Drilling, Completion, Stimulation, and Testing of Hardy HW\#1 Well, Putnam County, West Virginia

Final Report

William K. Overbey, Jr. Richard S. Carden
C. David Locke
S. Phillip Salamy

Work Performed Under Contract No.: DE-AC21-89MC25115

For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
BDM Engineering Services Company 7915 Jones Branch Drive McLean, Virginia 22102

Abstract

This report discusses the detailed field operations in drilling, logging, casing, completing, stimulating and testing the Hardy HW\#1 well located in Union District, Putnam County, West Virginia. The project was designed and managed by BDM in cooperation with Cabot Oil and Gas Corporation. The well was spudded on November 29, 1989 and was completed at a total measured depth of 6406 feet on December 29, 1989. The well was drilled on an average azimuth of 335 degrees with a total horizontal displacement of 2618 feet. Approximately 1035 feet of the well had an inclination higher than 86 degrees, while 2212 feet of the well had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Four zones were stimulated during three stimulation operations (Zones 3 and 4 were stimulated together). Zone 1 stimulation was a successful foam frac while the stimulations on Zones 2, 3-4 were partially successful. Initial gas production rates were 4.5 times greater than the natural production rate. After 21 months, gas produced from the BDM/Cabot well has declined at a rate about one-half that of a conventional vertical well in the area. This horizontal well is projected to produce 475 million cubic feet of gas over a 30 -year period.

TABLE OF CONTENTS

Page
1.0 EXECUTIVE SUMMARY 1
2.0 INTRCDUCTION 3
3.0 LEASE ACQUISITION AND LOCATION DEVELOPMENT 3
4.0 DRILLING PLAN SUMMARY 4
5.0 DRILLING OPERATIONS 7
5.1 Introduction 7
5.2 Vertical Hole 9
5.3 Build Section 11
5.4 Horizontal Section 14
6.0 LOGGING OPERATIONS 21
6.1 Introduction 21
6.2 Mud Logging 21
6.3 Shallow Hole and Free Fall Logging 21
6.4 Horizontal Section Logging 22
7.0 MOTOR PERFORMANCE AND BOTTOM HOLE ASSEMBLIES 23
7.1 Introduction 23
7.2 Motor Performance and BHA's for Angle Building 23
7.3 Rotary Directional Drilling Assemblies for 28 Horizontal Section
8.0 DIREC TIONAL CONTROL OPERATIONS 30
8.1 Introduction 30
8.2 Steering Tool Operations 30
8.3 MWD Tool Operations 33
9.0 ANALYSIS OF DRILLING OPERATIONS 33
10.0 COMPLETION OPERATIONS 35
10.1 Introduction 35
10.2 Casing Design 37
10.3 Inflation of Casing Packers 38
10.4 Cementing 39
11.0 STIMULATION OPERATIONS 40
11.1 Introduction 40
11.2 Treatment of Zone 1 40
11.3 Treatment of Zone 2 43
11.4 Analysis of Problems in Fracing Zone 2 48
11.5 Stimulation of Zones 3 and 4 55
11.6 Analysis of Problems in Fracing Zone 3-4 58
12.0 WELL TESTING OPERATIONS AND ANALYSIS 61
12.1 Pressure Build-up Testing 61
12.1.1 Pre-Stimulation Testing and Ára!ysis 62
12.1.2 Post-Stimulation Testing and Analysis 72
12.2 Drawdown Testing - Post-Stimulation 77
12.3 Well Test Results and Conclusions 83
13.0 ANALYSIS OF COMPLETION, STIMULATION, TESTING AND 87 PRODUCTION OPERATIONS
13.1 Completion Operations 87
13.2 Stimulation Operations 88
13.3 Well Testing Operations 92
13.4 Production Operations 92
14.0 WELL COST ANALYSIS 95
15.0 SUMMARY AND CONCLUSIONS 101
16.0 REFERENCES 103
17.0 APPENDICES 104

LIST OF ILLUSTRATIONS

Figure

Page
Figure 3.1 Reiationship to the Planned Wellbore 5 Trajectory to Structure on the Base of the Huron Shale Location and Trajectory of Planned Horizontal 6 Well Across a 3-Lease Production Unit
Figure 5.1 Depth vs Days 8
Figure 5.2 Vertical View 19
Figure 5.3 Plan View 20
Figure 6.1 True Vertical Depth Presentation of Well Logs 24
Through the Horizontal and High-Angle Section of the Hardy HW\#1 Well With Gas Shows
Figure 10.1 Hardy \#1 Well Schematic 36
Figure 11.1 Nitrogen Breakdown (Prepad) on Zone 1 42
Figure 11.2 Foam Fracturing Treatment on Zone 1, 44 Hardy HW\#1
Figure 11.3 Nitrogen Breakdown (Prepad) of Zone 2 46 (First Time)
Figure 11.4 Second Nitrogen Breakdown (Prepad) for Zone 2 47
Figure 11.5 Pressure Response During Initial Foam Pad 49 Injection
Figure 11.6 Aborted Attempt to Frac Zone 2 After Replacing 50 Packer
Figure 11.7 Nitrogen Pad Injection Into Zone 2 After 51 Perforating
Figure $11.8 \quad$ Foam Frac on Zone 2 52
Figure $11.9 \quad$ Foam Frac on Zone 2 Showing Screen Out 53
Figure 11.10 Difficulty Associated with Attempting to Inflate 56 Closely-Spaced Natural Fractures from a Horizontal Wellbore
Figure 11.11 Initial Attempt to Frac Zone 3-4 Using 57
Sand-Laden Foam
Figure 11.12 Attempt at Injecting Foam After Screen-Out 59 in Zone 3-4
Figure 11.13 Nitrogen Frac of Zone 3-4 Following Sand-Foam 60 Screen-Out
Figure 12.1.1 Analysis of Pre-Stimulation Data Using 63 RHM Tochnique
Figure 12.1.2 Well Type Curve with Wellbore Storage 66 and Skin Effect
Figure 12.1.3 Change in Adjusted Pressure vs Adjusted 67 Effective Time, Pre-Stimulation
Figure 12.1.4 Pressure Build-up Analysis for Pre-Stimulation 69 Data Using Horner's Technique
Figure 12.1.5 Type Curves for Horizontal Wells 71
Figure 12.1.6 Pre-Stimulation Type Curve Match 73
Figure 12.1.7 Change in Adjusted Pressure vs Adjusted 75 Effective Time, Post-Stimulation
Figure 12.1.8 Pressure Build-Up Analysis for Post- 76 Stimulation Data Using Horner's Technique
Figure 12.2.1 Initial Production Data 78
Figure 12.2.2 Two Rate Flow Test Analysis, Post- 80 Stimulation
Figure 12.2.3 Drawdown Pressure Type Curve Match 82
Figure 13.1 Gas Shows vs Measured Depth 89
Figure 13.2 Wellbore Contiguration 90
Figure 13.3 Production Decline Analysis for Vertical and 93 Horizontal Shale Wells, Putnam County, WV
Figure $13.4 \quad$ Production Projection Using Gas Reservoir 94 Simulation (G3DFR)
Figure 13.5 Average Daily Production Data 96
Figure 13.6 Cumulative Production Data 97
Figure 13.7 Hardy \#1 Post-Stimulation Production Rate 99 Match of Actual Data With Average Dectine Curve of Wells in the Same Area
Figure 13.8 Hardy \#1 Project Cumulative Production Based 100 on Type Curve Match of Average Well Decline

LIST OF TABLES

Page
Table 5.1 Multishot Survey at Total Depth 17
Table 7.1 Comparison of Rates of Penetration of Motors 29 During Angle Building Drilling
Table 11.1 Summary of Frac Treatments for Hardy HW\#1 41
Table 11.2 Flowback Summary for Frac Job on Zone 1 41
Table 12.1.1 Basic Reservoir and Well Data 64
Table 12.3.1 Pre-Stimulation Well Test Analysis Results 84
Table 12.3.2 Post-Stimulation Well Test Analysis Results 85
Table 12.3.3 Estimates of K_{V} and K_{H} Values Based on 86 Horizontal Well Type Curve Analysis
Table 12.1 Cost Data BDM/Cabot Horizontal Well 98

1.0 EXECUTIVE SUMMARY

The Cabot Oil \& Gas Hardy HW\#1 well was spudded on November 29, 1989, and drilling was completed at a total measured depth of 6,399 feet on December 29, 1989. The well was drilled on an average azimuth of 335°, with a total horizontal displacement of 2618 feet. Approximately 1035 feet of the well had an inclination higher than 86° (horizontal), while 2212 feet of the well had an inclination greater than 62 degrees. The well was turned to a 90 degree inclination over a measured course length of 1346 feet which is a true vertical depth (radius) of 829 feet.

The inclined well encountered 59 shows of gas with a calculated volume of more than 2 mcipd. Twelve gas shows had calculated volumes greater than 50 mcfpd , the largest of which was 178 mcfpd.

After reaching the kick-off point at 3253 feet, it required only 35 hours of drilling time to turn the well to a 90 degree inclination (horizontal at an average penetration rate of 41.0 feet per hour). The horizontal section was drilled with conventional rotary tools with a 7 $7 / 8^{\prime \prime}$ bit and the rate of penetration was 46.5 feet per hour. During drilling of the shallow vertical section of the hole, the average rate of penetration was 26.6 feet per hour for drilling both the $171 / 2^{\prime \prime}$ and 12 $1 / 4^{\prime \prime}$ hole down to the KOP. When a strong flow of water was encountered in the Big Injun Sand and the well was mudded up, penetration rate dropped to 12.2 feet per hour.

Steering tool operations were the most costly and time consuming during drilling. Seven steering tool failures were encountered which resulted in delays of four days in the drilling operations.

Logging operations were beset with operational problems which provided an incomplete video survey of the borehole (to a depth of only 4550 feet) and successful geophysical logs going into the hole only. The available logs along with the mud logs were used to select the locations of the five external casing packers and the four ported collars in the casing string.

The improvements in downhole motors have increased penetration rates to the point where they are nearly equal to those of vertical airdrilling rates. The Hardy HW\#1 well was drilled in twenty-eight days less time than the first air-drilled horizontal well which was drilled in 1986 (RET\#1).

The well was completed with five (5) casing packers and five (5) port collars included in the string of J-55, $10.5 \mathrm{lb} / 4 t 4.5$ inch casing. A section of the casing in the inclined portion of the wellbore was cemented with 130 sacks of class A cement between 4057^{\prime} and 3500^{\prime} as a permanent barrier to water. Thus the wellbore was configured into four separate zones for stimulation purposes.

During stimulation activities, the port collars did not function as advertised by the vendor, and their opening and closing tools had to be modified in the field to make them work. This made stimulation and cleanup operations much more difficult and costly than anticipated.

Zone one (1) was broken down with nitrogen and fraced with 80 Quality foam and sand. Although the actual volumes injected were somewhat less than planned, the first stimulation was accomplished without too many problems. Zone two (2) was a different story. Two attempts were made before the well was partially fraced with foam at a much lower injection rate than originally planned. Zones 3 and 4 could be pumped into with nitrogen, but they would not accept foam, even at very low injection rates and without sand. These two zones were finally stimulated by pumping straight nitrogen into the zones at the highest rate possible without exceeding the established pressure limit.

The well was cleaned-up after stimulation, and pressure build-up and drawdown tests were conducted to determine the success of stimulation operations. An improvement ratio of 4.5 times natural production rate was determined as a result of the well testing activities.

The well is expected to produce 475 million cubic feet of gas over the next 30 years. Ultimate production before abandonment could well be double that amount. Production records examined for the first 21 months

1.0 EXECUTIVE SUMMARY

The Cabot Oil \& Gas Hardy HW\#1 well was spudded on November 29, 1989, and drilling was completed at a total measured depth of 6,399 feet on December 29, 1989. The well was drilled on an average azimuth of 335°, with a total horizontal displacement of 2618 feet. Approximately 1035 feet of the well had an inclination higher than 86° (horizontal), while 2212 feet of the well had an inclination greater than 62 degrees. The well was turned to a 90 degree inclination over a measured course length of 1346 feet which is a true vertical depth (radius) of 829 feet.

The inclined well encountered 59 shows of gas with a calculated volume of more thar 2 mcfpd. Twelve gas shows had calculated volumes greater than 50 mcfpd , the largest of which was 178 mcfpd .

After reaching the kick-off point at 3253 feet, it required only 35 hours of drilling time to turn the well to a 90 degree inclination (horizontal at an average penetration rate of 41.0 feet per hour). The horizontal section was drilled with conventional rotary tools with a 7 $7 / 8^{\prime \prime}$ bit and the rate of penetration was 46.5 feet per hour. During drilling of the shallow vertical section of the hole, the average rate of penetration was 26.6 feet per hour for drilling both the $171 / 2^{\prime \prime}$ and 12 $1 / 4$ " hole down to the KOP. When a strong flow of water was encountered in the Big Injun Sand and the well was mudded up, penetration rate dropped to 12.2 feet per hour.

Steering tool operations were the most costly and time consuming during drilling. Seven steering tool failures were encountered which resulted in delays of four days in the drilling operations.

Logging operations were beset with operational problems which provided an incomplete video survey of the borehole (to a depth of only 4550 feet) and successful geophysicai logs going into the hole only. The available logs along with the mud logs were used to select the locations of the five external casing packers and the four ported collars in the casing string.

The improvements in downhole motors have increased penetration rates to the point where they are nearly equal to those of vertical airdrilling rates. The Hardy HW\#1 well was drilled in twenty-eight days less time than the first air-drilled horizontal well which was drilled in 1986 (RET\#1).

The well was completed with five (5) casing packers and five (5) port collars included in the string of J-55, $10.5 \mathrm{lb} / \mathrm{ft} 4.5$ inch casing. A section of the casing in the inclined portion of the wellbore was cemented with 130 sacks of class A cement between 4057° and 3500^{\prime} as a permanent barrier to water. Thus the wellbore was configured into four separate zones for stimulation purposes.

During stimulation activities, the port collars did not function as advertised by the vendor, and their opening and closing tools had to be modified in the field to make them work. This made stimulation and cleanup operations much more difficult and costly than anticipated.

Zone one (1) was broken down with nitrogen and fraced with 80 Quality form and sand. Although the actual volumes injected were somewhat less than planned, the first stimulation was accomplished without too many problems. Zone two (2) was a different story. Two attempts were made before the well was partially fraced with foam at a much lower injection rate than originally planned. Zones 3 and 4 could be pumped into with nitrogen, but they would not accept foam, even at very low injection rates and without sand. These two zones were finally stimulated by pumping straight nitrogen into the zones at the highest rate possible without exceeding the established pressure limit.

The well was cleaned-up after stimb'ation, and pressure build-up and drawdown tests were conducted to determine the success of stimulation operations. An improvement ratio of 4.5 times natural production rate was determined as a result of the well testing activities.

The well is expected to produce 475 million cubic feet of gas over the next 30 years. Ultimate production before abandonment could well be double that amount. Production records examined for the first 21 months
of production indicate the rate of production decline from the horizontal well is about half the rate exhibited by vertical wells in the area.

2.0 INTRODUCTION

As part of an ongoing Department of Energy Program to test emerging technology as methods of producing additional natural gas resources at economic rates, the Morgantown Energy Technology Center has for more than twenty years been exploring the concept of horizontal drilling as an advanced technology concept to improve gas and oil recovery efficiency.

The first successful air-drilled horizontal well was designed and drilled by BDM International for DOE in 1986 (Reference 1) in Wayne County, West Virginia, in conjunction with a small industry partner. BDM Engineering Services Company (BDMESC), a subsidiary of BDM International, was awarded a second competitive contract in 1989 to continue to explore the economics of drilling, completing and producing horizontal wells in tight, resource rich, Devonian shales of the Appalachian basin.

BDMESC proposed a cost sharing arrangement with Cabot Oil and Gas Corporation whereby they provide leases for drilling, share in the well costs, and serve as operator for drilling and production operations. BDMESC conducted geologic studies, selected the drill sites to be approved by Cabot and DOE, designed the well, and supervised drilling and completion operations.

3.0 LEASE ACQUISITION AND LOCATION DEVELOPMENT

The results of a detailed geologic study and reservoir analysis of three areas in Putnam County, West Virginia, where Cabot Oil and Gas had 40,000 acres under lease were reported in a topical report "Selection of Geographic Area and Specific Site for Drilling a Horizontal Well in Cooperation with Cabot Oil and Gas Company." Area 2 in Union District near the village of Extra was selected as the specific area. The specific site and orientation of the well with respect to structure on the base of
the Huron Shale is shown in Figure 3.1. Location of postulated fracture zones is indicated by the dashed line on Figure 3.1.

The location was presented to Cabo: Oil and Gas who then proceeded to develop a production unit outline and to clear the titles for the leases included for drilling operations. The proposed production unit is shown in Figure 3.2 along with the location of a postulated 300 million cubic feet production fairway which would be crossed by the horizontal well.

Considerable problems were encountered by Cabot in obtaining a clear title for the included leases as a result of r. survey problem which occurred thirty or more years ago. The lease was finally cleared after three months of legal examination and resurveying of the involved properties. The staked location was surveyed on the ground and a drilling permit obtained from the West Virginia Oil and Gas Division of the West Virginia Department of Mines and Mineral Resources.

4.0 DRILLING PLAN SUMMARY

The Hardy HW\#1 Well was to be drilled as a horizontal well in the Lower Huron Shale to improve productivity. The well was designed to be drilled vertically to a kick-off point 716^{\prime} below the top of the Berea Formation (approximately 3236' below GL). A string of $133 / 8^{\prime \prime}$ surface casing was to be set at 655' to isolate fresh water and coal. A $95 / 8^{\prime \prime}$ intermediate string was to be set through the Berea Formation to isolate potential water and hydrocarbon bearing intervals.

At the kick-off point, the inclination was to be built with a downhole motor and steering tool at a rate of $8^{\circ} / 100^{\prime}$ to an inclination of 87°. Then, 2000 feet of wellbore would be drilled in the target interval with a rotary assembly. The assembly would be designed to drop angle at approximately $0.25^{\circ} / 100^{\prime}$ causing the wellbore to drop out of the target interval at the end of the 2000 feet.

The preferred azimuth of the wellbore was 340° which is nearly orthogonal to the natural fractures in the area. Provided the well stayed within the pooled acreage, direction would not be a problem. In relation to

Figure 3.1- Relationsnip of the Planmed Wellbore Trajectary to Structure on the Base of the Hurom Shale

Figure 3.2- Location and Trajectory of Plannex Horizomeal hell Across a 3 -Lease Prownction Unit

TVD, the top of the target interval was 1431 feet below the top of the Berea and the bottom was 1610 feet below the top of the Berea. Total target thickness was 179 feet.

After reaching total depth, the well would be logged with wireline free fall and drill pipe conveyed open hole logs and a video camera. Then 4 $1 / 2^{n}$ casing would be run using external casing packers to isolate individual producing intervals. The placement of the external casing packers and port collars would be determined using mud log data, open hole geophysical well logs, and the video camera.

5.0 DRILLING OPERATIONS

5.1 Introduction

Drilling operations were conducted at the site between November 29, 1989 and January 2, 1990. Total days on location were 30 compared to the anticipated 24 days (excluding the four day shut down over Christmas). A plot of depth versus time in days can be seen in Figure 5.1 with the plot comparing actual and projected times.

Drilling the vertical portion of the well to the kick-off point took four days longer than anticipated because of an excessive water flow and stuck drill pipe. The angle build section required eight days to drill compared to a planned seven days. Steering tool problems slowed drilling this section of the hole. The horizontal jection was planned to be drilled in five days which was the actual time required. Logging required four days of rig time compared to an estimated three days. Drilling from kickoff point to release of the rig took two days longer than had been anticipated.

The horizontal section of the wellbore started at a deeper TVD than had been planned because of problems associated with building inclination with the Eastman motor. The planned build rate was $8 \% / 100$ and the Eastman motor assembly averaged $6.7^{\circ} / 100^{\prime}$. The amount of wellbore within the target interval was still 2020'.

andS \exists ONIS SAVO

5.2 Vertical Hole To 3253'

The vertical portion of the well to the kick-off point was drilled on a footage basis by Great Western Drilling1. The well was spud at 11:00 pm on November 29, 1989. The conductor hole was drilled to 32 feet below ground level and a $20^{\prime \prime}$ conductor pipe was set. A $171 / 2^{\prime \prime}$ surface hole was drilled to $696^{\prime} \mathrm{KB}$ through fresh water zones and coal.

Sixteen joints of 13 3/8", 54.5\#/tt, J-55, ST\&C casing were run and set at $668^{\prime} \mathrm{KB}$ ($654^{\prime} \mathrm{GL}$) to isolate fresh water zones and coal sections as required by the state of West Virginia. The casing tally can be found in Appendix A-1. The casing was cemented to surface with 460 sacks of Class " A " cement containing 2 percent CaCl_{2}. The cement was mixed at 15.6 ppg with a yield of $1.18 \mathrm{ft} / \mathrm{sack}$.

The $121 / 4^{n}$ intermediate hole was drilled to a depth of 1860 when a $3^{\prime \prime}$ water flow was encountered in the Maxton sand section. Water from the Maxton had not been expected. The fresh water in the second reserve pit was drained to allow room for the formation water.

Drilling continued using mist until a large water flow was encountered in the Big Injun Formation (2105') where water had been anticipated. A third reserve pit had been constructed to accommodate the additional water. Air and mist drilling continued for less than one hour until the third reserve pit was full. The well was making water in excess of 300 bbls per hour. Air drilling could not continue because there was no place to put the formation water.

At this point, the well was mudded up. A day's worth of rig time was used to rig up a mud pit, mud pump and shale shaker. Once circulation was established, drilling continued with partial returns. Initially, the well was losing around 40 bbls per hour and the loss slowly tapered off.

Drilling was stopped at 2301' feet while the rig crew worked on transferring more water into the mud pit (to make up for partial lost

[^0]circulation). When the crew came back to continue drilling, the drill pipe was differentially stuck. The drill pipe was worked for several hours but remained stuck.

To free the pipe, both aerating the mud and spotting oil were debated as possible solutions. It was assumed that aerating the mud might tear up the hole. So, 80 bbis of crude oil were spotted around the drill collars. Once the oil was spotted, the drill pipe came free in a short period of time.

Drilling then continued to 2657 feet which was the intermediate casing point. The drilling plan called for setting the $95 / 8^{\prime \prime}$ casing fifty feet below the base of the Berea Formation. The mud logger showed the top of the Berea to be at 2579 feet.

A string of $95 / 8^{\prime \prime}, 36 \# / f t, J-55$, ST\&C casing was run and set at ${ }^{2654}$ ' KB. The $95 / 8^{\prime \prime}$ pipe tally can be found in Appendix A-2. The casing was cemented as follows:

Pumped 15 bbls of fresh water, 330 sacks of Halliburton light cement followed by 100 sacks of Class "A" cement containing 3 percent CaCl_{2} and $1 / 8 \mathrm{pps}$ flocele. The cement was displaced with 204 bbls fresh water and the plug was bumped with 1200 psi. The light cement was mixed at 13.6 ppg with a yield of $1.54 \mathrm{ft} 3 / \mathrm{sack}$. The Class " A " cement was mixed at 15.6 ppg with a yield of 1.18 $\mathrm{ft} 3 /$ sack.

While waiting on cement, a gamma ray correlation log was run showing the top of the Berea Formation to be at 2577 feet or about the same depth as picked by the mud logger. The kick- off point would then be 3295 feet; 716 feet below the top of the Berea.

After waiting on cement for 12 hours, the $133 / 8^{\prime \prime}$ casing was cut off and welded to the $95 / 8^{\prime \prime}$ casing for support. The mud system was rigged down and the air system rigged back up. The BOP's were nippled up and the casing drilled out with an $83 / 4^{\prime \prime}$ bit. Drilling continued, dusting, to 3253^{\prime} when a survey was taken to determine inclination and well
direction. The survey showed an inclination of 1° and an azimuth of 279° at a depth of 3191 feet.

5.3 Build Section

Based upon the Berea top, the kick-off point should have been 3295'; however, the kick- off point was changed to 3253 ' to provide some margin for failure to build angle at the planned rate. The Eastman motor was picked up along with a new $83 / 4^{\prime \prime}$ bit. The bend in the motor was set at 1.1° with an $83 / 8^{\prime \prime}$ stabilizer below the bend. An $778^{\prime \prime}$ integral blade stabilizer was placed above the motor. (See BHA data in Appendix B-1.)

The motor was tested at the surface and it operated normally. Three 16/32" jets were placed in the bit to reduce air flow rates past the steering tool and increase steering tool life. The jets should have increased the pressure above the motor by 100 psi .

The motor was tripped to bottom and Smith's steering tool was run through a side entry sub to orient the motor. The first motor run drilled from 3253^{\prime} to $3487^{\prime}\left(234^{\prime}\right)$ at an average penetration rate of 47 feet per hour. Unfortunately, the build rate (not dogleg severity) experienced with the motor configuration was only $5.9^{\circ} / 100^{\prime}$. Build rates can be seen in the Build and Walk Rate Table in Appendix C. The motor was pulled from the hole to change the adjustable bend and lay down the top $778^{\prime \prime}$ integral blade stabilizer.

The bend was set at the maximum angle of 1.3° which according to Eastman's design program should yield a dogleg severity of $9.5^{\circ} / 100$ '. The motor was tripped back in the hole and drilling continued to 3603 feet. The build rate after changing the motor configuration was still $6.3 \% / 100$. It would not have been possible to hit the target at that build rate.

The motor was again pulled from the hole. This time a 1.5° bent sub was placed on top of the motor. No experience was available to be able to project build rate for this BHA, so the anticipated build rate was unknown. The motor was tripped back to bottom and the well drilled to 3817 feet. The motor was now building inclination at an average rate of $6.6^{\circ} / 100$ ' which was still not fast enough to hit the target. Formation tendencies
were assumed to be contributing to the lower build rates.
Prior to plugging back and sidetracking, one more attempt was made using the Eastman motor. The motor was tripped out of the hole and checked to make sure the bent sub and bent housing were still aligned. The bit size was reduced to $81 / 2^{\prime \prime}$ and the jets were left out of the bit. The motor was then tripped back in the hole.

The build rate achieved in the smaller diameter hole was $8.4^{\circ} / 100^{\prime}$. At that rate, the well would be nearly horizontal at TVD of approximately 4100^{\prime} which was barely acceptable. Drilling continued to 4249' MD when the motor rotated 90° to the right on a connection. The motor was worked back up to high side and the well was drilled to $4324^{\circ} \mathrm{MD}$. The survey data from the steering tool indicated that the well was turning to the left and not building much inclination. The geometry of the motor assembly in the hole had changed or the steering tool was no longer oriented properly.

The steering tool was pulled to check and make sure it was working properly. The orienting stinger (mule shoe stinger) had been pulled loose from the probe section when the tool was pulled from the monels. The stinger was left in the latch in. Since the steering tool had been pulled apart (took around 500 lbs of overpull, which is the same as the latch in should take), it was not possible to determine if the tool had still been oriented. The orientation of the probe in relation to the stinger should not have changed as long as the tool was still together.

Not knowing whether the problem was caused by the steering tool or the motor assembly, it was decided to also change out the motor assembly. The Eastman air drilling motor was laid down and a Baker motor with a 2° bent housing was picked up. The Baker motor was run without any stabilizers.

The Baker motor was run in the hole with the same $81 / 2^{\prime \prime}$ bit, but the bit was dressed with one $11 / 32$ nd and two $14 / 32$ nd inch jets. The motor drilled 98 feet but problems with the steering tool prevented drilling any further. However, the survey data indicated that the hole had turned to the left and not built any inclination. It was then obvious that the steering tool had caused the problem with the previous motor run.

At a depth of 4422', the motor was pulled from the hole because of steering tool problems. No more steering tools were available on location so the Geoscience Electronics Electromagnetic MWD (EMWD) was picked up and run in the hole. The jets in the bit were changed to two $11 / 32$ nd and one $14 / 32$ nd inch to increase the pressure above the motor and reduce the vibration on the EMWD tool.

The motor tagged up ninety feet off bottom. The EMWD was having problems sending information to the surface and the operators felt that having the bit on bottom drilling would increase the signal strength. An effort was made to wash the bit to bottom without success. All indications were that the bit was beginning to drill a new hole. After washing (drilling with little resistance) five to ten feet, the motor was pulled from the hole. Drilling ahead without tool face data was deemed too risky and drilling operations were halted until a steering tool was obtained.

Smith's three axis steering tool arrived on location and the motor vias run back in the hole. It was not possible to get the motor back in the clo hole and the well ended up sidetracked above 4338'. The motor drilled in 4502' and the steering tool failed again. The tool had come apart and the motor had to be pulled to retrieve the remainder of the steering tool.

The motor was run back in the hole and drilled to 4610^{\prime} at which point the inclination should have been 90° with an azimuth of 340°. The motor was pulled and laid down. The rest of the well was drilled with rotary assemblies.

A multishot survey (See Appendix D) later showed that the well reached 90° at a TVD of 4082^{\prime} which was 72 feet deeper than planned.

Hole cleaning was still a minor problem in the build section while running the motors. As in the previous well, cuttings would build up at an inclination of around 60° and the hole would have to be circulated to remove the drill pipe. Although, without foam as a lubricating fluid, fewer joints had to be circulated out of the hole. When running rotary assemblies, no hole cleaning problems were experienced even at the same air flow rates.

5.4 Horizontal section

The horizontal/slant section was drilled from 4610^{\prime} MD to 6399' MD using rotary assemblies. The drilling plan had called for using the same rotary assembly that had been used in the Wayne County well. That assembly had dropped approximately $0.25^{\circ} / 100^{\prime}$ while drilling the horizontal section. Since the TVD was deeper than expected, the button cutters in the near bit reamer were replaced with flat cutters to reduce the amount of side cutting by the reamer while drilling. The effect should be to decrease the rate of drop or to increase inclination.

Bottom hole assembly number 6 was run in the hole at 4610'. (See Appendix B-2). The hole size was reduced to $7-7 / 8^{\prime \prime}$ so that the build section would not have to be reamed and so that the external casing packers would have a better chance of sealing in a washed out area. The 7 . $7 / 8^{\prime \prime}$ bit was dressed with three $16 / 32^{\prime \prime}$ jets.

The area of the hole that had been sidetracked at approximately 4338' stopped the rotary assembly; but with a little work, the assembly passed without a problem. The assembly drilled to a depth of 5126' MD.

The wellbore needed to drop back through the target interval so the building assembly was pulled and a dropping assembly run. The dropping assembly is assembly number 7 in Appendix B-2. The assembly should have dropped inclination at a rate of 1 to $1.5^{\circ} / 100$. Unfortunately, the assembly would not go into the right hole. At the sidetrack, the assembly kept going into the short hole. Apparently, the assembly was too stiff to make the corner. A more limber dropping assembly was run hoping it would go into the correct hole. Assembly number 8 (Appendix B-3) with a 10^{\prime} pony collar in front of the lead reamer was run. Drop rates would probably be higher than that desired but other refinement could not be made in the wellbore. The 10 ' pendulum assembly had no problem getting into the correct hole.

Drilling operations were shut down over Christmas from 8:00 am on 12/22/89 to 8:00 am on 12/26/89.

When drilling operations continued, the 10' pendulum assembly was run to drill the remainder of the well. Only one more problem was experienced with the sidetracked hole. While trying to take a survey at 5422^{\prime} MD, the assembly went into the wrong hole several times. After retrieving the survey tool, the assembly went into the correct hole. From then on, the bit was not pulled above the sidetrack point in order to survey.

After reaching a depth of 5670', the pipe would no longer fall into the hole because of excessive down drag. The air rate was increased from 2000 to 2900 scfm for two connections but the hole drag remained constant. Hole cleaning was not a problem. The drill pipe had to be rotated with the slips to get it into the hole. Drill pipe connections were taking 30 to 45 minutes each.

Hole drag also prevented taking additional surveys. Surveys were taken by pulling the bit out of the hole to a depth of 4390'. The singleshot was run into the hole on Smith's releasing overshot. The releasing overshot used a monel sensor to operate. Whenever the tool sensed it was in a nonmagnetic collar, the sensor would activate a motor that would release the survey tool. The slick line and sensor were removed from the hole and the survey tool tripped to bottom. After waiting for the time to take the survey, the bit was again tripped to 4390'. A standard overshot was run on the slick line and the survey tool retrieved. The BHA was tripped back to bottom to continue drilling.

The maximum time that could be set on the survey tool time was 99 minutes. Having to rotate the pipe to bottom, tripping consumed too much time, and the timer would activate before the survey tool ever reached bottom. Therefore, no singleshot surveys were taken below 5372 .

At this depth, it appeared the 10^{\prime} pendulum was dropping at a rate of 2 to $2.5^{\circ} / 100^{\prime}$. Without good survey data and having limited options available with respect to BHA's, the well was drilled to total depth. Total depth was determined by two factors: when predominantly grey shale was being drilled and no more shows were seen by the mud logging unit. The cuttings showed mostly grey shale below 6220' and the last mud log show was seen at 6168'. Drilling was terminated at a measured depth of 6406'.

The pipe was strapped out of the hole and the measured depth was found to be 6391.47' KB. (See drill pipe tally 12/29/89 in Appendix E). To be certain of the depth, the pipe would be carefully strapped again during the multishot survey.

After reaching total depth, the well was logged. Free fall logs were run first with the video camera falling to 4100^{\prime} where the inclination was $\left(60^{\circ}\right)$. The open hole logs fell to 4325^{\prime} where the inclination was $\left(74^{\circ}\right)$. The drill pipe conveyed video log was run to 4550'. Logging was terminated because no signal was being received from the tool. The drill pipe conveyed, open hole logs were run to 6360° depth. For more information on the logs, see Section 6.0 Logging.

After the logging, a multishot survey was run. Surveys were taken every stand (61-62') from 3200' to total depth. Without the reamer, the pipe went in the hole easier. It did not have to be rotated in the hole but still had to be worked down.

The multishot survey showed that the wellbore entered the target interval at a measured depth of 4178^{\prime} (4010' TVD) and dropped out of the target at a measured depth of 6198' (4178' TVD). These depths corresponded with mud log shows and samples. The drill pipe measurement showed a total depth of 6399.40' KB and the total depth was corrected to that depth. (See multishot pipe strap 1/1/90 in Appendix F.

The azimuth of the survevs between 5000 and 5500 feet showed magnetic interference. The azimuth was almost 180 degrees off. Therefore, the azimuth was left at 339 degrees for calculation purposes. Table 5.1 shows the multishot data. The singleshot data can be found in Appendix G .

Plots of the planned versus actual wellbore path are exhibited in Figures 5.2 and 5.3.

After laying down the drill pipe, 140 joints of $41 / 2^{\prime \prime}, 10.5 \# / \mathrm{ft}, \mathrm{K}$ 55, ST\&C casing (including four pup joints) were run in the hole. The casing contained five external casing packers and four port collars. The

Table 5.1
Hardy \#1 BDM/DOE/CABOT Horizontal well Multishot Survey
PaCE 1

$\begin{aligned} & \text { MEASNRED } \\ & \text { OEPTH } \\ & \text { PEET } \end{aligned}$	DRIFT avece atcenes		couss LEMGTK FEET	TRUE vertical OEPTH	$\begin{gathered} \text { RECGA } \\ \text { COOR } O \\ \text { MORTH } \end{gathered}$	$\begin{aligned} & \text { HGULLAR } \\ & \text { I NATEES } \\ & \text { EAST } \end{aligned}$	CLOSURE distance FEET	cloguas Rzinatn DEcress	00cle IEVERITY OEES100'
0.00	0.00	232.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3194.00	0.75	252.00	3196.00	3194.00	0.00	0.00	0.00	0.00	0.00
3256.00	1.50	288.00	62.00	3255.99	0.00	-1.20	1.20	270.00	1.61
3318.00	4.75	322.00	62.60	3317.99	1.91	-3.93	4.37	295.95	5.81
5379.00	8.75	328.00	61.60	578.45	7.78	-8.03	19.18	39:07	6.65
3469.00	12.50	328.00	62.00	3439.38	17.47	-14.09	22.45	329.91	6.05
3503.00	16.25	326.00	62.60	3499.63	30.33	-22.47	37.79	323.59	6.10
3965.00	20.50	325.00	62.00	3558.25	46.48	. 33.54	57.32	326.19	6.87
3627.00	26.25	327.20	62.00	\$615.57	66.06	. 46.76	80.91	326.72	6.17
3688.00	28.25	530.00	61.00	3670.27	89.04	-60.83	107.83	325.56	6.91
3750.00	32.25	330.00	62.00	3723.32	116.08	.76.46	138.99	326.6i	6.45
3812.00	36.50	530.60	62.00	5774.88	146.39	.93.96	173.94	327.31	6.85
3874.00	41.75	330.00	62.60	3823.05	180.26	-113.49	213.02	327.89	8.67
3936.00	46.50	329.00	62.00	3867.55	297.45	-135.40	256.15	328.09	7.76
3997.00	59.75	328.00	61.00	3907.46	256.76	-159.49	302.26	328.15	8.70
4059.00	57.00	328.00	62.00	3943.55	299.68	-186.18	352.64	328.17	8.47
6121.00	62.00	330.60	62.00	3975.02	345.26	-213.69	406.06	328.25	8.53
4183.00	66.75	532.20	62.00	4009.32	394.13	- 240.78	461.86	328.59	8.19
6264.00	70.25	530.00	61.00	6024.18	443.76	- 288.29	518.56	328.84	6.50
4306.00	72.75	326.00	62.00	4063.35	493.05	- 300.30	577.30	328.66	10.02
4368.00	77.5	323.00	62.00	4059.76	549.20	. 335.93	636.98	328.17	7.82
4630.00	85.25	326.00	62.00	4070.12	590.96	. 379.49	697.96	327.85	10.63
4699.00	86.25	523.00	61.00	4076.76	663.15	. 602.16	78.54	327.98	19.52
4553.00	87.2	537.0	62.60	4089.35	699.17	-628.28	819.92	328.51	8.05
4615.00	90.50	558.00	62.00	4082.57	736.43	. 452.00	881.19	329.14	5.48
4677.00	91.75	539.00	62.00	4081.35	814.11	-476.72	962.61	329.75	2.58
4739.00	92.25	538.00	62.00	6079.19	879.76	. 497.43	1003.69	330.29	1.80
4800.00	93.00	538.00	61.00	4076.40	928.25	-520.26	1064.19	330.73	1.23
4862.00	93.2	539.00	62.00	4073.22	985.85	. 542.95	1125.48	539.96	1.66
4924.00	93. 5	538.50	62.60	.069.23	1043.43	. 565.63	1186.88	531.54	1.80
4986.00	96.00	557.00	62.00	.085.06	1900.98	. 588.30	1248.30	331.88	1.66
5047.00	96. 25	539.00	61.00	4060.65	1157.79	-610.10	1308.70	532.2?	0.61
5109.00	\%6. 75	539.00	62.00	.055.77	1215.49	. 632.25	1570.09	332.52	0.81
5979.00	\%6.00	539.00	62.00	. 059.06	1273.20	. 656.40	1431.53	532.80	1.2:
5253.00	92.75	539.00	62.60	2067.41	1330.98	-676.58	1693.08	533.05	2.82
5294.00	99.75	539.00	61.00	4045.02	1387.89	-698.43	1553.79	333.29	1.56
5356.00	90.25	539.00	62.00	4043.93	1445.76	- 720.86	1615.61	535.59	2.62
5418.00	89.00	339.00	62.00	4066.34	1503.54	. 762.86	1677.93	533.79	2.02
5480.00	87.25	339.00	62.00	4046.37	1561.49	-765.07	1738.84	333.90	2.82
5542.00	85.50	339,00	82.00	:050.29	1619.25	. 787.26	1800.48	334.07	2.82

$\begin{aligned} & \text { MESASURED } \\ & \text { DEPTH } \\ & \text { FEET } \end{aligned}$	$\begin{aligned} & \text { DRIFT } \\ & \text { AMCLE } \\ & \text { DEREES } \end{aligned}$	DRIFT AZIMTH DECREES	course LEMGTH PEET	TRUE vertical DEPTH	$\begin{gathered} \text { RECTA } \\ \text { COORRO } \\ \text { OOMTH } \end{gathered}$	$\begin{aligned} & \text { MGULAR } \\ & \text { IHATES } \\ & \text { EAST } \end{aligned}$	CLOSYRE DISTAMCE FEET	Closure Alsmatm DEGeres	DCELEE sevelity DEE/1001
5603.00	83.75	340.00	61.00	4056.00	1676.13	. 808.51	1860.94	336.25	3.30
5665.00	82.75	340.00	62.00	4063.29	1753.99	-829.56	1922.21	536.43	1.61
5727.00	81.00	539.00	62.00	6072.05	1791.68	-859.06	1983.35	536.59	3.24
5789.00	79.25	338.00	62.00	4082.68	1848.31	-873.46	2046. 29	536.79	3.26
5850.00	78.75	537.00	61.00	4094.32	1903.63	-89.36	2104.10	334.79	1.81
5812.00	77.00	336.00	62.00	4107.35	1959.21	-920.53	2166.69	534.83	3.23
5974.00	75.50	535.00	62.00	4122.08	2096.09	-965.50	2226.01	536.85	2.88
6036.00	73.25	535.00	62.00	6138.78	2067.67	. 979.67	2285.60	336.83	4.78
6097.00	71.25	332.00	61.00	6157.38	2919.20	. 998.50	2342.65	534.77	3.63
6159.00	69.75	330.00	62.00	4878.07	2170.31	-1026.83	2400.96	336.68	3.89
6221.00	67.75	329.00	62.00	6200.54	2220.10	-1056.15	2458.52	334.56	3.36
6283.00	65.50	328.00	62.00	4225.16	2288.62	- 1085.89	2515.19	336.42	3.92
6365.00	66.00	327.00	62.00	4251.58	2315.91	-1116.02	2570.78	336.27	2.85
6399.00	62.65	326.00	54.00	4275.83	2356.15	-1162.65	2618.60	336.13	3.00

casing tally and setting depth of the packers and port collars can be found in Appendix A-3.

The casing was landed in the wellhead slips and the rig released.

6.0 LOGGING OPERATIONS

6.1 Introduction

Logging of this well was planned to identify key stratigraphic units used in the location of the kick-off point, and in the determination of hydrocarbon gasses present in the target formation. Logging was also used to determine the points where external casing packers were to be placed in the casing string. The location of points where significant gas shows were encountered was determined to aid in the selection of zones where the well is to be stimulated (if required). Conventional geophysical logs were obtained as well as hydrocarbon mud logs.

6.2 Mud Logging

Mud logging of the well was initiated at a depth of 800 feet. A fairly complete record of shallow and deep sandstones, limestones, coals and shales was obtained. A record of all hydrocarbon gasses encountered was also made. This data was plotted on the \log as units of hydrocarbon gasses per foot of depth drilled. This data was used in locating the intervals where external casing packers were located in the casing string. Mud logging was accomplished by capturing a portion of the return air stream and sending it through a gas chromatograph to determine the various components. The system was calibrated at the beginning of logging operations so that calculations could be made to estimate the volume of gas encountered by the drill bit. Appendix H lists the depths and the calculated volumes of gas encountered during drilling operations.

6.3 Shallow Hole and Free Fall Logging

Original plans were to run a correlation gamma ray log from the surface to the bottom of the $121 / 4^{\prime \prime}$ hole, however, in an effort to reduce
costs, the well was not logged until all drilling operations had been completed. The purpose in running the correlation logs was to accurately locate the Berea sandstone top for measurement to the planned kick-off point. The free fall logs were run to make sure that the entire wellbore would be logged since the side-door sub could not be moved downhole beyond the bottom of the $95 / 8^{\prime \prime}$ casing. This meant that only 2600 feet of inclined and horizontal hole could be logged by pushing the logging tools when attached to the drill string since the $95 / 8^{\prime \prime}$ casing was set at 2650 feet.

Free fall logs were obtained down to a depth of 4327 feet. The logging suite consisted of gamma ray, compensated density, temperature and differential temperature, and caliper logs. The logs revealed that the Berea sandstone was found at a depth of 2667 feet below ground level. The top of the Huron Shale was found at a measured depth of 3767 feet below ground level or 2944 feet below sea level.

6.4 Horizontal Section Logging

The inclined and horizontal sections of the well were logged by attaching the logging sonde to the front end of the drill string and pushing the tools through the open wellbore. Logging operations started at a depth of 3850 feet on the way in (labeled down log) and continued in to a total depth reach of 6360 feet. The down log was recorded in 60 foot sections which is the length of two joints of drill pipe which can be stacked on the rig floor. Depths were correlated by comparison with the strapping of each joint of drill pipe as it was run in the hole. When the up logs were run, a little slack left in the wireline cable which looped around the drill pipe and could not be pulled out. As a result the up logs were not scaled properly and were not usable. Strapping the pipe out of the hole and correlating the depth of each joint will prevent the accumulation of slack in the cable.

By using multishot survey data of the inclination of the borehole, the logging company was able to reconstruct a True Vertical Depth (TVD) presentation of the log. This TVD log is for correlation with nearby vertical wells to determine the various stratigraphic layers that were
penetrated by the horizontal well. Figure 6.1 is a presentation of the TVD \log of the well and the target interval of the well.

7.0 MOTOR PERFORMANCE AND BOTTOM HOLE ASSEMBLIES

7.1 Introduction

Motor performance during drilling of the inclined section of the well is extremely important and can have considerable effect on the overall economics of the drilling operation. BDMESC has attempted to determine the optimum motor to be used in the Appalachian area which is traditionally an air drilling country. Two motors were tested in this well to determine which motor would provide the best economics of operation. Eastman Christensen recently introduced a high torque air motor designed to build angle at a rate of $9.5 \% 100$. A Baker Hughes Drilling Systems adjustable bent housing motor was also used during the angle building phase of drilling operations. Initial plans were to test the motors under a high pressure system (600 psi) but those were changed to test the economics of lower pressure systems (200-300 psi) which are less costly and more readily available in the Appalachian area.

7.2 Motor Performance and BHA's of the Angle Building Section

The first motor to be run at kickoff point was the Eastman Mach IAD which is an air drilling motor. The motor drilled from 3253' to 4324' (1071') in four separate runs. The first run was from 3253' to 3487' (234') in five hours. The motor was pulled to change the configuration because if was not building fast enough. The average rate of penetration was $46.8 \mathrm{ft} / \mathrm{hr}$.

The motor was run with an air rate of 2000 scfm. The bit contained three $16 / 32$ nd inch jets in hopes that the lower air velocity around the steering tool would prolong the life of the steering tool. The standpipe pressure was 290 psi and the average calculated flow rate through the motor was 810 ppm . Oil was injected at an average rate of 10 gallons per hour.

TVO LOG

Initially, SAE 30 motor oil was used. Eastman indicated that a much higher viscosity motor cill would probably be better. The oil was changed to hammer oil which increased the standpipe pressure and slowed the motor penetration rate slightly. Changing back to the motor oil reduced standpipe pressure and increased penetration rate.

The bend in the motor had been set at 1.1° with $83 / 8^{\prime \prime}$ stabilizer near the bit and a $7-7 / 8^{n \prime}$ integral blade stabilizer above the motor. The motor generated an average dogleg severity of $5.9 \% 100$. According to Eastman, the motor should have built at $8^{\circ} / 100$.

Run number two was from 3487' to 3603 ' (116') in 2.75 hours. The motor was pulled because it was not building fast enough. The average penetration rate was $42 \mathrm{ft} / \mathrm{hr}$.

The bend in the motor had been set at 1.3° (maximum) and the top stabilizer was left off. Eastman predicted the motor would build at $9.5 \% 100$. The operating parameters were the same as the first run.

The motor generated an average dogleg severity of $5.6^{\circ} / 100^{\prime}$ as calculated from the multishot data. The build rate still was not fast enough. The motor was pulled from the hole to make another adjustment.

On the third motor run, a 1.5° bent sub was placed on top of the motor leaving the bend in the motor set at 1.3°. Eastman could not predict the build rate with their computer program. The third motor run drilled from 3603^{\prime} to $3817^{\prime}\left(214^{\prime}\right)$ in 6.75 hours. The average penetration rate was $31.7 \mathrm{ft} / \mathrm{hr}$. The average dogleg severity was $7^{\circ} / 100^{\prime}$ which still was not enough.

The motor was pulled and the hole size was reduced to $81 / 2^{\prime \prime}$. No jets were put in the $81 / 2^{\prime \prime}$ bit in order to increase the penetration rate. The bent sub and housing were not changed. This fourth motor run drilled from 3817 to $4324^{\prime}(507$ ') in 10.75 hours. The average penetration rate was $47.2 \mathrm{ft} / \mathrm{hr}$. The average dogleg severity was $8.4^{\circ} / 100^{\prime}$ which was not enough to hit the target TVD of 4010' but would allow the well to be horizontal at a TVD near 4100'.

The equivalent flow rate throughout the motor was 1563 ppm with a surface pressure of 185 psi. The oil rate was gradually reduced from 5 gallons per hour to no oil injection at all. However, there was still plenty of residual oll in the drill string.

The motor was pulled because the steering tool falled. At the time, its was not known whether the steering tool or the motor configuration caused the problem, so the Eastman motor was not rerun. The average rate of penetration of the Eastman motor was 42.0 feet per hour.

The Baker Hugnes Drilling Systems Adjustable Bent Housing Motor was run slick (no stabilizers) with the bend set at the maximum of 2 degrees. Four separate runs were also made with the Baker motor. The motor drilled from 4324' to 4610'; a total of 370^{\prime}. The total length drilled is more than the measured depth along the wellbore because the hole was sidetracked. Approximately 103 feet of side track was drilled which could not be used.

The first run with the Baker motor (motor run \#5) drilled from 4324' to $4374^{\prime}\left(50^{\prime}\right)$ in 1.25 hours. The average penetration rate was 40.0 fthr . The motor was pulled because of a problem with the steering tool.

The second run (motor run \#6) drilled from 4374' to $4422^{\prime}\left(48^{\prime}\right)$ in 1 hour. The average penetration rate was 48 fthr and the motor was again pulled because of steering tool problems.

The third run (motor run \#7) with the Baker motor sidetracked the well at 4338' and drilled to 4502' when the steering tool failed. The motor drilled 164^{\prime} in 4.25 hours with an average penetration rate of 38.6 $\mathrm{ft} / \mathrm{hr}$.

The remainder of the build section was drilled with the fourth run (motor run \#8). The motor drilled from 4502' to 4610^{\prime} (108') in 3.25 hours. The average penetration rate was $33.2 \mathrm{ft} / \mathrm{hr}$.

The only change made with the motor was to change the bit jets between runs number two and three. The jet nozzles were changed from one $11 / 32$ nd and two $14 / 32$ nds to two $11 / 32$ nds and one $14 / 32$ nds. For
the first two motor runs, the equivalent flow rate through the motor was 622 gpm . For the last two motor runs, the equivalent flow rate through the motor was 549 gpm . Both flow rates exceed the manufacturers reconimended maximum, but no problems were experienced with the motor.

The flow rate at the surface was 1600 scfm. The surface pressure for all four motor runs ranged from 280 to 320 psi with the lower pressure corresponding to the larger jet sizes. The 300 psi pressure was selected to find out if the motors could be run without a high pressure air package. The high pressure package is not readily available in the area and is expensive to rent. Being able to drill with lower pressures would reduce the overall cost of the well.

Also, it was noted that taking the jets out of the bit with the Eastman motor increased the penetration rate. Using the larger jets in the Baker motor also increased the penetration rate. Larger jets increase the equivalent flow rate through the motor and therefore, the rpm. The Baker motor averaged 38.3 fthr in this well compared to $20 \mathrm{ft} / \mathrm{hr}$ in the DOESterling Drilling Roane County well. There was considerably more siltstone drilled in Roane County than Putnam County. No significant change in maximum bit weight was observed.

An air-mist drilling fluid system was not used with the Baker motor. For lubrication, SAE 30 motor oil was injected into the drill string at a rate of 5 to 10 gallons per hour. The motor operated the same as it had on the Roane County well which was drilled with an air-mist systern under 600 psi pressure. It seems likely that the high pressure reducing flow rate through the motor produced a lower penetration rate for the same motor.

The average dogleg severity generated by the Baker motor was $9.5 \% 100^{\prime}$. The dogleg severity in the Roane County well was also $9.5^{\circ} / 100^{\prime}$.

The Eastman motor had 25.25 drilling hours and 0.75 circulating hours (total 26 hours). The Baker motor had 9.75 drilling hours and 11.25 circulating hours (total 21 hours). The Baker motor had more circulating hours, because the pipe had to be pumped part way out of the hole each
time the motor was tripped out. The Eastman motor had a faster rate of penetration by 3.6 feet but could not build angle at the well design rate of $8 \% 100$ feet of penetration. Table 7.1 compares the two motors during their eight motor runs.

7.3 Rotary Directional Drilling Assemblies for Horizontal Section

Two rotary, directional drilling assemblies were used to drill the horizontal/slant section of the well from 4610' to total depth. The first assembly consisted of a $77 / 8^{\prime \prime}$ bit, float sub, $3-$ pt reamer, $x-0$ sub, and two monels. The assembly is the same as that used in the BDM/DOE Wayne County well except the button cutters in the 3 -pt reamer had been replaced with flat cutters. Since the TVD was already deeper than desired, dropping much more inclination would not have been desirable. It was assumed that the flat cutters would reduce the dropping tendency or even cause a slight building tendency.

The building assembly is BHA \#6 in Appendix B. The assembly drilled from 4610^{\prime} to $5126^{\prime}\left(516^{\prime}\right)$ and built inclination at a rate of $0.7^{\circ} / 100^{\prime}$. No consistent walk tendency was established. The inclination at 5126' was projected to be 95°, and the wellbore needed to drop through the rest of the target interval. Without running a dropping assembly, it would not have been possible.

Botttomhole assembly \#7 (Appendix B) was run to drop inclination at about 1 to $1.5 \% 100$. Unfortunately, it would not go into the sidetracked hole. Each time it was tried, the assembly would go into the hole that ended at 4422'.

Bottomhole assembly \#8 was run as an alternative assembly. The assembly consisted of a $77 / 8^{\prime \prime}$ bit, bit sub, short drill collar (10.75'), 3 pt reamer, $x-0$, float sub, and two monel drill collars and is considered a short pendulum assembly. The pendulum would probably drop faster than necessary, but the options were limited by the sidetrack at 4338 '.

BHA \#8 drilled from 5126' to 5763'. One slight modification was made in the assembly at a depth of 5763'. To help reduce drag going into

Table 7.1 Comparison of Rates of Penetration of Motors
 During Angle Bullding Drilling

RATE					$\operatorname{RATE}(\mathrm{FT} / \mathrm{HR})$		AVG BUILD	
EASTMAN	1	5 hours		234	46.8		5.9 D	Deg/100'
AIR	2	2.75		116	42		5.6 D	Deg/100'
MOTOR	3	6.75		214	31.7		7.0 D	Deg/100'
	4	10.75		507	47.2		8.4 D	Deg/100'
SUBTO'TAL		25.25		1071	41.9	AVG	6.7 D	Deg/ 100^{\prime}
BAKER	5	1.25		50	40.0		7.82	Deg/100'
BENT HOUSE	6	1.0		48	48.0		10.43	Deg/100'
MOTOR	7	4.25		164	38.6		11.52	Deg/100'
	8	3.25		108	33.2		8.05	Deg/100'
SUBTOTAL		9.75		370	40.0	AVG	9.5	Deg/100'
TOTAL		35 hours		1441	41.2	AVG	8.9	Deg/100'

the hole, one of the two monels were laid down and is shown as BHA \#9 in Appendix B.

The average drop rates for BHA \#8 and BHA \#9 were 2.34\%100' and $2.75 \% 100$ ', respectively. Because of the problems with the multishot surveys, the walk tendency of BHA \#8 can not be determined. BHA \#9 walked $1.94 \% 100$ to the left.

All the rotary assemblies were run with a bit weight of 20,000 to 25,000 pounds and rotary table speed of 60 rpm . The lower bit weight was to keep the drill pipe from bucking in the horizontal and build sections. Drill collars were placed at the top of the build section to provide the weight necessary to keep the drill pipe from buckling in the vertical section of the hole. The collars were also used to help push the pipe into the hole on trips and connections. The placement of the collars can be seen in Appendix B for each of the rotary assemblies when they were run in the hole. Drilling continued until the collars reached a maximum inclination of 45°. Then the pipe was tripped and the collars moved up the hole.

8.0 DIRECTIONAL CONTROL OPERATIONS

8.1 Introduction

in drilling a horizontal or slant well, one of the most important aspects of the drilling operation is obtaining data relative to the azimuth and inclination of the drill bit. In areas where mud is the preferred circulation medium, tools have been developed, which provide this data reliably and consistently, however, in the Appalachian area where air is used as the circulating medium, tools have not yet been hardened to provide reliable operations expected from mud drilling in other parts of the country.

8.2 Steering Tool Operations

Problems with the steering tool were the most costly and time consuming problems encountered during the drilling of the well. The steering tool had been pulled from the hole seven times because it was not
performing properly. In addition, almost two days of rig time were spent waiting on steering tools.

Smith International had initially brought four, two axis probes to the location. The first probe operated without any problem from the kickoff point to around 3900' whe it failed. The probe apparently shorted out after the driller's panel was sfrayed with water on the rig floor.

The second probe was run and drilled 1.5 hours before it was pulled (at approximately 3960'). The tool face had been bouncing around and it became difficult to tell which way the motor was pointed. Even though the tool had not failed, a third probe was run inside a fiberglass case (instead of steel). The fiberglass case was supposed to reduce the vibration on the tool.

The tool face still bounced significantly while drilling and became progressively worse as the inclination increased. The air rate was lowered to as much as 1400 scim but it made no difference. Surveys had to be taken after connections because it took over ten minutes for the probe to settle down. As soon as the air was turned back on, the probe would again vibrate.

At a depth of 4249', the probe had turned 90° to the right with respect to the motor tool face. Initially, it was thought that the motor had actually turned 90°. Drilling continued to 4324' when the surveys indicated the well was turning left. In reality, the steering tool barrel had rotated with respect to the mule shoe stinger. A nut holding the mule shoe stinger fixed in place had vibrated loose allowing the barrel to turn while making a connection. The tool was pulled out and the motor tripped out to retrieve the stinger.

The third probe was run back in after repairing the barrel. Drilling continued for one half hour but the tool was bouncing around too much to get any good information out of it. The fourth and last probe was run and drilling continued for three quarters of an hour before it was pulled for the same reason.

The probes would not give accurate tool face information above an inclination of 70°. A three axis probe was required. Eastman's steering tool which has a three axis probe was ordered out.

The Eastman tool was run in the hole. While tripping to bottom, the generator quit and had to be restarted. When power was returned to the tool, it was no longer working. Eastman felt that a power surge probably shorted out the tool.

The first tool was pulled and a second Eastman steering tool run. As soon as the air was placed on the well, the tool began to bounce around. A total of 48 feet was drilled, but the tool face was so erreic that it was not possible to tell which way the motor was oriented. The second Eastman probe was pulled from the hole and the drill pipe tripped out.

An attempt was made to orient the motor using Geoscience's Electromagnetic Measurement While Drilling Unit (EMWD) but the tool could not get a signal to the surface. No drilling was done with the EMWD while waiting for additional steering tools to arrive on location.

Smith arrived with two, three axis probes shortly after tripping out of the hole. The three axis probe was run and performed much better than the two axis probes. The tool face still bounced around but not enough to halt drilling.

On a connection at 4502', the steering tool again failed. The tool was pulled from the hole and the barrel was found to have parted above the probe. The pipe was tripped out of the hole to recover the remainder of the steering tool. The barrel was repaired and drilling continued to 4610^{\prime} when the desired inclination and direction were obtained.

Judging from the difference between the performance of the two and three axis probes, Smith's two axis probe was not capable of giving a reliable tool face above 70°. Smith had thought there would be no problem obtaining tool face; however, surveys would have had to be run to get inclination and direction.

8.3 MWD Tool Operations

Geoscience Electronics has modified MWD tools which were used successfully in fluid systems for drilling river crossings for application in the harsh air drilling environment of the Appalachian Basin. The early system failures were related to extreme buffeting by the 2,000 to 3,000 cfm air flow volumes. These problems have been reduced by continued work with DOE so that they do not loom as a major factor in the potential application.

The tool was placed in the drill string for testing and use when the wireline steering tools had failed and while waiting on replacement probes. The system was tested on the surface when going in the hole, and again every 500 feet going down 3200 feet, but when the tool was in position at the bottom of the hole at 4222' (inclination of 83°) a signal with tool face orientation data could not be received back at the surface. Apparently the problem was a mixture of lack of signal strength caused by a mismatch in formation impedance. It would seem that impedance matching at the location based on offset well resistivity log data is a flexibility that will be required to make this unit function in any future horizontal well applications. A mid-drill string signal, repeater may be required to boost signal strength while maintaining battery life of the primary unit.

9.0 ANALYSIS OF DRILLING OPERATIONS

This drilling project was planned to be drilled in the most economic manner to obtain data for analyzing the economics of slant/horizontal drilling in the Devonian Shales. This report was prepared to discuss the results of new drilling techniques that were tested and the performance of current "off the shelf" technologies utilized during the drilling operations.

The major success during this drilling operation was the increase in the rate of penetration during the angle building phase of the operation. This is due to the use of high torque, low speed downhole motors which were operated at pressures of 250 to 350 psi with air flow rates ranging
from 1700 to 2000 cubic feet per minute (cfm) of air. Another innovation was the use of oil which was injected at slow rates (5 gallons per hour) to lubricate the downhole motors. This method prevented damage to the formation from water in the normal foam-air mist system used and saved several thousand dollars in chemical costs for the air-mist mixture.

The biggest problem which continued to plague the air-drilling aspect of directional drilling was the steering tools which need to be hardened for air-drilling operations. This resulted in four or five additional days of daywork repair costs. Steering tool service companies are lagging behind in this aspect of directional drilling operations.

Another test was made of the electromagnetic measurement while drilling system (EMWD) which failed because the equipment could not put enough power into the signal so that it could be detected at the surface. There seemed to be a problem of impedance matching of the transmitted signal to the formation being penetrated. This system seems to have promise when the problem can be solved and the signal can be received back at the surface.

Mud logging operations have been very successful and useful on the air-drilled directional wells. Continuous monitoring of the air strearn has shown where gas was being produced from the target horizons and helped in the placement of external casing packers for completion operations. It would be difficult to know the formations penetrated without the use of a mud logging unit and sample examination.

Conventional geophysical logging operations continue to be difficult and fraught with numerous problems which can impact the quality of logs obtained. A good set of logs were obtained when the tools were being pushed into the hole on the drill string, but failure to keep proper tension of the line resulted in unusable logs on the return trip and the destruction of about 3,000 feet of logging cable.

The video log, which is considered a key log in a horizontal well because of the information that can be obtained about the spacing and of natural fracture orientation, was a failure during this operation. Video cameras require special cables and, therefore, accommodating the cable in
side-door subs and power connect operations seemed to be the major source of problems which produced the failure in the Hardy HW\#1 well operations. The tool worked to a point where the hole had reached ninety degree inclination when the "hot connect" which provided power for the lights and camera failed ostensibly because of the lack of slack in the line below the side-door sub.

10.0 COMPLETION OPERATIONS

10.1 Introduction

The completion design of the Hardy HW\#1 well was based largely on the results of the successful completion of the previous DOE-sponsored horizontal well in Wayne County, West Virginia (BDM/RET\#1). The BDM/RET\#1 well had been successfully completed with a $4-1 / 2^{\prime \prime}$ casing liner with 7 different zones being isolated from each other by inflatable casing packers. Access to each zone was provided by two port collars which could be open and closed using special tools. This system allowed testing, production, and stimulation of individual zones or group of zones as necessary.

The BDM/RET\#1 well was an experimental well and more zones were isolated for completion than would normally be done in a well completed for purely commercial purposes. One of the purposes for the Hardy HW\#1 well was to replicate the previous BDM/RET\#1 test, but to do so using drilling and completion technology more representative of that which would be more likely to be used by industry in a purely commercial well. Therefore, the completion design was limited to the identification of four zones for appropriate stimulations. Figure 10.1 shows each of the four zones on the wellbore schematic and Figure 10.2 shows where the zones occur with respect to the true-vertical-depth (TVD) log of the well.

As can be seen from Figure 10.2, the best gas "shows" were in intervals at 4004-4010 feet TVD and 4050-4058 feet TVD. Both Zone 1 and Zone 2 penetrated the lower interval of good shows. Zone 4 penetrated both intervals of good shows. Zone 3 did not penetrate either of the two

Figure 10.1
best intervals but did penetrate an interval which had gas shows at 40754081 feet TVD.

10.2 Casing design

In order to isolate the four zones for individual stimulation, the well was cased with $4-1 / 2$ inch, $10.5 \# / \mathrm{ft}, \mathrm{J}-55, \mathrm{ST} \mathrm{\& C}$ casing. Options considered for isolating the individual zones included conventional cementing of the casing with perforations to access the individual zones, use of inflatable casing packers in the casing string with port collars to access the zones as was done in the BDM/RET\#1 (Reference 1) well, a combination of these two techniques.

Because of the relatively successful completion of the BDM/RET\#1 well, the casing packer - port collar option was selected for completing the Hardy HW\#1. Five TAM International, Inc. casing packers were placed in the casing string at measured depths of 6014, 5515, 4765, 4390, and 4106 feet. The original completion plan called for 5 TAM International, Inc. port collars to be placed in the casing string with one of the port collars fitted with a "bull plug" for opening with applied pressure and another fitted with a "baffle" for opening by dropping a ball and applying pressure. This design should have allowed the farthest two zones to be accessed and stimulated with a conventional ball-and-baffle technique and without having to use an "opening tool" to open the port collars. The final design, however, utilized only three of the five available port collars because the two specially-fitted port collars could not be run. This was because of a decision not to complete the lower-most section of the wellbore and to isolate the section with a casing packer. The casing packer would have been impossible to inflate and set with the bull-plugged port collar above it. The three remaining port collars were placed in Zones 1,2, and 3. (The lower zone numbers indicate zones farthest from the wellhead.) Zone 4 was left without a port collar because it was in a position where it could be conventionally perforated using wireline equipment. A fourth "spare" port collar was placed above the shallowest casing packer for use in cementing the casing in that part of the hole.

The size, weight, and grade of the casing, 4-1/2 inch OD, 10.5\#/ft, J55; respectively were designed to meet stimulation requirements. Based on hydraulic fracture treatments on nearby vertical wells, bottomhole treating pressures were expected to be approximately 1200 psi. Using the bottomhole treating pressure and service company friction factors for the injection of foam, tophole treating pressure for injecting 60 barrels per minute of 80 -quality foam down $4-1 / 2$ inch casing was estimated to be less than 3500 psi. After derating the pipe to account for bending stresses in the inclined hole, it was determined that $10.5 \# / \mathrm{ft}, \mathrm{J}-55$ grade pipe would meet all design requirements.

10.3 Inflation of Casing Packers

The procedure selected for inflating the Tam International casing packers was to first inflate and then test the uppermost packer, (Packer \#5) which would be supporting the cement to be injected above the producing zone as a permanent water barrier. Upon the successful inflation of packer \#5 and cementing the casing above it, the remaining packers would be individually inflated and tested. If packer \#5 could not have been successfully inflated, then packer \#4, the next uppermost packer, would have been used to support the cement column. The fluid of choice for inflating the packers was nitrogen, a non-damaging fluid in the event of a packer element failure. After the inflation of a packer, the remaining nitrogen would then be used to inject into one of the zones adjacent to the packer while observing flow from the zone on the other side of the packer to verify the packer's integrity.

Packer \#5 was successfully inflated after two attempts. The close spacing (approximately two feet) of the inner cups on the TAM Combo Tool required precise positioning of the tool to inflate the packers. Normally, the tool is used to inject through port collars and the tool is automatically in position upon using the tool to open the port. To position the tool for inflating the packers, it was necessary to locate the nearest port collar, and then move the tool the measured distance to the packer. On the first attempt to inflate packer \#5, the tool apparently was located a few inches too low. The second attempt was successful after one of the inner cups on the Combo tool was removed to expand the working length of the tool to 2.9 feet. It was later learned that the Combo tool did not
always provide positive identification of the port collars and that tubing drag could cause the port collars to be mislocated. The tool was later modified in the field to give it an even longer working length and to better centralize its opening dogs to provide positive engagement of the port collar shifting ring.

The procedure described above was used to individually inflate the remaining packers. With the modified tool, minimal problems were encountered in inflating the rest of the packers. Rig time to inflate the first packer, packer \#5, was approximately sixteen hours. Rig time to inflate the next packer using the longer tool (12-foot cup separation) was about 6.5 hours.

10.4 Cementing

Although the basic completion method for this well was essentially open-hole with a liner, one section of the casing was cemented in place. The casing immediately above the uppermost casing packer was cemented from approximately 4057 feet to 3500 feet measured depth with 130 sacks of Class A cement. The purpose of this cement was to establish a permanent barrier against any water that might enter the wellbore above the productive interval.

The cementing operation was conducted by pumping the cement through a port collar immediately above the upper most casing packer using TAM International's "Combo" tool. The Combo Tool is a speciallybuilt tool for selectively opening or closing ports while simultaneously providing the capability of injecting or producing fluids (e.g. cement slurries) via the tubing through an opened port between opposing cups on the tool. The cement was displaced from the tubing with water and a rubber plug. The cement was "overflushed" with approximately half a barrel of water, the plug was "bumped" with 800 psi, and the tubing head valve was closed. The port was left open and the combo tool left in place while the cement set overnight because differential pressure on the combo tool cups prevented movement of the tool. Even though the cement had been flushed from the tubing with a half-barrel of excess water, the combo tool was difficult to move the next day. After it was recovered from the well, the tool was found to have several pleces of cement in it.

11.0 STIMULATION

11.1 Introduction

The Hardy HW\#1 was stimulated with 80-quality foam and 20-40 sand as the proppant in Zones 1 and 2. Zones 3 and 4 were stimulated as a single zone using nitrogen only as the working fluid. Only Zone 1 was stimulated as originally planned. The stimulation treatments for Zones 2,3, and 4 had to be modified in the field in order to obtain at least partial success.

The initial stimulation designs for the Hardy HW\#1 well were based primarily on the favorable results of the stimulations conducted on the BDM/Eneger/DOE well in Wayne County, WV. Because of the ease with which the Wayne County stimulations were executed, the stimulations for the Hardy HW\#1 were very similar except that much higher rates were planned for the Hardy well. The high rates were used to assure adequate treatment volumes and rates for treating multiple fractures with sandladen fluid. Table 11.1 summarizes the stimulations originally planned and those which were actually performed on each zone. As is illustrated in the table, the original intent was to size the treatment volumes approximately proportionate to the length of the respective zones.

11.2 Treatment of Zone 1

As can be seen in Table 11.1, Zone 1 was expected to have the highest treating pressure of all zones. The zone was farthest from the wellhead and would be expected to have the highest frictional pressure loss. In fact, however, Zone 1 was found to have the lowest treating pressure, and was the only zone for which design rates and volumes were achieved.

The closure pressure for Zone 1 was estimated at approximately 1600 psig (bottomhole) based on stimulations of nearby vertical wells. The actual closure pressure based on the breakdown of the formation with nitrogen was about 1200 psig (see Figure 11.1). Total frictional pressure losses were estimated to be 2800 psi based on service company correlations. Adding the friction pressure to the estimated closure

Table 11.1
Summary of Frac Treacments for the Hardy HW \#1

Planned	Zone	Zone	Zone	Zone
Planned				
Fluid Type	Foam	Foam	Foam	Foam
Volume (bbl)	2000	2800	1500	1200
Amt Sand (lbs)	170,000	250.000	125,000	100,000
Rate (bpm)	©	60	60	60
Max. Pressure (psis surriace)	3800	3550	3300	3150
Actual for eacin zone	1	2	3-4 (Com	
Fluid Type	Foam	Foam	Nitroge	
Volume (bbl)	1800	450	420 (foa	mmai N2
Amt Sand (lbs)	140.000	5000	8000	
Rate (bpmi)	60	20	60 bpm .	scim
Treating Pressure	2000	3200-4000	3200-400	

Table 11.2
Flow-oacx Summary ior Frac job on Zone-1

Water	Gas Flow			Choise			'Wauger
	Time	Diameter increas)	Pressure pesiey	Recovery bbls;	Recovery (pew)	Measurement (mseriday)	
0241490	1625	0.250	1200	0	0	-	
02/1590	0800	0.250	720	6	1.7	-	
02/1590	1100	0.375	-	-	-	-	
02/1590	1545	0.375	\cdots	9	2.4	-	
02/1590	1610	0.438	36	-	-	--	
02/1590	2330	0.563	\%	\cdots	-	-	
02/1690	0200	0.563	40	45	12.5	-	
02/1690	0800	2.000	40	47	12.9	507	
02/16/90	1230	2.000	-	-	-	163(mist)	
02/1690	1530	2.000	-	47	13.1	313	
02/1790	0800	0.375	472	-	-	-	
02/1780	1100	0.563	.--	56	15.5	-	
02/1790	1700	0.563	-	60	16.6	267	
02/1890	0800	0.563	493	60	16.6	-	
02/1890	1600	2.000	-	64	17.7	292	

pressure of 1600 psi and then subtracting the hydrostatic pressure of the foam column (approximately 600 psi) resulted in the estimated treating pressure of 3800 psig. The actual treating pressure never exceeded 3000 psig, however, suggesting either lower frictional losses, a lower closure stress, or both.

Most, if not all, of the difference in estimated versus actual treating pressure was due to lower-than-predicted frictional losses. Although the nitrogen breakdown indicated a closure stress of 1200 psi or about 400 psi less than predicted, analysis of the shut-in period after stimulation indicated that closure stress had increased to approximately 1650 psi (see Figure 11.2). Therefore, the lower-than-expected treating pressure was due mainly to less total friction than predicted.

The stimulation of Zone 1 was executed with very few problems. The only major problem in execution resulted from malfunctioning service company monitoring equipment and a miscommunicaton of remaining sand volume. As a result, only 140,000 of the planned 170,000 pounds of sand was actually used in the job.

Following the treatment, the well was flowed back on a 0.25 -inch choke overnight. Choke sizes were then increased stepwise during the next two days of flow back to a full 2 -inch opening. Table 11.2 shows the flow back summary for Zone 1 . Only 64 barrels or about $1 / 6$ of the treatment water was recovered during the flow back period. The gas open flow rate after being open eight hours on the fourth day of flow back was measured at $292 \mathrm{mcf} / \mathrm{day}$.

11.3 Treatment of Zone 2

The overall plan for Zone 2 was to close the port collar to Zone 1, open the port collar to Zone 2, and then to stimulate Zone 2 with a foam frac treatment similar to, but proportionately larger than, Zone 1. Because of difficulty in being able to positively engage, open, and close the port collars with TAM International's "Combo Tool," an excessive amount of time was spent attempting to position the port collars for the stimulation of Zone 2. Over eighty hours of service rig time was utilized in attempting to position port collars and in placing a retrievable plug
HARDY HW\#1, PUTNAM COUNTY, W. VA.

below the port collar serving Zone 2 prior to the first attempt to stimulate Zone 2.

After a series of unsuccessful attempts to close the port collar to Zone 1, an inflatable packer (plug) was placed in the casing between Zone 1 and 2. Initial attempts to set the packer by inflating it with nitrogen failed, and the packer was then set by inflating it with water. The port collar to Zone 2 was then opened so that the zone could be accessed for stimulation.

The first attempt to stimulate Zone 2 failed. Figure 11.3 shows the nitrogen breakdown chart for Zone 2. The similarities and differences between Figures 11.1 (Zone 1) and 11.3 (Zone 2) are worthy of note. Both curves flattened at about 1900 psig, but the pressure began to rise again on Zone 2 before flattening again at about 2300 psi. The falloff curves for the two zones are also quite different in that Zone 1 fell off rapidly dropping 800 psi within the first minute, then leveling off at about 1000 psi. Zone 2, on the other hand, took twice as long to drop 800 psi and never really leveled off at all except for a brief time at about 1300 psi. The distinct change in the rate of pressure decline at 1300 psi indicated a bottomhole closure pressure of approximately 1500 psig or about 300 psi more than was estimated from the nitrogen breakdown of Zone 1. The fact that the pressure continued to decline at a relatively rapid rate after fracture closure indicated that one or more natural fractures were continuing to accept nitrogen at a relatively high rate (2 to $3 \mathrm{mmscf} / \mathrm{day}$) even though pumping had ceased. As shown in Figure 11.3, the pressure declined to 800 psi within 13 minutes, after which pressure was no longer monitored.

During the initial nitrogen breakdown, a nitrogen pump truck malfunctioned causing an overnight delay in executing the frac treatment. On the day following the initial breakdown, a second breakdown or nitrogen "pre-pad" was injected into the formation. Injection rates were similar to the initial breakdown, but the pressure response was somewhat different (see Figure 11.4). The pressure climbed to nearly 3100 psig before leveling off compared to 2300 psig the previous day. It should be noted, however, that the final injection rate during the initial breakdown was only $24,000 \mathrm{scfm}$ compared to more than $30,000 \mathrm{scfm}$ during the
Hardy HW No. 1 - Zone 2
Nitrogen Breakdown (First time)

Figure 11-3, Nitrogen Breakdown (Prepad) of Zone 2 (First Time)
second injection period. Therefore, the increase in injection pressure was most likely due to the higher frictional losses associated with the higher rate.

After the nitrogen prepad was injected, a 50 -barrel foam pad was injected at three rates increasing stepwise from 20 bpm to 40 bpm and 60 bpm. Figure 11.5 shows the pressure response that resulted from the foam pad injection. As shown in Figure 11.5, the injection pressure quickly grew to over 4000 psig, which was above the design safety pressure thus shutting down the frac job before any sand-laden foam could be injected.

Because of the apparent increase in frictional losses associated with this zone compared to Zone 1, it was believed possible that the retrievable packer had shifted after the initial breakdown and had partially blocked the port collar. After a series of attempts, the packer was finally retrieved and replaced by a new packer and another attempt was made to frac the well. Figure 11.6 illustrates that aborted attempt. On the possibility that the port collar accessing Zone 2 might be partially closed, the casing adjacent to Zone 2 was perforated with thirty 0.47 -inch holes to assure access to the formation and to minimize friction loss within the casing system.

After the 30 perforations had been placed in the casing adjacent to the zone, a final attempt was made at fracing Zone 2. Pressures associated with the nitrogen prepad injection are shown in Figure 11.7. The pressure response was typical of previous attempts, with the maximum pressure reaching over 3250 psig at an injection rate of approximately $33,000 \mathrm{scfm}$. Figure 11.8 illustrates the predictable results at injection rates of 60 and 40 bpm of 80 -quality foam. The job "sanded off" at approximately 17 minutes into the job while injecting a foam slurry with $1.5 \mathrm{lb} /$ gallon of $20 / 40$ sand. (See Figure 11.9).

11.4 Analysis of Problems in Fracing Zone 2

During the several attempts to frac Zone 2, various hypotheses were proposed to explain the peculiar behavior of the zone. These hypotheses ranged from downhole equipment problems to pre-stressing of the
Hardy HW No. 1 - Zone 2

HARDY HW-1, Putnam County, W. Va.
Attempt to Frac Zone-2 with New Packer

Figure 11-6, Aborted attempt to frac Zone-2 after Replacing Packer.
Hardy HW No. 1, Putnam County, W. Va.

Hardy HW No. 1, Putnam County, W. Va.

Time, minutes
Figure 11-9, Foam frac on Zone 2 showing Screen out
formation by the preceding frac treatment on Zone 1. Suggested explanations included the following:

1. Blockage of port collar by retrievable packer
2. Closed or partially closed port collar
3. Mud, sand, or rubble behind the casing
4. Zone 2 fractures filled by sand when Zone 1 was fraced.
5. Stress build-up in formation by prior frac in Zone 1.
6. Too many natural fractures to inflate for the avallable rate.
7. Interval too long for effective stimulation.

Initially, the first three suggested explanations appeared to have the most merit; however, after careful examination of the data, the latter two appear to be closer to the answer. The first two suggestions, both of which imply restricted exit from the casing, were essentially ruled out when additional perforations failed to correct the problem. Although explanation number three cannot be completely ruled out, it would seem - likely that loose material subject to cyclic fluid movement in the annular space behind the casing would cause more erratic pressure behavior than was observed. Likewise, explanation number four cannot be completely ruled out, but it does not seem likely to have occurred, especially at the pressures observed during the Zone 1 frac treatment. While frac fluids probably "leaked off" from Zone 1 into Zone 2, the movement of sand into Zone 2 fractures would have to have involved a fracture parallel to the wellbore, not a likely occurrence at the observed frac pressures.

Explanations six and seven are essentially the same in that a longer zone implies more fractures, and this is close to the most logical explanation. To initiate a fracture in shale in a horizontal wellbore in a plane other than one containing the wellbore itself, there must be preexisting natural fractures. Otherwise, the shale is so uniformly impermeable that it would be impossible for fluids to break out of the wellbore without first initiating a longitudinal fracture along the wellbore. The same problem exists with a uniformly permeable formation where the frac fluid enters the formation on a uniform front along the length of the horizontal wellbore. Since no differential stresses are created parallel to the wellbore except at the very ends of the injection
zone, it is nearly impossible to create a fracture that is perpendicular to the wellbore, regardless of the minimum stress orientation. A situation similar to this very well may have existed in Zone 2.

Zone 2 had a number of fractures recorded on the mud log. Based on the ability to inject nitrogen into the zone at relatively high rates ($2-3$ mmofd) while at relatively low pressures (less than 1100 psig), it would appear that several fractures were capable of accepting fluid. If these fractures are in clusters of relatively closely-spaced fractures, then it may have been almost impossible to drive one or more fractures perpendicular to the wellbore and of a width sufficient to accept a highdensity sand-laden fluid. Figure 11.10 illustrates the difficulty of inflating closely-spaced fractures from the horizontal wellbore. At the final rate of 20 bpm with foam and 1.5 ppg sand, the estimated bottomhole treating pressure was over 4000 psig, far above the calculated minimum horizontal stress value of approximately 1500 psig.

11.5 Stimulation of Zones 3 and 4

After the extreme difficulty encountered in fracing Zone 2, plans for the stimulation of Zones 3 and 4 were modifled. A shrinking budget necessitated reducing the cost of the remaining stimulation work. Therefore, Zones 3 and 4 were combined and stimulated as a single zone (Zone 3-4). Because a large amount of sand remained on location after the failure to execute the large treatment on Zone 2, another high volume, high rate foam frac was attempted on Zone 3-4.

Zone 3-4 was perforated with 42 holes between measured depths of 4207 and 4476 feet. Ten of the holes were in Zone 3 between 4430 and 4476, measured depth, and 32 holes were in Zone 4 between 4207 and 4370 feet, measured depth. The "select-fire" perforating gun on rollers fell freely to 4420 feet (81° of inclination from vertical) and was pumped to 4476 (85° using nitrogen (8000 scfm).

Zone 3-4 was then stimulated with an 80 -quality sand-laden foam. Figure 11.11 shows the pressure response during the stimulation of Zone 34. Sand concentration reached a maximum of $1.5 \mathrm{lbs} / \mathrm{gal}$ into the fracture(s) before "screening out." This screen-out was similar to the
甾

Hardy HW-1 - Zoame 3-4

screen-out in Zone 2 in that the maximum sand concentration reached was $1.5 \mathrm{lbs} / \mathrm{gal}$; however, the Zone $3-4$ screen-out occurred while foam was being pumped at 60 bpm compared to 20 bpm that had been pumped into Zone 2. In both cases, however, the screen-outs occurred almost simultaneously with the arrival of the $1.5 \mathrm{lbs} / \mathrm{gal}$ sand concentration at the formation face. Prior to the screen-out in Zone 3-4, nitrogen breakdown and pre-pads of 134 mcf and 135 mcf had been injected at $35,000 \mathrm{scfm}$ and 1900 psi (surface). Just prior to the screen-out, the surface injection pressure was approximately 2700 psi (estimated BHP was 1600 psi. based on service company correlations). Total sand-laden fluid injected into the formation was only 1000 gallons.

After partial clean-up of fluids from the first attempt to foam frac Zone 3-4, a second attempt was made. During this attempt, no sand was injected. Very quickly, after the arrival of the 80 -quality foam at the formation face, the injection pressure rose to 3700 psi (surface) and the treatment was halted (Figure 11.12). The foam was allowed to flow back from the well and the treatment was continued using only nitrogen. The final stimulation of Zone 3-4 consisted of $2,867,000$ scf of nitrogen injected at an average rate of $50,000 \mathrm{scfm}$. The treating pressure ranged from 2850 to 3400 psi (surface) with the highest pressure being recorded within the first four minutes after restart of the treatment with nitrogen (Figure 11.13).

11.6 Analysis of Problems in Fracing Zone 3-4

Unlike the problems associated with fracing Zone 2, the problem of fracing Zone 3-4 appeared to be a more conventional screen-out. Zone 2 treated at 20 bpm with a bottomhole pressure of about 4000 psi , but Zone $3-4$ treated at 60 bpm with a bottomhole pressure of approximately 1600 psi immediately prior to the screen-out.

Zone 3-4 was also a candidate for injection into multiple fractures simultaneously. This would also help explain the screen-out in that the multiple fractures would cause the equivalent of high fluid loss, limiting the achievable bottomhole pressure and, hence, the average fracture width. Once a number of these fractures became filled with sand near the
HARDY HW-1, Putnam County, W. Va.
Attempt to Restart Foam Frac, Zone 3-4

wellbore, it would be difficult to continue injecting at the relatively high rates being used.

12.0 WELL TESTING OPERATIONS AND ANALYSIS

Pre- and post-stimulation well testing were conducted on BDM/Hardy \#1. On January 26, 1990 an 11-day pre-stimulation pressure build-up test was conducted.

Following the stimulation of the four zones, a 14-day post-stimulation pressure build-up test was conducted. Pressure measurements were recorded at the surface using pressure charts. In addition to the pressure build-up tests, the well was produced at a fixed rate which allowed BDMESC engineers to monitor the pressure decline, and therefore, analyze the drawdown data. The results of the pressure buildup and drawdown analyses contributed to the basic understanding of the various reservoir parameters which control the production of BDM/Hardy \#1.

12.1 Pressure Build-up Testing

Reservoir paremeters which control the productivity of horizontal wells could be estimated/caiculated as a result of the analysis of pressure build-up test data. Pre- and post stimulation results when compared, reflect the effectiveness of the stimulation techniques applied on the wells. In particular, pressure build-up test results are of importance in cases where the productive horizontal section is divided into several zones where each zone could be tested and produced separately. Pre-stimulation and post-stimulation pressure build-up testing was performed on the entire horizontal section for BDM/Hardy \#1. Individual zone testing (four zones) was not attempted.

Early time pressure build-up testing data can reveal important information/values of vertical permeability. Vertical permeability data when combined with estimated horizontal permeability values using late pressure-time data, will help verify permeability control along the horizontal wellbore.

12.1.1 Pre-Stimulation Testing and Analysis

An 11-day pressure build-up test was conducted on BDM/Hardy \#1 using downhole electronic pressure measuring devices. In addition, surface pressures were recorded using pressure chart recorders. The pressure values were recorded every one minute for a period of eleven days. Table L-1 (Appendix L summarizes the recorded pressure values). Due to time constraints and the cost associated with testing each zone separately, BDMESC and DOE/METC elected to test BDM/Hardy \#1 when all the zones were in communication in order to arrive at general reservoir parameter values for BDM/Hardy \#1.

To account for gas properties such as viscosity, and compressibility, pressure and time values were converted to equivalent adjusted pressures and adjusted effective times (Table L-1). The procedure for converting actual recorded pressure and time values to equivalent adjusted values is documented in a GRI report (Reference 2).

As a first step in estimating the pre-stimulation reservoir properties such as the stabilized reservoir pressure, average formation capacity ($\mathrm{K}_{\theta} \mathrm{h}$), and formation damage, the Rectangular Hyperbolic Method, RHM (Reference 3), was implemented to determine/estimate an average initial reservoir pressure value. A plot of pressure as a function of inverse time (Figure 12.1.1) was generated and a simple linear regression model of the best fit for pressure versus inverse time was determined. Table 12.1.1 lists input values used in the pre-stimulation data analysis.

The following equations were used to determine the various reservoir properties using the RHM technique:

$$
\text { Bg,av }=\text { Formation volume factor }=5.04(\text { Zav)T } \quad(\mathrm{RB} / \mathrm{MCF})
$$

where $\quad \mathrm{Zav}=$ average gas deviation factor, dimensionless
$\mathrm{T}=$ reservoir temperature, (${ }^{\circ} \mathrm{R}$)
Pav = average reservoir pressure, (psia)
Therefore,

$$
\mathrm{Bg}, \mathrm{av}=(5.04)(0.919)(571)=6.80 \mathrm{RB} / \mathrm{MCF}
$$

Table 12.1.1 basic reservoir and WELL data
 HARDY \#1

Input Values:
Well length (L) :
Well radius $\left(r_{w}\right)$
Reservoir gross thickness:
Productive thickness:
2020
0.328

180
50 ft
Porosity:
0.01
$r_{w D}$:
0.0003

LD:
Reservoir pressure:
Gas viscosity:
Gas compressibility:
Gas deviation factor:
Gas formation volume factor:
Reservior temperature:
Flow rate pre-stimulation
Flow rate after-stimulation

From Figure 12.1.1 the y intercept $=\mathbf{a}=$ Initial reservoir pressure $($ psia $)=704$ psia
$\mathrm{c}=$ value of the slope $=-23250 \mathrm{psia}-\mathrm{hr}$
$b=$ constant for the linear regression model at a regression coefficient, R^{2}, equal to unity, in this case $\mathrm{b}=49$ hours at $\mathrm{R}^{2}=0.9974$.

Therefore, $\mathrm{m}=2308(\mathrm{ci})$

4 (b)
$\mathrm{m}=$ equivalent to Horner's slope $=\mathbf{2 7 3 . 1 9}$ psia/cycle
$\mathrm{K}_{\mathrm{c}} \mathrm{h}=282391 \mathrm{~Bq}(2 \mathrm{~s})(\mathrm{b})(\mathrm{usv})(\mathrm{a})$
where $q=$ gas flow rate, mcfpd.
Therefore $\mathrm{K}_{\mathrm{e}} \mathrm{h}=1 \mathrm{md} \mathrm{ft}$
This technique is valid and accurate in estimating the initial reservoir pressure independent of other reservoir parameters.

In addition, to the RHM technique, type curves were implemented for the pre-stimulation data analysis. A Flopetrol Johnston/Schlumberger type curve for vertically fractured wells and pseudo steady state interporosity flow, Figure 12.1.2, was used.

A plot of change in adjusted pressure versus adjusted effective time, Figure 12.1.3, was best-fit in the aforementioned type curve. The match point values are used to estimate the average formation capacity, $\mathrm{K}_{\theta} h$, and the apparent skin, S^{\prime}, value. Therefore:

$$
K h=\frac{(1412) a(B g a v)(1 \mathrm{av})\left(\mathrm{Pa}_{\mathrm{D}}\right)}{(\Delta \mathrm{Pa})}
$$

where $\mathrm{PD}=$ dimensionless pressure value from type curve, (match point)
$\Delta \mathrm{Pa}=$ change in adjusted pressure value, (match point)
$\mathrm{K}_{\mathrm{e}} \mathrm{h}=(141.2)(18)(6.80)(0.012159812)(7.0)=1.47 \mathrm{md}-\mathrm{ft}$
(1000) NFINITE ACTING RESERVOIR WITH DOUBLE POROSITY BEHAVIOR - DSEUdo Sleady state interporosity tlow

\qquad
(i)

Assuming a productive formation thickness of 50 feet, average formation permeability is estimated at 0.029 md .

In order to compute the apparent skin factor, a value of dimensionless wellbore storage constant, C_{D}, needs to be calculated as such:

$$
C_{D}=\frac{(0,00026372(\mathrm{k})}{(0, \mathrm{av})\left(\mathrm{C}_{t}\right)\left(\mathrm{r}_{\mathrm{w}}^{2}\right)(\mu, \mathrm{av})\left(\mathrm{t}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}}\right)} \mathrm{t}_{\mathrm{emp}}
$$

where $\quad \emptyset$, av $=$ average formation porosity, (fraction)
$\mathrm{C}_{\mathrm{t}}=$ total formation compressibility, (psia-1)
$r w=$ wellbore radius, (f)
$\mathrm{t}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}}=$ match point from type curve
Δ tae $=$ change in adjusted effective time, (match point)
$C_{D}=\quad \begin{array}{ll}(0.0002637 & (0.029)\end{array} \quad * \quad 10$
(0.01) $(0.0018044)(0.16625)^{2}(0.012159812)\left(2.6 \times 10^{2}\right)$
$C_{D}=48.5$
Using the dimensionless wellbure storage constant, C_{D}, equation 12.1.6 can be used to compute the apparent skin factor, S^{\prime}. Therefore:

$$
S^{\prime}=0.5 \ln \frac{\left.\left(C_{D D^{(2)}}\right)^{2}\right)}{\left(C_{D}\right)}
$$

where $C_{D} e^{2 \mathrm{~B}}=$ match point value from type curve

$$
S^{\prime}=0.5 \ln \left(\frac{1}{(48.2)}\right)=-2.0
$$

Horner's technique was implemented in order to validate the estimates/values of the reservoir parameters using the other techniques. A plot of adjusted pressure versus adjusted Horner time was generated (Figure 12.1.4). The y-intercept at Horner time equal zero is equivalent to the estimated reservoir pressure. Therefore:

$$
\begin{align*}
& \mathrm{P}_{\mathrm{i}}, \mathrm{av}=767 \text { psia } \\
& \mathrm{m}=\text { slope of Horner's line }=-190 \text { psia/cycle } \\
& \mathrm{K}_{\mathrm{e} h}=\frac{(1626)(\mathrm{a})(\mathrm{unax})(\mathrm{Be} \text { eav })}{(\mathrm{m})}
\end{align*}
$$

Figure 12.1.4
$K_{0} h=(162.6)(18)(0.012159818)(6.80)=1.25 \mathrm{md}-\mathrm{tt}$

In order to determine the skin factor/value using Horner's technique, the adjusted pressure at adjusted time equivalent to one hour needs to be determined. Using the Horner's straight line equation, Pa, 1 hr is determined as follows:

$$
\begin{aligned}
& y=m x+h \\
& y=m \log (t \operatorname{tog}+\Delta t a)+b \\
& \Delta t a \\
& y=(-190) \log \frac{(t p a+\Delta t a)}{\Delta t a}+767
\end{aligned}
$$

where tpa $=$ adjusted production time, $\mathrm{hrs}=677.2$
$\Delta \mathrm{ta}=$ adjusted shut-in time, $\mathrm{hrs}=1 \mathrm{hr}$
Therefore

$$
\mathrm{Pa}, 1 \mathrm{hr}=(-190) \log \frac{(677.2+1)}{1}+767=229 \mathrm{psia}
$$

$$
S^{\prime}=-5.0
$$

Finally, type curves which were generated for horizontal wells (Reference 4) were used for analyzing the BDM/Hardy \#1 pre-stimulation data. Earlier these type curves were used in the analysis of the BDM/RET\#1 horizontal well pressure data. A dimensionless pressure versus dimensionless time type curve for horizontal wells with wellbore storage effects was used for the analysis (Figure 12.1.5).

Based on the available geologic and engineering data, several assumptions were made in order to compute the necessary variables needed for the analysis. In order to determine the dimensionless values of L_{D} and r_{D}, where:

$$
\mathrm{L}_{\mathrm{D}}=\text { Dimensionless well length }=\mathrm{L}_{2 h} \operatorname{SQRT}(\mathrm{Ky})
$$

and $r_{W D}=$ Dimensionless wellbore radius $=\frac{2 a w}{L}$

a value of productive formation thickness of 50 feet was assumed based on geophysical well logs.

Using the appropriate type curve and matching the pressure buildup data as exhibited in Figure 12.1.6, the following match points were obtained with $L_{D}=20$ type curve.
$\begin{array}{lll}\mathrm{P}_{\mathrm{D}}=0.215 & \Delta \mathrm{~Pa}=1000 & \mathrm{C}_{\mathrm{D}}=0.0 \\ \mathrm{t}_{\mathrm{D}}=100 & \Delta \mathrm{t}_{\text {ae }}=0.0005 & \end{array}$
Therefore, using equation 12.1 .12, an average formation capacity value was computed as follows:
$K_{\mathrm{e}} \mathrm{h}=(141.2)(\mathrm{q})(\mathrm{Bg}, \mathrm{av})\left(\mu_{a} \mathrm{av}\right)\left(P_{\mathrm{D}}\right)$
$(\Delta \mathrm{Pa})$
$\mathrm{K}_{\mathrm{e}} \mathrm{h}=(141.2)(18)(6.8)(0.012159812) 0.215$
1000
$\mathrm{K}_{\mathrm{e}} \mathrm{h}=0.045 \mathrm{md}-\mathrm{ft}$
Using Equations 12.1.10 and 12.1.13, the results of the pre- stimulation analysis indicate an offective length of 900 feet and a $\mathrm{K}_{\mathrm{v}} / \mathrm{K}_{\mathrm{h}}$ of 4 which represents an anisotropy ratio of $4: 1$.

$$
L e=\frac{0.001055-\mathrm{Ke} \frac{\left(\Delta \mathrm{t}_{\text {nee }}\right)}{}}{\boxed{\mu \mathrm{C}_{t}} \frac{\left(\mathrm{t}_{\mathrm{p}}\right) \mathrm{MP}}{}}
$$

12.1.2 Post Stimulation Testing and Analysis

Following the stimulation of BDM/Hardy \#1, where Zones 1,2, and 4 were stimulated and attempts were made to stimulate Zone 2, a 14-day pressure build-up test was conducted where surface pressure values were measured. Surface pressure values were then converted to bottomhole conditions. The data collection and analysis is exhibited in Table L-2 (Appendix L.). It is important to note that the pressure build-up test was performed when all the zones were in communication rather than on a zone-by-zone basis. A zone-by zone testing would have helped determine the effect of the stimulation techniques. An overall testing when all the zones are in communication will generate a basic understanding of the effect of the stimulation techniques on the well's productivity.
TYPE CURVES FOR HORIZONTAL WELLS
$L D=20, R W D=3 E-04$

Od

As mentioned in Section 12.1.1, values of adjusted pressures and adjusted effective time were used for analyzing the post-stimulation pressure data (see Table l-2). Input values for post-stimulation data analysis are summarized in Table 12.1.1.

In a first attempt, type curves were used to determine the end of the wellbore storage effects. The following are the match point values obtained from the type curves for vertically fractured wells as a result of matching Figure 12.1.7.

$$
\begin{array}{ll}
\Delta \mathrm{t}_{\mathrm{Re}}=100 & \mathrm{t}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}}=370 \\
\Delta \mathrm{~Pa}=1000 & \mathrm{P}_{\mathrm{D}}=5.2 \\
\mathrm{C}_{\mathrm{D}} \mathrm{e}^{2 \mathrm{~s}}=0.3 &
\end{array}
$$

Therefore, in order to compute values of formation capacity and effective skin, equations 12.1.1, 12.1.4, 12.1.5, and 12.1.6 were used for the analysis as follows:

$$
\mathrm{Bg}, \mathrm{av}=5.04 \frac{(0.919)(571)}{418}=6.32 \mathrm{RB} / \mathrm{MCF}
$$

Where P,av = average reservoir pressure $=418$ psia
$Z=$ gas deviation factor $=0.919$
Using equation 12.1.4, the average reservoir formation capacity value was computed at $\mathrm{K}_{\theta} \mathrm{h}=\mathbf{5} \mathbf{5} \mathbf{6 4} \mathrm{md}-\mathrm{ft}$ at an average flow rate equivalent to 400 mcfpd .

Values of C_{D} and S^{\prime} were determined at 1326.3 and - 5.0 respectively.

From the type curve analysis, the data falling within the semi-log region were analyzed using Horner's technique. Figure 12.1.8 which exhibits a plot of adjusted pressure versus adjusted Horner's time revealed a straight line with a slope $m=-230.55$ psia/cycle.

Using equation 12.1.7, 12.1.8, and 12.1.9 values of formation capacity and apparent skin were estimated at $5.42 \mathrm{md}-\mathrm{ft}$ and -6.0 respectively.

Finally type curves generated for horizontal wells were implemented for the analysis of the post-stimulation data. Figure 12.1.6 was used to determine the curve match. The following is a list of the match points as a result of the matching procedure:

$$
\begin{array}{ll}
\Delta \mathrm{t}_{\mathrm{d},:}=0.10 & \Delta \mathrm{~Pa}=1000 \\
\mathrm{t}_{\mathrm{D}}=0.00132 & \mathrm{P}_{\mathrm{D}}=0.3
\end{array}
$$

Therefore, using equation 12.1.12 an average formation capacity value was determined as follows:

$$
\mathrm{K}_{\mathrm{e}} \mathrm{~h}=\frac{(141.2)(100)(6.32)(0.0121598)(0.3)}{1000}
$$

$\mathrm{K}_{\mathrm{e}} \mathrm{h}=0.325 \mathrm{md}-\mathrm{ft}$

12.2 Drawdown Testing -Post Stimulation

Following the post-stimulation pressure build-up test, the well was placed line against a line pressure equivalent to 70 psia. A constant well flow rate of 100 mcfpd was attempted while the well's pressure was monitored at that rate. At early times, approximately the first six days, there was a fluctuation in production rate due to freezing at the wellhead. The average production rate for the first six days was approximately 61 mcfpd. This value was determined by computing the cumulative production at 364 mcf and determining the average daily rate.
Therefore:

$$
\mathrm{q}_{1}=\frac{364}{6}=61 \mathrm{mcfpd}
$$

After the first six days the production rate was successfully maintained at 100 mcfpd. Figure 12.2.1 illustrates the relationship between the flow rates, well pressures, and cumulative production with time.

For the accuracy of this analysis a two-rate production test was implemented in order to provide information about the formation capacity and apparent skin. Wellbore storage effects are often thought to be minimized or eliminated by two-rate tests. In fact, wellbore storage effects last just about the same amount of time in a two-rate test as in a normal build-up, drawdown, or falloff test. However, a two-rate test

」OW ヨヘII甘ากWก๐

often can be used to prevent a wellbore storage increase, thus providing analyzable test when one otherwise might not be possible.

The collected data were analyzed as shown in Table L-3. Pressure and time data were converted to adjusted pressure and time values. In order to determine the respective values of permeability and apparent skin the analysis technique suggested in Chapter four ${ }^{4}$ was used. The general equation for two-rate flow test analysis (equation 4.6, Reference 5) was used and a plot of adjusted pressure versus log of flow time and flow rates was generated (Figure 12.2.2). A best fit using simple linear regression was used to generate a straight line with slope $m_{1}{ }^{\prime}$.
Therefore:

$$
\begin{aligned}
\mathrm{k}_{\mathrm{e}} \mathrm{~h} & =\frac{162.6(\mathrm{Bg} \mathrm{av})(\mathrm{mav})(\mathrm{al})}{\mathrm{m}_{1}} \\
\mathrm{k}_{\mathrm{e}} \mathrm{~h} & =\frac{(162.6)(6.3)(0.0215 .9812)(61)}{(104)} \\
& =7.31 \mathrm{md}-\mathrm{ft} @ \mathrm{~h}=50^{\prime} \mathrm{K}=0.1462 \mathrm{md}
\end{aligned}
$$

The value of skin is calculated using equation 4.11 (Reference 5).

Therefore:

```
S'=1.1513(Q1)((Pa,wf(\Deltat=0)- Pa,1hr)-Log(k) + 3.2275)
    (q1-qQ) (Ø
```

$\mathrm{Pa}, 1 \mathrm{hr}=-104.2\left(\log (t 1+\Delta t)+\Omega_{2} \log \Delta t\right)+651$
$\Delta t \quad q_{1}$
where Pa ,int $=651$ psia
$\mathrm{Pa}, 1 \mathrm{hr}=-104.2\left(\frac{\log (144+1)}{1}+\frac{100}{61} \log (1)\right)+651$
Therefore using equation 12.2.2 $\mathrm{S}^{\prime}=-4.44$

To evaluate ine P^{*}, reservoir false pressure, which is used to estimate the initial average reservoir pressure the following equation was used.

$$
\left.\mathrm{Pa}^{*}=\mathrm{Pa}, \frac{\text { int }}{-\mathrm{a}_{2}(\mathrm{~Pa}, \mathrm{wf}(\Delta t=0)}-\mathrm{Pa}, 1 \mathrm{hr}\right)
$$

$$
\begin{aligned}
& \mathrm{Pa}^{*}=651-\frac{100}{61-100}(445-425) \\
& =702 \text { psia }
\end{aligned}
$$

To estimate the drainage volume average pressure by the MBH method (Chapter 6, Reference) first we obtain the false pressure value P^{*}. Then the average pressure is estimated from

$$
P=P^{*}-\frac{\text { mPDMBH }}{2.3025}(\mathrm{t} p \mathrm{DA})
$$

$$
t p D A=\frac{0.00026337 \mathrm{k} \times(\mathrm{t})}{(0)}
$$

$$
\overline{\varnothing \mu C_{i} A}
$$

$$
=\frac{(.0002637 \times .146)(144)}{(.01)(.0121598)(.0018044)(\pi)(1490)^{2}}=0.004
$$

Using Figure 6.24 the value of $\mathrm{PDMBH}=0$
Therefore $P=P^{*}=702 \mathrm{psia}$
Type curves for horizontal wells were used to estimate the effective formation capacity, effective horizontal wellbore length, and K_{V} / K_{H} values. Using the pressure-time matches at $C_{D}=0.1, L_{D}=20$, and $r_{w D}=3 \times 10^{-4}$ (Figure 12.2.3), values of $K_{\theta} h, L_{\theta}$, and K_{V} / K_{H} were estimated using equations 12.1.10, 12.1.12, and 12.1.13.

The match points were:

$$
\left.\begin{array}{cc}
\Delta \mathrm{Pa}=100 & \Delta t=100 \\
\mathrm{P}_{\mathrm{D}}=0.048 & \mathrm{t}_{\mathrm{D}}=.0053 \\
\mathrm{~K}_{\mathrm{e}} \mathrm{~h}= & (141.2)(\mathrm{q})(\mathrm{Bg}, \mathrm{av})(\mu, \mathrm{av}) \frac{(\mathrm{P} \mathrm{D})}{(\Delta \mathrm{Pa}) \mathrm{MP}} \\
\mathrm{~K}_{\mathrm{e}} \mathrm{~h}=(141.2)(100)(6.32)(0.012159812) 0.048 \\
100
\end{array}\right] \begin{aligned}
& \mathrm{K}_{\mathrm{e}} \mathrm{~h}= \\
&
\end{aligned}
$$

Values of L_{e} and K_{v} / K_{h} were computed at 1000 feet and 4 respectively.

12.3 Well Test Results and Conclusions

Tables 12.3.1 and 12.3.2 summarize the results of the various preand post-stimulation well tests conducted on BDM/Hardy \#1. The RHM technique estimated a pre-stimulation initial reservoir pressure of 704 psia. This technique is valid and accurate in estimating the initial reservoir pressure independent of other reservoir parameters since the basis for this technique is solely statistical in nature.

The computed values of $\mathrm{K}_{\mathrm{y}} / \mathrm{K}_{\mathrm{H}}$ for both wells based on horizontal well type curve analysis indicates a 4 to 1 ratio. Assuming $K_{\theta}=\left(K_{V} / K_{H}\right) \cdot 5$ and using the computed K_{V} / K_{H} ratios, values of K_{V} and K_{H} were estimated for the different tests results as exhibited in Table 12.3.3. The K_{V} and K_{H} values do not reflect the exact permeability values but rather establish the ranges of permeability based on computed L_{e} values and the assumption of a productive thickness based on geologic data and geophysical well logs.

The Horner technique, applied to the post-stimulation data indicated an improvement ratio in the $K_{\theta} h$ value of 4.5 as a result of stimulation compared to an improvement ratio of 7.0 using horizontal well type curves. Post-stimulation flow rate testing has shown an increase in average production rate for BDM/Hardy \#1 from $18 \mathrm{mcfpd}\left(510 \mathrm{~m}^{3 /}\right.$ day) (open flow) to 100 mcipd ($2831 \mathrm{~m}^{3} /$ day) at a producing pressure of 130 psig $\left(896 \times 10^{3} \mathrm{~Pa}\right)$ indicating an improvement ratio of at least 5.5 .

The low formation capacity values computed using horizontal well type curves, compared to the higher values using conventional techniques applicable for vertical well test analysis, indicate that conventional techniques applied to horizontal wells may yield composite value of $\mathrm{K}_{\mathrm{e}} \mathrm{h}$ which incorporates the horizontal well length and formation capacity. When horizontal well type curves are applied to the same data, the true effective formation capacity can be derived.

From horizontal well type curves, $\mathrm{L}_{\boldsymbol{e}}$ values were computed for BDM/Hardy \#1 based on pre- and post-stimulation test results. L_{θ} value of 1000 feet (305 m) was determined for BDM/Hardy \#1. The actual drilled horizontal wellbore length for BDM/Hardy \#1 is approximately 2000 feet $(610 \mathrm{~m})$. The difference between actıal and effective horizontal wellbore lengths is due to the fact that horizontal well type curves assume a single-

$$
\begin{aligned}
& \text { \% }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table 12.3.1 pre-stimulation well test analysis results } \\
& \text { 昆 } \\
& \text { Buildup Well Test: } \\
& \mathrm{t}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}}=2.6 \times 10^{2} \\
& \begin{array}{c}
\text { Conventional } \\
\Delta P_{\text {a }}=1000 \\
P_{D}=7.0
\end{array} \\
& \text { Horner } \\
& \text { Horizontai well type curve } \\
& \begin{array}{c}
8 \\
0 \\
\hline 0 \\
\hline 10
\end{array} \\
& \begin{array}{l}
\text { K } \\
\frac{1}{3} 0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

	§

Table 12.3.2 POST-Stimulation well test anaysis results

Buildup Well Test:
Conventional type curves $\begin{gathered} \Delta \mathrm{P}_{P_{D}}=1000 \quad \Delta \mathrm{t}=100 \\ \mathrm{t}_{\mathrm{D}} / C_{\mathrm{D}}=370 \end{gathered}$
Horner
$\begin{aligned} & \text { Horizontal well type curve } \\ & \begin{array}{l} \Delta^{P}=1000 \quad \Delta t=10 \\ P_{D}=0.3 t_{D}=0.00032 \\ C D=0.003 \end{array} \end{aligned}$
Drawdown Testing:
Two-rate test
Horizontal well type curve $\begin{gathered} \Delta \mathrm{P}_{\mathrm{a}}=100 \Delta \mathrm{t}=100 \\ \mathrm{P}_{\mathrm{D}}=.048 \mathrm{t}_{\mathrm{D}}=.0053 \\ \mathrm{C}_{\mathrm{D}}=0.1 \end{gathered}$

Table 12.3.3

[^1]porosity homogeneous reservoir; whereas, the actual reservoirs are very heterogenous, with considerable variation in permeability along the length of the wellbore.

The application of horizontal well type curves resulted in lower than expected formation capacity values for the Devonian Shale strata in the test wells. This may help explain the need to stimulate horizontal wells in order to achieve the desired production rates. As a result of the stimulations, certain reservoir parameters appeared to be enhanced such as the formation capacity and effective horizontal wellbore length. These improvements were also reflected in the pre- and post-stimulation production flow rate tests.

This study illustrates some of the problems that may be encountered in applying conventional techniques to horizontal wells and the value of horizontal well type curves for better estimates of reservoir parameters. Conventional techniques when applied to horizontal well tests may yield only composite or relative values. With the horizontal well type curves used in this study, estimates of vertical and horizontal permeability values are possible only if productive thickness is known.

13.0 ANALYSIS OF COMPLETION, STIMULATION, TESTING, AND PRODUCTION OPERATIONS

13.1 Completion Operations

The completion planned for this well was designed to test open hole, cased, and cemented completions in the same formation and wellbore. The purpose being to gain data and insight into the differences in stimulation efficiency between the two types of completions.

The original completion plan was to separate the horizontal interval into four (4) five hundred (500') foot long open hole sections with a liner incorporating external casing packers to insure isolation, and to cement the angle build section of the wellbore.

After the drilling operations were completed, examination of the mud \log and geophysical logs provided information and data which led to a modification of the completion plan. The wellbore exited the target
formation interval before the planned horizontal length had been drilled and the operator and others decided to eliminate this interval from consideration for stimulation. Approximately 116 feet of the wellbore was below the target interval, and another 278 feet which had few gas shows (see figure 13.1) was also eliminated from further consideration for stimulation.

The remaining wellbore was segregated into four zones as shown in figure 13.2. Zone one (1) was 492 feet long and contains the largest number of gas shows in the well. The second zone (2) was 750 feet long and contained six (6) gas shows along the wellbore. Zone number three (3) was 368 feet long, and zone number four (4) was 276 feet long. It is believed that modifying the completion plan in this manner was fully justified based on the data and information available at the time. Evaluation of the final openflow production rates after stimulation from three other horizontal or slant wells indicated that fracture efficiency was reduced when open hole sections longer than 350 feet were stimulated. The area of the wellbore shallower than zone four (4) was cemented. This section contained several small gas shows and minor oil shows. Consideration was originally given to conducting at least one stimulation in this section, however, problems encountered in stimulating the openhole sections resulted in excessive costs being incurred and this idea was abandoned.

In future horizontal well open hole type completions, careful consideration should be given to the length of open hole sections to be stimulated. Some combination of cased and cemented borehole and openhole completion should be considered. Depending upon the situation, perhaps no more than four zones should be stimulated, and these probably should not be longer than 350 feet.

13.2 Stimulation Operations

An attempt was made to improve the efficiency of stimulation operatione by using sliding sleeve ported collars for access to the wellbore behind the casing. The units were originally designed so that the first port collar which would be placed in zone 1 would open just by pressuring up on the casing. This could be done during the frac job itself, and a second stage could be initiated by dropping a ball which would

lodge in a baffle inside the second port collar, therefore opening the second port collar, and thus allowing two stages of stimulation to be conducted back to back. The pressure required to open the first port collar had to be set higher than the setting pressure of the external casing packers. However, the selection of an option to leave the first zone as a zone not to be stimulated prevented the use of the tool in the second zone and this ball and baffle technique was not tested. This would certainly be an option that should be given consideration in future horizontal holes and particularly in slant holes.

Cost effective options to consider for access to the formation for stimulation should include one or two joints of slotted casing. Isolation of one zone from other zones would be achieved with retrievable bridge plugs.

Zone one stimulation was conducted as expected except for a lower closure pressure (1200 psi) than projected. Failure to pump all of the sand available was unfortunate but not catastrophic. The zone cleaned up well and the open flow rate of 292 mcfpd after 8 hours on the fourth day after stimulation was encouraging. There was a curious phenomena which was observed but not explained. Breakdowns on both days for the stimulation was with nitrogen, with the first breakdown pressure being at 1900 psi while twenty-four hours later it was 2200 psi or 300 psi higher. Apparently during the overnight shut-in, the nitrogen gas which was injected moved through the fracture system increasing pressure and apparent stress as a result of the previous operation. The gas left in the wellbore most likely added 300 psi to the combination of horizontal earth stress and reservoir pressure that had to be overcome to open and propagate fractures.

As the stimulation process continued in Zone 2, a similar phenomena occurred with breakdown pressure increasing from 2300 psi to 3100 psi after an overnight delay. Increased friction pressure can account for part of this 800 psi increase but not all.

This phenomena suggests that further studies with stress models may be required to consider methods of optimizing stimulation procedures in horizontal wells when four stimulations are planned. Such modeling could examine the potential beneficial effects of completely
modeling could examine the potential beneficial effects of completely flowing a stimulated zone back until it returns to ambient reservoir conditions prior to stimulation.

13.3 Well Testing Operations

Well testing operations on horizontal wells is a very important aspect of the total operation. Well test results could aid in projecting well production and evaluating economics of drilling, completion stimulation, and production operations. Since the technology is new and still in the development stage, this analysis was helpful in determining the economics of the well as drilled and completed.

During the site selection process, BDMESC obtained complete records on all of the Cabot wells that were drilled in the area plus records from a few other companies which had production in the area. Analysis of this data showed that the average production rate for wells in the area started at about 60 mcfpd and declined to 40 mofpd in 50 months. Based on a projected gas value of $\$ 2.00$ per mcf, a commercial horizontal well in the Devonian Shale would need to have an IOF rate close to 200 mcfpd as shown in Figure 13.3. The results of BDMESC's well testing and analysis indicated that the Hardy \#1 needed reduced cost or improved production rates are to make horizontal drilling more attractive. Economic analyses of this well is contained in the final project report prepared for DOE.

The type curve analysis methodology used by BDMESC is believed to be an adequate method of projecting reserves for horizontal wells. Review and analysis of the production data from this well at 5,10 , and 15 year intervals will confirm the predictive ability of the methodologies used in the study.

13.4 Production Operations

The results of well test analyses were used to simulate the post-stimulation productivity of Hardy \#1 using a three-dimensional reservoir simulator. The post-stimulation well test analysis indicated a formation capacity value of $7.31 \mathrm{md}-\mathrm{ft}(\mathrm{Kh})$ and an effective wellbore length of 900^{\prime}. Using this data, the projected cumulative gas production after 30 years is 475 mmcf (Figure 13.4).

Hardy \#1 was turned into the gas sales line on May 16, 1990. Figures 13.5 and 13.6 present the actual daily production rate and the cumulative production respectively for the period of May 1990 to March, 1992, a period of twenty months.

As indicated in Figure 13.5, Hardy \#1 produced at an average rate of 70 mcfd for most of the first two years. It is believed that if Zones 2 and 3-4 were stimulated successfully, the production from Hardy \#1 would have been double the current rate.

The production decline rate for the horizontal well is about half the decline rate of a typical vertical well in the area. This is believed to be a function of the much larger drainage area defined by the horizontal well as compared to the vertical wells.

Ficure 13.7 is a match of the actual production data and the production decline type-curve based on actual well data from the area. Using the decline curve match, the projected cumulative gas production after 30 years is 415 mmcf (Figure 13.8).

14.0 WELL COST ANALYSIS

Well cost was reduced significantly for Hardy\#1, when compared to the well cost of RET\#1, the first air-drilled horizontal well. This cost reduction is attributed to improvements in drilling and completion technologies over a period of four years. The major reduction in cost was in the drilling phase where drilling time was reduced from 58 to 30 days.

Table 14.1 exhibits the cost involved in drilling, completing, and stimulating Hardy\#1. The high stimulation cost is mainly attributed to problems and associated delays encountered when attempting to maripulate the port collars, and perforate the casing to stimulate zone 2 and combined zone 3-4., which would not accept sand-laden foam at concentrations greater than $1 \mathrm{lb} / \mathrm{gal}$.

A single vertical well drilled and completed in the Putnam County area, costs approximately $\$ 180,000.00$. The total cost for the Hard'y \#1 well was $\$ 921,211.00$, which is 5.1 times the cost of a vertical well. The average vertical well in the area of the Hardy\#1 well had projected

Table 14.1-Cost Data BDM/Cabot Horizontal Well

TTEM DESCRIPTION	BDM/CABOT/DOE
DRILLUNG ACTIVITIES	
Drilling \& Services	205,575
Directional Driller Services	33,757
Steering Tool \& Directional Tool Rental	28,907
Directional Consultant Engineer - GSM	7,085
Rentals (Reamers, Stabilizers, Other)	3,558
Drilling Fluid Additives	9,300
Tubulars	89,680
Cementing	13,681
External Casing Packers \& Port Collars	19,277
Build Location, Reclamation \& Dozer	57,172
Mud Logging	11,133
Field Engineer (Vertical Hole)	7,448
Drill Pipe Inspection	5,303
Pciver Tongs	630
Permit \& Survey	7,525
Neter Setup \& Testing	2,438
Miscellaneous (Trucking \& Field Services)	3,370
DRILUNG SUBTOTAL	505,888
CORING AND LOGGING ACTIVITIES	
Coring	0
Shallow Logging	23,212
Deep Logging	40,933
CORINGLOGGING SUBTOTAL	64,145
STIMULATION ACTIVITIES	
Setup \& Testing ECP's \& PC's	6,074
Dozer \& Road Work	4,890
Production Tubing, Tank Rental \& Water Hauling	19,382
Video Camera Runs	2,810
Operate ECP's \& PC's Services	27,936
Fishing Equipment	10,789
Frac Fluids \& Stimulation Equipment	150,943
Perforations	13,977
Field Engineer	24,910
Tool Rental \& Testing	18,464
Pip Disposal/Reclamation	4,904
Clean-Up	59,183
Trucking \& Miscellaneous	6,918
STIMULATION SUBTOTAL	351,178
GRAND TOTAL HORIZONTAL WELL COST	921,211

ultimate recoveries of 231 mmcf of gas compared to a projected 475 mmof of recovery over 30 years for the Hardy \#1 well.

The economics of the BDM/Cabot well are documented in the Final report to the DOE ("Site Selection, Drilling, and Completion of Two Horizontal Wells in the Devonian Shales of West Virginia"). Gas production achieved by the BDM/Cabot well as compared to the average vertical well drilled in the area is not sufficient to overcome the learning curve costs associated with this first well. The well is considered to be marginally ecconomic based on present conditions of cost and gas sales price.

15.0 SUMMARY AND CONCLUSIONS

The Hardy HW\#1 was drilled without any major problems during the inclined angle building phase except for steering tool operations. Reliable tool face data acquisition equipment needs to be developed and tested to further reduce drilling costs.

Geophysical logging operations are far too costly for the data provided. Operators may choose to rely on mud logging data as the primary source of data for completion operation decisions. Video logging can be very useful but low cost reliable high resolution systems must be developed to make them attractive to Appalachian area operators.

Actual drilling operations were reduced from fifty-eight days in 1986 (RET\#1 well) to thirty days on the Hardy HW\#1 well although the length of footage drilled was only twenty feet less than the RET\#1 well. The increased rate of angle building saves more than twenty days in drilling time.

One of the most important aspects of drilling a successful slant/horizontal well is the site selection process. Selection of an area that has high probability of providing enough reserves for payout of the drilling operation is a key goal.

Drilling with air as the circulation medium and oil as a lubricant for downhole motors operated at 250 to 300 psi pressure is a viable alternative to drilling at higher pressures (600 psi) even if there is no
improved hardening of the steering tools to reduce vibration at lower pressures and higher volume through-puts.

Port collars which operate by rotation rather than reciprocation are very difficult to operate in a horizontal hole and are not an efficient design for this type of operation.

In an open hole type of completion where access to open natural fractures are provided, the length of treatment zones should probably be limited to 350 to 400 feet. This suggest that a 1400 to 1600 foot horizontal wellbore length providing four zones for stimulation may be more suitable for fractured Devonian Shale reservoirs than a longer wellbore length considering costs and efficiencies of operation.

16.0 REFERENCES

1. Overbey, W.K. Jr., Salarny, S.P., Locke, C.D., "Recovery Efficiency Test Final Report," U.S. Department of Energy, Contract \#DE-AC21-85MC22002, Morgantown, West Virginia, February, 1989.
2. GRI: "Eastern Devonian Gas Shales Workshop Presentations and Short Course," Charleston, WV, Sept. 7-9, 1988.
3. Hasan, A. R., Kabir, C. S.: "Pressure Build-up Analysis: A Simplified Approach," JPT, January 1983, 178-188.
4. Duda, J. R., Salamy, S. P., Aminian, K.: "Pressure Analysis of an Unstimulated Horizontal Well Using Type Curves," SPE \#19343 presented at the 1989 SPE Eastern Regional Meeting, Morgantown, WV, October 24-27.
5. Earlougher, R. C., Jr.: Advances in Well Test Analysis, SPE of AIME, New York City (1977), p39.

Page

A-1 13 3/8" CASING TALLY 104
A-2 9 5/8" CASING TALLY 105
A-3 4 1/2" CASING TALLY 106
B BOTTOM HOLE DRILLING ASSEMBLIES (BHA's) 108
C BUILD AND WALK RATE DATA FOR HARDY HW\#1 WELL 111
D MULTISHOT SURVEY OF WELLBORE 114
E DRILL PIPE TALLY 117
F MULTISHOT PIPE TALLY 120
G SINGLE SHOT SURVEYS TAKEN DURING DRILLING 122 OPERATIONS
H GAS SHOWS FROM MUD LOGS 125
1 DAIL.Y DRILLING REPORTS 128
J DAILY COST REPORTS 161
K WEL COMPLETION REPORT 197
L PRE- AND POST-STIMULATION PRESSURE 199 BUILD-UP DATA

APPENDIX A

CASING TALLYS

```
13 3/8" CASING TALLY 12/2/89
    JOINT
NUMBER LENGTH
            30.40
            30.58
            43.47
            42.95
            43.35
            43.26
            41.74
            42.02
            36.63
            43.27
                                    42.48
                                    42.73
                                    42.53
                                    42.00
                                    43.33
                                    43.34
TOTAL 654.08
```

$95 / 8 "$ CASING TALLY	$12 / 9 / 89$		
JOINT		JOINT	
NUMBER	LENGTH	NUMBER	LENGTH
1	15.10	41	44.25
2	43.90	42	43.70
3	44.00	43	43.95
4	43.55	44	43.85
5	43.75	45	43.60
6	43.80	46	43.80
7	43.75	47	43.75
8	43.80	48	43.75
9	44.00	49	43.85
10	43.40	50	43.70
11	43.40	51	43.35
12	43.65	52	43.90
13	43.80	53	44.05
14	43.60	54	43.90
15	44.00	55	43.70
16	44.00	56	43.90
17	43.65	57	42.75
18	43.40	58	43.95
19	43.70	59	43.80
20	43.70	60	43.60
21	43.75	61	43.85
22	43.70	62	15.00
23	43.90	63	
24	44.25	64	
25	44.10	65	
26	43.90	66	
27	43.70	67	
28	43.65	68	
29	43.55	69	
30	43.30	70	
31	44.00	71	
32	43.95	72	
33	43.55	73	
34	43.60	74	
35	43.65	75	
36	44.25	76	
37	43.90	77	
38	43.50	78	
39	43.85	79	
40	44.05	80	
SUBTOTAL	1722.05	SUBTOTAL	933.95
TOTAL	2656.00		

4 1/2" casing tally 1 1-90

JOINT		SETtING	JOINT		settino	JOINT		SETTINO	JOINT		SETTINO
NUMBER	LENGYH	DEPTH	NUMBER	LENGTH	DEPTH	NUMBER	LENGTH	DEPTH	NUMBER	LENOTH	DEPTH
SET AT		6150.81									
1	44.52	6106.29	41	44.33	4625.65	89	44.54	3032.67	121	44.55	1255.30
2	44.33	6061.96	42	44.75	4580.90	82	44.40	2988.27	122	44.45	1210.85
3	44.36	6017.,60	43	44.41	4536.49	83	44.59	2943.68	123	44.40	1166.45
4	7.20	6010.40	44	44.61	4491.88	84	44.52	2899.16	124	44.40	1122.05
5	44.50	5965.90	45	44.48	4447.40	85	44.47	2854.69	125	44.55	1077.50
6	44.62	5921.28	46	44.35	4403.05	86	44.38	2810.31	126	44.40	1033.10
7	2.40	5918.88	47	9.65	4393.40	87	44.64	2765.67	127	44.40	988.70
8	44.51	5874.37	48	7.20	4386.20	88	44.36	2721.31	128	44.65	944.05
9	44.40	5829.97	49	44.42	4341.78	89	44.70	2676.61	129	44.45	899.60
10	44.43	5785.54	50	44.09	4297.69	90	44.40	2632.21	130	44.30	855.30
11	44.46	5741.08	51	44.67	4253.02	91	44.47	2587.74	131	44.40	810.90
12	44.33	5696.75	52	44.32	4208.70	92	44.46	2543.28	132	44.40	766.50
13	44.61	5652.14	53	44.45	4164.25	93	44.36	2498.92	133	44.40	722.10
14	44.52	5607.62	54	44.46	4119.79	94	44.45	2454.47	134	44.40	677.70
15	44.42	5563.20	55	9.68	4110.11	95	44.47	2410.00	135	44.40	633.30
16	44.30	5518.90	56	7.20	4102.91	96	44.40	2365.60	136	44,40	588.90
17	7.20	5591.70	57	44.73	4058.18	97	44.45	2321.15	137	44.40	544.50
18	44.67	5467.03	58	2.40	4055.78	98	44.40	2276,75	138	44.35	500.15
19	44.43	5422.60	59	44.56	4011.22	99	44.50	2232.25	139	44.45	455.70
20	44.62	5377.98	60	44.67	3966.55	100	44.35	2187.90	140	44.40	411.30
21	44.47	5333.51	61	44.41	3922.14	101	44.40	2143.50	141	43.80	367.50
22	44.49	5289.02	62	44.49	3877.65	102	44.40	2099.10	142	44.50	323.00
23	44.54	5244.48	63	44.50	3833.15	103	44.35	2054.75	143	44.30	278.70
24	44.45	5200.03	64	44.60	3788.55	104	44.50	2010.25	144	44.40	234.30
25	44.47	5155.56	65	44.46	3744.09	105	44.45	1965.80	145	44.45	189.85
26	44.43	5111.13	66	44.40	'3699.69	106	44.45	1921.35	146	44.40	145.45
27	44.54	5066.59	67	44.55	3655.14	107	44.40	1876.95	147	44.55	100.90
28	44.44	502.2. 15	68	44.53	3610.61	108	44.55	1832.40	148	44.45	56.45
29	44.41	4977.74	69	44.40	3566.21	108	44.45	1787.95	149	44.45	12.00 BELOW KB
30	44.39	4933.35	70	44.58	3521.63	110	44.40	1743.55	150	44.50	OT
31	44.43	4888.92	71	44.52	3477.11	111	44.50	1699.05	159	44.50	OT
32	44.52	4844.40	72	44.47	3432.54	112	44.45	1654.60	152	44.55	QT
33	2.40	4842.00	73	44.45	3388.19	113	44.50	1610.10	153	44.35	OT
34	44.44	4797.56	74	44.55	3343.64	114	44.35	1565.75	154	44.40	OUT
35	14.70	4782.86	75	44.39	3299.25	115	44.40	1521.35	155	44.35	OUT
36	14.50	4768.36	76	44.44	3254.81	116	43.70	1477.65	156	44.50	out
37	7.20	4761.16	77	44.30	3210.51	117	44.40	1433.25	157	44.40	OUT
38	44.38	4716.78	78	44.35	3166.16	118	44.45	1388.80	158	44.65	Out
39	2.40	4714.38	79	44.40	3121.76	119	44.45	1344.35	159	44.35	OUT
40	44.40	4669.98	80	44.55	3077.21	120	44.50	1299.85	160		

port collars are 2.401 long
EXTERNAL CASING PACKERS ARE 7.201 LONG

APPENDIX B
BOTTOM HOLE DRILLING
ASSEMBLIES (BHA'S)

BHA \#1 - RUN 12-12-89

```
BIT - 8 3/4", M84F, 3-16'S
EASTMMAN MOTOR, 6 3/4"
STABILIZER, 7 7/8"
X-O SUB, 6.5 X 2 1/4"
ORIENTING SUB 6.25 X 3.75"
MONEL, 6 5/16 X 2 13/16"
MONEL, 6 5/16 X 2 13/16"
```

TOTAL

BHA \#2 - RUN 12-13-89
BIT - 8 3/4", M84F, 3-16'E
EASTMAN MOTOR, 6 3/4" $X-0$ SUB, $6.5 \times 21 / 4^{\prime \prime}$
ORIENTING SUB $6.25 \times 3.75 \prime$
MONEL, $65 / 16 \times 2$ 13/16"
MONEL, 6 5/16 X 2 13/16"
TOTAL

BHA \#3 - RUN 12-14-89
BIT - 8 3/4", M84F, 3-16'S
EASTMAN MOTOR, $63 / 4 "$
BENT SUB $1.561 / 2^{\prime \prime} \times 21 / 4 "$
ORIENTING SUB $6.25 \times 3.75^{\prime \prime}$
MONEL, $65 / 16 \times 213 / 16^{\prime \prime}$
MONEL, $65 / 16 \times 2$ 13/16"
TOTAL

BHA 市4 - RUN 12-14-89
BIT - $81 / 2 "$, M84F, open
EASTMAN MOTOR., 6 3/4"
BENT SUB $1.561 / 2^{\prime \prime} \times 21 / 4 "$
ORIENTING SUB 6.25×3.751
MONEL, $65 / 16 \times 213 / 16^{\prime \prime}$
MONEL, $65 / 16 \times 2$ 13/16"
TOTAL

LENGTH, FT.
1.00
20.75 BEND SET AT 1.1
5.67
1.47
2.18
31.18
30.75
93.00
1.00
20.75 bend set at 1.3 1.47
2.18
31.18
30.75
87.33
1.00
20.75 bend set at 1.3 1.25
2.18
31.18
30.75
87.11
1.00
20.75 bend set at 1.3
1.25
2.18
31.18
30.75
87.11

BHA \#5 - RUN 12-16-89
BIT - $81 / 2^{\prime \prime}$, M84F, 11-14-14
BAKER MOTOR, 6 3/4"
FLOAT SUB 5 3/4" X 2 1/4"
X-0 6 1/2" X 2 1/4"
ORIENTING SUB $6.25 \times 3.75^{\prime \prime}$
MONEL, $65 / 16 \times 213 / 16^{\prime \prime}$
MONEL, 6 5/16 X 2 13/16"
TOTAL

BHA \#6 - RUN 12-20-89

```
BIT - 7 7/8", M84F, 16-16-16
FLOAT SUB 5 3/4" X 2 1/4"
3 P'T REAMER
X-0 6 1/4" X 2 1/2"
MONएL, 6 5/16 X 2 13/16"
MONEL, 6 5/16 X 2 13/16"
21 STANDS DRILL PIPE
X-0 6 1/4" X 3"
6-6 1/4" DC'S
X-0 6" X 3"
BIT - 7 7/8", M84F, 16-16-16
FLOAT SUB 5 3/4" \(\times 2\) 1/4"
3 P'T REAMER
X-0 6 1/4" X 2 1/2"
MONEL, \(65 / 16 \times 2\) 13/16"
21 STANDS DRILL PIPE
X-0 \(61 / 4^{\prime \prime} \mathrm{X} 3^{\prime \prime}\)
X-0 6" X \(3^{\prime \prime}\)
```

TOTAL
BHA \#7 - RUN 12-21-89
BIT - 7 7/8", M84F, 16-16-16
1.00

FLOAT SUB 5 3/4" X 2 1/4"
3 PT REAMER
X-0 $6^{1 / 4 " ~ X ~} 2$ 1/2"
MONEL, 6 5/16 X 2 13/16"
3 PT REAMER
MONEL, $65 / 16 \times 2$ 13/16"
30 STANDS DRILL PIPE
X-0 6 1/4" X 31
6-6 1/4" DC'S
X-0 $6^{\prime \prime} \mathrm{X} 3^{\prime \prime}$
TOTAL
1556.11
1.00
1.87
4.72
1.80
31.18
30.75
1302.00
2.00
179.00
1.79
1.87
4.72
1.80
31.18
7.00
30.75
1860.00
2.00
179.00
1.79
2121.11

LENGTH, FT.
1.00
23.10 bend set at 2 1.87
1.47
2.18
31.18
30.75
91.55

```
BHA #8 - RUN 12-21-89 LENGTH, FT.
\begin{tabular}{|c|c|}
\hline BIT - 7 7/8", M84F, 16-16-16 & 1.00 \\
\hline BIT SUB \(6^{\prime \prime} \mathrm{X} 21 / 4 \prime\) & 1.92 \\
\hline SHORT DRILL COLLAR \(61 / 4 " \mathrm{X} 2 \mathrm{1/4"}\) & 1.0 .75 \\
\hline 3 PT REAMER & 7.00 \\
\hline X-0 6 1/4" X \(21 / 2 \prime \prime\) & 1.80 \\
\hline FLOAT SUB 5 3/4" X \(21 / 4 "\) & 1.87 \\
\hline MONEL 6 5/16 X 2 13/16" & 31.18 \\
\hline MONEL, \(65 / 16\) X 2 13/16" & 30.75 \\
\hline 30 STANDS DRILU PIPE & 1860.00 \\
\hline X-0 6 1/4" X 3" & 2.00 \\
\hline 6-6 1/4" DC'S & 179.00 \\
\hline X-0 6" X 3" & 1.79 \\
\hline TOTAL & 2129.06 \\
\hline
\end{tabular}
```

BHA \#9 - RUN 12-28-89

```
BIT - 7 7/8'', M84F, 16-16-16 1.00
```

BIT SUB $6^{\prime \prime} \times 21 / 4^{\prime \prime} \quad 1.92$
SHORT DRILC COLLAR 6 1/4" X 2 1/4" 10.75
3 PT REAMER
FLOAT SUB 6 1/8" X 2 3/8"
MONEL, 6 5/16 X 2 13/16"
40 STANDS DRILL PIPE
X-0 $61 / 4^{\prime \prime}$ X $3^{\prime \prime}$
10-6 1/4" DC'S
X-0 6" X $3^{\prime \prime}$
7.00
1.60
30.75
2480.00
2.00
300.05
1.79
TOTAL

APPENDIX C
BUILD AND WALK RATE DATA FOR HARDY HW\#1 WELL

MEASURED	DRIFT	DRIFT	COURSE	BUILD	WALK	
DEPTH	ANGLE	AZIMUTH	LENGTH	RATE	RATE	BOTTOMHOLE
FEET	DEGREES	DEGREES	FEET	DEG/100	DEG/100	ASSEMBLY

0.00	0.00	252.00	0.00	0.00	0.00		
3194.00	0.75	252.00	3194.00	0.02	0.00	ROTARY	
3256.00	1.50	288.00	62.00	1.21	58.06	ROTARY	
3318.00	4.75	322.00	62.00	5.24	54.84	EAS'TMAN RUN	1
3379.00	8.75	328.00	61.00	6.56	9.84	EASTMAN RUN	1
3441.00	12.50	328.00	62.00	6.05	0.00	EASTMAN RUN	1
3503.00	16.25	326.00	62.00	6.05	-3.23	EASTMAN RUN	1 \& 2
3565.00	20.50	325.00	62.00	6.85	-1.61	EASTMAN RUN	2
3627.00	24.25	327.00	62.00	6.05	3.23	EASTMAN RUN	2 \& 3
3688.00	28.25	330.00	61.00	6.56	4.92	EASTMAN RUN	2
3750.00	32.25	330.00	62.00	6.45	0.00	EASTMAN RUN	3
3812.00	36.50	330.00	62.00	6.85	0.00	EASTMAN RUN	3
3874.00	41.75	330.00	62.00	8.47	0.00	EASTMAN RUN	4
3936.00	46.50	329.00	62.00	7.66	-1.61	EASTMAN RUN	4
3997.00	51.75	328.00	61.00	8.61	-1.64	EASTMAN RUN	4
4059.00	57.00	328.00	62.00	8.47	0.00	EASTMAN RUN	4
4121.00	62.00	330.00	62.00	8.06	3.23	EASTMAN RUN	
4183.00	66.75	332.00	62.00	7.66	3.23	EASTMAN RUN	
4244.00	70.25	330.00	61.00	5.74	-3.28	EASTMAN RUN	
4306.00	72.75	324.00	62.00	4.03	-9.68	EASTMAN RUN	4
4368.00	77.50	323.00	62.00	7.66	-1.61	EASTMAN AND	BAKER
4430.00	83.25	326.00	62.00	9.27	4.84	BAKER RUN 7	
4491.00	84.25	333.00	61.00	1.64	11.48	BAKER RUN 7	
4553.00	87.25	337.00	62.00	4.84	6.45	BAKER RUN 8	
4615.00	90.50	338.00	62.00	5.24	1.61	BAKER RUN 8	
4677.00	91.75	339.00	62.00	2.02	1.61	ROTARY BUILD	
4739.00	92.25	338.00	62.00	0.81	-1.61	ROTARY BUILD	
4800.00	93.00	338.00	61.00	1.23	0.00	ROTARY BUILD	
4862.00	93.25	339.00	62.00	0.40	1.61	ROTARY BUILD	
4924.00	93.75	338.00	62.00	0.81	-1.61	ROTARY BUIID	
4986.00	94.00	339.00	62.00	0.40	1.61	ROTARY BUILD	
5047.00	94.25	339.00	61.00	0.41	0.00	ROTARY BUILD	
5109.00	94.75	339.00	62.00	0.81	0.00	ROTARY BUILD	
5171.00	94.00	339.00	62.00	-1.21	0.00	ROTARY BUILD	\& DROP
5233.00	92.75	339.00	62.00	-2.02	0.00	ROTARY DROP	\& Drop
5294.00	91.75	339.00	61.00	-1.64	0.00	ROTARY DROP	
5356.00	90.25	339.00	62.00	-2.42	0.00	ROTARY DROP	
5418.00	89.00	339.00	62.00	-2.02	0.00	ROTARY DROP	
5480.00	87.25	339.00	62.00	-2.82	0.00	ROTARY DROP	
5542.00	85.50	339.00	62.00	-2.82	0.00	ROTARY DROP	

MEASURED DEPTH FEET	$\begin{gathered} \text { DRIFT } \\ \text { ANGLE } \\ \text { DEGREES } \end{gathered}$	DRIFT AZIMUTH DEGREES	COURSE LENGTH FEET	$\begin{gathered} \text { BUILD } \\ \text { RATE } \\ \text { DEG/100 } \end{gathered}$	$\begin{gathered} \text { WALK } \\ \text { RATE } \\ \text { DEG/100 } \end{gathered}$	$\begin{aligned} & \text { BOTTON } \\ & \text { ASSEN } \end{aligned}$	$\begin{aligned} & \text { MHOLE } \\ & \text { MBLY } \end{aligned}$
5603.00	83.75	340.00	61.00	-2.87	1.64	ROTARY	DROP
5665.00	82.75	340.00	62.00	-1.61	0.00	ROTARY	DROP
5727.00	81.00	339.00	62.00	-2.82	-1.61	ROTARY	DROP
5789.00	79.25	338.00	62.00	-2.82	-1.61	ROTARY	DROP
5850.00	78.75	337.00	61.00	-0.82	-1.64	ROTARY	DROP
5912.00	77.00	336.00	62.00	-2.82	-1.61	ROTARY	DROP
5974.00	75.50	335.00	62.00	-2.42	-1.61	ROTARY	DROP
6036.00	73.25	333.00	62.00	-3.63	-3.23	ROTARY	DROP
6097.00	71.25	332.00	61.00	-3.28	-1.64	ROTARY	DROP
6159.00	69.75	330.00	62.00	-2.42	-3.23	ROTARY	DROP
6221.00	67.75	329.00	62.00	-3.23	-1.61	ROTARY	DROP
6283.00	65.50	328.00	62.00	-3.63	-1.61	ROTARY	DROP
6345.00	64.00	327.00	62.00	-2.42	-1.61	ROTARY	DROP
6399.00	62.65	326.00	54.00	-2.50	-1.85	ROTARY	DROP

APPENDIX D
MULTISHOT SURVEY
OF WELLBORE

HARDY HW NO. 1 DOE/BDMESC/CABOT 01*Jan-90 MULTISHOT SURVEY
PAGE 1

MEASURED	DRIFT	DRIFT	COURSE	true	RECTA	NaUlar	closure	Closure	dogleg
DEPTH	ANGLE	Azimuth	lenath	vertical	COORD	Inates	distamce	Azimuth	severity
FEET	degrees	degrees	feet	DEPTH	NORTH	east	feet	degrees	DEG/100'
5603.00	85.75	340.00	61.00	4056.00	1676.13	-808.51	1860.94	334.25	3.30
5665.00	82.75	340.00	62.00	4063.29	1733.99	-829.56	1922.21	334.43	1.61
5727.00	81.00	339.00	52.00	4072.05	1791.48	-851.06	1983.35	334.59	3.24
5789.00	79.25	338.00	62.00	4082.68	1848.31	. 873.44	2044.29	334.71	3.24
5850.00	78.75	337.00	61.00	4094.32	1903.63	-896.36	2104.10	334.79	1.81
5912.00	77.00	336.00	62.00	4107.35	1959.21	-920.53	2164.69	334.83	3.23
5974.00	75.50	335.00	62.00	4122.08	2014.01	.945.50	2224.91	334.85	2.88
6036.00	73.25	333.00	62.00	4138.78	2067.67	-971.67	2284.60	334.83	4.78
6097.00	71.25	332.00	61.00	4157.38	2119.20	-998.50	2342.65	334.77	3.63
6159.00	69.75	330.00	62.00	4178.07	2170.31	-1026.83	2400.96	334.68	3.89
6221.00	67.75	329.00	62.00	4200.54	2220.10	-1056.15	2458.52	334.56	3.56
6283.00	65.50	328.00	62.00	4225.14	2268.62	-1085.89	2515.11	334.42	3.92
6345.00	64.00	327.00	62.00	4251.58	2315.91	- 1116.02	2570.79	334.27	2.83
6399.00	62.65	326.00	54.00	4275.83	2356.15	-1142.65	2618.60	334.13	3.00

APPENDIX E
DRILL PIPE TALLY

DRILL PIPE TALLY - 12-11-89				
	STAND		STAND	
	NUMBER	LENGTH	NUMBER	LENGTH
	1	62.93	41	62.22
	2	62.86	42	
	3	62.65	43	
	4	61.85	44	
	5	62.15	45	
	6	61.49	46	
	7	61.24	47	
	8	62.41	48	
	9	62.20	49	
	10	61.60	50	
	11	59.61	51	
	12	62.06	52	
	13	61.96	53	
	14	61.65	54	
	15	62.30	55	
	16	61.80	56	
	17	61.53	57	
	18	61.78	58	
	19	62.17	59	
	20	62.47	60	
	21	61.75	61	
	22	61.93	62	
	23	62.10	63	
	24	62.98	64	
	25	61.30	65	
	26	60.88	66	
	27	62.37	67	
	28	63.03	68	
	29	61.80	69	
	30	62.00	70	
	31	61.48	71	
	32	62.72	72	
	33	61.95	73	
	34	61.95	74	
	35	61.93	75	
	36	62.77	76	
	37	62.52	77	
	38	63.18	78	
	39	62.70	79	
	40	62.95	80	
	SUBTOTAL	2483.00	SUBTOTAL	62.22
DRILL	PIPE TOTAL	2545.22		2637.04
BHA		667.74		
KELLY		40		
	TOTAL	3252.96		

DRILL PIPE TALLY - 12-29-89

STAND		STAND		STAND	
NUMBER	LENGTH	NUMBER	LENGTH	NUMBER	LENGTH
1	62.55	41	61.17	81	62.25
2	59.95	42	61.95	82	62.84
3	61.95	43	62.54	83	60.30
4	62.10	44	61.65	84	62.55
5	62.20	45	61.40	85	62.74
6	61.90	46	61.83	86	61.02
7	61.55	47	62.47	87	60.58
8	61.40	48	61.43	88	62.59
9	62.10	49	60.79	89	62.83
10	61.10	50	62.36	90	61.90
11	61.90	51	61.27	9.1	61.98
12	62.05	52	61.72	92	62.49
13	62.15	53	62.30	93	61.72
1.4	62.35	54	62.49	94	62.55
15	62.20	55	61.20	95	60.21
16	62.15	56	61.20	96	62.19
17	62.15	57	62.01	97	62.60
18	61.15	58	61.19	98	$2.00 \mathrm{X}-0$
19	62.55	59	61.29	99	59.70 DC
20	61.50	60	61.97	100	61.11 DC
21	62.30	61	60.28	1.01	58.92 DC
22	62.80	62	61.87	102	57.97 DC
23	62.35	63	61.62	103	61.75 DC
24	61.05	64	61.40	104	1.79 X-0
25	60.50	65	62.06	105	
26	62.55	66	61.72	106	
27	61.70	67	60.69	107	
28	62.65	68	62.81	108	
2.9	60.55	69	62.80	109	
30	61.15	70	61.73	110	
31	62.25	71	61.23	111	
32	60.00	72	61.41	112	
33	61.70	73	61.72	113	
34	61.95	74	62.62	114	
35	61.95	75	61.37	115	
36	62.40	76	61.89	116	
37	62.65	77	59.20	117	
38	62.20	78	61.88	118	
39	62.10	79	62.26	119	
40	62.75	80	62.57	120	
SUBTOTAL	2474.50	SUBTOTAL	2.467 .36	SUBTOTAL	1356.58
D P TOTAL	6298.44				
BHA	53.02				
KELLY	40.00				
TOTAL	6391.46	KB			

APPENDIX F MULTISHOT PIPE TALLY

APPENDIX G

SINGLE SHOT SURVEYS

TAKEN DURING DRILLING OPERATIONS

APPENDIX H
GAS SHOWS
AS DETERMINED FROM HYDROCARBON MUD LOG OF DRILLING OPERATION

GAS SHOWS RECORDED IN THE HURON SHALE SECTION OF THE WELLBORE

MEASURED feet	DEPTH	CALCULATED mefpd	VOLUME
3705		3	
3777		4	
3844		2.8	
3868		2.8	
3932		4	
3943		9	
3959		9	
4038		2.8	
4207		45	
4210		114	
4220		41	
4251		11	
4294		30	
4303		25	
4320		82	
4349		32	
4416		15	
4448		16	
4524		30	
4547		18	
4598		40	
4608		17	
4621		11	
4628		16	
4706		9	
4728		21	
4772		24	
4782		27	
4785		10	
4794		22	
4803		16	
4880		28	
4925		57	
4931		21	
5078		50	
5180		50	
5211		36	
5231		102	
5252		21	
5338		28	
5342		75	
5378		16	
5383		28	
5412		43	

MEASURED DEPTH feet	CALCULATED VOLUME mcfpd
5434	25
5484	7.2
5500	28
5564	79
5574	50
5588	64
5603	64
5616	178
5794	28
5800	21
6030	36
6121	10.8
6140	10
6149	10
6168	21.6

APPENDIX I DAILY DRILLING REPORTS

WELL NAME: BDM/DOE CABOT HW \#1 DATE: 11-30-89 REPORT TIME: 8:00 A.M. DEPTH: 32 FOOTAGE: 32 FORMATION: SAND HLU: 8000 HLD: TORQUE: ROTATING WEIGHT: 8000

On November 29, 1989, hauled 720 bbls of water:
1-300 bbls hauled to the tanks (2 tanks at a capacity of 150 bbls each) $2-420$ bbls to the pit
*estimated time 10 hours, load capacity 60 bbls

WELL NAME: BDM/DOE CABOT HW \#1 DATE: $\frac{12-1-89}{\text { REPORT TIME: 8:00 A.M. }}$ DEPTH: 258 FOOTAGE: $\underline{226}$ FORMATION: RED ROCK HIU: ROTATING WEIGH'T:

BDM DAILY REPORT

BDM DAILY REPORT


```
                    BDM DAILY REPORT
WELL NAME:BDM/DOE CABOT HW #1 DATE: 12-5-89 REPORT TIME:R:OO A.M.
DEPTH: 1981 FOOTAGE: 836
FORMATION: LIMESTONE HLU:
ROTATING WEIGHT:
BIT RECORD:
```



```
BHA:
```



```
GAS: C1:_12u , C2: , C3: , C4: , C5: , C5+: , TOT: 12U
SHOWS: 1848-54, 1859-94,1862-14u,1921-184, 1935-424, 1959-
28u, 1968-17u, 1976 - 144
TIME BREAKDOWN AND COMMENTS:
FROM
    3:00 3:45 .75 Service rig
    3:45 11:00 7.25 Drilling
11:00 11:30 .5 Service rig
11:30 7:00 8.5 Drililng. Hit 3" water flow in Maxton at 1860'
    7:00 8:00 1 Pull 8 stands pipe. Plts full of water. Empty
    lower reserve pit to allow room for formation water.
Top of Big Lime 1896'
```


BDM DAILY REPORT

 ROTATING WEIGHT:

Top of Big Injun at 2105

BDM DAILY REPORT

BDM DAILY REPORT

BDM DAILY REPORT

GAS: C1: , C2: , C3: , C4: , C5: , C5+: , TOT: SHOWS:

TIME BREAKDOWN AND COMMENTS:

FROM	TO	HRS	
8:00	9:30	1.5	Wait on cement. Weld $133 / 8^{\prime \prime}$ to $95 / 8^{\prime \prime}$
9:30	3:00	5.5	Rig down mud pump and clean pit. Rig up boosters
		and air casing	package. Run gamma ray correlation log in $95 / 3^{\prime \prime}$
3:00	4:00	1	Break out 9 5/8" landing joint
4:00	10:00	6	Nipple up
10:00	5:30	$\begin{aligned} & 7.5 \\ & \text { from hol } \end{aligned}$	Pick up monels and trip in hole. Blowing water e every 10 stands
5:30	7:00	1.5	Work on brake water system and soap pump
7:00	8:00	$\begin{aligned} & 1 \\ & 2661^{\prime} \end{aligned}$	Drill out casing shoe and drill 8 3/4" hole to

BDM DAIIY REPORT

WELL NAME:BDM/DOE CABOT HW \#1 DATE: 12/12/89 REPORT TIME:8:00 A.M. DEPTH: 3253' FOOTAGE: 592' ACTIVITY: PICK UP DRILI PIPE FORMATION: SHALE HLU:
 HLD: TORQUE: ROTATING WEIGHT:

BDM DAILY REPORT

WELI NAME:BDM/DOE CABOT HW ㅍ1 DATE: 12/13/89 REPORT TIME:8:00 A.M. DEPTH: 35391 FOOTAGE: 286' ACTIVITY: DRILIING FORMATION: SHALE HLU: HLD: TORQUE: ROTATING WEIGHT:

BDM DAILY REPORT

WELL NAME:BDM/DOE CAB	OT HW \#1		12	/89	REPOR	T	8:00	A.M.
DEPTH: 38171 FOOTA	GEE: 2781		ACT	TY: TR				
FORMATION: SHALE		HLU					ORQUE	
ROTATING WEIGHT:								
BIT RECORD:					9.5			
BIT	SERIAL			FOOT-	FT/			
\# SIZE TYPE MANUF	\#	IN	OUT	AGE	HR	WT	RPM	CONDITION
RR4 8.75 M84F SEC	511139	3487		330	34.7	4-8	MTR	
AIR RATE: 2007 SCFM	OIL R	RATE:	GAL		ESSUR	:	5 PSI	
ADDITIVES:								

BHA: BIT, EASTMAN MTR SET AT 1.3O, 1.5O BENT SUB, MSS, 2-MONELS TOTAL 87.231

SURVEYS: SEE ATTACHED SURVEY SHEET'

BDM DAIIY REPORT

BIT	ECORD			SERIAL			FOOT	9.75			
\#	SIZE	TYPE	MANUF	\#	IN	OUT	AGE	HR	WT	RPM	NDITION
RR4	8.75	M84F	SEC	511139	3487	3817	330	34.7	4-8	MTR	$1-2-I$
5	8.5	M84F	SEC	399929	3817		463	47.5	6-8	MTR	
$\begin{aligned} & \text { AIR } F \\ & \text { ADDII } \end{aligned}$	RATE: IVVES	1738	SCFM	OIL	RATE:	1 GAL			PRES	JRE:	185 PSI

BHA: SAME
SURVEYS: SEE ATACHED SURVEY SHEET

BDM DAILY REPORT

WEL工 NAME: BDM/DOE CABOT HW \#1. DATE: 12/16/89 REPORT TIME:8:00 A.M. DEPTH: 43741 FOOTAGE: 24 ACTIVITY: STEERING TOQL FATIURE FORMATION: SHALE HLU: HLD: TORQUE: ROTATING WEIGHT:

TIME BREAKDOWN AND COMMENT'S:

EROM	TO	HRS
8:00	9:15	1 Drilling. 1/4 hour connection
9:15	9:45	. 5 Steering tool problems. The well appears to be
		turning to the left; but can't get good information out of
		the steering tool. Will pull the steering tool to make sure
		it is still oriented properly. Take single shot survey with
		steering tool. No picture.
9:45	12:30	2.75 Pull out of hole to side entry sub. The hole was tight 2 stands off bottom. Had to wash out 8 joincs until
		it pulled free. Hole cleaning is the problem.
12:30	1:30	1 Pull steering tool. The orienting stinger had
		pulled loose from the steering tool when the steering tool was pulled from the hole. Can't tell if the tool had been
		oriented properly.
1:30	5:00	3.5 Trip out of the hole. orienting sub still properly
		positioned.
5:00	9:00	4 Lay down Eastman motor. Pick up Baker motors.
		Took shims out of second motor so that the first motor could
		be shimmed up to a 2 bent housing. Pick up rest of BHA and orient motor.
9:00	11:00	2 Trip in hole.
11:00	2:45	3.75 Ran steering tool. Tool would not fall past
		60\%. Pulled 4 stand from hole. Run and seat steering
		tool.
2:45	3:15	. 5 Drilling. Steering tool still not working right.
3:15	4:15	1 Work on booster clutch.
4:15	7:00	2.75 Pull steering tool and change probes. Run
		steering tool.
7:00	7:45	. 75 Drilling. Steering tool failed half way whrough
		kelly, Cannot tell which way tha woll has turned or what
		the inclination is. All four probes on location have
		failed.

7:45 8:00 . 25 Attempt to take single shot. No picture.

BDM DAILY REPORT

GAS: C1:
SHOWS: NONE
S2:
C3:

BDM DAILY REPORT

BDM DAILY REPORT
WEL工 NAME: BDM/DOE CABOT HW \#1 DATE: 12/20/89 REPORT ITME: 8:00 A.M. DEPTH: 4750' FOOTAGE: 238' ACTIVITY: SURVEY FORMATION: SHALE HLU: 82,000 HLL: 64,000 TORQUE: 2RDS ROTATING WEIGHT: $\quad 72,000$

BDM DAILY REPORT

```
WELL NAME:BDM/DOE CABOT HW #1. DATE: 12/21/89 REPORT TIME:8:00 A.M.
DEPTH: 51261 FOOTAGE: 3761 ACTIVITY: TRIP
FORMATION: SHALE HLU: HLD: TORQUE:
ROTATING WEIGHT:
```


TIME BREAKDOWN AND COMMENTS:

BDM DAIIY REPORT

WEL工 NAME:BDM/DOE CABOT HW ㅍ1_ DATE:_12/22/89_ REPORT TIME:8:00 A.M. DEPTH: 5126 FOOTAGE: 0 ACTIVITY: Shutting down ior holiday FORMATION: SHALE HLU: HLD: TORQUE: ROTATING WEIGHT:

BIT RECORD:

GAS: C1: , C2: , C3: , C4: , C5: , C5+: , TOT:

BREAKDOWN AND COMMENTS:			
FROM	TO	HRS	
0800	0900	1	Tripping out.
0900	1230	3.5	Trip in with new BHA as follows: bit, near-bit 3-pt reamer, $30-\mathrm{ft}$ collar, $3-\mathrm{pt}$ string reamer, $\mathrm{X}-0$, monel
1230	1300	0.5	Run single shot $w /$ timer set for 75 minuters on SMITH (ON COURSE) wire line through side entry sub.
1300	1400	1	Trip in; bit won't go down past sidetrack point (approx. 4338); worked string up and down, blew air but still wouldn't go.
1400	1500	1	Pull 3 stands. Pull side entry sub, wireline, and single shot.
1500	1545	0.75	Run in to sidetrack point; apply torque, drill string rolls into old hole, can't make it go.
1545	1845	3	trip out. Break out BHA.
1845	2000	1.25	Rig down loggers.
2000	2030	0.5	Pick up bit, subs, reamer; new BHA consists of bit, float sub, $10.75-\mathrm{ft}$ pony collar, $3-\mathrm{pt}$ reamer, $\mathrm{X}-\mathrm{o}$, collars
2030	2345	3.25	Run in hole.
2345	0215	2.5	Run single shot survey using Wilson Downhole's S.S.Tool, Smith's releasing overshot tool, and rig's slick line unit.
0215	0345	1.5	Pull 20 stands of pipe.
0345	0415	0.5	Fish out single shot w/ sl. line.
041.5	0700	2.75	Trip out to casing point.
0700	0800	1	Shutting down; set "dry watch".

```
WELL NAME: GDM/DOE CAEOT HW #1 DATE: 1II马T,GG FEFOFT TIME:G:OO A.M.
DEFTH: 512S FDOTAGE: O ACTIVITY: Shut jown for holiday
FDFMATION: GHALE - HLU: HLD: TOFQUE:
FOTATING WEIGHT:
EIT FECORD:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\underset{\#}{\text { EIT }}
\]} & \multirow[b]{2}{*}{SİE} & \multirow[b]{2}{*}{T＇F＇E} & & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ミEF: I AL } \\
\#
\end{gathered}
\]} & \multicolumn{2}{|r|}{DEFTH} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FODT- } \\
& \text { AGE }
\end{aligned}
\]} & \multicolumn{3}{|l|}{FT；} & \multirow[b]{2}{*}{CONDITIOM} \\
\hline & & & MANLJF & & IN & OUT & & HFi & WT & FF＇M & \\
\hline AIF & ATE： & N／ & & MI®T & TE： & N／A & EELE／ & & TESS & NFE： & i1／ 1 \\
\hline
\end{tabular}
GHA:EIT, FLGAT \XiUE, 1O.TE-FOOT EONY GOLLAF, EOTTOMHOLE Z-FT W, FLAT
Z|TTENS.:-G. こ MONELE
BLIFVETE: MIO OHANGE
```



```
SHOW5:
TIME \XiFEGHEOWN AND EOMMENTS:
FFOM -O HFS
Fig \equivпuT zown -- 24-hour "drv waten" Eet.
```

12／23－12／26－NO REPORT
RIG SHUT DOWN FOR HOLIDAYS
DRY WATCH ONLY

BDM DAILY REPORT
 ROTATING WEIGHT: 68000

BHA: BIT, $X-0$, SHORT DRILI COLIAR, THREE POINT, $X-O$, FLOAT SUB, $2-M O N E L S$, 30 STANDS DRILL PIPE, $X-0,6-D R I L L$ COLLARS, $X-O$ SURVEYS: SEE ATTACHED SURVEY SHEET

BDM DAILY REPOR'I

WELL NAME:BDM/DOE CABOT HW \#1 DATE: 12/28/89 REPORT TIME:8:00 A.M. DEPTH: 57631 FOOTAGE: 3411

HLU: 115000 HLD: 12000 TORQUE: 3RDS FORMATION: SHALE
ROTATING WEIGHT: 64000 BLOCKS AND KELIX WEIGH 12000

BHA: BIT, $X-O$, SHORT DRILL COLIAR, THREE POINT REAMER, FLOAT SUB, 1MONEL, 40 STANDS DRILL PIPE, $X-0,10$-DRILL COLLARS, $X-0$ SURVEYS: SEE ATTACHED SURVEX SHEET

TIME BREAKDOWN AND COMMENTS:

FROM	TO	HRS
8:00	12:30	4.5 Trip ir with survey tool and take survey. Trip our to 43901
12:30	8:30	8 Drilling. After the connection at 56701, the pipe
		will no longer fall into the hole. Increasd air rate fro
		2000 scfm to 2900 scfm on next two kellys down. Didn't make
		any difference. Not a hole cleaning problem.
		otate the pipe to get it in the
8:30	8:45	. 25 Service rig.
8:45	11:00	2.25 Drilling. Rotating the pipe in after each
		connection. Connections taking 30 to 45 mins. Will not
		able to take any more surveys by tripping in with pipe.
		maximum time on the timer is not long enough to reach
11:00	11:45	bottom. Tried pumping down a survey with the
		revision of the pump down equipment. Would not go through
		the collars at 3600'.
11:45	12:00	. 25 Service rig.
12:00	4:15	4.25 Trip out to move the drill collars up the hole.
4:15	5:30	1.25 Lay down one monel drill collar to help redu
		drag.
5:30	7:00	1.5 Trip in 40 stands drill pipe and 6 drill coll
7:00	8:00	Pick up 4 more drill collars.

BDM DAILY REPORT

BDM DAILY REPORT

BDM DAILY REPORT

APPENDIX J

DAILY COST REPORT

WELIL NAME: HARDY HW \#1.
WELL NAME:HARDY HW \# I

WELL NAM	HARDY HW \#1 DATE: 12/8/89	SUPERV.:	CARDEN
CODE	DESCRIPTION	TICKET NUMBER	COST
601	GREAT WESTERN - DRILLED $81{ }^{\prime}$		1053
606	GSM - WELLSITE CONSULTANT		450
-801	MUD LOGGER - STRATAGRAFH		420
	General and Administrative		36
DAILY TOTAL			1959

COMMENTS:

WELL NAME	HARDY HW \# I DATE: 12/29/89 S	SUPERV.:	CARDEN
CODE	DESCRIPTION	TICKET NUMBER	COST
602	GREAT WESTERN - DAYWORK		5000
603	DIRECTIONAL DRILIER - WILSON		450
604	DIRECTIONAL SERVICES		405
606	WELLSITE CONSULTANT - GSM \& MILFORD		775
626	AIR METER - LAUGHLIN		100
801	MUD LOGGER - STRATAGRAPH		420
	General and Administrative		134
DAILY TOTAL CUMULATIVE			7284
			295290
COMMENTS:			

YEAR: 1989

TASK		Previous			date			WEEKLY			PO	PO
CODE	DESCRIPTION	WEEK	11/30	12/1	$12 / 2$	12/3	12/4	12/5	12/6	rotal	budget	VARIANCE
401 ROADS AND LCCATION		0	2950							2950	2950	0
	SUBTOTAL TASK 4		2950	0	0	0	0	0	0	2950	2950	0
501	CONSULTING ENalNEERING	7494								7494	4743	2751
	SUBTOTAL TASK 5	7494	0	0	0	0	0	0	0	7494	4743	2751
601	footage contract	0	416	2938	5694	0	5837	10868	1846	27599	42484	. 14885
602	Day work contract	0								0	85000	. 85000
603	DIRECTIONAL DRILLER	0								0	0	0
604	DIRECTIONAL SERVICES	0								0	0	0
605	STEERING TOOL	0								0	23400	. 23600
606	CONSULTING ENGINEER	0						450	450	900	0	900
607	RENTALS-REAMERS \& STABU.IZERS	0								0	7600	-7660
608	DRILLING FLUID ADDITIVES	0								0	2951	- 2951
609	ORILL BITS	0								0	10316	-10316
610	WATER HAULING	0								0	1200	- 1200
611	WATER tank rental	0								0	900	. 900
612	13 3/8" CASING	0		11575						11575	11102	473
613	$95 / 8^{\prime \prime}$ CASING	0								0	31189	-31189
614	$41 / 2^{\prime \prime}$ CASING	0								0	2163:2	-21632
615	EEMENTING 13 3/8" CASING	0		553		4531				5084	5084	0
616	CEMENTING 9 5/8" CASING	0							578	578	6434	-5856
617	CEMENTING $41 / 2$ CASING	0								0	4651	-465
618	PROOUCTION TUBING $23 / 8^{\prime \prime}$	0								0	0	0
619	WELLHEAD $95 / 8^{\prime \prime} \times 41 / 2^{\prime \prime}$	0								0	919	. 919
620	WELLHEAD $133 / 8 \times 95 / 81$	0								0	1678	- 1678
621	External casing packers	0								0	11290	- 11290
622	PORT COLLARS	0								0	0	0
623	COMPLETION RIG	0								0	0	0
624	WITROGEN-SERVICE-PACKERS	0								0	0	0
625	SET-TOOL RENTAL	0								0	0	0
626	MISCELLANEOUS	0						342	1055	1397	8501	. 7104
	SUBTOTAL YASX 6		416	15066	5694	453i	5837	11660	3929	47433	276391	- 229258
801	MUD LOGGER	0	0				420	420	420	1260	7110	- 5850
802	WELL LOGGING	0	0							0	27341	-27341
	SUBTOTAL TASK 8		0	0	0	0	420	420	420	1260	34459	. 33191
1101	FRAC JCB	0								0	0	0
1102	WORKOVER RIC	0								0	0	0
1103	PERFORATING	0								0	0	0
1104	WELLHEAD PLUMBING	0								0	0	0
1105	MISCELLANEOUS	0								0	0	0
1106	location reclamation	0								0	0	0
	SUBTOTAL TASK 11		0	0	0	0	0	0	0	0	0	0
	TOTAL COST		3366	15066	5694	4531	6257	12080	4349	58837	318535	. 259698
	OVERHEAD AhD GEA ($1.87 x$)		63	282	106	85	117	226	81	1100	5957	. 4856
	TOTAL COSTS W/ OH/G\&A		3429	15348	5800	4616	6374	12306	4430	59937	324492	. 264554

WELL NAME: HAROY HN \#1
YEAR: 1989

State of West Virginia DEPARTMENT OF ENERGY Division of 011 and Gas
Well Operator's Report of Well Work

Farm name: WALKER, CHARLEY
Location: Elevation: 862.00

District:	UNION		County: PUTNAM	
Latitude:	13600 Feet South of 38	Deg.	40 Min.	0
Longituds:	3400 Feet West of 81	Deg.	50 Min.	0
Sec.				

Company: CABOT OIL \& GAS CORPORATION P. O. Box 1473 Charleston, WV 25325

Agent: DAVID G. MCCLUSKEY
Inspector: JERRY TEPHABOCK
Permit Issued: $\quad 11 / 4 / 89$

Well Work Commenced: $\quad 11 / 29 / 89$
Well Work Completed: $\quad 5 / 16 / 90$
Verbal Plugging
Permission granted on:
Rotary X Cable \qquad
Total Depth (feet) TVD 4276, MD 6399
Fresh water depths (ft) 705
Salt water depths (ft) 1790, 2109.
2118
Is coal being mined in area (Y/N): N
Coal Depths (ft): None Reported

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Casing } \\
\text { \& } \\
\text { Tubing }
\end{gathered}
\] \& \begin{tabular}{l}
Used in \\
Drilling
\end{tabular} \& \begin{tabular}{l}
Left \\
in Well
\end{tabular} \& Cement Fill Up Cu . Ft . \\
\hline 20" \& \(32^{\prime}\) \& \(32^{\circ}\) \& CTS \\
\hline 13-3/8" \& \(668{ }^{\prime}\) \& \(668{ }^{\circ}\) \& \begin{tabular}{l}
460 sks \\
CL-A w/ \\
3\% CC
\end{tabular} \\
\hline 9-5/8" \& 2654' \& 2654

CL \& | 330 sks |
| :--- |
| Howco Lt |
| 100 sks |
| A w/ CC |

\hline 4-1/2" \& \& 6151' MD \& 130 sks
CL-A
BOC 4103
TOC 3560

\hline 2-3/8" \& \& $5550^{\prime} \mathrm{MD}$ \& N/A

\hline
\end{tabular}

OPEN FLOW DATA

Producing formation Lower Huron Shale_ Pay zone depth (ft) 4010.-TVD
Gas: Initial open flow $\frac{15}{502}$ MCF/d Oil: Initial open flow $\frac{0}{0}$ Bbl/d Final open flow Final open flow 582 MCF/d $\mathrm{Bbl} / \mathrm{d}$ Time of open flow between initial and final tests_ N/A Hours
Static rock Pressure $\quad 575$ psig (surface pressure) after _N/A Hours
Second Producing formation \qquad Pay zone depth (ft)
Gas: Initial open flow \qquad MCF/d 011: Initial open flow \qquad Final open flow \qquad MCF/d Final open flow \qquad Bb1/d Time of open flow between initial and final tests \qquad Hours
Static rock Pressure \qquad psig (surface pressure) after \qquad Hours

NOTE: ON BACK OF THIS FORM PUT THE FOLLOWING: 1). DETAILS OF PERFORATED INTERVALS, FRACTURING OR STIMULATING, PHYSICAL CHANGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMATIC DETAILED GEOLOGICAL RECORD OF ALL FORMATIONS, INCLODING COAL ENCOUNTERED BY THE WELLBORE.

DETAILS OF PERFORATED INTERVALS, FRACTURING OR STIMULATING, PHYSICAL GHANGE, ETC.

PORT COLIARS			PERFORATIONS		NUMBER	
NUMBER	MD	ZONE	RANGE			
1	5919	1	5579-5585		12	
2	4842	2	4864-4880		30	
3	4714	3	4430-4475		10	
4	4056	4	4207-4370		32	
ZONE TABLE OF STIMULATION/TREATMENT						
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Treat w/ 140,000 Attempt to frac	$75 \mathrm{Q} \mathrm{fo}$				
3 \& 4 Treated w/ approximately 29,000 非 $20 / 40$ sand in $75 Q$ foam.						
FORMATION		TOP		BOTTOM		
Sindstone		0		700		
Sandy Shale				1200		
Sandstone				1280		
Sandy Shale				1810		
Sandstone				1900		
Limestone (Big Lime)				2080		
Shale				2106		
Sandstone (Infun)				2166		
Silty Shale				2560		
Sunburn Shale				2580		
Berea Sand				2594		
Devonian Shale				4403		

APPENDIX L

TABLE L-1
TABLE L-2
TABLE L-3

TABLE L-1

PRE-STIMULATION PRESSURE BUILD-UR DATA ANALYSIS FOR HARDYOI
data are converted to aduusted pressunes and aduusted effective time
tD ACCOUNT FOR GAS PROPERTIES SUCH AS UISCOSITY AND COHPRESS1日ILITY

TIME-HRS			PSUVIS มпะะมีะ		$\begin{aligned} & \text { PSUCOMP } \\ & \text { zunazen } \end{aligned}$	V6	$\underset{a x= \pm x= \pm}{\text { ADJ-PRS }}$	$\underset{=m x=x x=}{A-T I M E}$	B-tIME 	$\begin{aligned} & \text { C-TIME } \\ & \text { \#xyRy } \end{aligned}$	PSU-TIME 	ADJ-TIME	$\begin{aligned} & E T P A \\ & =a=z=a z n \end{aligned}$	ADJ EFF 1
0	0					500,02517931				0	0		677.2278	0
0.017	20.938	39074.30	0.011507	0.996618	0.048598		0.436986	,	894.0307	5. 19852	15.1985233	0.000333		0.000333
0.034	20.938	39074.30	0.011507	0.996618	0.04859		0.436986	1780,061	1788.061	30.39704	45.5935700	0.001000		0.001000
0.051	23.134	48715.00	0.011507	0.996263	0.044938	VIS-AVG	0.544803	1933.686	1860.873	31.63485	17,230427!	0.001694		0.001694
0.068	23.134	48715.00	0.011507	0.996263	0.044938	0.012159812	0.544803	1933.686	1933.686	32.87266	110.103094	0.002415		0.002415
0.085	23.992	52481.73	0.011507	0.996124	0.043508		0.586928	1997.239	1965.462	33.41287	143.515965	0.003148		0.003148
0.102	23.992	52481.73	0.011507	0.996124	0.043508		0.586928	1997.239	1997.239	33.95307	177.469038	0.003893		0.003893
0.119	26.733	64515.05	0.011507	0.995682	0.038940	2-AV6	0.721503	2231.543	2114,391	35.94465	213.413691	0.004682		0.004682
0.136	26.733	64515.05	0.011507	0.995682	0.038940	0.919754928	0.721503	2231.543	2231.543	37.93623	251.349925	0.005514		0.005514
0.153	23.653	50993,48	0.011507	0.996179	0.044073		0.570284	1971.636	2101.549	35.72702	287.076953	0,006298		0.006298
0.17	23.653	50993.48	0.011507	0.996179	0.044073	COMP-AVG	0.570284	1971.636	1971.636	33.51782	320.594775	0.007034		0.007034
0.187	23.781	51555.41	0.011507	0.996159	0.043860	0.0018:14389	0.576569	1981.226	1976.43!	33.59933	354,194109	0,007771		0.007771
0.204	23.781	51555.4	0.011507	0.996159	0.043860		0.576569	1981.226	1981.226	33.68084	387.874956	0.008510		0.008510
0.221	23.845	51836.38	0.011507	0.996148	0.043i53		0.579711	1986.056	1983,641	33.72190	421.596857	0.009250		0.009250
0.238	23.845	51836,38	0.011507	0,996148	0.043753	PRS-CONST	0.579711	1986.056	1986, 056	33.76295	455.359813	0.009991		0.009990
0.255	24,606	55177.26	0.011507	0.996025	0.042485	0.0000111835	0.617074	2045.345	2015,700	34.2669!	489.626729	0.010742		0.010742
0.272	24.606	55177.26	0.011507	0.996025	0.042485		0.617074	2045.345	2045.345	34.77087	524.397605	0.011505		0.011505
0.289	23.996	52499,29	0.011507	0.996124	0.043502		0.587124	1997.545	2021,445	34.36457	558.762181	0.012259		0.012259
0.306	23.996	52499.29	0.011507	0.996124	0.043502		0.587124	1997.545	1997.545	33.95827	592.720457	0.013004		0.013004
0.323	23.514	50383. 25	0.011507	0.996202	0.044305		0.563460	1961.327	1979,436	33.65042	626,370878	0.013743		0.013742
0.34	23.514	50383. 25	0.011507	0.996202	0.044305		0.563460	1961.327	1961,327	33,34256	659.713443	0.014474		0.014474
0.357	22.926	47801.86	0.011507	0.996297	0.045285		0.534591	1918.883	1940,105	32.98179	692.695239	0.015198		0.015198
0.374	22.926	47801.86	0.011507	0.996297	0.045285		0.534591	1918.883	1918,883	32.62102	729.316265	0.015914		0.015913
0.391	23.762	51472.00	0.011507	0.996162	0.043892		0.575636	1979.796	1949,340	33.13878	759.455053	0.016641		0.016640
0.408	23.762	51472.00	0.011507	0.996162	0.043892		0.575636	1979.796	1979.796	33.65654	792.111600	0.017379		0.017379
0.425	23.733	51344.69	0.011507	0.996166	0.043940		0.574212	1977.619	1978,708	33.63803	825.749638	0.018117		0.018117
0.442	23.733	51344,69	0.011507	0.996166	0.043940		0.574212	1977.619	1977.619	33.61952	859.369165	0.018855		0.018854
0.159	23.744	51392.98	0.011507	0.996165	0.043922		0.574752	1978.444	1978,031	33.62654	892,995708	0.019593		0.019592
0.476	23.744	51392.98	0.011507	0.996165	0.043922		0.574752	1978.444	1978.444	33.63355	926.629268	0.020331		0.020330
0.493	23.717	51274.41	0.011507	0.996169	0.043967		0.573426	1976.119	1977.432	33.61634	960.245616	0.021068		0.021068
0.51	23.717	51274,44	0.011507	0.996169	0.043967		0.573426	1976.419	1976.419	33.59913	993.844753	0.021805		0.021805
0.527	23.771	51511.51	0.011507	0.996160	0.043877		0.576078	1980.473	1978.446	33.63359	1027.47834	0.022543		0.022543
0.544	23.771	51511.51	0.011507	0.996160	0.043877		0.576078	1980.473	1980.473	33.66805	1061.14640	0.023282		0.023281
0.561	23.83	51770.53	0.011507	0.996151	0.043778		0.578974	1984.922	1982.697	33.70586	1094, 85226	0.024022		0.024021
0.578	23.83	51770.53	0.011507	0.996151	0.043778		0.578974	1984.922	1984.922	33.74367	1128.59594	0.024762		0.024761
0.595	23.879	51985.64	0.011507	0.996143	0.043697		0.581580	1988.631	1986.776	33.77520	1162,37114	0.025503		0.025502
0.612	23, 879	51985.64	0.011507	0,996143	0.043697		0.581380	1988.63!	1998, 631	33.80673	1196.17788	0.026245		0.026244
0.629	23.927	52196.37	0.011507	0,996135	0.043617		0.583737	1992.279	1990.455	33.83774	1230.01562	0.026987		0.026986
0.646	23, 927	52196,37	0.011507	0.996135	0.043617		0.583737	1992.279	1992.279	33.86874	1263.88437	0.027730		0.027729
0.663	23,952	52306.12	0.011507	0.996131	0.043575		0.584964	1994.184	1993.231	33.88493	1297.76930	0.028474		0.028873
1.343	24.949	56683.07	0.011507	0.995970	0.041913		0.633914	2073.241	2033.712	1382.924	2680,69411	0.058817		0.058812
2.023	24.465	54558.26	0.011507	0.996048	0.042720		0.610151	2034.094	2053.668	1396.494	4077.18852	0.089457		0.089445
2.703	23.612	50813. 18	0.011507	0.996186	0.041142		0.568271	1968.584	2001.339	1360.910	5438,09942	0.119317		0.119296
3.383	27.18	66477.43	0.011507	0.995610	0.038195		0.743449	2275.068	2121.826	1442.841	6880.94141	0.150974		0.150941
4.063	590.819	34314780	0.012418	0.905510	0.001864		383.7587	43184,87	22729.96	15456, 37	22337.3206	0.490103		0.489749
4.743	595.498	34889816	0.012434	0.904781	0.001851		390.1897	43436.23	43310.55	29451,17	51788.4974	1.136293		1.134389
5.423	599,452	35375752	0.012447	0.904165	0.001840		395.6241	43651.58	13943.91	29609, 85	81398.3570	1.785963		1,701266
6.103	603.042	35823853	0.012459	0.903607	0.001830		400.6354	43844.90	43748.24	29748, 80	111147.163	2.438683		2.429933
6.783	606. 122	36246913	0.012470	0.903081	0.001821		405.3667	44028.11	43936.51	29876, 82	141023.990	3.094211		3.080138
7.463	609.629	36648319	0.012481	0.902582	0.001812		409,8558	44203.73	44115.92	29998, 83	171022.82!	3.752417		3.731740

$8.143 \quad 612.684370368290 .0124910 .9021080 .001804$
$\begin{array}{lllllll}8.823 & 615.585 & 37406559 & 0.012500 & 0.901658 & 0.001796\end{array}$
$9.503 \quad 618.379 \quad 377626520.0125090 .9012240 .001789$
$10.183 \quad 621.06381067740 .012518 \quad 0.9008080 .001782$
$10.863 \quad 623.621384390450 .012526 \quad 0.9004110 .001775$
$11.543 \quad 626.088 \quad 387591190.0125340 .9000290 .001769$
$12.223 \quad 628.458390666090 .0125420 .8996610 .001763$
$\begin{array}{llllllllll}12,903 & 630,744 & 39364910 & 0.012550 & 0,899307 & 0,001757\end{array}$
$13.583 \quad 632.9583965725!0.0125570 .8989650 .001752$
$14.263 \quad 635.096 \quad 399395550.0125640 .8986340 .001746$
$14.943 \quad 637.164402126180 .0125710 .8983140 .001741$
$\begin{array}{llllll}15,623 & 639,167 & 40477097 & 0.012577 & 0.898004 & 0.001736\end{array}$
$16.303 \quad 641,092407337970.0125830 .8977070 .001732$
$16.983 \quad 642.965409854330 .0125890 .8974170 .001727$
$17.663 \quad 644.783412296800 .0125950 .8971370 .001723$
$18.343 \quad 646.546414665370 .0126010 .8968650 .001718$
$19.023 \quad 648.261416969460 .0126070 .8966000 .001714$
$19.703 \quad 649.93419211750 .0126120 .8963420 .001710$
$20.383 \quad 651.537421406350 .0126170 .8960940 .001706$
$\begin{array}{lllllllllll}21.063 & 653.098 & 42393970 & 0.012622 & 0.895854 & 0.001703\end{array}$
$21.743 \quad 654.602425595150 .0126270 .8956220 .001699$
$22.423 \quad 656.076427609600 .0126320 .8953950 .001696$
$23.103 \quad 657.502429558450 .0126370 .8951750 .001693$
$23.783 \quad 658.883 \quad 431445800.0126410 .8949620 .001689$
$26.258 \quad 663.615437997450 .0126560 .8942340 .001679$
$29.578 \quad 669.396446033430 .0126720 .0933440 .001665$
$32.898 \quad 674.55453307440 .0126840 .8925530 .001654$
$\begin{array}{lllllllll}36.218 & 679.114 & 45976165 & 0.012694 & 0.891852 & 0.001644\end{array}$ 39．538 $\quad 683.262465707750 .0127030 .8912160 .001635$
42．85日 687．104 4712353日 0.0127110 .8906280 .001627
$46.178 \quad 690.597476275630 .0127190 .8900930 .001619$
$49.511 \quad 693.692480804990 .0127250 .8896190 .001613$
52.831696 .658485145570 .0127320 .8891660 .001607
$56.151 \quad 699.42148918906 \quad 0.012737 \quad 0.8887440 .001601$
59.471701 .947492934040 .0127430 .8883580 .001596
$62.791 \quad 704.274496397220 .0127480 .8880030 .001591$
$66.111 \quad 706.52349974431 \quad 0.012753 \quad 0.8876600 .001587$
$69.431 \quad 708.6350288008 \quad 0.0127570 .8873380 .001583$
$72.751 \quad 710.57250578454 \quad 0.012761 \quad 0.897042 \quad 0.001579$
$76.071 \quad 712.408508562760 .012765 \quad 0.8867630 .001575$
$79.391 \quad 714.23511319800 .0127690 .8864850 .001571$
$82.711 \quad 715,926513886170.0127730 .8862270 .001568$
$86.031 \quad 717.496516246750 .0127760 .8859900 .001565$
$89.351 \quad 719,001518539240.012780 \quad 0,8857390.001562$
$92.671 \quad 720.49520804640 .012783 \quad 0.8955330 .001559$
$95.991 \quad 721,876522936620.012786 \quad 0.8853220 .001556$
$\begin{array}{llllllll}99.337 & 723.117 & 52484555 & 0.012788 & 0.885134 & 0.001554\end{array}$
$102.657 \quad 724.408 \quad 52683139 \quad 0.012791 \quad 0.8849380 .001552$
$105.977 \quad 725.678 \quad 52878493 \quad 0.0127940 .8847450 .001549$
$109.297 \quad 726.85153058926 \quad 0.012796 \quad 0.8845670 .001547$
$112.617 \quad 727.998 \quad 5323536000.0127990 .8843920 .001545$
115.937729 .139534108710 .0128010 .8842190 .001543
119.257730 .241535809890 .0128040 .8840520 .001541
$122.577 \quad 731.255 \quad 537399140.0128060 .883898 \quad 0.001539$
$\begin{array}{llllll}125.897 & 732.253 & 53 & 15538 & 0.012808 & 0.883747 \\ 0.001537\end{array}$
$129.217 \quad 733.251540515620 .0120100 .8835960 .001535$
$414.200744366 .9744285 .3530114,04201136.8644 .413150$ 118．3356 44522．64 44444，81 30222．47 231359．336 5．076262 422．3180 44673．88 44598．26 30326．81 261686． 155 5．741664 426． 1665 44818．01 $14745,9430427,24242113.4006 .409269$ 429．8824 44953．53 44885．77 30522． 32322635.7287 .078960 433.461945085 .0745019 .3030613 .13 353248．858 7．790644 436，9007 45212．36 45148．72 30701．13 $383949,9908.424258$ 440.236845334 .4945273 .4330785 .93414735 .9239 .099733 443.506245450 .5045392 .4930866 .89449602 .8239 .776985 $446.663345563 .2545506 .8830944 .67476547 .502 \quad 10.45594$ 449.7171 45672．99 45610．12 31020． 32 307567． 829 11．13656 452.674945779 .9345726 .4631093 .99538661 .82411 .81879 $455.545745881,1245830,5231164,75969826,58312.50258$ $458.359945978 .5045929 .81 \quad 31232.27$ 601058．856 13．18785 $461.091446073 .5346026 .02 \quad 31297.69632356 .550 \quad 13.87455$ 463.740346166 .1746119 .8531361 .50663718 .05114 .56265 466.317146256 .7446211 .4531423 .79695141 .84315 .25212 468.824746345 .3246301 .0331484 .70726626 .54715 .94293 471.279146428 .0146386 .6731542 .93758169 ． 48316.63502 $473.664946508 .5746468 .2931595 .44789767 .923 \quad 17.32832$ 475.963646586 .5246547 .5431652 .33821420 .25718 .02280 478．2165 46663．25 46624．89 31704．92 253125．183 18．71844 480.396046737 .7946700 .5231756 .35884861 .53819 .41521 182.506746810 .2646774 .0231806 .34916687 .87820 .11307 489.833747058 .3446934 .30116162 .41032850 .2822 .66180 498．8207 47364．97 47211．65 156742．6 1189592．98 26． 10089 506.955647647 .2847506 .13157720 .31347313 .3329 .56144 514．173747901．1647774．22 158610．4 1505923．77 33．04152 520.8235 48128．64 40014．90 $159409.1 \quad 1665333.2636 .53912$ 527.0053 48340．08 48234．36 160138．0 1825471.3640 .05272 $532.642048533 .1448436 .61 \quad 160809.51986280 .9243 .58105$ 537.707448701 .07 48617．10 162040．8 2148321.7447 .13639 542.5617 48863． 2948782.18161956 .82310278 .5950 .68989 $547.083849015 .5548939 .42 \quad 162478.82472757 .4854 .25484$ $551.271949152 .2949083 .92162958 .6 \quad 2635716.1057 .83032$ 555.145049278 .1149215 .20163394 .42799110 .5861 .41537 558． 888249400.4349339 .27163806 .32962916 .9765 .00945 562.395149515 .6849458 .05164200 .73127117 .7269 .61210 565.643349621 .4849568 .58164567 .63291685 .4272 .22297 568.7503 49719，75 49670．62 164906．4 3456591．88 79，84118 $571.83364981 \% .7349768 .74165232 .23621824 .1379 .46655$ 574.703749909 .3549863 .54165546 .93797371 .0983 .09882 $577.343749993 .9749951 .66 \quad 165839.53953210 .6186 .7375!$ 579.907550076 .4750035 .22166116 .94119327 .5590 .38229 $582.4410 \quad 50157.04 \quad 50116.76 \quad 166387.64285715 .1994 .03301$ 584.825350230 .7450193 .89166643 .74452358 .9397 .68934 $586.960150296 .95 \quad 50263.85 \quad 168182.84620541 .77101 .3794$ $589.1810 \quad 50366.04 \quad 50331.50 \quad 167100.54787642 .36 \quad 105.0458$ 591.365750434 .23 50400． 14 167328．4 4954970．84 108．7171 $593.383650497 .4150465 .82 \quad 167546.55122517 .38 \quad 112.3933$ $595.356750559,37 \quad 50528.39167754 .25290271 .65116 .0740$ 597.319650621 .1850590 .27167959 .75458231 .37119 .7592 $599.222150680 .65 \quad 50650.91 \quad 168161.0 \quad 5626392.42$ 123．4480 $600.9949 \quad 50734.20 \quad 30707.42 \quad 168341.65794741 .08 \quad 127.1425$ 602.7398 50787．04 $50760.62 \quad 168525.25963266 .35130 .8402$ $604.484750840 .0150813 .52 \quad 168700.9 \quad 6131967.26 \quad 134.5416$

4，384578
5.038495

5． 693394
6.349180
7.005730

7，662944
8． 320754
8.979084
9.637845
10.29696
10.93639
11.61607
12.27595
12.93994
13.59600
14.25610
14.91619
15.57624

16． 23620
16.89600
17.55560

18．21498
18．87411
19.53296

21．9280：
25． 13227
28．32503
31.50443

34，6686！
37.81619
40.94608
44.06909
47.16000
50.23070

53．28055
56．30891
59．31554
62.30033
65.26299
68.20326

71．12113
74.01665

76． 88969
79.74022
82.56839
85.37421

日8． 17922
90.93997
93.67868
96.39544
99.09034

101．7636
104．4154
107．045日
109,6549
112,2429
$132.537 \quad 734.201542000820 .0128120 .8034520 .001533$ $135,857 \quad 733,104543412550.0128140$ 0.883315 0,001531 $139.177 \quad 735,999 \quad 544811760.012816 \quad 0.8931790 .001530$ $142.197 \quad 736,86234616095 \quad 0.0128180,8830490.001528$ $\begin{array}{llllllll}145.843 & 737,643 & 54738194 & 0.012820 & 0.882930 & 0.001527\end{array}$ $149.163 \quad 738.41154858260 \quad 0.0128210 .8828140 .001525$ $\begin{array}{llllllllll}152.483 & 739,186 & 54979421 & 0.012823 & 0.882696 & 0.001524\end{array}$ $\begin{array}{lllllllll}155,803 & 739,979 & 55103396 & 0.012825 & 0,882576 & 0,001522\end{array}$ $\begin{array}{llllllllll}159.123 & 740.729 & 55222491 & 0.012826 & 0.882463 & 0.001521\end{array}$ $162.443741,449553368720.012828 \quad 0.8823540 .001520$ $165.763 \quad 742.201554563370 .0128290 .882240 \quad 0.001518$ $\begin{array}{lllllll}169,083 & 742.9255570560 & 0.012831 & 0.882132 & 0.001517\end{array}$ $172.403 \quad 743.584556760450 .012832 \quad 0.8820310 .001516$ $\begin{array}{llll}179.723 & 744.255 & 55782642 & 0.012834\end{array} 0.881930 \quad 0.001515$ $179,043744,935558906690.0128350 .8018270 .001513$ $182.363 \quad 745.601559964720 .012837 \quad 0.8817260 .001512$ $185.683 \quad 746,23256096715 \quad 0.0128380 .88163!0.001511$ $189,003 \quad 746,825 \quad 5619092100.0128390,8815410.001510$ $192.349 \quad 741,365627591300.0128400 .8814600 .001509$ $195,669 \quad 747,87456357568 \quad 0.0128420,8813830.001508$ $198.989 \quad 748.29 \quad 564236550.0128420 .8813200 .001507$ $202,309 \quad 748.722564922840 .0128430 .812550 .001507$ $205.629 \quad 749.148 \quad 56559960 \quad 0.0128440 .881190 \quad 0.001506$ 208.949749 .5715662715900 .0128450 .8811260 .001505 $212.269 \quad 749.956679425 \quad 0.0128460 .8810770 .001504$ $215.589 \quad 750.157567206510 .0128460 .8810380 .001504$ $218.909 \quad 739.167549764510 .0128230 .8826990 .001524$ $222.229744,731558582610.0128350 .8818590 .001514$ $225.549 \quad 747,851563539140.0128420 .8813860 .001508$ $228,869 \quad 750,01356697410 \quad 0.0128460 .8910590 .001504$ $232.189 \quad 751.701569698520 .0128500 .8808050 .001501$ $235.509 \quad 753.048 \quad 571872570.0128530 .8806020 .001499$ $238.829 \quad 754.177 \quad 57369478000128550.8804320 .001497$ $242.175 \quad 755.17757530877 \quad 0.0128570 .8802810 .001495$ $245.495 \quad 756.083 \quad 576771050.0128590 .8801440 .001493$ $248,815 \quad 756.86 \quad 578025130.0128610 .88002 \ldots 0.001492$ $252.135 \quad 757.574579177520 .0128620 .8799190 .001491$ $255.455 \quad 758.296 \quad 580342830.0128640 .8798100 .001490$ $258.775 \quad 759,00158148069 \quad 0.012865 \quad 0.879704 \quad 0.001488$ $262,095 \quad 759,61582463620.0128670,8796120.001487$
$606.145750890,55 \quad 50865.28 \quad 168872.76300840,00 \quad 138.2469$ 607.724550938 .7050914 .63169036 .56469876 .57141 .9557 $609.2893 \quad 30986.5450962 .62 \quad 169195.96639072 .48145 .6680$ $610.798251032 .7651009 .65 \quad 169352.0 \quad 6898424.53 \quad 149$, 3836 612.1637 51074.6日 $51053.72 \quad 170825.7 \quad 6979250.29 \quad 153.1319$ $613.506451115 .9851095,33169636.57148886 .79156,0539$ $614,861451157.7351136 .05169774 .37318661 .16160 .5789$ 616.247951200 .5451179 .14169914 .77488575 .92164 .3070 $617.579851239,9251220.23 \quad 170051.17658627 .11168 .0381$ $610.859051271 .7651258 .84 \quad 170179,37828806.48171 .7720$ $620.1950 \quad 51317.36 \quad 51297.96 \quad 170307.9 \quad 7999114.40 \quad 175.5088$ $621.472451355 .2851336 .32170436 .58169550 .99 \quad 179.2483$ $622.652151390,3651372.82 \quad 170557.78340108 .71 \quad 182.9905$ $623.844251425 .87 \quad 51408.12 \quad 170674.98510783 .73 \quad 186.7353$ $625.052451461,9251443.89 \quad 170793.78681577 .47190 .4827$ $626.2356 \quad 51497,2851479.60 \quad 170912.28852489 .75 \quad 194.2327$ 627.3567 51530. 83 51514.06 171026.6 9023516.43 197.9852 $628.410251562 .4251546 .63171134 .89194651,25$ 201.7401 $629.360751590,9551576.68 \quad 172575.69367226 .05 \quad 205.5266$ 630.2739 51618.40 51604.68 171327.5 9538554.39 209.2857 $631.013051640 .6451629 .92 \quad 171410.09709964 .42 \quad 213.0466$ $631.780551663 .7651652 .20 \quad 171485.39881449 .75 \quad 216.8091$ 632.537451686 .5951675 .17171561 .510053011 .3220 .5734 633.288951709 .2751697 .93171637 .110224648 .4224 .3393 633.873451726 .9351718 .10 171704.1 10396352.6228 .1066 $634.334451740 .4951733 .71171755 .9 \quad 10568108.5 \quad 231.8751$ $614.828251156 .7151448 .60170809 .3 \quad 10738917.9 \quad 235.6229$ $624.689951451,1051303.90 \quad 170328.9 \quad 10909246,8 \quad 239,3601$ $630.233051617 .1751534 .13171093 .311080340 .2 \quad 243.1140$ $634.074551732 .9851675 .08 \quad 171561.2 \mid 1251901.4246 .8783$ 637.121451821 .1551777 .07171899 .811423801 .3250 .6499 $639,552751891,7751856,46 \quad 172163.411595964,8254,4274$ $641.590651951 .1451921 .45 \quad 172379.211768344 .0258 .2096$ $643.395652003 .85 \quad 51977.50173916 .711942260 .7 \quad 262.0255$ $645.030952051 .7352027 .79 \quad 172732.2 \quad 12114993.0265 .8154$ $646.433452092 .8752072 .30 \quad 172800.0 \quad 12287873.1269 .6086$ 647.722252130 .7452111 .80173011 .212460884 .3273 .4046 $649.025452169 .1052149 .92 \quad 173137.712634022 .0277 .2034$ $650.297952206,6352187.87173263 .712807285,8 \quad 281,0050$ $651,397252239,1052222.86 \quad 173379,9 \quad 12980665.7$ 284,8091

114,8100
117,3563
119,8820
122. 3874

124,8919
127, 3566
129,8014
132.2266
131.6323
137.0186
139.3858
141.7342

144,0637
146.3747

148,6673
150,9417
153.1982
155.4368
157.6750

159, 8781
162.0636
164.2317
166.3825
168.5163
170.6332
172.7332

174,8014
176.8530
178.8934
180.9238
182.9412
184.9453

186,9357
188.9276
190.8900
192.8384
194.7726

196,6929
198.5993
200.4919

TABLE L－2

post－stimulation pressure buildoup data analygig for hardyil data are converted to adjusted pressures and adjusted effective time to account for gab properties guch as viscosity and cohpressibility

TIME-HRS	PRSS		PSUUIS	PSU－Z	psuconp	
0						124．84056014
1.75	115.35	1193379	0.011961	0，981370	0.008050	
3.5	285.21	754；534	0.011792	0.954001	0，003675	
5.25	379.98	13640810	0.011972	0.938820	0．002801	V15－AVG
7	428.33	17490675	0，012051	0.931115	0.002505	0.0127926
8.75	473.23	21537071	0.012111	0.923990	0.002284	
10.5	497.37	23901396	0，012155	0.920174	，002182	
12.25	530.28	27340856	0.012214	0.914989	0.002057	1－AVG
14	546．73	29157378	0.012265	0.912405	0，002001	0,884872364
15.75	574.50	32355882	0．012361	0.908057	0.001912	
17.5	585.69	33694302	0.012400	0.906309	0，001879	COMP－AVG
19，25	596．89	35060560	0．012439	0.904565	0.001847	0.001551326
21	608.08	36454842	0.012476	0．9028\％3	0.001816	
22.75	619.28	37871375	0.012512	0.901081	0.001786	
24.5	624.88	38602014	0.017530	0.900216	0，001772	PRS－CONST
26.25	630.48	39329398	0.012549	0.899349	0.001758	．0000078085
28	641.67	40811580	0.012585	0.897617	0.001730	
29.75	645.03	41262829	0.112596	0.897099	0．00： 122	
31.5	652.87	423223日3	0.012622	0.895889	0，00170：	
33.25	656.23	42781411	0.012633	0.895372	0,001691	
35	661.82	43550729	0.012650	0.894509	0．01168＇）	
36.75	664.06	43861990	0.012657	0.894165	0.001678	
38.5	666.30	44173252	0.012663	0.893820	0.001672	
40.25	666.30	14173252	0.012663	0.893820	0.001672	
42	673.02	45114310	0.012681	0.892788	0，001657	
43.75	675.26	45430965	0.012686	0.892444	0.001653	
45.5	678.62	4590594日	0.012673	0.891928	0.091645	
47.25	680.86	46224709	0.012698	0.891585	0.001640	
19	681.98	46385788	0.012700	0.891413	0.001638	
50.75	684.22	16707947	0.012705	0.891070	0.001633	
52.5	685.34	46869027	0.012707	0.890899	0.001631	
54.25	693.24	48014352	0，012724	0.889689	0.001614	
56	693.24	48014352	0.012724	0.889689	0.001614	
57.75	693.24	48014352	0.012724	0.889689	0.001614	
59.5	694.37	48179853	0.012727	0.889516	0.001612	
61.25	696.63	48510855	0.012731	0.889170	0.001607	
63	701.16	49175728	0.012741	0，888479	0.001598	
64.75	703.42	49512342	0.012746	0.888134	0.001593	
66.5	704．55	49680649	0.012749	0，887961	0.001591	
68.25	706．81	50017264	0.012753	0.887616	0.001586	
70	707.94	50185571	0.012756	0.887443	0.001584	
71.75	710.20	50522693	0，012761	0.887098	0.001579	
13.5	715．86	51378328	0.012773	0.886238	0.001568	
75.25	715.86	51378328	0.012773	0.886238	0，001568	
77	718.12	51720582	0.012778	0.885893	0.001564	
78.75	719.25	51891709	0.012780	0.885721	0.001562	
80.5	719.25	51891709	0.012780	0.885721	0.001562	
82.25	120．38	52063790	0.012783	0.885549	0.001559	
84	720.38	52063790	0.012783	0.885549	0,001559	
85.75	720．3日	52063790	0.012783	0.885549	0,001559	

ADJJPRS A－TIME B－THME C－TIME PSU－TIME ADJ－TIH TPA ADJ EFF T
 0 9.3184773 .4694886 .7148551 .786 $58,43523070.3511535 .1720186 .55$ 106.51429810 .3314905 .1626084 .04 $136.57633115 .82 \quad 16557.5128976 .34$ 168.17236138 .1418069 v／ 31620.87 186.63437698 .5518849 .2732986 .23 $213.491 \quad 39780.80 \quad 19894.40 \quad 34815.20$ 227.675 40742．32 20371．16 35649．57 $252,65142290.7121145 .3537004 .3$. 263.10242904 .1221452 .0637541 .10 273.77043511 .5921755 .7938072 .64 284.65744118 .8722059 .4338604 .01 295.76544722 .8822361 .4439132 .52 301.42345020 .3922510 .1939392 .84 $307.10315320 .45 \quad 22660.22396 .55 .39$ 318.67745911 .1622955 .5840172 .27 322.20046085 .4723043 .2340725 .66 $330.77446446 .62 \quad 23248,3140084.54$ 334.05846671 .0623335 .5340837 .17 340.06546964 .3223482 .1641093 .78 342.49647081 .9123540 .9541196 .67 344.926 47200． 2423600.1241300 .21 344.926 47200．24 23600.1241300 .21 352.275 47562．85 23781．42 41617．49 $354.74747686 .50 \quad 23843.254!725.69$ 356．456 47873．39 23936．69 41889．21 360.945 47997．35 23998．6日 41997.69 362.203 48058．36 24029， 1842051.07 364.71848180 .9124090 .7542158 .30 $365,97648242.46 \quad 24121.2342212 .15$ $374.92048676 .46 \quad 24338.2342591 .90$ 374.920 48676．46 24338．23 42591.90 374.92048676 .4624338 .2342591 .90 376.21248738 .09 24369．04 42645．83 378.79648861 .9024430 .9542754 .16 393．988 49109．71 24554． 8542970.99 386.61749231 .7424615 .8743077 .77 $387.93149293 .0324546,5143131.40$ 390.55949416 .1324700 .0643239 .12 391.87349477 .9624738 .9843293 .22 394.50649601 .8124800 .9043401 .58 $401.18749905 .67 \quad 24952.8343667 .46$ 401．187 49905．67 24952．83 43667.46 403． 860 50028．44 25014．22 43774．89 405． 196 50090． 1025045.0543828 .83 405.19650090 .1025045 .0543828 .83 406.54050151 .2925075 .6443882 .38 406.54050151 .2925075 .6443882 .38 406．540 50151．29 25075，64 43882．3日

0	$0.000 \quad 129,4114$	0.000
8552	0.170	0.169
28738	0.570	0.568
54822	1.086	1.079
83799	1.663	1.642
115420	2.291	2．251
148406	2.945	2.880
1032.1	3.636	3.537
218871	4.344	4.203
255875	5．070	4．886
293416	3．823	5.572
331489	6.579	6.260
370093	7.345	6.950
409225	8．121	7.642
448618	8.903	8，330
488273	9.690	9.015
528446	10.487	9.701
568771	11.288	10.382
609456	12.095	11.061
650293	12.905	11.735
691387	13.721	12.406
732584	14．538	13.070
773884	15．358	13.729
815184	16．178	14.380
856802	17.004	15.029
898527	17．832	15.672
910416	18.663	16.311
982414	19，496	16.944
1024465	20.331	17.571
1066624	21.168	18.192
1108836	22.005	18，807
1151428	22.851	19．421
1194019	23.696	20． 229
1236611	24．541	20.629
1279257	25.387	21.224
1322011	26.236	21.814
1364982	27.089	22.400
1408060	27.944	22.981
1451192	28.800	23.557
1494431	29．658	24．12日
1537724	30.517	24.694
1581125	31.378	25.255
1624793	32.245	25.813
1668460	33.111	26.365
1712235	33.980	26.913
1756064	34．850	27.456
1799893	35.720	27.993
1843175	36．591	28.525
1887658	37.461	29.052
1931540	38.332	29，573

$720.38 \quad 520637900.0127830 .8855490 .001559$ $721.51 \quad 522377480.0127850 .8853770 .001557$ $723.77 \quad 525896620.0127900 .8850340 .001553$ $727.17 \quad 531075340.012797 \quad 1.884519 \quad 0.001546$ $729.43 \quad 534551490,0128020,8841750,001542$ $731.69 \quad 538076150.0128070,8838320,001538$ $733.95 \quad 541612180.0128120 .8834890 .001534$ 733.95541612180 .0128120 .8834890 .001534 $735.08 \quad 543380190.0128140 .8833180 .001531$ $736.21 \quad 545148200.0128170 .8831470 .001529$ $737.35 \quad 546916210.0128190 .8829750 .001527$ $737.35 \quad 546916210.012819 \quad 0.8829750 .001577$ $737.35 \quad 546916210.0128190 .8829750 .001527$ $737.35 \quad 546916210.012819 \quad 0.0829750 .001527$ $737.35 \quad 546916210.0128190 .8829750 .001527$ $737.35 \quad 54691621$).012819 0.8829750 .001527 $738.48 \quad 548684230.0128210 .8828040 .001525$ $738.48 \quad 54866423 \quad 0.0128210 .8828040 .001525$ $738.48 \quad 548684230.0128210 .8828040,001525$ $738.48 \quad 548684230.012821$ v.882804 0.001525 $738.48 \quad 548684230.012821 \quad 0.8828040 .001525$ $738.48 \quad 548684230.0128210 .8828040 .001525$ $739.61 \quad 550452240.0128240 .8826330 .001523$ $739.61 \quad 550452240.0128240 .8826330 .001523$ 740.74552238890 .0128260 .8824620 .001521 $740.74 \quad 552238890.0128260 .8824620 .001521$ 740.74552238890 .0128260 .8824620 .001521 $740.74 \quad 552238890.0122260 .8824620 .001521$ $740.74552238890 .012826 \quad 0.882462 \quad 0.001521$ $740.74 \quad 552238890.0128260 .8824620 .001521$ $740.74 \quad 552238890.012826 \quad 0.8824620 .001521$ 740.74552238890 .0128260 .8824620 .001521 $741.87 \quad 554035480.012829 \quad 0.8822910 .001519$ 741.87554035480 .0128290 .8822910 .001519 $741.87 \quad 554035480.012829 \quad 0.8822910 .001519$ 741.87554035480 .0128290 .6822910 .001519 744.13557628640 .0128340 .8819490 .001515 $745.26 \quad 559425230.0128360 .8817780 .001513$ $746.395612218!0.0128380 .8816070 .001511$ 747.52563018400 .0128410 .8814360 .001509 $748.65 \quad 564814980.0128430 .8812650 .001507$ $749.79566611560 .012846 \quad 0.8810940 .001505$ $753.18 \quad 572081920.0128530 .8805820 .001499$ 754.31573907180 .0128550 .8804120 .001497 755.44575732450 .0128580 .8802410 .001495 755.44575732450 .0128580 .0802410 .001493 $756.57 \quad 577557720.0128600 .8800710 .001493$ 756.57577557720 .0128600 .8800710 .001493 $757.70 \quad 579382990.0128630 .879900 \quad 0.001491$ 758.83581208260 .0128650 .8797300 .001489 $758.83 \quad 58120826 \quad 0.0128650 .8797300 .001489$ 758.83581208260 .0128650 .8797300 .001489 759.96583033520 .0128680 .8745590 .001487 759.96583033520 .0128680 .8795590 .001487 $759.96 \quad 583033520.0128680 .8795590 .001487$ $761.09 \quad 584886670.0128700 .8793890 .001485$

406.540	50151.29 25075.6443882.38	1975423	39.203	30.08 B
407.898	50211.39 25105.69 43434.96	2019357	40.075	30.599
110.615	50332.10 25166.05 44040.59	2063398	40.749	31.106
114.690	50514.46 25257.23 44200.15	2107598	41.826	31.610
417.406	50636.91 25318.45 44307.29	2151906	42.706	32.110
420.156	50757.25 25378.62 44412.59	2196318	43.587	32.605
422.917	50877.31 25438.6544517 .65	2240836	44.470	33.097
422.917	50877.31 25438.65 44517.65	2285353	45,354	33.584
424.298	50937.60 25468.80 44570.40	2329924	46.238	34.067
425.678	50998.05 25499.02 1.4623.30	2374547	47.124	34.545
427.059	51058.68 25529,34 $: 4676.34$	2419223	48.011	35.019
427.059	51058.68 25529,34 44676.34	2463900	48.897	35.488
427.059	51058.68 25529.34 44676.34	2508576	49.784	35.953
427.059	51058.68 25529,34 44676.34	2553253	50.671	36.413
427.059	51058,68 25529.34 44676.34	2597929	51.557	36.869
427.059	51058.68 25529.34 44676.34	2642605	52.444	37.320
128.439	51119.48 25559.74 44729.54	2687335	53.331	37.767
428.439	51119.48 25559.74 44729.54	2732064	54.219	38.210
420.439	51119.18 25559.74 44729.54	2776794	55.107	38.649
428.139	51119.48 25559.74 44729.54	2821523	55.995	39.084
428.439	51119,48 25559,74 44729.54	2866253	56.882	39.514
428.439	51119.4825559 .7444729 .54	2410982	57.770	39.940
429.820	51180.4425590 .2244782 .89	2955765	54.659	40.363
429.820	51180.4425890 .2244782 .89	3000548	59.547	40.782
431.215	51240.3825620 .1944835 .34	3045384	60.437	41.197
431.215	51240.38 25620.19 44835.34	3090219	61.327	41.609
431.215	51240.38 25620.1944835.34	3135054	62.217	42.017
431.215	51240.3825620 .1944835 .34	3179890	63.106	42.420
431.215	51240.38 25620.1944835.34	3224725	63.996	42.821
431.215	51240.38 25620.1944835.34	3269560	64.886	43.217
431.235	51240.3825620.17 44835.34	3314396	65.776	43.610
431.215	51240.38 25620.1944835.34	$335923!$	66.666	43.999
432.618	51299.85 25649.92 44887.37	3404118	67.956	44.386
432.618	51299.85 25644.92 14887.37	3449006	68.447	44.769
432.618	51299.85 25649.92 44887.37	3493893	69.338	45.148
432.618	$51299.85 \quad 25649.9244887 .37$	3538781	70.229	45.524
435.424	51419.2825709 .6444991 .87	3583772	71.122	45.897
431.827	51479.24 25739.62 45044.33	3628817	72.016	46.268
458.229	51539.37 25769.68 45096.95	3673914	72.911	46.636
439.632	51599.66 25799, 83 45149.70	3719063	73.807	47.001
441.035	51660.13 25830.06 45202.61	3764266	74.704	47.363
442.138	51720.7625860 .3845255 .66	3809522	75.602	47.722
446.7095	51898.5825949 .2945411 .26	3854933	76.503	48.080
448.135	51958.07 25979.03 45463.31	3900396	77.405	48.455
149.560	52017.7126008 .8545515 .50	3945912	78.309	48.787
449.560	52017.71 26008.85 45515.50	3991427	79.212	49.136
450.985	52077.52 26038.76 45567.13	4036995	80.116	49,482
450.985	52077.52 26038.76 45567.83	4082563	81.020	49.826
452.411	\$2137.50 26068.75 45620.31	4128183	81.926	50.167
453.836	52197.6426098 .8245672 .93	4173856	82, 832	50.505
433.836 5	52197.6426098 .8245672 .93	4219529	63.739	50.841
453.836	52197.6426098 .8245672 .93	4265203	84.645	51.174
455.261	52257.94 26120.97 45725.70	4310928	85.552	51.504
455.261	52257.9426128 .9745725 .70	4356653	86.460	51.831
455.26!	52257.9426128 .9745725 .70	4402379	87.367	52.156
456.708	\$2316.70 26158.35 45777.11	4448156	88.276	52.479

$280 \quad 770.14599722940 .0128890 .8780280 .001469$ $281.75 \quad 770.14 \quad 59972294 \quad 0.012889 \quad 0.878028 \quad 0.001469$

456．70日 $52316.70 \quad 26158.3545777 .11 \quad 1493933 \quad 89.184$
$456.70852316 .7026158 .3545777 .11 \quad 4539711490.093$ 453．836 $52197.6426098 .8245672 .93 \quad 4585383 \quad 90.999$ 453.836 52197．64 26098．82 45672．93 4631056 91．906 $453.83652197 .6426099 .8245672 .93 \quad 4676729 \quad 92.812$ $455.26152257 .9426128 .9745725 .70 \quad 4722455 \quad 93.719$ $456.70852316 .70 \quad 26158.3545777 .11 \quad 476023294.628$ $456.700 \quad 52316.70 \quad 26156.3545777 .11 \quad 4814009 \quad 95.536$ $456.708 \quad 52316.70 \quad 26158.3545777 .11 \quad 4859786 \quad 96.445$ 456.70852316 .7026150 .35 45777．11 4905563 97．353 456．708 $52316.70 \quad 26158.35$ 45777．11 $4951341 \quad 96.262$ $456.70852316 .70 \quad 26158.3515777 .11 \quad 4997118 \quad 99.170$ 456．708 52316.7026158 .35 45777．11 5042895100.079 458． $156 \quad 52375.56 \quad 26187.7845928 .61$ 458.15652375 .5626187 .7845828 .61 456.70852316 .7026158 .35 45777．11 456.70852316 .7026158 .3545777 .11 156．708 52316．70 26158．35 45777．11 456.70852316 .7026158 .3545777 .11 456.70852316 .7026158 .3545777 .11 456.70052316 .7026158 .3545777 .11 456.70852316 .7026158 .3545777 .11 $456.70852316 .70 \quad 26158.3545777 .11$ 458．156 52375.56 26187．7845828．61 458．156 52375．56 26187．7845828．61 458．156 $52375.56 \quad 26187.7845828 .61$ $458.156 \quad 52375.56 \quad 26187.7845828 .61$ 458．156 52375.56 26187．78 45828．61 459．604 52434．57 26217．2845880． 25 $459,60452434.5726217 .2845880 .25$ $459.604 \quad 52434.5726217 .2845880 .25$ 459.60452434 .5726217 .2845880 .25 459.60452434 .5726217 .2845880 .25 459.60452434 .5726217 .2845880 .25 459．604 52434.5726217 .2845880 .25 459．604 52434．57 26217．2845880． 25 459.60452434 .5726217 .3845880 .25 459.60452434 .5726217 .2845880 .25 $459.60452434 .57 \quad 26217.2845880 .25$ 459.60452434 .5726217 .2845880 .25 $161.05!52493.7526246 .8745932 .03$ 461.05152493 .7526246 .8745932 .03 461.05152493 .7526246 .8745932 .03 $462.49952553 .08 \quad 26276.5445983 .95$ $463.94752612 .58 \quad 26306.2946036 .01$ $463.94752612 .58 \quad 26306.2946036 .01$ $463.947 \quad 52612.58 \quad 26306.2946036 .01$ 463.94752612 .5826306 .2946036 .01 465.39552672 .2426336 .12 46088． 21 465.39552672 .2426336 .1246088 .21 466.94252732 .0526366 .0246140 .55 466.84252732 .0526366 .0246140 .55 468.29352791 .8226395 .9146192 .84 $468.29352791 .82 \quad 26395.9146192 .84$ $468.29352791 .82 \quad 26395.9146192 .84$ 468.29352791 .8226395 .9146192 .84
5088723100.980
5134552101.898

5180329 102．806 $9226106 \quad 103.715$ 5271883 104．623 5317661105.532 5363438 106.440 5409215107.349 5454992108.257 $5500769 \quad 109.165$ 5596598 110．075 5592426110.984 5638255111.894 5684083 112．803 5729912 113．713 5775792114.623 5821673115.534 5867553116.444 5913433 117．355 5959313118.266 6005194 119．176 6051074120.087 6096954120.997 6142834121.908 6188715122.818 6234595123.729 6280475 124．639 6326407 125．551 6372339126.462 6418271 127．374 $6464255 \quad 128.286$ 6510291129.200 6556327 ！30．114 6602363131.027 6648399 131．94！ 6694487132.855 $6740976 \quad 133.770$ $6786716 \quad 134.686$ 6832857135.601 6879050136.518 $6925242 \quad 137.435$ 7971435138.352 7017628 139．268
52.798
53.115
53.429
53.740

54．049
54.355
54.660
54.962

55．26！
55.558

55． 853
56.145
56.435
56.723
57.009
57.292
57.573
57.852
58.129

50． 404
58．676
58.946
59.215

59．481
59.746
60.008
60.269
60.528
60.785
61.040
61.293
61.544
61.791
62.042
62.287
62.531
62.774
63.014
63.253
63.490
63.726
63.960
64.192
64.423
64.653

64．881
65.107
65.332
65.595
65.777
65.998
66.217
66.435
66.651

66．866
67.080
$283.5 \quad$ 711.27 $60160593 \quad 0.0128920 .877858 \quad 0.001467$ $285.25 \quad 771.27 \quad 60160593 \quad 0.0128920 .8778580 .001467$
$\begin{array}{llllllll}287 & 771.27 & 60160593 & 0.012892 & 0.877858 & 0.001467\end{array}$ $\begin{array}{llllllllll}288.75 & 771.27 & 60160593 & 0.012892 & 0.877858 & 0.001467\end{array}$ $290.5 \quad 772.40 \quad 60348891 \quad 0.0128940 .8776890 .001465$ $\begin{array}{lllllllllll}292.25 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllllll}294 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllllll}295.75 & 772.40 & 60318891 & 0.012894 & 0.877699 & 0.001465\end{array}$ $\begin{array}{lllllllll}297.5 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllllllll}299.25 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{lllllllll} & 301 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllllll}302.75 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllllll}304.5 & 772.40 & 60348891 & 0.012894 & 0.877699 & 0.001465\end{array}$ $\begin{array}{lllllllll}306.25 & 172.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ 308 $\quad 772.40 \quad 603488910.0128940 .8776890 .001465$ $\begin{array}{llllllll}309.75 & 772.40 & 60348991 & 0.012894 & 0.877689 & 0.001465\end{array}$ $\begin{array}{llllllll}311.5 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$ $313.25 \quad 772.40 \quad 603488910.0128940 .8776890 .001465$
$\begin{array}{llllllll}315 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{llllllll}316.75 & 772.40 & 60348891 & 0.012894 & 0.877699 & 0.001465\end{array}$
$\begin{array}{lllllll}318.5 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{llllllll}320.25 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{lllllllllll} & 322 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{llllllll}323.75 & 772.40 & 6034889 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{lllllllllll}325.5 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{lllllllllll}327.25 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$\begin{array}{lllllll}329 & 772.40 & 60348891 & 0.012894 & 0.877689 & 0.001465\end{array}$
$330.75 \quad 772.40 \quad 603488910.0128940 .8776890 .001465$
$332.5 \quad 772.40 \quad 603488910.012894 \quad 0.877699 \quad 0.001465$

52950.23 26425.1146243 .95	7063872140.186	67.292
469.76352850 .23 26425.11 46243.95	7110116141.104	67.502
469.763 52850.23 26425.11 46243.95	7156360142.021	67.712
469.76352850 .23 26425.11 46243.95	7202604142.939	67.920
471.234 52908.79 26454.39 46295.19	7248899 143,858	68.126
471.234 52908.79 26454.39 46295.19	7295194144.777	68.332
471.23452908 .7926454 .3946295 .19	7341490 14j.695	68.536
471.23452908 .7926454 .3946295 .19	7387785 146.614	68.738
471.23452908 .7926454 .3946295 .19	7434080 147.533	68.940
471.23452908 .79 26454. 3946295.19	7480375 [48.452	69.140
471.23452908 .7926454 .3946295 .19	7526670 149.370	69.336
471.23452908 .7926454 .3946295 .19	7572966 150.289	69.536
471.23452908 .7926454 .3946295 .19	7619261151.208	69.732
471.23452908 .7926454 .3946295 .19	7665556 152.127	69.926
471.23452908 .79 26454.39 46295.19	7711851153.045	70.120
471.23452908 .79 26454.39 46295.19	7758146153.964	70.312
471.23452908 .79 26454.39 46295.19	7804442 [54.883	70.503
471.23452908 .7926454 .3946295 .19	7850737155.802	70.693
471.23452908 .79 26454.39 46295.19	7897032156.720	70.881
471.23452908 .7926454 .3946295 .19	7943327 157.639	71.069
471.23452908 .79 26454.39 46295.19	7989622 158.558	71.255
471.23452908 .79 26454.39 46295.19	8035918159.477	71.440
471.23452908 .79 26454.39 46295.19	8082213160.395	71.624
477.234 52908.79 26454.39 46295.19	8128508161.314	71,806
471.23452908 .79 26454.39 46295.19	8174803162.233	71.988
471.23452908 .79 26454.39 46295.19	8221098163.152	72.168
471.23452908 .79 26454,39 46295.19	8267393164.070	72.347
471.23452908 .7926454 .3946295 .19	$8313689 \quad 164.989$	72.525
471.23452908 .7926454 .3946295 .19	8359984 165.908	72.702

$469.76352850 .2326425 .1146243 .95 \quad 7063872$ 140.186 67.502
67.712
67.920
68.126
68.332
68.536
68.738
68.940
69.140
69.356
69.732
69.926
70.120
0.312
70.693
70.881
71.069
71.255
71.624
71.806
71.788
2.168
72.525
72.702

TWO RATE TEST ANALYSIS FOR HARDY II DURING PKODUCTION

$t 1_{1}(h p)=$	144
	$q 1$
	$=$
$q 2$	$=$

		ACTUAL
RESSURE	-	TIME
9944		
429.0316	2.276799	
421.2009	4.520595	3.484
421.2009	6.74	
009	8.961824	6.968
009	11.16692	8.71
2009	13.36176	52
009	15.54643	
2009	17.72099	
2009	19	
2009	22.04006	42
413.3701	24	
405.6896	26	20.904
401.0813	28.38385	22.646
996	30	24.388
390.4784	32.5	26.13
390.4784	34.	27.872
394.9968	36	14
101.0813	38.64408	56
405.6896	40.68148	98
405.6896	12.71396	84
408.7618	44.74018	82
408.7618	迷	24
	48	d
	50.79644	41.808
	52.80853	55
	54.78766	292
	56.73794	34
	58.66635	48.776
	282	18
	18	26
882, 9476	64,35456	. 002
	5046	44
091	68.15147	
74	70.05482	59.228
	386	97
405.6896	84734	12
405.6896	75.73527	
96	61514	96
9968	79.47808	38
. 4784	81.32043	69.68
382.9476	83.1449	22
1399	84.94488	73.
65.2982	86.72143	74.906
3.8533	88.4839	76.648
2.615	. 2	

375.5678	92.01149	80.132					
379.9957	93.77634	81.874					
382.9476	95.5405	83.616					
385.9599	97.30249	85.358					
390.4784	99.06334	87.1					
390.4784	100.8206	88.842					
390.4784	102.5707	90.584					
382.9476	104.3077	92.326					
375.5678	106.0252	94.068					
368.188	107.7233	95. 81					
360.9634	109.4017	97.552					
360.9634	111.0668	99.294					
360.9634	112.7253	101.036					
360.9634	114.3774	102.778					
360.9634	116.0229	104.52					
360.9634	117.6621	106. 262					
360.9634	119.2948	108.004					
360.9634	120.9212	109.746					
360.9634	122.5413	111.488					
360.9634	124.1551	113.23					
360.9634	125.7627	114.972					
360.9634	127.3641	116.714					
346.6717	128.9465	118.456					
339.6046	130.5039	120.198					
336.8404	132.0465	121.94					
336.8404	133.5808	123.682					
346.6717	135.1182	125.424					
353.7388	136.665	127.166					
358.0736	138.216	128.908					
363.8533	139.7697	130.65					
365.2982	141.3237	132.392					
371.1399	142.8778	134.134					
372.6159	144.4319	135.876					
375.5678	145.9834	137.618					
375.5678	147.5313	139.36			LOE(E)	L06(D)	q1/82* 6
368.188	149.0677	141.102	D	E	F	6	H
360.9634	150.5865	142.844	: $x=$ =as=	: =x: $=$ = $=$ =	- =x=3ล=:	2x==3:	= = $=$ =as:
342.4314	152.0779	144.586	0.586	246,7338	2.392229	-0.2321	-0.3805
339.6046	153.5458	146.328	2.328	62.85567	1.798344	0.366983	0.601611
332.6941	154.9999	148.07	4.07	36.38084	1.560873	0.609594	0.999335
321.730%	156.433	149.812	5.812	25.77632	1.411221	0.764326	1.252993
320.3798	157.8502	151.554	7.554	20.06275	1.30239	0.878177	1.439634
319.0289	159.2599	153.296	9.296	16.49053	1.217235	0.968296	1.587371
314.976	160.6599	155.038	11.038	14.04584	1.147548	1.04289	1.709656
312.2741	162.0491	156.78	12.78	12.26761	1.08876	1.106531	1.813985
308.3143	163.4274	158.522	14.522	10.91599	1.038063	1.162026	1.904961
306.9943	164.796	160.264	16.264	9.85391	0.9936019	1.211227	1.985619
305.6743	166.1577	162.006	18.006	8.997334	0.954114	1.255417	2.058061
325.7836	167.7004	163.963	19.963	8.213345	0.91452	1.300226	2.131518
325.7836	169.257	165.92	21.92	7.569343	0.879058	1.340841	2.198099
325.7836	170.8074	167.877	23.877	7.030908	0.847011	1.37798	2.258983
319.0289	172.3451	169.834	25.834	6.57405	0.817833	1.412192	2.315068
312.2741	173.8637	171.791	27.791	6.181534	0.791096	1.443904	2.367056
312,2741	175.3701	173.748	29.748	5.840662	0.766462	1.473458	2.415505
305.6743	176.8641	175.705	31.705	5.54187	0.743656	1.501128	2.460865
303.03441	178,3433	177.662	33.662	5.277821	0.722455	1.52714	2.503508

299,0746 179,8104	179.619	35.6195 .042786
299.0746181 .2683	181.576	37.5764 .8322330 .6841481 .5749112 .581821
295.2072182 .7167	183.533	39.5334 .6425260 .6667541 .596962 .617967
46184	185.	41.494 .470716 0, 550377
9,0746 185.6	187.	3833 0.634919
9,0746 187,0375	189.404	45.404 4.171527 0.620295
9.0746 188.4683	191.361	47.3614 .0404760 .6064331 .6754212 .746592
746189	193.	49.318 3.919826
$9.0746 \quad 191$	195.275	75 3,808386
9,0746 192.7289	197.232	53.2323 .705140 .56
. 2072194.1349	199.189	55.1893 .6092160 .5574131 .741853
. 6289195.5293	201	57.1463 .5198610 .54
289 196.9162	203.103	59.1033 .4364250 .536107
.1833 198.2919	205.06	. 063 3.358336 0.52
286.1833 199,6564	207.017	63.017 3. 2850980.516548
286,1833 201.0161	208.974	64.9743 .2162710 .5073531 .81274
202.3671	210.931	66.9313 .1514690 .49
919203.707	212,8	.888 3.090
279.8919205 .0396	214.845	70.8453 .0326060 .481
279,8919 206.3675	216.802	72.8022 .9779680 .47392
279.8919 207.6907	218. 759	74.7592 .9261890 .466302
209	220	76.7162 .8770530 .4589481 .88488630 .089977
210	222.673	78.6732 .83
166	224.63	80.632 .785936
274.8587 212.9129	226.587	82.5872 .7436160 .4383231 .9169123 .142478
214.2022	228.544	84.5442 .7032550 .4318871 .9270833 .159152
215.486	230.	86
273.6004 216.7652	232.458	88.4582 .62
273.6004218 .0401	234.415	$90.415 \quad 2.5926560 .413745 \quad 1.956243 .206952$
273	236.372	92.3722 .5589140 .408056
220.	238.3	.
221.	240.286	96.2862 .4
273.6004223 .0959	242.243	98.2432 .4657530 .391951 .9923023 .266068
273,6004 224,349	244.2	100.22 .437126 0,3
273.6004225 .5979	246.157	102.1572 .4095950 .3
226.8413	248.114	104.114 2.38
271.1456 228.078	250.071	106.0712 .3575810 .3724672 .02559713 .32065
267.4635 229,3058	252.028	108.028 2.332988
265.0088230 .5236	253.985	109.985 2.30
261.3267231 .7315	255.942	111.942 2.28638 0.3591482 .0489933 .359005
$261.3267 \quad 232.932$	257.899	113.8992 .2642780 .3549312 .056523 .371344
$258.9335 \quad 234.126$	259.856	115.8562 .2429220 .3508142 .063919 3.383473
255.3438235 .3103	261.813	$\begin{array}{lllllllllll}117.813 & 2.222276 & 0.346798 & 2.071193 & 3.395399\end{array}$
255.3438236 .4872	263.77	$119.772 .2023040 .342877 \quad 2.0783483 .407128$
252,9507 237.6579	265.727	121.7272 .1829750 .338
261.3267238 .8306	267.684	123.6842 .1642570 .3353092 .0923143 .430022
267.4635 240.0133	269.641	$125.641 \quad 2.146123 \quad 0.3316552 .0991313 .441199$
267.4635 241.1977	271.598	127.5982 .1285440 .328063 2.105844 3.452203
267.4635 242.3783	273.555	129.555 2.111497 0.324592 .1124543 .46304
267.4635243 .5549	275.512	131.5122 .0949570 .3211752 .1189653 .473714
267.4635 244.7276	277.469	$133.4692 .0789020 .317834 \quad 2.125383 .48423$
261.3367 245.891	279.426	$135.4262 .06331110 .314565 \quad 2.1317023 .494594$
261.3267247 .0449	281.383	137.3832 .0481650 .3113652 .137933 3.504808
249.361248 .1839	283.34	139.342 .0334430 .3082322 .1440763 .514878
255.34388249 .3136	285.297	141.2972 .019130 .3051642 .1501333 .524808

$252.9507 \quad 251.5709 \quad 289.211 \quad 145.211 \quad 1.991660 .299215 \quad 2.1623 .544262$ $\begin{array}{lllllllllll}251.7541 & 252.6897 & 291.168 & 147.168 & 1.978474 & 0.29633 & 2.167813 & 3.553792\end{array}$ $\begin{array}{lllllllllll}250.5576 & 253.8028 & 293.125 & 149.125 & 1.965633 & 0.293502 & 2.17355 & 3.563197\end{array}$
$\begin{array}{llllllllll}249.361 & 254.9102 & 295.082 & 151.082 & 1.953125 & 0.29073 & 2.179213 & 3.57248\end{array}$
$244.361256 .0131 \quad 297.039 \quad 153.039 \quad 1.9409370 .2880112 .1848023 .581643$
$249.361257 .1125 \quad 298.996 \quad 154.996 \quad 1.9290560 .285345 \quad 2.190323 .590689$
$249.361 \quad 258.2084 \quad 300.953 \quad 156.9531 .9174720 .282729 \quad 2.195773 .599622$
$249.361259 .3009 \quad 302.91 \quad 158.911 .9061730 .2801622 .201151 \quad 3.608445$
$\begin{array}{llllllllllllllll}249.361 & 260.39 & 304.867 & 160.867 & 1.895149 & 0.277643 & 2.206467 & 3.617159\end{array}$
$249.361261 .4756306 .824 \quad 162.8241 .8843910 .27517122 .2117183 .625768$
$249.361262 .5579308 .781 \quad 164.7811 .8738870 .2727432 .2169073 .634274$
$249.361263 .6369 \quad 310.738 \quad 166.738 \quad 1.86363 \quad 0.27036 \quad 2.222035 \quad 3.64268$ $256.5404264 .7344312 .7233168 .72331 .8534680 .267985 \quad 2.7271753 .651107$ $256.5404265 .835314 .7086 \quad 170.7086 \quad 1.8435430 .2656532 .2322553 .659435$ $258.9335 \quad 266.9342316 .6939 \quad 172.69391 .8338450 .263363 \quad 2.2372773 .667667$ 261.3267268 .0343318 .6792174 .67921 .8243680 .2611132 .2422413 .675805 $261.3267 \quad 269.133 \quad 320.6645 \quad 176.66451 .8151040 .258902 \quad 2.2471493 .683851$ 263.7814270 .2304322 .6498178 .64981 .8060460 .2567292 .2520033 .691807 $266.2362 \quad 371.3284324 .6351180 .63511 .79718710 .254593 \quad 2.2568023 .699676$ $268.6909 \quad 272.4272326 .6204182 .62041 .7885210 .2524942 .2615493 .707458$ $271.1456273 .5267 \quad 328.6057184 .60571 .780041 \quad 0.250432 .2662453 .715156$ $273.6004274 .6268 \quad 330.591 \quad 186.5911 .771741 \quad 0.24842 .2708913 .722772$ $276.117 \quad 275.7276332 .5763188 .57631 .7636170 .2464042 .2754873 .730307$ $279.8919 \quad 276.83 \quad 334.5616 \quad 190.56161 .7556610 .244441 \quad 2.2800353 .737763$ $282.4085 \quad 277.9339 \quad 336.5469192 .5469 \quad 1.747870 .2425092 .2845373 .745142$ 286.1833279 .0394338 .5322194 .53221 .7402370 .2406082 .2889913 .752445 288.7616280 .1464340 .5175196 .51751 .7327590 .2387382 .2934013 .759674 295.2072 281. 2567342.5028198 .50281 .7254310 .2368972 .2977673 .766831 295.2072 282.3683 344.4881200 .48811 .7182470 .2350862 .3020893 .773916 296.4963283 .4772346 .4734202 .47341 .7112050 .2333022 .3063683 .780931 299.0746 284.5855 $348.4587 \quad 204.45871 .7042990 .2315462 .310606 \quad 3.787878$ $299.0746 \quad 285.6922 \quad 350.444 \quad 206.4441 .6975260 .229816 \quad 2.3148023 .794758$ $305.6743 \quad 286.8352 .4293208 .42931 .6908820 .2261132 .3189593 .801572$ $312.2741 \quad 287.9138 \quad 354.4146 \quad 210.41461 .684363 \quad 0.2264362 .3230763 .808321$ $316.327289 .0317 \quad 356.3999212 .39991 .979660 .2247832 .3271543 .815007$ 296.4963290 .1342358 .3852214 .38521 .3716880 .2231552 .3311953 .821631 $286.1833 \quad 291.211360 .3705 \quad 216.37051 .6655250 .2215512 .3351983 .828194$ $279.8919292 .2717362 .3558 \quad 218.35581 .6594740 .219972 .3391653 .834696$ $272.373293 .3181364 .34111220 .34111 .6535320 .2184132 .343096 \quad 3.84114$ $267.4635 \quad 294.3514366 .3264222 .32641 .6476960 .2168772 .34699!3.847526$ $257.737 \quad 295.3696368 .3117224 .31171 .6419640 .2153642 .3508523 .853856$ $251.7541296 .3718 \quad 370.297 \quad 226.2971 .6363320 .2138712 .3546793 .860129$ $249.361297 .3641 \quad 372.2823 \quad 228.28231 .630798 \quad 0.2124 \quad 2.3584723 .866348$ 243.5313298 .3465374 .2676230 .26761 .6253590 .2109492 .3622333 .872513 $240.0335 \quad 299.318 \quad 376.2529 \quad 232.25291 .6200140 .2095192 .3659613 .078625$ $243.5313300 .2867 \quad 378.2382 \quad 234.2382 \quad 1.6147590 .208108 \quad 2.3696583 .884685$ $243.5313301 .2554380 .2235 \quad 236.22351 .6095920 .2067162 .3733233 .890694$ $243.5313302 .2213382 .2088 \quad 238.20881 .6045120 .2053432 .3769583 .896652$ $243.5313303 .1843384 .1941240 .19411 .5995150 .203988 \quad 2.3805623 .902561$ 243.5313304 .1445386 .1794242 .17941 .5946010 .2026522 .3841373 .908422 $237.7016305 .097 \quad 388.1647 \quad 244.16471 .5897660 .2013332 .3876833 .914234$ $\begin{array}{llllllll}237.7016 & 306.042 & 390.15 & 246.15 & 1.585009 & 0.200032 & 2.3912 & 3.92\end{array}$ 234.2951306 .9813392 .1353248 .13531 .5803290 .1987472 .3946893 .925719 $232.0241 \quad 307.913394 .1206 \quad 250.12061 .575722 \quad 0.197482 .3981493 .931393$ 228.6176308 .0372396 .1059252 .10591 .5711890 .1962282 .4015833 .937021 $226.3465 \quad 309.754398 .0912254 .09121 .5667260 .194993 \quad 2.40499 \quad ? .942606$
226.3465310 .6664400 .0765256 .07651 .5623320 .1937732 .408373 .948147 $226.3465311 .5762402 .0618258 .06181 .558006 \quad 0.1925692 .4117243 .953645$ $226.3465 \quad 312.4834404 .0471260 .04711 .553746 \quad 0.191382 .4150523 .959102$ $226.3465 \quad 313.388406 .0324262 .0324 \quad 1.549550 .190206 \quad 2.4183553 .964516$ 226.3465 314.2901408.0177 264.0177 1.545418 0.1890462 .4216333 .96989 $226.3465 \quad 315.1897 \quad 410.003 \quad 266.0031 .541347 \quad 0.18792 .4248873 .975224$ 226.3965316 .0868411 .9883267 .98831 .5373370 .1867692 .4281163 .980518 226.3465316 .9813413 .9736269 .97361 .5333850 .1856512 .4313213 .985773 226.3465317 .8734415 .9589271 .95991 .5294920 .1845472 .4345033 .990989 226.3465318 .7629417 .9442273 .94421 .5256540 .1834562 .4376623 .996167 $226.3465 \quad 319.65419 .9295275 .92951 .5218720 .1823782 .4407984 .001300$ 226.3465320 .5346421 .9148277 .91481 .5181440 .1813132 .4439124 .006413 $226.3465 \quad 321.4168423 .9001279 .90011 .514469 \quad 0.180262 .447003 \quad 4.01148$ $223.0308322 .2936425 .8854281 .88541 .510846 \quad 0.179222 .4500734 .016512$ 223.0308323 .1653427 .8707283 .87071 .5072730 .1781922 .4531214 .021509 $223.0308 \quad 324.0345 \quad 429.856 \quad 285.856 \quad 1.50375 \quad 0.177176 \quad 2.4561474 .026471$ $220.8203 \quad 324.8995431 .8413287 .81131 .500276 \quad 0.1761712 .4591534 .031399$ $223.0308 \quad 325.7621433 .8266289 .82661 .496849 \quad 0.1751782 .4621384 .036292$ $224.136 \quad 326.6252435 .8119291 .81191 .4934690 .1741962 .4651034 .041152$ $224.136327 .4868437 .7972 \quad 293.7972 \quad 1.4901340 .173225 \quad 2.468048 \quad 4.04598$ $224.136 \quad 328.346439 .7825 \quad 295.7825 \quad 1.486844 \quad 0.172265 \quad 2.4709724 .050775$ $225.2413329 .2038441 .7678297 .76781 .483598 \quad 0.1713162 .4738784 .055537$ 225.2413330 .0602443 .7531299 .75311 .4803950 .1703782 .4767644 .060268 223.0308330 .9124445 .7384301 .73841 .4772350 .1694492 .4796314 .064968 220.8203331 .7587447 .7237303 .72371 .4741150 .1685312 .4824794 .069637 $217.5045 \quad 332.5982 \quad 449.709305 .7091 .471036 \quad 0.1676232 .4853084 .074276$ $215.294333 .431451 .6943307 .69431 .4679970 .166725 \quad 2.4881194 .078884$ $215.294334 .2598453 .6796309 .6796 \quad 1.464997 \quad 0.165837 \quad 2.4909134 .083463$ $215.294335 .0864455 .8649311 .66491 .4620350 .164958 \quad 2.4936884 .088013$ $215.294335 .9108457 .6502313 .6502 \quad 1.45911 \quad 0.164088 \quad 2.4964464 .092534$ $215.294 \quad 336.733459 .6355315 .63551 .4562220 .163228 \quad 2.4991864 .097026$ 215.294337 .5531461 .6208317 .62081 .4533710 .1623762 .5019094 .10149 $212.0684338 .3682463 .6061319 .60611 .450555 \quad 0.1615342 .5046154 .105926$ $209.918 \quad 339.1768165 .5914321 .59141 .4477730 .1607012 .5073044 .110335$ 207.7676339 .9797467 .5767323 .57671 .4450260 .1598762 .5099774 .114717 $204.542340 .7761469 .562 \quad 325.562 \quad 1.4423120 .1590592 .5126344 .119072$ $204.542341 .5679471 .5473327 .54731 .439631 \quad 0.1582512 .51527414 .1234$ $204,542342.3577473,5326329.9326 \quad 1.4569830 .137431 \quad 2.5178984 .127702$ $204.542343 .1454475 .5179331 .5179 \quad 1.434366 \quad 0.156662 .5205074 .131979$ $\begin{array}{llllllllll}204.542 & 343.9311 & 477.5032 & 333.5032 & 1.43178 & 0.155876 & 2.5231 & 4.13623\end{array}$ $204.542344 .7148479 .4885335 .4885 \quad 1.4292250 .155101 \quad 2.5256784 .140455$ $204.542345 .4487481 .352!337.35211 .4268540 .1543792 .5280834 .144399$ $204.542346 .1807483 .2157339 .21571 .424509 \quad 0.153665 \quad 2.5304764 .148321$ $199.3136 \quad 346.907485 .0793341 .07931 .422189 \quad 0.152957 \quad 2.5328554 .152222$ 201.405347 .6292486 .9429342 .94291 .4198950 .1522562 .5352224 .156101 $199.3136348 .3497488 .8065344 .8065 \quad 1.417626 \quad 0.151562 \quad 2.537575 \quad 4.15996$ $197.2223349 .0653490 .6701346 .6701 \quad 1.415381 \quad 0.150873 \quad 2.5399164 .163797$ 197.2223349 .7777492 .5337348 .53371 .4131590 .1501912 .5422454 .167614 197.2223350 .4885494 .3973350 .39731 .4109620 .1495152 .5445614 .171411 $199.3136 \quad 351.1991496 .2609352 .26091 .4087880 .148846 \quad 2.5468644 .175188$ $199.3136 \quad 351.9096498 .1245354 .1245 \quad 1.406637 \quad 0.148182 \quad 2.5491564 .178944$ $199.3136 \quad 352.6184499 .9881 \quad 355.9881 \quad 1.404508 \quad 0.1475242 .5514354$ 4.182681 194.0852353 .3217501 .8517357 .85171 .4024010 .1468722 .5537034 .186398 $199.3136 \quad 354.0234503 .7153 \quad 359.71531 .400317 \quad 0.146226 \quad 2.5559594 .190097$ $194.0852354 .7235 \quad 505.5789361 .5789 \quad 1.398253 \quad 0.145586 \quad 2.5582034 .193776$ $194.0852355 .4181 \quad 507.4425363 .44251 .39621!0.1449512 .5604764 .197436$

194,0852 356.1111 $509,3061365.3061 \quad 1.394190 .144322 \quad 2.5626574 .201077$ $\begin{array}{llllllllllllll}194.0852 & 356,8026 & 511.1697 & 367,1697 & 1.392189 & 0.143698 & 2.564867 & 4.2047\end{array}$ $\begin{array}{lllllllllll}189.0018 & 357.4885 & 513.0333 & 369.0333 & 1.390209 & 0.14308 & 2.567066 & 4.208304\end{array}$ $186.9685 \quad 358.1675514,8969370.99691 .3882480 .142467 \quad 2.569253 \quad 4.21189$ $183,9184356.8412516 .7605372 .760511 .3863070 .141859 \quad 2.5714334215459$ $193.9184359 .5111518 .62411374 .62411 .384385 \quad 0.141257 \quad 2.5735964 .219009$ $183.9184 \quad 360.1795 \quad 520.4877376 .48771 .382483 \quad 0.140662 .5757514 .222542$ 185.9518360 .8479522 .3513378 .35131 .3805990 .1400672 .5778954 .226058 $183.9184361 .5147524 .2149380 .21491 .378733 \quad 0.139482 .5800294 .229556$ 186.9685 362.1809 526.0785 382,0785 1.376886 0.138898 2.5821534 .233037 $180.955362 .8432527 .9421 \quad 383.9421 \quad 1.375057 \quad 0.1383212 .5842664 .236501$ 103.9184 363.5019529 .8057385 .80571 .3732450 .1377482 .5863694 .239949 $183.9184364 .1613531 .6693387 .66931 .371451 \quad 0.137182 .5884614 .243379$ 183.9184364 .8193533 .5329389 .53291 .3696740 .1366172 .5905444 .246794 183.9184365 .4759535 .3965391 .39651 .3679130 .1360592 .5926174 .250192 $183.9184366 .131537 .2601393 .26011 .366170 .135505 \quad 2.594684 .253574$ $183.9184366 .7846539 .1237395 .12371 .3644430 .134955 \quad 2.5967334 .256939$ $183.9184367 .4368540 .9873396 .98731 .362732 \quad 0.1344112 .5987774 .26029$ $183.9184368 .0876 \quad 542,8509398.85091 .361037 \quad 0.133872 .6008114 .263624$ $180.955 \quad 368.7346544 .7145400 .71451 .359358 \quad 0.1333342 .6028354 .266943$ $183.9184369 .3802546 .5781402 .57811 .3576950 .132802 \quad 2.604854 .270246$ $183.9184370 .0267548 .4417404 .44171 .3560460 .132275 \quad 2.6068564 .273534$ $183.9184370 .6717550 .3053406 .30531 .354413 \quad 0.1317512 .6088524 .276807$ 183.9184 371.3153 552.1689 408.1689 1.352795 0.131232 2.61084 4.280065 186.9685371 .9597554 .0325410 .03251 .3511920 .1307172 .6128184 .283309 184.935! 372.6033555 .8961411 .89611 .3496030 .1302062 .6147884 .286537 183.9184373 .2434557 .7597413 .75971 .3480280 .1296992 .6167484 .289751 $\begin{array}{lllllllllll}178.9793 & 373.8777 & 559.6233 & 415.6233 & 1.346468 & 0.129196 & 2.6187 & 4.292951\end{array}$ $177.0037374 .5054565 .4869417 .48691 .3449210 .128697 \quad 2.6206434 .296136$ 174.0403375 .1282563 .3505419 .35051 .3433890 .1282022 .6225774 4.299307 $174.0403375 .7475565 .2141421 .21411 .341869 \quad 0.127712 .6245034 .302464$ $169.2448376 .3618567 .0771423 .07711 .3403630 .127222 \quad 2.626424 .305607$ $174.0403376 .9748568 .9413424 .9413 \quad 1.338870 .126739 \quad 2.6283294 .308736$ $\begin{array}{llllll}174.0403 & 377.5902 & 570.8049 & 426.8049 & 1.337391 & 0.126258 \\ 2.630229 & 4.311851\end{array}$ $174.0403378 .2042572 .6685428 .66851 .3359240 .125782 \quad 2.6321224 .314953$ $\begin{array}{llllllllll}174.0403 & 378.817 & 574.5321 & 430.5321 & 1.33447 & 0.125309 & 2.634006 & 4.318042\end{array}$ $174.0403379 .4284576,3957432.39571 .3330280 .1248392 .6358814 .321117$ 174.0403380 .0386578 .2593434 .25931 .3315990 .1243732 .6377494 .324179 174.0403380 .6475580 .1229436 .12291 .3301820 .1239112 .6396094 .327228 $171.163381 .2529581,9865437.98651 .3287770 .1234522 .6414614 .330263$ 171.163 381.8548 583.8501 439.8501 1.327384 $0.122997 \quad 2.6433054 .333286$ $169.2448382 .4541585 .7137441 .71371 .3260030 .122545 \quad 2.6451414 .336297$ 169.2448383 .0506587 .5773143 .57731 .3246330 .1220962 .6469694 .339294 $\begin{array}{llllllllll}167.3266 & 383.6445 & 589.4409 & 445.4409 & 1.323275 & 0.12165 & 2.64879 & 4.342279\end{array}$ $\begin{array}{lllllllllllll}167.3266 & 384.2357 & 591.3045 & 447.3045 & 1.321928 & 0.121208 & 2.650603 & 4.345251\end{array}$ 167.3266 384.8258 593.1681 449.1681 1. 3205930.1207692 .6524094 .348211 $169.2448 \quad 385.416595 .0317451 .03171 .3192680 .120333 \quad 2.6542074 .351159$ $\begin{array}{lllllllll}174.0403 & 386.01 & 596.8953 & 452.8953 & 1.317954 & 0.1199 & 2.655998 & 4.354095\end{array}$ 174.0403 386.6063 598.7589454 .75891 .3165510 .1194712 .6577814 .357018 167.3266 387.1964600 .6225456 .62251 .3153590 .1190442 .6595574 .35993
 168.2857 386. $3665604.3497460 .34971 .312806 \quad 0.11822 .6630884 .365718$ 164.4492388 .9467606 .2133462 .21331 .3115440 .11177832 .6648424 .368594 $164.4492389 .5229608 .0769464 .07691 .3102930 .117369 \quad 2.666594 .371459$ $164.4492390 .098609 .9405465 .94051 .3090520 .116957 \quad 2.6683344374312$ $164.4492390 .6719 \quad 611.80411467 .804111 .307821 \quad 0.116548 \quad 2.6700644 .377154$
$164.4492391 .2446613 .6677469 .6677 \quad 1.30660 .1161432 .6717914 .379985$ $164.4492391 .8161615 .5313471 .53131 .305388 \quad 0.115742 .6735114 .382804$ $164.4492392 .3865 \quad 617.3949473 .39491 .3041860 .1153392 .6752244 .385612$ $164.4492392 .9558619 .2585475 .2585 \quad 1,3029930.114942 \quad 2.676931 .38841$ $164.4492393 .5239621 .1221477 .1221 \quad 1.301810 .114547 \quad 2.678634 .391196$ $164.4492394 .0909622 .9857478 .98571 .300635 \quad 0.1141562 .6803234 .393971$ $\begin{array}{lllllllllll}164,4492 & 394.6567 & 624,8493 & 480.8493 & 1.29947 & 0.113766 & 2.6820094 .396736\end{array}$ $\begin{array}{lllllllll}164,4492 & 395.2214 & 626.7129 & 482.7129 & 1.298314 & 0.11338 & 2.683689 & 4.39949\end{array}$ $167.3266 \quad 395.7869628 .5765484 .57651 .2971670 .1129962 .6853624 .402233$ 166.3674396 .3527630 .4401486 .44011 .2960280 .1126142 .6670294 .404966 $164.4492396 .9153632 .3037488 .30371 .2948980 .112236 \quad 2.688694 .407689$ $164.4492397 .4754634 .1673490 .16731 .293777 \quad 0.111862 .6903444 .410401$ 161.6577398 .0323636 .0309492 .03091 .2926650 .1114862 .6919924 .413102 161.6577 398.5861 637.8945493 .8945 1.29156 $0.111115 \quad 2.6936344 .415794$ $162,5882399.1394639 .7581495 .75811 .2904640 .110746 \quad 2.695274 .418475$ $164.4492399 .6937641 .6217497 .62171 .289376 \quad 0.110382 .6968994 .421146$ $169.2448400 .2754 \quad 643.565 \quad 499.5651 .288251 \quad 0.112 .6985924 .423921$ 169.2448400 .8594645 .5083501 .50831 .2871340 .1096242 .7002784 .426685 $169.2448 \quad 401.4421647 .4516 \quad 503.45161 .286026 \quad 0.10925 \quad 2.7019584 .429439$ $169.2448402 .0237649 .3949505 .39491 .2849260 .108878 \quad 2.7036314 .432182$ $169.2448 \quad 402.604651 .3382507 .3382 \quad 1.2838340 .1085092 .7052984 .434914$ $167.3266403 .1817653 .2815 \quad 509.28151 .2827510 .1081422 .706951$ 4.437636 167.3266403 .7568655 .2248511 .22481 .2816760 .1077782 .7086124 .440347 $\begin{array}{llllllllllllll}166.3674 & 404.33 & 657.1681 & 513.1681 & 1.28061 & 0.107417 & 2.710264 .443049\end{array}$ $164.4492404 .9659 .1114515 .11141 .2795510 .107058 \quad 2.7119014 .44574$ 164.4492405 .4675661 .0547517 .05471 .2785010 .1067012 .7135364 .44842 $\begin{array}{llllllllllllllll}164.4492 & 406.0339 & 662.999 & 518.998 & 1.277458 & 0.106347 & 2.715166 & 4.451091\end{array}$ 164.4492406 .599664 .9413520 .94131 .2764230 .1059952 .7167894 .453752 $164,4492407.163666,8846522.8846 \quad 1.2753950 .105645 \quad 2.7184064 .456403$ 164.4492407 .7259668 .8279524 .82791 .2743760 .1052972 .7200174 .459044 164.4492408 .2876670 .7712526 .77121 .2733630 .1049522 .7216224 .461675 $164.4492408 .8481672 .7145528 .71451 .272359 \quad 0.104612 .7232214 .464297$ 164.4492409 .4075674 .6578530 .65781 .2713610 .1042692 .7248154 .466909 $166.3674409 .9671676 .6011532 .60111 .270371 \quad 0.1039312 .7264024 .469512$ $166.3674110 .5269678 .5444534 .54441 .269388 \quad 0.1035942 .7279844 .472105$ $164.4492411 .0841680 .4877536 .48771 .2684120 .103261 \quad 2.729564 .474688$ $164.4492 \quad 411.639 \quad 682.431 \quad 538.4311 .2674440 .102929 \quad 2.731134 .477262$ 164.4492412 .1927684 .3743540 .37431 .2664820 .1025992 .7326954 .479827 164.4492412 .7452686 .3176542 .31761 .2655270 .1022712 .7342544 .482383 $\begin{array}{lllllllllllllll}164.449213 .2967688 .2609 & 544.2604 & 1.264579 & 0.101946 & 2.735007 & 4.48493\end{array}$ 164.4492413 .847690 .2042546 .20421 .2636380 .1016232 .7373554 .487467 $164.4492414 .3962692 .1475548 .14751 .2627030 .101301 \quad 2.7388974 .489996$ 164.4492414 .9444694 .0908550 .09081 .2617750 .1009822 .7404344 .492515 $164.4492415 .4913696 .0341552 .03411 .260853 \quad 0.100665 \quad 2,7419664.495026$ 164.4492416 .0372697 .9774553 .97741 .2599380 .1003492 .7434924 .497528 $164.4492 \quad 416.582699 .9207555 .9207 \quad 1.259030 .100036 \quad 2.7450134 .500021$ $\begin{array}{llllllll}164.4492 & 417.1257 & 701.864 & 557.864 & 1.250127 & 0.099725 & 2.7465284 .502505\end{array}$ $164,4492417.6683703 .8073559 .80731 .2572310 .0994152 .7480394 .504981$ 164.4492 418. $2098705.7506561 .75061 .2563420 .099108 \quad 2.7495444 .507448$ $164.4492418 .7502707 .6939563 .69391 .2554580 .098802 \quad 2.7510434 .509907$ $164.4492419 .2895709 .6372565 .6372 \quad 1.25458 \quad 0.098498 \quad 2.7525384 .512357$ 164.4492419 .8278711 .5805567 .58051 .2537090 .0981972 .7540274 .514799 $164.4492420 .3649713 .5238 \quad 569.52381 .2528430 .097897 \quad 2.7555124 .517233$ 164.4492420 .901715 .4671571 .46711 .2519830 .0975982 .7569914 .519658 $164,4492421.436717 .4104573 .41041 .2511290 .097302 \quad 2.7584664 .522075$ $164.4492 \quad 421.97719 .3537575 .35371 .250281 \quad 0.097008 \quad 2.7599354 .52448$?
$164.4492422 .5028 \quad 721.297 \quad 577.2971 .2494380 .096715 \quad 2.7613994 .526884$ 164.4492423 .0347723 .2403579 .24031 .2486010 .0964242 .7628594 .529277 $164.4492423 .5654725 .1836581 .1636 \quad 1.247770 .096135 \quad 2.7643134 .531661$ 164.1492424 .0951727 .1269583 .12691 .2469450 .0958472 .7657634 .534038 $164,4492424.6237729 .0702585 .07021 .2461240 .0955612 .7672084 .536407$ $164.4492425 .1513731 .0135587 .01351 .245310 .095277 \quad 2.7686484 .538767$ $164.4492425 .6779732 .9568 \quad 588.9568 \quad 1.24450 .0949952 .770083 \quad 4.54112$ $164.4492426 .2034734,9001590.90011 .2436960 .0947142 .7715144 .543466$ $164.4492426,7278736.8434592 .84341 .2429970 .094435 \quad 2.772944 .545803$ 164.4492427 .2513738 .7867594 .78671 .2421040 .0941582 .7743614 .548133 $164.4492427 .7736 \quad 740.73 \quad 596.731 .2413150 .0938822 .7757784 .550456$ $\begin{array}{lllllllllll}164.4492 & 428.295 & 742.6733 & 598.6733 & 1.240532 & 0.093608 & 2.77719 & 4.55277\end{array}$ $164.4492428 .8153741 .6166600 .61661 .2397540 .093335 \quad 2.7785974 .555078$ $164.4492429 .3346746 .5599602 .5599 \quad 1.23898 \quad 0.093064 \quad 2.784 .557377$ $\begin{array}{llllllllllll}164.4492 & 429.8529 & 748.5032 & 604.5032 & 1.238212 & 0.092795 & 2.781399 & 4.55967\end{array}$ $164.4492430 .3701750 .1465606 .44651 .2374490 .092527 \quad 2.7827924 .561955$ 164.4492430 .8864752 .3898608 .38981 .236690 .0922612 .7841824 .564233 164.4492431 .4016754 .3331610 .33311 .2359370 .0919962 .7855674 .566503 $164.4492431 .9158756 .2764612 .27641 .235188 \quad 0.091733 \quad 2.7869484 .568766$ $\begin{array}{llllllllllll}164.4492 & 432.429758 .2197 & 614.2197 & 1.234444 & 0.091471 & 2.788324 & 4.571023\end{array}$ $162.5882432 .9399 \quad 760.163 \quad 616.1631 .2337040 .0912112 .7896964 .573272$ 162.5882433 .4186762 .1063618 .10631 .232970 .0909522 .7910634 .575513 $\begin{array}{llll}159.7966 & 433.9544 & 764.0496 & 620.0496 \\ 1.232239 & 0.090695 & 2.7924264 .577748\end{array}$ 162.5882434 .4592765 .9929621 .99291 .2315140 .0904392 .7937854 .579976 $164.4492434 .9661767 .9362623 .93621 .2307930 .090185 \quad 2.795144 .582197$ 164.4492435 .4734769 .8795625 .87951 .2300760 .0899322 .7964914 .584411 164.4492435 .9796771 .8228627 .82281 .2293640 .0896812 .7978374 .586618 $164.4492436 .4849773 .7661629 .76611 .228656 \quad 0.08943 \quad 2.7991794 .588818$ 164.4492436 .9892775 .7094631 .70941 .2279530 .0891822 .8005174 .591012 $\begin{array}{llll}159.7966 & 137.4894 & 77 \% .6527 & 633.6527 \\ 1.227254 & 0.088934 & 2.801851 & 4.593199\end{array}$ $\begin{array}{lllllllll}155.1439 & 437.9825 & 779.596 & 635.596 & 1.226559 & 0.088688 & 2,803181 & 1.595379\end{array}$ 195.1439438 .4717781 .5393637 .53931 .2258680 .0884442 .8045074 .597552 $\begin{array}{lllllllllllll}155.1439 & 438.9599 & 783.4826 & 639.4826 & 1.225182 & 0.088201 & 2.805829 & 4.599719\end{array}$ 155.1439 $139.4472785 .4259641 .4259 \quad 1.22450 .0879592 .8071464 .601879$ $155.1439439 .9336787 .3692643 .36921 .2238220 .087718 \quad 2.808464 .604033$ $\begin{array}{llllllllll}155.1439 & 440.4191 & 789.3125 & 649.3125 & 1.223148 & 0.087479 & 2.80977 & 4.60618\end{array}$ $159.7966440 .9066791 .2558647 .25581 .2224780 .087241 \quad 2.8110764 .608321$ 159.7966441 .3962793 .1991649 .19911 .2218120 .0870042 .8123781 .610456 $159.7966441 .8849795 .1424651 .1424 \quad 1.221150 .0867692 .8136761 .612584$ $\begin{array}{llllllllllllll}159.7966 & 442.3727 & 797.0857 & 653.0857 & 1.220492 & 0.086535 & 2.81497 & 4.614705\end{array}$ $155.1439442 .8565 \quad 799.029 \quad 655.0291 .2198380 .086302 \quad 2.8162614 .616821$ $\begin{array}{llllllllll}155.1439 & 443.3365 & 800.9723 & 656.9723 & 1.219187 & 0.08607 & 2.817547 & 4.61893\end{array}$ $155.1439443 .8156802 .9156 \quad 658.91561 .218541 \quad 0.0856412 .818834 .621032$ 155.1439444 .2938804 .8589660 .85891 .2178980 .0856112 .8201094 .623129 155.1439444 .7711
1506.8022662 .8022
1.217259
0.085383
2.821384 4.62522 155.1439445 .2475808 .7455664 .74551 .2166240 .0851562 .8226554 .627304 $\begin{array}{lllllllll}155.1439 & 445.723 & 810.6888 & 666.6888 & 1.215993 & 0.084931 & 2.823923 & 4.629382\end{array}$ 157.9355 146.1994 日12.6321 668.6321 1.215365 0.084707 2.8251874.631454 $157.9355446 .6766 \quad 814.5754670 .57541 .2147410 .0844842 .8264484 .633521$ $\begin{array}{lllllllll}159.7966 & 447.1542 & 816.5187672 .5187 & 1.21412 & 0.084262 & 2.827704 & 4.635581\end{array}$ $\begin{array}{llllllll}159.7966 & 447.632 & 818.462 & 674.462 & 1.213504 & 0.084041 & 2,828957 & 4.637635\end{array}$ $159.7966448 .1089820 .4053676 .4053 \quad 1.21289 \quad 0.083821 \quad 2.8302074 .639684$ 155.1439 448.582 $822.3486678 .3486 \quad 1.212280 .0836032 .8314534 .641726$ $\begin{array}{llllllllllllllll}155.1439 & 449.0513 & 824.2919680 .2919 & 1.211674 & 0.083366 & 2.832695 & 4.643763\end{array}$ 155.1439449 .5198826 .2352682 .23521 .2110710 .083172 .8339344 .645794 $155.1439449 .9874828 .1785684 .17851 .210471 \quad 0.082955 \quad 2.8351694 .547819$
$155.1439450 .4123 \quad 829.9475685 .94751 .209929 \quad 0.082762 .8362914 .649657$ 155.1439450 .8365831 .7165687 .71651 .2093890 .0825662 .8374094 .651491 $150,6335451.2572833,4855689,4855 \quad 1,2088510.0823732,8385254645332$ 150.6335451 .6746835 .2545691 .25451 .2003170 .0821812 .8396384 .655144 $\begin{array}{llllllllll}155.1439 & 152.094 & 837.0235 & 693.0235 & 1.207785 & 0.00199 & 2,840748 & 4.656964\end{array}$ 155.1439452 .5154838 .7925694 .79251 .2072560 .0817992 .8418554 .658779 $\begin{array}{llllllll}155.1439 & 452.936 & 840.5615 & 696.5615 & 1.20673 & 0.08161 & 2.842959 & 4.660589\end{array}$ $155,1439 \quad 453.356 \quad 842,3305698,3305 \quad 1,206206 \quad 0,081422 \quad 2,84406142.662395$ $150,6335453.7726844,0995700.04951,2056850.0812342 .845164 .664196$ $150.6335454,1858845,8685701.86851 .2051670 .0810472 .8462564 .665993$ 146.123454 .5958847 .6375703 .63751 .2046510 .0808612 .8473494 .667785 $150.6335 \quad 455.005849 .4065705 .40651 .204138 \quad 0.0806762,8484394.669573$ $150.6335455 .4162 \quad 851.1755707 .17551 .2036270 .080492 \quad 2.8495274 .671356$ $150,6335455,8268 \quad 852,9445708,94451,2031190.0803092,8506124.673135$ $155,1439456.2593654 .7135710 .71351 .2026130 .080126 \quad 2.8516951 .674909$ $155.1439456 .6537856 .4825712 .4825 \quad 1.2021!0.0799442 .8527744 .676679$ $155.1439457 .0675858 .2515 \quad 714.2515 \quad 1,201610.079763 \quad 2.8538514 .678445$ 155.1439457 .4806860 .0205716 .02051 .2011120 .0795832 .8519254 .680206 $150.6335457 .8904861,7895717.78951 .2006160 .0794042 .8559974 .681962$ $150.6335458 .2968863 .5585 \quad 719.5585 \quad 1.2001230 .0792262,8570664.683715$ 146.123458 .7001865 .3275721 .32751 .1996320 .0790482 .8581324 .685463 $146.123459,1002867.0965723 .0965 \quad 1.1991440 .0788712 .8591964 .687207$ $146.123459 .4996868 .8655724 .86551 .198650 \quad 0.078695 \quad 2.8602574 .688947$ $146.123459 .8983870 .6345726 .63451 .1981740 .07852 \quad 2.8613164 .690682$ 146. 123160.2965872 .4035728 .40351 .1976930 .0783452 .8623724 .692413 146.123 $460.6939874 .1725730 .1725 \quad 1.1972140 .0781722 .863425 \quad 4.69414$ $150.6335461 .0933875 .9415731 .94151 .1967370 .077999 \quad 2.8644764 .695863$ $150.6335461 .4946877 .7105 \quad 733.7105 \quad 1.196263 \quad 0.077827 \quad 2.8655254 .697582$ $150.6335461 .8952879,4795735.4795 \quad 1.1957910 .077655 \quad 2.8665714 .699296$ $150.6335462 .2951881 .2485737 .24851 .19532!0.0774842 .8676144 .701006$ 146.123462 .6919883 .0175739 .01751 .1948530 .0773152 .8686554 .702713 146.123 463.0856 B84.7865 740.7865 1.19438日 $0.077145 \quad 2.8696934 .704415$ $146.123163 .4786 \quad 886.5555742 .5555 \quad 1.1939250 .076977 \quad 2.8707294 .706113$ $146.123463 .871888 .3245744 .3245 \quad 1.1934640 .0768092 .8717624 .707807$ 146.123464 .2628890 .0935746 .09351 .1930050 .0766422 .8727934 .709497 $146.123464 .6539891 .8625747 .8625 \quad 1.1925490 .0764762 .8738224 .711183$ 146.123465 .0445 B93.6315 749.6315 1.192094 0.076311 2.87484日 4.712865 $146.123465 .4344895 .4005751 .4005 \quad 1.1916420 .0761462 .8758714 .714543$ $146.123465 .8237897 .1695753 .1695 \quad 1.1911920 .0759822 .8768934 .716218$ $150.6335466 .2148898 .9385754 .9385 \quad 1.1907440 .0758182 .8779124 .717888$ $150.6335466 .6078900 .7075756 .70751 .190298 \quad 0.075656 \quad 2.878928 \quad 4.719554$ 150.6335467 .0001902 .4765750 .47651 .1898540 .0754942 .8799424 .721217 150.6335467 .3919904 .2455760 .24551 .1894120 .0753322 .8809544 .722875 $\begin{array}{lllllllllll}150.6335 & 467.703 & 906.0145 & 762.0145 & 1.188973 & 0.075172 & 2.881963 & 4.72453\end{array}$ $150.6335468 .1735907 .7835 \quad 763.7835 \quad 1.1885350 .075012 \quad 2.882474 .726181$ 150.6335468 .5633909 .5525765 .55251 .1880990 .0748532 .8839754 .727828 $146.123468 .9501911,3215767.32151 .1876660 .0746942 .8849774 .729471$ $146.123469 .3338913 .0905769 .0905 \quad 1.1872340 .0745362 .8859774 .731111$ $146.123469 .7169914,8595770.8595 \quad 1,186804$ U. 0743792.8869754 .732746 $146.123470 .0995916 .6285772 .6285 \quad 1.1863770 .0742232 .8879714 .734378$ $146.123470 .4814918 .3975774 .3975 \quad 1.1859510 .0740672 .8889644 .736006$ $146.123470 .8627920 .1665776 .1665 \quad 1.1855270 .0739122 .8699554 .737631$
$146.123471 .2434921 .9355777 .9355 \quad 1.1851050 .0737572 .8909444 .739252$
$146.123471 .6235923 .7045 \quad 779.7045 \quad 1.1846850 .073603 \quad 2.891934 .740869$
$150.6335472 .0054925 .4735781 .4735 \quad 1.184267 \quad 0.07345 \quad 2.8929144 .742482$
$150.6335472 .3892927 .2425783 .2425 \quad 1.1838510 .0732972 .8938964 .741092$
$146.123472 .7699929 .0115785 .0115 \quad 1.1834370 .0731492 .8948764 .745698$ $146.223473 .1476930 .7805986,7805 \quad 1.183024 \quad 0.0729942 .8998944 .747301$
 $146.123473 .9013934 .3189790 .3189 \quad 1.1822050 .0726932 .8978024 .750495$ 146.123474 .2773936 .0875792 .08751 .1817980 .0729432 .89877341792087 146.123474 .6926 937.8969 793.8565 1.181393 0.0723942 .8997424 .793675 $146,123479.0274$ 939,6259 799,6253 $1,180990.0722462 .9007094 .79526$ $146.123475 .4016941,3945797,39451.180588000720982 .9016734 .796841$ 146.123 475.7792 943.1639 799.1639 1.180188 $0.071991 \quad 2.9026364 .758419$ $146.123476 .1483944 .9325800 .9325 \quad 1.179790 .071805 \quad 2.9039964 .759993$ 146,123 476,9207 946.7015 802.7015 1.179394 0.071659 2.904954 4.761564 $\begin{array}{llllll}146.123 & 476.8926 & 948.4705 & 804.4705 & 1.179 & 0.071514 \\ 2.90951 & 4.763131\end{array}$ $146.123477 .2639990 .2395806,23951.1786070 .0713692 .9064644 .764699$ $\begin{array}{llllllllll}146.123 & 477.6546 & 952.0089 & 808,0085 & 1.178216 & 0.071225 & 2.907416 & 4.766296\end{array}$ $\begin{array}{lll}146.123 & 478.0048 & 993.7775 \\ 8099.7775 & 1.177827 & 0.071081 \\ 2.908366 & 4.767813\end{array}$ $146.123478 .3744955 .5465811 .94651 .177439 \quad 0.070938 \quad 2.90931341769366$ 146.123 478,7434 997.3159 813.3195 1.177053 0.0707962 .9102594 .770916 146.123 479.1118 999.0849 819.0845 1.176669 0.0706542 .9112034 .772463 146.123479 .4797960 .8935816 .89351 .1762860 .0705132 .9121444 .774007 $146.123 \quad 479.847962 .6225818 .62251 .1759050 .070372 \quad 2.9130844 .775547$
 146.123 480.5799 $966.1605822 .16051 .175148 \quad 0.0700932 .9149974 .778617$ $146.123480 .9455967 .9295823 .92991 .1747720 .069954 \quad 2.915894 .780148$ 146.123 481.3105 $969.6985825 .6985 \quad 1.1743980 .069815$ 2.916821 4.781675 $146.123 \quad 481.675971 .4675827 .4675 \quad 1.1740250 .0696772 .9177514 .783198$ $146.123482 .0389 \quad 973.2365829 .23651 .1736540 .069542 .9186784 .784719$ 146.123482 .4023975 .0055831 .00551 .1732840 .0694032 .9196044 .786236 $141.2543482 .7627976 .7745832 .77451 .1729160 .069267 \quad 2.920527 \quad 4.78775$ $141.7543483 .1201978 .5439834 .5435 \quad 1.1725490 .069131 \quad 2.9214494 .789261$
 $\begin{array}{lllllllllll}141.7543 & 483.8334 & 982.0815 & 838.0815 & 1.171821 & 0.068861 & 2.923286 & 1.792273\end{array}$ 141,7543 484.1892 983.8505 839.8905 1.171459 0.068727 2.9242024 4.793774 137.3855 484.5422 985.6195 841.6195 1.171099 0.068993 2.9251164 .795272 137.3895 484.8923 987.J885 843.3885 $1.170740 .06846 \quad 2.9260284 .796767$ 137.3855485 .2419 989.1975 $845.15751 .1703820 .060328 \quad 2.9269384 .798258$

[^0]: 1 Use of company names and/or trademarks are for identification only and do not imply endoresment of a service or product.

[^1]: RET \#1
 Pre-Simulation Buildup

