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Abstract r'...':.. 
i. * u " 

~l he two-dimensional steady-state distribution of lower hybrid waves is governed by the 
complex modified Korteweg-deVries equation, v + vttt * (lw|2z/)t = 0. where v is proportional to 
the electric field and £ and r are two spatial coordinates. The equation is studied numerically. 
Two types of solitary waves can arise. One is a constant phase pulse, whereas the other is an 
envelope solitary wave. These solitary waves are not solitons. The occurrence of the constant phase 
pulses points to the possibility of internal reflections due to scattering off ponderomotive density 
fluctuations. This necessitates solving the equation as a boundary value problem. With typical 
fields for lower hybrid heating of a tokamak, it is found that large reflections can occur close to the 
edge of the plasma. 
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I. INTRODUCTION 

In typical lower hybrid heating schemes, lower hybrid waves are launched at the wall of a 

tokamak by an array of waveguides, and must propagate into the center of the plasma in order to 

heat it. Because of the high fields required, nonlinear effects on the propagation are important. 

Th;* problem was first tackled by Morales and Lee1 who considered the two-dimensional 

steady-state propagation of one of the two lower hybrid rays in a homogeneous plasma. By 

considering the balance between thermal dispersion and the self-modulation due to the 

ponderomotive force they derived what has become to be known as the complex modified 

Korteweg-deVries (CMKDV) equation. 

This equation is not analytically soluble. In this paper we study the CMKDV equation 

numerically, and determine the consequences of our results for lower hybrid heating. 

The plan of this paper is as follows: Section II explains the origin of the CMKDV equation, 

and its relation to the modified Korteweg-deVries (MKDV) equation and other soluble equations. 

In Sec. Ill we present the known constants of the motion for the CMKDV equation. There are only 

a finite number of these indicating that it is not analytically soluble. We consider in Sec. IV the 

evolution of pulses numerically, and show that a pulse can break up into two types of solitary waves, 

constant phase pulses or envelope pulses. We examine the properties of these two types of solitary 

pulses in more detail in Sees. V and Vi and show how they are related to the solitons of the 

M K D V equation. In Sec. VII we examine the results of Sec IV in the light of Sees. V and VI and 

make some general remarks about the evolution of pulses. Because of the appearance of constant 

phase pulses, which indicates that nonlinear reflection is occurring, we consider the C M K D V 

equation as a boundary value problem (Sec. VIII), which we solve numerically. Section IX applies 

our results to the problem of lower hybrid heating of a tokamak. 

II. THE CMKDV EQUATION 

The two-dimensional steady-state propagation of a single lower hybrid ray in a homogeneous 

plasma is governed by 1 
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where subscripts denote differentiation and 

l' - <* - gz)M , (3) 

r ' - x/(2KxA), (4) 

and £ {x, z, t) = Re[£x(x, 2) exp(-»«/)], x and z are the coordinates perpendicular and parallel to 

the magnetic field, g - (-KJKn)i,z. The components of the cold plasma dielectric tensor are given 

as Kx - 1 + wL/n 2 . - »Jj/« 2 , K„ - I - w £ / » 2 where O, is the electron gyrofrequency and Wpj 

are the electron <j - #) and ion (7 •= »") plasma frequencies. The coefficient A is due to thermal 

dispersion and is given by A2 - SKz

DlU - %{wpeWe)Z + fapt1*1^ * C f / 7 ;K»^ /» ) 4 1 F°«" 

convenience we will introduce an additional scaling of the variables, 

»=•*»' . f - J T ' l ' , r = A - V . (5) 

Equation (1) is invariant under this scaling and so reads 

Vr + »{££ + (M 2!^ - 0 , <6) 

the complex modified Kortev/eg-deVries (CMKDV) equation. This transformation is useful, since 

we can pick. X in such a way that the representative scale length in £ is unity. Two other 

transformations which leave (6) invariant are 

u-»y*, u-» »expu'0o) , (7) 

where $0 is a constant. 

The physical meaning of the terms in (6) are as follows: If only the first term were present 

the solution would be v(r, f) = «({•)• This describes the propagation of the lower hybrid waves along 

the right-going ray (x =' gz), and is an accurate description in the linear long-wavelength limit (1/ -» 

0, d/d£ -» 0). The second term causes the lower hybrid waves to disperse due to thermal effects. 

The third term causes self-modulation and arises because the plasma density is reduced in the 
region of finite v by an amount proportional to the square of the electric field, and so the propagation 

characteristics of the waves are altered. 
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We note that (6) describes the nonlinear evolution of plasma waves in other frequency 
ranges.2 More generally the CMKDV equation describes the steady-state [time dependence ~ 
expHuOl two-dimensional (x and z) propagation of electrostatic waves in a homogeneous anisotropic 
medium which is invariant to the transformation, x •* -x, z -* -z, and whose dielectric tensor 
depends on the square of the electric field. The medium must be non-dissipative and must support 
propagating electrostatic waves. The relative signs of the nonlinear and dispersive terms in (6) may 
differ, which would lead to important differences in the solution. 

Equation (6) is closely related to the modified Korteweg-deVries (MKDV) equation 

vT + »ttt • K M 2 ^ " ° . • W 

where « is a positive constant. The importance of this equation lies in the fact that it is soluble by 
the inverse scattering method 3 , 1 (see Appendix). The solution generally consists of several solitons 
together with some radiation. As r -* •», the radiation decays due to the action of the dispersive 
term in (6), leaving just the solitons. The distinguishing property of the solitons is that apart from a 
shift in their position and phase they are unaltered by collisions with other solitons or with the 
radiation. To see the relation between (6) and (8) we write (6) in two other ways, 

»T + vg£ + 3J»|^ - 2<MSi>0£ , (9) 

where 6 - arg(t(), and 

°T * "8$ * ^\ " ~vb>\ • < l 0 > 

Thus in two limits the CMKDV equation reduces to the MKDV equation: Firstly if the phase 
variation of v is small, i.e. 0» «(log|»|)t, then the right hand side of (9) may be neglected, giving (8) 
with it - 3. On the other hand if the phase variation of v is large, i.e. &* » (log|»|)t, then the right 
hand side of (10) may be neglected giving (8) with * - I. Note that the relative strengths of the 
nonlinear terms are different in these two limits. 

These two limits have been recognized by others. Morales and Lee l considered the case when 
v is real (a special case of slow phase variation} in which case (6) becomes the real modified 
Korteweg-deVries (RMKDV) equation. However the definition of v shows that it is generally 
complex. Furthermore it may be shown5 that the case where v is purely real is inapplicable to the 
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problem of excitation of lower hybrid rays from a source. This may be understood from the 

following considerations. The energy density of lower hybrid waves is proportional to | £ x ( * r ) l . and 

the group velocity of the right-going ray is proportional to Mkt. Therefore the power flow of a 

spectral component of the wave is proportional to |w(A)|2/ft, where k is the Fourier-transform variable 

conjugate with £. If v is purely real, there will be no net power flow, because \>Kk)\ - M-W1- W we 

impose the condition that all the spectral components of » carry power into the plasma at r - 0, then 

we require that a(0, ft < 0) « 0, or5 

«KCJ)- F-W)F«c>;c .« ;c . f c } 

where F is the Fourier-transform operator and u is the unit step function. 

The limit of rapid phase variation was treated by Newell and Kaup.6 Making the following 

changes of variables, v{r, £) - V6a(i), f)exp[£(fe0£ + ftjjr)], f - £ + ik\r, i) - 3ft0T, in (6) they 

obtained 

u n + iu^ + 2i\u\2u + «fff/(3ft0) + 2( |u | 2 «yt 0 - 0 . (12) 

In the limit of \uju\ « k^, (12) reduces to the nonlinear Schrodinger (NLS) equation, 

u_ + iu~» + 2t|u|2u = 0 , (13) 

which, like the MKDV equation, is soluble by the inverse scattering method and has envelope 

solitons. Making the same transformation on the MKDV equation gives the Hirota equation' which 

also reduces to the NLS equation in the limit of large k0. 

III. CONSTANTS OF THE MOTION 

The conserved quantities for a nonlinear evolution equation are closely related to the existence 
of an inverse scattering transform for the equation. In particular, all the equations soluble by the 
inverse scattering method (e.g. the MKDV equation) have an infinite number of conserved 
quantities. For the CMKDV equation we have only been able to find four-constants of the motion, 
indicating that the equation is not soluble by inverse scattering. 
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In writing down these constants of the motion we assume that v and all its derivatives 
converge to 0 sufficiently rapidly as |(-| -• » that all the integrals we give here are convergent. 

The simplest of the constants of motion is 

ll'!Z.vW,i)dl- const. <14) 

This is constant since the second two terms in the CMKDV equation are a perfect derivative. The 
physical interpretation of (14) is that the electric field is derivable from a potential (which is the case 
since the waves are electrostatic). The constant is then proportional to the potential difference 
between £ « -=» and £ - «. 

Other constants of the motion may be derived from the Lagrangian density for the CMKDV 
equation. By a straightforward generalization of the Lagrangian density for the RMK.DV 
equation we obtain 

^ - 2^l^ir + *l£*lr + tfffitf * ̂ l ^ f + ^1^2f + ^2*2 • ^ , 5* 

where 4>i = 4>* and v = 4>(t. The conserved densities are then -D - 0 { »dL/£$ , r - \vfi and H - L 
- 4>iTdLld<l>iT » jjrlwl4 + i / W + vvtt + |ytl2. Thus we have 

' 8 - . f J L i K i - . 8 M - c o n s t , (16) 

and 

1$ * /JL 5 Mr, ©f* " *$*• &? # ' c o n s t - • <' 1) 

where, in deriving (17), we have integrated the middle terms in H by parts. The physical meaning 
of (16) is that the forces on the plasma at r - r, equal those at r - r,, where the forces are given 
by integrating the Maxwell stress tensor, which is proportional to the square of the electric field. 
From (16) and (17) we can derive "Newton's first law" for the CMKDV equation, i.e. df/tfr • 
| / 3 / / 2 = const., where the center of gravity, £, is defined by 

-y /JLc>i 2# 

The fourth and last constant of the motion we have found is a statement of the conservation 
of physical power flow, i.e. the power entering at r - ri equals that leaving at r - r 2 , or 

http://'8-.fJLiKi-.8M-
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/ 4 = / ^ Kr . ktffk dk - const. (I9> 

[Recall that the power flow is proportional to |»(*)|2/A.] In (19) the principle part may be taken if 
the integrand is divergent at ft - 0. In real space (19) can be written as 

where v = qt- Equation (20) is true for any equation of the form 

qr * qg£ + Mq)\\ - 0 , (21) 

where C is any operator. For the CMKDV equation we have G(q) - ?g - v, while for the MKDV 
equation we have C(q) - q - v. Note that (20) is convergent if qt -» 0 as |{| -» «. We do not require 
that ? -» 0. Thus (20) holds for the CMKDV equation even if /, * 0. 

In a periodic system, such as is used for the numerical integration, we may replace the 
definition of /, 2 3 by integrals over one period. The definition of I4 becomes a sum over Fourier 
modes. However A, is only conserved if q (the integral of v) is also periodic, which implies that / , -
0. (This means there will be no ft = 0 contribution to the Fourier sum.) 

IV. NUMERICAL RESULTS 

In order to understand the behavior of the CMKDV equation we examine the solutions 
numerically for initial conditions, 

!*r «0 , ( ) = ^sech(?)exp(iftof). (22) 

(Recall that r , although treated as a time-like coordinate is really a spatial coordinate. Thus Che 
"initial" conditions are in fact the boundary conditions at some constant x surface in the plasma.) 
Taking the width of the envelope in (22) to be unity is not a restriction since we can use (5) to 
extend our results to cover any width of the initial envelope. 

The numerical integration is carried out in Fourier space. The representation in real space is 
used only for computing the nonlinear term in the CMKDV equation and for displaying the results. 
The parameters used in t'.e numerical integration which are shown in the figure captions are: n, the 
number of grid points in {•; br the stepsize in T; L, the length of the system in {(periodic boundary 
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conditions are used). Only the n/2 lowest Fourier modes are retained in order to prevent aliasing 

when computing the nonlinear term. 

To gauge the accuracy of the integration, we check how well the constants of motion are 

conserved. / . is automatically conserved by the numerical scheme. / 4 is not conserved for these 

initial conditions since the system is periodic in £ and Jt 4 0. So we give just &z and 6y where c»2 -

| / 2 < T > - / 0<0){// 2(0) and * 3 - | / 3 <T) - /3<0)|/?3<0) where the definition of ? 3 is the same as that of / 3 

(11) except that it has a plus sign instead of a minus sign. 

Figure 1 shows the evolution for A » 3, * 0 - I. The bulk of the energy ends up in two 
constant phase solitary pulses which travel to the right. (Note that the real and imaginary parts of v 
are proportional to one another.) These constant phase pulses have also been found by Kuehl. 

In Fig. 2 we show the evolution for A - 5, * 0 - 3. In this case most.of the energy ends up in 
two er-elope solitary pulses, the taller one having a small positive velocity and the shorter one a 
negative velocity. In the next sections we will examine the behavior of these two types of solitary 
pulses in greater detail. 

V. CONSTANT PHASE PULSES 

Since for the constant phase pulses $t is 0, (9) reduces to the MKDV equation with K » 3. 
For this equation the solitary pulses are solitons, whose general form is given by (A 13). O f these the 
class for which 6* <= 0 is exact are those with k = 0 so that the general form of the constant phase 
pulses is 

v = V2osech[a({ - J 0 - « 2T)]exp(«0 o). (23) 

These constant phase pulses do not behave as solitons in the CMKDV equation. The reason for this 
is that if we collide two such pulses with different values of the phase, 0 O , then 6V will be nonzero 
during the collision. Figure 3 shows the results of such a collision. After the collision the phases of 
the pulses have changed, their heights have changed and some radiation is produced. ("Radiation" 
is used in the sense of inverse scattering theory to mean that part of the solution which is not 
associated with the solitary waves.) For comparison we have also shown the same collision in the 
M K D V equation (with K » 3); here the pulses (solitons in this case) have passed through one 
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another with no change in their height or phase. 

The collision in the CMKDV equation results in the phases of the pulses being approximately 

interchanged. This is shown in more detail in Fig. 4, where we have plotted the final phases of the 

pulses as a function of the initial difference in phases, A0. The ratio of initial heights is 2, the same 

as in Fig. 3. The approximate phase interchange occurs for collisions with A0 £ |TT. 

We also measured the velocities of the pulses after collisons as a function of the initial phase 

difference, A0, and again with the initial ratio of height being 2 (initial ratio of velocities - 4). We 

find the faster (i.e. taller) pulse always speeds up, while the slower one slows down. The sum of the 

final velocities is approximately the same as the sum of the initial velocities (to within 5%). No 

change in the velocities occurs for A0 = 0 and v (as expected since the CMKDV equation reduces 

to the MKDV equation in these cases). The maximum change in the velocities occurs for Aft -

0.87T, for which the fast pulse speeds up by 18%, while the slow pulse becomes lost in the radiation 

(this is due to the fact that we integrate the equation with periodic boundary conditions so the 

radiation never dies away). For A0 < £ir, the changes in the velocities are small, less than It of the 

initial velocity of the faster pulse. 

VI. ENVELOPE PULSES 

In this section we examine the envelope pulses observed in Fig. 2 in more detail. We let the 
pulses have the form, 

rtr,{) = P(r)exp&'(ft0t-w0T)]. (24) 

where f « £ - cr and kQ, w0 and c are real, but V is complex. This form allows a phase variation 
with phase velocity, w0/fc0, different from c, but requires that any local features in the phase of v 
travel at the pulse velocity, c. 

Since, by assumption, V forms a pulse, we have '/(|f| -»»)-» 0. In this limit the nonlinear 
term in the CMKDV equation may be neglected. Supposing that P(f -» -») ~ exp(af), where a is 
real and positive, we find that P(f -> «) ~ exp(-of). The frequency and velocity of the pulse may 
then be found in terms of k0 and a, 
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« o - V 3 o 2 - * o > . < : - « l 2 - 3 * o - ( 2 5 ) 

Substituting (24) into the CMKDV equation then gives 

(V^ * \VfV - aV) f + ik0i.Wtf * |P|V - 1a%V) - 0 . (26) 

Two limits of this equation are easily treated. If * 0 = 0 then V - V§o sech(af). This gives 

the constant phase pulse (23) we studied in Sec. V. If k0 -> «, then V « -J&a sech(af) or 

v = V6 o sech{a[£ - (a 2 - 3* 2 )T]} exp{iU0f * ft0(3a2 - **, )r1). (27) 

[In both these cases we have omitted a possible shift of the { origin and a phase factor exp(*0o).] 
Equation (27) is identical to the soliton solution for the MKDV equation (A13). If we compare (27) 
with the soliton of the NLS equation (13), u •= o sech(of) exp(-ja2t)) or undoing the transformation 
that gave (12) 

9 - ^ « sechloK + 3ft2r)J exp{i[fe0£ - * 0 (3a 2 - ft2)r]} , (28) 

we see that there is a difference of e in the pulse velocities. 

Away from the limits AQ *> 0 and kQ -» w, we can perform perturbation analyses on (26). For 
small AQ we may attempt to develop a series expansion for V in k^. Without loss of generality we 
take a = 1 [this may be achieved by use of the scaling invariance of the CMKDV equation (5)1 
Expanding V as f 0 + Vx • . . . , with Vn - iX*J) and V^ - -Ji sech(f), we find 

Vm * l^lV, - K, - 4^ik0 fisech3(f) rff - C(f). (29) 

Now C(<») - C(-«) = 2>/27rife0, so that either C(») or C(-») or both are nonzero (for k„ j« 0). 
Supposing C(«) to be nonzero and assuming Vl •• 0 as £ -» «, we may write C, f.. - ^ - C(») for f 
sufficiently large. But this gives f, -» -C(») as f -»«. Thus Vi must be nonzero at either ±», and 
so V cannot form a pulse for small (but finite) ftp. 

For large A0 we develop an asymptotic series for V in e » «/An. Although (26) is an irregular 
perturbation problem (for e -» 0), we are only interested in the regular solutions which are close to 
the solution for e - 0. Thus we write (26) as 

(Wn • V$V - 3fl2»0n - to-'WU + Vfv - a 2 IO f ] n . , . (30) 
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where subscripts n and n - 1 denote the orders of the terms, and V - V0 + V^ + Vz + .. ., with Vn -
0(e n) and V0 = J6a sech(of). We then find that 

V = Vga seth(af){l + ietanhfof) + ^[tanhfy]') - 1 ] + iO(t?) + 0(e 4)}. (31) 

From this we obtain 

|f| = Vga sech(af){l + £e2[5tanh2(«f) - I] + Ok*)}, 

arguO - etanh(af) + 0(c 3), 

and 

C M <T - ^Sir[l + i 6

2 + 0(e4)]. (34) 

For finite kQ we resort to numerically integrating (26). For 0 < |fe0/a| * 0.5 no pulse is 
formed. For other values of kD a pulse is obtained. Fig. 5 shows the result for ft0/a •> 0.5 and 2. 
For k0la = 0.5, the pulse does not come back down to zero very well. Nevertheless we have 
integrated the CMKDV equation with this pulse (cutoff at its minimum) as an initial condition and 
we find that it is indeed stationary for a long time (at least till a\ ** 50). If a puise is formed ther 
from the symmetries of (26) it has the property, P(-f) * K*(f) [with appropriate choice of origin and 
on multiplication by an appropriate constant, exp(£0Q)l Also shown in Fig. 5(c and- d) is the 
asymptotic pulse shape for e = | as ~iven by (32) and (33). The agreement between this and the 
pulse obtained numerically is quite good. In Fig. 6 we plot the pulse area, SZ, \V\d)[, comparing the 
analytical (34) and numerical results. Again the agreement is quite good for k0la & 2. Note that 
the area for small k0 is considerably larger than the area for the constant phase pulses (ft0 - 0). 

VII. EVOLUTION OF A PULSE 

We are now in a position to have some analytic understanding of the evolution of a pulse of 
the form considered in Sec. IV (22). There are two properties of the CMKDV equation that 
distinguish it from the MKDV equation. Firstly as we saw in Sec. II the relative strength of the 
nonlinear term is different in the limits of slow and rapid phase variation. Thus the solitary waves 
in these two limits have different areas. The oti.er distinguishing property is that, unlike the 
MKDV equation, there is not a continuous transition between the constant phase pulses and the 

(32) 

(33) 
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envelope pulses. (In the MKDV equation the limit A0 -* 0 gives the constant phase pulses.) Thus it 

is of interest to determine how the CMKDV equation does make the transition from one type of 

pulse to the other. 

Let us begin by considering the limit where fc„ is large, but A is finite. In this limit the 

equation approximately reduces to the MKDV equation (with K » 1>, and so the solution is given by 

the inverse scattering method (see Appendix). The initial pulse breaks up into N solitons where 

AI^G = N * e, -^ < e < | . In the appendix we identify the two "time" scales on which the pulse 

evolves, a self-focussing time scale, rs, the time required for the relative phases of two solitons to 

change by ir and a fomentation time scale, rf, the time for two solitons to pass through each other. 

(Again remember that r, although treated like time, is in fact a spatial coordinate.) Using (A37) 

and (A38) we obtain rs «= |ir/(fe 0/4 2) « iy = iJ&A~3. The approximation of the C M K D V 

equation by the NLS equation only describes phenomena on the former (very short) time scale [in 

(13) i) = 3fe 0 r], and so does not predict filamentation for these initial conditions [see (27) and (28)1 

Suppose we keep kQ large but allow A to be comparable to kQ. Since the initial pulse has a 

smooth envelope variation, its early evolution is described by the MKDV equation. The tallest 

soliton present in the initial pulse has an inverse width aN * 2AI-</& (for A » 1). Thus the most 

rapid variation of the envelope will be over a distance of aj^. However, since A is 0(fc o ), aN is 

O(fe 0) and the assumption that the envelope of v is slowly varying compared with the phase is false 

at some later time, when the tallest soliton emerges. We expect the MKDV solitons to turn into the 

envelope pulses with finite alk^ that were studied in the previous section. Taking a for the envelope 

pulses to be the same as the inverse widths a, given by the inverse scattering method, we see that 

when A £. v§fc 0 the tallest envelope pulse would have k0(a < 0.5. However we saw in Sec. VI that 

there are no envelope pulses in this range of k0la. Furthermore the envelope pulse with k^la - 0.5 

has an envelope area which is more than twice the area of a constant phase pulse (see Fig. 6). This 

suggests that, if A is increased, the tallest envelope pulse should break up into two or three constant 

phase pulses. In Fig. 7 we see this happening. Recall that for A = 5, k0 - 3 we obtained two 

envelope pulses (Fig. 2). Here (Fig. 7) A has been increased by 1 to 6. Now the tallest of the 

envelope pulses breaks up into three constant phase pulses. From this we determine that a more 

accurate condition for the appearance of constant phase pulses is A A 2 * 0 . Put another way, the 

break-up into constant phase pulses occur; when the equation sees sufficent area over a distance 

where the phase is roughly constant. 
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With A sufficiently large only constant phase pulses appear. We studied the interaction of 
these pulses in Sec. V. If A » * 0 the phases of neighboring pulses are close together. Thus the 
initial evolution is governed by the MKDV equation with * » 9. The effect of the finite 6V in (9) is 
to cause the phases «f the pulses to be interchanged on collision (see Fig. 4). This ensures that only 
smali angle collisions take place subsequently, and the overall features of the solution are 
approximately given by the MKDV equation. In particular the time scale for fiiamentation is given 
by T, « >/2d~3. Self-focussing does not take place with constant phase pulses. 

Figure 8 shows schematically how the initial conditions (22) break up into solitary pulses. For 
k0 small there are N constant phase pulses where N - £ < Al^2 < N + £. For kQ large there are 
N envelope pulses where N - j < Af-^G < N + j . The transition from having all envelope pulses to 
all constant phase pulses occurs in a wedge shaped region as shown. For the MKDV equation this 
figure would just consist of horizontal lines at 4(«/6)" 2 « N - £. 

We expect Fig. 8 to qualitatively apply to more general initial conditions. If the initial 
conditions are the product of an envelope, \v\, which has a single maximum, and a phase factor with 
an approximately linearly increasing phase, then A, the vertical axis in Fig. 8, would be regarded as 
some measure of the area of \v\, whereas h0, the horizontal axis, would give a measure of the 
number of wavelengths over the width of \v\. 

As an example consider the excitation of lower hybrid waves by an array of M waveguides 
phased 0, ir.O.ir,... Take the total width of the array to be AJj and the normalized field to be a 
constant, v0. Then ft0 corresponds to Af and A corresponds to v0 A£/jr. We obtain constant phase 
pulses if (A *. | v ^ ) 

» 0 A { a ^ r - , (35) 

and {A * 2 * 0 ) 

v0*tIMi2ir. (36) 

If this last condition is not met we obtain envelope pulses if {A it &-/S) 

" O ^ H * - <37) 

To estimate the time scales of the evolution of this initial condition we use (A37) and (AM) with 8 
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- v0/Jz for constant phase pukes and » 0 / v 6 for envelope pulses and with * 0 - wMl^t Thus the 

filamentation time for constant phase pulses is 

Tj.Jtof. (38) 

The filamentation time for envelope pulses is greater Sy a factor of 3 s ' 2 , while the self-modulation 

time for these pulses is 

r . - f A M M B 2 , ) . (39) 

VIII. THE BOUNDARY VALUE PROBLEM 

Up till now we have been regarding r as a time-like coordinate, and we have been solving 

the CMKDV equation as an initial value problem [with «(T - 0, g) imposed! However r is in fact 

a spatial coordinate, proportional to *, the distance into the plasma. Thus we should really solve the 

CMKDV equation as a boundary value problem in a slab 0 < r < r,. The boundary value 

problem would be equivalent to the initial value problem if we could be sure that all the components 

of v travel in the +r direction. Let us examine this possibility. The direction of propagation of a 

wave may be defined in terms of its power flow which in this case is \u(k)plk. Thus only the 

positive ft components travel in the *r direction and so the initial value problem is physically correct 

only if there are no negative k components to v. However if we begin at T - 0 with no negative k 

components [i.e. with v satisfying (II)], the equation, being nonlinear, will generate negative k 

components at finite r. This is easy to see in the case where the initial amplitude is large enough to 

give constant phase pulses (see Fig. 8), since these pulses have equal positive and negative power 

flows. Therefore when treating the physical problem we should solve the CMKDV equation as a 

boundary value problem. To be more precise we should only impose the incident wave at T - 0, v(r 

- 0, k > 0). At the far boundary of the plasma, r - Tj, we specify a radiation condition that there is 

no reflected wave, v(rv k < 0) « 0. We shall try to find the transmitted wave at r,, sfrr,. k > 0) 

and the reflected wave at T - 0, »(0, k < 0). (Even if there were a metallic boundary at T - T , we 

would still impose a radiation condition. The reflection caused by a metal wall converts the wave to 

the other resonance cone, while the CMKDV equation describes the waves in a single resonance cone 

only. The reflection caused by the nonlinearity causes both kx and kf to change signs so that the 

reflected wave is still in the original resonance cone.) 
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We do not know whether this boundary value problem is well posed. However we have 

attempted its numerical solution. We define the positive and negative power flows, 

PJri-jfWr.kyPlkOt. (40) 

We first pick v{r » 0, fe < 0) (we will describe how in a moment) and soma small convergence 

parameter, e. An iteration is then performed with the following steps: impose v(Q. ft > 0); integrate 

the equation to T - T,; if P_(T,) < E / ^ T J ) , stop the iteration; set iKr,, fe < 0) • 0; integrate the 

CMKDV equation backwards to T » 0; go to the beginning of the iteration. We perform this 

procedure beginning at rj •» 0 with v{0, fe < 0) - 0, and increasing rl by oV after the convergence 

criterion is met. We use V(T - 0, fe < 0) for T, - T, - 6r as the initial guess for v(r - 0, ft < 0) for 

T , - T,. 

When solving the boundary value problem in this way, we choose 

iKr - 0, fe > 0) - Ait u(fe - fe0K* - A„)exp[-(fe - A 0 ) 2 /4) , (41) 

where ft0 z 0. In real space we have 

*T " °- f \ > o =Al' * * z < *»exp(i fe o C ) , (42) 

where Z is the plasma dispersion function. [Z is defined, for real (, by (11) where tw(£) -
2-^irieKp(-^).] We define the reflectivity, R, by 

R - P_<0)//>+(0) . ( « > 

Figure 9 shows ft as a function of the system width, r,, for various A and ft-. The largest 
reflectivity occurs when solving the CMKDV equation as an initial value problem would have 
given constant phase pulses (A = 3, 4 and A 0 = 0). The values of T, at which the reflection first 
becomes appreciable in these two cases are given by the fitamentation time (38). The oscillations in 
R for A • 4 and feQ « 1 suggest the presence of some sort of interference. 

The crosses in the plots for A • 4 and fe0 • 0, 1 show where our numerical procedure ceased 
to converge. There are two possible explanations for this. Firstly it may be that an answer exists 
but that the numerical procedure does not find it. The second possibility is that there is no answer, 
i.e. the CMKDV equation as a boundary value problem is ill-posed. In this case the most likely 
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explanation is that the steady-state assumption, under which the CMKDV equation was derived, is 

false. In other words, even though the source at r - 0 is at a constant frequency and is on for an 

infinitely long time the field in the plasma never reaches a steady state. 

IX. DISCUSSION 

We pursue the example introduced in Sec. VII, but now we give the results in more 
convenient terms in order to apply them to iower hybrid heating. At whatever position in the 

plasma we take to be the x origin we impose 

Ex{x = 0, z) - Ex0 exp(iTrzl6z)u{z + £Az)u(-z + £Az) , (44) 

where Az - M 5z. This models the excitation by M alternately phased waveguides each with width 

6z, the total width of the array being Az. For simplicity we take T( « T(, w? ( « ft^. We then 

have f = (x - gz)l(,Ji\De), T = xKzJ$KDe), v = £j/(4n 0 7;/e 0 )" 2 . We define the following 

quantities: Ax » g-Az, the width of the lower hybrid ray in the x direction; E^ - gEx0, the 

parallel electric field at x = 0; a = Ez06zlTt, the ratio of the potential across a single waveguide to 

the electron temperature; 0 « !e 0£^ 0/tyj7"), the ratio of the electric to plasma energy densities. 

The conditions under which constant phase pulses are predicted for the inital value problem are, 

from (35) and (36), 

Ma X, V§JT , a k 4V^»r. (45) 

The condition for envelope pulses is (37) 

Ma z 3%/2ir. (46) 

The filamentation scale distance for constant phase pulses is [see (38)] 

xf * 4^6(r </£ ) c 0)j3- 1 • (47) 

The self-focussing distance for envelope pulses is [see (39)] 

xs * |Ax/(Af/5). (48) 

We showed in Sec. VIII that it is incorrect to solve the problem as an initial value problem. 
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However the result of the inital value problem will only differ greatly from those of the correct 

boundary value problem if the reflection is appreciable. For this to be so we need that the constant 

phase pulses be predicted by the initial value problem (45) and that the thickness of the plasma, x ( l 

exceed the filamentation distance, x, (47). 

We illustrate these results with two examples. Take n 0 - 10 1 3 cm"3, Tt - 1 keV, ExQ - 10 

kV/cm, 6z •> 2.5 cm, M - 4, g - ^ . This is representative of the central plasma conditions and 

fields for lower hybrid heating in present-day tokamaks. We then have Az = 10 cm, Ax - 2.5 mm, 

Ez0 = 250 V/cm, a - 0.625, Ma - 2.5, 0 - 1.4 x I0"3. Thus pulses of neither sort are formed. 

The ponderomotive force does not have a strong effect on the propagation. 

As a second example consider n 0 - 5 x 10 1 1 cm"3. Tt - 25 eV, Ex0 - 4 kV/cm, bz - 2.5 

cm, M - 4, g = J|J. This could represent the plasma conditions close to the edge of a present-day 

tokamak or conditions encountered in a smaller laboratory-scale experiment. In this case we have 

Az = 10 cm. Ax » 1 cm, Ez0 - 400 V/cm, a - 40, Ma * 160, 0 - 0.18. Now the conditions for 

constant phase pulses, (45), are satisfied, and that x. = 4 mm. If we are considering the propagation 

of lower hybrid waves through the inhomogeneous outer region of the plasma then, provided the 

gradient scale length exceeds x,, we expect strong nonlinear reflection to occur. 

Let us review the assumptions made in deriving the CMKDV equation, and see how they 

effect this conclusion. The first of the assumptions is that the plasma is homogeneous. However, the 

region of interest in a tokamak is close to the edge where the plasma is inhomogeneous. A simple 

estimate of the validity of the assumption of homogeneity is that the gradient scale length exceeds 

the filamentation length (which is also one of the conditions for reflections to be important). Analytic 

studies of the nonlinear propagation of lower hybrid waves in an inhomogeneous plasma as described 

by the NLS equation (witli an additional term describing :he in homogeneity) have been carried out 

by Leclert et al.9 They find an increase in the soliton threshold from the homogeneous result. 

Numerical work has been carried out on the CMKDV equation with inhomogeneity by Sanuki and 

Ogino. However, they do not recognise the phenomenon of nonlinear reflection. More work on 

this aspect of the problem is required. 

The second assumption is that the system is two-dimensional. The addition of a third 

dimension to the NLS equation describing lower hybrid wave propagation rendered the solitons 

unstable. 1 1 , 1 2 Inclusion of the third dimension, y, to lowest order in the CMKDV equation gives 
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the complex modified Kadomstev-Petviashvili equation, 

where «j = , \"V and r,' = >7(#{'2«) Id. J2) - (5)1 however -vs do not expect the third dimension 

to be important in our case since the interaction length in x, *y, is so much smaller than the typical y 

dimension (~ 10 cm). 

The final assumption is that the system is in steady state. We suggested that perhaps this 

assumption is false for the CMKDV equation as a boundary value problem. However nonlinear 

reflection will probably still occur, even though the plasma does not reach a steady state. A similar 

result was obtained by Morales'8 who considered the nonlinear coupling of waves to the plasma 

edge. In this case steady state was not achieved. (The nonlinear reflection discussed by Morales 1 3 

has a different physical origin from that discussed here. In his work the reflection was due to the 

waves changing the position of the cutoff where w •= w. ( . Our reflection is due to scattering off the 

ponderomotive density fluctuations and so could not occur in his system which allowed no z 

modulation of the field.) If we allow the electric field to have a slow time dependence [multipying 

the exp(-iwr) dependence already included] then to lowest order we obtain a two-dimensional 

generalization of the NLS equation, 

iv0 + ft vT di + «£g + |afy «= 0 , (50) 

where a = \ " V and a' = tllK^iKJKJIdal 

In summary, we have studied the propagation of lower hybrid waves as described by the 
CMKDV equation. When treated as an initial value problem in x, two types of solitary waves are 
found, one which has a constant phase, while the other is an envelope pulse. These pulses are not 
solitons. There is not a continuous transition from one type to the other. When constant phase pulses 
are produced, it means that reflection is occurring and the problem should be solved as a boundary 
value problem. Applying these results to RF heating of a tokamak we find that the effect of the 
ponderomotive force can be to cause strong reflection of the lower hybrid waves close to the edge of 
a tokamak type plasma. Before a definitive answer can be given as to the magnitude of this effect 
the problem needs to be examined further allowing for the effects of inhomogeneity and a time 
dependence for the fields. 
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APPENDIX. INVERSE SCATTERING METHOD FOR THE MKDV 
EQUATION 

In this appendix we briefly review the solution of the MKDV equation (8) by the inverse 

scattering method. We will find it convenient to rescale », by v - (6iK)i,zq, so that the MKDV 

equation reads, 

1r * ?{& * 6 W^{ m ° • < A 1 * 

In the course of outlining the solution for the MKDV equation, we will point out the modifications 

necessary for obtaining solutions to the NLS equation, 

qT * iqg + 2«|gfy - 0 . (A2) 

1. Direct Scattering Problem 

The MKDV equation is one of the class of equations covered by the methods of Ablowitz et 
al* The scattering problem is the same as that for the NLS equation, which was introduced by 

Zakharov and Shabat, • 

^lf + »X(J», -flfr2 , (A3) 

*8f " W 2 - ?Vj • <A4) 

These equations will be recognized as those for a backward wave oscillator. It will be assumed that 
• q -* 0 as |f| -» «. Equations (A3) and (A4) are solved for q - ^ r > 0, £) and with boundary 
conditions 

<i>x •* exp(-Af). jJ-2 -» 0, for { -» -» . (A 5) 

Solving (A 3) and (A4) gives 

fc, -• a(X) exp(-/X{). ^ 2 -• /3(X)exp(iX$>, for $ -» » . (A6) 

The complete scattering data, from which q may be reconstructed, consists of the incident and 

reflected wave amplitudes, cc(X) and 0(X), for X real, and the residues, it. • |9(X,)/[da(X)/dX]|^ , for 

all X - X, such that ct(Xj) - 0 and Imfy) > 0. The data for X real gives the "radiation" part of the 
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solution, while the data at tlie discrete eigenvalues, X,, gives the soliton part. When determining the 
discrete scattering data numerically, the following relation is useful for determining the residues, 

tda(\m\ - - C P / f t X , ) ] / ^ * ,* , ,<« . W7) 

[Note that ^ , 2( |f | -»»)-» 0, for A - X, J 

In what follows we shall neglect t!ie radiation. This is equivalent to setting /3(X) - 0 for real 
X. We can detennine the error in doing this, by comparing / ^ ^|?| 2dJ for the initial conditions and 
for the solitons. In the case where 0(X) - 0 for rea! X, ot(X) is given i>yM 

«W-I}{X-Xj>r(X-Xp, (A8) 

where the product is over all the discrete eigenvalues. 

The time evolution of q is reflected in the tirr., evolution of ti, (X, is independent of time). 
From Ref. 4 we have 

fijir) - I*J{T = 0) exp(ify) , (A9) 

where O, - 8X? for the MKDV equation, and -4X? for the NLS equation. 

2. The N-Soliton Solution 

Assuming that there are N roots of a(X) in the upper half X plane, and that the radiation 
may be neglected, the solution for both the MKDV and NLS equations then reads 

q--2PjHjkMk, (A 10) 

where 

Pj - exp(-iXJf), M j - ififryPj , (A l l ) 

H - [I + G* • Q T ' , Gjk - jtj(r)«p{KXj - XjjflKXj - Xj). (A 12) 

(Summation over the repeated indies from 1 ;o N is implied.) 
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If there is only one discrete eigenvalue \ j t we obtain the one soliton solution, 

q-dj sechfe^ - fj - y)] expti^f -<ajr*Oj)], (A 13) 

where 

2X, - -k, + ia., a. - Re(ty, Cj - - I m ^ ) / ^ . (A 14) 

ajtj - log[|MJ<0)i/oJ], 6̂  « -arg[^(0)) - |ir . (A 15) 

(Here a, and *. are real.) Thus for the MKDV equation we have 

», = kjCHJ - ft*). S j = a* - 3ft?, (A 16) 
« 

while for the NLS equation we have 

«>j=a]-*j> Cj =-2fe r (A17) 

In the case where there are several solitons, as long as their velocities, c., are all different, the 
solitons will eventually all separate, and the asymptotic solution for Jr| -» » will be the (algebraic) 
sum of the individual solitons. The only effect on a given soliton of the additional solitons at h"| -» «• 
is to alter the position and phase of that soliton. If we order the eigenvalues such that c, < c, + , for 
0<j<N, then for T -» ±» (A 15) becomes1* 

• j - ^ / W - f - * ^ - , ^ ) . (A19) 

If some of the solitons have the same velocity, then they form a coupled soliton solution called 
a breather. For the NLS equation this happens when two or more solitons have eigenvalues with the 
same real part. For the MKDV equation the simplest breather solution consists of two solitons with 
eigenvalues satisfying X2 = - X*.'5 The transition between a two-soliton breather and the two 
uncoupled solitons occurs when two eigenvalues coalesce. In this case the Af-soliton solution is no 
longer valid since ft is divergent. However it is possible to find the solution in this case by taking 
the limit as two eigenvalues come together. If we substitute 

2X, 2 - to - ft ± e, ft, 2(0) = -ia ± a2le, (A20) 
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into (A 10) and then take the limit e -» 0, we obtain for the MKDV equation 

v - 2a »-6^r-a({--2 a

2 r)tanhH) m . w y ) ] ( A 2 „ 
cosh(«f) + tâ (f - 2a2r)2 + <6Jfc«2r>2]sech(<tf> r 

where f - £ - cr, and c and w are given by (A 16). For T -» », (A21) becomes 

i> -» - exp[j(*f - »r)] S ± ±exp[±itan-'(3Wo)]«sech{of ± logttaW + a 2 )" 2

T ] } . <A22) 

This consists of two equal solitons moving apart with relative velocity 2/(OT>. 

3. Properties of the Zakharov-Shabat Eigenvalue Problem 

There are no discrete eigenvalues if* 

where / 0(2 x 0.904) • 2 and / 0 is a modified Bessel function. 

All eigenvalues must satisfy 

Im(M < maxfljl). (A24) 

This states that the tallest soliton will be less than twice the maximum height of the initial pulse. 
We give the proof of this result for the generalized Zakharov-Shabat problem considered by 
Ablowitz et al* for which (A4) reads 

^zf * A * 2 " r^l • < A 2 5 > 

We multiply (A3) by ^ and (A25) by -IPIVJM w n e r e C i s a complex number (independent of {). 
Adding the resulting equations, integrating them from jf - -» to «. solving for X and taking the 
imaginary part gives 

toft).-J ' » • . g ' • • (A26) 

[In deriving this we have used e.g. / ^ Reft^,;) rff - 0.] Working now with the numerator of 
(A26) we have 

Numerator - - / ^ Re{[(j/yj) - (pr)*]^ptfrg) d( 
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< max[fa/p) - (pr)*|3 JZ, »,\ IP^I # 

< 1 max[K?/p) - (pr)*0 fZ W , l 2 * !P* 2 1 2 <<E (A27) 

[the last inequality coming from (htjl - I p ^ l ) 2 a 01 Since p is arbitrary we can perform a 

minimization over p to give 

Im(X) < \ minp{max{[K?/p) - (pr)% . <A28) 

(Without loss of generality wt may restrict p to the positive real numbers.) For our problem r - -q . 

The minimization over p gives p = 1, from which (A24) follows. 

If q = Qexp&(i n£ + 60)\ then the eigenvalues are the same as for q - Q except that they all 

have real parts decreased by jfe 0 . The values of ti, are all multiplied by exp(t'0o). This enables us 

to consider only real q (as far as solving the eigenvalue problem goes), and sti?l be able to generalize 

the results to cover the case where q is the product of a real function and exp[f(fc0f + 0 O ) 1 

For q real we begin by noting'* that either X, is pure imaginary, or if X. is complex, then there 

is another eigenvalue equal to -X*. (We shall call such a pair of eigenvalues a "complex pair.") 

Only in rather restrictive cases can statements be made as to the number and type of eigenvalues we 

will have. If q is antisymmetric, then the eigenvalues will always occur in complex pairs. If q is 

non-negative, then it may be shown 1 6 that the condition fZ q rf{ = (N - %)ir (/v* an integer) 

corresponds to the threshold for a soliton with X = 0. The term "threshold" may be misleading here. 

A simple example will show why. Suppose q = 1 for L < |£| < 2L, and q - 0 otherwise. Let us 

consider what eigenvalues we have as we increase L from 0. At L = \ir we reach the threshold for 

a single soliton (X = 0), in accordance with the threshold condition. At L - 0.3126ir a complex pair 

of eigenvalues appear (X » ±0.9542). This conplex pair coalesces on the imaginary axis at L » 

0.69327T and X = 0.2077i [see (A2I)]. The first eigenvalue is then at X » 0.4641*. The doubk 

eigenvalue then splits in two again, one eigenvalue going up the imaginary axis and the other going 

down. At L = \ir, when JZ, 9 rff = | f , and hence at the "threshold" for a soliton, the lowest 

eigenvalue disappears at X = 0. However the number of eigenvalues, N, is given by 

(N-^<fZ,qd!c <,(N*^, (A29) 
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if the following conditions are satisfied: q is non-negative; there exists a continuous transformation 
from a q satisfying (A 23), when there will be no eigenvalues, to the given q, such that the 
intermediate q's are all non-negative, and, while q is changing, all the eigenvalues appear at X - 0. 
and none disappear. It is thought that these conditions are met if q has a single maximum. (In that 
case suitable transformations are either increasing the height of q, or increasing the width of q, while 
keeping the shape of q constant.) 

4. Special Initial Conditions 

We end by giving the eigenvalues for our model initial conditions (22). Writing these in 
terms of q we have 

<fir = 0, & = BsechQ)exp(ik0& , (A 30) 

where B = /l(«/6)" 2. In this caie the Zakharov-Shabat equations may be solved exactly in terms of 
hypergeometric functions. The number of solitons is N, where 8 - N + z, with - £ < e s | . The 
eigenvalues are 

\j - ify - fy = i{s - £ + j) -1£0 , for/ - 1 , 2 , . . . N . (A31) 

because of the symmetry of qir - 0) in £ we h<ive 

fty-H)"-^1. (A3?) 

The amount of radiation is then given by 

C Eradiation*2 # " C *Wr - °» 2 «« " - C ifeohton^ "» »>l2 <* 

•= B 2 - 2E, lmi\j) - e 2 < J . (A33) 

Thus for 5 large the radiation is small compared with the soliton part of the solution. In particular, 
if B is an integer, N. then there is no radiation (since e «= 0). The sech pulse then represents an 
exact W-soliton collision. In this case the residues are found from (A8) and (A 32) to be 

Vj"-MTlp<jW*-pz)ip*. (A 34) 

From (A 18) and (A 19) the positions and phases of the solitons at r -* » are 
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*fo ' -l°g<^) + *p < j logH(V - Y)KN2 - ? 2 ) ] , (A35) 

Bj-0. (A36) 

If we are not interested in the precise A/-soliton solution for finite T (A 10) we may still 
identify the important time scales on which the solution evolves using the soliton velocities and 
frequencies <A 16). We define two time scales: a fiiamentation time scale, T>, or the time it takes for 
two typical solitons to separate from one another; and a self-focussing time scale, rt, or the time for 
the relative phases of two typical solitons to change by ir. For defmiteness we take the two "typical" 
solitons to be the tallest one (index N) and the half tallest one (index £/V; assume N is even). 
Assuming B » 1, we have 

Tf - (arf + a ^ c N - eNRTl * | B ' 3 , (A3?) 

T, = TT(WW - » m r l * 7r(9ft0a2)"1 • (*38) 

Loosely speaking (A 37) and (A 38) give the times we have to wait to see the first effects of 
fiiamentation and self-focussing. We should not confuse rf with the time it takes for all the solitons 
to separate, which is a time of order unity for these initial conditions. 
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F i g u r e C a p t i o n s 

Fig. I. The results of numerically integrating the CMKDV equation. The initial condition is given 

by (22) with A = 3 and k0 = I. The figure shows v at (a) r = 0, (b) r * 0.5, (c) r - 2. The solid 

line gives \u\. the long dashes Re(i/), and the short dashes Im(y). The numerical integration was 

performed with L = 40, n = 2 8 , 5r = 5 x I0~4. At r •= 2 the errors are 8 2 - 3 x 10"4, 5 } M x 

I0"». 

Fig. 2. The same as Fig. 1, except A - 5, ft0 •= 3, and 6V - 2 x 10"4. (a) T - 0, (b) r « 0.2, (c) r -

0.6. ( 5 2 = 2 x 10" 4 ,6 3 = 10' 4 at T = 0.6.) 

Fig. 3. The collision of two constant phase pulses of the form (23). The taller one has a - ^ 2 , 0 O -

0, f 0 = -7. The shorter one has a • 1/^2, 0 O = |ir, f 0 = 7. The integration is performed in a 

frame moving with velocity | | , the mean (initial) velocity of the pulses. Fig. 3(b) shows the result of 

the collision for the CMK.DV equation, (c) the result for the MK.DV equation. [L » 30, n - 2 7 , ©V 

= 2 x 10"3. In (b) 6 2 = 5 x I0"5, 5 3 = 5 x I0"5. In (c) « 2 = 4 x I0"5, o 3 - I0"4.] 

Fig. 4. Phases of two constant phase pulses before and after their collision as a function of the initial 

difference of phase between them, &6. The ratio of heights was initially 2. Subscripts 1 and 2 refer 

to the taller and shorter pulses respectively. Subscripts i and/refer to the initial and final phases. 

Fig. 5. Envelope pulses for At0/o = 0.5 [(a) and (b)] and ft0/a = 2 [(c) and (d)l The solid line 

shows the results of integrating (26) numerically. The dashed lines in (c) and (d) gives the 

asymptotic expressions (32) and (33). A constant has been added to the asymptotic result in (c), so 

that it can be distinguished from the numerical result. The jaggedness in the numerical results on 

the right in (d) arises because (26) was integrated numerically from left to right, and, due to 

numerical error, a growing solution is being picked up on the right. 

Fig. 6. The area f^ |K| rff of envelope pulses as a function of k0la. The solid line gives the 

numerical result. The dashed line the asymptotic result from (34). The area of the constant phase 

pulses is shown by the arrow. 

Fig. 7. The same as Fig. 2, except A - 6, * 0 = 3, and br • 2 x 10"4. (a) r - 0.2, (b) r - 0.6, (c) r 

- 0.8. ( 6 2 - 4 x 10~ 3 , 5 3 - 5 x 10' 3 at T - 0.8.) 
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Fig. &. Schematic showing the numbers and types of solitary pulses produced when the initial 

conditions are given by (22). The cross-hatched region shows where a mixture of constant phase 

and envelope pulses are produced. The left boundary of this region is the dividing line between 1 

and 0 envelope pulses and the right boundary is the dividing line between I and 0 constant phase 

pulses. This figure is oniy intended to give a rough idea of what pulses are produced. All dividing 

lines which have been drawn as straight should in fact be curved. In particular the horizontal lines 

should curve up towards the cross-hatched region. 

Fig. 9. The reflectivity, R, as a function of ri when the boundary condition is given by (41) with: 

(a) A - 2, * 0 - 0; (b) A - 3, k0 « 0; (c) A - 4, * 0 - 0; (d) A » 4, k0 - 1. The crosses show 

where the numerical scheme for solving the boundary value problem ceased to converge. (L - 40, n 

- 2 s , 6r - 10~3, e - 2*.) 
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