $OUOI = IKO)$
1400	$WWZZ = (UNC = ALFAZ(KU)) \neq KHULZ(KU)$
1401	WWRT = ALFAR(RU) * RTUVR(RU)
1402	WWR2 = (UNE - ALFAR(KU)) * RHULR(KU)
1403 C	

.

,

.

.

292

.

1404 CALL COEFF(TVO(KO),TLO(KO),UVZO(KO),UV	/RO(KO),ULZO(KO),ULRO(KO),
1405 * ALFAZ(KO),ALFAR(KO),RHOVZ(M	(O),RHOVR(KO),
1406 * RHOLZ(KO),RHOLR(KO),DH(KO),	,DV(KO),QSI(KO),
1407 * SPPD(KO), WWZ1, WWZ2, WWR1, WWF	32.
1408 * FVZ, FLZ, FVR, FLR, C1Z, C1R)	
1409 C	
1410 $WEV(KQ) = -(RHQV(KQ) * HV(KQ) + PQ(KQ)) * Al$	FAD(KO)/DT
1411 $WEL(KO) = -(RHOL(KO) + HL(KO) + PO(KO)) + (CO)$	NE-ALFAD(KO))/DT
1412 C	
1412 TE(NDT NE 0) GO TO 1	
1415 IF(NDI:NC:0) GO TO T	
1410 L CINCE THE DROCDAM ALLOWS A SUMMOR	- + M - 1711 - 174 - 1117
1416 C SINCE THE PRUGRAM ALLOWS A CHANGE	IN THE VALUE
1417 C OF THE TIME INCREMENT DT, EVEN IF	THE TIME STEP
1418 C IS NOT COMPLITED, WE PUT A CHECK H	IERE TO KNOW
1419 C IF SUCH A CHANGE DID OCCUR (IN TH	IS CASE NDT
1420 C WOULD BE DIFFERENT THAN ZERO) IN	CASE THE TEST
1421 C BE TRUE, WE SUBTRACT THE TERMS WHI	CH HAVE THE
1422 C OLD DT AND ADD THEM BACK WITH THE	E NEW VALUE
1423 C OF DT.	
1424 C	
1425 WZ4(KO) = C1Z	
1426 WZG(KO) = C1Z	
1427 WR4(KO) = C1R	
1428 WR6(KO) = C1R	
1429 C	
$1430 \qquad \qquad W73(KO) = W74(KO) + ALFA7(KO) + PHOV7(KO)$	1)/DT + EV7
$\frac{1430}{1431} = \frac{1420(10)}{1431} + \frac{1600}{1431} + \frac{1600}{$	r_{10} 7 (KO) /DT + E17
$1432 \qquad WP3(KO) = WP4(KO) + AIFAP(KO) + CHOVP(KO)$	1022(10)/07 + EVP
$1432 \qquad WPS(KO) = WPS(KO) + (ONE-A)EAD(KO))ADU$	
$\frac{1435}{1424} = \frac{1435}{1424} = \frac{1435}{1424$	
1435 0	
$\frac{1430}{4426} = \frac{1077(80)}{107441647} = \frac{1070(80)}{107441647}$	(A) + DHOV2 (VA)
$\frac{1430}{1437} = \frac{1430}{1437} = \frac{1430}{1437$	
$\frac{1437}{1430} = \frac{1437}{1400} = \frac{1437}{1400} = \frac{1400}{1400} = \frac{1400}{1400$	
1438 WR7(KU) = WR7(KU) = UVRU(KU)/DT*ALFAR(KO)*RHUVR(KU)
$1439 \qquad WR8(KO) = WR8(KO) - ULRO(KO)/DT + (ONE-A)$	LFAR(KO))*RHOLR(KO)
1440 GO TO 2	
1441 C	
1442 1 DTC = $ONE/DTO - ONE/DT$	
1443 C	
1444 WZ7(KO) = UVZO(KO)+ALFAZ(KO)+RHOVZ(KO)	*DTC + WZ7(KO)
1445 WZB(KO) = ULZO(KO)*(ONE-ALFAZ(KO))*RHO	LZ(KO)*DTC + WZ8(KO)
1446 WR7(KO) = UVRO(KO) *ALFAR(KO) *RHOVR(KO)	*DTC + WR7(KO)
1447 WR9(KO) = ULRO(KO)*(ONE-ALFAR(KO))*RHO	LR(KO) + DTC + WR8(KO)
1448 WZ3(KO) = WZ3(KO) - ALFAZ(KO)*RHOVZ(KO)+DTC

~

.

1404		CALL COEFF(TVO(KO),TLO(KO),UVZO(KO),UVRO(KO),ULZO(KO),ULRO(KO),
1405		ALFAZ(KO), ALFAR(KO), RHOVZ(KO), RHOVR(KO),
1406		<pre>* RHOLZ(KO),RHOLR(KO),DH(KO),DV(KO),QSI(KO),</pre>
1407		SPPD(KO), WWZ1, WWZ2, WWR1, WWR2.
1408		* FVZ.FLZ.FVR.FLR.C1Z.C1R)
1409 C		
1410		WEV(KQ) = $-(RHQV(KQ)) + HV(KQ) + PO(KQ)) + ALFAQ(KQ)/DT$
1411		WEL(KD) = $-(RHOL(KD) + HL(KD) + PO(KD)) + (ONE - ALFAD(KD))/DT$
1412 C		
1413		TE(NDT.NE.D) GO TO 1
1410		
1414 0		
1415 0		STACE THE DOCCOM ALLOWS A CHANCE IN THE VALUE
1410 0		SINCE THE FRUCKAM ALLOWS A CHANGE IN THE VALUE
1417 C		UP THE TIME INCREMENT DI, EVEN IF THE TIME STEP
1418 C		IS NOT COMPLITED, WE POIL A CHECK HERE TO KNOW
1419 C		IF SUCH A CHANGE DID UCCUR (IN THIS CASE NDT
1420 C		WOULD BE DIFFERENT THAN ZERO) IN CASE THE TEST
1421 C		BE TRUE, WE SUBTRACT THE TERMS WHICH HAVE THE
1422 C		OLD DT AND ADD THEM BACK WITH THE NEW VALUE
1423 C		OF DT.
1424 C		
1425		WZ4(KO) = C1Z
1426		WZG(KO) = C1Z
1427		WR4(KO) = C1R
1428		WR6(KO) = C1R
1429 C		
1430		WZ3(KO) = WZ4(KO) + ALFAZ(KO)*RHOVZ(KO)/DT + FVZ
1431		WZ5(KO) = WZ6(KO) + (ONE-ALFAZ(KO)) + RHOLZ(KO)/DT + FLZ
1432		WR3(KO) = WR4(KO) + ALFAR(KO) + SHOVR(KO)/DT + FVR
1433		WR5(KO) = WR6(KO) + (ONE-ALFAR(KO)) + RHOLR(KO)/DT + FLR
1434 C		
1435 C		
1436		W77(KD) = W77(KD) - UV70(KD)/DT+ALEA7(KD)+RHOV7(KD)
1430		WZB(KG) = WZB(KG) = UIZO(KG)/DT (GNE-ALEAZ(KG)) + RHOLZ(KG)
1438		WP7(KO) = WP7(KO) - UVPO(KO)/DT+AI FAP(KO) * BHOVP(KO)
1430		WPB(KG) = WPB(KG) = UIBO(KG)/DT+(GNE-ALCAD/KG))+DH(KG)
1435		
1001 0		
1441 6		
1442	1	bic - GREybig - GREybi
1443 6		W77/V01 - 1W70/V01+ALEA7/V01+DU0V7/V01+DT0 + W77/V01
1444		$\frac{1}{100} = \frac{1}{100} = \frac{1}$
1445		W23(RU) = U20(RU) + (URC ALFA2(RU)) + RHU22(RU) + U23(RU) + U23(RU)
1446		$WR^{2}(KO) = URO(KO) + AR(KO) + RHOVR(KO) + D(C + WR^{2}(KO))$
1447		WRS(KU) = ULU(KU) * (UNE*ALFAK(KU)) * RHOLR(KU) * DTC + WRS(KU)
1448		WZ3(KUJ = WZ3(KO) — ALFAZ(KO)*RHOVZ(KO)+DIC

.

.

.

-

294

 \sim

```
1449
           WZ5(KO) = WZ5(KO) - (ONE-ALFAZ(KO))+RHOLZ(KO)+DTC
1450
           WR3(KO) = WR3(KO) - ALFAR(KO) * RHOVR(KO) * DTC
1451
           WR5(KO) = WR5(KO) - (ONE-ALFAR(KO))*RHOLR(KO)*DTC
1452 C
         2 IF(WZ3(KO).GT.SMALL) GO TO 3
1453
1454 C
1455 C
                THIS TEST IS DONE TO CHECK THE PRESENCE OF
1456 C
1457 C
                VAPOR IN THE CELL AT THE PRESENT TIME STEP.
1458 C
                IN CASE THERE IS NO VAPOR NOR EVAPORATION
1459 C
                (WZ3 = ZERO), THE VAPOR MOMENTUM EQUATION
1460 C
                BECOMES TRIVIAL AND THE LIQUID EQUATION
1461 C
                STANDS ALONE.
1462 C
1463
           WZ11(KO) = ZERO
1464
           WZ9(KO) = ZERO
1465
           WZ10(KO) = -(ONE-ALFAZ(KO))/DZ1(IO)/WZ5(KO)
           GO TO 5
1466
1467 C
1468
         3 IF(WZ5(KO).GT.SMALL) GO TO 4
1469 C
1470 C
1471 C
                THIS TEST IS DONE TO CHECK THE PRESENCE OF
1472 C
                LIQUID IN THE CELL AT THE PRESENT TIME STEP.
1473 C
                IN CASE THERE IS NO LIQUID NOR CONDENSATION
1474 C
                (WZ5 = ZERO), THE LIQUID MOMENTUM EQUATION
1475 C
                BECOMES TRIVIAL AND THE VAPOR EQUATION
1476 C
                STANDS ALONE.
1477 C
1478 C
           WZ1^{+}(KO) = ZERO
1479
1480
           WZ10(KO) = ZERO
           WZ9(KO) = -ALFAZ(KO)/DZ1(IO)/WZ3(KO)
1481
1482
           GO TO 5
1483 C
1484
         4 WZ11(KO) = WZ3(KO)+WZ5(KO)-WZ4(KC)+WZ6(KO)
1485
           WZ10(KO) = -(ALFAZ(KO) * WZ6(KO) + (ONE-ALFAZ(KO)) * WZ3(KO))/
1486
                        DZ1(IO)/WZ11(KO)
          /
1487
           WZ9(KO) = -(ALFAZ(KO) *WZ5(KO)+(ONE-ALFAZ(KO))*WZ4(KO))/
1488
                        DZ1(IO)/WZ11(KO)
          1
1499 C
1490
         5 CONTINUE
1491 C
1492 C
                THE SAME TEST WHICH WAS DONE FOR THE
1493 C
```

.

~

Z-DIRECTION (SEE COMENTS ABOVE) IS 1494 C 1495 C DONE HERE FOR THE R-DIRECTION.NOTE 1496 C THAT SINCE THE MOMENTUM EQUATIONS ARE EVALUATED AT DIFFERENT LOCATIONS FOR 1497 C EACH DIRECTION.IT IS POSSIBLE THAT 1498 C ONE PHASE IS ABSENT IN ONE DIRECTION 1499 C EQUATIONS AND PRESENT IN THE OTHER 1500 C DIRECTION EQUATIONS. 1501 C 1502 C 1503 C 1504 DO 8 JO = 1, NJM11505 DO 8 IO = 2.NIM11506 $KO = \{JO-1\} * NI + IO$ 1507 C 1508 IF(WR3(KO).GT.SMALL) GO TO 6 1509 WR11(KO) = ZERO 1510 WR9(KO) = ZEROWR10(KO) = -(ONE-ALFAR(KO))/DR3(JO)/WR5(KO)1511 1512 GO TO 8 1513 C 1514 6 IF(WR5(KO).GT.SMALL) GO TO 7 WR11(KO) = ZERO1515 1516 WR10(KO) = ZEROWR9(KO) = -ALFAR(KO)/DR3(JO)/WR3(KO)1517 GO TO 8 1518 1519 C 7 WR11(KO) = WR3(KO) + WR5(KO) - WR4(KO) + WR6(KO)1520 WR10(KO) = -(ALFAR(KO) * WR6(KO) + (ONE-ALFAR(KO)) * WR3(KO))/1521 DR3(JO)/WR11(KO)1522 1 WR9(KO) = -(ALFAR(KO) *WR5(KO)+(ONE-ALFAR(KO))*WR4(KO))/ 1523 1524 1 DR3(J0)/WR11(K0) 8 CONTINUE 1525 RETURN 1526 END 1527

.

Subroutine onestp

•

.

۰ ·

-

1528		SUBROUTINE ONESTP(PN, PO, TVN, TLN, ALFAN, ALFAO, ALFAZ, ALFAR,
1529		* RHOV, RHOL, HV, HL, HVZ, HLZ, HVR, HLR,
1530		* UVZN, ULZN, UVRN, ULRN,
1531		<pre>* FUVZN,FULZN,FUVRN,FULRN,W,DV,TS,</pre>
1532		TW, DTW, HCONV, HCONL, HNB, DPN, A1, A2, A3,
1533		* A4,YP,B,BETA,GAMMA,AVZD,ALZD,AVRD,
1534		* ALRD, TCAN, DT, NN, NB, NP, NW, NCAN)
1535	С	
1536		IMPLICIT REAL+8 (A-H,O-Z)
1537	С	
1538	С	
1539		COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
1540		COMMON /ERROR/ IERR
1541		COMMON /DIM/ DZ(40),DZ1(40),DRD(40),DR1(40),DR2(40),DR3(40),
1542		<pre>* DR4(40),NI,NJ,NIM1,NIM2,NJM1,NNI,NNJ,NNJJ</pre>
1543	С	
1544		DIMENSION EPSLON(9),RES(9)
1545		DIMENSION PN(NN),PO(NN),TVN(NN),TLN(NN),ALFAN(NN),ALFAO(NN),
1546		<pre>* ALFAZ(NN),ALFAR(NN),RHOV(NN),RHOL(NN),HV(NN),HL(NN),</pre>
1547		<pre>* HVZ(NN),HLZ(NN),HVR(NN),HLR(NN),</pre>
1548		<pre>* UVZN(NN).ULZN(NN),UVRN(NN).ULRN(NN),</pre>
1549		<pre>* FUVZN(NN),FULZN(NN),FUVRN(NN),FULRN(NN),</pre>
1550		* W(NW),DV(NN),TS(NN),TW(NN),DTW(NN),
1551		<pre>* HCONV(NN),HCONL(NN),HNB(NN),DPN(NN),</pre>
1552		* A1(NN), A2(NN), A3(NN), A4(NN), YP(NN), B(NB),
1553		* BETA(NN), GAMMA(NN), AVZD(NN), ALZD(NN), AVRD(NN),
1554	_	<pre># ALRD(NN),TCAN(NCAN)</pre>
1555	C	
1556		DIMENSION A(65),F(9),PROP(3,4),S(5,2),Q(4.2),K(30),M(30)
1557	C	
1558	~	IFLAG = 1
1559	U o	
1560	C C	THE MUMENTUM EQUATIONS (Z-DIRECTION) AT THE BUTTON
1561	C	MM - MM + A
1502		$\operatorname{NIM} = \operatorname{NNU} + 2$
1503		$DO \rightarrow CO = 2, mm, rec$
1564		$1 K(1) = (1 - 1) \times NN + KO$
1566	c	$(\mathbf{u}_{\mathbf{u}}) = (\mathbf{u}_{\mathbf{u}}) + (\mathbf{u}_{\mathbf{u}})$
1567	~	TE(W(K(5)), GT SMALL) GO TO 2
1568	c	ALL
1569	č	
1570	č	ONLY LIQUID PRESENT IN THE CELL

.

\$

1571 C 1572 V01 = (ONE-ALFAZ(KO))/DZ1(2)V05 = W(K(7))1573 1574 C 1575 FUVZN(KO) = ZERO1576 FULZN(KO) = -(W(K(7)) + ULZN(KO) + (PN(KO) - PN(KO-1)) + VO1 +1577 W(K(10)))/V05+ 1578 W(K(11)) = ZERO1579 W(K(12)) = -V01/V051580 GO TO 4 1581 C 1582 2 IF(W(K(7)).GT.SMALL) GO TO 3 1583 C 1584 C 1585 C ONLY VAPOR PRESENT IN THE CELL 1586 C V02 = ALFAZ(KO)/DZ1(2)1587 1588 V03 = W(K(5))1569 C FUVZN(KO) = -(W(K(5)) + UVZN(KO) + (PN(KO) - PN(KO - 1)) + VO2 +1590 1591 + W(K(9)))/V03 1592 FULZN(KO) = ZERO1593 W(K(11)) = -V02/V031594 W(K(12)) = ZEROGO TO 4 1595 1596 C BOTH PHASES PRESENT IN THE CELL 1597 C 1598 C 1599 3. CONTINUE 1600 V01 = (ONE-ALFAZ(KO))/DZ1(2)1601 V02 = ALFAZ(KO)/DZ1(2)1602 V03 = W(X(5))1603 V04 = W(K(6))V05 = W(K(7))1604 1605 V06 = W(K(8))1606 V07 = V04 + V06 - V03 + V051657 C 1603 F(5) = w(K(3))*UVZN(KO) - w(K(6))*ULZN(KO) + (PN(KO)+PN(KO-1))* 1809 . V02 + W(K(9))1610 F(6) = W(K(7)) * ULZN(KO) - W(K(8)) * UVZN(KO) + (PN(KO) - PN(KO-1)) *1611 * V01 + W(K(10))1612 C 1613 W(K(11)) = (V05 + V02 + V04 + V01) / V071614 W(K(12)) = (V06 + V02 + V03 + V01)/V071615 FUVZN(KO) = (F(5) + V05 + F(6) + V04) / V07

 \sim

.

1616		FULZN(KO)=(F(5)*V06+F(6)*V03)/V07
1617		4 CONTINUE
1618	C	
1619	С	THE CENTRAL CELLS
1620	С	
1621		A(4) = ZERD
1622		A(12) = ZERO
1623		A(20) = ZERO
1624		A(28) = ZERO
1625		DO 122 KO = 2.NIM1
1626		DO 5 L=1,27
1627		5 K(L) = (L-1) * NN + KO
1628		KM=K 0+1
1629		KP = KQ - 1
1630		CALL STATE (TVN(KO),TLN(KO),PN(KO),PROP.IFLAG)
1631		CALL NONEQ(ALFAD(KO), ALFAN(KO), TVN(KO), TLN(KO), PN(KO),
1632		RHOV(KO), RHOL(KO), TS(KO), S, IFLAG)
1633		CALL CONDT (TVN(KO), TLN(KO), PN(KO), ALFAO(KO), TS(KO), TW(KP),
1634		<pre>* DTW(KP).HCONV(KP).HCONL(KP).HNB(KP).DV(KO).Q.KO)</pre>
1635		CALL IPHTC (HIF, ALFAN(KO))
1636	С	
1637		V01=ALFAQ(KO)/DT
1638		VO2=(ONE-ALFAD(KO))/DT
1639		VO3=ALFAN(KD)/DT
1640		V04=(ONE-ALFAN(KO))/DT
1641		V05=S(1,1)
1642		V06=S(2,1)
1643		V07=S(3,1)
1644		V08=S(4,1)
1645		V09=5(5,1)
1646		V10=W(K(3)+1)/DZ(KD)
1647		V11=W(K(3))/DZ(KO)
1648		V12=W(K(14))*DR1(1)
1649	С	
1650		V14=W(K(4)+1)/DZ(KO)
1651		V15=W(K(4))/DZ(KO)
1652		V16=W(K(15))*DR1(1)
1653	С	
1654		V18=HVZ(KM)+V10 + PO(KO)+AVZD(KM)/DZ(KO)
1655		V19=HVZ(KO)+V11 + PO(KO)/DZ(KO)+AVZD(KO)
1656		V20=HVR(KO)*V12 + PO(KO)*DR1(1)*AVRD(KO)
1657	С	
1658		V22=HLZ(KM)+V14 + PO(KO)+ALZD(KM)/DZ(KO)
1659		V23=HLZ(KO)+V15 + PO(KO)+ALZD(KO)/DZ(KO)
1660		V24=HLR(KO)+V16 + PO(KO)+ALRD(KO)+DR1(1)

-

-

.

.

.

*

1661 C 1662 V26 = (TVN(KO) - TLN(KO)) + HIF1663 V27 = V03 + PROP(1.1)1664 V28=V04*PROP(1.2) 1665 V29 = V01 + RHOV(KO)1666 V30 = V02 * RHOL(KO)1667 V31 = HV(KO) + V291668 V32 = HL(KO) + V301669 C 1670 C THE RESIDUALS OF CONSERVATION EQUATIONS 1671 C 1672 F(1) = V27 - V29 + UVZN(KM) + V10 - UVZN(KO) + V11 + UVRN(KO) +1673 * V12 -V05 1674 F(2) = PROP(1,3) + V27 - V31 + UVZN(KM) + V18 -1675 UVZN(KO) * V19 + UVRN(KO) * V20 - S(1,2) - Q(1,1) +* 1676 PO(KO) * (VO3 - VO1)1677 F(3) = V28 - V30 + ULZN(KM) * V14 - ULZN(KO) * V15 +1678 ULRN(KO) + V16 + V05 + 1679 F(4) = PROP(1,4) * V28 - V32 + UL2N(KM) * V22 -ULZN(KO) + V23 + ULRN(KO) + V24 + S(1,2) - Q(1,2) + 1680 * 1681 + PO(KO) * (V04 - V02)1682 F(5) = W(K(5)+1) + UVZN(KM) - W(K(6)+1) + ULZN(KM) + (PN(KM)-PN(KO)) +1683 * ALFAZ(KM)/DZ1(KM) + W(K(9)+1)1684 F(6) = W(K(7)+1)+ULZN(KM) - W(K(8)+1)+UVZN(KM) + (PN(KM)-PN(KO))*1685 (ONE-ALFAZ(KM))/DZ1(KM) + W(K(10)+1)* 1686 F(7) = W(K(16)) + UVRN(KO) - W(K(17)) + ULRN(KO) + (PN(KO+NI)-PN(KO)) +1687 * ALFAR(KO)/DR3(1) + W(K(20))1688 F(8) = W(K(18)) * ULRN(KO) - W(K(19)) * UVRN(KO) + (PN(KO+NI)-PN(KO)) *1689 * (ONE-ALFAR(KO))/DR3(1) + W(K(21))1690 C 1691 C 1692 A(1) = PROP(1,1)/DT - VO9A(9) = (PROP(1,3)*PROP(1,1) + PO(KO))/DT - S(5,2)1693 1694 A(17) = -PROP(1,2)/DT + V091695 A(25) = -(PROP(1,4)*PROP(1,2) + PO(KO))/DT + S(5,2)1696 C 1697 A(2) = PROP(2,1) * V03 - V06A(10)=(PROP(1,1)*PROP(2,3)+PROP(1,3)*PROP(2,1))*V03 -1698 1699 Q(2,1) - S(2,2)1700 A(18)=V06 1701 A(26) = S(2,2) - Q(2,2)1702 C 1703 A(3) = -V07 1704 A(11) = -S(3,2)1705 A(19) = PROP(2,2) = V04 + V07

```
1706
            A(27)=(PROP(1,2)+PROP(2,4)+PROP(1,4)+PROP(2,2))+V04 -
 1707
                   Q(3,2) + S(3,2)
1708 C
1709 C
            A(4) = ZERO
1710
            A(12) = ZERO
1711
1712
            A(20) = ZERO
1713
            A(28) = ZERO
1714 C
1715
            A(5) = W(K(11)) * V11
1716
            A(13) = W(K(11)) * V19
1717
            A(21) = W(K(12)) * V15
1718
            A(29) = W(K(12)) * V23
1719 C
1720
            A(7) = W(K(11)+1)*V10
1721
            A(15) = W(K(11)+1)*V18
1722
            A(23) = W(K(12)+1)*V14
1723
            A(31) = W(K(12)+1)*V22
1724
            A(B) = W(K(22)) * V12
1725
            A(16) = W(K(22)) * V20
1726
            A(24) = W(K(23)) * V16
            A(32) = W(K(23)) * V24
1727
1728 C
1729
            A(6) = PROP(3, 1) * V03 - V08 - A(5) - A(7) - A(8)
1730
            A(14) = (PROP(1,1) * PROP(3,3) + PROP(1,3) * PROP(3,1)) * VO3 -
+1731
                   S(4,2) - A(13) - A(15) - A(16)
1732
            A(22) = PROP(3,2) * V04 + V08 - A(21) - A(23) - A(24)
1733
            A(30) = (PROP(1,2) * PROP(3,4) + PROP(1,4) * PROP(3,2)) * V04 - Q(4,2)
1734
           *
                   + S(4,2) - A(29) - A(31) - A(32)
1735 C
1736
            IF(W(K(5)+1).GT.SMALL) GO TO 6
1737
            FUVZN(KM) = ZERO
1739
            FULZN(KM) = -F(6)/W(K(7)+1)
1739
            GO TO 8
1740
          6 IF(W(K(7)+1).GT.SMALL) GO TO 7
1741
            FUVZN(KM) = -F(5)/W(K(5)+1)
            FULZN(KM) = ZERO
1742
1743
            GO TO 8
1744
          7 CONTINUE
1745
            FUVZN(KM) = -(W(K(7)+1)*F(5)+W(K(6)+1)*F(6))/W(K(13)+1)
1746
            FULZN(KM) = -(W(K(8)+1)*F(5)+W(K(5)+1)*F(6))/W(K(13)+1)
1747
          8 CONTINUE
1748
            IF(W(K(16)).GT.SMALL) GO TO 9
1749
            FUVRN(KO) = ZERO
1750
            FULRN(KO) = -F(8)/W(K(18))
```

.

-

1751		GO TO 11
1752	9	CONTINUE
1753		IF(W(K(18)).GT.SMALL) GO TO 10
1754		FUVRN(KO) = -F(7)/W(K(16))
1755		F(R) = F(r) / R(R(r) / r)
1755		
1/56		
1757	10	CONTINUE
1758		FUVRN(KO)=-(W(K(18))+F(7)+W(K(17))+F(8))/W(K(24))
1759		FULRN(KO)=-(W(K(19))+F(7)+W(K(16))+F(8))/W(K(24))
1760	11	CONTINUE
1761 C		
1762		F(1) = -F(1) - FUVZN(KM) + V10 + FUVZN(KD) + V11 - FUVRN(KD) + V12
1763		F(2) = -F(2) - FUVZN(KM) + V18 + FUVZN(KD) + V19 - FUVRN(KD) + V20
1764		F(3) = -F(3) + F(1) TN(KM) + V(4 + F(1) TN(KO) + V(5 - F(1) RN(KO) + V(5 - F(1) RN(R) + V(5 - F(1) RN(R)
1725		E(A) = E(A) = E(A) = E(A) = E(A) = V(A) =
1705		r(4) = r(4) = r(4) = r(4) = r(1) +
1760 0		
1/6/ 6		
1768 C		
1769		UU 111 L = 1,27
1770	111	K(L) = L + NN + KO
1771		IX2 = 1
1772		DO 12 IX1 = 8,24,8
1773		AUX = A(IX1+1)/A(1)
1774		IX2 = IX2 + 1
1775		F(IX2) = F(IX2) - F(1) * AUX
1776		D0 12 TX3 = 2.8
1777		TX4 = TX1 + TX3
1778	12	$\Delta(TXA) = \Delta(TXA) - \Delta(TXA) + \Delta(IX)$
1770	14	n(1,1,2) = n(1,1,2)
1119	. 2	DU = 10 = 1,7 D(V(1)) = -0.(111)/0.(1)
1790	15	S(n(L)) = -n(L+1)/n(1)
1781		$B(KU) \neq F(1)/A(1)$
1782 C		
1783		IF(DABS(A(10)).GI.SMALL) GU TU TE
1784 C		
1785 C		ONLY LIQUID IN THE CELL
1786 C		
1787		B(K(8)) = ZERO
1788		B(K(9)) = ONE
1799		DO 14 L = 10,14
1790	14	B(K(L)) = ZERO
1791		B(K(15)) = F(4)/A(27)
1792		D0 15 L = 16.20
1793	15	$B(K(1)) = -\Delta(1+12)/A(27)$
1794 0		w////w// = //w//w//////////////////////
1705		ATTY - A(19)/A/27)
1190		- n(13)/n(4/)

٠

.

r

- -.

.

۰.

302

. ۰,

٠

ţ 4

```
1796
            AUP = A(22) - A(30) * AUX
1797
            A1(KP) = (A(20) - A(28) + AUX) / AUP
1798
            A2(KP) = (A(21) - A(29)*AUX)/AUP
1799
            A3(KP) = (A(23) - A(31) + AUX) / AUP
1800
            A4(KP) = (A(24) - A(32) + AUX) / AUP
1801
            YP(KP) = (F(3) - F(4) * AUX) / AUP
            GO TO 22
1802
1803 C
1804
         16 CONTINUE
1805
            IF(DABS(A(27)).GT.SMALL) GO TO 18
1806 C
1807 C
                  ONLY VAPOR IN THE CELL
1808 C
1809
            B(K(8)) = F(2)/A(10)
1810
            B(K(15)) = B(K(8))
1811
            B(K(9)) = ZERO
1812
            D0 17 L = 10,14
            B(K(L)) = -A(L+2)/A(10)
1813
1814
            LL = L + 6
1815
        17 B(K(LL)) = B(K(L))
1816 C
1617
            AUX = A(18)/A(10)
1818
            AUP = A(22) - A(14) * AUX
1819
            A1(KP) = (A(20) - A(12)*AUX)/AUP
1820
            A2(KP) = (A(21) - A(13)*AUX)/AUP
1821
            A3(KP) = (A(23) - A(15)*AUX)/AUP
1822
            A4(KP) = (A(24) - A(16)*AUX)/AUP
1823
           YP(KP) = (F(3) - F(2)*AUX)/AUP
1824
            GO TO 22
1825 C
1826 C
                   BOTH PHASES PRESENT
1827 C
1828
        18 CONTINUE
1829
           B(K(8)) = F(2)/A(10)
1830
           D0 19 L = 9.14
1831
        19 B(K(L)) = -A(L+2)/A(10)
1832 C
1833
           IX2 = 2
1834
           DO 20 IX1 = 18,26,8
1835
           AUX = A(IX1)/A(10)
1836
           IX2 = IX2 + 1
1837
           F(IX2) = F(IX2) - F(2) + AUX
1838
           DO 20 IX3 = 1.6
1839
           IX4 = IX1 + IX3
```

IX5 = IX3 + 10

```
20 A(IX4) = A(IX4) - A(IX5) + AUX
1841
1842 C
1843 C
1844
            B(K(15)) = F(3)/A(19)
1845
            D0 21 L = 16.20
1846
        21 B(K(L)) = -A(L+4)/A(19)
1847 C
1848
           AUX = A(27)/A(19)
1949
           AUP = A(30) - A(22) * AUX
1850
           A1(KP) = (A(28) - A(20) + AUX) / AUP
           A2(KP) = (A(29) - A(21) + AUX) / AUP
1651
1852
           A3(KP) = (A(31) - A(23)*AUX)/AUP
1853
           A4(KP) = (A(32) - A(24) + AUX) / AUP
           YP(KP) = (F(4) - F(3) * AUX) / AUP
1854
1855 C
1856
        22 CONTINUE
1857 C
1858
           DDT = DABS(A1(KP)) + DABS(A2(KP)) + DABS(A3(KP)) + DABS(A4(KP))
1859
           IF(DDT.GT.ONE) GO TO 58
1860 C
1861
       122 CONTINUE
1862 C
1863 C
                   OUT OF THE BOUNDARIES
1864 C
1865
           DO 46 J=NI,NNJ,NI
           JO=J/NI+1
1866
           DO 46 I=2,NIM1
1867
           K0=I+J
1868
1969
           KM = KO + 1
1870
           KP = KO - 1 - J/NI * 2
1871
           DO 23 L=1.27
        23 K(L) = (L-1) + NN + KO
1872
1873
           IO = I + 1
1874 C
1875
           CALL STATE(TVN(KO), TLN(KO), PN(KO), PROP, IFLAG)
1876
           CALL NONEQ(ALFAO(KO),ALFAN(KO),TVN(KO),TLN(KO),PN(KO),
1877
          *
                       RHOV(KO), RHOL(KO), TS(KO), S, IFLAG)
1878
           CALL CONDT(TVN(KO),TLN(KO),PN(KO),ALFAO(KO),TS(KO),TW(KP),
1879
                       DTW(KP), HCONV(KP), HCONL(KP), HNB(KP), DV(KO), Q, KO)
1880
           CALL IPHTC(HIF, ALFAN(KO))
1881 C
           V01 = ALFAO(KO)/DT
1882
1883
           V02 = (ONE-ALFAO(KO))/DT
           VO3 = ALFAN(KO)/DT
1884
1885
           V04 = (ONE-ALFAN(KO))/DT
```

1886	V05 = S(1,1)
1887	V06 = S(2,1)
1898	V07 = S(3, 1)
1889	V08 = S(4, 1)
1890	V09 = S(5,1)
1891	V10 = W(K(3)+1)/DZ(I)
1892	$V_{11} = W(K(3))/DZ(1)$
1893	$V_{12} = W(K(14)) + DR1(JQ)$
1894	V13 = W(K(14) - NI) * DB2(J0)
1895	V14 = W(K(4)+1)/DZ(1)
1896	$V_{15} = V(X(A))/DZ(I)$
1807	V16 = W(X(15)) + D(1(10))
1808	$V_{12} = W(K(15)) = V_{13} + V_{12} + V_{13}$
1800	$V_{11} = W(X_{(13)} - X_{13}) + D(X_{2}) + D(X_{13}) + D(X_{13})$
1099	$V_{10} = HV_2(K_{00}) + V_{10} + PO(K_{0})/D_2(1) + AV_2D(K_{0})$
1900	$V_{10} = V_{10}(V_{10}) + V_{11} + V_{10}(V_{10}) + V_{10}(V_{10}) + V_{10}(V_{10})$
1901	
1902	$\frac{1}{2} = \frac{1}{2} $
1903	$V_{22} = \Pi L_2(\pi W) + V_{14} + PU(\pi U) + A L_2D(\pi W) / D_2(1)$
1904	$V_{23} = \Pi L_2(\pi_0) + V_{13} + PO(\pi_0) + \Lambda L_2O(\pi_0) + O(\pi_0)$
1905	
1906	$V_{25} = HER(N_{1}) + V(1 + PU(N_{2}) + AERD(N_{1}) + DR2(00)$
1907	$V_{20} = (IVN(NU) - (IN(NU)) + \pi IF$
1908	V27 = V03 + PKDP(1,1)
1909	V28 = V04 + PROP(1,2)
1910	
1911	$V_{30} = V_{02} \times RHOL(RO)$
1912	V31 = HV(KD) * V29
1913	V32 = HL(X0) + V30
1914 C	
1915 C	
1916 C	
1917	F(1) = V27 - V29 + UVZN(KM) + V10 + UVZN(KU) + V11 + UVZN(KU) + V05
1918	+ $UVRN(KU) + V12 = UVRN(KU + NI) + V13 = V05$
1919	r(z) = r(UP(1,3) + V27 = V31 + UV2N(KM) + V18 = UV2N(KO) + V40 + UVDN(KO) + V40 = UVDN(KO) + V40 + V40 = UVDN(KO) + V40
1920	= UVZN(XU) * VI3 + UVKN(KU) * V20 = UVKN(KU-NI) * V21 = 0(1.0) =
1921	= 5(1,2) = 0(1,1) + P0(K0)*(V03 - V01)
1922	r(3) = v28 - v30 + UL2N(NM) + v14 - UL2N(KU) + v15 + v28 - v28 - v30 + UL2N(NM) + v14 - UL2N(KU) + v15 + v28 - v
1923	+ ULRN(KD)*V16 - ULRN(KO-NI)*V17 + V05
1924	F(4) = PROP(1,4) + V28 - V32 + ULZN(KM) + V22 - V32 + VLZN(KM) + V22 + VLZN(KM) +
1925	+ ULZN(KO) + V23 + ULRN(KO) + V24 - ULRN(KO-NI) + V25 +
1926	+ $S(1,2) - Q(1,2) + PO(KO) + (V04 - V02)$
1927	F(5) = W(K(5)+1) + UVZN(KM) - W(K(6)+1) + ULZN(KM) +
1928	+ $(PN(KM)-PN(KO))*ALFAZ(KM)/DZ1(I+1) + W(K(9)+1)$
1929	F(6) = W(K(7)+1) + ULZN(KM) + W(K(8)+1) + UVZN(KM) +
1930	+ (PN(KM)-PN(KO))*(ONE-ALFAZ(KM))/DZ1(I+1) + W(K(10)+1)

.

~

.

.

 $\overline{}$

305

-

.

•

.

1931 C 1932 IF(J.LT.NNJ) GO TO 24 1933 CALL HEXCAN(TCAN(I), TCAN(NI+I), TVN(KO), TLN(KO), HCONV(KP), 1934 HCONL(KP), QVC, QLC, DQCDTV, DQCDTL) * 1935 F(2) = F(2) + QVCF(4) = F(4) + QLC1936 F(7) = ZERO1937 1938 F(8) = ZERO1939 GO TO 25 1940 24 CONTINUE 1941 F(7) = W(K(16)) + UVRN(KO) - W(K(17)) + ULRN(KO) + (PN(KO+NI) - PN(KO)) +1942 * ALFAR(KO)/DR3(JO) + W(K(20))1943 F(8) = W(K(18)) + ULRN(KO) - W(K(19)) + UVRN(KO) + (PN(KO+NI)-PN(KO)) +(ONE-ALFAR(KO))/DR3(JO) + W(K(21))1944 * **†945** 25 CONTINUE 1946 C 1947 C 1948 C 1949 A(1) = PROP(1,1)/DT - VO91950 A(2) = PROP(2,1) + V03 - V061951 A(3) = -V071952 A(4) = W(K(22) - NI) + V131953 C 1954 A(9) = (PROP(1,3) + PROP(1,1) + PO(KO))/DT - S(5,2)1955 A(10)=(PROP(1,1)*PROP(2,3)+PROP(1,3)*PROP(2,1))*V03 -1956 Q(2,1) - S(2,2)1957 A(11) = - S(3.2)1958 A(12) = W(K(22) - NI) + V211959 C 1960 A(17) = -PROP(1,2)/DT + V091961 A(18) = V061962 A(19) = PROP(2,2) + V04 + V071963 A(20) = W(K(23) - NI) + V171964 C 1965 A(25) = -(PROP(1,4)*PROP(1,2) + PO(KO))/DT + S(5,2)1966 A(26) = S(2,2)1967 A(27)=(PROP(1,2)*PROP(2,4)+PROP(1,4)*PROP(2,2))*V04 -1968 -Q(3,2) + S(3,2)1969 A(28) = W(K(23) - NI) + V251970 C 1971 A(5) = W(K(11)) * V11A(13) = W(K(11)) * V191972 1973 A(21) = W(K(12)) * V151974 A(29) = W(X(12)) * V231975 C

.

 $\widehat{}$

```
1976
            A(7) = W(K(11)+1)*V10
            A(15) = W(K(11)+1)*V18
1977
1978
            A(23) = W(K(12)+1)*V14
            A(31) = W(K(12)+1)*V22
1979
1980 C
1981 C
1982
            IF(J.GE.NNJ) GO TO 125
1983
            A(8) = W(K(22)) * V12
1994
            A(16) = W(K(22)) * V20
1985
            A(24) = W(K(23)) * V16
1986
            A(32) = W(K(23)) * V24
1987 C
1988
            GO TO 225
1989 C
1990
       125 A(8) = ZERO
1991
            A(16) = ZERO
1992
            A(24) = ZERO
1993
            A(32) = ZERO
1994
            A(10) = A(10) + DQCDTV
1995
            A(27) = A(27) + DQCDTL
1996
       225 CONTINUE
1997 C
1998 C
1999 C
2000
           A(6) = PROP(3,1) * VO3 - VO8 - A(4) - A(5) - A(7) - A(8)
2001
            A(14) = (PROP(1,1) * PROP(3,3) + PROP(1,3) * PROP(3,1)) * V03 -
2002
                 S(4,2) - A(12) - A(13) - A(15) - A(16)
           A(22) = PROP(3,2) * V04 + V08 - A(20) - A(21) - A(23) - A(24)
2003
2004
           A(30) = (PROP(1,2) * PROP(3,4) + PROP(1,4) * PROP(3,2)) * V04-Q(4,2) -
2005
           *
                  A(28) - A(29) - A(31) - A(32) + S(4,2)
2006 C
2007 C
2008 C
           IF(W(K(5)+1).GT.SMALL) GO TO 26
2009
2010
           FUVZN(KM) = ZERO
           FULZN(KM) = -F(6)/W(K(7)+1)
2011
2012
           GO TO 28
2013
        26 IF(W(K(7)+1).GT.SMALL) GO TO 27
           FUVZN(KM) = -F(5)/W(K(5)+1)
2014
2015
           FULZN(KM) = ZERO
           GO TO 28
2016
2017
        27 CONTINUE
           FUVZN(KM) = -(W(K(7)+1)*F(5)+W(K(6)+1)*F(6))/W(K(13)+1)
2018
           FULZN(KM) = -(W(K(8)+1)*F(5)+W(K(5)+1)*F(6))/W(K(13)+1)
2019
2020
        28 CONTINUE
```

.

```
2021
            IF(JO.EQ.NJ) GO TO 31
2022
            IF(W(K(16)).GT.SMALL) GO TO 29
2023
            FUVRN(KO) = ZERO
2024
            FULRN(KO) = -F(8)/W(K(18))
2025
            GO TO 31
        29 CONTINUE
2026
            IF(W(K(18)).GT.SMALL) GO TO 30
2027
            FUVRN(KO) = -F(7)/W(K(16))
2028
2029
            FULRN(KO) = ZERO
           GO TO 31
2030
2031
        30 CONTINUE
2032
            FUVRN(KO) = -(W(K(1B)) + F(7) + W(K(17)) + F(8)) / W(K(24))
2033
            FULRN(KO) = -(W(K(19)) * F(7) + W(K(16)) * F(8)) / W(K(24))
        31 CONTINUE
2034
2035 C
2036
            F(1) =-F(1)-FUVZN(KM) +V10+FUVZN(KO) +V11-FUVRN(KO) +V12
2037
                 + FUVRN(KO-NI)*V13
          +
2038
            F(2) = -F(2) - FUVZN(KM) + V18 + FUVZN(KO) + V19 - FUVRN(KO) + V20
2039
          +
                 + FUVRN(KO-NI)+V21
            F(3) =-F(3)-FULZN(KM) *V14+FULZN(KO) *V15-FULRN(KO) *V16
2040
2041
                 + FULRN(KO-NI)*V17
          +
            F(4) = -F(4) - FULZN(KM) + V22 + FULZN(KO) + V23 - FULRN(KO) + V24
2042
                 + FULRN(KO-NI) + V25
2043
          +
2044 C
2045 C
2046 C
2047
           D0 32 L = 1.27
2048
        32 K(L) = L + NN + KO
            IX2 = 1
2049
2020
            DO 33 IX1 = 8,24,8
           AUX = A(IX1+1)/A(1)
2051
2052
            IX2 = IX2 + 1
            F(1X2) = F(1X2) - F(1) + AUX
2053
            DO 33 IX3 = 2,8
2054
            IX4 = IX1 + IX3
2055
        33 A(IX4) = A(IX4) - A(IX3) + AUX
2056
2057
           D0 34 L = 1.7
        34 B(K(L)) = -A(L+1)/A(1)
2058
2059
           B(KO) = F(1)/A(1)
2060 C
2061
            IF(DABS(A(10)).GT.SMALL) GO TO 37
2062 C
                  ONLY LIQUID IN THE CELL
2063 C
2064 C
            B(K(8)) = ZERO
2065
```

.

308

 $\widehat{}$

```
2066
            B(K(9)) = ONE
2067
            D0 35 L = 10.14
2068
         35 B(K(L)) = ZERO
            B(K(15)) = F(4)/A(27)
2069
2070
            D0 36 L = 16.20
2071
         36 B(K(L)) = -A(L+12)/A(27)
2072 C
2073
            AUX = A(19)/A(27)
2074
            AUP = A(22) - A(30) * AUX
2075
            A1(KP) \simeq (A(20) - A(28) * AUX) / AUP
            A2(KP) = (A(21) - A(29)*AUX)/AUP
2076
            A3(KP) = (A(23) - A(31) + AUX) / AUP
2077
207B
            A4(KP) = (A(24) - A(32)*AUX)/AUP
2079
            YP(KP) = (F(3) - F(4) * AUX) / AUP
2080
            GO TO 43
2081 C
2082
        37 CONTINUE
2083
            IF(DABS(A(27)).GT.SMALL) GO TO 39
2084 C
2085 C
                  ONLY VAPOR IN THE CELL
2086 C
2087
            B(K(8)) = F(2)/A(10)
2088
            B(K(15)) = B(K(8))
2089
            B(K(9)) = ZERO
            DD 3B L = 10.14
2090
2091
            B(K(L)) = -A(L+2)/A(10)
2092
            LL = L + 6
2093
        38 B(K(LL)) = B(K(L))
2094 C
2095
            AUX = A(18)/A(10)
2096
            AUP = A(22) - A(14) + AUX
2097
            A1(KP) = (A(20) - A(12) + AUX) / AUP
2098
            A2(KP) = (A(21) - A(13)*AUX)/AUP
2099
            A3(KP) = (A(23) - A(15) + AUX) / AUP
2100
            A4(KP) = (A(24) - A(16) + AUX) / AUP
2101
            YP(KP) = (F(3) - F(2)*AUX)/AUP
2102
            GO TO 43
2103 C
                   BOTH PHASES PRESENT
2104 C
2105 C
        39 CONTINUE
2106
2107
            B(K(B)) = F(2)/A(10)
2108
           D0 40 L = 9,14
2109
        40 B(K(L)) = -A(L+2)/A(10)
2110 C
```

۰.

-

r

```
IX2 = 2
2111
            D0 41 IX1 = 18,26.8
2112
2113
            AUX = A(IX1)/A(10)
2114
            IX2 = IX2 + 1
2115
            F(IX2) = F(IX2) - F(2) + AUX
            DO 41 IX3 = 1.6
2116
            IX4 = IX1 + IX3
2117
            IX5 = IX3 + 10
2118
        41 A(IX4) = A(IX4) - A(IX5) + AUX
2119
2120 C
2121 C
2122
           B(K(15)) = F(3)/A(19)
2123
            D0 42 L = 16.20
2124
        42 B(K(L)) = -A(L+4)/A(19)
2125 C
2126
            AUX = A(27)/A(19)
2127
            AUP = A(30) - A(22) * AUX
2128
            A1(KP) = (A(28) - A(20) + AUX) / AUP
           A2(KP) = (A(29) - A(21)*AUX)/AUP
2129
2130
            A3(KP) = (A(31) - A(23)*AUX)/AUP
2131
           A4(KP) = (A(32) - A(24) + AUX) / AUP
2132
           YP(KP) = (F(4) - F(3) + AUX) / AUP
2133 C
        43 CONTINUE
2134
2135 C
2136
           DDT = DABS(A1(KP)) + DABS(A2(KP)) + DABS(A3(KP)) + DABS(A4(KP))
2137
           IF(DDT.GT.ONE) GO TO 58
2138 C
        46 CONTINUE
2139
2140 C
2141
           CALL GAUSIE(A1, A2, A3, A4, YP, DPN, BETA, GAMMA, NN)
2142 C
2143 C
                     CELL (2,1)
2144 C
2145
           KO = 2
2146
           KP = KO - 1
           KQ = KP + NIM2
2147
2148
           DO 47 L = 1.27
2149
           M(L) = (L-1) * NN + KO
2150
        47 K(L) = L + NN + KO
2151 C
2152 C
2153
           DTL = B(K(15)) +
2154
                  B(K(18)) + DPN(KP) + B(K(19)) + DPN(KQ) + B(K(20)) + DPN(KQ)
          +
2155
           DTV = B(K(8)) + B(K(9)) + DTL +
```

```
\overline{}
```

```
~
```

```
2156
                  B(K(12)) * DPN(KP) + B(K(13)) * DPN(KO) +
           +
2157
           +
                  B(K(14)) * DPN(KQ)
2158
            DAL = B(KO) + B(K(1)) + DTV + B(K(2)) + DTL +
2159
                  B(K(5))*DPN(KP) + B(K(6))*DPN(KO) +
           +
2160
                  B(K(7)) * DPN(KQ)
           +
2161
           PN(KO) = PN(KO) + DPN(KP)
2162
            IF(PN(KO).LT.1.D+04) GO TO 59
2163
            IF(PN(KO).GT.4.D+07) GO TO 60
2164
           TLN(KO) = TLN(KO) + DTL
2165
            TVN(KO) = TVN(KO) + DTV
2166
            ALFAN(KO) = ALFAN(KO) + DAL
2167
           TX = SAT(PN(KO))
2168
           DTS = TX - TS(KO)
           TS(KO) = TX
2169
2170
           TW(KP) = TW(KP) + (HCONV(KP)*DTV + HCONL(KP)*DTL +
2171
          +
                     HNB(KP) * DTS) * DTW(KP)
2172 C
2173 C
2174
           UVZN(KO) = W(M(11)) * OPN(KP) + FUVZN(KO) + UVZN(KO)
           ULZN(KO) = W(M(12)) * DPN(KP) + FULZN(KO) + ULZN(KO)
2175
2176
           UVRN(KO) = W(M(22)) * (DPN(KQ) - DPN(KP)) + FUVRN(KO) + UVRN(KO)
2177
           ULRN(KO) = W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
2178
           UVZN(1) = UVZN(KO)
2179
           ULZN(1) = ULZN(KO)
2160 C
                        CELLS (I,1) , I=3,NI-2
2181 C
2182 C
2183
           DO 49 I = 3.NIM2
2184
           KO = I
2195
           KP = KO - 1
2186
           KM = KO
           KQ = KP + NIM2
2187
2188
           KR = KP - 1
2199
           DO 48 L = 1,27
2190
           M(L) = (L-1) * NN + KO
2191
        48 K(L) = L*NN+KO
2192 C
2193 C
2194
           DTL = B(K(15)) + B(K(17)) + DPN(KR) +
2195
          +
                  B(K(18)) * DPN(KP) + B(K(19)) * DPN(KM) + B(K(20)) * DPN(KQ)
2196
           DTV = B(K(8)) + B(K(9)) + DTL +
2197
          +
                  B(K(11))*DPN(KR) + B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
2198
          +
                  S(K(14)) + DPN(KQ)
           DAL = B(KO) + B(K(1)) + DTV + B(K(2)) + DTL +
2199
2200
          +
                  B(K(4)) * DPN(KR) + B(K(5)) * DPN(KP) + B(K(6)) * DPN(KM) +
```

```
2201
                  B(K(7)) + DPN(KQ)
          +
           PN(KO) = PN(KO) + DPN(KP)
2202
2203
           IF(PN(KO).LT.1.D+04) GO TO 59
2204
           IF(PN(KO).GT.4.D+07) GO TO 60
2205
           TLN(KO) = TLN(KO) + DTL
2206
           TVN(KO) = TVN(KO) + DTV
2207
           ALFAN(KO) = ALFAN(KO) + DAL
2208
           TX = SAT(PN(KO))
2209
           DTS = TX - TS(KO)
2210
           TS(KO) = TX
2211
           TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2212
          +
                     HNB(KP) *DTS) *DTW(KP)
2213 C
2214 C
2215
           UVZN(KO) = W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
2216
           ULZN(KO) = W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
2217
           UVRN(KO) = W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
2218
           ULRN(KO) = W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)
2219
        49 CONTINUE
2220 C
2221 C
                        CELL (NIM1,1)
2222 C
2223
           KO = NIMt
2224
           KP = KO - 1
2225
           KQ = KP + NIM2
2226
           KR = KP - 1
2227
           DO 148 L = 1,27
2228
           M(L) = (L-1) * NN + KO
2229
       148 \text{ K(L)} = \text{L*NN+KO}
2230 C
2231 C
2232
           DTL = B(K(15)) + B(K(17)) + DPN(KR) +
2233
                  B(K(18)) * DPN(KP) + B(K(20)) * DPN(KQ)
          +
2234
           DTV = B(K(8)) + B(K(9)) * DTL +
2235
                  B(K(11))*DPN(KR) + B(K(12))*DPN(KP) +
          +
2236
          +
                  B(K(14))*DPN(KQ)
2237
           DAL = B(KO) + B(K(1)) + DTV + B(K(2)) + DTL +
2238
                  B(K(4))*DPN(KR) \div B(K(5))*DPN(KP) +
          +
2239
                  B(K(7)) * DPN(KQ)
          +
2240
           PN(KO) = PN(KO) + DPN(KP)
2241
           IF(PN(KO).LT.1.D+04) GO TO 59
2242
           IF(PN(KO).GT.4.D+07) GO TO 60
2243
           TLN(KO) = TLN(KO) + DTL
2244
           TVN(KO) = TVN(KO) + DTV
2245
           ALFAN(KO) = ALFAN(KO) + DAL
```

.

 $\widehat{}$

```
2246
            TX = SAT(PN(KO))
2247
            DTS = TX - TS(KO)
2248
            TS(KO) = TX
2249
            TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2250
                     HNB(KP) + DTS) + DTW(KP)
           +
2251 C
2252 C
2253
            UVZN(KO) = W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
2254
            ULZN(KO) = W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)
            UVRN(KO) = W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
2255
            ULRN(KO) = W(M(23)) * (DPN(KQ) - DPN(KP)) + FULRN(KO) + ULRN(KO)
2256
2257 C
2258 C
                        CELLS (2,J), J = 2,NJ-1
2259 C
2260 C
           DO 51 J = NI, NNJJ, NI
2261
2262
           KO = J+2
2263
           KP = KO - 1 - 2 \neq J/NI
2264
           KM = KP + 1
2265
           KQ = KP + NIM2
2266
           KR = KP - 1
2267
           KS = KP - NIM2
2268
           D0 50 L = 1.27
2269
           M(L) = (L-1) + NN + KO
2270
        50 K(L) = L*NN+KO
2271 C
2272 C
2273
           DTL = B(K(15)) + B(K(16)) + DPN(KS) +
2274
          +
                  B(K(1B))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
           DTV = B(K(8)) + B(K(9))*DTL + B(K(10))*DPN(KS) +
2275
2276
          +
                  B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
2277
          +
                  B(K(14)) * DPN(KQ)
2278
           DAL = B(KO) + B(K(1)) * DTV + B(K(2)) * DTL + B(K(3)) * DPN(KS) +
2279
                  B(K(5))*DPN(KP) + B(K(6))*DPN(KM) +
          +
2280
          +
                  B(K(7)) + DPN(KQ)
2281
           PN(KO) = PN(KO) + DPN(KP)
2282
           IF(PN(KO).LT.1.D+04) GO TO 59
2283
           IF(PN(KO).GT.4.D+07) GO TO 60
2284
           TLN(KO) = TLN(KO) + DTL
2285
           TVN(KO) = TVN(KO) + DTV
2286
           ALFAN(KO) = ALFAN(KO) + DAL
2287
           TX = SAT(PN(KO))
2288
           DTS = TX - TS(KO)
2289
           TS(KO) = TX
           TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2290
```

```
2291
          +
                      HNB(KP) * DTS) * DTW(KP)
2292 C
2293 C
2294
           UVZN(KO) = W(M(11)) + OPN(KP) + FUVZN(KO) + UVZN(KO)
2295
           ULZN(KO) = W(M(12)) * DPN(KP) + FULZN(KO) + ULZN(KO)
2296
           UVRN(KO) = W(M(22))*(DPN(KQ)-DPN(KP)) + FUVRN(KO) + UVRN(KO)
2297
           ULRN(KO) = W(M(23)) * (DPN(KQ) - DPN(KP)) + FULRN(KO) + ULRN(KO)
2298
           UVZN(KO-1) \neq UVZN(KO)
2299
           ULZN(KO-1) = ULZN(KO)
2300
        51 CONTINUE
2301 C
2302 C
                CELLS (I,J) , I=3,NI-2 , J=2,NJ-1
2303 C
2304
           DO 53 J = NI, NNJJ, NI
2305
           DO 53 I = 3.NIM2
2306
           KO = I+J
           KP = KO - 1 - 2 + J/NI
2307
2308
           KM = KP + 1
2309
           KQ = KP + NIM2
2310
           KR = KP - 1
           XS = KP - NIM2
2311
2312
           D0 52 L = 1,27
2313
           M(L) = (L-1) + NN + KO
2314
        52 K(L) = L + NN + KO
2315 C
2316 C
2317
           DTL = B(K(15)) + B(K(16)) * DPN(KS) + B(K(17)) * DPN(KR) +
2318
          +
                  B(K(18))*DPN(KP) + B(K(19))*DPN(KM) + B(K(20))*DPN(KQ)
2319
           DTV = B(K(8)) + B(K(9))*DTL + B(K(10))*DPN(KS) +
2320
          +
                  B(K(11))*DPN(KR) + B(K(12))*DPN(KP) + B(K(13))*DPN(KM) +
2321
          +
                  B(K(14))*DPN(KQ)
2322
           DAL = B(KO) + B(K(1))*DTV + B(K(2))*DTL + B(K(3))*DPN(KS) +
2323
          +
                  B(K(4)) + DPN(KR) + B(K(5)) + DPN(KP) + B(K(6)) + DPN(KM) +
2324
          +
                  B(K(7)) * DPN(KQ)
2325
           PN(KO) = PN(KO) + DPN(KP)
2326
           IF(PN(KO).LT.1.D+04) GO TO 59
2327
           IF(PN(KO).GT.4.D+07) GO TO 60
2328
           TLN(KO) = TLN(KO) + DTL
2329
           TVN(KO) = TVN(KO) + DTV
2330
           ALFAN(KO) = ALFAN(KO) + DAL
2331
           TX = SAT(PN(KO))
2332
           DTS = TX - TS(KO)
2333
           TS(KO) = TX
2334
           TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2335
                     HNB(KP) + DTS) + DTW(KP)
          ÷
```

~

```
2336 C
2337 C
           UVZN(KO) = W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
2338
           ULZN(KO) = W(M(12)) * (DPN(KP) - DPN(KR)) + FULZN(KO) + ULZN(KO)
2339
           UVRN(KO) = W(M(22)) + (DPN(KQ) - DPN(KP)) + FUVRN(KO) + UVRN(KO)
2340
           ULRN(KO) = W(M(23)) + (DPN(KQ) - DPN(KP)) + FULRN(KO) + ULRN(KO)
2341
2342
        53 CONTINUE
2343 C
2344 C
                CELLS (NIM1,J) , J=2,NJ-1
2345 C
           DO 153 J = NI.NNJJ.NI
2346
2347
           I = NIM1
2348
           KO = I+J
2349
           KP = KO - 1 - 2 + J/NI
2350
           KQ = KP + NIM2
           KR = KP - 1
2351
2352
           KS = KP - NIM2
2353
           DO 152 L = 1.27
2354
           M(L) = (L-1) * NN + KO
       152 K(L) = L*NN+KO
2355
2356 C
2357 C
2358
           DTL = B(K(15)) + B(K(16)) + DPN(KS) + B(K(17)) + DPN(KR) +
2359
                  B(K(18)) * DPN(KP) + B(K(20)) * DPN(KQ)
          +
2360
           DTV = B(K(B)) + B(K(9)) * DTL + B(K(10)) * DPN(KS) +
2361
          +
                  B(K(11)) * DPN(KR) + B(K(12)) * DPN(KP) +
2362
          +
                  B(K(14)) * DPN(KQ)
           DAL = B(KO) + B(K(1)) * DTV + B(K(2)) * DTL + B(K(3)) * DPN(KS) +
2363
2364
                  B(K(4))*DPN(KR) + B(K(5))*DPN(KP) +
          +
2365
          +
                  B(K(7))+DPN(KO)
2366
           PN(KO) = PN(KO) + DPN(KP)
2367
           IF(PN(KO).LT.1.D+04) GO TO 59
2368
           IF(PN(KO).GT.4.D+07) GO TO 60
2369
           TLN(KO) = TLN(KO) + DTL
           TVN(KO) = TVN(KO) + DTV
2370
2371
           ALFAN(KO) = ALFAN(KO) + DAL
2372
           TX = SAT(PN(KO))
2373
           DTS = TX - TS(KO)
2374
           TS(KO) = TX
           TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2375
                     HNB(KP) *DTS) * DTW(KP)
2376
          +
2377 C
2378 C
           UVZN(KO) = W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)
2379
2380
           ULZN(KO) = W(M(12)) + (DPN(KP) - DPN(KR)) + FULZN(KO) + ULZN(KO)
```
2381 UVRN(KO) = W(M(22)) + (DPN(KQ) - DPN(KP)) + FUVRN(KO) + UVRN(KO)2362 ULRN(KO) = W(M(23))*(DPN(KQ)-DPN(KP)) + FULRN(KO) + ULRN(KO)2383 153 CONTINUE 2384 C 2385 C CELLS (I.NJ) . I=3.NI-1 2386 C 2387 DO 55 I = 3.NIM12388 KO = I + NNJ2389 KP = KO + 1 - 2 * NJ2390 KM = KP + 12391 KQ = KP + NIM22392 KR = KP - 12393 KS = KP - NIM22394 D0 54 L = 1.272395 M(L) = (L-1) + NN + KO2396 54 K(L) = L*NN+KO2397 C 2398 C 2399 DTL = B(K(15)) + B(K(16)) + DPN(KS) + B(K(17)) + DPN(KR) +2400 B(K(18)) * DPN(KP) + B(K(19)) * DPN(KM)+ 2401 DTV = B(K(8)) + B(K(9))*DTL + B(K(10))*DPN(KS) +2402 + B(K(11)) * DPN(KR) + B(K(12)) * DPN(KP) + B(K(13)) * DPN(KM)2403 DAL = B(KO) + B(K(1)) + DTV + B(K(2)) + DTL + B(K(3)) + DPN(KS) +2404 + B(K(4))*DPN(KR) + B(K(5))*DPN(KP) + B(K(6))*DPN(KM)2405 PN(KO) = PN(KO) + DPN(KP)2406 IF(PN(KO).LT.1.D+04) GO TO 59 2407 IF(PN(KO).GT.4.D+07) GO TO 60 2408 TLN(KO) = TLN(KO) + DTL2409 TVN(KO) = TVN(KO) + DTV2410 ALFAN(KO) = ALFAN(KO) + DAL2411 TX = SAT(PN(KO))2412 DTS = TX - TS(KO)TS(KO) = TX2413 TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL + 2414 2415 HNB(KP) * DTS) * DTW(KP)+ 2416 TCAN(I) = TCAN(I) + TCAN(NI + I)*(HCONV(KP)*DTV + 2417 HCONL(KP)*DTL) + 2418 C 2419 C 2420 UVZN(KO) = W(M(11))*(DPN(KP)-DPN(KR)) + FUVZN(KO) + UVZN(KO)2421 ULZN(KO) = W(M(12))*(DPN(KP)-DPN(KR)) + FULZN(KO) + ULZN(KO)2422 UVRN(KO) = ZERO2423 ULRN(KO) = ZERO 2424 55 CONTINUE

2425 C

 \frown

6.

```
2426 C
                CELLS (NI,J) , J=1,NJ
2427 C
2428
            DO 57 KO = NI, NN, NI
2429
            KR = KO -2*KO/NI
2430
            DO 56 L = 1,27
2431
            M(L) = (L-1) + NN + KO
2432
        56 K(L) = L + NN + KO
2433 C
2434 C
2435
            UVZN(KO) = FUVZN(KO) - W(M(11)) + DPN(KR) + UVZN(KO)
2436
            ULZN(KO) = FULZN(KO) - W(M(12)) + DPN(KR) + ULZN(KO)
2437
            TLN(KO) = TLN(KO-1)
2438
            TVN(KO) = TVN(KO-1)
2439
            ALFAN(KO) = ALFAN(KO-1)
2440
        57 CONTINUE
2441 C
                    CELL (2,NJ)
2442 C
2443
            KO = NNJ + 2
2444
            KP = KO + 1 - 2 * NJ
2445
            KR = KP - 1
2446
            KS = KP - NIM2
2447
            KM = KP + 1
2448
            D0 561 L = 1.27
2449
            M(L) = (L-1) + NN + KO
       561 K(L) = L*NN+KO
2450
2451 C
2452 C
2453
           DTL = B(K(15)) + B(K(16)) + DPN(KS) +
2454
           +
                  B(K(18))*DPN(KP) + B(K(19))*DPN(KM)
2155
           DTV = B(K(8)) + B(K(9)) + DTL + B(K(10)) + DPN(KS) +
2456
           +
                  B(K(13))*DPN(KM) + B(K(12))*DPN(KP)
2457
           DAL = B(KO) + B(K(1)) * DTV + B(K(2)) * DTL + B(K(3)) * DPN(KS) +
2458
                  B(K(G)) * DPN(KM) + B(K(5)) * DPN(KP)
           +
2459
           PN(KO) = PN(KO) + DPN(KP)
2460
            IF(PN(KO).LT.1.D+04) GO TO 59
           IF(PN(KO).GT.4.D+07) GO TO 60
2461
2462
           TLN(KO) = TLN(KO) + DTL
2463
           TVN(KO) = TVN(KO) + DTV
2464
           ALFAN(KO) = ALFAN(KO) + DAL
2465
           TX = SAT(PN(KO))
2466
           DTS = TX - TS(KO)
2467
           TS(KO) = TX
2468
           TW(KP) = TW(KP) + (HCONV(KP) + DTV + HCONL(KP) + DTL +
2469
                     HNB(KP) *DTS) * DTW(KP)
2470
           TCAN(2) = TCAN(2) + TCAN(NI + 2) + (HCONV(KP) + DTV +
```

4

2471 HCONL(KP) + DTL) + 2472 C 2473 C UVZN(KO) = W(M(11)) + DPN(KP) + FUVZN(KO) + UVZN(KO)2474 2475 ULZN(KO) = W(M(12)) * DPN(KP) + FULZN(KO) + ULZN(KO)2476 UVRN(KO) = ZEROULRN(KO) = ZERO 2477 UVZN(KO-1) = UVZN(KO)2478 2479 ULZN(KO-1) = ULZN(KO)2480 C 2481 DO 357 KO = 1, NN2462 IF(ALFAN(KO).GE.ZERO) GO TO 257 2483 IF(ALFAN(KO).LT.-1.D-05) IERR = 3 2494 ALFAN(KO) = ZERO2485 257 CONTINUE 2486 IF(ALFAN(KO).LE.ONE) GO TO 2257 2487 IF(ALFAN(KO).GT.1.00001) IERR = 3 2488 ALFAN(KO) = ONE2489 2257 CONTINUE 2490 IF(TVN(KO).LT.4.D+02) IERR = 14 2491 IF(TVN(KO).GT.3.D+03) IERR = 15 2492 IF(TLN(KO).LT.4.D+02) IERR = 16 2493 IF(TLN(KO).GT.3.D+03) IERR = 17 2494 357 CONTINUE 2495 RETURN 2496 58 IERR = 22497 RETURN 2498 59 IERR = 122499 RETURN 2500 60 IERR = 132501 RETURN 2502 END

:

Subroutine coeff

2503	SUBROUTINE COEFF(TV.TL.UVZ.UVR.ULZ.ULR.ALFAZ.ALFAR.
2504	RHOVZ, RHOVZ, RHOUZ, RHOLZ, RHOLZ, OL, DV, OSI.
2505	* SPPD, WZ1, WZ2, WB1, WB2, FRVZ, FRLZ, FRVR.
2506	+ FRLR.C1Z.C1R)
2507	IMPLICIT REAL+8 (A-H.0-Z)
2508	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
2509	DATA TWO.PTWO.ADRY.CADRY/2.D020095700.0.04300/
2510 C	
2511 C	SUBROUTINE COEFF CALCULATES THE MOMENTUM EXCHANGE
2512 C	COFFFICIENTS.
2513 C	C1. ARE THE INTERPHASE MOMENTUM EXCHANGE COFFEICIENTS
2514 C	FOR THE TWO DIRECTIONS
2515 C	FR., ARE THE WALL FRICTION COFFEICIENTS FOR BOTH PHASES
2516 C	AND DIRECTIONS.
2517 C	
2518	VV = VISCV (TV)
2519	VL = VISCL(TL)
2520 C	
2521	AUVZ = DARS (UVZ)
2522	AUVR = DABS (UVR)
2523	AULZ = DABS(ULZ)
2524	AULR = DABS (ULR)
2525 C	
2526	REVZ = WZ1+AUVZ+DH/VV +SMALL
2527	RELZ = RHOLZ*AULZ*DH/VL + SMALL
2528	REVR = WR1*AUVR*QSI*DH/VV + SMALL
2529	RELR = WR2 + AULR + OSI + DH/VL + SMALL
2530 C	
2531	FVZ = 0.180D0/REVZ**PTWO + SPPD+DH
2532	FLZ = 0.180D0/RELZ**PTWO + SPPD*DH
2533	FVR = PTWO/REVR**PTWO
2534	FLR = PTWO/RELR**PTWO
2535 C	
2536	FRVZ = (ALFAZ - ADRY)/CADRY*RHOVZ*AUVZ*FVZ/TWO/DH
2537	FRVR = (ALFAR - ADRY)/CADRY*180.*VV/(DH+DH)*QSI
2538	FRLZ = RHOLZ+AULZ+FLZ/TWO/DH
2539	FRLR =180.*VL/(DH*DH)+QSI
2540	XZ = (ONE - ALFAZ)/CADRY
2541	XR = (ONE - ALFAR)/CADRY
2542 C	
2543	IF(ALFAZ.GT.ADRY) GO TO 1
2544	FRVZ = ZERO
2545	XZ = ONE

2546	1 CONTINUE
2547	IF(ALFAR.GT.ADRY) GO TO 2
2548	FRVR = ZERO
2549	XR = ONE
2550	2 CONTINUE
2551 C	
2552	FRLZ = FRLZ+XZ
2553	FRLR = FRLR+XR
2554 C	•
2555	X = (ONE + (ONE-ALFAZ)+75.D0)++.95+4.31
2556 C	
2557	C1Z = ((ONE - ALFAZ) *DABS(UVZ - ULZ) *RHOVZ/TWO +
2558	+ VL/DH)*X/DH
2559	C1R = ((ONE - ALFAR) + DABS(UVR - ULR) + RHOVR/TWO +
2560	+ VL/DH)+X+QSI+QSI/DH
2561 C	
2562	RETURN
2563	END

r

.

-

Subroutine bc

SUBROUTINE BC(P, TV, TL, ALFA, TIME, UL, NN, NI, NIMT)
IMPLICIT REAL+B (A-H,O-Z)
LOGICAL LP
COMMON /BCX/ ULO
COMMON (BCOND/ TR(51) PNB1(51) PNB2(51) PNB3(51) OMP(51)
$= \frac{1}{2} \left(\frac{1}{2} + \frac$
PNII(31), PNI2(31), PNI3(31), ALDI(31), ALD
* ALB2(51), ALB3(51), UMA(51), IVB1(51), IVB2(51),
<pre>* TVB3(51),OMV(51),TLB1(51),TLB2(51),TLB3(51),</pre>
<pre>* OML(51),HNW1(51),HNW2(51),HNW3(51),OMH(51),</pre>
* LMAX,LP(51)
DIMENSION P(NN),TV(NN),TL(NN),ALFA(NN)
1 - 2
IF(TIME.LE.IB(L)) GO TO 2
IF(L.GT.LMAX) RETURN
GO TO 1
2 CONTINÚE
DTIME = TIME - TB(L-1)
PNR = PNR1(1) + DTIME + PNR2(1)
PNT = PNT (1) + DTIME + PNT (1)
AT = A + A + A + A + A + A + A + A + A + A
ALD = ALDI(L) + DIIME + ALD2(L)
$\frac{1}{10} = \frac{1}{10} \frac{1}{10}$
(LB = (LB)(L) + O(IME + (LB2(L)))
IF(LP(L)) GO TO 3
· ·
PNB = DEXP(OMP(L)+DTIME)+PNB + PNB3(L)
PNT = DEXP(CMT(L)+DTIME)+PNT + PNT3(L)
ALB = DEXP(OMA(L) + DTIME) + ALB + ALB3(L)
TVB = DEXP(DMV(1)+DTIME)+TVB + TVB3(1)
TIR = DSXP(CM)(1) * DTME) * TIR + TIR2(1)
$UU + U = NI_0 NN_0 NI_0$
P(KO) = PNB
P(J) = PNT
ALFA(KO) = ALB

--

۲.

.

۰.

٠

.

321

.

-

٠

A.,

2607 2608 2609	4	TV(KO) = TL(KO) = CONTINUE	TVB Tlb
2610		RETURN	
2611		END	

•

•

•

. ·

Function visci

2612		FUNCTION VISCL(T)
2613		IMPLICIT REAL*8 (A-H,O-Z)
2614	С	
2615	С	FUNCTION VISCL RETURNS THE SODIUM LIQUID VISCOSITY
2616	С	IN (KG/M/SEC), AS A FUNCTION OF THE TEMPERATURE
2617	С	IN DEGREE CELSIUS
2618	С	·
2619		TK = T .
2620		VISCL = DEXP(508.07/TK - 5.73164925+DLOG(TK))
2621		RETURN
2622		END

.

-

.

۲

.

.

.

Function viscy

•

•

-

2623		FUNCTION VISCV(T)
2624		IMPLICIT REAL+8 (A-H,O-Z)
2625	С	
2626	С	FUNCTION VISCV RETURNS THE SODIUM VAPOR VISCOSITY
2627	С	IN (KG/M/SEC), AS A FUNCTION OF THE TEMPERATURE
2628	С	IN DEGREE CELSIUS
2629	С	
2630		TK = T
2631		VISCV = 6.085D-09*TK + 1.261D-05
2632		RETURN
2633		END

-

•

Function surten

-

2634		FUNCTION SURTEN (T)
2635		IMPLICIT REAL+8 (A-H.D-Z)
2636	С	
2637	С	FUNCTION SURTEN RETURNS THE SURFACE TENSION OF LIQUID
2638	С	SODIUM IN NEWTON/METER
2639	С	CORRELATION FROM GOLDEN AND TOKAR
2640	С	
2641		TC = T - 273.14
2642		SURTEN = 2.067D-01 - 1.0D-04*TC
2643		IF(SURTEN, LT.0, DO) SURTEN = 0, DO
2644		RETURN
2645		END

,

-

.

Á

Function sat

•

.

~

2646	FUNCTION SAT(P)
2647	IMPLICIT REAL+8 (A-H,O-Z)
2648 C	
2649	SAT = 12020./(21.9358 - DLOG(P))
2650	RETURN
2651	END

٠

٠

Function dtsdp

2652		FUNCTION DTSDP(P)
2653		IMPLICIT REAL+8 (A-H,O-Z)
2654	C	
2655	C	CALCULATES THE DERIVATIVE OF THE SATURATION
2656	C	TEMPERTURE WITH RESPECT TO THE PRESSURE
2657	C	
2658		X = 21.9358 - DLOG(P)
2659		DTSDP = 12020./(X*X*P)
2660		RETURN
2661		-END

4

.

Ŧ

 \sim

Function cond1

٠

~

2662	FUNCTION CONDL(T)
2663	IMPLICIT REAL+B (A-H,O-Z)
2664	DATA A1,A2,A3,X1,X2,X3 /54.306,-1.878D-02,2.0914D-06,1.8D0,
2665	* 459.6700,1.730700/
2666 C	· · · · · · · · · · · · · · · · · · ·
2667	TF = X1+T - X2
2668	T2 = TF+TF
2669	C = A1 + A2 + TF + A3 + T2
2670	CONDL = C*X3
2671	RETURN
2672	END

Function condv

•

~

2673		FUNCTION CONDV(T)
2674		IMPLICIT REAL+8 (A-H,D-Z)
2675		DATA A1,A2,A3,X1,X2,X3 /16.39D-04,3.977D-05,-9.697D-09,
2676		* 1.800,459.6700,1.730700/
2677	C	
2678		TF = X1*T - X2
2679		T2 = TF + TF
2680		C = A1 + A2 + TF + A3 + T2
2681		CONDV = X3+C
2682		RETURN
2683		END

.

•

-

.

~

1

•

Function cpl

	FUNCTION CPL(T)
	IMPLICIT REAL+8 (A-H.O-Z)
	DATA A1, A2, A3, X1, X2 / 38935200, 1, 105990-04, 3, 411780-08
	* 1.800,4.1869D+03/
С	
	TR = T*X1
	T2 = TR*TR
	CP = A1 - A2*TR + A3*T2
	CPL = X2 * CP
	RETURN
	END
	С

- - -

RECORDENCE OF A STATE

Function prv

.

 \sim

2695	FUNCTION PRV(T)
2696	IMP! IS! T SIJI # " Jump Stor"
2637 C	
2698	TX = T - 844.1
2699	PRV = .7596D0 + .810D-06*TX*TX
2700	RETURN
2701	END

٠

2

.

Function prl

.

.

.

-

2702	FUNCTION PRL(T)
2703	IMPLICIT REAL+8 (A-H,O-Z)
2704 C	
2705	PRL = CPL(T) + VISCL(T) / CONDL(T)
2706	RETURN
2707	END

.

-

Function hfg

2708 2709 2710 C	FUNCTION HFG(P) Implicit real+8 (A+H,O-Z)	
2711 2712 2713 2714	T = SAT(P) HFG = 5.089D+06 ~ 1.043D+03#T RETURN END	

.

e

ł

٠

Subroutine htcf

.

,

,

SUBROUTINE HTCF (P,TV,TL,ALFA,RHOV,RHOL,HV,HL,DH,TS,TW, 2715 2716 ۰ HCONV, HCONL, HNB, UV, UL) 2717 IMPLICIT REAL+8 (A-H,O-Z) COMMON /NUMBER/ ZERO, ONE, BIG, SMALL 2718 2719 COMMON /POVERD/ R 2720 C 2721 HCONV = ZERO 2722 HCONL = ZERO HNB = ZERO 2723 2724 C 2725 VV = VISCV(TV)2726 VL = VISCL(TL)2727 PV = PRV(TV)2728 PL = PRL(TL)2729 CV = CONDV(TV)2730 CL = CONDL(TL)AUV = DABS(UV)2731 2732 AUL = DABS(UL)2733 SIG = SURTEN(TL)2734 C COMPUTE QUALITY 2735 C 2736 C 2737 GV = ALFA + RHOV + AUV2738 GL = (ONE-ALFA) * RHOL * AUL2739 G = GV + GL2740 IF((UV-UL)*UL.LE.ZERO) GO TO 1 2741 X = GV/G2742 GO TO 2 1 CONTINUE 2743 2744 X = ALFA+RHOV/(ALFA+RHOV + (ONE-ALFA)+RHOL) 2745 2 CONTINUE 2746 C SINGLE PHASE : DITTUS-BOELTER CORRELATION (VAPOR) 2747 C 2748 C 2749 IF(ALFA.LE.0.96) GO TO 3 2750 REV = RHOV+AUV+DH/VV 2751 HCONV = 0.023*REV**0.8*PV**0.4+CV/DH 2752 RETURN 2753 **3 CONTINUE** 2754 C 2755 C SINGLE PHASE : SCHAD CORRELATION (LIQUID) 2756 C 2757 REL = RHOL+AUL+DH/VL

 \sim

.

```
2758
            PEL = REL*PL
2759
            IF(PEL.LE.150.) GO TO 4
2760
           HCONL = PEL++0.3+R+CL/DH
2761
           GO TO 5
2762
         4 CONTINUE
2763
           HCONL = 4.5 * R * CL/DH
         5 CONTINUE
2764
2765 C
                      TWO PHASES : CHEN CORRELATION
2766 C
2767 C
2768
           XTTI = (X/(ONE-X))**0.9*(RHOL/RHOV)**0.5*(VV/VL)**0.1
2769
           F = (XTTI + .213) * * 0.736 * 2.3500
2770
           IF(F.LT.ONE) RETURN
2771
           HCONL = F * * 0.375 * HCONL
2772 C
2773
           IF(TW.LE.TL) GO TO 7
2774 C
2775
           FX = ONE
2776
           GX = G
2777
           IF(TL.LT.TS) GO TO 7
2778
           IF(XTTI.GT.0.1) FX = F
2779
           GX = GL
2780
         6 CONTINUE
2781
           REL = GX * DH/VL
2782
           RETP = REL*FX**1.25*1.D-04
2783
           S = 0.100
2784
           IF(RETP.LT.70.DO.AND.RETP.GE.32.5DO) S . ONE/
2785
          1
                 (ONE + RETP**0.78*0.42D0)
2786 C
2797
           IF(RETP.LT.32.5D0) S = ONE/(ONE + .12D0*RETP**1.14)
2788 C
2789
           HS = 1.22D-03*S*DSQRT(CL*CPL(TL)/51G)/PL**.29*
2790
          *
                 RHOL**.25*(CPL(TL)*RHOL/RHOV/HFG(P))**.24
2791 C
2792
           PWALL = DEXP(21.9358D0 - 12020.D0/TW)
2793
           Z = DABS(PWALL - P)
2794 C
2795
           HNB = HS*(TW - TS)**.24*2**.75
2796
         7 CONTINUE
           IF(ALFA.LE.0.88) RETURN
2797
2798 C
2799
           FAL = 12.D0 - 12.5D0+ALFA
           FAL = FAL*FAL*FAL
2800
           REV = RHOV+AUV+DH/VV
2801
2802
           HCV = 0.023*(REV*REV*PV)**0.4*CV/DH
```

+

÷

.

.

.

~

 2803
 HCONL = HCONL+FAL + HCV

 2804
 HNB = ZERO

 2805
 RETURN

 2806
 END

.

.

.

.

.

...

.

Subroutine iphtc

~

.

•

 2807
 SUBROUTINE IPHTC (HIF,ALFA)

 2808
 IMPLICIT REAL+8 (A-H,O-Z)

 2809
 COMMON /NUMBER/ ZERO,ONE,BIG,SMALL

 2810
 C

 2811
 HIF = 5.D+08

 2812
 RETURN

 2813
 END

.

¢

1

-

Subroutine state

2814 SUBROUTINE STATE (TV.TL,P.PROP.IFLAG) 2815 IMPLICIT REAL*8 (A-H,O-Z) 2816 COMMON /ERROR/ IERR 2817 COMMON /NUMBER/ ZERO.ONE.BIG.SMALL 2818 DIMENSION PROP(3.4) DATA RV0, RV1, RV2, RV22 /1.6050-02, 2.510-06, -3.230-13, -6.460-13/ 2819 2820 DATA RLO.RL1.RL2.RL3.RLP.RL22.RL33 /1.0116D+03.-0.2205. 2821 -1.9224D-05,5.6377D-09,2.26D-07,-3.8448D-05, 1 2822 1.691310-08/ 2 2823 DATA EV0, EV1, EV2, EV3, EV22, EV33 /5.0215D+06, 5.8714D+02, -.41672,1.54272D-04,-.83344,4.62816D-04/ 2824 1 2825 DATA EL0, EL1, EL2, EL3, EL22, EL33 /-6.750750+04, 1.630140+03, 2826 1 -.41672.1.54272D-04,-.83344.4.62816D-04/ 2827 C 2828 C ALL PROPERTIES IN SI UNITS 2829 C PROPERTIES BASED IN 2830 C GOLDEN, G.H. AND TOKAR, J.V. 2831 C THERMOPHYSICAL PROPERTIES OF SODIUM, ANL-7323 2832 C WITH THE ADDITION OF PRESSURE DEPENDENCE IN THE 2833 C LIQUID DENSITY. THIS ADDITION WAS MADE BECAUSE THE NUMERICAL 2934 C 2835 C STABILITY OF THE MODEL REQUIRES A NON ZERO. POSITIVE VALUE OF THE PRESSURE DERIVATIVE OF 2836 C 2837 C THE DENSITY . 2838 C 2839 C ALSO A REQUIREMENT FOR THE NUMERICAL CONVERGENCE 2840 C IS THE DERIVATIVES OF PROPERTIES WITH RESPECT TO 2841 C TEMPERATURE AND PRESSURE BEING THE MATHEMATICAL 2842 C DERIVATIVES OF THE EXPRESSIONS FOR THE PROPERTIES 2843 C 2844 C 2845 TS = SAT(P)X1 = (RV2*P + RV1)*P + RV02846 2847 PROP(1,1) = X1 * TS/TV2848 PROP(1.2) = ((RL3*TL + RL2)*TL + RL1)*TL + RL0 + RLP*PPROP(1,3) = ((EV3*TV + EV2)*TV + EV1)*TV + EV0 - P/PROP(1,1)2849 2850 PROP(1,4) = ((EL3*TL + EL2)*TL + EL1)*TL + EL02851 C 2852 PROP(2.1) = -PROP(1.1)/TVPROP(2.2) = (RL33*TL + RL22)*TL + RL12853 PROP(2,3) = (EV33*TV + EV22)*TV + EV12854 2855 PROP(2,4) = (EL33*TL + EL22)*TL + EL12856 C

2857	PROP(3,1) =	(X1*DTSDP(P) + (RV22*P + RV1)*TS)/TV
2858	PROP(3,2) =	RLP
2859	PROP(3,3) ≠	(P/PROP(1,1)*PROP(3,1) - ONE)/PROP(1,1)
2860	PROP(3,4) =	ZERO
2861	RETURN	
2862	END	

.

,

.

٠

.

-

•

.

.

•

Subroutine noneg

2863 SUBROUTINE NONEQ(ALFAD, ALFA, TV, TL, P, RHOV, RHOL, TS, S, IFLAG) 2864 IMPLICIT REAL+8 (A-H,O-Z) 2885 COMMON /ERROR/ IERR 2866 COMMON /NUMBER/ ZERO, ONE, BIG, SMALL 2867 COMMON /PD/ D4,POD2 2868 DIMENSION S(5,2) 2869 DATA AN, RGAS /1.33333330+07, .14469D+03/.HALF /0.5D0/ 2870 DATA PI,SR3,CADRY,ADRY /3.141592654,3.464101616,0.043,0.957/ 2871 DATA H0.H1 /5.089D+06,-.1043D+04/ 2872 DATA RNU /6.D+03/ 2873 DATA HL0, HL1, HL2, HL3 /~6.75075D+04, 1.63014D+03, 2874 -.4167200,1.542720-04/ 2875 C 2876 C SUBROUTINE NONEQ CALCULATES THE MASS AND ENERGY EXCHANGE RATES 2877 C AND ITS DERIVATIVES. 2878 C AN = 4/3 + N, N = 1.00 + 07 BUBLES/CUBIC METER 2879 C RGAS = SQUARE ROOT OF GAS CONSTANT FOR SODIUM OVER 2*PI 2880 C POD2 = PITCH TO DIAMETER RATIO SQUARED 2881 C 2682 C S(1.) = EXCHANGE RATE S(.,1) = MASS2883 C S(2,) = D/DTVS(..2) = ENERGYS(3,) = D/DTL2884 C 2885 C S(4,) = D/DP2886 C S(5,) = D/DALFA2887 C 2888 AX = ALFADIF(ALFAO.LT.1.D-04) AX = 1.D-042889 2890 IF(ALFAO.GT.0.9999) AX = 0.99992891 C 2892 TS = SAT(P)2893 HLG = H1 * TS + H02894 X = ONE/(SR3*POD2 - PI)2895 C 2896 AM = 1.2D - 07 + PI + X + D4 + D42897 IF(ALFA0.GT.0.6) GO TO 10 2898 C 2899 $XX = 3. \neq PI \neq AX \neq X$ 2900 GO TO 20 2901 10 CONTINUE 2902 Y = ONE 2903 IF(AX.GT.ADRY) Y = (ONE - AX)/CADRY2904 XK = 1.8/(SR3*POD2*X - 0.6)2905 XX = (SR3 * POD2 * X - AX) * X * Y * PI * XK

.

 \sim

2906 20 CONTINUE 2907 A = DSQRT(XX) * D42908 C 2909 30 CONTINUE CE = A*RGAS*RHOV*RHOV 2910 2911 CC = CE*(ONE - AX)2912 CE = CE * AX2913 C 2914 EL = ZERO2915 CL = ZERO2916 IF(TL.GT.TS) EL = 1.0D02917 IF(TS.GT.TV) CL = 5.D-032918 C 2919 CE = CE*EL 2920 CC = CC*CL2921 C 2922 DDP = DTSDP(P)2923 SRTS = DSQRT(TS) 2924 DTL = (TL - TS)/SRTSDTV = (TS - TV)/SRTS2925 2926 C 2927 C MASS EXCHANGE RATE 2928 C 2929 SE = DTL + CE + (ONE - ALFA)2930 SC = DTV+CC+ALFA 2931 S(1,1) = SE - SC2932 C 2933 C DERIVATIVES 2934 C 2935 S(2,1) = CC + ALFA/SRTS2936 S(3,1) = CE*(ONE-ALFA)/SRTS2937 DSEVAP = CE*(ALFA-ONE)*(TS+TL)/TS/SRTS*HALF*DDP 2938 DSCOND = CC+ALFA*(TS+TV)/TS/SRTS*HALF*DDP 2939 S(4,1) = DSEVAP - DSCOND2940 S(5.1) = -CE + DTL - CC + DTV2941 C ENERGY EXCHANGE RATE 2942 C 2943 C U = A+CONDL(TV)+RNU+D4 2944 2945 HL = ((HL3*TS + HL2)*TS + HL1)*TS + HL02946 HV = HL + HLG2947 DHLDP = ((3.*HL3*TS + 2.*HL2)*TS + HL1)*DDP 2948 DHVDP = DHLDP + H1+DDP 2949 C 2950 S(1,2) = SE + HV - SC + HL + U + (TL - TV)

1

2951 C	
2952 C	DERIVATIVES
2953 C	
2954	S(2,2) = S(2,1) + HL - U
2955	S(3,2) = S(3,1) + HV + U
2956	S(4,2) = DSEVAP+HV + SE+DHVDP - DSCOND+HL - SC+DHLDP
2957	S(5,2) = -CE+DTL+HV - CC+DTV+HL
2958	RETURN
2959	END

.

.

.

Subroutine condt

2960	SUBROUTINE CONDT(TV,TL,P,ALFA,TS,TW,DTW,
2961	+ HCONV, HCONL, HNB, DV, Q, KO)
2962	IMPLICIT REAL+8 (A-H,O-Z)
2963	LOGICAL LSS
2964	COMMON /STST/ TAFP,LSS
2965	COMMON /ERROR/ IERR
2966	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
2967	DIMENSION Q(4,2)
2968 C	
296 9	Q(1,1) = (TW - TV) * HCONV * DV
2970	Q(1,2) = ((TW - TL)*HCONL + (TW - TS)*HNB)*DV
2971	Q(2,1) = (DTW + HCONV - 1) + HCONV + DV
297 2	Q(2,2) = ZERO
2973	Q(3,1) = ZERO
2974	Q(3,2) = ((HCONL + HNB) * OTW - 1) * HCONL * DV
2975	Q(4,1) = ZERO
2976	Q(4,2) = ((HCONL + HNB)*DTW - 1)*HNB*DV*DTSDP(P)
2977	RETURN
2978	END

-

z

.

•

.

Subroutine hexcan

2979		SUBROUTINE HEXCAN(TCAN,DTC,TV,TL,HCONV,HCONL,QV,QL,
2980		<pre>* DQDTV,DQDTL)</pre>
2981		IMPLICIT REAL+8 (A-H,O-Z)
2982		COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
2983		COMMON /HXCN/ ACOV
2984	С	
2985	С	SUBROUTINE HEXCAN CALCULATES THE HEAT TRANSFERED TO
2986	С	THE HEXCAN AND ITS DERIVATIVES.
2987	С	
2968		QV = ACOV + HCONV + (TV - TCAN)
2989		QL = ACOV+HCONL+(TL - TCAN)
2990		DQDTV = ACOV*HCONV*(ONE - DTC+HCONV)
2991		DQDTL = ACOV+HCONL+(ONE - DTC+HCONL)
2992		RETURN
2993		END

.

 $\widehat{}$

.

.

Subroutine fprop

.

2994	SUBROUTINE FPROP(TRN,NPIN,NPM1,I)
2995	IMPLICIT REAL*8 (A-H,O-Z)
2996	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
2997	COMMON /PIN1/ CPIN(20), ROCP(20)
2998	COMMON /ICONST/ NCF, NCC, NG
2999	DIMENSION TRN(NPIN)
3000 C	
3001 C	FUEL PROPERTIES
3002 C	
3003	DO 1 K = 1, NCF
3004	T = (TRN(K+1) + TRN(K))/2.00
3005	CALL FUEL (T,K,I)
3006	1 CONTINUE
3007 C	
3008 C	CLAD PROPERTIES
3009 C	
3010	DO 2 K = NCC, NPM1
3011	T = (TRN(K+1) + TRN(K))/2.00
3012	CALL CLAD (T,K)
3013	2 CONTINUE
3014 C	
3015 C	GAP CONDUCTIVITY
3016 C	
3017	T = (TRN(NG+1) + TRN(NG))/2.D0
3018	CALL GAP (T, TRN(NG), TRN(NG+1), NG)
3019	RETURN
3020	END

.

.

1

•

Subroutine fuel

.

.

3021		SUBROUTINE FUEL (T,K,I)
3022		IMPLICIT REAL+S (A-H,O-Z)
3023		COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
3024		COMMON /PIN1/ CPIN(20),ROCP(20)
3025		COMMON /FCONST/ A0,A1,A2,A3,
3026		* B0, B1, B2, AD, APU, LPLNM(40)
3027	С	
3028		T2 = T * T
3029		T3 = T * T2
3030		X = 2.74D0 - 5.8D-04*T
3031	С	
3032		CPIN(K) = (B0 + B1*T + B2*T2)*(ONE - (ONE - AD)*X)
3033		ROCP(K) = (A0 + A1*T + A2*T2 + A3*T3)*AD*(ONE + 0.045*APU)
3034		IF(LPLNM(I),EQ.0) ROCP(K) = 1,D+04
3035		RETURN
3036		END

· ·

 \sim

Subroutine clad

3037	SUBROUTINE CLAD (T,K)
3038	IMPLICIT REAL+8 (A-H,D-Z)
3039	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
3040	COMMON /PIN1/ CPIN(20), ROCP(20)
3041	COMMON /CCONST/ A0,A1,A2,A3,B0,B1,B2,B3
3042 C	
3043	T2 = T * T
3044	T3 = T + T2
3045 C	
3046	CPIN(K) = B0 + B1*T + B2*T2 + B3*T3
3047	ROCP(K) = A0 + A1*T + A2*T2 + A3+T3
3048	RETURN
3049	END

.

.

t

.

*

.

.

Subroutine gap

3050	SUBROUTINE GAP (T,TF,TC,NG)
3051	IMPLICIT REAL+8 (A-H,O-Z)
3052	COMMON /NUMBER/ ZERO,ONE,BIG,SMALL
3053	COMMON /PIN1/ CPIN(20),ROCP(20)
3054	COMMON /GCONST/ DIL, RADFU, RADCL
3055 C	
3056	DATA ESB.HMIN /1.7D-08.3.705D+03/
3057	DATA C1.C2 /2.D0.1.5D+01/
3058	DATA G1.G2.G3 /1.320-04.0.610-04.1.80+03/
3059 C	
3060 C	CONDUCTION HEAT TRANSFER
3061 C	
3062	DGAP = RADCL - RADFU
3063	CG = C2 * DIL * C1
3064	HG = ONE/((DGAP + G1)/CG + G2) + G3
3065 C	
3066 C	RADIATION HEAT TRANSFER
3067 C	
3068	HR = (TF + TC + TC) + (TF + TC) + FSR
3069	HGAP = HG + HR
3070	TE/HGAP IT HMIN) HGAP = HMIN
3071 C	I (I del : El l'alter / I del - I mille
3077 0	POCD(NG) = 7EDO
3072	COIN(NC) = UCAD
3073	OFTINING) = HUAP
30/4	
3075	END

Subroutine fpin

3076	SUBROUTINE FPIN(TV.TL.TS.TW,DTW.HCONV.HCDNL.HNB,
3077	* TR.DTR.DT.NPIN.NPM1.KO)
2079	TMOLICIT PEAL+P $(A=1, 0=2)$
3070	$\frac{1}{1000}$
3079	
3080	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
3081	COMMON /PINO/ RODR(20),VP(20),VM(20),RADR,PPP(20)
3082	COMMON /PIN1/ CPIN(20),ROCP(20)
3083	COMMON /STST/ TAFP.LSS
3084	DIMENSION A1(20) A2(20) A3(20) B1(20)
2005	DIMENSION TRANSIN ATP(NOIN)
3085	DIMENSION (R(RFIN), DIR (RFIN)
3086 0	
3087	CALL POWER(HEAT,KO)
3088 C	
3089	DTI = ONE/DT
3090	IF(LSS) DTI = ZERO
3091 C	
3093	A1(1) - 7500
2002	$A_2(t) = E_{0} O_{0} (t) + O_{0} O_{0} (t) + V_{0} (t) + O_{0} O_{0} (t) + O_{0} O_{0} (t)$
3093	$A_2(1) = RODR(1) + CFIR(1) + F(1) + ROCP(1) + DFI$
3094	BT(1) = VP(1) + RA1 + PPP(1) + VP(1) + ROCP(1) + TR(1) + DTI
3095	DO 1 K = 2, NPM1
3096	KM1 = K - 1
3097	A1(K) = -RODR(KM1) * CPIN(KM1)
3098	A2(K) = -A1(K) + RODR(K) * CPIN(K) + (VP(K) * ROCP(K) +
3099	+ $VM(K) * ROCP(KM1) * DTI$
3100	$B_1(K) = VD(K) + WEAT + DDD(K) + VM(K) - UEAT + DDD(KM1) + VD(K) + UEAT + DDD(KM1) + VD(K) + UEAT + DDD(KM1) + UEAT + UEAT + DDD(KM1) + UEAT + UEAT + UEAT + DDD(KM1) + UEAT + DDD(KM1) + UEAT + UEAT + DDD(KM1) + UEAT + DD(KM1) + UEAT + DD(K$
3100	D(K) = 0 (K) + D(C) + +
3101	$+ \left(\left(\left(\left(\left(\right) + \left(\left(\left(\left(\right) + \left($
3102	1 CONTINOE
3103 C	
3104	A1(NPIN) = -RODR(NPM1)*CPIN(NPM1)
3105	A2(NPIN) = -A1(NPIN) + VM(NFIN)*ROCP(NPM1)*DTI +
3106	+ RADR*(HCONV + HCONL + HNB)
3107	B1(NPIN) = VM(NPIN)*ROCP(NPM1)*TR(NPIN)*DTI +
3108	+ $RADR + (HCONV + TV + HCON1 + TI + HNB + TS) +$
3109	+ VM(NPIN) #HEAT *PPP(NPM1)
3110 0	
3110 6	14 (MDIN+1) - 7500
3111	AI(NPIN+I) = ZERU
3112 C	
3113	A2(1) = UNE/A2(1)
3114	A3(1) = A1(2) * A2(1)
3115	B1(1) = B1(1)*A2(1)
3116 C	
3117	DO 2 K = 2.NPIN
3119	

A2(K) = ONE/(A2(K) - A1(K)+A3(KM1)) A3(K) = A1(K+1)+A2(K)3119 3120 B1(K) = (B1(K) - A1(K) * B1(KM1)) * A2(K)2 CONTINUE 3121 3122 3123 C TW = B1(NPIN) DTW = A2(NPIN)*RADR 3124 . 3125 DO 3 K = 1,NPM1 3126 . TR(K) = B1(K)DTR(K) = A3(K) 3127 3128 •. 3129 3 CONTINUE RETURN 3130 3131 END

-

-

.

.

.

•

.

- -

.

.

•

.

.

--

Subroutine ftp

3132			SUBROUTINE FTP(TV,TL,TS,TW,HCONV,HCONL,HNB,TR,DTR,QPP,
3133			<pre>* NI,NJ,NN,NP,NTR,NPM1,NIM2,NPIN)</pre>
3134			IMPLICIT REAL+8 (A-H,O-Z)
3135			COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
3136			DIMENSION TR(NTR), DTR(NTR), TW(NP), TS(NN), TV(NN), TL(NN),
3137			<pre>+ HCONV(NP),HCONL(NP),HNB(NP),QPP(NN)</pre>
3138	C		
3139			TWMAX = ZERO
3140			TRMAX = ZERO
3141	С		
3142			DO 3 I = $1,NIM2$
3143			DO 3 J = 1, NJ
3144			KO = (J-1) * NI + I + 1
3145			KP = (J-1) * NIM2 + I
3146			KR = KP*NPIN
3147	C		
3148			$TR(KR) \approx TW(KP)$
3149	C		
3150			DO 1 KK = 1,NPM1
3151			KTR = KR - KK
3152	С		
3153			TR(KTR) = TR(KTR) - DTR(KTR) + TR(KTR+1)
3154			IF(TRMAX.GT.TR(KTR)) GO TO 1
3155			TRMAX = TR(KTR)
3156			KTRMAX = KTR
3157		1	CONTINUE
3158	С		
3159			IF(T-WMAX.GT.TW(KP)) GO TO 2
3160			TWMAX = TW(KP)
3161			KTWMAX ≠ KO
3162		2	CONTINUE
3163	C		
3164			QPP(KP) = HCONV(KP) + (TW(KP) - TV(KO)) + HCONL(KP) +
3165		1	<pre>* (TW(KP)-TL(KO)) + HNB(KP)*(TW(KP)-TS(KO))</pre>
3166		3	CONTINUE
3167			RETURN
3168			END

٠

,

1

٠

.

 \sim

٠
Subroutine thxcn

.

•

.

•

3169	SUBROUTINE THXCN(TV.TL.HCONV.HCONL.TCAN.DT.NN.NI.NJ.NCAN.
3170	* NIM1.NIM2)
3171	IMPLICIT REAL+8 (A-H.O-Z)
3172	LOGICAL LSS
3173	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
3174	COMMON /STST/ TAFP.LSS
3175	DIMENSION TV(NN), TL(NN), HCONV(NN), HCONV(NN), TCAN(NCAN)
3176 C	
3177 C	
3178 C	SUBROUTINE THICK PERFORMS THE FIRT CALCULATION OF THE
3179 C	HEXCAN TEMPERATURE.
3180 C	
3181	DIT = ONE/DI
3192	IF(ISS) DTI = 2FRG
3103 0	
3100 0	DO(10) T = 2 NIM1
2105	
3105	KD = (KJ-1) + KTM2 + T = 1
3180	$NF = \{NI = 1\} + NI = 1$
3107	$R \ge 4$ NI T I VO - VO - NT
3180	$\mathbf{N}_{\mathbf{J}} = \mathbf{N}_{\mathbf{J}} + \mathbf{N}_{\mathbf{J}}$
3189	K4 = K3 + NI
3190 6	TOAN (VO) - ONE (TOAN (VA)+DIT - HOONY (VO) - HOONY (VO)
3191	TCAN(K2) = UNE/(TCAN(K4)+DTI + HCUNV(KP) + HCUNL(KP))
3192	TCAN(I) = (ICAN(K4) * ICAN(K3) * DII + HCUNV(KP) * IV(KU) + ICAN(K1) * ICAN
3193	+ $HCUNE(RP) + IL(RU)) + ICAN(R2)$
3194	TO CONTINUE
3195	RETURN
3196	END

•

4

.

.

•

-

 \sim

Subroutine thxcn0

•

3197			SUBROUTINE THXCNO(TCAN,NCAN,NI)
3198			IMPLICIT REAL+8 (A-H,O-Z)
3199			DIMENSION TCAN(NCAN)
3200	C		
3201	С		SUBROUTINE THXCNO TRANSFERS THE NEW VALUE OF THE HEXCAN
3202	С		TEMPERATURE TO THE OLD HEXCAN TEMPERATURE ARRAY.
3203	С		
3204			TCAN(1) = TCAN(2)
3205			TCAN(NI) = TCAN(NI-1)
3206			DO t O I = 1, NI
3207			K3 = 2*NI + I
3208			TCAN(K3) = TCAN(I)
3209		10	CONTINUE
3210			RETURN
3211			END

.

.

-

Subroutine power

.

3212	SUBROUTINE POWER (HEAT,KO)
3213	IMPLICIT REAL+B (A-H,O-Z)
3214	LOGICAL LP
3215	COMMON /ERROR/ IERR
3216	COMMON /NUMBER/ ZERO, ONE, BIG, SMALL
3217	COMMON /PSHAPE/ SHAPE(100)
3218	COMMON /TEMPO/ TIME, DT, DTO, DTLS, NDT
3219	COMMON /BCOND/ TB(51), PNB1(51), PNB2(51), PNB3(51), OMP(51),
3220	* PNT1(51), PNT2(51), PNT3(51), OMT(51), ALB1(51).
3221	* ALB2(51), ALB3(51), OMA(51), TVB1(51), TVB2(51),
3222	* TVB3(51),OMV(51),TLB1(51),TLB2(51),TLB3(51),
3223	<pre>* OML(51),HNW1(51),HNW2(51),HNW3(51),OMH(51),</pre>
3224	* LMAX, LP(51)
3225 C	
3226 C	
3227	L = 2
3228	1 CONTINUE
3229	IF(TIME.LE.TB(L)) GO TO 2
3230	L = L + 1
3231	IF(L.GT.LMAX) RETURN
3232	GO TO 1
3233	2 CONTINUE
3234	DTIME = TIME - TB(L-1)
3235	HEAT = HNW1(L)+DTIME + HNW2(L)
3236	IF(LP(L)) GO TO 3
3237	HEAT = DCOS(OMH(L)+DTIME)+HEAT + HNW3(L)
3238	3 CONTINUE
3239	HEAT = SHAPE(KO) *HEAT
3240	RETURN
3241	END

 \sim

:

Subroutine gausie

•

3242			SUBROUTINE GAUSIE (A1,A2,A3,A4,F,X,BETA,GAMMA,NC)
3243			IMPLICIT REAL+8 (A-H.O-Z)
3244			COMMON /NUMBER/ ZERO.ONE.BIG.SMALL
3245			COMMON /GAUSS/ NZ.NR.NZM1
3246			COMMON /ERROR/ IERR
3247			COMMON (CNTRI/ EPS1. EPS2. RES 111 112 113. ITNI. ITM2 7 TRMAX
3248			DIMENSION ALLNC AZ(NC) AZ(NC) AA(NC) $E(NC)$ X(NC)
3240			= BETA(NC) GAMMA(NC)
3250	r		
3251	-		
3251		4	
3232	~	1	CONTINUE
3233			NEW COLUMNON AT THE COTTON
3254	C		NEW SULUTION AT THE BUILDN
3255	C		• •
3256			
3257			GAMMA(1) = F(1) - A3(1) * X(1+1)
3258			BETA(1) = ONE
3259	С		
3260			DO 2 J = 2, NR
3261			$K = (J-1) \times NZ + I$
3262			K1 = K - NZ
3263	С		
3264			BETA(J) = ONE - A1(K) * A4(K1) / BETA(J-1)
3265			GAMMA(J) = (F(K)-A3(K) * X(K+1) - A1(K) * GAMMA(J-1))/BETA(J)
3266		2	CONTINUE
3267	С		
3268			K = (NR-1) + NZ + I
3269			CONV = DABS(X(K) - GAMMA(NR))
3270			X(K) = GAMMA(NR)
3271			$DO_3 J = 2.NR$
3272			K = NR - 0 + 1
3273			KX = (K-1) + NZ + 1
3274			XA = GAMMA(K) - A4(KX) + X(KX+NZ)/RETA(K)
3275			DX = DABS(X(KX) - XA)
3276			IE(DX,GT,CONV) CONV = DX
2277			
2278		3	
2270	r	5	
3213	ř		NEW COLUTION OUT DE THE DOWNDADTER
3200	č		WEN SOFALION AND AL LUE DAANAWEES
3201	<u>ب</u>		DO 6 1 - 2 N7M1
3282	~		$D \cap O = Z^{(MLM)}$
3283	6		$CANN(A/A) = E/T = A \pi / T = A \pi / $
3284			QAMMA(1) = r(1) = AZ(1) = AZ(1) = A(1) = A

٠

.

.

 \sim

```
3285
           DO 4 J = 2, NR
3286
           K = (J-1) + NZ + I
           K1 = K - NZ
3297
3288 C
3289
           BETA(J) = ONE - A1(K) * A4(K1) / BETA(J-1)
3290
           GAMMA(J) = (F(K) - A2(K) + X(K-1) - A3(K) + X(K+1) -
3291
                       A1(K) * GAMMA(J-1)) / BETA(J)
         4 CONTINUE
3292
                                        .
3293 C
3294
           K = (NR-1) + NZ + I.
3295
           DX = DABS(X(K) - GAMMA(NR))
3296
           IF(DX.GT.CONV) CONV = DX
3297
           X(K) = GAMMA(NR)
3298 C
3299
           DO 5 J = 2.NR
3300
           K = NR - J + 1
3301
           KX = (K-1) + NZ + I
3302
           XA = GAMMA(K) - A4(KX) * X(KX+NZ)/BETA(K)
3303
           DX = DABS(X(KX) - XA)
3304
           IF(DX.GT.CONV) CONV = DX
3305
           X(KX) = XA
3306
         5 CONTINUE
3307
         6 CONTINUE
3308 C
3309 C
                NEW SOLUTION AT THE TOP
3310 C
3311
           I = NZ
3312
           GAMMA(1) = F(I) - A2(I) * X(I-1)
3313
           DO 7 J = 2.NR
           K = (J-1) * NZ + I
3?14
3315
           K1 = K - NZ
3316 C
3317
           BETA(J) = ONE - A1(K) * A4(K1) / BETA(J-1)
3318
           GAMMA(J) = (F(K) - A2(K) * X(K-1) - A1(K) * GAMMA(J-1))/
3319
                           BETA(J)
3320
         7 CONTINUE
3321 C
3322
           K = (NR-1) + NZ + I
3323
           DX = DABS(X(K) - GAMMA(NR))
3324
           IF(DX.GT.CONV) CONV = DX
3325
           X(K) = GAMMA(NR)
3326 C
3327
           DO 8 J = 2.NR
           K = NR - J + 1
3328
           KX = (K-1) + NZ + I
3329
```

*

۹

٨

•

.

.

•

Subroutine errmes

.

3349			SUBROUTINE ERRMES(TIME)
3350	С		
3351	С		SUBROUTINE ERRMES PRINTS THE ERROR MESSAGES
3352	С		WHENEVER THE EXECUTION OF THE PROGRAM HAS
3353	ċ		BEEN TERMINATED DUE TO NUMERICAL ERRORS SUCH
3354	č		AS INSTABLITY, VARIABLES OUT OF RANGE FTC.
2255	ř		
3355	č.		
3330	C		
3337			IMPLICIT KERLYO (ATH,UTZ) 20000000 / 1600
3330	~		CUMMUN /ERRUR/ IERR
3339	C		WRITE/C ((AA) TINC
3360			WRITE(0,1100) (IME
3361	C		
3352			IF(IERR = 2) 1,2,100
3363		100	IF(IERR - 4) 3,4,101
3364		101	IF(IERR = 22) 21, 22, 102
3365		102	IF(IERR - 24) 23, 24, 103
3366		103	IF(IERR - 26) 25, 26, 104
3367	-	104	IF(IERR - 28) 27,50,50
3368	С		
3369		1	WRITE(6,1001)
3370			GO TO 200
3371		2	WRITE(6,1002)
3372			GD TO 200
3373		3	WRITE(6,1003)
3374			GO TO 200
3375		4	WRITE(6,1004)
3376			GO TO 200
3377		21	WRITE(6,1021)
3378			GD TD 200
3379		22	WRITE(6,1022)
3380			GO TO 200
3381		23	WRITE(6,1023)
3382			GO TO 200
3383		24	WRITE(6,1024)
3384			GO TO 200
3385		25	WRITE(6,1025)
3386			GO TO 200
3387		26	WRITE(6,1026)
3388			GO TO 200
3389		27	WRITE(6,1027)
3390			GO TO 200
3391		50	WRITE(6,1050)

.

 \sim

3392 C 3393 200 CONTINUE 3394 WRITE(6,1101) 3395 1100 FORMAT(1H1,35(' +')//10X,'EXECUTION TERMINATED ON ERROR'. 3396 *' CONDITION AT TIME ', F10.4//) 1001 FORMAT(1X, 'THE PRESSURE MATRIX INVERSION DOES NOT CONVERGE'/ 3397 3398 1X, 'IN THE MAXIMUM NUMBER OF ITERATIONS ALLOWED'// * 1X, 'ERROR CONDITION NUMBER = 1'/) 3399 * 3400 1002 FORMAT(1X, 'THE PRESSURE MATRIX IS NOT DIAGONAL DOMINANT'// 3401 * 1X, 'ERROR CONDITION NUMBER = 2'/) 3402 1003 FORMAT(1X, 'THE VOID FRACTION TOOK A VALUE EITHER LOWER THAN'/ 3403 * 1X, 'ZERO OR GREATER THAN ONE'// 3404 * 1X, 'ERROR CONDITION NUMBER = 3'/) 1004 FORMAT(1X, 'THE INITIAL CONDITIONS INPUT DATA IS NOT IN THE'/ 3405 3406 * 1X, 'PROPER ORDER'// 3407 1X, 'ERROR CONDITION NUMBER = 4'/) 3408 1021 FORMAT(1X, 'THE TIME STEP SIZE TOOK A VALUE TOO SMALL'/ 3409 1X, 'ERROR CONDITION NUMBER = 21'/) * 1022 FORMAT(1X, 'THE PRESSURE TOOK A VALUE TOO SMALL'/ 3410 3411 * 1X, 'ERROR CONDITION NUMBER = 22'/) 1023 FORMAT(1X, 'THE PRESSURE TOOK A VALUE TOO HIGH'/ 3412 3413 * 1X, 'ERROR CONDITION NUMBER = 23'/) 1024 FORMAT(1X, 'THE VAPOR TEMPERATURE TOOK A VALUE TOO SMALL'/ 3414 3415 1X, 'ERROR CONDITION NUMBER = 24'/) × 1025 FORMAT(1X, 'THE VAPOR TEMPERATURE TOOK A VALUE TOO HIGH'/ 3416 3417 1X, 'ERROR CONDITION NUMBER = 25'/) * 1026 FORMAT(1X, 'THE LIQUID TEMPERATURE TOOK A VALUE TOD SMALL'/ 3418 3419 * 1X, 'ERROR CONDITION NUMBER = 26'/) 1027 FORMAT(1X, 'THE LIQUID TEMPERATURE TOOK & VALUE TOO HIGH'/ 3420 3421 * 1X. 'ERROR CONDITION NUMBER = 27'/) 3422 1050 FORMAT(1X, 'A QUIT SIGNAL WAS ISSUED BY THE TERMINAL OPERATOR'/ 3423 * 1X, 'ERROR CONDITION NUMBER = 50'/) 3424 1101 FORMAT(1X,35(' +')) 3425 RETURN 3426 END

Subroutine saver

.

.

-

-

 \sim

3427	SUBROUTINE SAVER(P,TV,TL,ALFA,UVZ,ULZ,UVR,ULR,TR,TCAN,
3428	<pre># TIME, NTR, NN, NCAN, NI)</pre>
3429	IMPLICIT REAL*8 (A-H,O~Z)
3430	LOGICAL LDATA
3431	DIMENSION P(NN), TV(NN), TL(NN), ALFA(NN), UVZ(NN), ULZ(NN),
3432	<pre>* UVR(NN),TCAN(NCAN),TR(NTR),ULR(NN)</pre>
3433	DIMENSION XOUT(5)
3434	LDATA = .FALSE.
3435	WRITE(7,103) LDATA,TIME
3436	DO 1 KO = 1, NN
3437	WRITE(7,100) K0.TV(K0),TL(K0),P(K0),ALFA(K0)
3438	WRITE $(7,100)$ KO, UVZ(KO), ULZ(KO), UVR(KO), ULR(KO)
3439	1 CONTINUE
3440	LDATA = .TRUE.
3441	KRES = 0
3442	2 CONTINUE
3443	DO 3 K = $1,5$
3444	KM = KRES + K
3445	IF(KM.GT.NTR) GO TO 4
3446	XOUT(K) = TR(KM)
3447	3 CONTINUE
3448	WRITE(7.101) LDATA. (XOUT(KL).KL=1.5)
3449	KRES = KRES + 5
3450	GO TO 2
3451	4 CONTINUE
3452	WRITE (7.101) LDATA.(XOUT(KL).KL=1.5)
3453	LDATA = .FALSE.
3454	WRITE(7.102) LDATA
3455	LDATA = .TRUE.
3456	KRES = 2 * NI
3457	K3 = 3*NI
3458	5 CONTINUE
3459	DQ 6 K = 1.5
3460	KM = KRES + K
3461	IF(KM.GT.K3) GO TO 7
3462	XOUT(K) = TCAN(KM)
3463	6 CONTINUE
3464	WRITE(7.101) LDATA.(XOUT(KL).KL=1.5)
3465	KRES = KRES + 5
3466	GO TO 5
3467	7 CONTINUE
3468	WRITE(7.101) LDATA. (XOUT(KL).KL=1.5)
3469	LDATA = .FALSE.

.

- - ----

.

. •

-

.

.

.

.

•

•

3470		WRITE(7,102) LDATA
3471	100	FORMAT(15,4015.9)
3472	101	FORMAT(L1,5D15.9)
3473	102	FORMAT(L1)
3474	103	FORMAT(L1,D15.9)
3475		RETURN
3476		END

.

 \sim