DOE/NV/10384-23 Rev.

DESERT RESEARCH INSTITUTE UNIVERSITY OF NEVADA SYSTEM

JUN 2 5 1990

UNCU UN UOTI

OFF-SITE RADIATION EXPOSURE REVIEW PROJECT PHASE II SOILS PROGRAM

by Richard D. McArthur and Forest L. Miller, Jr.

> December 1989 NO NOT MICROFILM

WATER RESOURCES CENTER

Publication # 45064

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

OFF-SITE RADIATION EXPOSURE REVIEW PROJECT PHASE II SOILS PROGRAM

j

1

by Richard D. McArthur and Forest L. Miller, Jr. Water Resources Center Desert Research Institute University of Nevada System Las Vegas, Nevada

Prepared for the U.S. Department of Energy Nevada Operations Office Las Vegas, Nevada under Contract DE-AC08-85NV10384 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recomendation, or favoring by the United States Government or any agency thereof. The views manufactures of authors expressed herein do not necessarily state or reflect those of the and opinions of authors expressed hereof.

DISCLAIMER

December 1989

•

ABSTRACT

To help estimate population doses of radiation from fallout originating at the Nevada Test Site, soil samples were collected throughout the western United States. Each sample was prepared by drying and ball-milling, then analyzed by gamma-spectrometry to determine the amount of ¹³⁷Cs it contained. Most samples were also analyzed by chemical separation and alpha-spectrometry to determine ²³⁹⁺²⁴⁰Pu and by isotope mass spectroscopy to determine the ratios of ²⁴⁰Pu to ²³⁰Pu and ²⁴¹Pu to ²³⁰Pu. The total inventories of cesium and plutonium at 171 sites were computed from the results.

This report describes the sample collection, processing, and analysis, presents the analytical results, and assesses the quality of the data. Use of the results reported here to estimate the fraction of the total inventories originating from the NTS and to estimate population exposures will be described in a separate report (Anspaugh, L.R., and H.L. Beck, 1989. The County Data Base: Estimates of exposure rates and times of fallout arrival in the Off-Site Radiation Exposure Review Project Phase II area. NVO-320, Nevada Operations Office, U.S. Department of Energy, Las Vegas).

CONTENTS

ABSTRACT	ii
FIGURES i	iv
TABLES	v
1. INTRODUCTION	1
The ORERP	1
Role of the Soils Program	1
Program Overview	4
Acknowledgments	5
2. METHODS	7
Site Selection	7
Field Spectrometry	8
Sample Collection	9
	10
	11
	12
Isotope Mass Spectroscopy	13
	14
	14
	20
Isotope Ratios	25
4. QUALITY OF THE DATA	28
Introduction	28
EML Supervision of the Soil Analyses	28
QA Criteria	30
Summary	57
REFERENCES	59
APPENDIX A. Project Directive No. 4	60
-	20
	<u> </u>

FIGURES

Number		Page
1	Locations in the western U.S. where soil samples were collected.	3
2	Histogram of total ¹³⁷ Cs inventories.	19
3	Histogram of total 239 + 240Pu inventories.	24
4	Measurements of natural radionuclides in blank soil.	35
5	Measurements of ¹³⁷ Cs and natural radionuclides in Hurricane soil.	38
6	Variances of natural radionuclides.	45
7	239 + 240 Pu concentrations in Hurricane soil.	54
8	^{230 + 240} Pu concentrations in EML reference soil.	54
9	239 + 240Pu concentrations in blank soil.	55

TABLES

.

<u>Number</u>		Page
1	Computed ¹³⁷ Cs Inventories	17
2	Computed ^{239 + 240} Pu Inventories	22
3	Plutonium Isotope Ratios	26
4	Gamma-Spectrometry Results for Blank Soil	32
5	Gamma-Spectrometry Results for Hurricane Soil	36
6	Gamma-Spectrometry Results for Duplicate Aliquots	39
7	Plutonium Batches	46
8	Samples that Fail Criterion 12	49
9	Concentration of ^{239 + 240} Pu in Hurricane Soil	51
10	Concentration of 239 + 240Pu in EML Reference Soil	52
11	Concentration of 239 + 240Pu in Blank Soil	53
12	²⁴⁰ Pu/ ²³⁹ Pu in QA samples	56

SECTION 1 INTRODUCTION

THE ORERP

Between January 1951 and July 1962, the United States conducted 100 above-ground tests of nuclear explosives at the Nevada Test Site (NTS). Radioactive fallout from about three-quarters of these tests reached populated areas off the NTS, and in recent years concern about the possible effects of this fallout on human populations has increased. Studies such as those by Lyon *et al.* (1979) and Archer (1987) have reported a relationship between leukemia rates and fallout, and lawsuits have been filed against the government contending that the health of people living downwind from the NTS has been affected by exposure to NTS fallout.

One response of the U.S. Department of Energy (DOE) to the increase in public concern and litigation was to begin the Off-Site Radiation Exposure Review Project (ORERP) in 1979. The ORERP has two primary objectives:

- 1. To collect and make accessible to the public all available unclassified information about fallout from nuclear testing at the NTS. This is the purpose of the Coordination and Information Center (CIC) in Las Vegas, which currently contains more than 140,000 documents about off-site fallout and related subjects.
- 2. To estimate the radiation dose that off-site populations are likely to have received as a result of NTS testing. The ultimate goal of this aspect of the ORERP is an Individual Dose Assessment computer model to estimate the probable dose to any person based on place of residence, lifestyle, dietary habits, and other personal data.

The soils program described in this report is one of several components of the doseassessment task of the ORERP, and the next sub-section briefly describes its role in the overall project. For a more complete description of all the components of the ORERP and how they fit together, see Friesen (1985).

ROLE OF THE SOILS PROGRAM

A key element of the dose-assessment model is the estimation of how much NTS fallout was deposited at any particular location. Fallout deposition at locations near the NTS

can be estimated fairly well from the large amount of monitoring data collected after every atmospheric nuclear test. (For example, one ORERP database of survey-meter readings contains results from over 80,000 fallout measurements.) These data, combined with information about the fallout patterns of individual tests, enable the estimation of fallout deposition throughout eastern Nevada and southwestern Utah, the so-called Phase I region.

In 1981, the Dose Assessment Advisory Group (DAAG), an independent panel of scientists, physicians, and representatives of state governments that reviewed and advised the ORERP from 1980 to 1987, recommended that the project attempt to estimate exposures in areas outside the limited region covered by fallout monitors. This recommendation was motivated by a study done in Utah by DOE's Environmental Measurements Laboratory (EML) in 1979, which showed that the population exposure to external gamma radiation from NTS fallout was higher in northern Utah than in most counties closer to the NTS (Krey and Beck, 1981; Beck and Krey, 1983). Thus began Phase II of the ORERP, an investigation of radiation exposures in the rest of Nevada and Utah and parts of the surrounding states.

A major part of Phase II was the collection of soil samples at more than 100 communities in 1982. The data from the soil samples are combined with other data, including measurements of fallout collected between 1951 and 1958 at a network of gummed film stations (Beck, 1984), to estimate population exposures in the Phase II region. Because these data are much less extensive than the monitoring data for the Phase I region, the Phase II dose estimates are being made for entire counties or parts of counties rather than for individual communities. The estimates will be contained in the County Database (Anspaugh and Beck, 1989), one of several databases used by the Individual Dose Assessment model.

In 1983 the soil sampling was extended to other cities in the western U.S. that were also part of the gummed-film network. These data help define the geographical distribution of NTS fallout even though they are not complete enough for detailed exposure estimates throughout a large region. The 1983 effort is sometimes called Phase III of the ORERP, but for this report the distinction between Phase II and Phase III sites is immaterial: The same procedures were used to collect, process, and analyze the soil samples in both phases.

The analysis of most of the soil samples was completed by the end of 1985, and conclusion of the project was anticipated in 1986. However, unanticipated levels of plutonium at sites in Albuquerque, New Mexico, led the project managers to order collection of additional samples there and in other communities in New Mexico and Arizona in 1986 and 1987. Figure 1 shows the locations of the communities in the western U.S. where samples were collected. Samples were also collected at three midwestern cities not shown in Figure 1. The EML study included soil samples from 55 communities in Utah, and most of these communities were not included in the ORERP sampling program.

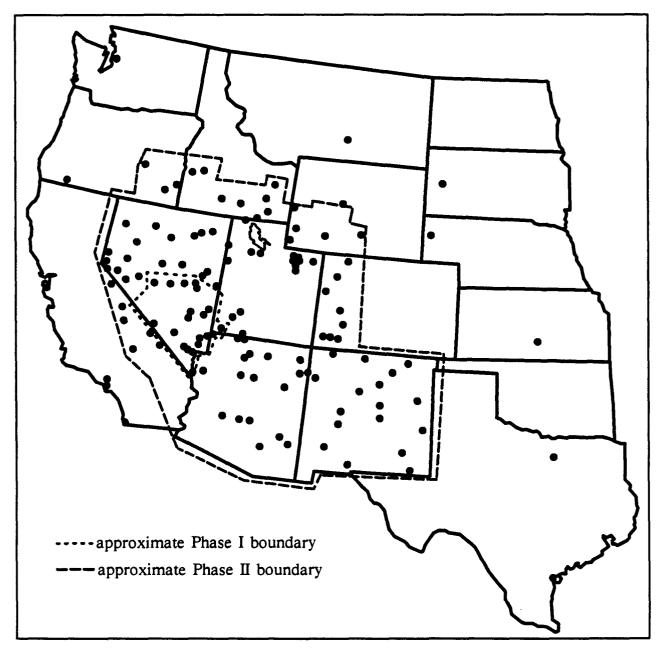


Figure 1. Locations in the western U.S. where soil samples were collected. Samples were also collected in Des Moines, Iowa; St. Louis, Missouri; and Memphis, Tennessee.

PROGRAM OVERVIEW

The ORERP soil sampling was designed as an expansion of EML's Utah study, which relied primarily on using measurements of radioactivity in the soil to estimate the amount of fallout deposited at a given site. For the method to give accurate results, it is essential that the soil have remained undisturbed since extensive nuclear testing began in the early 1950s. EML found that undisturbed soil was generally most likely to be found beneath old, well-established lawns.

The first step in the ORERP program was therefore to decide which communities were to be included and visit each one to try to find sites with 30-year-old lawns. Potential sites were first identified by visual inspection and interviews with local residents to verify the site's age and undisturbed status. Then a preliminary measurement of the ¹³⁷Cs (henceforth denoted as "Cs") in the soil was made by *in situ* spectrometry to help verify that the site was indeed undisturbed. After the initial site selection, soil samples were collected at one or more sites in each community and sent to the laboratory, where they were processed and analyzed for Cs and isotopes of plutonium. The procedures by which this was done are summarized in Section 2 and given in detail in Appendix A, the project directive which specified the step-by-step operational procedures for the program. Appendix B lists each potential site that was identified and summarizes the extent to which it was analyzed.

Section 3 describes how the amounts of Cs and ²³⁹⁺²⁴⁰Pu (henceforth denoted as "Pu") deposited at a site were calculated from the analytical results and presents the results of those calculations. The analytical results for each sample that was at least partially analyzed are given in Appendix C.

Quality assurance (QA) was an important element of every step of the program. Much of the QA associated with the sample collection and processing is described in Section 2. Section 4 discusses the more quantitative QA involved with the spectrometric and radiochemical analysis of the samples.

The Cs and Pu inventories reported in Section 3 are only the first part of the analysis of the data. Scientists at EML have developed equations for calculating the fraction of the total inventory that can be attributed to fallout from the NTS. (This is possible because the ratios of plutonium isotopes in fallout from the relatively low-yield fission tests at the NTS are different from the ratios in "global" fallout, which includes fallout from U.S. thermonuclear tests in the Pacific and tests conducted by other countries.) In addition, the amounts of other radionuclides in the fallout can often be estimated from the Cs and plutonium measurements. Discussion of how the soil data are used to estimate NTS fallout and how the fallout estimates are used to estimate radiation exposure is beyond the scope of this report. Those calculations will be carried out by other ORERP scientists and presented in a report on the County Database (Anspaugh and Beck, 1989).

ACKNOWLEDGMENTS

The ORERP is a joint effort of the DOE and several contracting organizations. The organizations that took part in the soil sampling program, their roles in the program, and the names of the senior scientists and managers are given below. No attempt will be made to list the many other people who played a part in the program, but without their dedication the project could not have been completed.

DOE/Nevada Operations Office (DOE/NV)

Overall management of the entire ORERP.

Bruce Church, ORERP Project Director Marshall Page, Deputy Project Manager Charles Campbell, Deputy Project Manager Richard Nutley, Assistant Project Manager David L. Wheeler, Assistant Project Manager

DOE/Environmental Measurements Laboratory (EML)

General supervision and review to ensure that the work was consistent with previous EML studies; design of the QA program.

Harold Beck Philip Krey

Lawrence Livermore National Laboratory (LLNL)

Technical direction of the program; field spectrometry measurements.

Lynn R. Anspaugh, ORERP Scientific Director John Koranda

Reynolds Electrical and Engineering Co., Inc. (REECo)

Collection, processing, and analysis of the soil samples.

Howard Hawthorne Frank Markwell Bernardo Maza Tom Mehas Billy Smith Steve Rohrer Roger Thompson

Desert Research Institute (DRI)

Initial selection of sampling sites; administration of the QA program; design and management of the project database.

Forest L. Miller

The authors are especially grateful to Harold Beck of EML for his careful review of earlier drafts of this report.

SECTION 2 METHODS

SITE SELECTION

Many aspects of the soils program were managed by a supervisory committee of the project managers and scientists and EML advisors. The first task of this committee was to choose the communities to be included. Each community was then visited to try to find at least three sites that met the criteria developed by EML to ensure that the soil radioactivity at a site was representative of the fallout deposition in a community. An essential requirement was that the soil not have been disturbed since 1950. No plowing or grading of the land, no addition or removal of soil, and no animal burrowing should have occurred. The site must also have had some type of ground cover so that water and wind erosion were minimal, and it must not have been subjected to the addition of blowsand by wind or silt by irrigation or flooding. Activities such as normal watering, mowing, weeding, and fertilizing were allowable.

Preferred sites were flat, open, grassy areas at least 40 feet across that were not close to buildings, roads, or natural obstructions that could affect fallout deposition, were not higher or lower than the surrounding land (to minimize runoff or pooling of fallout), and had minimal rock outcroppings or debris. Lawns in parks, school yards, churches, and cemeteries were often ideal sites because they were large and their age was usually relatively easy to verify. Lawns at private homes were also suitable, though they tended to be smaller and closer to buildings and trees, and often nobody could be found who knew whether a lawn had been undisturbed since 1950. Pastures with dense vegetation were also possible sites, but they were less desirable than well-maintained lawns.

Most sites were chosen by two-person teams from DRI; the sites sampled in 1986 and 1987 were chosen by a representative from DOE's Albuquerque Operations Office. The approach to the site-selection task varied with the people involved and with the size of the community. In the small towns, sites were typically found simply by driving around town, spotting a good-looking lawn, and stopping to talk to the homeowner. Whether or not the first lawn turned out to be suitable, the owner often knew everybody else in town and was

able to direct the team to other sites. In larger towns, a visit to the city hall or county courthouse usually led quickly to the identification of old parks, golf courses, school yards, and cemeteries. Most visits to large cities in 1983 were preceded by letters or phone calls to the city or county parks department. The parks people were generally very cooperative and often assigned someone to assist the site selection team when it arrived.

The search for sites naturally focused on lawns, and it was usually possible to find at least three suitable lawns in a town of any size. In parts of the Southwest, however, lawns, especially 30-year-old ones, are few and far between. In these areas, the teams had to use less desirable sites in pastures, meadows, and deserts. The EML criteria were somewhat loosely applied at this early stage, as it seemed more efficient to have the selection teams identify a number of possible sites and let the sampling teams choose the best ones than to have the sampling teams spend their time finding alternative sites.

Regardless of how they found their sites, the teams visited each one to confirm that it met the physical criteria. Many teams took photographs of their sites as well. They also talked to the landowners or local officials to verify that each site had been undisturbed for at least 30 years and obtain permission for sampling.

Each team kept careful notes and filled out a form describing each site and how to find it and giving the name of the person to call to arrange for sampling. When the team returned to Las Vegas, the forms were typed and copies sent to DOE, LLNL, and REECo. At this time, each site was given an identifier consisting of a two-letter code derived from the team members' initials and a two-digit sequence number (*e.g.*, AF01). This identifier was used to label the site for all subsequent processing and analysis.

Appendix B lists all 565 sites that were identified. It includes every site found by DRI, several alternative sites chosen by the LLNL and REECo teams, and five sites from the EML study that were included as part of the QA program.

FIELD SPECTROMETRY

After they received the site selection forms from DRI, technicians from LLNL or EG&G visited each site to measure the gamma radiation in the soil. The primary measurements were made by *in situ* gamma-ray spectrometry using a germanium detector placed 1 m above the ground. This instrument measured the flux of the 662-keV gamma rays given off by ¹³⁷Cs. A much higher or (especially) lower Cs flux at a site relative to other sites in the same locality suggests that the site may have been disturbed.

In addition, the *in situ* measurement system recorded a complete spectrum of the gamma-rays given off by Cs and other radionuclides in the soil. Later analysis of the spectrum would help to verify some of the results from the soil samples.

While the gamma-ray spectrum was being recorded, a pressurized ion chamber was used to measure the external gamma exposure rate at the site. The exposure rate measurement served to confirm the results of the *in situ* spectrometry.

These measurements were made at about 75% of the potential sites. The other sites were not measured for one or more of several possible reasons:

- 1. The site appeared to be subject to flooding, lacked sufficient ground cover, or was otherwise physically unsuitable.
- 2. Statements of local residents suggested that the site had been disturbed since 1950. (Such statements contradicted earlier statements to the site selection team by other local residents, but a site was rejected if there was any doubt about its age.)
- 3. The landowner could not be found or would not give permission.
- 4. Several sites from a locality had already been measured. This was often the case in the cities visited in 1983, as travel schedules often prevented measuring all potential sites.

The Cs inventories computed from the *in situ* measurements are given in Appendix B. These values are only approximate because the computation used a default value for the depth distribution of Cs in the soil. Again, it was the comparison of values at nearby sites that was used to reject some sites as possibly disturbed.

SAMPLE COLLECTION

After the *in situ* measurements were completed, a third team from REECo collected soil samples at most of the suitable sites.

Samples were collected as 8.9-cm-diameter cores of soil, divided into four depth increments. First, a core cutter was used to remove the upper 5 cm of soil, including any sod and roots. Next, longer core cutters were used to remove the 5- to 10-cm and the 10- to 15-cm increments. Finally, a soil auger was used to extract the 15- to 30-cm increment.

Natural sites such as pastures and meadows are usually less heavily irrigated than lawns, so fallout tends to remain closer to the surface. At such sites, the procedure was modified by cutting the top 5 cm core in half to give increments of 0 to 2.5 cm and 2.5 to 5

cm. After the 5- to 10-cm core was removed, the auger was used to remove a 10- to 30-cm core.

To increase the likelihood of getting a representative sample, 10 such soil cores were collected at each site. (Previous work by EML and REECo suggested that collecting 10 cores would give a sampling error of about eight percent.) The respective increments from each core were combined so that after the collection was finished, there were four composite samples, one for each depth increment. Each sample was sealed in a plastic bag, and the four samples were put into a large cloth sack and taken to the REECo Soils Laboratory in Las Vegas.

The sampling team was careful to make sure that soil from the sides of the hole did not fall in and contaminate the lower samples. If this happened, the entire core was abandoned and a new core started. If the soil was loose or sandy, it was often necessary to moisten it before good cores could be removed. At some sites, the soil was too sandy or too rocky to allow good cores to be removed, and these sites were rejected after consultation with the scientific director. If the soil sampling team and the *in situ* measurement team were traveling together, they sometimes chose an alternative site to replace one that had to be rejected.

SAMPLE PREPARATION

The canvas sacks containing the four samples from each site were stored in the receiving area of the Soils Laboratory until they entered the preparation process. At that time, the sacks were opened and the plastic bags containing the samples were removed.

The samples submitted for analysis in 1982–85 had their identifying labels replaced with a laboratory identification number chosen at random by DRI (in its role as the QA referee) from a list of numbers provided by the REECo Analytical Laboratory. From this point until the analysis was complete, the identity of the sample was unknown to the people doing the preparation and analysis. Samples that were not to be analyzed were prepared with their identities preserved and sent to storage.

After numbering, the bags were put on shelves in the receiving area to await processing by the laboratory. Bags were numbered and shelved in large groups, usually 24 at a time, but the order of processing the bags within a group was arbitrary. Often the laboratory would process all the upper-increment samples before starting the much larger fourth-increment bags.

The first step in preparing a sample was to transfer it to one-gallon paint cans, with each can being filled to about one-third full. Any large rocks and roots were removed, and

clumps of grass and roots were cut up into 1/4-inch pieces. The sample was then dried at 105°C for at least 24 hours.

After the sample was dry, 10 steel grinding balls were added to each can. The cans were then covered and placed on a rotating ball mill for three hours. After ball-milling, the soil was sieved to separate the fine (less than 500 micrometers) and coarse fractions. The coarse fraction was ball-milled again for one hour, then sieved. The remaining coarse material was ball-milled and sieved a third time.

Any coarse material remaining after three ball-millings was put in a plastic bottle and stored, as were the empty sample bag and any discarded roots and rocks. The fine fraction was put in one or more one-gallon cans from which aliquots were drawn for analysis. After all the necessary aliquots had been drawn, the cans and bottles were taken to a warehouse at the NTS for storage.

The samples prepared in 1986 and 1987 were not assigned laboratory numbers directly. Instead, the cans and bottles were labeled with the site identifier and increment number, and laboratory numbers were assigned to the aliquots as they were drawn. This modification of the procedure allowed resolution of any questions about the numbering of samples, but it prevented the inclusion of blind QA samples to check for contamination in the preparation lab.

GAMMA SPECTROMETRY

Two 500-ml plastic bottles were filled with fine soil from each sample to be analyzed. The bottles were labeled "A" and "B"; the "A" bottles were sent to the Analytical Laboratory at the NTS, while the "B" bottles were set aside for later use if necessary.

At the Analytical Laboratory, a gamma spectrometer counted the gamma rays of different energies given off by the radionuclides in the soil in each bottle. All bottles were initially counted for 300 minutes. The resulting gamma-ray spectrum was then analyzed by a computer program at EML to determine the specific activities of Cs and several naturallyoccurring gamma-emitting radionuclides in the sample.

As the analyses were completed, the results were reported to DRI. Once the data for all four increments at a site had been received, the total inventory of Cs at the site and its coefficient of variation were computed as described in Section 3. If the coefficient of variation for a site was greater than 0.05, at least one of the samples was recounted for 1,000 minutes. (Usually it was the fourth-increment sample that was recounted, as these samples

tended to have low activity and the precision of a 300-minute count was therefore relatively low.) The calculations were then repeated, and additional recounts were made if necessary until the coefficient of variation was less than five percent.

PLUTONIUM ANALYSIS

The high cost of the plutonium analysis prevented analyzing all four increments separately. On the other hand, it was felt that if the four increments were combined into a single sample, the low activity in the large fourth-increment sample would result in low overall precision. As a compromise, each site was analyzed in two fractions, denoted "top" and "bottom." A 200-g sample from the top fraction was prepared from increments 1 and 2 by combining

 $200(w_1)/(w_1 + w_2)$ g of soil from increment 1

with

 $200(w_2)/(w_1 + w_2)$ g of soil from increment 2,

where w_i is the dry weight of the fine soil from increment i. The respective aliquots were taken from the gallon cans containing the fine soil, with a proportionate amount being taken from each can if a sample occupied more than one. A 200-g sample from the bottom fraction was prepared from increments 3 and 4 by a similar formula.

The 200-g samples were placed in plastic bottles at the soils lab. The bottles were then given a laboratory number at random and sent to the Analytical Laboratory in batches, usually of 10 bottles including at least two QA samples. Several early batches had fewer than 10 samples, and two batches of 25 were sent to EAL Corporation for analysis in August 1985 because the REECo laboratory was down for repairs and the results were needed quickly.

The chemical procedure used to extract the plutonium from the sample was the same one used at EML. The first step was to leach the plutonium from the soil with concentrated nitric and hydrochloric acids. The plutonium was purified and electroplated onto a thin platinum disk, then counted twice for 1,000 minutes each time on an alpha spectrometer. This technique was used to measure the amounts of various plutonium isotopes in the sample: ²³⁶Pu (added by the laboratory as a tracer), ²³⁸Pu, and the sum of ²³⁹Pu and ²⁴⁰Pu. The alpha particles given off by ²³⁹Pu and ²⁴⁰Pu have nearly the same energy, and the isotopes therefore cannot be measured individually by alpha spectrometry. Section 4 describes the QA criteria applied to individual samples and to batches of samples that led to rejection of many analyses. New aliquots were made of rejected samples and submitted in later batches until acceptable results were obtained. In a few cases, the same result was obtained for a sample in three or four different batches even though none of the batches met the QA criteria, and these results were assumed to be correct.

ISOTOPE MASS SPECTROSCOPY

After the plutonium analysis was complete, isotope mass spectroscopy was used to determine the ratios of ²⁴⁰Pu to ²³⁹Pu and ²⁴¹Pu to ²³⁹Pu in the sample on the platinum disks. The analysis was done by Pacific Northwest Laboratories according to standard procedures.

SECTION 3 ANALYTICAL RESULTS

CESIUM

Soil samples were collected from 336 sites. After reviewing the site selection and sample collection logs, the supervisory committee chose to have the samples from 213 sites analyzed by gamma spectrometry.

A total of 1,039 bottles of soil were submitted for gamma analysis, with 853 being "A" bottles and 186 being QA samples of various types. The 853 "A" bottles represent the 213 sites, with one site (MH02) having five increments instead of the usual four. Recounts of 208 bottles brought the total number of gamma counts to 1,247.

The Cs data from the 213 sites are reported in this section; the data for the naturally-occurring radionuclides were used for quality assurance and are reported in Section 4. The results reported for each count of a sample were the concentration of Cs (in pCi/g of soil) and a standard deviation (expressed as a percentage of the concentration) based on the counting error. Because ¹³⁷Cs has a half-life of only 30.2 years, an appreciable amount of radioactive decay would have occurred over the five-year span of the program. To make all of the measurements comparable, they were decay-corrected to 1 January 1983 by the formula

Cs(1983) = Cs in sample x exp[(6.284×10^{-5})t],

where t is the number of days between 1 January 1983 and the date the sample was counted. The decay-corrected values were used in all subsequent calculations.

The first step in computing the total inventory at a site was to compute a varianceweighted average value for samples that were counted more than once. First the variance of each count was calculated from the reported standard deviation:

 $v_{ij} = [C_{ij} \times \% sd_{ij}/100]^2$,

where C_{ij} is the result of count j of the sample from increment i and $\%sd_{ij}$ is the standard deviation (percent) of C_{ij} . Then the average and its standard deviation were computed from the equations

$$C_{i} = \frac{\sum_{j=1}^{n_{i}} \frac{C_{ij}}{v_{ij}}}{\sum_{j=1}^{n_{i}} \frac{1}{v_{ij}}}$$
$$S_{i} = \sqrt{\frac{1}{\sum_{j=1}^{n_{i}} \frac{1}{v_{ij}}}}$$

where n_i is the number of counts of the sample from increment i.

,

Next, the inventory for each increment (in nCi/m² or mCi/km²) was computed:

$$Cs_{i} = \frac{10 \times C_{i} \times w_{i}}{621}$$
$$sd_{i} = \frac{10 \times s_{i} \times w_{i}}{621} ,$$

where w_i is the dry weight of the sample and 621 is the total area in cm² of the 10 soil cores at each site. At some sites, the auger used to collect the fourth-increment sample had a larger diameter (9.4 cm) than the core cutters (8.9 cm). Samples taken with the larger auger thus represented an area of 69.4 cm² instead of the 62.1 cm² represented by all the other samples. To correct for the difference in areas, the dry weights of the large-auger samples were multiplied by 621/694 = 0.89 whenever they were used in the calculations.

Finally, the total inventory at the site was found by adding the inventories in the four increments (five increments for MH02):

$$Cs_{T} = \sum_{i} Cs_{i}$$
$$sd_{T} = \sqrt{\sum_{i} sd_{i}^{2}}$$

-

If the coefficient of variation of the total inventory (C.V. = Cs_T/sd_T) was greater than 0.05, one or more samples were recounted as noted in Section 2.

Table 1 gives the cesium inventory in the four increments and the total inventory at each site. The values of C_i , %sd_i, and w_i from which the inventories were computed are given in Appendix C.

Figure 2 is a histogram of the total inventories at the 213 sites. This figure provides a convenient graphical summary of the numbers in Table 1, although it must be emphasized that the total inventory values are of limited usefulness by themselves. Large variations in the deposition of global fallout over the study area (primarily due to differences in latitude and amounts of rainfall) make it difficult to draw any conclusions from siteto-site variations in total inventory.

The standard deviations given in Table 1 were computed from the standard deviations reported with each count, which were based solely on the counting error, *i.e.*, the variability induced by the random nature of radioactive decay. The total analytical error of the Cs analyses includes the counting error and errors from other sources, such as standardization for counter efficiency and the positioning of the sample on the detector. According to Essington (1988), the minimum analytical error, excluding counting error, at the REECo laboratory is 9 percent due to sample density variability and 1.4 percent due to other sources of variability. However, the EML analysis of the spectra includes a correction for sample density.

An additional source of variation in the Cs analyses is the preparation of aliquots of the sample for gamma-counting. Section 4 will present data from two aspects of the QA program that enable the aliquot-to-aliquot variability to be assessed. The analyses of 55 pairs of duplicate aliquots generally agreed within about 10 percent except in the case of some low-activity samples. In addition, the results of 70 counts of 27 separate aliquots of a standard soil from Hurricane, Utah, had an overall variability of about 5 percent, while the individual counting errors ranged from 2.9 percent to 3.4 percent. Thus the true variability of the Cs analyses is probably only slightly larger than the reported counting errors.

The computed inventories (both Cs and Pu) are the product of a constant times the radionuclide concentration times the weight of the sample, so variability in the measured sample weights also contributes to the uncertainty of the inventory estimates. The magnitude of the weighing error is difficult to assess because different balances were used at

TABLE 1. COMPUTED ¹³⁷Cs INVENTORIES (nC1/m²)

Level 1 Level 2 Level 3 Level 4 Total Site Location Cs Cs ٤d sd C: Cs ۶d Cs ٤d \$d 9 2 24 9 19 1 21 5 14 9 19 5 FM01 FM08 FM10 FM14 FM16 FM17 FM29 Kingman, AZ Grand Canyon, AZ Grand Canyon, AZ Galup, NM Holbrook, AZ Ganado, AZ Albuquerque, NM Chinle, AZ Williams, AZ Flaşstaff, AZ Gabbs, NV Austin, NV Gabbs, NV Memphis, TN Dallas, TX Corpus Christi, IX Tucson, AZ Fredonia, AZ Mesque, NV Hiko, NM Gabbs, NM Hiko, NM Hiko, NM Gabbs, NM Hiko, NM Hiko, NM Gabbs, NM Hiko, NM Hi 14 21 9 45 14 30 27 47 54 55 56 75 31 21 15 4 12 8 7 123123 12312 123123 ŝ 112447522435820100620201475287 11224475287 1188922358218646387287 1173187287 774 1 138 444 664 90 244 1 133 865 1 056 446 878 888 451 487 788 778 778 778 778 778 32 32 42 87 64 09 55 79 ģό 148843000226688097911157410808401114567861606 51111111111122215140 62 5 75 8 63 9 86 4 9 3 64 6 27 5 41 7 46 75 89 74 98 1 06 94 82 1 00 54 62 53 29 45 54 55 45 54 55 45 54 46437846554857673617 846457784673617 95 86 71 1 02 11 11 6 1 4 13 1 42 3 7 6 3 9 2 7 0 ī 93 83 63 96 87 80 96 87 80 84 83 76 93 83 1 25 18 6 14 0 13 5 14 8 7 3 5 1 2 9 70 9 2 167 1 176 2 35 1 35 1 35 1 35 1 35 1 20 2 3 2 6 40 1 16 7 22 9 5 7 13 5 13 3 28 2 31 95 68 75 87 53 77 77 92 3 183 0 **RB01 RB08**

TABLE 1. COMPUTED ¹³⁷Cs INVENTORIES (nC1/m²) (continued)

Site	Location	Level 1		Leve	Level 2		Level 3		Level 4		Total	
		Cs	sd	Cs	sd	Cs	sd.	Cs	sd	Cs	۶d	
B11 B16	Rapid City, SD Billings, MT	17 3 48 2	45	18 8 19 2	49 90 92 97	36 1 13 8	1 12 89	126 8 11 9	4 18 2 28	199 0 93 1	4 38	
M02	Winnemucca, NV	29 0	1 06 75	20 8	92	89	60	97	1 09	68 5	17	
M06	Battle Mountain, NV	28 6	éő	21 9	97	86	84	Śi	1 16	64 2	ίú	
M08	Carlin NV	64 4	89 854 96 37 86 98 95 95 86 95 95 95 95 95 95 17	82	50 99	Ž 1	61	30	1 16 1 70	64 2 77 7	1 9 2 0	
M10	Elko, NV	19.5	54	22 4 15 8	99	16 4 8 7	61 84	156 131	1 95	74 0	24	
M12	Wells, NV	42 0	97	15 8	89	87	83		1 49	79 6	24	
M14	Pioche, NV Panaca, NV	13 0	46	31 9	1 08	13 6	1 19 1 05	50	1.94	63 4	25	
M19	Panaca, NV	12 4	32	16 6	40	15 5	1 05	20 0	2 34	64 4	26	
M21	Caliente, NV	23 1	78	21 3	91	84	95	4.5	1 13 2 45	57 2	19	
A02 A07 A19 A20 A26 H05 H07	Wichita, KS	18 2	54	21 3 33 5 23 2	1 04	23 5 13 2 20 7 18 5	94 75	21 5 13 2 21 2 23 7 24 1	2 45	96 7 87 0	28	
A07	Wichita, KS	37 4 29 7	90	23 2 41 7	90 1 21	13 2	75	13 2	1 90 2 12	113 3	242728	
A13	Des Moines, IA St Louis, MO	24 4	20	39 2	1 14	18 5	91	21 7	2 39	105 8	56	
A20	St Louis, MO	32 7	45	40 3	1 17	25 8	1 ก็วั	24 1	2 31	122 0	20	
HOS	Las Vegas NV	ĩã 3	ŚĂ	12 7	1 14 1 17 76	- 5	51		93	122 9 30 3	29	
HOT	Las Vegas, NV Las Vegas, NV	59	29	20 Ó	9Ŏ	96	91 83 1 03 51 72	4 7	70	40 2	i 3	
HÌÓ	Henderson, NV	13 7	51	13 9	90 35 72	17	69 66	43	2 39 2 31 93 70 1 31	40 2 33 6	13	
H11	Boulder City, NV	11 6	47	16 4	72	54	66	25	90	35 9 72 5	14	
W02	Lund, NV	16 5	64	24 9	1 05	15 4	80	15 7	2 24 2 54	72 5	26	
W03	Preston, NV	26 3	64 82 62 45	24 3	92	15 4 12 8 3 9	82 31	13 5	2 54	77 0	29	
W05	Eureka, NV	51 9	62	14 5	41	3 9	31	20	93 2 39	72 3	12	
W06	Duckwater, NV	23 8	45	24 0	43	217	87	27	2 39	72 1	26	

TABLE 1 COMPUTED ¹³⁷Cs INVENTORIES (nC1/m²) (continued)

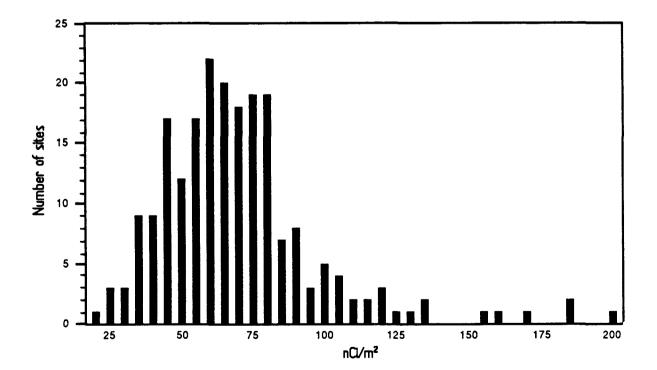


Figure 2 Histogram of total ¹³⁷Cs inventories

different steps of the processing. In addition, anywhere from 10 to 30 or more separate weighings of samples and cans and several additions and subtractions were needed to arrive at the dry weight of the fine fraction of a single sample, providing numerous opportunities for errors in transcription and arithmetic.

A close inspection of the preparation process in mid-1984 revealed that at least one of the balances had a bias of several grams and that the forms on which the weights were recorded contained only the net soil weights, not the raw data. At this point, new forms were designed, all calculations were checked, and all cans of fine soil, bottles of coarse material and bags and debris, and any subsamples that had been drawn were reweighed. The weights calculated during the reweighing effort were almost always within 25 g of the original weights. A few discrepancies on the order of 200 g did occur, but these were associated with fourth-increment samples weighing more than 10 kg. Errors of this magnitude in the sample weights have a negligible effect on the precision of the computed inventories.

PLUTONIUM

After a sufficiently precise Cs inventory had been obtained for a site, another evaluation was made. Sites at which Cs did not decrease with depth or at which the natural radioactivity in the four increments was unusually variable (suggesting that the site may have been disturbed) were often rejected at this stage. Other sites were not analyzed further because of budgetary and time constraints.

A total of 671 aliquots were analyzed for Pu. Of these, 342 represent the two increments from the 171 sites chosen for Pu analysis. The others include QA samples and aliquots for which the analytical results were rejected on the basis of the QA criteria.

The plutonium results were reported in units of disintegrations per minute per gram (dpm/g) with a standard deviation in percent. The inventory computations were similar to those for cesium, beginning with the calculation of a variance-weighted average of the results from the two or more counts of each disk. This average was then multiplied by a correction factor intended to compensate for the incorrect aliquoting of the early samples. Many of these aliquots had been prepared using the total dry weight of the samples (including the coarse material) instead of the dry weight of the fine fraction. The only way to correct this error completely would have been to recomposite and reanalyze the samples, which was deemed too expensive. However, an approximate correction factor was

derived from the cesium data under the assumption that the cesium and plutonium had the same distribution in the soil column.

The correction factor for the top level was computed as follows:

old effective activity = $[aw_1 \times C_1 + (200 - aw_1) \times C_2]/200$ where aw_1 is the weight (possibly incorrect) of the aliquot from increment 1,

new effective activity =
$$[w_1 \times C_1 + w_2 \times C_2]/(w_1 + w_2)$$
,

correction factor = new effective activity / old effective activity.

The correction factor for the bottom level was similar, with w_4 adjusted for the auger size if necessary. These correction factors were relatively small, ranging from 0.97 to 1.14. Note that the correction factor was 1 if the aliquots were prepared correctly.

The inventory in each of the two levels was then computed as

$$Pu_{i} = \frac{10 \times P_{i} \times (w_{j} + w_{k})}{(621 \times 2.2)}$$

,

$$\mathrm{sd}_{\mathrm{i}} = \frac{\mathrm{Pu}_{\mathrm{i}} \times \% \mathrm{sd}_{\mathrm{i}}}{100}$$

where P_i is the corrected average Pu value for the aliquot from level i, i = 1 or 2; %sd_i is the standard deviation of P_i ; and j = 1, k = 2 when i = 1; j = 3, k = 4 when i = 2. The total plutonium inventory was then

$$Pu_{T} = Pu_{1} + Pu_{2}$$

 $sd_{T} = \sqrt{(sd_{1}^{2} + sd_{2}^{2})}$

Table 2 gives the Pu inventories for the 171 sites. The two results given for site AQ16 are based on analysis of two separate aliquots of the sample from the top increment at that site. Figure 3 shows the distribution of all the computed inventories except those from AQ16. The values of P_i and %sd_i are given in Appendix C.

As with the Cs inventories, the total Pu inventories by themselves are of limited value, both because of variations in the deposition of global fallout and because the leach-

Sure	Loostion	To		Botto		Tot	Total		
Site	Location	Pu	sd.	Pu	sd	Pu	sd	Cs/Pu	
AF01 AF05	Talmage, UT Talmage, UT	1 7 1 2 6	06 05	9 1 1	05 08	2 6 2 3 2 4	08 09	29 31 32	
AF14 AQ01	Mountain Home, UT Albuquerque, NM	6	03 04	184	13 03	2 4 1 2	13 05	32 50	
AQ02	Albuquerque, NM	89	04 04	6	04 04	14	05 06	40 45	
AQ03 AQ04	Albuquerque, NM Albuquerque, NM	2 4 3 7	09	3	03	1 3 2 7 4 7	09	19	
AQ05 AQ06	Albuquerque, NM Albuquerque, NM	3 7 2 5 7 4	11 11	10	05 06	35 87	12	11 18	
AQ07 AQ08	Albuquerque, NM Albuquerque, NM	36	27 12	1 2 9 1 2	06 06	46	09 12 12 27 13 17	8 16	
AQ09 AQ10	Albuquerque, NM Albuquerque, NM	459	16 04	3	06 03	56 12	04	11 4 <u>1</u>	
AQ11 AQ12	Albuquerque, NM Albuquerque, NM	9 8	04 03	4 5	03 03	13 13	05	41 45 43 37	
AQ13 AQ14	Albuquerque, NM Albuquerque, NM	9	03	8 6	06 06	16 15 12	07 08	40	
AQ15 AQ16	Albuquerque, NM Albuquerque, NM	16 2 16 2	03 73 19	6 5 1	04 19	21 3	05 75 27 05	44	
AQ16 AQ17	Albuquerque, NM Albuquerque, NM	16 2 4 9 9	19 04	(Š 1 3	19) 02	10 0 1 2	27	6	
AQ18 AQ19	Albuquerque, NM Albuquerque, NM	9 8	04 04	4 10	04 06	1 2 1 3 1 8	05	42	
AQ20 AQ21	Albuquerque, NM Albuquerque, NM	7 5	04 03	- 5 8	04 05	1 2 1 3	07 05 05	42	
AQ22	Albuquerque, NM Albuquerque, NM Albuquerque, NM	٢	02 06	24	02 04	15	03 07	39	
AQ23 AQ24	Albuquerque, NM	1 2 1 1 1 5	05 07	4	03	1 5 3 8	06	35	
AQ25 AQ26	Albuquerque, NM Albuquerque, NM	6	03	23	11 04	14 13	13 05 06	42 42 42 39 35 13 45 49 51 44 44	
AQ27 AQ28	Albuquerque, NM Albuquerque, NM	1 1 1 1 0	05 04	25	03 04	15	06	51	
AQ29 AQ30	Albuquerque, NM Albuquerque, NM	1 0 3 7	05 03	4	03	14	06 05	41	
AQ31 AQ32	Albuquerque, NM Albuquerque, NM	9	04 04	1 2	09 04	19 12	10 06	29 46	
AQ33 AS06	Albuquerque, NM Cortez, CO	36 19	16 06	1 2 1 2 7	08 07	48 30	18 09	15 27 46	
AS10 AS13	Durango, CO Silverton, CO	36 19 12 18 12	05	10	04 04	1 2 4 8 3 0 1 9 2 8	06 07	44	
AS21 AS26	E-unte CO	1 2 1 5	04 07	7	04 07	1 8 2 6	06 10	38 38	
AS27 AS32	Craig, CO Rock Springs, WY	19 12 10	07	3 1 2	02	1 8 2 6 2 2 2 4 2 1	07 07	45 32	
AS35 AS36	Meeker, CO Craig, CO Rock Springs, WY Evanston, WY Kemmerer, WY	10 14	04 05	1 1 4	06 03	2 1 1 8	07 06	38 45 32 29 45 37	
AS41 AS43	Idaho Falis ID	16	06	$^{1}\frac{1}{7}$	05 05	1 8 2 7 2 0 2 4 1 5	07 07	48	
AS50 BA03	Pocatelio, ID Seattle, WA Medford, OR	1 3 1 5 1 0	05 05 04	95	04	24	07 05	44 49	
BA11 BA15	Medford, OR San Francisco, CA	8	04 03 02	32	03 02 02	1 1 8	04 03	41 54	
BA29 BA30	San Francisco, CA Los Angeles, CA Los Angeles, CA	7 5	04	23	02 02 02 05	9	04	46	
BE01 BE10	Furnace Creek, CA	1 3 2 3	02 05 11	1 0	05 05	2 3 3 2	03 07 12	48 27 14 37	
BE22 BE32	Indian Springs, NV Bishop, CA Beatty, NV	6	02 16	4	05 05	1 1 5 9	12 05 16	37 6	
BE37 BF03	Alamo, NV Arcadia, UT	5 2 2 9 1 5	06 08	1 7 1 0	08 08	4 6	10 11	14 37	
BF05 BF10	Altonah ITT	1310	05	1 7 5	04 05	2420	07 08	31	
BF13	Riverton, WY	21	06	15	06	1537	08	20	
BF15 BF19	Upalco, UT	1 0 1 7	04 06	85	04 02	1 8 2 2	06 07	34	
DZ01 DZ04	Duchesne, UT Riverton, WY Rawlins, WY Upalco, UT Baker, NV Ely, NV	1736	07 12	1824	08 09	3560	11 15 16	31 32 20 44 34 22 15 17	
DZ05A DZ09A	McGill, NV	39 26	15 09	1 1	06 01	5027	09	28	
DZ10 DZ16	lbapah, UT Wendover, UT	20 19 17 26 19	06 08	3	03 04	2 3 2 6 3 1 4 6	07 09	38 28 38 22 35 35 38 34 44 35 39 34 20 17 12	
DZ16 DZ18 DZ21	Wendover, UT Tooele, UT Iosepa, UT St. George, UT Kanab, UT Parowan, UT Cedar Curv. UT	1 9 1 7 2 6	06 08	1 3 2 0 1 2	06 07	31 46	09 11	38 22	
EML3 F20A	St George, UT Kanab, UT	1 9 1 2 1 3 9	06 04	1 2	05 05	3 0 2 1	11 08 06 06 06 07	26 35	
E26A E35 E132	Parowan, UT Cedar City, UT	139	04 03	1 1	05 05	24 18	06 06	42 38	
Ē132 FM01	Cedar City, UT Vernal, UT Kingman, AZ	1 Í 6	04 02	9 6	05 03	2 Ö 1 2	07 04	34 44	
FM08 FM14	Grand Canyon, AZ	1 0 6	03 03	1 7 1 4	08 07	1 2 2 6 2 0 1 9	04 08 07 07 07	35	
FM16 FM17	Gallup, NM Holbrock AZ	1 6	06 03	3 10	03 06	1 9 1 8	07 07	39 14	
FM29 FM31	Vernal, UI Kingman, AZ Grand Canyon, AZ Tuba City, AZ Gallup, NM Holbrook, AZ Ganado, AZ Albuquerque, NM Albuquerque, NM	2 5 2 7 4 3	08 09	5	04 04	30	09	20	
FM32	Albuquerque, NM	43	15	11	06	35 53 42	10	12	
FM33 FM33R	Albuquerque, NM	34 36 51	10 11	1 2	06 06	48	11 12 21 16 30	20 17 12 7 7	
FM34 FM35	Albuquerque, NM Albuquerque, NM	81	20 14	1 2 1 2 2 0	07 08	63 101	16	12	
FM35R FM39	Albuquerque, NM Chinle, AZ	84 19	29 08	186	09 03	10 2 2 6	08	29	
FM43 FM45	Williams, AZ Flagstaff, AZ	16 10	05 04	6 8	04 04	10 2 2 6 2 2 1 8	06 06	29 48 45 39	
FM46 GC05	Williams, AZ Flagstaff, AZ Flagstaff, AZ Reno, NV Reno, NV	186	05	25	02 04	2 1 1 1	06 05	42	
GC06	Reno, NV		04 02	3	03	<u>i i</u>	04	41	

TABLE 2. COMPUTED 239 + 240 Pu INVENTORIES(nC1/m²)

Site	Location	T	op sd	Botto Pu	om sd	Tot Pu	al ad	Cs/Pu
GC08	Gerlach, NV	9	03	9	03	1 8	04	
GC12 GC15	Lovelock, NV Fallon, NV	87	03 03	3	03	1 1	04	51 45
GC19	Gabbs, NV	1 4	03	83	05 02	15 17	06 04	43 39
GC20	Austin, NV	14	08 03	5	04	19	09	42
GC23	Austin, NV Bridgeport, CA	8 1 0	04	19	09 04	2714	09 05	40 59
GC19 GC20 GC23 GC29 GC33	Hawthorne, NV	10	05 04	4 2 5	03	12	05	42
GC48 GC50	Hawthorne, NV Stewart, NV Moores Station, NV	9 16	04		03 02 04	14 18	05 05	32
KM06	Memphis, TN	18	06 04	Ś	04	18 23 14	07	53
KM13 KM18	Moorphis, TN Dallas, TX Corpus Christi, TX Corpus Christi, TX	1 8 1 2 7	02 03	1	02 02 03	8	05 07 05 03 04	54
KM21 KM28	Corpus Christi, TX Tucson, AZ	1 0	03 04	1 5 2 1 2 2 4 8 7	03	1 0 1 3	04 04	47
KM33	Tucson, AZ	7	03 07	4	02 03 05	11	04 09	41
KS01 KS07	Fredonia, AZ Moccasin, AZ	1 3 2 0	07 06	87	05	1 1 2 1 2 7	08	38 24
KS10	Grand Canvon AZ	33	09	5	03	38	09	35
KS21 KS24	Littlefield, AZ Mesquite, NV Bunkerville, NV	2 1 1 1	07 04	2 3 1 1 2 7 1 8 7	09 06	4 3 2 2	11 07	28
KS25	Bunkerville, NV	1 1 2 2 3 3	08	2 7	10	4 9 5 1	13	33
KS26 KS30	Bunkerville, NV Overton, NV	13	12 04 12		08 04	2 0 3 6	14 05	32
KS33 KS36	Alamo, NV Hiko, NV	23 19	12 08	13 14	06 07	36 33	14 10	12
MH02	Rosette, UT Snowville, UT	26	07	20	10	46	12	37
MH03 MH07	Snowville, UT Malad City, ID	26 23 17	08 09	6 9	04 08	4 6 2 9 2 6	09 12	45
MH12	Burley, ID Twin Falls, ID	19	06	15	02	20	06	42 40 59 42 53 53 54 54 54 47 43 47 43 41 38 24 35 28 37 33 32 12 19 37 45 35 960
MH14 MH17	Twin Falls, ID Twin Falls, ID	8 1 1	04	5	04 04	14 17	06 06	60 43
MH19	Meridian, ID	11	05 05 07	3	02 03	14	05	43 44
MH22 MH28	Boise, ID Hines, OR	15 10	07	4	03	19 14	08 04	40 45
MH29	Basque Station OP	ĪŪ	04 06	6 02	03 01	16 14	05	50
NM02 NM03	Moriarty, NM Belen, NM Las Cruces, NM		04	4	03	137	06 05 03	40 45 50 45 38 59 43 49 43
NM04 NM05	Las Cruces, NM Solomonville, AZ	9 6 6	03 03	2 1	02 01	7	03	38
NM06	Roswell, NM	9	04	4	03	13	03 05 04 06 05 07	43
NM07 NM08		5	02 03	4	03 05	9 14	04	49 43
NM09	Silver City, NM Socorro, NM	8	03	67	04 06	15 18	05	31
NM11 NM15	Portales, NM Sante Fe, NM Sante Fe, NM	97	03 03	9 3	02	10	04	31 41 45 44
NM16	Sante Fe, NM	8 1 4	04	3	03	10 12 20	04 05 06	44
NM17 NM18	Raton, NM Cimarron, NM	8	05 03	6	03 05	12 20 16 17	06	40 46
NM19 NM21	Cimarron, NM Chama, NM Farmington, NM	14	05 04	3 3 5	02 02 03 02	17 13	05 04	49 37
NM22	Farmington, NM	8	03	5	03	13	05 04	44
NM25 NM26	Farmington, NM Mesa, AZ Litchfield Park, AZ	63	03 02	3	02 03	96	04	44 46 46 48
RB01	SCOULDIUII, NE	12	02	8	04	19	03 06	48
RB08 RB16	Rapid City, SD Billings, MT	15 14	04 05 04	2 3 5	08 04	38 19	09 06	48 50
RM02	Winnemucca, NV	12	04	5	03	16	05	42 45 52 46
RM06 RM08	Battle Mountain, NV Carlin, NV	14	03 07	4 1	02 01	1 4 1 5	04 07	52
RM10 RM12	Carlin, NV Elko, NV Wells, NV	9	04 11	17	07 05	16 20	08	46
RM14	Pioche, NV	īŚ	Ō5	8	04	23	12 07	27
RM19 RM21	Panaca, NV	9 1 3	03	6 8 9 5	04 05	1818	05 07	40 27 32 52 54 55 49 20 38 29 29
SA02	Caliente, NV Wichita, KS Wichita, KS	10	04	5 5	05 03	18	06	53
SA07 SA19	Wichita, KS Des Moines, IA	1 2 1 3	04 04	5 8	03 04	$17 \\ 21$	05	52 54
SA20	St Louis, MO St Louis, MO	13	64	6	04	1 9 2 5	05	55
SA26 SH07	St Louis, MO Las Vegas, NV	1 2 1 3 1 3 1 5 1 2 7	04 04	1 Ö 8	04 03	25 20	06	49 20
SH10	Henderson, NV		03	1	02	9	04	38
SH11 SW02	Boulder City, NV Lund, NV	10 15	04 06	1 2	02 05	1 2 2 7	04 08 07	29 27
SW03	Preston, NV Eureka, NV	15	04 07	9	05 03	24	07	32 52
SW05 SW06	Eureka, NV Duckwater, NV	13 40	07 11	1 0	03 06	14 50	07 13	52 14
				1.0			1.7	

TABLE 2 COMPUTED 239 + 240 Pu INVENTORIES(nC1/m²) (continued)

ing process does not always extract all plutonium from the sample. The inefficiency of the leaching does not affect the computation of the amount of NTS fallout, but it can lead to underestimates of the total Pu inventory (Krey, 1983).

Table 2 also gives the ratio of the total Cs inventory to the total Pu inventory. The ratio of Cs to Pu in global fallout as of 1 January 1983 is known to be $48 \pm 1\%$ (H. Beck,

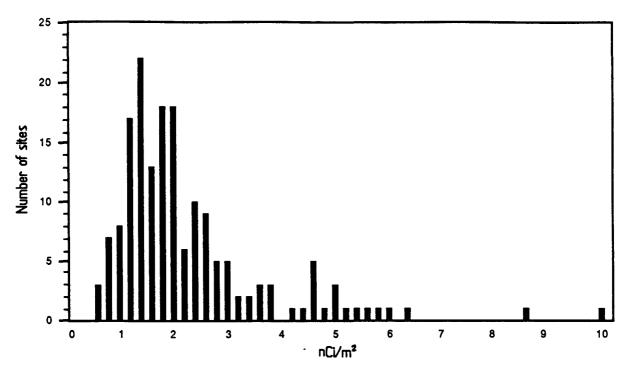


Figure 3. Histogram of total ²³⁹⁺²⁴⁰Pu inventories.

personal communication) so examination of the inventory ratio gives an indication as to whether the fallout at a site is primarily global in nature.

The sources of variability that affect the Cs analyses also affect the Pu analyses. An additional source is the complicated chemistry required to separate the plutonium from the soil. An experiment carried out before the regular Pu analyses began showed a total analytical variability of 9 percent, with 5 percent due to counting error and 7 percent due to the chemical processing.

Another indication of the overall variability is given by the analysis of an EML reference soil from Massachusetts as part of the QA program. The data presented in Section 4 (Table 10) show the variability of the first counts of 25 aliquots of this soil (two counts were rejected by the QA criterion) to be 7.5 percent, while the individual counting errors ranged from 4.5 to 19 percent.

It must also be remembered that the correction factor used to adjust the early Pu results for incorrect aliquoting was based on the assumption that Cs and Pu have the

same distribution in the soil column. This assumption is an additional, if unmeasurable, source of uncertainty in the final results.

The Pu results from Albuquerque, New Mexico, require some further explanation. Initially, the samples from three Albuquerque sites (FM31, FM33, and FM35) were analyzed for Pu, and all three had Pu inventories well above the expected 1 to 1.5 nCi/m². Several steps were taken to investigate this anomaly, including analysis of new aliquots of the samples (FM33R and FM35R), analysis of 1982 samples from two other sites (FM32 and FM34), collection and analysis of new samples from all five sites (AQ05 through AQ09), and collection and analysis of samples from 28 new sites. Several soil samples collected in Albuquerque in the late 1950s were also analyzed, and historical records were examined thoroughly for any evidence that would help explain the results.

The investigation showed that

- several sites in central Albuquerque do have unusually high levels of Pu;
- the total Pu inventories at these sites are still quite low and do not constitute a health hazard;
- the excess Pu cannot be attributed to any NTS activities, nor to the test of the first atomic bomb at Alamogordo, New Mexico, in 1945, nor to any known accidental release of Pu.

These results were presented orally to the DAAG on 21 May 1987 (Beck, 1987). The DAAG agreed with the technical evaluation of the ORERP investigation and concluded that the levels of Pu in Albuquerque do not constitute a health hazard.

The sites with anomalous levels of Pu (FM31/AQ05, FM32/AQ06, FM33/AQ08, FM34/AQ09, FM35/AQ07, AQ04, AQ16, AQ24, AQ25, AQ28, AQ30, AQ31, and AQ33) will not be used in creating the County Database.

ISOTOPE RATIOS

The aliquots from all but 14 of the sites analyzed for Pu were submitted for isotope mass spectroscopy. Table 3 gives the ratios of ²⁴⁰Pu to ²³⁹Pu and ²⁴¹Pu to ²³⁹Pu in the top and bottom increments. The values of these ratios in global fallout are 0.180 ± 0.006 and 0.00551 ± 0.00033 , respectively, and deviations from these values again give a general idea of the size of the NTS fraction of the fallout at a site. More precise calculations of NTS fallout from these data will be reported by Anspaugh and Beck (1989).

TABLE 3.	PLUTONIUM	ISOTOPE	RATIOS
----------	-----------	---------	--------

			240Pu	/239Pu			241 pu/239 pu				
Site	Location	To Ratio	sd sd	Botto Ratio	om sd	To Ratio	sd sd	Botto Ratio	om sd		
AF01	Talmage, UT	1173	00004		00010	00303	00001	00307	00001		
AF05 AF14	Talmage, UT Mountain Home, UT	1274 1446 1671	0000 5 00010	1199 1282 1410	00100 00010	00324 00369	00001 00001	00318 00348 00343	00004 00001 00009		
AQ01 AQ04	Albuquerque, NM Albuquerque, NM	0684	00020	1640 0893 0902	00060 00010	00347 00133	00001 00003	00343 00167	00001 8		
AQ06 AQ07	Albuquerque, NM Albuquerque, NM	0619	00006	0902	00020	00115 00063	00001	00160	00010		
A009 A011	Albuquerque, NM Albuquerque, NM	0400 0470 1563	00030	0609 0715	00020	00083 00318	00002 00001	00122 00283 00283	00001		
AQ12	Albuquerque, NM	1466	00010	1431 1403 1320	00010	00312 00317	00001	00283	00002		
AQ13 AQ14	Albuquerque, NM Albuquerque, NM	1528	00010	1399	000 20	00318	00001	00265	00001		
AQ15 AQ16 AQ17	Albuquerque, NM Albuquerque, NM	1466 1564 1528 1568 0174 1621 1649 1510 1513 1525 1131	00040	1511 0165	00010 00003 00030	00331 00018	00003	00304 00015	00001		
AQ18	Albuquerque, NM Albuquerque, NM	1621	00030	1401 1330 1319 1522 1364 1110 1399 1681 1278 1572 1565	00040	00314 00346	00001	00015 00297 00249	00003		
AQ19 AQ20	Albuquerque, NM Albuquerque, NM	1510	00030	1522	00020	00346 00355 00310 00313 00314	00001	00261 00306 00274 00217 00271 00271 00253 00358 00253	00001		
AQ21 AQ23	Albuquerque, NM Albuquerque, NM	1513	00030	1364	00020	00314	00002 00001	00217	00003 00001 00005		
AQ24 AQ25	Albuquerque, NM Albuquerque, NM	0426	00020	1681	00020 00010	00230	00002	00358	00001		
AQ27 AQ28	Albuquerque, NM Albuquerque, NM	0426 1586 0461 1587 1539	00020	1278	00010 00030	00323 00079	00001	00253	00002		
AQ29 AQ31	Albuquerque, NM Albuquerque, NM Albuquerque, NM	1587 1539	00020	1565 1005 1473	00020 00030	00323 00316	00001	00318	00002		
AQ32 AQ33	Albuquerque, NM Albuquerque, NM Cortez, CO_	1382 0478	00040 00010	neaa	00020 00020	00284 00084	00002	00318 00195 00292 00158	00001		
AS06 AS10	Cortez, CO Durango, CO	1382 0478 0914 1566	00010 00120	1247 1538	00020 00020	00196 00358 00369	00001 00010	00266 00333	00002		
AS13 AS21	Durango, CO Silverton, CO Fruita, CO	1633 1280 1333	00020	1612 1250	00040 00010	00369 00285	00001	00357	00003		
AS26 AS27	Fruita, CO Meeker, CO Craig, CO Rock Springs, WY	1333	00010	1247 1538 1612 1250 1184 1453	00020 00040	00297	00001	00253	00003		
AS32 AS36	Rock Springs, WY Kemmerer, WY	1443 1160 1547	00010	1030	00010	00272	00001 00005	00228	00001		
AS41 AS43	Afton, WY Idaho Falis, ID	1530	00010 00010	1492	00020	00345	00001	00328	00001		
AS50 BA03	Pocatello, ID Seattle, WA	1725	00010	1671	00010	00424	00001 00001 00001 00001 00002 00002 00002	00392	00001 00001 00003 00004 00004 00004		
BA11	Medford, OR	1710	00010	1702	00020	00385	00001	00377	00003		
BA15 BA29	San Francisco, CA Los Angeles, CA Los Angeles, CA	1402	00010 00030 00020	1481	00050 00030 00050 00010	00325	00002	00344	00004		
BA30 BE01	Furnace Creek, CA	1114	00030	0787	00010	00245	00001	00165	00001		
BE10 BE22	Indian Springs, NV Bishop, CA	1547 1530 1671 1725 1815 1710 1678 1402 1419 114 0566 1440 0378 0638 1322 1318 0703 1406 1312	00030 00010 00010	1498 1492 1656 1671 1458 1702 1584 1381 1381 1381 1381 1383 1353 0960 0647 1339 1240 1102 0648 1344 1221 0822 0641	00010 00030 00020 00020 00020 00020 00010	00285 00297 00326 00272 00350 00424 00422 00355 00424 00422 00325 00368 00325 00368 00325 00311 00245 00312 00329 00072 00334 00334 00324	00002	$\begin{array}{c} 00266\\ 00333\\ 00357\\ 00275\\ 002253\\ 00334\\ 00328\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 00392\\ 003028\\ 000392\\ 00165\\ 00126\\ 00308\\ 00209\\ 00165\\ 00126\\ 00308\\ 00209\\ 00165\\ 00126\\ 00308\\ 00209\\ 00165\\ 00126\\ 00308\\ 00209\\ 00165\\ 00254\\ 00303\\ 00254\\ 00303\\ 00303\\ 00303\\ 00303\\ 00303\\ 00305\\ 00033\\ 00030\\ 0003\\ 0000\\ 00$	00005 00003 00001		
BE32 BE37	Bishop, CA Beatty, NV Alamo, NV Arcadia, UT Altonah, UT Duchang, UT	0638	00010	0647	00020	00120	00001	00116	00001		
BF03 BF05	Altonah, UT	1225	00010	1240	00010	00302	00001 00001	00305	00001		
BF10 BF13	Altonah, UT Duchesne, UT Riverton, WY Rawlins, WY Upalco, UT Baker, NV Ely, NV Ely, NV McGill, NV Ibapah, UT Wendover, UT Tooele, UT Iosepa, UT St George, UT Kanab, UT	0703	00010	0648	00020	00138	00001 00001	00122	00001		
BF15 BF19 DZ01	Upalco, UT	1312	00005	1221	00010	00321 00328 00250	00001	00290 00174	00001		
DZ04	Ely, NV	0870	00040	0641	000 20	00180	00004	00127	00003		
DZ05A DZ09A	McGill, NV	1151	00010	1193 1373 1432	00010 00040 00020	00161 00271 00303	00001	00360	00004 1		
DZ09A DZ10 DZ16 DZ18	Wendover, UT	1312 1085 0870 0742 1151 1350 1519 1433 0877	00010	1519	00010	00369	00001	00281 00360 00332 00298 00169 00132 00243 00297 00266 00285	00002		
1 DZ21	losepa, UT	0877	00010	1313 0836 0709	00010	00341 00192	00001	00169	00001		
EML3 E20A	Kanab, UT		00010 00010	1141	00010 00010	00157 00279	00001 00001 00001 00001 00001 00001	00243	00001		
E26A E35	Parowan, UT Cedar City, UT Vernal, UT	1232 1438 1420	00010 00010	1366 1206	00020 00020	00324 00310	00001	00266	00002		
E132 FM01		1220 1606	00010 00010	1176 1116 1144	00030 00030	00273 00372	00001 00001	00200	00004		
FM08 FM14	Kingman, AZ Grand Canyon, AZ Tuba City, AZ Gailup, NM Holbrook, AZ Ganado, AZ Albuquecque, NM	1113 1579	00010 00020	0010	00010 00010 00010	00246 00369	00001	00237 00185 00288 00257 00260	00001 00001 00002		
FM16 FM17	Gallup, NM Holbrook, AZ	1579 1248 1580	00040 00010	1390 1202	00010	00369 00272 00363 00210	00001	00288	00001		
FM29 FM31	Ganado, AZ Albuquerque, NM	0990 0571	00010	1390 1202 1230 0878 0910	00020 00010	00210 00108 00130	00001 00002	00260	00001		
FM33 FM35	Albuquerque, NM Albuquerque, NM Chinie, AZ	0606 0382	00060 00010	0303	00060 00010	00065	00008 00001	00178	00006		
FM39 FM43	Chinle, AZ Williams, AZ	1245 1603	00010 00020	1183 1415	00030	00264 00347	00001 00002	00243	00002		
FM45 FM46	Flagstaff, AZ Flagstaff, AZ	1585 1602	00010 00020 00020 00010	1534 1392	00050 00020 00070	00264 00347 00362 00350 00380	00 002 00001	00332	00002		
FM46 GC05 GC06 GC12 GC15 GC19 GC20 GC23 GC33	Chnle, AZ Williams, AZ Flagstaff, AZ Flagstaff, AZ Reno, NV Gerlach, NV Lovelock, NV Fallon, NV Gabbs, NV Austin, NV Austin, NV Hawthorne, NV	1666 1617	00020	1183 1415 1534 1392 1576 1485 1657 1546 1627 1495 1559	00040 00140 00020		00003	00368	00010		
GC08 GC12	Gerlach, NV Lovelock, NV	1712 1756	00020 00010	1657 1546	00010	00381 00413 00372 00352 00424 00368	00003	00353 00347	00002		
GC15 GC19	Fallon, NV Gabbs, NV	1597 1575	00010 00070	1627 1495	00020 00040	00372 00352	00001 00004	00368 00308	00003		
GC20 GC23	Austin, NV Austin, NV	1674	00010 00230	1559 1396	00040 00020	00424 00368	00001	00363 00306	00008 00001		
GC33 GC48		1523 1695 1730	00010	1396 1454 1738	00020 00030	00396	00001 00 002	00359 00386	00002		
GC50 KM06	Stewart, NV Moores Station, NV Memphis TN	1105	00020 00010 00020	1110	00040	00245 00394	00001	00169 00178 00088 00243 00305 00324 00324 00324 00324 00324 00326 00353 00347 00368 00368 00363 00363 00363 00359 00386 00359	00007		
KM13 KM21	Memphis, TN Dallas, TX Corpus Christi, TX	1753 1704 1711 1722	00020	1110 1733 1721 1697 1581	00030 00020 00050	00388 00376	00003	00391 00370	00004		
KM21 KM28	Tucson, AZ	1722	00040 00030	1581	00050	00386	00003	00358	00004		

			240pu/	/239Pu			241 Pu/	239 ₇₂₁₁	
Site	Location	т	op	Bott	om	To		Bott	om
		Ratio	sd	Ratio	sd	Ratio	sd ا	Ratio	sd
КМ33	Tucson, AZ	1647	00030	1577	00070	00383	00004	00362	00006
KS01 KS07 KS10	Tucson, AZ Fredonia, AZ	1368 1014	00010	1144 0999	00010	00324 00214	00001	00227	00001
KS07	Moccasin, AZ	1014	00010	0999	00020	00214	00001	00192	00002 00002 00001
KS10	Grand Canyon, AZ	1257	00040	1388	00020	00260	00003	00299	00002
K521	Littlefield, AZ	1152 1212	00010 00010	1064	00010 00010	00245 00276	00001 00001	00213 00197	00001
KS25	Mesquite, NV Bunkerville, NV	1120	00010	0994 0977	00010	00243	00001	00200	00001
KS26	Bunkerville, NV	1077	00010	0834	00010	00237	00001	00164	00001 00001
KS21 KS24 KS25 KS26 KS30	Overton, NV	1120 1077 1072	00020	0950	00020	00226	00001	00194	00003 1
KS33 KS36	Bunkerville, NV Bunkerville, NV Overton, NV Alamo, NV Hiko, NV Rosette, UT Snowville, UT	0615 0749	00010	0636 0749	00020	00134	00001	00133	00002
KS36	Hiko, NV	0749	00040	0749	00010	00156	00005	00142	00002
MH02 MH03	Snowmule IT	1593	00050	1409 1615	00020 00020	00368	00001 0000 5	00306 00364	00001
MH07	Malad City, ID	1555 1606	00010 00010 00010	1629	00020	00348 00391	00001	00392	00002
MH12	Burley, ID	1460	00010	1629 1447	00020	00346	00001	00347	00001
MH14	Twin Fails, ID	1603	00030	1644	00010	00359	00002	00370	00001
MH17	Twin Falls, ID	1603 1680 1754	00020	1443 1677 1563	00020 00030	00383 00396	00002 00003	00309	00002
MH19 MH22	Meridian, ID Boise, ID	1754	00010	1563	00020	00396	00001	00374 00334	00001
MH28	Hines, OR Basque Station, OR Moriarty, NM Belen, NM Las Cruces, NM	1761 1714 1736 1540 1670	00020 00020 00010	1686 1738 1295 1241 1573	00030	00391	00002 00002 00001 00001	00355 00397 00307 00235	00003 00001 00008
MH29	Basque Station, OR	1736	00020	1738	00020	00402 00305 00350	00002	00397	00001
NM02	Moriarty, NM	1540	00010	1295	00070	00305	00001	00307	00008
NM03 NM04	Belen, NM	1670	00020 00010	1241	00010 00040	00350	00001	00235	00001
NM04 NM05	Solomonville, AZ	1627	00050	1460	00030	00326	00003	00290	00003
NM06	Roswell NM	1627 1656	00020	1460 1355	00010	00342 00347 00339	00001	00262	00002
NM06 NM07	Safford, AZ Silver City, NM Socorro, NM	1601	00020	1645 1626 1168 1479 1473	00020	00347	00001	00320 00323 00218 00293 00285	00002
NM08	Silver City, NM	1661	00020	1626	00030	00339	00001	00323	00003
NM09 NM11	Socorro, NM Portales, NM	1314 1689	00010	1479	00020	00259 00361	00001	00218	00003
NM15	Sante Fe, NM	1759	00010	1473	00010	00384	00001	00285	00003
NM16	Sante Fe, NM	1637	00010	1476	00030	00340	00001	00297	00003
NM17	Raton, NM	1412	00010	1491 1603	00030	00286	00001	00270	00001
NM18	Cimarron, NM Chama, NM	1621	00010	1603	00020	00332	00001 00001	00322	00001
NM19 NM21	Farmington, NM	1704 1479	00010	1633 1245 1552 1641	00020	00342 00296 00321 00337	00001	00322 00325 00226 00307 00322	00004
NM22	Farmington, NM	1604	00020	1552	000 20	00321	00001 00001 00001	00307	00002
NM25	Mesa, AZ Litchfield Park, AZ	1649 1610	00010	1641	0 0080	00337	00001	00322	00005
NM26	Litchfield Park, AZ	1610	00010	1552	00020 00040	00330 00359	00001	00316 00352	00003
RB01 RB08	Scottsbluff, NE Rapid City, SD	1740	00030 00020	1552 1585 1716	00020	00422	00002	00395	00003
RB16	Billings, MT	1734	00010	1665	00130	06409	00002	01140	00050
RM02	Winnemucca, NV	1586 1740 1734 1563	00020	1607	00030	00353 00330	00001	00351 00289	00004
RM06	Battle Mountain, NV	1404	00010	1665 1607 1335 1553	00030	00330	00001	00289	00003
RM08 RM10	Carlin, NV Files NV	1041	00040 00010	1553	00040 00020	00368 00402	00003	00349 00391	00003
RM10 RM12	Wells, NV	1504	00010	1514	00010	00369	00001	00354	00002
RM14	Elko, NV Wells, NV Pioche, NV	1641 1650 1504 1172 1126 1143 1711 1793 1830 1816	00020	1514 0862	00030	00256	00001 00001 00002	00164	00003
RM19	Panaca, NV	1126	00010	1181 1095	00010	00258 00252 00388	00001	00261 00243 00364	00001
RM21	Caliente, NV	1143	00010	1095	00020 00040	00252	00001	00243	00001
SA07 SA19	Wichita, KS Des Moines, IA	1793	00030	1748	00040	00406	00002	00402	00004
1 SA20	St Louis, MO	1830	00020	1644 1748 1706	00020	00414	00001	00365	00002
SA26 SH07	St Louis, MO	1816	00010	1805 0892 1071 1134	00030	00416	00002	00402	00002
SH07	Las Vegas, NV	0884 1188	00020	0892	00010	00183	00001	00184	00001 00006
SH10 SH11	Henderson, NV Boulder City, NV	1188	00040	1171	00040 00020	00272 00257	00002	00224	00002
SW02	Lund, NV	1025	00010	0920	00010	00224	00001	00189	00001
SW03	Preston, NV	1103	00020	0994	00040	00240	00002	00205	00004
SW05	Preston, NV Eureka, NV	1840 0711	00010	0920 0994 1516 1064	00040	00494	00001	00357	00004
SW06	Duckwater, NV	0711	00020	1064	00020	00141	00002	00225	00001
	·····								

TABLE 3. PLUTONIUM ISOTOPE RATIOS (continued)

Table 3 shows the reported standard deviations of the measured isotope ratios to be small, almost always less than one percent. The 27 analyses of an IMS standard for the QA program had a standard deviation of 0.4 percent, but these standards did not undergo the chemistry used to prepare the regular samples. The overall variability of the IMS results will therefore be somewhat larger than the reported values, but the IMS errors are still insignificant in comparison to the uncertainty of the estimated inventories.

SECTION 4 QUALITY OF THE DATA

INTRODUCTION

The aim of the ORERP soils program was to produce accurate and reliable results comparable to those produced by EML in Utah in 1979. Originally it was hoped that EML would do an expanded study itself, but that laboratory was unable to take on so large a project. Instead, the work was assigned to DOE contractors, but the EML scientists who did the Utah study agreed to advise the ORERP leaders and help ensure that the work was consistent with the established EML procedures.

An important function of EML was to help set up and coordinate a QA program. Many elements of the QA program, such as the evaluation of potential sites by different groups and the removal of identifying information from samples before processing began, were noted in Section 2. This section focuses on the more quantitative QA aspects of the laboratory analyses of the soil samples. It includes a description of several experiments conducted by EML to pre-qualify the REECo laboratories to do the preparation and analysis and to monitor the quality of the results; a detailed discussion of the QA criteria applied to the analytical results; and a summary of the quality of the final data set used in developing the County Database.

EML SUPERVISION OF THE SOIL ANALYSES

Pre-qualification

To ensure that the REECo Analytical Laboratory could analyze the ORERP samples with sufficient accuracy and precision, EML sent two sets of soil samples to REECo for analysis in mid-1982. The cesium results showed a slight bias that was further investigated as described in "Duplicate Gamma Counts" below. The plutonium results were acceptable except for one sample, which was 10 times as high as it should have been. This apparent contamination led to a thorough evaluation of the REECo laboratory procedures.

Another set of samples analyzed for plutonium in October 1982 showed no evidence of contamination or bias in the results, but the variability of replicate analyses was an unac-

ceptable 24 percent. REECo continued to refine its procedures, and by June 1983 was able to reduce the variability to less than 10 percent. At that time, EML gave approval for REECo to begin plutonium analysis of the ORERP samples.

Analysis of Coarse Material

The method of soil preparation used at REECo differs from that used at EML, where the standard procedure is to crush and pulverize the soil into a homogeneous sample. REECo's ball-milling procedure has the advantages of minimizing the possibility of crosscontamination (because the grinding is done in a closed container) and simplifying cleanup. It has an obvious disadvantage in that it leaves a residue of coarse material that is not normally analyzed for radioactivity. An important question at the start of the program was whether ball-milling would give accurate results.

In June 1982, REECo collected composite samples of 10 top-increment cores from 25 sites for a ball-milling experiment. These samples were ball-milled as usual, then the coarse fractions were pulverized and analyzed separately. Only one of the 25 coarse fractions had detectable cesium, and that one had only 0.4 percent of the total activity in the sample. The one coarse fraction analyzed for plutonium had no detectable activity.

Another part of the EML-REECo comparison was the sampling of 13 sites by both REECo and EML in 1982. (In most cases the REECo sampling team did not know which sites EML would also sample.) To try to resolve some discrepancies between the EML and REECo results at two of these sites, the coarse material from five samples was gamma-counted (without being pulverized) in July 1985. One sample showed no cesium activity, but the other four all had about one-tenth as much activity as the coarse fraction at these two sites was relatively large. Since the amount of coarse material at most sites was small, the scientific staff concluded that not analyzing the coarse fraction had a negligible effect at almost all sites. The error involved at the two sites in question above was also considered insignificant.

Duplicate Gamma Counts

To further compare the gamma-spectrometry results at the two laboratories, 13 ORERP aliquots were sent to EML for analysis in 1983. The results showed a density-dependent bias in the REECo measurements, with overestimates at low soil densities and underestimates at high densities. The analysis at EML of 10 more duplicate aliquots in March 1984 further demonstrated this bias. Correction factors were therefore derived to calibrate REECo's results, using the EML analysis of the 23 duplicate aliquots as a secondary standard.

In January 1985, EML found that REECo's results from 1,000-minute recounts were consistently larger than the results from the original 300-minute counts. This second source of bias, which affected only low-activity results, was found to be related to the algorithm used by REECo to analyze the spectra. At this point, the decision was made to reanalyze all the gamma-ray spectra at EML using a new peak-stripping algorithm to get revised total-absorption peak count rates for the various radionuclides of interest. The calibration (*i.e.*, conversion from count rate to activity) was based on the independent EML counts of the set of 23 samples covering the entire range of sample densities. EML's calibration is traceable to the National Bureau of Standards and has an accuracy better than five percent. Back-ground corrections were based on weekly REECo background counts.

The reanalysis of the spectra was completed in May 1985. All subsequent gamma-ray spectra were also analyzed at EML, and all the gamma-spectrometry results reported here are EML results. In most cases the difference between the REECo and EML results was minimal.

Duplicate Sites

In addition to the collection of soil samples by both REECo and EML at 13 ORERP sites, REECo collected samples at five sites in Utah sampled by EML in 1979. The Cs and Pu inventories computed from the REECo and EML samples did not agree initially, and investigation of the discrepancies revealed the two problems noted in Section 3: That augers of different sizes were used to collect the fourth-increment samples, and that the plutonium aliquots had been incorrectly prepared.

Resolving these problems eliminated most of the discrepancies in the ORERP-EML comparisons. The averages of the corrected ratios of the inventories computed by ORERP to those computed by EML were close to $1.0: 0.95 \pm 0.02$ for Cs (based on 16 sites) and 0.98 ± 0.02 for Pu (15 sites). The average ORERP/EML ratio of the ²⁴⁰Pu/²³⁹Pu values for 15 sites was 0.99 ± 0.01 .

QA CRITERIA

Each stage of the analytical process had a set of QA criteria to be applied to the results. These criteria were spelled out in Appendix F of Project Directive No. 4, and that document forms the cornerstone for the discussion that follows. Project Directive No. 4 is

included in this report as Appendix A; to avoid confusion, Appendix F (which is contained in Appendix A) will be referred to here as the "QA plan."

Although QA samples were included with every batch of samples sent to the laboratory for analysis, the QA plan was not formally written up until February 1984, well after the program had begun. In addition, some of the procedures specified in the plan were later modified. The differences between the details of the QA plan and the way the QA program was actually carried out are documented here to facilitate an objective analysis of the quality of the data.

For convenience, the various QA criteria are numbered in the discussion that follows although they are not numbered in the original plan. All sample statistics (means and standard deviations) used in the calculation of QA limits were computed from the 1982–1985 results. The same criteria were applied to the 1986–1987 results, but the statistics were not recomputed.

Gamma Analyses

The most important QA element of both the gamma and plutonium analyses was the analysis of samples of reference soils. Interspersing the reference samples with the regular samples as they were submitted for analysis provided checks on the consistency of the analytical results.

Of the 1,039 bottles submitted for gamma-counting, 96 (9%) contained one of two reference soils. One reference soil was collected on 28 December 1982 at site EML16 in Hurricane, Utah. Forty-four cores of the top 6 inches of soil were collected, dried, and homogenized as one large batch, and numerous aliquots were then prepared for gamma and plutonium analysis. Blank soil was collected by EML from several feet underground in a pit at Chester, New Jersey, and shipped to DRI in plastic bags, which were numbered and inserted separately into the sample stream at irregular intervals. Previous analysis of this soil by EML showed it to have no detectable Cs within the sensitivity limits of the ORERP analyses.

The QA plan is written as if there were a continuous stream of samples flowing through the soil preparation/gamma-counting process, and this is reasonably accurate. However, the QA referee had no control over the order of samples in the stream, and thus had no way of ensuring that QA samples were inserted randomly. The QA samples were added periodically throughout the process, and it seems likely that most of them ended up in

somewhat random positions in the stream. However, there was at least one instance where seven QA samples were apparently counted one after another.

All of the data reported here are from the EML analysis of the gamma-ray spectra, even though any QA decisions made before May 1985 would have been based on the original (unreported) REECo analyses. The differences between the REECo and EML analyses were usually minimal and would not have affected most of the QA decisions.

Blank Soil

Table 4 gives the results of the gamma analyses of blank soil. The first four sample numbers were given to four bags that were submitted as a complete dummy site to test for contamination in the preparation laboratory. The other samples analyzed in 1983 and 1984 were submitted separately in bags of roughly the same size as an ordinary upper-increment sample. The seven blank samples counted in 1986 and 1987 were previously-prepared bot-

		Concentration (pCi/g) and s.d. (%)							
ID	Date	13	⁷ Cs	23	บ	232	Th	40	К
72010	04-09-83	.003	326.6	.29	7.6	.22	13.2	25.3	1.5
72010*	05-14-83	.004	125.5	.29	4.2	.15	10.0	25.0	. 8
72019	04-09-83	.004	238.8	.28	8.2	. 12	24.5	28.8	1.4
72019*	05-27-83	.003	193.8	.31	4.0	. 19	8.2	28.6	. 8
72021	04-09-83	.007	120.2	.27	8.3	.17	16.9	27.6	1.4
72021*	05-21-83	.000	999.9	.33	3.8	.17	9.3	27.3	. 8
72022	04-09-83	.001	992.4	. 34	7.0	. 19	15.9	24.8	1.5
72022*	05-22-83	.010	58.2	. 35	3.7	. 19	8.7	25.1	. 8
72143	05-04-83	.006	149.2	.44	5.6	.18	16.2	27.2	1.5
72143*	06-02-83	004	-141.5	.31	4.0	.17	9.1	27.7	.8
72143*	02-07-84	.005	111.1	. 31	4.1	. 19	8.2	28.1	.8
72169	06-14-83	.013	68.1	. 33	7.1	.21	14.4	26.1	1.
72202	06-18-83	.014	65.5	.29	8.1	.20	14.6	28.0	1.
72227	07-16-83	.008	106.1	. 30	7.6	.15	18.6	25.9	1.
72245	07-27-83	010	-87.8	.26	8.4	.14	21.0	26.4	1.
72245*	10-09-83	001	-471.2	.30	4.1	.14	10.6	25.9	
72287	08-06-83	.008	116.0	.29	7.9	. 19	15.6	28.5	1.4
72369	10-16-83	001	-1402.4	.30	7.4	.16	16.8	21.7	1.7
72451	11-27-83	.003	282.8	.33	6.9	.12	23.7	25.5	1.5
72604	04-03-84	.015	58.5	.26	8.2	.13	20.3	22.3	1.6
72616	04-07-84	.013	66.1	.29	7.9	.15	19.8	26.2	1.5
72624	03-24-84	011	-76.3	.31	7.3	.12	23.5	24.5	1.0
72684	05-17-84	.005	178.1	.30	7.2	.17	16.4	23.7	1.5
72685	05-17-84	.016	52.9	.29	7.7	. 19	15.5	26.6	1.
73050	06-27-84	.003	340.0	.31	7.5	.14	20.8	25.1	1.5
73051	06-12-84	.003	322.2	.31	7.4	. 16	17.9	26.6	1.5
73067	08-11-84	001	-608.1	.26	8.4	.18	15.8	26.8	1.5
73070	08-13-84	006	-146.1	.30	7.5	.14	20.0	26.6	1.5
73128	11-28-86	.003	309.1	.34	6.9	.14	20.7	26.5	1.5
73230	02-01-87	002	394.0	.36	6.6	.14	20.5	25.7	1.5
73632	05-23-87	.002	109.2	.35	6.7	.15	19.7	26.4	1.5
73658	05-29-87	.009	67.8	.35	6.7	.19	14.9	25.9	1.5
73668	06-02-87	.014	84.5	.34	6.9	.19	14.9	23.9	1.4
73701	06-02-87	.003	279.3	. 35	6.9 7.6	.19	17.7	28.0	1.4
73704	06-11-87	.003	279.3 91.9	. 29	7.0 6.8	.10	17.0	23.9	1.4

TABLE 4. GAMMA-SPECTROMETRY RESULTS FOR BLANK SOIL

* = 1,000-minute count

tles that were recounted. Those samples do not check for contamination in the preparation process, and the data from them are not used in the following analysis.

The results are judged by two criteria: The Cs activity should be close to zero, and the activities of the natural radionuclides should be about the same from one sample to another.

Criterion 1: Recount a blank sample if its Cs content is greater than 2.33 times the counting uncertainty.

Criterion 1 and several similar criteria are based on the assumption that the estimated values have a normal distribution with a certain mean and standard deviation. In the present case it is assumed that the estimates of Cs in the blank soil are normally distributed about a mean of zero, and if this assumption is true, only 1% of the estimates (on the average) will exceed 2.33 times the standard deviation. Because very few "good" estimates will exceed the 2.33 x s.d. criterion, any estimates that do exceed it are assumed to indicate a problem with the analytical process.

The counting uncertainty is a function of the Cs level, so Criterion 1 is equivalent to a test on the counting error:

Recount if Cs > 2.33 x counting uncertainty Cs > 2.33 x Cs x %sd/100 or 42.9 > %sd.

All reported Cs activities had standard deviations of more than 42.9 percent, so all the blank samples satisfy this criterion. (A standard deviation cannot be less than zero, and the negative values reported by EML are treated here as positive.)

Criterion 2: Recount samples if the activity of one of the natural radionuclides in a blank sample differs from its mean by more than 2.39 times the standard deviation of the difference.

The QA plan was based on the REECo analysis of the gamma spectra, which included ²²⁶Ra, ²²⁸Ra, and ²²⁸Th among the natural radionuclides reported. The EML analysis of the same spectra reported ²³²Th and ²³⁸U instead.

If each radionuclide is normally distributed about its mean, each difference is also normally distributed about a mean of zero. The probability that any one of the three differences will be within 2.39 standard deviations of zero is 0.9832, and if the differences are statistically independent, the probability that all three are within 2.39 standard deviations of zero is $(0.9832)^3 = 0.9504$. Thus there is about a 5% chance of incorrectly ordering a recount based on Criterion 2.

Six blank samples were counted more than once. Variance-weighted averages of the multiple results for each radionuclide in hose samples were used in the subsequent calculations.

The standard deviation of the difference between the activity in a sample and its mean is computed as follows. Let

X = radionuclide activity in a sample \overline{X} = average value of X in n samples s(X) = standard deviation of X in n samples D = difference = X - \overline{X}

Statistical theory gives the formula for s(D) as

$$\begin{split} s(D) &= [Variance(D)]^{1/2} \\ &= [s(X)^2 - s(\overline{X})^2]^{1/2} \\ &= [s(X) \ x \ (n-1)/n]^{1/2} \end{split}$$

Any values of X that differ from \overline{X} by more than 2.39s(D) are considered suspect.

Results (in pCi/g) computed from the data in Table 4 are shown below:

	<u>238U</u>	<u>232Th</u>	<u>40K</u>
$\overline{\mathbf{X}}$	0.302	0.163	25.90
s(X)	0.022	0.026	1.82
\overline{X} – 2.39s(D)	0.251	0.103	21.66
\overline{X} + 2.39s(D)	0.353	0.223	30.14

The data and their control limits are plotted in Figure 4. All estimates of all three natural radionuclides fall within the indicated limits.

Hurricane Soil

Results for the analyses of Hurricane soil are shown in Table 5. Because all of these samples came from the same homogeneous batch of soil, the results should be similar from one analysis to another.

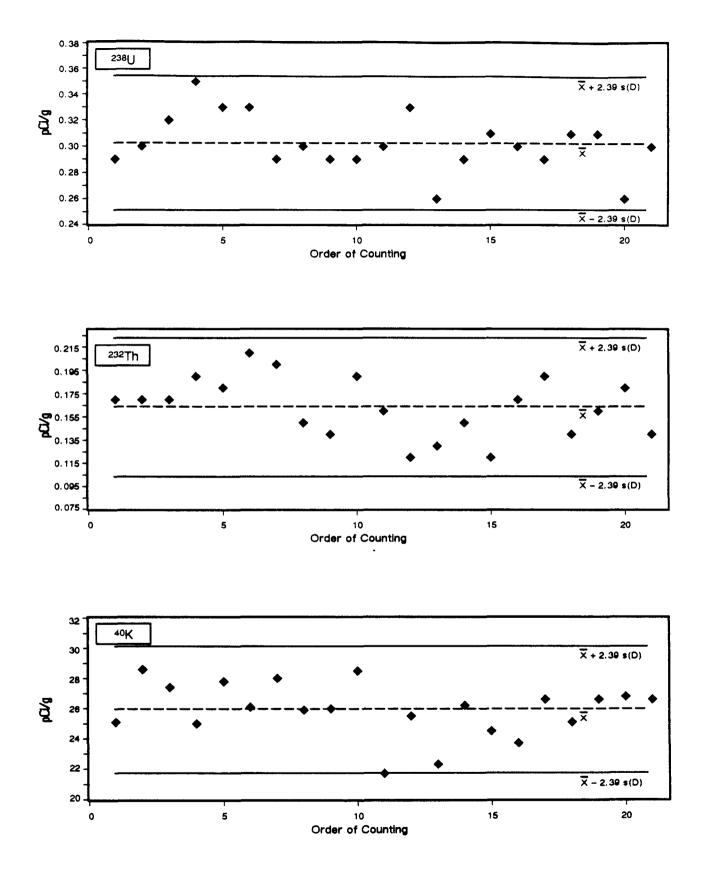


Figure 4. Measurements of natural radionuclides in blank soil.

I Concentration	n (pCi/g) and $s.d. (%)$
ID Date ¹³⁷ Cs ²³⁹ U	232Th 40K
72126 02-17-83 .532 3.2 .86 3.6	.86 4.9 15.4 2.0
02-28-83 .541 3.1 .87 3.6	.83 5.0 15.9 2.0
72183 04-13-83 .498 3.3 .88 3.5	.97 4.4 16.0 1.9
72184 04-14-83 .502 3.3 .88 3.6 72185 05-01-83 .516 3.2 .81 3.7	.81 5.1 15.5 2.0 .80 5.1 15.5 1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.88 4.9 15.2 2.0
72213 06-12-83 .536 3.1 *.79 3.8	.85 4.9 15.6 1.9
72214 06-12-83 .519 3.2 .88 3.6	.83 5.1 16.1 1.9
72240 06-20-83 .524 3.1 .82 3.7	.93 4.6 16.0 1.9
72241 06-20-83 .544 3.1 .91 3.4	.90 4.7 15.2 2.0 .87 4.9 15.4 2.0
72242 06-20-83 .509 3.3 .85 3.6 72293 06-28-83 .563 3.0 .85 3.7	.87 4.9 15.4 2.0 .88 4.8 15.6 2.0
72294 06-29-83 .559 3.1 .91 3.6	.87 4.9 16.0 2.0
72295 07-31-83 .543 3.1 .84 3.7	.84 5.1 16.0 1.9
72296 07-31-83 .571 3.0 .88 3.6	.86 5.0 16.2 1.9
72297 07-31-83 .588 3.0 .91 3.5	.87 4.9 15.8 1.9 .86 4.9 15.0 2.0
72298 07-31-83 .545 3.1 .83 3.6 72347 08-06-83 .536 3.1 .86 3.6	.86 4.9 15.0 2.0 .86 4.9 15.4 2.0
08-29-83 .515 3.2 .88 3.6	.96 4.5 15.6 1.9
72348 08-11-83 .526 3.2 .90 3.5	.86 4.9 16.1 1.9
72349 08-24-83 .513 3.2 .85 3.6	.86 4.9 16.5 1.9
72350 08-24-83 .514 3.2 .90 3.5 72351 09-05-83 .532 3.1 .85 3.7	.90 4.7 15.6 1.9 .90 4.7 15.5 2.0
72352 09-05-83 .529 3.2 .90 3.5	.88 4.8 16.5 1.9
72420 09-14-83 .562 3.0 .88 3.5	.88 4.7 15.9 1.9
72421 09-14-83 .504 3.3 .91 3.5	*.98 4.4 16.3 1.9
72428 09-20-83 .509 3.2 .85 3.6	.83 5.0 16.0 1.9 .88 4.9 15.6 2.0
72429 09-25-83 .554 3.1 .93 3.4 72430 09-23-83 .558 3.1 .88 3.5	.88 4.9 15.6 2.0 .93 4.6 16.1 1.9
72430 $09-23-83$ $.538$ 5.1 $.88$ 5.5	.89 4.8 15.5 2.0
72432 09-24-83 .503 3.3 .90 3.4	.90 4.7 15.8 1.9
72433 09-24-83 .536 3.1 .81 3.7	.85 4.9 15.9 1.9
72434 09-24-83 .554 3.1 .88 3.6 72435 09-24-83 .520 3.2 .88 3.5	.78 5.3 15.8 2.0 .86 4.9 15.8 1.9
72435 09-24-83 .520 3.2 .88 3.5 72436 10-26-83 .530 3.1 .86 3.5	.85 4.9 16.1 1.9
72486 11-08-83 .561 3.1 .93 3.5	.86 4.9 15.9 2.0
72487 10-22-83 .494 3.3 .88 3.5	.90 4.7 16.0 1.9
72512 11-25-83 .536 3.1 .88 3.6	.89 4.8 16.0 1.9
72593 12-04-83 .584 2.9 .87 3.6 72594 12-07-83 .521 3.2 *.98 3.3	.87 4.8 15.3 2.0 .88 4.8 15.6 1.9
72594 12-07-83 .521 3.2 *.98 3.3 72595 01-01-84 .556 3.1 .85 3.6	.89 4.7 15.9 1.9
72596 01-01-84 .570 3.0 .88 . 3.6	.93 4.6 15.6 2.0
72597 02-29-84 .569 3.1 .87 3.6	.86 4.9 16.1 1.9
72634 03-08-84 .531 3.2 .84 3.7	.89 4.8 15.7 1.9
72683 04-14-84 .517 3.2 .88 3.5 72686 06-05-84 .537 3.1 .85 3.5	.86 4.9 15.9 1.9 .87 4.7 16.3 1.9
72686 06-05-84 .537 3.1 .85 3.5 73049 05-18-84 .481 3.4 .90 3.5	.90 4.6 15.3 2.0
73052 05-14-84 .501 3.3 .88 3.5	.82 5.0 15.6 1.9
73053 06-28-84 .533 3.2 .92 3.4	.88 4.8 15.6 1.9
73068 06-24-84 .522 3.2 .89 3.5 73069 06-22-84 .577 3.1 .89 3.5	.92 4.7 15.7 1.9 .95 4.5 15.8 2.0
73069 06-22-84 .577 3.1 .89 3.5 73133 11-29-86 .506 3.4 .80 3.7	.95 4.5 15.8 2.0
73142 12-04-86 .514 3.4 .89 3.5	.86 4.9 15.9 1.9
73153 12-11-86 .533 3.3 .88 3.6	.85 5.0 15.7 1.9
73173 12-17-86 .536 3.3 .80 3.7	.93 4.5 15.3 1.9
73222 01-24-87 .496 3.5 .93 3.4 73258 02-08-87 .522 3.3 .91 3.5	.91 4.6 15.4 2.0 .84 5.0 15.0 2.0
73258 02-08-87 .522 3.3 .91 3.5 73630 05-22-87 .561 3.3 .96 3.4	.84 5.0 15.0 2.0
73652 05-27-87 .581 3.2 .90 3.5	.87 4.9 16.6 1.9
73681 06-06-87 .572 3.2 .86 3.6	.84 5.1 16.0 1.9
73707 06-13-87 .530 3.3 .88 3.5	.87 4.8 15.7 1.9
73725 06-17-87 .497 3.5 .90 3.5	.87 4.8 16.0 1.9 .87 4.9 16.1 1.9
73734 06-21-87 .518 3.4 .94 3.4 73737 06-21-87 .529 3.3 .95 3.4	.87 4.9 16.1 1.9 .91 4.7 15.3 2.0
73737 06-21-87 .529 3.3 .95 3.4 73748 06-25-87 .515 3.4 .93 3.3	.94 4.5 16.4 1.9
73768 07-04-87 .525 3.3 .81 3.7	.87 4.9 15.0 1.9
73778 07-11-87 .491 3.5 .83 3.6	.91 4.6 16.1 1.9
73783 07-12-87 .496 3.5 .94 3.4	.84 5.0 15.9 1.9
73803 07-20-87 .564 3.2 .89 3.6 73821 07-26-87 .480 3.6 .89 3.5	.90 4.7 16.0 1.9 .92 4.7 15.2 2.0
1 73971	. 76 4.7 13.6 4.0

TABLE 5. GAMMA-SPECTROMETRY RESULTS FOR HURRICANE SOIL

*Result is outside QA limits.

Criterion 3: Recount samples if the activity of Cs or one of the natural radionuclides in the Hurricane reference soil differs from its mean by more than 2.50 times the standard deviation of the difference.

The rationale behind Criterion 3 is the same as that behind Criterion 2. The probability of a normally distributed variable being within 2.50 standard deviations of its mean is 0.9876; the probability that four independent variables will all be within such limits is $(0.9876)^4 = 0.9513$.

137<u>Cs</u> 238U 232Th 40K \overline{X} (n=51) 0.534 15.78 0.876 0.877 s(X)0.025 0.034 0.041 0.33 $\overline{X} - 2.50 s(D)$ 0.472 0.792 0.777 14.96 \overline{X} + 2.50s(D) 0.595 0.960 0.977 16.60

The calculations are similar to those for Criterion 2. The results (in pCi/g) are:

The data are plotted in Figure 5. Three results fall outside the limits: ²³⁸U in samples 72213 and 72594 and ²³²Th in sample 72421. The project leaders and scientific advisors reviewed the data for these samples and concluded that there was no need for recounts. Note that spurious uranium measurements can result from leakage of radon gas from an inadequately sealed sample bottle.

Duplicate Aliquots

A second important element of the QA program was the analysis of two aliquots prepared from the same sample. Duplicate aliquots, in the form of "B" bottles, were submitted in two groups: 33 in January 1984 and 22 in September 1984. The samples in the first group were chosen at random as part of the QA program, while the samples in the second group were chosen because other QA tests indicated possible problems with the results from the "A" bottles from several sites. The data are shown in Table 6.

Fourteen duplicates were submitted with the 1986–87 samples, but the QA criteria were not applied to these samples because only three (FM33–3, FM33–4, and NM22–1) were different aliquots ("B" bottles).

Criterion 4: Recount samples if the activities of Cs or one of the natural radionuclides in duplicate aliquots differ by more than 2.50 times the standard deviation of the difference.

- 37 -

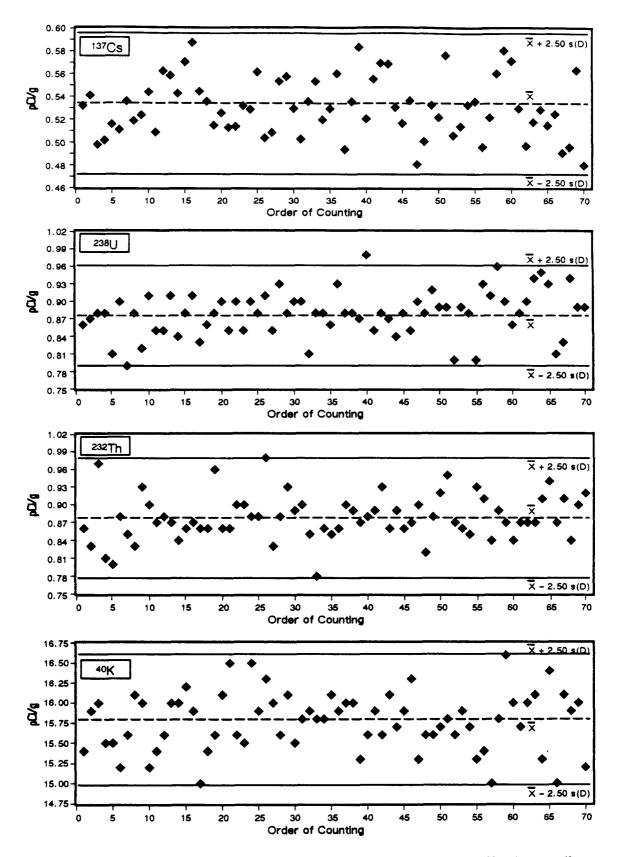


Figure 5. Measurements of ¹³⁷Cs and natural radionuclides in Hurricane soil.

				Concentration (pCi/g) and s d (%)							
Site	ID	Date	13	⁷ Cs	23	U	232	Th	40	к	
AS21-4	72411 72618	03-28-84	064 058	69 195	1 13 1 21	1 1 3 0	1 10 1 09	15 42	16 3 16 6	2 0 2 0	
AS35-1	72173 72613	06-11-83 04-07-84	532 562	$\begin{array}{c}3&1\\3&0\end{array}$	98 94	3 3 3 3	90 97	4 7 4 4	13 5 13 6	$\begin{array}{ccc} 2 & 1 \\ 2 & 1 \end{array}$	
AS36-2	72164 72625	05-26-83 03-24-84	819 825	2 5 2 5	1 10 1 09	3 2 3 2	96 87	4 7 5 1	13 2 13 7	$ \begin{array}{ccc} 2 & 2\\ 2 & 2 \end{array} $	
AS43-3	72002	04-06-83	326	4 4	1 07	30	*1 16	39	16 4	18	
	72617	03-29-84	329	4 5	1 05	31	* 98	45	16 1	19	
	72002	06-30-85	339	4 3	1 01	32	1 11	41	16 0	19	
	72617	07-07-85	293	5 0	1 02	31	1 17	39	16 0	19	
BE25-2	72406	••	175	29	81	1 4	95	1 7	32 7	5	
	72600	03-31-84	180	74	85	3 8	99	4 7	32 7	1 3	
BF03-1	72459	11-17-83	428	38	1 0 4	33	1 1 2	4 1	156	2 0	
	72621	03-29-84	467	36	1 11	31	1 1 2	4 2	150	2 0	
DZ01-2	72252 72602	07-28-83 04-01-84	446 444	35 35	90 87	3 4 3 4	97 1 00	4 3 4 3	16 8 16 8	$\begin{array}{ccc} 1 & 8 \\ 1 & 8 \end{array}$	
DZ04-3	72224 72630	07-02-83 03-25-84	251 295	60 54	3 12 3 20	1 7 1 7	1 10 1 23	46 43	14 2 14 8	$ \begin{array}{ccc} 2 & 2\\ 2 & 2 \end{array} $	
DZ04-4	72233	07-26-83	* 024	43 1	1 66	2 4	1 03	45	13 5	2 1	
	72627	03-24-84	* 134	90	1 71	2 4	1 06	43	13 7	2 1	
	72233	07-05-85	042	250	1 67	2 4	1 02	44	13 8	2 1	
	72627	07-07-85	051	219	1 64	2 5	1 01	47	13 5	2 2	
DZ05-1	72201 72608 72201 72608	06-18-83 04-04-84 07-06-85 07-07-85	556 550 561 576	3 2 3 3 3 2 3 2	*1 36 *1 50 1 45 1 38	2 8 2 6 2 6 2 8	95 97 1 11 1 05	48 48 43 44	15 4 15 8 15 5 16 0	2 0 2 0 2 0 2 0 2 0	
DZ10-2	72192	06-18-83	1 1 30	2 1	94	38	86	52	13 3	2 3	
	72598	03-30-84	1 086	2 2	95	38	85	52	13 6	2 3	
DZ21-4	72210	06-29-83	119	10 0	1 17	2 9	1 0 5	4 2	15 2	2 0	
	72633	03-26-84	110	10 6	1 15	3 0	1 00	4 4	15 0	2 0	
FM33-2	72333	09-13-83	717	2 5	89	3 4	83	49	14 9	2 0	
	72629	03-25-84	737	2 5	95	3 3	85	48	14 8	2 0	
FM43-3	72423 72623 72423 72623	10-17-83 03-23-84 07-30-85 07-07-85	* 273 * 346 299 283	52 42 49 51	1 02 96 98 1 02	3 3 3 4 3 4 3 2	1 03 1 02 1 11 1 08	43 43 41 41	12 8 12 9 12 8 12 8	2 2 2 2 2 2 2 2 2 2	
FM45-2	72334	09-20-83	475	3 4	89	37	1 00	45	14 2	2 1	
	72599	03-31-84	482	3 5	94	35	1 02	44	14 5	2 1	
GC10-2	72277	08-22-83	345	48	1 46	29	1 27	4 0	19 8	19	
	72609	04-04-84	360	47	1 55	28	1 25	4 0	20 2	19	
GC19-4	72282 72607	08-25-83 04-04-84	023 030	40 2 31 8	86 82	33 35	83 75	47 53	17 3 17 5	$\begin{array}{c}1&7\\1&7\end{array}$	
GC48-3	72267 72615	07-30-83 04-07-84	273 271	50 50	1 18 1 18	2 9 2 9	1 16 1 12	40 41	18 9 19 8	$\begin{array}{c}1&7\\1&7\end{array}$	
KS10-4	72099	11-26-83	054	19 3	1 1 8	30	91	4 7	11 5	2 4	
	72628	03-25-84	034	30 0	1 1 4	31	99	4 4	12 1	2 3	
KS24-4	72370	10-14-83	071	13 8	67	4 1	67	56	13 0	2 1	
	72601	03-31-84	083	12 6	72	4 0	71	54	13 2	2 1	
KS25-2	72313	08-28-83	868	2 4	1 19	3 1	99	46	17 8	19	
	72610	04-05-84	860	2 4	1 24	3 0	1 07	44	17 4	19	
KS26-2	72391	10-13-83	835	2 5	1 24	3 1	1 03	4 6	18 5	19	
	72632	03-25-84	861	2 5	1 30	3 0	1 06	4 6	19 1	18	
KS27-3	72318	09-04-83	147	8 4	1 1 2	3 1	1 26	38	18 7	18	
	72631	03-25-84	187	7 1	1 1 3	3 1	1 20	40	19 0	18	
KS30-3	72354 72620 72354 72620	10-15-83 03-28-84 06-14-87 06-07-87	145 158 128 130	76 71 90 88	• 62 • 77 65 65	4 3 3 7 4 1 4 1	62 61 68 60	59 60 55 59	13 5 13 6 14 0 13 7	2 0 2 0 2 0 2 0 2 0	
MH14-2	72017	04-09-83	545	3 2	1 03	33	1 1 2	4 2	14 8	20	
	72611	04-05-84	545	3 2	1 08	32	1 04	4 4	14 7	20	
MH22-3	72032	03-08-83	051	18 9	59	46	61	63	23 7	15	
	72605	04-04-84	075	13 3	55	47	69	55	23 4	15	
MH25-4	72134	04-21-83	061	17 6	* 68	4 4	71	55	163	20	
	72622	03-22-84	070	16 1	* 79	3 9	69	57	169	19	
	72134	07-06-85	067	16 9	79	4 0	67	60	165	20	
	72622	07-05-85	086	12 9	80	4 0	66	61	168	20	
MH28-3	72155	04-30-83	253	52	63	46	62	60	15 5	2 0	
	72626	03-24-84	257	53	62	46	57	64	15 2	2 0	
RM08-2	72303	08-27-83	160	82	1 46	28	1 22	4 1	18 6	19	
	72612	04-07-84	153	90	1 46	27	1 25	4 0	17 9	19	

TABLE 6 GAMMA-SPECTROMETRY RESULTS FOR DUPLICATE ALIQUOTS

							g) and s.d. (9	%)		
Site	1D	Date		⁷ Cs		•U	232		40 ₁	
RM10-1	72020 72614	04-07-83 04-07-84	406 439	40 38	1 24 1 20	$3 0 \\ 3 1$	1 20 1 24	4 0 4 0	18 0 18 5	19 19
RM12-4	72050	03-11-83	080	14 8	1 37	2 8	1 59	3 4	•20 2	1 8
	72606	04-04-84	070	17 9	1 47	2 8	1 68	3 3	•21 5	1 7
	72050	12-14-86	067	19 3	*1 26	3 0	1 53	3 5	20 7	1 7
	72606	06-11-87	072	18 4	*1 49	2 7	1 57	3 4	21 1	1 7
RM19-2	72065	**	290	2 7	2 90	9	1 29	2 0	22 0	1 7
	72619	03-28-84	290	5 5	2 94	18	1 27	4 2	22 5	1 7
SW05-2	72047 72603 72047 72603	03-09-83 04-02-84 07-04-85 07-06-85	* 293 * 448 347 335	5 1 3 7 4 6 4 8	1 30 1 23 *1 30 *1 16	2 9 3 0 2 9 3 2	1 09 99 1 09 1 05	43 47 43 44	14 9 14 5 14 8 14 9	2 1 2 2 2 1 2 1 2 1
DZ16-1	72105	06-13-83	742	2 6	1 17	3 1	1 10	43	15 3	2 1
	73095	09-26-84	760	2 6	1 11	3 2	1 03	45	14 4	2 1
DZ16-2	72108	06-14-83	249	57	1 07	32	1 54	3 4	20 3	17
	73091	09-25-84	297	51	95	36	1 49	3 4	19 2	18
DZ16-3	72114 73097 72114 73097	06-14-83 09-27-84 07-05-85 07-10-85	272 236 233 256	53 59 67 57	*1 12 * 94 1 07 1 06	3 2 3 5 3 2 3 2 3 2	1 42 1 41 1 43 1 42	36 36 35 36	17 9 16 9 17 4 17 2	18 19 19 19
DZ16-4	72115	06-14-83	065	14 7	1 00	3 1	71	53	82	2 7
	73096	09-26-84	062	15 8	93	3 3	65	56	81	2 7
E20A-1	72476	12-01-83	447	34	82	36	70	55	16 9	18
	73103	09-29-84	418	38	76	38	62	60	16 2	19
E20A-2	72471	11-30-83	454	35	86	35	72	55	17 8	18
	73107	09-30-84	463	34	76	39	72	55	17 3	18
E20A-3	72483	12-03-83	307	45	82	37	81	51	17 6	18
	73106	09-30-84	290	48	85	35	73	54	17 5	18
E20A-4	72472	01-09-84	056	18 8	86	35	80	52	*19 8	17
	73093	09-26-84	076	13 7	82	36	76	53	*18 2	18
	72472	06-15-87	077	14 5	85	35	77	52	19 2	17
	73093	06-17-87	086	13 1	91	34	83	49	18 5	18
E35-1	72479 73099	12-01-83 09-27-84	412 363	35 39	56 52	46 48	48 50	73 67	11 4 10 7	$ \begin{array}{c} 2 \\ 2 \\ 3 \end{array} $
E35-2	72467 73108 72467 73108	01-02-84 09-30-84 07-06-85 07-12-85	353 343 364 360	39 40 39 39	59 58 55 61	4 3 4 4 4 6 4 2	56 52 55 55	61 65 62 65	*12 0 *11 1 11 6 11 3	2 1 2 3 2 2 2 2 2 2
E35-3	72481 73104	01-02-84 09-29-84	242 253	51 48	60 55	43 46	57 53	60 66	11 8 11 2	$ \begin{array}{ccc} 2 & 2\\ 2 & 2 \end{array} $
E35-4	72480 73087 72480 73087	01-04-84 09-21-84 07-06-85 07-07-85	* 104 * 066 075 089	93 152 139 114	60 59 64 - 59	43 44 40 44	55 59 61 55	63 60 57 65	12 4 12 7 13 1 13 0	2 1 2 1 2 1 2 1 2 1
KS01-2	72049	03-10-83	* 445	37	1 13	3 2	*1 08	4 2	16 6	2 0
	73098	09-27-84	* 386	43	99	3 5	* 90	4 9	16 0	2 1
	72049	07-04-85	466	36	1 06	3 3	98	4 7	16 7	2 0
	73098	07-11-85	423	40	1 11	3 2	1 04	4 5	16 0	2 0
KS01-3	72059	03-11-83	197	67	1 09	3 3	* 94	4 7	165	2 0
	73088	**	202	48	1 01	2 4	*1 09	3 0	159	1 4
	72059	07-04-85	197	70	1 07	3 4	1 07	4 4	169	2 0
	73088	07-08-85	201	69	1 08	3 3	1 08	4 3	163	2 0
KS01-4	72066	03-26-83	063	18 3	1 26	3 1	1 15	4 2	*17 7	2 0
	73101	09-28-84	049	23 7	1 18	3 2	1 03	4 6	*16 1	2 1
	72066	07-04-85	063	19 3	1 22	3.1	1 10	4 4	17 7	2 0
	73101	07-13-85	057	21 2	1 26	3 1	1 14	4 2	16 8	2 0
мн07-1	72025	04-10-83	• 793	26	•1 30	29	1 60	3 3	*20 8	17
	73089	09-24-84	• 334	46	•1 07	32	1 59	3 3	*19 4	18
	72025	07-03-85	812	26	1 42	27	1 58	3 4	20 9	17
	73089	07-09-85	746	28	1 39	28	1 58	3 4	20 7	17
MH07-2	72031	04-10-83	* 469	37	1 46	27	1 92	30	22 7	16
	73100	09-27-84	* 545	34	1 47	27	1 73	32	21 5	17
	72031	06-30-85	481	38	1 58	26	1 94	30	23 6	16
	73100	07-11-85	531	35	1 55	26	1 81	31	22 6	16
мн07-3	72027	04-10-83	254	59	1 35	29	1 79	32	23 3	16
	73094	09-26-84	301	53	1 49	27	1 81	31	23 0	16
мн07-4	72008	03-23-83	087	14 5	1 58	26	*2 04	29	*23 8	16
	73090	09-24-84	087	14 8	1 51	26	*1 72	32	*22 3	16
	72008	06-30-85	093	14 4	1 53	26	1 83	31	22 9	16
	73090	07-09-85	057	23 0	1 50	26	1 81	31	23 0	16
MH22-1	72016	02-17-83	1 779	15	7 5	4 1	96	46	19 1	17
	7309 2	09-25-84	1 770	16	70	4 4	86	51	18 8	18
мн22-2	72004	03-07-83	203	61	64	4 2	68	56	21 7	16
	73105	09-29-84	215	59	64	4 3	73	53	21 9	16

TABLE 6 GAMMA-SPECTROMETRY RESULTS FOR DUPLICATE ALIQUOTS (continued)

-

					Concentra	tion (pCi/	g) and s d (%)		
Site	ID	Date	13	⁷ Cs	23	9U	232	Th	40	ĸ
MH22-4	72023 73102 72023 73102 73102	09-29-84 06-28-85 06-29-85	012 024 015 007	39 3 39 1 38 4 85 3	* 42 * 69 * 43 * 68	2 7 4 0 3 1 2 2	* 54 * 85 * 52 * 86	3 1 4 8 3 7 2 6	*24 1 *22 0 *23 9 *21 8	7 16 8 9
FM35-1	72523	02-21-84	837	2 5	86	4 0	64	62	10 9	26
	73134	11-30-86	818	2 7	81	4 2	62	65	10 4	26
FM35-2	72537	02-26-84	475	33	84	35	96	4 4	14 1	2 0
	73131	11-29-86	481	34	94	33	85	4 8	13 9	2 0
FM35-3	72535	02-25-84	187	6 6	89	3 4	99	43	15 3	19
	73150	12-06-86	162	7 7	86	3 5	94	45	14 5	20
FM35-4	72515 73149	03-11-84 12-06-86	031 040	30 8 24 9	78 71	36 40	87 83	46 49	18 0 17 6	1 7 1 7
FM33-1	72331	09-13-83	698	2 8	71	45	60	64	93	28
	73245	02-03-87	653	3 1	79	41	56	69	89	29
FM33-2	72629	03-25-84	737	2 5	9 5	33	85	48	14 8	20
	73252	02-07-87	697	2 7	89	35	80	52	14 7	20
FM33-3	72345	09-19-83	178	67	82	35	87	4 7	17 3	18
	73213	01-21-87	205	63	81	36	93	4 4	16 6	18
FM33-4	72340 73236	09-26-83 01-29-87	053 040	17 9 25 2	90 8 5	33 34	97 95	4 4 4 4	18 0 17 7	$\begin{array}{c}1&7\\1&7\end{array}$
DZ10-1	72212	06-26-83	3 084	1 2	94	4 1	91	53	13 6	2 3
	73164	12-14-86	3 084	1 3	97	3 9	84	55	13 1	2 4
RM02-3	72012	02-16-83	122	95	1 21	29	1 28	38	22 7	16
	73158	12-13-86	112	115	1 21	29	1 28	38	20 8	17
RM12-4	720 50	03-11-83	080	14 8	1 37	28	1 59	3 4	20 2	18
	73165	12-14-86	067	19 3	1 26	30	1 53	3 5	20 7	17
DZ10-2	72192	06-18-83	1 130	2 1	94	38	86	52	13 3	2 3
	73181	12-21-86	1 120	2 2	1 03	36	89	51	13 7	2 3
SW05-4	72038 73247	02-17-83 02-03-87	- 006 005	191 0 241 0	1 59 1 52	25 26	1 62 1 72	3 4 3 2	21 0 21 4	$\begin{array}{c}1&7\\1&7\end{array}$
NM22-1	73809	07-21-87	336	4 7	1 37	2 6	99	45	18 4	18
	73798	07-19-87	346	4 4	1 34	2 6	95	46	18 1	18

TABLE 6. GAMMA-SPECTROMETRY RESULTS FOR DUPLICATE ALIQUOTS (continued)

*These results fail the QA criterion

**Variance-weighted average of multiple counts †1000-minute counts

The standard deviation here is based on the counting error only. An example of the calculations is shown for sample FM43-3:

#72423: Cs = 0.273 pCi/g with 5.2% s.d. #72623: Cs = 0.346 pCi/g with 4.2% s.d. $s_1 = 0.273 \times 0.052 = 0.0142$ $s_2 = 0.346 \times 0.042 = 0.0145$ D = 0.346 - 0.273 = 0.073 $s(D) = \sqrt{s_1^2 + s_2^2} = 0.0203$ 2.50 x s(D) = 0.051

The difference is greater than 2.5 standard deviations, so the sample fails the test.

An analysis of the results in June 1985 found six samples in the first group that failed one of the four tests and ten samples in the second group that failed at least one test. All 16 pairs of aliquots were submitted for recounting. A repeat of the calculations in

November 1986 found three more samples (KS30-3, RM12-4, and E20A-4) that failed one of the tests. The six bottles from these samples were recounted with the 1986-87 samples.

The results of the recounts show three pairs, SW05-2, MH22-4, and RM12-4, that fail at least one test. (SW05-2 and RM12-4 fail a different test from the one they failed originally.) Because most of the discrepancies involved ²³⁸U measurements, which can be inaccurate if the sample is not in equilibrium, new aliquots of these samples were not prepared. After examination of the results by project scientists, all counts except the first count of 72603 from SW05-2 were accepted as valid.

The recounts of the other 16 pairs agreed with each other. According to the QA plan, the first counts of these samples should be disregarded, but this was only the case for 72627 (DZ04-4), 72480 (E35-4), 72623 (FM43-3), 73098 (KS01-2), and 73089 (MH07-1). All other results were accepted as valid. The high rejection rate (19 of 55 = 35%) of the duplicate analyses is somewhat disturbing. However, only 8 of the 33 randomly-chosen pairs failed, and 3 of those failures were due to differences in the 238 U values. The other 22 pairs were chosen because of problems with the initial results, so a high rejection rate is not surprising. It should also be noted that the QA test was based only on the counting error, not on the total analytical variability, and it may therefore have been too stringent.

Other Criteria

Four additional criteria were specified to check the consistency of the gamma results from the four increments at a given site. Sites that failed to meet one of these criteria were "flagged" in the database and thus called to the attention of the project scientists. They reviewed the records of the samples in question to make sure that no errors had been made in recording or calculating, and then ordered recounts or realiquoting if they felt it was necessary.

Criterion 5: Flag the results for a site if the Cs does not decrease with depth.

Forty-five sites were flagged by this criterion:

AF02	BE40	FM14	GC23	MH11
AS01	BF03	FM17	GC29	RM14
BA15	BF09	FM33	KM28	SA20
BE01	E3	FM50	KS25	SA26

BE06	E20A	GC08	KS34	SH07
BE34	E26A	GC19	MH02	SW06
AQ07	AQ08	AQ09	AQ12	AQ13
AQ25	AQ26	AQ32	AQ33	FM34
NM01	NM12	NM23	NM24	NM26

The QA plan also calls for flagging the results if the Cs does not approach zero at a depth of 30 cm, but it does not define precisely what is meant by "approach zero." This part of the criterion was applied by fitting the data to an exponential depth distribution and calculating the theoretical inventory as a function of depth. If this calculation showed that a large fraction of the theoretical inventory was below 30 cm, the site was flagged as one where the Cs apparently penetrated deeply into the soil.

Criterion 6: Flag the results for a site if the total Cs is less than 60% of that expected from global fallout.

This criterion and a similar one for total Pu were based on an alternative method used by EML to estimate global fallout in Utah. This method was not formally applied to the ORERP results, though rough approximations were used to help evaluate some sites. Details will be given in Anspaugh and Beck (1989).

Criterion 7: Flag the results for a site if the total Cs differs from the *in situ* measurement by more than 30%.

The *in situ* spectra were not analyzed to estimate Cs inventories because several detectors were used and they were calibrated differently. An empirical calibration was used to flag some sites where the *in situ* results were clearly inconsistent with the soil analyses. This will be explained further in Anspaugh and Beck (1989).

Criterion 8: Flag the results for a site if the variation of natural gamma activity with depth in the soil is inconsistent with the internal norms established by estimating the empirical distributions of the variance of natural activity within a soil core.

The variance of the activity within a soil profile (each profile is a composite of 10 soil cores) is estimated by the formula

$$V = \sum_{i} X(i)^{2} - [\sum_{i} X(i)]^{2}/4]/3$$

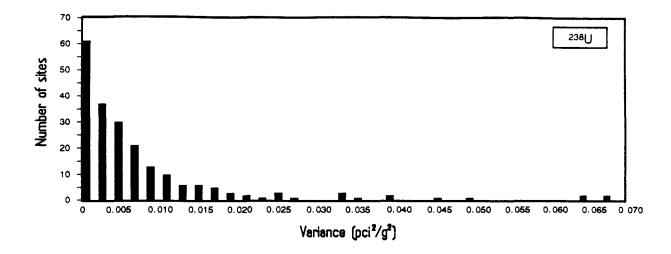
where X(i) is the activity in increment i. This variance was computed for each of the three natural gamma-emitting radionuclides at each of 212 sites. (Site MH02 was omitted be-

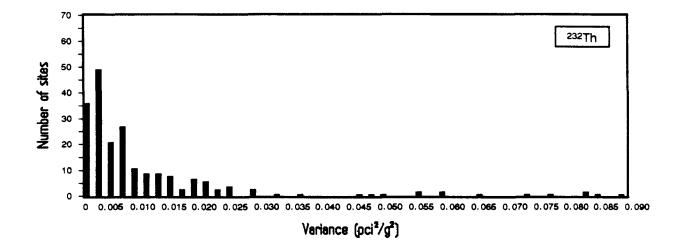
cause it has five increments.) Histograms of the values of V (Figure 6) show their empirical distributions. The values that are too large to be shown in Figure 6 are listed below.

	<u>Variance</u>	<u>Site</u>	Variance	<u>Site</u>
238U	0.520	DZ04	4°K 107.2	BE09
	0.196	BE06	29.4	GC29
	0.195	KS36	25.0	DZ16
			25.0	BE25
232Th	0.144	DZ16	24.2	AQ33
	0.138	RM14	21.2	KM29
			20.1	DZ04A
			19.9	NM13
			19.2	AQ08
			18.9	SH10
			18.0	SW05
			18.9	SH10

No standards were specified for deciding which values of the variances are "inconsistent" with the empirical distributions. This criterion was applied semi-quantitatively to identify possible disturbed sites or sample switches.

Plutonium Analyses


The 671 plutonium analyses were done in 66 separate batches. A summary of the batches and the QA samples they contained is given in Table 7.


QA samples analyzed for plutonium included 139 samples of reference soils. A third reference soil (EML #2328) was used along with the same Hurricane and blank soil used in the gamma analyses. This soil was collected by EML at North Eastham, Massachusetts, in October 1978. Note that the blank soil was only blank for Cs; it contained small but measurable amounts of plutonium.

The first five batches to be analyzed were rejected by committee decision rather than by specific QA criteria, which did not exist at that stage of the project. The decision was based in part on the QA results, but also took into account the reproducibility of the results at REECo and comparisons with EAL analyses of duplicate aliquots. The difficulties with these first batches demonstrated the need for specific criteria for accepting results and led to the development of the formal QA plan.

Checks on Individual Analyses

Four criteria were specified to ensure that each sample had been prepared and counted properly.

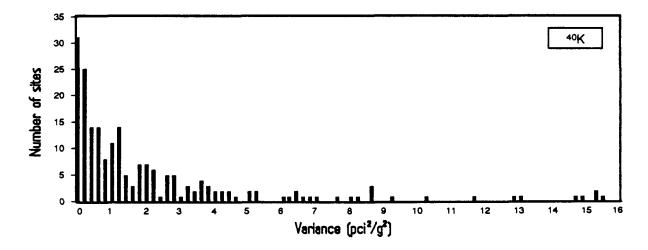


Figure 6. Variances of natural radionuclides.

					mples	I DAIC	
Batch #	Date	# of samples	Hurr		Blank	Dup	Comments
1	7/83	8	х	X		*	Rejected
1A	2/84	10	X	X	Х	Х	B 4 4 4
2 2A	8/83 10/83	8 9	X X	X X	х		Rejected Rejected
2B	11/83	ģ	x	x	x		Rejectica
2E	11/83	9	Х	Х	X		Analyzed at EAL, not used
3	8/83	7	Х	Х		*	Rejected
3A 4	2/84	10 8	X X	x	х	Х	Delected
4A	8/83 2/84	10	x	X X	х	х	Rejected Rejected, Hurricane high
5	9/83	8	х	A	~	Α	Rejected, Humenie mgn
6	9/83	8	Х	Х		*	
7	10/83	9	Х	х		•	
8	10/83 11/83	8 10	X X	х	х		
10	2/84	10	Λ	x	x		
11	3/84	10	Х	х			
12	3/84	10		X	Х	X	
13	3/84 4/84	10 10	х	X X	X X	х	
15	4/84	10	Λ	x	x	x	
16	5/84	10	х		x	X X	
17	5/84	10	х	Х		х	Rejected - EML reference high
18	5/84	10	Х	v	Х	X	Rejected - Hurricane low, blank high
19 20	5/84 6/84	10 10	X X	Х	х	X X	
20	6/84	10	x	х	Λ	X X X	Rejected - Hurricane high
22	7/84	10	х	Х		x	
23	7/84	10	х	х		X X X X	
24	8/84	10	X		X	X	
25	9/84 9/84	10 10	X X		X X	X	
27	10/84	10	x	х	x	Λ	
28	10/84	10	X X		X X	Х	
29	10/84	10	Х		X	X	Rejected – blank high
30 31	10/84 11/84	10 10	X X		X X	X X	Rejected – Hurricane high Rejected – blank high
32	11/84	10	x		x	x	Rejected – blank high
33	1/85	10	х		· X	Х	Rejected - Hurricane low
34	1/85	10	Х		Χ.	х	
35	1/85	10	X		X	X	Rejected – blank high
36 37	1/85 2/85	10 10	X X		X X	X X	
38	3/85	10	x		x	x	Rejected - blank high
39	3/85	10	х		x	x	
40	4/85	10	X X		X X X		
41	8/85	25	X		х		Analyzed at EAL
42	8/85 2/86	25 10	X		X X		Analyzed at EAL
44	2/86	10	X X		л	*	
45	1/87	10	Х		х	х	
46	2/87	10	Х		X X X X	Х	
47	2/87	10	X		X	v	
48 49	3/87 3/87	10 10	X		X	X X	
50	3/87	10	x			л	
51	5/87	10	X X X X X X		X X		
52	5/87	10	X		Х	X	
53	5/87	10	X		v	X	
54 55	6/87 8/87	10 10	X X		X	X X	
56	8/87	10	â		х	л	
57	9/87	10	x		X X X X X		
58	9/87	10	X X X X		X		Rejected – blank high
59	9/87	10	X		X		
60	10/87	10	X		<u> </u>		

TABLE 7. PLUTONIUM BATCHES

* = duplicate of QA sample

Criterion 9: Discard the aliquot if the recovery of the ²³⁶Pu tracer is less than 30%.

Tracer recoveries were not reported for the first 14 batches. In the remaining batches, 21 samples were reported with low recoveries:

ID	Batch	<u>% recovery</u>	New ID
73367	23	24	73492
73419	28	19	73551
73420	28	29	73488
73421	28	13	73484
73490	35	22	73625
73505	37	27	73599
73509	37	7	73581
73510	37	25	73597
73511	37	22	QA sample
73513	37	28	73557
73527	39	7	73598
73528	39	27	73578
73530	39	29	73577
73531	39	25	duplicate
73542	40	21	73559
73543	40	24	73595
73564	41	24	QA sample
73585	42	25	73622
73586	42	27	73616
73925	53	25	
73969	58	29	QA sample

All were realiquoted and reanalyzed except for four QA samples and one sample from Albuquerque that was judged to be of little importance because of samples from nearby locations.

Criterion 10: Recount the sample if the resolution of the alpha spectrum is greater than 80 keV at full width half maximum (FWHM).

The Pu FWHM was not reported for the three batches analyzed at EAL. It was also not reported for 63 samples with low Pu levels (about half of these were samples of blank soil).

The samples reported with resolutions greater than 80 keV are shown below (n.r. = resolution not reported). There is no evidence that any recounts were ordered because of poor resolution.

		Resolution (keV)							
ID	Batch	Count 1	Count 2	Count 3	Count 4				
72845	5	98	n.r.						
72851	5	89	n.r.						
72829	6	95	n.r.						
72807	9	93	80	ده هه خه					
72745	11	90	47						
72706	15	46	89						
73304	17	49	82						
73494	36	51	75	67	84				
73502	36	81	77	58	55				
73506	37	75	82						
73507	37	61	85						
73541	40	46	88						

Criterion 11: Do more chemistry if the alpha spectrum contains peaks of other radionuclides in the 5 to 6 meV range.

No such problems were ever reported to the QA referee by any of the laboratories involved with the plutonium analysis.

Criterion 12: Recount the disk if the difference between the first two counts exceeds 1.96 times its standard deviation.

The calculation here is similar to that of Criterion 4 for the gamma analyses. The value of 1.96 gives a five percent chance of incorrectly ordering a recount under the assumption of normality.

Criterion 12 was applied to all 565 samples that were counted at least twice. Those that failed are listed in Table 8. Of the 453 non-QA samples, 32 (7%) failed the test. Not all of these were recounted: Some were rejected because of low recovery, others were from rejected batches and were thus reanalyzed automatically, and others were sent for IMS before the test was applied. Eleven of the 112 QA samples (10%) also failed to meet this criterion.

Reference Samples

Criterion 13: Reject a batch if results for reference soils or blank soil fall outside the range of acceptability.

The QA plan specified four statistical tests to decide if a standard differs too much from its mean (Test 1), if both standards are too low (Test 2) or too high (Test 3) simulta-

	Coun	1 1	Coun	+ 2		
ID	Pux100	%s.d	Pux100	%s.d.	D/s(D)	Comments
72735	2.69	6.0	2.18	6.4	2.39	Recounted
72741	1.24	6.3	0.987	7.2	2.40	Recounted
72867	3.55	4.5	4.03	4.6	-1.96	Batch rejected
72868	0.300	17.0	0.480	14.0	-2.13	Batch rejected
72883	4.55	4.1	3.80	5.2	2.76	Batch rejected
72885	1.67	6.3	2.04	6.3	-2.23	
73305	0.800	7.7	0.620	8.8	2.19	Batch rejected
73352	0.180	14.2	0.260	12.0	-1.98	Butth Tejeetta
73369	0.438	9.5	0.581	8.5	-2.21	Recounted
73381	1.24	6.6	1.49	6.4	-1.99	Recounted
73383	3.53	5.5	4.39	5.9	-2.66	
73388	0.540	9.2	0.336	11.0	3.29	Recounted
73421	3.69	10.9	5.30	12.9	-2.03	Low recovery
			1.68	14.9	-5.83	
73445	0.210	14.9	1.08	8.0	-12.16	Batch rejected Batch rejected
73451	0.040	48.1			2.01	
73465	0.830	7.3	0.670	7.7		Batch rejected
73473	0.590	9.1	0.760	8.4	-2.04	Batch rejected
73486	-0.009	120.0	0.048	37.4	-2.72	Batch rejected
73498	0.793	7.2	0.615	7.8	2.39	Recounted
73513	4.47	7.8	3.18	7.4	3.07	Low recovery
73542	0.620	14.2	0.400	16.8	1.99	Low recovery
73552	1.72	7.0	2.04	5.0	-2.03	
73579	0.730	6.0	0.880	7.0	-1.98	
73206	10.1	5.3	8.54	4.8	2.31	Recounted
73268	11.4	5.0	9.10	5.2	3.10	Recounted
73275 73280	0.506	10.1	0.675	9.2	-2.10	Recounted
73280	0.638	8.5	0.821	7.9	-2.16	Recounted
73281	5.70	5.2	4.68	5.3	2.64	
73910	0.557	9.5	0.716	8.5	-1.97	Recounted
73913	3.36	6.6	2.57	6.5	2.85	
73933	13.0	6.4	18.3	6.4	-3.69	
73898	0.403	9.3	0.268	11.4	2.79	Recounted
Hurricane soil						
72858	4.09	4.5	3.61	4.4	1.97	Recounted
73343	6.81	6.1	3.75	7.0	6.23	11000 011104
73417	3.56	5.6	4.31	5.6	-2.40	
	3.30 4.71	5.0	3.59	5.8	3.56	
73444	4.71 3.61	5.0	4.18	5.8 4.9	-2.09	
73200 73917	4.01	5.8	2.98	5.8	3.55	Recounted
	4.01	2.0	4.90	5.0	5.55	Resounce
Blank soil						
72756	0.0370	31.0	-0.0009	65.9	3.30	
72730	0.0660	28.0	-0.0112	131.8	3.26	
72692	0.0570	30.0	-0.0091	132.7	3.16	
73436	0.0365	47.5	0.0913	22.7	-2.03	
73512	0.0329	32.8	-0.0003	71.9	3.08	

TABLE 8. SAMPLES THAT FAIL CRITERION 12

neously, and if the blank is too high (Test 4). However, these tests pertain only to batches that contain both reference soils (21 of the 60), and there is no evidence that they were actually applied to any of the results during the course of the project. The criteria computed below are those actually used to accept or reject the different batches.

The range of acceptability is defined as $\overline{X} \pm 1.96s$ for the Hurricane and EML reference soils and as less than $\overline{X} + 2.33s$ for the blank soil. The rate of false rejection is 5% for each of the reference soils and 1% for the blank soil.

Most of the reference samples were counted two or three times; the varianceweighted average of the multiple counts was used in calculating the means and standard deviations of the three soil types. The results from batch 2E were excluded from the calculations, as were results that led to rejection of a batch. In the following discussion and tables, the activities of the reference soils are multiplied by 100 and those of the blank soil are multiplied by 10,000.

The data for the 65 Hurricane samples are given in Table 9. Excluding the values from batches 1 (#72856), 2, 2A, 2E, 4A, 21, 30, 33, and 45 through 60, the average of the remaining 41 samples is 4.07 with a standard deviation of 0.36. The QA limits are 3.36 and 4.78.

Data for the 27 samples of EML reference soil are given in Table 10. The results from batches 2A, 2E, and 17 are excluded; the remaining 24 samples have a mean of 1.22 and a standard deviation of 0.073. The QA limits are 1.07 and 1.36.

Table 11 gives the results for the 47 samples of blank soil. The results from batches 2E, 18, 29, 31, 32, 35, 38, and 41 and the batches analyzed in 1987 were deleted and the mean and standard deviation of the remaining 27 samples were computed to be 2.45 and 1.70. The calculated QA limit is 6.42.

The data from all three soil types are plotted with their QA limits in Figures 7 through 9.

There are slight differences between the control limits calculated here and those used at intermediate stages of the project. The computed means and standard deviations naturally varied as more data were added, and the limits for the two reference soils were calculated from the 5% level of the t-distribution instead of the normal distribution. Thus the EML reference soil in batch 3A is outside the control limits in Figure 9 but was within the limits based on an earlier value of the standard deviation.

Also, the decision to accept or reject a batch was often based on the first count only. Thus batch 21 was rejected on the basis of the Hurricane sample even though the average of the two counts is within the QA limits.

The samples in all but three of the rejected batches were realiquoted and resubmitted in later batches. Batches 46, 47, and 54 were not redone because the samples in those batches were deemed to be of minor importance.

Other Criteria

Additional criteria were specified to check the consistency of the plutonium results with the expected results. Results that failed one of these tests were flagged and examined carefully before being accepted or rejected.

Batch #	Count 1 ID Date Pu %s.d. Date					Count 2 Date Pu %s.d. Mean			
								Mean	
1	72856	07-02-83	8.29	4.3				8.29	
-	72886	07-08-83	3.75	4.4	11-11-83	3.85	4.7	3.80	
2	72866	08-09-83	2.02	5.9				2.02	
3	72864	08-19-83	3.63	4.6	11-14-83	3.80	4.7	3.71	
	72876	08-21-83	4.30	5.1				4.30	
4 5 6	72858	08-29-83	4.09	4.5	11-14-83	3.61	4.4	3.76*	
5	72850	09-04-83	4.06	5.0	11-11-83	4.00	5.5	4.02*	
6	72833	09-04-83	3.80	5.1	11-08-83	3.92	5.5	3.8 5	
8 7	72853	10-25-83	3.94	4.3	11-14-83	3.67	4.4	3.80	
7	72834	10-29-83	4.26	4.5	11-08-83	4.35	4.6	4.30	
9	72809	11-08-83	4.32	5.8	04-02-85	4.74	6.5	4.49	
2A	72815	not	reported 3.89						
2B	72798		3.89	5.2				3.89	
2E	72791		3.485					3.485	
3A	72760	02-01-84	3.93	6.4				3.93	
1A	72763	02-03-84	4.65	4.5				4.65	
4A	72775	02-18-84	5.35	4.6				5.35	
11	72746	03-11-84	3.84	4.7	03-29-85	3.93	5.4	3.88	
14	72728	04-13-84	3.89	5.2	03-30-85	3.68	5.6	3.79	
18	73317	05-08-84	2.03	6.2	06-22-84	2.06	6.0	2.05	
16	72695	05-12-84	4.67	6.9	04-06-85	4.06	5.3	4.25	
17	73300	05-18-84	3.86	5.4	04-04-85	3.81	5.8	3.84	
19	73325	05-23-84	4.30	4.8	02-10-85	4.35	4.9	4.32	
20	73338	06-16-84	4.10	4.4	02-10-85	4.02	4.7	4.06	
21	73343	06-27-84	6.81	6.1	04-20-85	3.75	7.0	4.62	
$\overline{2}\overline{2}$	73359	06-27-84 07-02-84	4.54	4.7	02-15-85	4.40	5.0	4.47	
23	73361	07-17-84	3.64	5.8	02-15-85	4.02	6.2	3.80	
24	73371	08-29-84	4.40	6.9	01-27-85	4.50	7.5	4.44	
25	73386	09-08-84	3.97	5.0	01-22-85	3.91	5.1	3.94	
26	73394	09-18-84	3.93	4.9	02-10-85	4.14	5.1	4.03	
27	73405	10-13-84	4.17	4.8	04-21-85	4.63	5.0	4.37	
28	73417	10-20-84	3.56	5.6	02-17-85	4.31	5.6	3.86	
29	73427	10-30-84	4.15	5.8	02-11-85	4.11	6.0	4.13	
30	73438	10-31-84	6.72	4.8	04-19-85	7.17	5.0	6.92	
31	73444	11-04-84	4.71	5.0	04-20-85	3.59	5.8	4.08	
32	73461	11-05-84	3.89	5.4	02-11-85	3.61	5.5	3.74	
33		01-08-85	3.12	5.3	01-19-85	3.14	5.3	3.13	
34	73464	01-23-85	3.65	4.9	01-24-85	3.51	4.9	3.69	
35	73477	01-25-65		5.3	01-29-85	3.57	5.2	3.55	
33	73491	01-26-85 01-28-85	3.59	4.8		3.60	4.8	3.55	
36	73500		3.56		01-30-85		9.3		
37	73511	02-27-85	3.89	8.9	03-03-85	4.08		3.98	
38	73523	03-10-85	4.55	6.0	03-12-85	4.55	5.9	4.55	
39	73525	03-27-85	3.77	5.2	04-09-85	3.92	5.2	3.84	
40	73536	04-10-85	4.02	5.2 -				4.02	
41	73573		4.09	5.0				4.09	
42	73594		3.74	4.0				3.74	
43	73610	02-09-86	4.67	4.7	02-24-86	4.73	4.9	4.70	
44	73618	02-13-86	4.37	5.0	02-21-86	4.30	5.2	4.34	
	73624	02-13-86	3.96	5.3	02-21-86	3.69	5.0	3.81	
45	73189	01-17-87	3.92	5.9	02-20-87	4.55	6.2	4.17	
46	73200	02-03-87	3.61	5.0	02-21-87	4.18	4.9	3.86	
47	73209	02-04-87	4.05	5.7	02-21-87	4.32	5.9	4.17	
48	73261	03-13-87	3.64	5.4	03-21-87	3.40	5.2	3.51	
49	73273	03-23-87	4.93	7.3	03-26-87	4.06	6.9	4.39	
50	73282	03-21-87	4.18	5.3	03-24-87	4.30	5.5	4.24	
51	73907	05-02-87	3.98	5.3	05-08-87	3.78	5.5	3.88	
51 52	73917	05-07-87	4.01	5.8	05-10-87	2.98	5.8	3.66	
53	73921	05-09-87	3.67	6.8	05-12-87	3.86	6.9	3.76	
54	73930	06-04-87	4.24	7. 5	06-10-87	4.11	7.3	4.17	
54 55				5.1	08-25-87	4.01	4.9	4.04	
33	73947	08-24-87	4.08			4.01	5.3	4.04	
50	73952	08-28-87	4.20	5.6	09-01-87		J.J 5 4	4.52	
56 57 58	73961	09-08-87	3.97	5.6	09-15-87	3.73	5.6		
28	73971	09-14-87	4.37	5.8	09-16-87	3.85	5.8	4.08	
59	73984	09-26-87	4.33	5.4	09-28-87	3.81	5.0	4.02	
60	73894	10-18-87	3.92	5.0	10-19-87	4.19	5.0	4.05	

TABLE 9. CONCENTRATION OF 239 + 240 Pu (dpm/g x 102) IN HURRICANE SOIL

*Mean includes results of third counts:

72858	05-08-85	3.63 ± 5.0%
72850	05-08-85	$4.00 \pm 5.6\%$
73477	04-22-85	$3.95 \pm 4.8\%$
73491	04-25-85	3.49 ± 5.2%
73500	04-25-85	3.50 ± 4.9%
73917	10-12-87	5.58 ± 6.2%

х

		C	ount 1		Count 2				
Batch #	ID	Date	Pu	%s.d.	Date	Pu	%s.d	Mean	
1	72884	07-08-83	1.13	19.0	11-11-83	1.26	5.7	1.29*	
2	72863	08-09-83	1.16	6.3				1.16	
3	72877	08-21-83	1.19	5.9				1.19	
4	72871	08-29-83	1.26	6.1	11-10-83	1.15	6.0	1.20	
6	72825	09-04-83	1.20	6.6	11-02-83	1.32	6.3	1.25*	
	72826	09-04-83	1.24	6.0	11-02-83	1.16	6.3	1.20	
2A	72821	10-18-83	3.77	4.5	10-31-83	3.99	4.5	3.87	
7	72837	10-24-83	1.26	5.4	11-09-83	1.15	6.0	1.21	
	72832	10-29-83	1.38	5.7	11-08-83	1.26	5.5	1.31	
9	72807	11-08-83	1.31	7.0	04-02-85	1.37	7.8	1.34	
2B	72800	11-24-83	1.24	6.7				1.24	
2E	72793		1.12					1.12	
3A	72772	02-01-84	0.986	9.2				0.986	
1A	72773	02-03-84	1.31	5.9				1.31	
4A	72759	02-17-84	1.21	9.1				1.21	
10	72754	02-28-84	1.25	6.1	03-30-85	1.06	6.6	1.15	
11	72743	03-11-84	1.40	6.4	03-29-85	1.18	6.5	1.27	
13	72708	03-23-84	1.23	6.7	03-25-85	1.08	6.8	1.15	
12	72721	03-29-84	1.25	6.9				1.25	
14	72734	04-15-84	1.34	6.7	03-31-8 5	1.17	7.6	1.25	
15	72703	04-27-84	1.16	6.3	03-29-85	1.24	6.7	1.19	
17	73307	05-18-84	4.07	5.2	06-22-84	4.32	5.2	4,19	
19	73329	05-23-84	1.19	6.2	02-10-85	1.08	6.6	1.13	
21	73345	06-27-84	1.22	6.7	04-20-85	1.33	7.6	1.26	
$\overline{2}\overline{2}$	73354	07-02-84	1.29	6.2	02-15-85	1.14	6.7	1.21	
23	73363	07-17-84	1.20	6.9				1.20	
27	73402	10-13-84	1.40	6.9	04-21-85	1.18	7.3	1.28	

TABLE 10. CONCENTRATION OF 239 + 240 Pu (dpm/g x 102) IN EML REFERENCE SOIL

*Mean includes results of third counts:

72884 05-08-85 1.36 ± 6.4% 72825 05-07-85 1.24 ± 6.8%

Criterion 14: Flag the results for a sample if the Cs/Pu ratio is greater than 70.

A large ratio suggests an erroneously high value of Cs or low value of Pu, although under certain conditions NTS fallout from a non-plutonium test could have a ratio greater than 70. Six samples were flagged by this criterion:

73540 BA15-bottom	73572 GC19-bottom	73322 GC29-top
72851 MH02-bottom	72841 MH12-bottom	73942 NM05-bottom

Criterion 15: Flag the results for a site if the Cs/Pu ratio increases by more than 50% from the upper increment to the lower.

Twenty sites were flagged by Criterion 15:

AS06	BE32	DZ05	DZ09
FM29	FM33	FM35	FM39
GC19	MH02	MH12	SW06
AQ04	AQ05	AQ06	AQ07
AQ09	FM32	FM34	NM05

D	ID		Count 1	~~ .		Count 2		<u> </u>
Batch #		Date	<u>Pu</u>	%s.d.	Date	<u>Pu</u>	%s.d	Mean
2A	72818	10-14-83	1.7	74.0	11-01-83	2.4	34.0	2.19
9	72810	11-08-83	1.4	43.0	04-03-8 <i>5</i>	-2.02	3004.1	1.40
2B	72801	11-24-83	3.7	42.0				3.70
2E	72788		6.0					6.00
3A	72770	02-01-84	2.8	56.0				2.80
1A	72769	02-03-84	4.6	30.0				4.60
4A	72779	02-19-84	1.6	83.0				1.60
10	72756	02-28-84	3.7	31.0	03-30-85	-0.09	65.9	-0.08
13	72709	03-23-84	6.6	26.0	03-25-84	3.8	33.0	4.77
12	72722	03-29-84	3.2	65.0				3.20
14	72730	04-13-84	6.6	28.0	03-30-85	-1.12	131.8	1.89
15	72704	04-27-84	4.7	28.0	03-30-85	2.02	38.4	2.71
18	73319	05-10-84	171.0	5.6	06-22-84	193.0	5.7	180.48
16	72692	05-11-84	5.7	30.0	04-06-85	-0.91	132.7	1.29
20	73336	06-16-84	3.6	33.0	02-10-8 5	-2.76	323.6	3.49
24	73374	08-29-84	3.6	43.2	01-27-85	1.70	77.6	2.50
25	73380	09-07-84	1.5	100.0	01-22-85	2.99	48.6	2.27
26	73399	09-18-84	3.26	54.7	02-11-85	3.42	35.5	3.37
27	73407	10-13-84	-0.4	259.0	04-21-85	-1.02	101.3	-0.71
28	73418	10-20-84	1.6	115.0	02-17-85	0.40	80.6	0.44
29	73428	10-30-84	9.4	25.0	02-17-85	7.69	22.7 22.7	8.30
30	73436	10-31-84	3.65	47.5	04-09-85	9.13	22.7	5.91
31	73453	11-04-84	204.0	7.3	04-25-85	199.0	8.0	201.67
32	73457	11-05-84	13.3	24.3	02-11-85	8.36	25.1	9.82
33	73471	01-18-85	4.0	66.9	01-19-85	5.0	50.3	4.53
34	73478	01-23-85	6.5	26.7	01-24-85	4.40	34.9	4.57*
35	73485	01-26-85	58.6	8.6	01-29-85	57.8	8.8	57.47*
36	73497	01-28-85	5.8	37.9	01-30-85	3.2	58.0	4.12*
37	73512	02-27-85	3.29	32.8	03-03-85	-0.029	71.9	0.08
38	73517	03-08-85	21.7	16.4	03-12-85	21.7	15.8	21.70
39	73529	03-27-85	-0.07	74.6				-0.07
40	73538	04-06-85	2.48	38.4	04-09-85	2.36	40.2	2.42
41	73564		<6.					
42	73588		2.0	60.0				2.00
43	73613	02-09-86	1.79	40.6	02-24-86	1.05	44.9	1.27
45	73188	01-17-87	-0.40	390.0	02-20-87	2.50	92.0	0.51
45 46	73199	02-02-87	7.60	24.1	02-20-87	6.40	28.0	6.99
40	73210	02-05-87	6.90	30.8	02-21-87	10.8	22.0	8.63
48	73264	03-13-87	4.12	39.5	03-21-87	0.640	283.0	2.57
51	73903	05-06-87	0.984	120.0	05-08-87	3.67	42.7	1.96
52	73914	05-07-87	6.11	38.2	05-10-87	3.19	50.3	4.13
54 54	73272	06-03-87	12.2	28.6	06-04-87	15.4	18.7	14.10
56	73286	08-28-87	4.83	33.9	09-01-87	3.88	37.7	4.30
57	73967	09-08-87	2.29	61.4	09-15-87	5.39	31.4	3.56
57	73969	09-14-87	22.3	22.5	09-16-87	34.0	18.3	26.90
	73987	09-26-87	1.90	70.8	09-28-87	.659	212.0	1.30
59	73895	10-18-87	1.70	72.2	10-19-87	2.38	50.2	2.05
60	/ 2073	10-10-07	1.70	14.4	10-17-0/	4.30		.05

TABLE 11. CONCENTRATION OF ^{239 + 240}Pu (dpm/g x 10⁴) IN BLANK SOIL

*Mean includes results of third counts:

73478 04-22-85 3.78 \pm 31.2% 73485 04-23-85 56.1 \pm 8.7% 73497 04-25-85 3.92 \pm 4.2%

Many of these sites were flagged only because the activities in the bottom increment were low and the ratio therefore uncertain.

Isotope Mass Spectroscopy

Samples were submitted for IMS in 12 batches. Batch 1 was a trial batch of samples from rejected plutonium batches, and the results of that batch were not used. The other 11 batches contained 375 samples, of which 50 (13%) were QA samples.

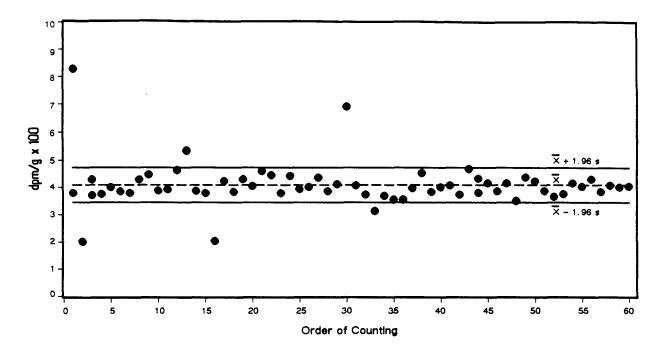


Figure 7. ²³⁹⁺²⁴⁰Pu concentrations in Hurricane soil.

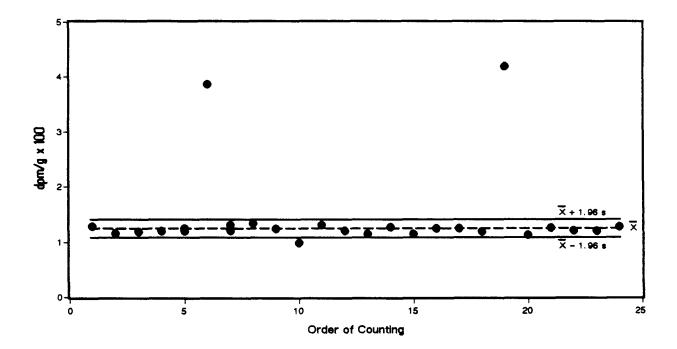


Figure 8. 239 + 240 Pu concentrations in EML reference soil.

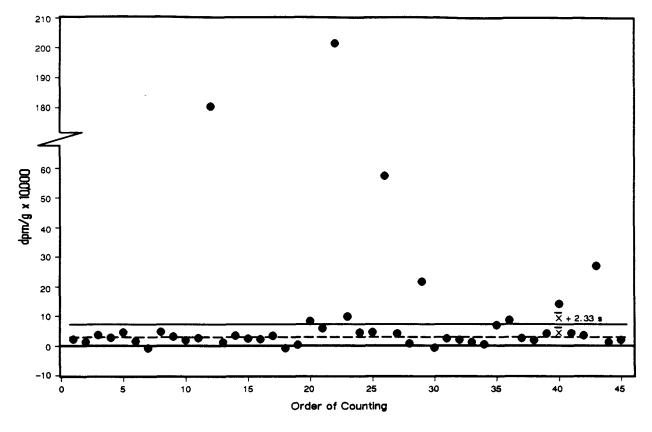


Figure 9. 239 + 240 Pu concentrations in blank soil.

QA for this phase of the analysis was provided by standard samples. The standards for the early batches were the same reference soils used for the plutonium analyses. Later batches used disks previously electroplated with a standard by EML.

The QA criterion is incorrectly stated in the QA plan. It should read as follows:

Criterion 16: Reanalyze a batch if the 240Pu/230Pu ratio in a standard sample differs by more than 5% from the calibrated value.

The data are shown in Table 12. A batch is rejected if D = (observed ratio - calibrated value)/calibrated value is greater than 0.05 for one of the standards. This test was not applied to the PNL standard because the ratio in that standard is too low to be measured so precisely. It was also not applied to the early samples of reference soils (EML-REF, Hurr, and Blank) as there are no "calibrated" values by which to judge the results.

			IN QA SAMFL		
Batch	Sample #	ID	Cal.	Ratio	D
1	72863	EML-REF		.1777	
	72877	EML-REF		.1794	
23	72708	EML-REF		.1781	~-
3	72721	EML-REF		.1766	
4	72772	EML-REF		.1798	
	72773	EML-REF		.1785	
1	72856	Hurr		.1431	
	72866	Hurr		.1038	
	72876	Hurr		.0797	
4	72760	Hurr		.1020	
4 5	72763	Hurr		.1031	
2	72709	Blank		.1626	
2 3 4	72722	Blank		.1646	
4	72769	Blank		.1604	
	72770	Blank		.1663	
5	72700	EML-1		.1303	
4		STD22-4	.00021	.000210	.0
5	73411	PNL #8	.00021	.00054	1.57
	73412	PNL #9	.00021	.00021	.0
		STD22-31	.00021	.00020	8.52
6	73603	PNL	.00021	.000240	.143
	73605	PNL	.00021	.0062	28.5
7	73505	PNL	.00021	.000206	.019
	73527	PNL	.00021	.000223	.062
	73542	PNL	.00021	.000524	1.5
8	73514	PNL	.00021	.000205	.024
	73542	PNL	.00021	.00038	.81
	73543	PNL	.00021	.00049	1.33
			00//	00/1	
3 4 5		STD22-1	.0864	.0861	.003
4		STD22-2	.0864	.0864	.0
5	73410	NBL #9	.0864	.0862	.002
	73413	NBL #8	0864	.0868	.005
6	73601	NBL	.0864	.0870	.007
	73602	NBL	.0864	.0870	.007
	73604	NBL	.0864	.0863	.001
7	73509	NBL	.0864	.0864	.0
	73530	NBL	.0864	.0863	.001
	73543	NBL	.0864	.0858	.007
8	73516	NBL	.0864	.0867	.003
	73521	NBL	.0864	.0861	.003
9	73467	2185	.0863	.0863	.0
	73473	2185	.0863	.0866	.003
	73484	2185	.0863	.0859	.005
	73493	2185	.0863	.0861	.002
	73533	2185	.0863	.0857	.007
			0011	00/0	001
10	73292		.0864	.0863	.001
	73296		.0864	.08589	.006
11	73291		.0864	.0864	.0
1	73293		.0864	.0861	.003
1	73294		.0864	.0860	.005
1	73295		.0864	.0860	.005
12	73988		.0864	.0863	.001
1	73989		.0864	.0863	.001
	73990		.0864	.0865	.001
	73991		.0864	.0865	.001
1					

TABLE 12. 240Pu/239Pu IN QA SAMPLES

SUMMARY

The QA criteria described above were not applied to every sample, but this was not because of negligence on the part of the investigators. Most of the samples that were not recounted or realiquoted according to the QA protocols were from sites that had already been rejected for use in the final data set. The next few paragraphs attempt to summarize the quality of the accepted data.

The procedures for gamma-ray spectrometry are relatively straightforward, and few major problems occurred at this stage of the analysis. (The difficulties with the spectral analysis could be considered major in terms of the effort needed to resolve them, but the effect on the final results was minimal.) Of the 1,142 counts of the non-QA samples, only 7 were rejected: the 6 that did not agree with counts of a duplicate aliquot and 1 that did not agree with two subsequent recounts.

In spite of the high reliability of the gamma results, many sites were rejected after this stage. Usually a site was rejected because the Cs results for all four increments did not make sense, suggesting that the site may have been disturbed or that a sample may have been mislabeled. However, the fact that Cs did not decrease with depth did not automatically disqualify a site. Conversely, not all the sites with good Cs profiles were analyzed further, as budgetary considerations usually limited the Pu analyses to one or two sites in each community.

The Pu analysis is more difficult than the gamma-ray analysis, primarily because of the complicated processing required to separate the Pu from the soil. It is not surprising, then, that considerably more effort was required to obtain acceptable Pu results for the 171 sites selected. Numerous platinum disks had to be recounted and numerous samples had to be realiquoted, as summarized in the table below.

		# of counts of sample							
	_0	1	2	3	4				
Accepted results	0	20	289	31	6	346			
Rejected results	3	43	119	8	0	173			
QA samples	1	29	111	11	0	152			
	4	92	519	50	6	671			

The accepted results include the two increments from each site plus the repeat analyses of FM33 and FM35. Samples that were not counted at all were lost during the preparation.

Almost all of the accepted results passed the various QA tests. Twenty results were accepted on the basis of a single count instead of the specified two (or more) counts. Seven of these were in a batch (#12) for which the first set of counts was thrown out because of problems with the sample preparation. Most of the others were from early batches analyzed before the decision was made to routinely count the samples twice.

In addition, aliquots from increments E35-bottom and KS36-top were prepared and submitted in four different batches, all of which were rejected. However, essentially the same results were obtained for all four aliquots of E35-bottom and for three of the four aliquots of KS36-top, so no further analyses were performed and a representative value was chosen for use in the calculations.

The samples from 14 of the 171 sites were not sent through the final stage of analysis, isotope mass spectroscopy. Most of these were Albuquerque sites that had been rejected because of their Pu results. No problems were encountered with the isotope mass spectroscopy of the remaining samples.

REFERENCES

- Anspaugh, L.R., and H.L. Beck, 1989. The County Data Base: Estimates of exposure rates and times of fallout arrival in the Off-Site Radiation Exposure Review Project Phase II area. NVO-320, Nevada Operations Office, U.S. Department of Energy, Las Vegas.
- Archer, V.E., 1987. Association of nuclear fallout with leukemia in the United States. Arch. Env. Health 42(5): 263-271.
- Beck, H.L., 1987. In Reporter's Transcript of Fourteenth Dose Assessment Advisory Group Meeting, Volume II, May 21, 1987. Nevada Operations Office, U.S. Department of Energy, Las Vegas, pp. 162-200.
- Beck, H.L., 1984. Estimates of fallout from Nevada weapons testing in the western United States based on gummed-film monitoring data. EML-433, Environmental Measurements Laboratory, U.S. Department of Energy, New York.
- Beck, H.L., and P.W. Krey, 1983. Radiation exposures in Utah from Nevada nuclear tests. Science 220: 18-24.
- Essington, E.H., 1988. Appendix C: Reliability of Soil Analyses. In "Nevada Test Site Radionuclide Inventory and Distribution Program: Report #4. Areas 18 and 20" by R.D. McArthur and S.W. Mead, DOE/NV/10384-22, Publication #45063, Water Resources Center, Desert Research Institute, University of Nevada, Las Vegas.
- Friesen, H.N., 1985. Off-Site Radiation Exposure Review Project Fact Book. NVO-295, Nevada Operations Office, U.S. Department of Energy, Las Vegas, Nevada.
- Krey, P.W., 1983. In Reporter's Transcript of Seventh Dose Assessment Advisory Group Meeting, Volume II, May 20, 1983. Nevada Operations Office, U.S. Department of Energy, Las Vegas, pp. 172-196.
- Krey, P.W., and H.L. Beck, 1981. The distribution throughout Utah of ¹³⁷Cs and ²³⁹⁺²⁴⁰Pu from Nevada Test Site detonations. EML-400, Environmental Measurements Laboratory, U.S. Department of Energy, New York.
- Lyon, J.L., M.R. Klauber, J.W. Gardner, and K.S. Udall, 1979. Childhood leukemias associated with fallout from nuclear testing. New Engl. J. Medicine 300: 394-402.

APPENDIX A

Project Directive No. 4

•

OFF-SITE RADIATION EXPOSURE REVIEW PROJECT PROJECT DIRECTIVE NO. 4 DOSE ASSESSMENT IN THE EXTENDED REGION

INTRODUCTION

The first phase of the Off-Site Radiation Exposure Review Project (ORERP) is to establish a mechanism for determining organ doses to individuals who resided within measured fallout patterns during the time of atmospheric nuclear testing.

This directive makes assignments to task groups for Phase II, which is to evaluate the radiation doses to individuals and populations in areas beyond established fallout patterns but within regions where significant quantities of fallout resulting from NTS tests may have been deposited. It also specifies the scaled down activities of the Coordination & Information Center (CIC).

This directive includes two sections. Section I develops general organizational tasks and responsibilities. Section II outlines operational procedures to be followed for completion of Phase II of the project. The Appendixes include supplemental materials as required.

NEVADA OPERATIONS OFFICE (NV)

The NV, through the ORERP Project Manager, has overall responsibility for direction and management of this effort. The Project Manager will approve locations for sampling and analysis in conjunction with the Scientific Director and EML advisors. The Scientific Director will provide overall technical direction of Phase II. Verbal progress reports will be made weekly (Friday p.m.) to the Assistant Project Managers (Richard Nutley or David Wheeler) by project participants involved in site selection, in situ measurements, and soil collection. Changes in project requirements, budget allocations, and priorities and direction will be made by the Project Manager in consultation with the Scientific Director.

ENVIRONMENTAL MEASUREMENTS LABORATORY (EML)

The EML, as special advisors to the Project Manager, is to assure that Phase II work is consistent with established EML techniques and procedures. They will advise in all major decisions concerning site selection, field spectrometry, soil sampling, soil processing, soil analysis, and apportionment of cesium-137 from global and NTS sources.

EML is requested to design and coordinate with the Desert Research Institute (DRI) an external quality-assurance effort for radionuclide analysis. All data from the project will be available to EML upon request and they will participate in any phase of analysis and reporting that they consider appropriate.

EML will also be responsible for coordinating the analysis of the National Uranium Resource Evaluation (NURE) data with project objectives. EML is requested to obtain and analyze data that are available from their historical networks, which may provide information to identify arrival times of specific events. DRI and the U.S. Weather Service Nuclear Support Office (WSNSO) will assist EML according to EML request.

LAWRENCE LIVERMORE NATIONAL LABORATORY (LLNL)

The LLNL will have primary responsibility for making field in situ measurements. These measurements will include field gamma spectrometry and gamma exposure-rate measurements. As these are key measurements that will guide the soil-sample-collection efforts, the LLNL field representative will provide guidance to project personnel concerning the sample-collection effort.

After the samples have been collected and analyzed, LLNL will have the primary responsibility to apportion the cesium-137 to global or NTS sources and to prepare a report or reports for use by other task groups, etc. The DRI and EML will participate in this task as well.

LLNL will also supply the needed source terms for dose reconstruction and will also calculate radiation doses from ingestion after receiving intake values from Colorado State University and will calculate radiation doses from inhalation.

REYNOLDS ELECTRICAL AND ENGINEERING CO., INC. (REECO)

REECo will perform soil collection, sample preparation, and soil analysis for cesium-137; radiochemical separation and measurement of plutonium; and preparation of planchets for mass spectroscopic analysis of plutonium-239 and plutonium-240. Detailed procedures will be approved by EML, the Scientific Director, and NV before soil sampling is started.

The REECo CIC effort will be scaled down for fiscal year 1982 and future years to accommodate this additional effort.

The primary functions will be to support task groups, process documents into the bibliographic data base, keywording, and other archival duties. Specific changes have been made to eliminate abstracting tasks, reduce search and collection tasks, and to support the aforementioned functions at a reduced level of effort.

The collection of soil samples must be done exactly as specified by EML procedures, and must be approved by EML in advance. The same is true of the soil preparation and analytical procedures (i.e., soil drying, crushing, pulverizing, and blending; analysis for cesium-137; and radiochemical separation and measurement of plutonium).

REECo will provide to NV manpower, facility, and equipment needs and update these needs as project direction and priorities change.

DESERT RESEARCH INSTITUTE (DRI)

The DRI will have primary responsibility for the selection of sites that are suitable for potential soil sampling at locations specified by the Project Manager. These sites will be selected according to the criteria used by EML and sufficient interface must exist between DRI and EML to assure that the sites tha are selected actually meet the criteria. Progress of the site-selection process and identification of specific sites will be reported weekly.

DRI will design and manage a data base containing all pertinent descriptive data for each sampling site, soil samples, and laboratory analysis of radionuclide concentrations. DRI will perform data reduction and statistical analysis of data as required for scientific acceptability of the results.

DRI, with assistance from EML, will have primary responsibility for administering an external quality-assurance program governing all phases of soil collection, sample preparation, and sample analysis. DRI will assist REECo in gaining EML's approval of their internal quality-assurance program in advance of beginning analytical work.

LOS ALAMOS NATIONAL LABORATORY (LANL)

The LANL will develop the methodology required to convert the results of the soil-sampling effort into population and individual dose estimates resulting from external exposure including beta dose to skin. This will be done using established procedures and any new lifestyle information that may be developed.

LANL is specifically requested to determine if it would be advisable to develop additional lifestyle information for these calculations in extended areas.

COLORADO STATE UNIVERSITY (CSU)

The CSU will have responsibility for developing values of radionuclide intake by humans in Phase II areas based upon normalized deposition values. They will determine if additional lifestyle and agricultural practices data are needed and will supervise efforts to collect such information.

WEATHER SERVICE NUCLEAR SUPPORT OFFICE (WSNSO)

The WSNSO will assist as directed by the Project Manager in providing meterological information required in Phase II.

ENVIRONMENTAL PROTECTION AGENCY (EPA)

The EPA should assist the Phase II effort by searching for environmental data in the extended region and assisting in the interpretaton of such data where they exist.

SECTION II

OPERATIONAL PROCEDURES FOR PHASE II

SITE SELECTION

DRI will select sites suitable for in situ measurements and soil collection, if required, according to the criteria provided by EML as contained in Appendix A. The sites will be selected in locations specified by the Project Manager. Appendix B lists the initial selection of potential sites with maps identifying those locations. The priorities to be used in allocating site-selection teams are first, sites in Northern Arizona; second, sites in Nevada and Utah, north and east of the NTS; third, other sites in Nevada and California; and fourth, sites more distance from the NTS in Oregon, Idaho, Wyoming, Colorado, New Mexico and Arizona.

DRI will be responsible for (1) identifying prospective sites that meet the EML critera; (2) contacting property owners and arranging permission for <u>in situ</u> measurements; (3) determining if soil sampling will be permitted on the site; (4) communicating site location and identification, names of land owners or caretakers, and other relevent information to the LLNL field team; and (5) reporting progress each Friday afternoon.

If good sites are located that are not on the list of selected locations, they should be noted and reported in the weekly progress report.

Multiple sites should be found, if possible, at each populated location with a greater number of sites located in larger communities.

IN SITU SPECTROMETRY

LLNL will make in situ spectrometry and external gamma-exposure-rate mesurements at sites which have been selected by DRI. Field-spectrometry crews will follow site-selection crews as soon as practical to optimize

use of the equipment and time of field workers. Field measurements will be transmitted to the Scientific Director in a timely manner and verbal progress reports will be made to NV each Friday afternoon.

The number and type of measurements to be made at each site will be according to written procedures which are to be provided or referenced to NV by LLNL before field measurements commence.

SOIL COLLECTION

Soil samples will be collected by REECo according to EML procedures contained or referenced in Appendix C at sites to be determined by the Scientific Director and EML. All <u>field crews</u> will be supervised in the field by <u>senior scientific</u> personnel. Soil collection will commence as soon as equipment and personnel have been acquired and trained, and sites have been approved for soil collection.

EML will collect replicate samples at several of the sites and analyze them independently.

SOIL PROCESSING

Soil-sample preparation will be performed by reeco according to procedures outlined or referenced in Appendix D, which have been approved by the Scientific Director and EML. As cross contamination of samples would be very serious, measures must be taken to prevent this. DRI will be responsible for determining which samples will be sent to EML as part of the Quality-Assurance Program that will monitor the soil-processing program.

SOIL-SAMPLE ANALYSIS AND CHEMICAL SEPARATION

Sample spectroscopic analysis and chemical separation will be performed by REECo according to procedures contained or referenced in Appendix E. Samples will first be analyzed by gamma spectroscopy to determine the

concentrations of all gamma-emitting radionuclides including those that occur naturally.

The spectroscopic results will be analyzed by EML, DRI, and the Scientific Director to determine which samples will be selected for radiochemical analysis of plutonium. Chemical separation will include the deposition of plutonium on planchets which can be used for analysis for plutonium-239 and -240 by mass spectroscopy. EML will recommend a contractor to perform mass-spectroscopy analysis of plutonium isotopes and will supervise the quality assurance of that program.

QUALITY-ASSURANCE PROGRAM (QA)

DRI, with the assistance of EML, will develop an external qualityassurance program, will be included as Appendix F of this directive. They will jointly administer the program and make recommendations to NV as required. DRI and EML will assist REECo in reviewing their internal QA program. DRI will report to NV, on a regular basis, the progress of sample analysis and any problems that have been identified by the QA program.

PROJECT MANAGEMENT

The program which has been outlined in Phase II of ORERP will be administed by NV under the direction of Bruce W. Church, Project Manager. Lynn Anspaugh, Scientific Director, has primary responsibility for selecting sites suitable for soil sampling. Howard Hawthorne, *Senior Scientist, has primary responsibility for soil collection, sample preparation, and sample analysis. Forest Miller, DRI, has primary responsibility for quality assurance. Lynn Anspaugh, LLNL, is reponsible for final determinatoin of cesium-137 distribution resulting from NTS testing. Bruce Church, Lynn Anspaugh, Harold Beck or Phil Krey, Howard Hawthorne and Forest Miller will meet approximately monthly or as needed

^{*}Note: Howard Hawthorne left the project in December 1982. Stephen Rohrer, Senior Scientist, functions in this capacity.

to review progress of the project and to make administrative,decisions concerning continuation of the project. Reports will be prepared by REECo on the soil collection and analysis and by LLNL, DRI, and EML on the total evaluation of cesium-137 resulting from NTS testing in regions covered by Phase II.

R. Anspaugh Lynk

Scientific Director

Bruce W. Church Project Manager

APPENDIX A

PROJECT DIRECTIVE NO. 4 EML SITE CRITERIA FOR RADIATION MEASUREMENTS AND SOIL SAMPLING

The soil-sampling program incorporated in Project Directive No. 4 depends upon the assurance that a representative sample of the cesium and plutonium that were deposited with the fallout during the atmospheric testing program at the Nevada Test Site can be collected by the procedures outlined herein. EML has ascertained that undisturbed grassy areas that meet the following criteria will satisfy this requirement. These criteria are therefore to be followed in selecting suitable sites for soil collection.

A. General:

- Relatively flat open area, at least 40 feet in diameter, away from man-made structures, ditches, and roadways, and any natural obstructions;
- 2. Minimal rock outcropping or debris;
- 3. Site should be similar in nature to surrounding land and at the same elevation, that is, not raised or depressed compared to the general grade of the land:
- 4. Ground should not be sloped to a degree such that runoff or water erosion might have occurred.

B. Undisturbed Since 1950:

- 1. No plowing, tilling or overturning of the soil;
- 2. No grading;

- Minimal burrowing activity from rodents, moles, groundhogs, lizards, etc.;
- 4. No removal or addition of topsoil;
- 5. No flash flooding.
- C. Ground Cover Present:
 - Site must have possessed some type of ground cover, such as grass, since 1950 so that minimal wind or water erosion occurred;
 - 2. However, the site should not have been subjected to blowsand buildup from wind or silt buildup from irrigation.
- D. Allowable Activities:

Watering (including flood irrigation), mowing, cutting, weeding, fertilizing, seeding.

- E. Examples of Ideal Sites:
 - 1. Old lawns in parks, church yards, cemeteries or private residences;
 - 2. Pastures with reasonably dense vegetation.

ADDENDUM TO EML SITE SELECTION CRITERIA

- 1. Attempt to disperse prospective sites throughout a population center as opposed to concentrating sites in only a few areas.
- Attempt to prioritize site selection so as to find "best" sites first, e.g., large lawns, parks, cemeteries, etc., as opposed to small lawns or other marginal sites. We suggest trying to obtain old maps which might identify schools, parks, and buildings which existed in 1950 - 1960.
- 3. When selecting sites, look for signs of disturbance such as new sprinkler systems, young trees, etc. Try to obtain corroboratory testimony of site age from more than one person if possible, particularly if site appears suspicious.
- 4. Avoid depressions where water may accumulate or pool from run off.
- 5. When documenting candidate sites, be very specific as to exact location, i.e., which part of which lawn (front or back, etc.). Draw detailed map. Write down names of sources and name of person giving permission to sample.
- 6. Sites less than 40 feet in diameter can be selected if no alternatives are available and they meet all other criteria. Adjustments will, of course, have to be made in interpretation of the field-gamma spectral analysis. This can be done provided the areas outside the site boundary do not consist of depressions or silt buildup, which may contain enhanced levels of cesium-137 that would distort the in situ spectral measurement.

SUGGESTED IN SITU SPECTRAL ANALYSIS PROCEDURES

- 1. Count long enough to obtain better than \pm 5% (1 σ) precision for cesium-137 (if practical).
- 2. Watch for unusual natural emitter activities suggesting site is not typical of surrounding terrain.
- 3. Examine agreement between sum of individual exposure rates inferred from spectrometer and total from the high pressure ion chamber. Poor agreement may suggest a non-uniform natural emitter depth profile and thus a possibly disturbed site.
- 4. For very large areas such as parks, cemeteries, etc., where several choices of exact measurement sites are available, it would be advisable to make subsidiary low-precision counts at 1 2 positions other than that chosen from the prime measurement in order to confirm the prime site is representative of the entire area.
- 5. For sites less than 40 feet in diameter, draw map and indicate exact dimensions of site and position of detector.
- 6. The in situ flux depends on the soil moisture at the time of measurement as well as the depth profile of the activity in the soil. Since the spectra will be taken days or weeks prior to soil sampling, it will be necessary to at least estimate the moisture content at the time of the spectral measurement (i.e., ground just watered, very moist and spongy to very dry and hard). It would be preferrable if the field-spectrometer team could take several handfulls of surface soil (0-2 cm) from each site, weigh it on the spot, and then store it for subsequent drying and re-weighing. If weighing in the field is impractical, the soil should be sealed in water-tight plastic bags. Some estimate of the soil moisture will be required in order to compare results at various sites and in order to compare the in situ results with the soil analyses.

D909C

APPENDIX B

•

PROJECT DIRECTIVE NO. 4 PROPOSED SITES FOR SOIL SAMPLING AND THEIR UTM COORDINATES

NEVADA (51)

.

*Alamo	11SPM6336	*Indian Springs	11SPL2048
Austin Babbitt	11SMP9471 11SLN5766	Lage's Station Las Vegas	11001 6704
Baker	11SQP4922	*Logandale	11SPL6704 11SQL2553
Battle Mountain	11SNQ0599	Lovelock	
*Beatty	11SNL2184	Major's Place	11TLQ7448 11SQP0921
Belmont	11SNN1171	McGill	11SQP0921 11SPP9163
Boulder City	11SPK9683	*Mesquite	11SQL6177
*Bunkerville	11SQL5673	Minden	11SQL6177 11SKP6015
*Caliente	11SQM1965	North Las Vegas	11SPL7008
Carlin	1111NR7507	*Overton	11SQL2847
Carson City	11SKP6139	*Pioche	11SQL2847
*Currant	11SPN3389	Pahrump	11SQN2402 11SNL9107
*Duckwater	11SPP1506	Reno	11SKP5980
East Ely	11SPP8446	Round Mountain	115KP3980
Elko	11TPR0421	Ruth	11SPP7449
Ely	11SPP8246	*Searchlight	11SPK8926
Empire	11SKP6640	Sparks	11SKP6380
Eureka	11SNP8974	*Sunnyside	11SPN7354
Fallon	11SLP4770	*Tonopah	11SMN8013
Gabbs	11SMP2120	*Warm Springs	11SNN5527
Gardnerville	11SKP6214	Wells	11TPR7153
*Goldfield	11SMM8073	Winnemucca	11TMR3835
Hawthorne	11SLN5865	Yerington	11SLP1317
Henderson	11SPK8289		1102, 101,
*Hiko	11SPM5762		
CALIFORNIA (8)			
Baker	11SNK8402	Death Valley	11SNL1333
Barstow	11SMJ9860	(Furnance Creek)	
Big Pine	11SLM8614	Lone Pine	11SNL0451
Bishop	11SLM7635	Tom's Place	11SLM5258
China Lake	11SMK4145		11SLM5258
ARIZONA (12)			
· Colorado City	12SUR2495	Littlefield	12STR4086
Flagstaff	12SVP4195	Mt. Trumbull	12STR9231
Fredonia	12SUR6489	Peach Springs	12STQ8134
Grand Canyon	125009790	Seligman	125002910
Holbrook	12SWP7663	Williams	125009201
Kingman	11SQJ6898	··· · · · · · · · · · · · · · · · · ·	
-			

*For Correlation with Fallout Pattern Estimates

.

UTAH (63) ,

.

**American Fork	12TVV3270	**Milford	12SUT2451
**Beaver	12SUT5637	**Minersville	12SUT3231
**Blanding	12SXS3465	**Moab	12SXT2671
**Bountiful	12TVA2626	**Modena	12STS4387
**Brigham City	12TVA1596	**Monticello	12SXS4693
Callao	12STV6920	**Mt. Carmel	12SUS5223
**Cedar City	12SUS1871	**Murray	12TVA2502
**Clearfield	12TVA1551	**Nephi	125702996
**Delta	12SUU4657	**0gden	12TVA1963
**Dragerton	12000.007	**Panquitch	125057387
**Duchesne	12TWV5145	**Paragonah	12SUS4494
**Enterprise	12STS6062	Park Valley	
**Fillmore	125008414	**Parowan	12SUS3990
Garrison	11SQP5613	**Payson	12TVV3733
**Green River	12SWU7316	**Price	12SWU1683
**Gunnison	12SVU2934	**Provo	12TVV4555
**Hanksville		**Richfield	12SVT0591
**Hatch	12SUS7368	**Salem	12TVV4334
**Heber City	12TVV6584	**Salt Lake City	12TVA2510
**Hurricane	12STS9716	**Santa Clara	12STS6412
Ibapah		**Spanish Fork	12TVV4540
Iosepa		**Springville	12TVV4846
**Kanab	12SUS6401	**St. George	12STS7110
**Kanarraville	12SUS0756	**Sunnyside	12SWU5278
**La Verkin	12STS9819	**Tooele	12TUV9087
**Layton	12TVA1946	**Tremonton	12TVB0318
**Logan	12TVB3121	**Vernal	12TXA2597
**Magna	12TVA0706	**Veyo	12STS6235
**Manti	12SVU7546	**Washington	12STS7712
**Midvale	12TVV2495	Wendover	11TQR5013
		•	

IDAHO (6)

Boise Burley Idaho Falls Malad City Pocatello Twin Falls

OREGON (2)

Burns Jordan Valley

**Stations previously sampled by EML. Will not be resampled.

.

•

•

NEW MEXICO (3)

Albuquerque Farmington Gallup

WYOMING (6)

Afton Evanston Kemmerer Rawlins Riverton Rock Springs

COLORADO (9)

Cortez Craig Durango **Grand Junction Meeker Montrose Rangely Rifle Telluride

.

.

**Stations previously sampled by EML. Will not be resampled.

.

-

.

.

.

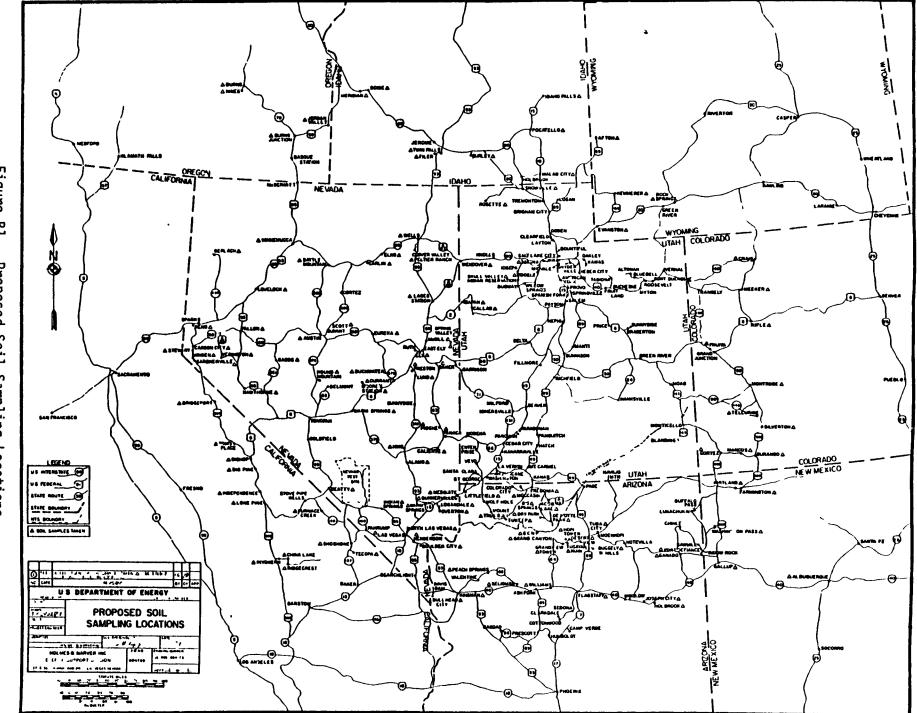


Figure B1. Proposed Soil Sampling Locations

- 77 -

APPENDIX C

PROJECT DIRECTIVE NO. 4 SOIL-SAMPLE-COLLECTION PROCEDURES

The purpose of the soil collection is to provide representative samples that can be used to measure the total or areal concentration of cesium-137 and plutonium-239+240 and the ratio of plutonium-240 to plutonium-239. These data can then be used to resolve the source of the radionuclides found at selected sampling sites. The sites are selected beforehand and permission to collect the soil samples arranged in advance of collection teams coming to the sites chosen. Clear directions for locating the sampling stations are provided by the <u>in situ</u> field crews.

Soil samples are obtained using a coring procedure that maintains the integrity of the core. The sides of the excavation must not be allowed to crumble into the hole, or cave in, or to slump or otherwise contaminate the core sample with extra soil or radioactivty. The greatest hazard in the procedure is contaminating subsurface soil with radioactivity from overlaying layers or from the surface layer itself.

The grassy-site soil-collecting procedure developed by the Environmental Measurements Laboratory (EML) has been mandated as the methodology to be followed. A total of 10 cores is to be collected from each sampling site. Each core is to be collected in four increments. In grass lawns that are heavily watered, the depth increments are to be 0 to 5, 5 to 10, 10 to 15 and 15 to 30 centimeters. In native pastures, the increments are to be 0 to 2.5, 2.5 to 5, 5 to 10, and 10 to 30 centimeters. Four packages of increments from 10 separate cores of soil are to leave each sample site. The labels on each package are to be identical with respect to soil-station identification, the only difference being in the depth increment on the label. A duplicate label is to be written, enclosed in a sealed plastic zip-lock baggie, and placed in each package before it is sealed.

Collection of Soil Cores

Core cutters are to be used at grassy stations. A topsoil cutter (8.9 centimeters in diameter) is used to remove a plug of sod and roots from the O to 5 centimeter increment in both lawns and pastures. In lawns the 0 to 5 centimeter sample is packaged. The plug is to be extruded from the cutter in pastures so the 2.5 to 5 centimeter increment can be cut off. The remaining 0 to 2.5 centimeter increment is packaged in pastures as an independent depth increment. The mid-length core cutter (8.9 centimeters in diameter) is to be used for taking the 5 to 10 centimeter increment, and the longest core cutter removes the 10 to 15 centimeter specimen. Insertion of the longer core cutters through the surface into the hole created by extraction of the first increment is the most critical step in the entire process. Dislodging any of the contaminated surface layer ruins the core for radionuclide estimation, and requires abandonment of the core and extraction of a new 0 to 5 centimeter increment at a different station-coordinate location. Fortunately the walls of the holes are compressed slightly when the corer is removed, so that the next longer corer generally slips down the hole without much friction or difficulty.

After removal of the 0 to 5, 5 to 10, and 10 to 15 centimeter increments, an 8.3 cm diameter barrel-type soil auger with an 9.4 centimeter maximum diameter cutting edge is inserted into the hole to take the 15 to 30 centimeter increment for lawns or the 10 to 30 centimeter increment for pastures. Wall compression also allows insertion of this slightly larger diameter auger into the hole without dislodging any significant amount of soil. Some augers available from or used by EML had slightly smaller cutting diameters of 8.9 cm or 9.1 cm. The appropriate areas for the different samplers and depth increments should be used in estimating the aerial concentration of the radionuclides. At the conclusion of the collection, there will be four separate composite packages of soil from 10 cores, one per depth increment.

Upon arrival at soil sites where soil cores are to be collected, the soil-collection team follows the directions to locate the sampling area and the <u>in situ</u> location is "walked over." The selected site should be representative of the total area and free of depressions where pooling of water could occur. An area 2 by 5 meters for the soil-core specimens is chosen. A line, 5 meters long, is laid out along which measurements are to be made to locate core specimens. Spacing of the potential core locations is to be at 45 centimeter invervals along the line.

A total of 10 cores must be collected to obtain the specified minimum area of 620 square centimeters. All ten core specimens, for a given depth increment, are composited into one package, making four packages per collection site.

Circumstances may require that more than ten cores be selected and sampled to bring back 10 incremental composite core samples. Large underground rocks, tree roots, caliche and other conditions may cancel completion of a 30centimeter-deep core extraction and require that a replacement core be chosen and extracted. When a hole is abandoned, all increments are to be returned to the hole in reverse collection order, to restore the core to its natural sequence, and the sod plug is to be replaced. The weight of ten cores of soil, all four packages together, should be in the range of 18 to 40 kilograms.

Soil is collected by pressing the topsoil cutter into the ground without tilting or rotating the cutter. In dense turf it may be advisable to drive the cutter by placing a 2" x 4" through the handle and driving the cutter down with a rubber mallet. The handle of the topsoil cutter is gently twisted to loosen the core, then the core cutter and soil increment are removed from the hole. The next longer length cutter is immediately inserted in the hole to reduce drying and crumbling of the soil while the increment from the higher increment cutter is being processed. The mid-length cutter for the 5 to 10 centimeter increment is utilized as described for the topsoil cutter. After the mid-length cutter is removed from the hole the long cutter is inserted to reduce evaporation and soil crumbs. The auger is placed in the hole when the last cutter is removed. Only slight downward pressure is needed on the soil auger because the cutting tips are sharpened, and they cut as the auger turns. The auger is then filled with soil, removed, and emptied. This is repeated carefully if needed. A dull, flat blade knife is useful in cleaning the auger of clay soil. When rocks or roots catch in the auger tips they may be cut through with patience, if they cannot be captured inside the auger, then the

- 80 -

hole is to be cleared with hammer and chisel or a new core selection made for another core. It is helpful to have a small plastic bucket for each core increment to be kept in until the success in extracting a complete soil core is known. No more than one core increment should be added to each of the buckets before they are transfered into the package for the 10-core composite increment at that collection station.

When the ten core specimens for a station depth increment are packaged, and an inside label enclosed with the increment, the end of the bag is folded over and stapled, the stapled fold is taped, and the site identification is written on the tape so the bags can be identified when they are stacked in storage. The plastic bags are placed in canvas bags for transportation to the processing station.

Holes are to be filled with soil and tamped to prevent accidents. When possible, soil as much like that removed is to be used. If a new grass cover is required at once, plugs from local sod around the edge of the site of the same species are to be taken and transplanted into the holes. In normal sod the grass will cover the bare spots in a few weeks.

Sampling Equipment for the Core Method

- Top Soil Cutters Nominal 2", 4", and 6" depth, 8.9 centimeter diameter. Made from 0.062" thick cold-rolled steel. One end sharpened in a lathe, the other end fitted with a welded D-handle.
- Auger Special order type No. R-HEO, 8.3 centimeter diameter, with T-handle and barrel closed to 12". The maximum diameter of the cutting edge should be 8.9 cm. (This measurement must be known for calculations of areal deposition.)

Vendor: Art's Machine Shop American Falls, Idaho 83211 The following auxiliary materials are normally used in the field:

Polaroid camera with film packs 35mm camera with film Heavy plastic bags for sample packages Canvas bags for shipping samples Tags for sample identification and shipping Felt marking pens 18" rule Heavy duty stapler and 1/2" staples Long, flat blade knife for removing cores from auger Measuring tape (50 ft.) cloth Compass File for smoothing nicks in top soil cutters Rubber mallet Plastic bucket (5 qt.) for each depth increment, in different colors Small spatula 16" long cold chisels Short handled, 2 lb. steel sledge hammer Cardboard labels for increments Plastic "baggies" for cardboard labels Safety glasses to wear when using the steel hammer and chisel

- 82 -

APPENDIX D

PROJECT DIRECTIVE NO. 4 SOIL-SAMPLE-PREPARATION PROCEDURE

The objective in soil-sample processing is the preparation of an increment sample into subsamples for gamma and plutonium analysis. These subsamples should be representative of the site and the soil depth level from which the increment sample was taken and not contaminated by material from another depth level within that site or by material from another site. Close attention must be paid to each step in this procedure to eliminate the possibility of crosscontamination. The three main sources of cross-contamination are

- Transfer by handling within the preparation laboratory
- Transfer by tools, equipment, or materials
- Transfer by airborne particles

The same procedures are followed for the preparation of both ORERP soils and quality-control soils.

A. Soil-Sample Identification

To assure that the soil samples are prepared and analyzed in a "blind" manner, the Desert Research Institute (DRI) randomly assigns each increment sample a sample-identification number taken from a serial list that is compatible with those used by the counting laboratory. These 5-digit sample numbers are used to identify each increment sample throughout the soil preparation and analysis operations. Quality-control samples are identified in a similar manner.

The following steps are followed by DRI when assigning the soil ID numbers.

NOTE: DRI is responsible for maintaining all records associated with soil-sample identification.

- Select soil from 5-7 collection sites at a time. Remove the increment samples (4 per collection site) from the cloth fieldcollection bags.
- 2. For each increment sample, record the original site-identification number, the depth level, and a randomly assigned soil-ID number.
- 3. Cross out or remove the original site-identification number from the sample bag. Write the new soil-ID number on the sample bag.
- 4. Repeat steps A.2 and A.3 for all the increment samples. Place the sample bags on shelves until needed for soil processing.
- 5. After 10-20 plutonium subsamples have been prepared, replace the temporarily assigned numbers (see section C) with randomized numbers.
- B. Soil-Sample Processing

The following are the steps for the initial processing of soil samples for the gamma and plutonium analyses.

NOTE: Surgical gloves shall be worn while handling the soil through the following steps.

1. Bring a sample bag into the soil-preparation area. Record the soil-ID number and the date on the Soil-Prep Worksheet (columns 1 and 2).

NOTE: All weights called for in this section shall be recorded in grams on the Soil-Prep Worksheet (see Figure D1).

2. For each sample bag, wipe the outside with a Kimwipe and discard the wipe. Knead the soil while it is still in the sealed bag so that any moisture condensed on the inside surface of the bag will be reabsorbed by the soil. Weigh the bag of soil and record the weight in grams in column 3 of the worksheet.

- Place the sample bag upside down in a 24- x 36-inch plastic transfer bag and cut off the bottom seam of the sample bag. (Save the seam for weighing later [see step B.8].)
- 4. Weigh an empty one-gallon can and, using a flow pen, mark this weight (tare weight) on the can along with the soil-ID number. Record the weight (worksheet column 6).
- 5. Empty the sample bag into the transfer bag and keep the empty sample bag for later. Any roots or rocks larger than approximately one inch in diameter should be thoroughly wire brushed, set aside, and saved. Break apart any clumps of grass and root mats and cut up the pieces into lengths of not more than 0.25 inches.
- 6. Working inside the transfer bag, use a scoop to transfer sufficient sample to fill the can approximately one-third full. Repeat step B.4 and fill additional tared cans until all the sample has been canned. Use a new line on the worksheet for each can of soil. (Take care to brush off any adhering dirt from the outside, bottom, and rim of the can before removing the can from the transfer bag.)

NOTE: Any soil falling <u>outside</u> of the transfer bag is to be discarded rather than risk cross-contaminating the sample by picking the soil up from the table or floor and adding the soil back to the sample.

- 7. Weigh each can, record the weight (worksheet column 7) and place the uncovered cans in a drying oven for at least 24 hours at 105°C.
- 8. Weigh the empty sample bag (including any pieces cut off the bottom), field-ID tags, tape, and discarded roots and rocks, and record the weight (worksheet column 4). (Save these materials. They will be sent to the Nevada Test Site for storage.)

NOTE: At this time a new sample bag may be processed. Make sure that any tools used are scrupulously cleaned and a new transfer bag is used for each new sample bag. Continue processing sample bags until the drying ovens are full.

 After 24 hours (minimum), remove each sample can from the oven, reweigh the can to obtain the sample dry weight and record (worksheet columns 9 and 10).

NOTE: If a sample is contained in more than one can, the weights of the individual cans should be totaled and recorded on one line of the worksheet. From this point in the procedure, all data for each sample ID number should be recorded on this "total" line.

- 10. Add 10 grinding balls to each can and put a lid and clips on each can. At this time make sure that the sample-ID number and the time are put on the <u>lid</u> with a flow pen since this information is frequently worn off the sides of the cans while in the ball mill. Place each can in the ball mill for three hours at 130 to 140 rpm.
- 11. Before beginning the sieving operation to obtain the less than 500micrometer fraction, line the hood with an opened 24- x 36-inch plastic bag and lay out clean tools in a large aluminum pan. (This step organizes the procedure and allows any spills to be caught.)

NOTE: All sieving and subsequent soil-transfer operations shall be performed in the hood. The sieving will be done in three stages, but the first stage is the most difficult since it deals with the largest volume of sample.

12. Tare two new cans and record the tare weight and the soil-ID number on the cans. (One can will be used to collect and store the fine fraction and the other will be used to collect the coarse fraction for the second ball milling.) Invert the sample can and completely remove the bottom with a can opener.

. .

- 13. Tape the collection pan to the bottom of the sieve. Place the sievecollection-pan unit upside down over the sample can. Quickly invert the can and empty the soil onto the sieve. Tape a lid to the sieve and agitate the entire sieve unit (collection pan, sieve, lid) on the shaker to separate the fine fraction (collected in bottom pan) from the coarse fraction.
- 14. After sieving, use tongs to remove the 10 grinding balls and temporarily store the balls in a small aluminum pan. If there is more than one can per soil sample, the 10 balls from the second can shall be added to the 10 balls from the first can. (In the event there are more than two original sample cans, discard anything over 20 balls.)
- 15. Transfer the fine and coarse fractions into their respective cans using funnels. Use additional tared cans for the fine fraction if necessary.
- 16. Once all cans from any one soil sample have been sieved and the coarse fractions from each have all been collected in the one tared can, weigh the coarse fraction and record (worksheet column 13). Add all the grinding balls, cover, clip and run the can in the ball mill for one hour.
- 17. Sieve, separate, weigh and record (worksheet column 14) as before. Remember to remove all the balls. Use these same balls over again for the third and last ball milling. Write the time, sample-ID number, and number of cans on the lid when returning the sample to the ball mill for the second or third run.
- 18. After the third ball milling, sieving, and separating, collect the coarse fraction (if any) in a tared Nalgene bottle; weigh and record (worksheet column 15). Discard the grinding balls; stir the fine material with a spatula; weigh and record (worksheet column 16). Firmly put a lid on the can and place the can in the ball mill for a few minutes to homogenize. Wash all hand tools used in the ball

milling and sieving operations in the sonic cleaner. Rinse and oven-dry the tools.

C. Preparation of Subsamples for Gamma and Plutonium Analysis

At this point of the soil-preparation procedure, the fine fraction from each sample is contained in one or more one-gallon cans. The fine fraction from each of the smaller samples can usually be contained in one can, but soil from the larger samples may require from 3 to 6 or more cans. This fine soil fraction is used to make up the subsamples for gamma and plutonium analysis.

Each subsample for gamma analysis contains 500 milliliters (approximately 700 grams) of soil from one sample. Each subsample for plutonium analysis is a composite of two samples and consists of 200.0 grams of soil.

The following steps shall be followed when preparing the gamma and plutonium subsamples for analysis. All soil transferring shall be performed in a hood.

NOTE: In the case of a multiple-can sample, the total quantity of soil to be removed from that particular increment sample must be divided by the number of cans comprising that sample in order to get equal amounts of soil from each can. In this way soil from all cans of a multiple-can sample is used to make the 500-milliliter gamma and 200-gram plutonium subsamples.

Gamma-Analysis Subsamples

 For each sample, make up two subsamples (A and B) in 500-milliliter Nalgene bottles from the fine fraction. Use the vibrating spatula to pack the soil in the bottles. If sufficient soil is not available for two 500-milliliter subsamples (approximately 700 grams each), make just one subsample (A). Label each bottle with the soil-ID number and an "A" or "B" as appropriate.

- 2. Store subsample A until notified by DRI to send a set of subsamples to Laboratory Operations for gamma analysis. Place subsample B in separate storage at the soil-preparation lab. Hold the rest of the fine fraction in inventory until further processing is required.
- 3. Upon notification by DRI, prepare a set of 700-gram subsamples including any quality-control samples identified by DRI. Send the subsample set to Laboratory Operations and record the date (worksheet column 19). A completed Laboratory Services Request (RE-1585) shall accompany each set of subsamples.

Plutonium-Analysis Subsamples

NOTE: DRI will send instructions to the Soil-Preparation Lab for preparing the plutonium subsamples. The composite subsamples will be assigned a temporary preparation number. These preparation numbers are temporarily assigned to the samples to trace them through the soil-preparation lab only. Permanent ID numbers are later assigned to these samples and to other samples included as quality controls. An example of the DRI instructions follows:

Please prepare the 200-gram subsamples defined below. Use the formula:

Add A grams of sample B to C grams of sample D and label the composite with the temporary preparation number E.

A	В	С	D	Ε
47.4	72027	152.6	72008	A1
35.8	72148	164.2	. 72154	A2
38.1	72045	161.9	72038	A3

4. Upon receipt of the plutonium-subsample instructions, take the appropriate cans from the shelves and group the cans forming each subsample together. Write the temporary preparation number on the lid of each of these cans. Repeat this step for all samples listed on the instructions.

- 5. Since many of the increment samples are contained in multiple cans, calculate the quantity of soil to be removed from each can of a multiple-can sample and write the results on the instruction sheet. Do this for all samples listed. Since this sheet will be referred to repeatedly during subsample preparation, place the sheet in the soil-preparation area.
- 6. Carry each subsample group of cans into the soil-preparation area and place the cans on the ball mill. Roll the cans for 4 minutes, remove the cans, and invert them several times to thoroughly mix the soil.

NOTE: Beginning 10/31/83, a daily log will be kept of all sample cans carried into the soil-preparation area. This will provide a verifiable checklist of samples entering the soil-preparation area.

- 7. Before proceeding, check the temporary ID number on the cans with the same number on the instruction sheet. Then check the 5-digit sample number on the cans with the number on the sheet. (This ensures that the aliquot taken is from the correct increment sample.)*
- 8. Place a 175-milliliter Nalgene bottle onto the continuous read-out digital scale and tare to 0.0 grams. Open the first can and recheck the sample number. Remove soil from the can with a vibrating spatula, and place the required aliquot of soil into the tared bottle. Check the weight with that listed on the instruction sheet.
- 9. Vacuum the can lid and rim and the spatula to remove any soil. Replace the lid onto the can. Before proceeding to another can, double-check the 5-digit sample number on the first can with the number listed in the instructions.

- 10. Retare the subsample bottle, which now contains the first aliquot of soil, back to 0.0 grams.
- 11. Open the next can needed for the plutonium subsample. Once again, compare the 5-digit sample number on the can with the number on the instruction sheet. Scoop the required amount of soil from the can into the retared bottle. If soil is being removed from more than one can (as in a multiple-can sample), retare the bottle and contents after each soil aliquot is added. Remember to perform step C.9 for all cans.

NOTE: If too much soil is added to the bottle during this step, discard the entire bottle and begin again at step C.8.

- 12. Screw the cap onto the plutonium-subsample bottle and reweigh to ensure that a complete 200-gram subsample has been achieved.
- 13. Label the bottle with the temporary ID number indicated on the instruction sheet and place the bottle on a storage shelf. Do this step for all bottles upon completion of the subsample preparation.
- 14. When DRI assigns a permanent 5-digit sample number to each subsample bottle, remove the temporary ID number and replace with the permanent sample-ID number. DRI shall introduce identical bottles of qualitycontrol soil at this time.
- 15. After the subsamples have been renumbered, send a set of bottles to Laboratory Operations. Quality-control soil shall be included in each set of 200-gram subsamples. A completed Laboratory Services Request (RE-1585) shall accompany each set of bottles.
- 16. After the plutonium subsamples have been sent to Mercury, the sample cans containing any remaining soil are shipped to the Nevada Test Site for storage at Building 2106 in Area 26.

D. Recordkeeping

There are five recordkeeping items used by the soil-preparation laboratory.

1. Daily Logbook

The soil-preparation-laboratory personnel keep a daily record of work performed. Information recorded includes which samples are being processed and at what stage the samples are in the preparation procedure.

2. Soil-Prep Worksheets (Figure D1)

The worksheets are used to record soil weights during the soilprocessing procedure. Completed worksheets are placed in a notebook, which is kept in the soil-preparation laboratory.

3. File Cards (Figure D2)

A file card, REECo form RE-0555, is kept for each sample-ID number generated by DRI. The cards are kept in numerical order beginning with 72001. This allows immediate and rapid access to each sample in the file. All sample numbers, including QA and "practice" samples, are included in this file.

The file cards contain the following types of information:

- sample- or subsample-ID number
- date processing started
- date processing completed
- final weights of both fine and coarse fractions
- date gamma subsamples sent to Mercury for analysis
- date gamma-analysis results are received from Mercury
- date plutonium subsamples prepared and sent to Mercury for analysis

- date plutonium-analysis results received from Mercury
- date sent to Nevada Test Site for storage
- notation indicating that only an "A" gamma subsample exists
- 4. Can Lids (Figure D3)

The fine soil fraction of each sample is stored in one or more onegallon cans. The following information is written on the can lids:

- sample-ID number
- number of cans per sample
- notation indicating that a coarse fraction does not exist
- notation indicating that only an "A" gamma subsample exists
- temporary preparation number

Materials and Equipment for Soil-Preparation Laboratory

Vacuum cleaner, 5-gallon capacity Sieves, 8" diameter, 32-mesh with pan and cover Electrician's tape for sieves, 1-1/2" width Spatulas, $3/4" \times 5"$ blade Surgical gloves Asbestos gloves, long sleeved Metal tool trays Aluminum trays, 7" x 10" and 13" x 21" Wire-bristle brushes Scissors Plant shears, 8" heavy blades, vertical action Heavy-duty can opener Vibrating spatula, Mettler Vibro-Spatula Vibrating shaker, Derrick Lab Test Polypropylene funnels, 8" diameter Tongs Soil scoop Triple beam balance, capacity 30 kg Platform scale, 5 kg, direct reading Detergent for sonic cleaner Sonic cleaner, 9" width, Bransonic B-52 with cover Paper towels and Kimwipes Ovens, capable of 105°C when loaded Ball mill Steel balls, 1" diameter Nalgene bottles, 500-ml and 175-ml Cans, 1-gallon, with lids and lid clips Flow pens Soil-Prep Worksheets Laboratory Services Request form (RE-1585) File cards (RE-0555)

SOIL PREP WORKSHEET

		1	2	3	.4	5 (4-3)	6	7	8 (7-6)	9	10 (1+6)	11 (0-10)	12 (11/10)	13	14	15	16	17 (15411-164)	18	19	
	and the second sec	\$, jo					, , , , , , , , , , , , , , , , , , ,	si di	2 013			- / - +	3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					/
2011		A Solution of the second	Construction Construction	an a	40, 400 - 10	to the second se	10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	Crawler Contraction	100 - 100 -	in the second se	olsterre Conten	6.1) 6.1) 6.1)	Car 11/1	2 (1) () () () () () () () () (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	noi tectore "She		20 - En 124	600 Can Can Can		/
12 115	0/	5209	· · ·	A	2.85		$\left[\mathcal{T} \right]$	1966	17		Í									Į	
7					184	1956		1358								. <u> </u>				{	
				<u> </u>		1952		1956									9/01	 	e 7	1	
TTAL	-2	5278	173	5036	840	6870	5030	5590	4 74	0290	6.1_	470	215	93	4647	2.00	0/3/		23	ł	
723/4	8/22	4824		1	284	1844	1	1663	IT]	
7				6	287	/939		1660							<u> </u>						
				د		1838		1653									0/		in	L	
teit	·-·>	4 824	156	4669	855	5520	4665	479.1	4120	5 39	15.1	116	58	25	4100	<u></u> [d]	9/2_		77	1	
7235	S	6102			283	1751	T	1524													
7				<u> </u>	186	1756		1534	ļ		.	<u> </u>		 	_		ļ			ł	
				<u> </u>	285	1752		1527	╎─┼─	_											
			ļ			1728		1503	1			 					•/			-	
TU:IL	هـ	6/22	234	<u>-967</u>	1135	6787	5852	6284	4949	903	19.2	143 _	675	112	4852	2.31	<u>k</u>		77-5		
723-1	9/i	115.37		11	283	1762	T	1.5.54	1		1										
/					281	1758	_ 	1550	┨												
					282			1553											-		
rore		45.87	145	YWZ_	946	5282	4436	14657	381/	625	16.4	304	12	-54	3777	.90	1/1-		74-	– ′	
		<u> </u>																			

72345	- 9.72-83 8.31-83 E	-	•	16 02 bo#/e
		Original Archiving Weight	17g (Fine)	1 Con
DATE OUT	REQUESTER (Organization, Name, Address)	REMARKS	DUE DATE	DATE RETURN
9-6-83	NTS	1-5TO M		9/26/83 137 C ⁵ Resuct
2-84	Composited	72345 + 72340	0= 192	
	Storage			
12-26-84	Composited Starage	72345+72340:327 36.29+1638		
12-28-84	Storage			

.

• · · • •

•

•

.

RE-0555 (3/80)

.

.

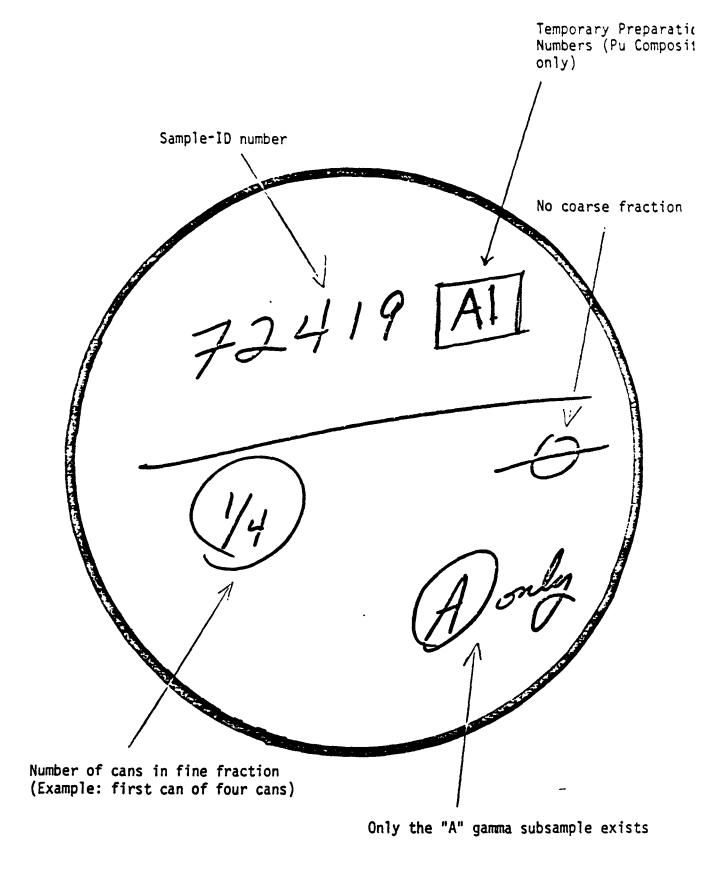
.

.

•

•

.


Figure D2.

RE-0555 File Cards

.

96 -

ł

APPENDIX E

PROJECT DIRECTIVE NO. 4 SPECTROSCOPIC ANALYSIS AND CHEMICAL SEPARATION PROCEDURES

SPECTROSCOPIC GAMMA ANALYSIS

- Each soil sample received from the soil-preparation laboratory will be dried, ground, homogenized and packaged in 500-ml polethylene bottles for gamma counting. The bottles are to be filled to a consistent volume.
- 2. Samples will be weighed before counting.
- 3. The samples will be analyzed on intrinsic-germanium detectors, initially for 300 minutes. The resulting data will be analyzed for cesium-137, radium-226 and -228, thorium-232, and potassium-40, and the analytical results will be reviewed by the laboratory project officer. Attention will be paid to the density of the sample, and corrections for varying absorption will be made by incorporating a factor obtained from calibration curves generated from soils of varying densities.
- 4. The gamma-analysis results will be reported directly to DRI, who will determine whether the statistical precision of the cesium-137 activity meets the project criterion. If necessary, the sample will be recounted for 1000 minutes and the new activity reported to DRI.
- 5. With each group of 8-12 samples, an internal laboratory-qualityassurance sample will be analyzed to maintain the required accuracy.
- 6. After analysis, the soil sample will be stored.

CHEMICAL SEPARATION OF PLUTONIUM

- 1. Samples to be chemically analyzed for plutonium will be received from the soil-preparation laboratory in 200-gram aliquots.
- The samples will be processed by leaching the plutonium from the soil with nitric and hydrochloric acids. The specific steps of the procedure are described at the end of this Appendix.
- 3. The plutonium will be electroplated on platinum disks for subsequent alpha-spectroscopy and mass-spectrometry analysis.
- 4. The plutonium activity of the discs will be counted for 1000 minutes by surface-barrier detectors that have active areas of 300 mm².
- 5. After data reduction and plutonium-activity calculation, the results will be reviewed by the laboratory project officer.
- 6. The following plutonium-analysis results will be reported to DRI with a copy going to EML:
 - a. The date of the radioassay, the counting time and the detector used.
 - b. The quantity of plutonium-236 added, corrected to the counting date.
 - c. The net counts in the plutonium-236 and plutonium-239+240 regions of the alpha spectrum, their Poisson uncertainties and the resolution of each peak.
 - d. The calculated dpm/g of plutonium-239+240 in the sample with an expression of uncertainty that includes uncertainty in calibration and chemical recovery.
 - e. The most current four primary or secondary detection-efficiency checks and background for each detector.

- 7. The platinum disks on which the plutonium has been deposited will be stored, and at the direction of the REECo Soil-Sample Project Director, will be shipped to the laboratory that will perform the massspectrometry analyses. Following mass isotopic analyses, the platinum disks will not be reused in this project.
- 8. The Desert Research Institute will administer the project's qualitycontrol program and will assign sample numbers of approximately 10 percent of the samples processed by REECo that will be used for qualitycontrol evaluations. The identification of these samples will not be known to REECo. In addition to the DRI selected QA samples, EML will submit reference soils and spiked samples to the REECo laboratory through DRI, for inclusion in the overall QA evaluation program.

PLUTONIUM ANALYSIS OF SOIL

Scope

Plutonium deposited in surface soils from worldwide fallout can be completely leached and analyzed to determine its concentration. Plutonium may not be completely recovered by the leach process from larger particles originating from the NTS but that will not adversely affect the final result. Primary plutonium analysis will be limited to the leach process described herein.

Principle

Plutonium isotopes are leached and equilibrated with plutonium-236 tracer with nitric and hydrochloric acids from soil samples 200 g in size. Subsequently, the plutonium isotopes are collected with iron hydroxide, further purified by ion-exchange, then finally electrodeposited on a platinum disc. The plutonium isotopes are measured by alpha spectrometry.

Special Apparatus

- Virgin platinum disks 17.6 mm dia. x 0.005 mm, mirror finish on one side
- 2. Electrodeposition plating cells
- 3. Ion-exchange columns
- 4. Double vented conical gravity funnels
- 5. Polyethylene tracer dispersing bottle

Special Reagents

 Plutonium-236 tracer: A solution in a dispensing bottle that has been standardized to about 10 dpm/g. The purity of the tracer has been measured by alpha spectrometry.

- 2. Fe⁺³ carrier (100-mg Fe/ml): Slowly dissolve 100 grams of Fe wire in 500 ml of concentrated HCl. Cool and add slowly 50 ml of concentrated HNO₃ with stirring. Cool and dilute to 1 liter with H₂O.
- 3. Standardized 0.1<u>N</u> NaOH.
- 4. Eluting agent: 0.4N HNO₃ 0.01<u>N</u> HF.
- 5. Anion exchange resin: Bio-Rad AG 1 x 4 (100-200 mesh, Cl⁻ form).
- 6. Methyl red indicator: Dissolve 100 mg of the dye in 65 ml of 95% ethanol and dilute to 1 liter with H_2O .
- 7. Phenolphthanlein indicator: Dissolve 500 mg of reagent in 100 ml of 95% ethanol.

Sample Preparation

Leach Technique

- Weigh 200 g of prepared soil into an appropriately sized beaker. Add a measured amount of plutonium-236 tracer solution (2-3 cpm) from the dispensing bottle.
- 2. Place a glass stirring rod in the beaker and cover with a watch glass. Immerse the beaker in an ice-water bath. Cautiously add 500 ml of concentrated HNO₃. Control sample foaming by the addition of a few ml of n-octyl alcohol. When the reaction ceases, cautiously add 150 ml of concentrated HC1. <u>DO NOT STIR</u>. Remove the beaker from the ice-water bath, allow the sample to stand at room temperature for 2-4 hours, then gradually heat the sample on a low temperature hot plate overnight. The temperature should be high enough so that refluxing occurs.
- 3. Evaporate the solution mixture to about 300 ml, add an equivalent amount of H_2O , cool and let settle. Filter through two 24-cm Whatman #42 filters on a Buchner funnel. Wash the residue consecutively with 100-ml

each of $7.5\underline{N}$ HNO₃ and H₂O. Collect the filtrate and transfer to a 3-liter beaker.

- 4. Transfer soil residue and filter back to the original beaker. Add 500 ml of concentrated HNO₃ and slowly add 150 ml of concentrated HCl. <u>DO</u> <u>NOT STIR</u>. Allow the mixture to react at room temperature for 1 hour. Heat on a hot plate overnight at reflux temperature.
- 5. Evaporate the filtrate from step 3 to reduce the sample volume.
- 6. Repeat steps 3 through 5 at least twice, making a total of 4 leachings and filterings. The leaching is complete when the soil appears to be white to gray in color. Retain the filter paper and soil residue.
- 7. Evaporate the combined leachates to about 300 ml; cover with a watch glass and boil to oxidize the organic matter under refluxing conditions.
- 8. Continue to boil and add concentrated HNO₃ in 10- to 20-ml increments as needed to maintain the volume at 300 ml, to avoid salting out, until all organic material is decomposed. If a precipitate is observed, TiO₂ is present in the sample. If this occurs, a fluoride collection of plutonium has to be performed rather than iron hydroxide described in the following steps. For the fluoride collection, follow Note #1.
- 9. Cool and dilute the solution with an equal volume of H_2O . Add 30 ml of 30% H_2O_2 to reduce Pu^X to Pu^{III+IV} .
- 10. Add 100 mg of iron-carrier solution and adjust to pH 8 by slowly adding NH_AOH . Heat until the precipitate coagulates.
- 11. Filter the precipitate on a 24-cm Whatman #42 filter contained in a double vented conical funnel. Wash the precipitate with 1.2N NH₄OH and discard the filtrate.

- 12. Transfer the filter containing the precipitate to the original beaker in Step #11. Add 200 ml of concentrated HNO₃, cover with a watch glass and heat on a medium-heat hot plate until the precipitate and filter decompose.
- 13. Cool, add 200 ml of H_20 and 30 ml of 30% H_20_2 . Neutralize with NH_4OH and adjust to pH 8. Heat to coagulate the precipiate.
- 14. Filter the precipitate as described in Step #11 and discard the filtrate.
- 15. Repeat Step #12.
- 16. Evaporate the sample to 100 ml, add an equal volume of water and filter the SiO_2 precipiatate onto a 24-cm Whatman #42 filter. Wash the precipitate with 1:1 HNO₃, collect the filtrate in a 1 liter beaker and reserve.
- 17. Transfer the filter and precipitate to a 250-ml glass beaker, dry at 100°C, and carefully heat to 400°C. Cool and transfer to a 250-ml Teflon beaker.
- 18. Add 25 ml of concentrated HNO₃ and 10 ml of concentrated HF to the residue in the Teflon beaker. Evaporate to dryness, repeat the addition of acids and evaporation two more times.
- 19. Add 25 ml of HNO_3 saturated with H_3BO_3 and evaporate to dryness. Dissolve the residue with 1:1 HNO_3 and combine with the filtrate from Step #16.
- 20. Evaporate the combined solution to about 200 ml. Cool to room temperature, transfer to a 250-ml graduated cylinder and record the volume.

- 21. Dispense two 100-microliter aliquots into 150-ml beakers containing 25 ml of water. Add 2-3 drops of 0.5% phenolphthlein solution. Titrate the two aliquots with standardized 0.1N NaOH to the phenolphthalein end point. Calculate the acid normality of the sample solution.
- 22. Return the sample from the graduated cylinder to the original beaker. Wash the cylinder with the amount of $1\underline{N}$ HNO₃ necessary to adjust the final normality of the sample solution to $8\underline{N}$ HNO₃.
- 23. Cool the sample to room temperature and add 1 g of hydroxylamine hydrochloride and stir until dissolved.
- 24. Heat the solution to 90°C and decompose all the hydroxylamine hydrochloride. (No further evolution of gases is observed.) Add 200 mg of sodium nitrite. Continue to heat until the evolution of nitrogen oxides ceases. Cool the sample to room temperature.
- 25. Prepare ion-exchange-resin column #1. (See Note #2). Wash about one-half of the ion-exchange resin into the sample and stir for 5 minutes. Transfer the sample and the resin to column #1.
- 26. Pass the solution through the resin beginning at full flow, 1 ml/min. Make certain that all the resin particles adhering to the beaker or resin funnel are washed into the resin bed with 8N HNO₃. Wash the column three times with 30 ml of 8N HNO₃. Allow the liquid to flow until the level reaches the top of the resin bed. Reserve the sample and wash effluent until the plutonium-236 tracer yield has been determined as satisfactory, after which it can be discarded.
- 27. Elute the plutonium with 200 ml of $0.4\underline{N}$ HNO₃-0.01<u>N</u> HF. Discard the resin.
- 28. Evaporate the eluate to dryness. Add 5 ml of HNO_3 and evaporate to dryness. Repeat the HNO_3 addition and evaporate two more times.

29. Dissolve the residue in 15 ml of 8N HNO₃, and repeat Step #23.

30. Repeat Step #24.

- 31. Prepare ion-exchange resin column #2. (See Note #3). Wash about one-half of the conditioned resin into the sample with $8N HNO_3$ and stir for 5 minutes. Transfer the sample and the resin to column #2.
- 32. Pass the solution through the resin bed at full flow, 1 ml/min. Make certain that all resin particles adhering to the beaker and column reservoir are washed into the resin bed with 8N HNO₃. Allow the liquid to flow until the level reaches the top of the resin bed. Discard the effluent.
- 33. Wash the resin with four 10-ml portions from a freshly opened bottle of HCl, and allow each addition to pass through the column until the level reaches the top of the resin bed. Wash the resin with three 10-ml portions of $8\underline{N}$ HNO₃ and allow each addition to reach the top of the resin bed. Discard the wash effluents.
- 34. Elute the plutonium with 200 ml of $0.4\underline{N}$ HNO₃ $0.01\underline{N}$ HF solution. Discard the resin.
- 35. Evaporate the eluate to dryness. Convert the residue to the chloride form by twice adding 1 ml of HCl and evaporating to dryness.

Plutonium Electrodeposition

- Add 1 ml of HCl to the residue and warm gently (50-60°C). Transfer the solution with a transfer pipet to an electroplating cell. Wash the beaker and pipet with three 1-ml portions of hot water and transfer to the cell.
- 2. Add 1 drop of 0.1% methyl red indicator. Add NH_4OH drop by drop until the solution turns yellow. Add a minimum amount of 1:5 HCl one drop at a time until the solution is red, then add 2 drops of 1:5 HCl in excess.

- 3. Dilute to 5 ml with water. Electroplate at a current of 1.2 amperes for about 1 hour.
- 4. At the end of the electroplating, wash down the cell walls with water and neutralize the electrolyte with 1 ml of NH_4OH . Discard the solution, dismantle the cell and rinse the electroplated disk with water and 95% ethanol.
- 5. Flame the disk over a burner to red heat. Cool. Count the disk on an alpha spectrometer. Calculate the plutonium-236 recovery and determine the activity of the plutonium isotopes.

Note #1 - Fluoride Collection of Plutonium

- 1. Cool the solution to room temperature and transfer to a 500-ml Teflon beaker with $\rm H_2O_*$
- 2. Add 1 g of hydroxylamine hydrochloride and stir until dissolved.
- 3. Add 10-ml portions of HF with stirring until all of the TiO₂ precipitate dissolves, then add 10 ml of HF in excess.
- Add 100 mg of purified yttrium carrier solution. See U.S. DOE Environmental Measurements Laboratory (EML) Procedures Manual, 1983, 26th Edition, Section E-Sr-01, for preparation procedure.
- 5. Allow the fluoride precipitate to stand for an hour.
- 6. Transfer the precipitate and solution to several 90-ml polyethylene centrifuge tubes and centrifuge for two minutes. Discard the supernatant.
- 7. With a plastic stirring rod, stir the precipitate in each centrifuge tube thoroughly with 10 ml of 1:1 HNO₃ and 10 ml of HF and let stand for about 5 minutes. Remove the plastic stirring rod and wash with H_2O .

- 8. Centrifuge for two minutes and discard the supernatant.
- 9. Add 30 ml of saturated boric-acid solution, stir and add 25 ml of HCl to each centrifuge tube. Stir with plastic stirring rod to dissolve.
- 10. Transfer and combine the solutions from the centrifuge tubes in the original Teflon beaker, then continue with Step #9 of <u>Sample</u> Preparation.

Note #2 - Column #1 Preparation

The column is described in <u>Specification G-05</u> of the U.S. DOE Environmental Measurements Laboratory Procedures Manual, 1983, 26th Edition. Position a plug of glass wool at the base of the column. Add 25 ml of wet resin, BioRad-Ag 1 x 4 (100-200 mesh, Cl⁻ form). Wash the resin with 50 ml of 0.4N HNO₃ -0.01N HF solution. Pass 250 ml of 8N HNO₃ through the resin or a sufficient volume to remove all chlorides as shown by a negative silver-nitrate test.

Note #3 - Column #2 Preparation

The column is described in <u>Specification G-05</u>, except that the outside diameter is 11 mm. Add 5 ml of resin and condition the resin as outlined in column #1.

D909G

APPENDIX F

PROJECT DIRECTIVE NO. 4 QUALITY ASSURANCE

The Quality-Assurance Program for the analyses performed on soil samples collected in support of dose assessment in the extended region contains quality-control procedures intended to verify that the processes--soil preparation, cesium radioassay, plutonium analysis and isotope mass spectral analysis--are being performed to specified standards, and additional qualityassessment procedures to provide necessary information on the overall quality of the results. Quality assurance includes both quality control and quality assessment, as well as use of standardized techniques and verification of performance of critical steps.

The entire analytical process, beginning with soil preparation, is performed on soil that has had location and depth information replaced by identification numbers assigned at random. Quality-control samples are also assigned numbers at random and packaged in such a way that they are indistinguishable from other soil samples.

Soil Preparation

At the soil-sampling sites, four plastic bags are filled with the increments of the 10 soil columns, labeled, and placed in a cloth bag for shipment to Las Vegas. Appendix C describes this procedure. The unopened cloth bags are stacked in the storage area of the soil-preparation facility until needed.

The cloth bags are typically grouped for convenience into sets of six bags for entry into the soil-preparation laboratory. The 24 plastic bags of soil fill three shelves in the facility. Up to three sets of cloth bags are set up at a time, depending on the available shelf space. The first step is to assign laboratory numbers at random to the logbook. entries for the 24 plastic bags. The cloth bags are then opened, and the plastic bags from each sampling site are arranged in vertical increment order to ensure that the correct laboratory number will be applied to each bag. Relabeling the bags is a three-person operation conducted by DRI. One person removes the identifying tag from the bag and tapes over the label, the second person reads the laboratory number from the logbook, and the third person writes the number on the tape and reads it back for verification. Depending on convenience, either the first or third person places the relabeled plastic bags on the shelves, making sure bags from the same sampling site are not placed together.

The logbook entries are signed by the DRI personnel involved in the process. The logbook is kept at DRI, a copy is kept at DRI in a fireproof safe, and another copy is sent to EML. Appendix D describes the soil-preparation procedure.

Blank soil from EML is assigned a random number and inserted into the soilpreparation stream at a rate of about 4 percent to check for contamination in the soil-preparation facility. If the cesium-137 content of the blank soil is greater than 2.33 times its counting uncertainty, the blank sample is recounted. If the cesium-137 activity of the recount is not significantly different from zero, all samples between the last acceptable analysis of the blank soil and the next acceptable analysis of the blank soil will be recounted. If the cesium-137 value of the recount is still greater than 2.33 times its counting uncertainty, data from all samples processsed in the soil-preparation laboratory between the last acceptable analysis of the blank soil and the next acceptable analysis of the blank soil are suspect and must be qualified. The Project Manager, upon the recommendation of the Scientific Director, may decide to discard these data and to recollect and reanalyze new soil samples. The probability of incorrectly rejecting an acceptable preparation of blank soil, a, is set at 0.01. This determines the selection of the 2.33 criterion.

Gamma Spectral Analysis

The general procedure for the gamma spectral analysis of the soil sample for cesium-137, as given in Appendix E, was approved by EML. Since the counting geometry used by REECo differs from that used by EML, a series of interlaboratory comparisons of typical soil samples is being conducted to calibrate the REECo system against the EML system and vice versa. This will assure that the analyses now being made and the 1979 EML Utah study are consistent. Appropriate corrections will be made if necessary to normalize the REECo results to EML standards. All cesium-137 data will be decay corrected to January 1, 1983.

A large amount of soil was collected in Utah, pulverized and carefully homogenized to serve as a quality-control standard sample. It was then aliguoted into bottles for gamma spectroscopy and for plutonium analysis. The bottles prepared for gamma analysis are randomly inserted in the process stream at a frequency averaging 10 percent. For each of cesium-137, potassium-40, radium-226, and the average of thorium-228 and radium-228, there is a reference-soil mean and standard error. If the difference between a measured value and its mean is greater than 2.50 times the standard deviation of that difference, then all samples radioassayed since the last acceptable analysis of the reference soil and before the next acceptable analysis of reference soil will be recounted and the original data disregarded. The probability, a, of incorrectly rejecting a radioassay of reference soil is .05 under the assumption of joint independence of isotope concentrations. The assumption of joint independence is physically reasonable for several pairs of radionuclides. The correlation between those pairs of radionuclides for which joint independence fails to hold is positive. That will result in a smaller true a than the a given.

The natural activity of the blank soil will also be used in a similar manner to test the reliability of the gamma spectrometric measurements because a mean and standard deviation of those activities will also be available. As part of quality assessment, DRI will also submit blind duplicate aliquots of samples, selected at random, for radioassay at a frequency of 10 percent. The results of these duplicate analyses will provide an estimate of the combined uncertainty of homogeneity of prepared soil samples and precision of analysis. The information gathered in both programs will provide a statistical assessment of the quality of the final data set.

There are quality-control as well as quality-assessment aspects to submission of duplicate aliquots. If two aliquots differ by more than 2.50 times the standard deviation of their difference in cesium-137, potassium-40, radium-226, or the average of radium-228 and thorium-228, then both aliquots will be recounted. The probability, α , of erroneously deciding that the aliquots are different is .05 under the assumption of joint independence of isotope concentrations.

If the recounting still yields values outside the acceptance region, then the presumption is that the soil mixture was not sufficiently homogenized. New aliquots will be prepared and counted, and the old data will be disregarded. In addition, the soil samples on either side of the suspect sample in the soil-preparation stream will have duplicate aliquots counted. On the other hand, if the recounted aliquots do agree, the older data will be disregarded, and the samples in the sample-counting stream on either side of the aliquot which yielded significantly different results upon recounting will be recounted. The record will show what samples have been disregarded and why.

Another dimension of quality control for gamma spectral analysis is based upon expected physical relationships between the activities of samples representing different depth increments of the same soil core. It does not operate in the processing stream because the samples from a single core are usually counted at different times and because some of the information necessary for the interpretation will not be available until a substantial number of samples has been analyzed. The tests used can justify questioning the analyses of a single sample or several samples from the same core. There are three conditions which will be used to flag a sample analysis or set of sample analyses as suspect:

- The cesium-137 activity in the soil core from a given site fails to decrease with depth in the soil and to approach zero at a depth of 30 centimeters, possibly indicating a poor analysis, a mix-up in sample identification, or a disturbed sampling site.
- 2) The integrated cesium-137 deposit in a soil core is (a) less than 60 percent of that expected from global fallout, or (b) differs by more than 30% from that predicted by the in situ analysis for that site using the measured depth profile. The expected cesium-137 from global fallout can be estimated from average annual precipitation as discussed in the paper, "Radiation Exposure in Utah from Nevada Nuclear Tests," by H. L. Beck and P. W. Krey, found in Science, April 1, 1983, pages 18-24, which gives the expected relationship for cities in Utah. This exact relationship is not expected to be valid for other parts of the Phase II region, but similar relationships can be derived from the soil data in a manner similar to that used in EML-400* and should provide global fallout estimates of about [±] 13 percent (1 S.D. as was the case for Utah).
- 3) The variation of natural gamma activity with depth in the soil is inconsistent with the internal norms established by estimating the empirical distributions of the variance of natural activity within a soil core.

When the results of the natural radionuclide measurements for one or more samples in a core fall outside this range of acceptability, these data are suspect, particularly if the corresponding cesium-137 analyses are anomalously high or low in the same direction (refer to

^{*} Krey B. W. and H. L. Beck, "The Distribution Throughout Utah of 137 Cs and 239+240 Pu from Nevada Test Site Detonations," November 1981. (DOE/EML-400)

test number 1). The logic is that a measurement that gives suspicious natural radionuclide results might also provide suspect cesium-137 results.

Once a sample result or set of results is flagged as suspicious by one or more of the above tests, a complete review of the sample collection, preparation, and analysis history will be made to search for errors in weighing, transcription, or calculations. If the suspicion remains, the aliquots of the suspicious sample or samples should be recounted, assuming a duplicate analysis has not already been done. If the recount agrees with the original analysis and test 3 was failed, new aliquots should be analyzed. In any case, the difference between recounts of normal-looking samples versus "flagged" samples will provide an assessment of any possible biasing. If, at the end of the analyses for cesium-137, such a bias appears to have occurred, additional "normal" samples will be randomly selected and recounted.

Plutonium Analysis

The procedure for the radiochemical analysis of plutonium was specified by EML and is contained in Appendix D. Ten soil samples are batched and processed together by the radiochemist. In each batch will be two of three standard soil samples. A blank sample (containing natural activity, but no plutonium) and one of the standards were supplied by EML. The other standard soil was collected in Southern Utah. As part of the quality assessment, the results from the duplicate aliquots will indicate the homogeneity of the plutonium in the prepared soil and precision of plutonium analysis, while the results from all the standard soils and blanks will provide a statistical assessment of the overall quality of the plutonium analyses.

Some quality-control checks, during the plutonium radiochemistry analysis, affect individual samples and others affect batches of samples. Any sample with a chemical tracer yield of less than 30 percent will be discarded, and a new aliquot will be analyzed.

If the resolution of the plutonium-alpha spectrum is greater than 80 keV at full width half maximum, the sample should be recounted. If the second measurement confirms the poor resolution (> 80 keV), the data are unacceptable and additional chemistry will be performed.

If the alpha spectrum contains peaks of other radionuclides in the 5 to 6 MeV energy range, the data are unacceptable and further chemistry is required. All samples will be alpha counted twice, each time for 1,000 minutes, to provide improved precision of analysis. If the difference between the two concentration estimates is larger than 1.96 times the standard deviation of the difference ($\alpha = .05$) this will result in recounting the platinum disk. If the recount fails to agree with either of the first two counts, the data will be rejected and a new aliquot of soil will be analyzed for plutonium. The distribution of these duplicate counts will provide an assessment of the quality of the alpha-counting step.

If the results of the plutonium analysis of the standard soils and the blank in a batch fall outside the range of acceptability, all samples in the batch will be realiquoted and analyzed, and the original data will be discarded. The probability levels for the tests will be adjusted, depending on the presence or absence of a blank sample, so the probability, α , of incorrectly rejecting a batch is .05.

Let X_i and S_i be the value and counting error of the ith standard soil which has mean value \overline{X}_i and standard error $S_{\overline{X}_i}$ for i equal to 1 or 2. The tests to be applied are:

- 1) Reject the batch if $|\bar{X}_{i} X_{i}| > \kappa_{1} (S_{i}^{2} + S_{\bar{X}_{i}}^{2})^{1/2}$ for i = 1 or 2.
- 2) Reject the batch if $\bar{X}_1 X_1 > K_2 (S_1^2 + S_{\bar{X}_1}^2)^{1/2}$

and

$$\bar{x}_2 - x_2 > \kappa_2 (s_2^2 + s_{\bar{\chi}_2}^2)^{1/2}$$

3) Reject the batch if $X_1 - \bar{X}_1 > \kappa_2 (S_1^2 + S_{\bar{X}_1}^2)^{1/2}$ and $X_2 - \bar{X}_2 > \kappa_2 (S_2^2 + S_{\bar{X}_2}^2)^{1/2}$

4) Reject the batch if the value obtained for the blank is more than K_3 times the estimated uncertainty.

	Blank	Blank
	Present	Absent
κ ₁	2.57	2.49
к ₂	2.33	2.23
к ₃	2.33	

Invoking the same logic as described for the cesium-137 radioassay, quality control may require analysis of a new aliquot when one of the following conditions exists:

- The integrated plutonium-239+240 deposit in the soil core from a given site is less than 60 percent of the expected global fallout value for that site. The expected global plutonium deposit can be derived from the expected global cesium-137 deposit since the ratio of the two is well known (see EML-400).
- 2) The cesium-137/plutonium-239+240 activity ratio of a sample is greater than 70 in one of the two depth increments of a single core.
- 3) The cesium-137/plutonium-239+240 activity ratio of the next lower soil depth increment increases by more than 50 percent.

As in the case of cesium-137 analyses, once a sample result or set of results is flagged as suspicious by one or more of the above tests a complete review of the sample collection, preparation, and analysis history will be made to search for errors in weighing, transcription, or calculations. This procedure will be followed before reanalyzing any samples due to any of the quality-control steps in this plan. If suspicion remains, a new aliquot will be analyzed.

Plutonium Mass Isotopic Analysis

The plutonium mass isotopic analyses will be performed under contract by the Pacific Northwest Laboratories, a recognized expert facility for these measurements. As part of the quality assessment, the global plutonium inferred from the results of the duplicate aliquots will indicate the overall precision of the mass isotopic and plutonium analysis, integrating all the sources of uncertainty from sampling the soil to the final mass determination. Similarly, the mass isotopic results of the standard soil samples processed through the radiochemistry will provide data to assess the precision of the mass isotopic results of a typical soil sample.

The only quality-control procedure specifically for mass isotopic analysis will be submission at a rate of about 6 percent of platinum disks, indistinguishable from routine samples, onto which standard solutions of plutonium with a known mass isotopic content (traceable to the National Bureau of Standards) have been electroplated. These disks will be supplied by EML.

Although the precision of the plutonium mass isotopic analysis is usually less than $\frac{1}{2}$ 1 percent and the accuracy greater than 99 percent, this program does not require results of such high quality. Consequently, if the results of the standard sample are greater than $\frac{1}{2}$ 5 percent of the calibrated value, all the platinum disk samples that were analyzed in the same batch or since the last and next acceptable analyses of a standard sample should be realiquoted and reanalyzed.

Additional Quality Assessment

In addition to the above program, EML has collected and will independently analyze soils from 13 of the sites sampled by REECo. The comparision of the results from this duplicate site sampling will provide an independent assessment of the cumulative quality of the entire soil-collection, soilpreparation, and soil-analysis program. Similar data will also be obtained from a comparison of the REECo and EML results for the six sites previously sampled by EML in 1979 and resampled by REECo in 1983.

•

,

. •

APPENDIX B

List of Potential Sampling Sites

. .

Appendix B. List of Potential Sampling Sites

This table lists all the potential sampling sites identified by DRI as well as alternative sites chosen by LLNL and REECo and the five EML sites resampled by the ORERP. The sites sampled in 1986-87 are listed after the 1982-85 sites.

The information in the numbered columns is as follows:

Column 1 gives the <u>in situ</u> measurement of ¹³⁷Cs (in nCi/m²). Column 2 shows where soil samples were collected. Column 3 shows which sites were submitted for gamma-ray spectrometry. Column 4 shows which sites were submitted for plutonium analysis. Column 5 shows which sites were submitted for isotope mass spectroscopy.

ID		Locatio	n	1	2345
AF01	Talmage	UT	private lawn	38	хххх
AF02	Ashley NF	UT	Bennion Park	172	XXX
AF03	Ashley NF	UT	Jefferson Park		
AF04	Talmage	UT	private lawn	34	х
AF05	Talmage	UT	private lawn	37	xxxx
AF06	Ashley NF	UT	Mill Park	214	X
AF07	Bridgeland	UT	private lawn	32	
AF08	Bridgeland	UT	private lawn		
AF09	Arcadia	UT	private lawn	55	х
AF10	Arcadia	UT	private lawn		х
AF11	Upalco	UT	private lawn	23	х
AF12	Altonah	UT	private lawn	31	Х
AF13	Ashley NF	UT	Center Park	170	Х
AF14	Mt. Home	UT	private ranch	45	хххх
AF15	Ashley NF	UT	Long Park		
AF16	Altonah	UT	private farm	62	Х
AF17	Altonah	UT	high school		
AS01	Farmington	NM	Fairgrounds Park	48	ХХ
AS02	Farmington	NM	Jaycee Park	20	
AS03	Farmington	NM	private lawn	35	х
AS04	Kirtland	NM	private lawn		
AS05	Kirtland	NM	private lawn	32	Х
AS06	Cortez	CO	Montezuma Park	34	хххх
AS07	Cortez	CO	Cortez Park	30	
AS08	Mancos	CO	private lawn	46	хх
AS09	Mancos	co	private lawn		
AS10	Durango	CO	Old High School Park	34	хххх
AS11	Durango	со	Greenmount Cemetery	34	Х
AS12	Durango	co	private lawn	29	
AS13	Silverton	co	County Courthouse	50	хххх
AS14	Silverton	CO	private lawn	76	х

AS15	Telluride	<u> </u>	mmillion lowe					
AS15 AS16	Telluride	CO	private lawn					
AS10 AS17	Montrose	CO CO	private meadow	60	Х			
AS17 AS18	Montrose		Post Office	38	.,			
AS18 AS19	Montrose	CO	Cedar Cemetery	44	Х			
AS19 AS20	Montrose	CO	Buckley Park Lions Park	28	.,	.,		
AS20 AS21	Fruita	CO CO		37	X		.,	.,
AS21 AS22	Fruita		Fruita Junior High	40	Х	Х	Х	Х
AS22 AS23	Rifle	CO CO	Public Library	39				
AS23 AS24	Rifle	CO	private lawn	33				
AS24 AS25	Meeker	CO	Rifle Junior High City Park	44	Х			
AS25 AS26	Meeker	co	County Courthouse	51 51	v	v	v	v
AS27	Craig	co	Craig City Park	84				X X
AS28	Craig	co	Yampa School	49	X		Λ	Λ
AS29	Green River (?)		[records lost]	48	~	Λ		
AS30	Green River (?)	WY	[records lost]					
AS31	Rock Springs	WY	County office	34				
AS32	Rock Springs	WY	Bunnings Munic. Park	36	v	v	v	х
AS33	Evanston	WY	County Courthouse	48	Λ	Λ	Λ	л
AS34	Evanston	WY	City Cemetery	28				
AS35	Evanston	WY	Hamblin City Park	4 9	x	x	Х	
AS36	Kemmerer	WY	Golf Course	77				х
AS37	Kemmerer	WY	Cemetery		Λ	Λ	~	Λ
AS38	Kemmerer	WY	Triangle Park	34	x			
AS39	Afton	WY	City Park	71	~			
AS40	Afton	WY	Cemetery	65				
AS41	Afton	WY	U. of W. Res. Ctr.	72	x	x	х	x
AS42	Idaho Falls	ID	Highland Park	17		••		••
AS43	Idaho Falls	ID	Pinecrest Muni. G.C.	48	x	x	х	x
AS44	Idaho Falls	ID	Curley Park	42	•••	••		••
AS45	Idaho Falls	ID	Rose Hill Cemetery	37				
AS46	Pocatello	ID	Alameda Park	39				
	Pocatello	ID	Raymond Park	51				
AS48	Pocatello	ID	Mt. View Cemetery	44				
AS49	Pocatello	ID	Memorial Park	51				
AS50	Pocatello	ID	Caldwell Park	57	х	х	х	х
BA01	Seattle	WA	Volunteer Park	51				
BA02	Seattle	WA	Woodland Park	72	х			
BAO3	Seattle	WA	Wash. Park Arboretum	52		х	х	Х
BA04	Seattle	WA	Leschi Park	43				
BA05	Seattle	WA	Seward Park	25				
BAO6	Seattle	WA	Lincoln Park	52				
BA07	Seattle	WA	Lincoln Park					
BA08	Medford	OR	McLoughlin Jr. H.S.	36				
BA09	Medford	OR	Medford H.S.	30	Х			
BA10	Medford	OR	private lawn	33				
BA11	Medford	OR	Hawthorne Park	39	Х	х	Х	Х
BA12	Medford	OR	private lawn					
BA13	San Francisco	CA	Alta Plaza Park	24	Х	Х		
BA14	San Francisco	CA	Jefferson Square					

	/				
BA15	San Francisco	CA	Mission Dolores Park	23	хххх
BA16	San Francisco	CA	Garfield Square	18	
BA17	San Francisco	CA	Franklin Square	24	
BA18	Long Beach	CA	Recreation Park	23	ХХ
BA19	Long Beach	CA	Bixby Park	17	
BA20	Long Beach	CA	Bluff Park	16	Х
BA21	Los Angeles	CA	Griffith Park G.C.		
BA22	Los Angeles	CA	Griffith Park G.C.		
BA23	Los Angeles	CA	Griffith Park P.A.		
BA24	Los Angeles	CA	Rancho Park		
BA25	Los Angeles	CA	Holmby Park	21	
BA26	Los Angeles	CA	Dickson Plaza, UCLA		
BA27	Los Angeles	CA	Dickson Plaza, UCLA		
BA28	Los Angeles	CA	Brand Park		
BA29	Los Angeles	CA	N. Hollywood Park	21	хххх
BA30	Los Angeles	CA	Reseda Park	16	XXXX
BA31	Los Angeles	CA	Lincoln Park	16	
BA32	Los Angeles	CA	MacArthur Park		
BA33	Los Angeles	CA	Lafayette Park	26	
BE01	Furnace Creek	CA	private ranch	21	хххх
BE01 BE02	Furnace Creek	CA	golf course		
BE02 BE03	Beatty	NV	private lawn	23	х
BE03 BE04	Pahrump	NV	private lawn	23	^
BE04 BE05	Pahrump	NV	private lawn		
	-		desert SE of town	35	
BE05A	Pahrump	NV			VV
BE06	Shoshone	CA	private lawn	27	хх
BE07	Shoshone	CA	marsh area		V
BE08	Tecopa	CA	field N of town	30	X
BE09	Bullhead City	AZ	Davis Camp Park	28	XX
BE10	Indian Springs	NV	private lawn	32	x
	9 not used	~ .			
BE20	Big Pine	CA	private lawn		
BE21	Big Pine	CA	Unified School	19	X
BE22	Bishop	CA	Bishop High School	21	XXXX
BE23	Bishop	CA	private lawn	20	х
BE24	Bishop	CA	private lawn		
BE25	Independence	CA	County Courthouse	17	ХХ
BE26	Lone Pine	CA	high school	18	Х
BE27	Lone Pine	CA	Inyo Elem. School	20	Х
BE28	Ridgecrest	CA	Ridgecrest City Park	3	Х
BE29	China Lake	CA	Murray Junior High	12	ХХ
BE30	Inyokern	CA	Inyokern Park	16	Х
BE31	Beatty	NV	private pasture		
BE32	Beatty	NV	private pasture	40	хххх
BE33	Carver's	NV	private ranch		
BE34A	Carver´s	NV	private ranch	16	
BE34B	Carver's	NV	private ranch	37	хх
BE35	Moapa	NV	private lawn	7	
BE36	Glendale	NV	private lawn	?	
BE37	Alamo	NV	private lawn	?	хххх
			• • • • • • • • • • • • • • • • • • • •		

			·		
BE38	Alamo	NV	private lawn	?	ХХ
BE39	Alamo	NV	private lawn	?	ХХ
BE40	Alamo	NV	private property	?	ХХ
BF01	Bluebell	UT	private lawn	50	ХХ
BF02	Bluebell	UT	private lawn		
BF03	Arcadia	UT	private lawn	48	хххх
BF04	Arcadia	UT	private lawn		
BF05	Altonah	UT	private lawn	41	хххх
BF06	Altonah	UT	private farm	73	X
BF07	Altonah	UT	private lawn		
BF08	Altonah	UT	private pasture	36	х
BF09	Altonah	UT	private lawn	57	X X
BF10	Duchesne	UT	private farm	40	XXXX
		WY			
BF11	Riverton		Old Riverton H.S.		х
BF12	Riverton	WY	private lawn		
BF13	Riverton	WY	private lawn	35	XXXX
BF14	Rawlins	WY	St. Joseph Rectory	52	X
BF15	Rawlins	WY	private lawn	41	хххх
BF16	Rawlins	WY	Penitentary	32	
BF17	Upalco	UT	private lawn	51	Х
BF18	Upalco	UT	private pasture	51	х
BF19	Upalco	UT	private lawn	45	хххх
BF20	Upalco	UT	private lawn	27	Х
BF21	Bluebell	UT	private lawn	32	Х
BF22	Bluebell	UT	private lawn	39	хх
BF23	Bluebell	UT	private pasture	34	Х
BF24	Bluebell	UT	private yard	39	Х
BF25	Altamont	UT	private lawn	31	Х
BF26	Altonah	UT	private lawn		
BF27	Mountain Home	UT	private lawn	43	х
BF28	Mountain Home	UT	private lawn	51	Х
BF29	Mountain Home	UT	private lawn	35	
BF30	Talmage	UT	private field	38	х
BF31	Talmage	UT	private pasture	40	х
BF32	Talmage	UT	private pasture	57	X
BF33	Talmage	UT	private hayfield	4	
DZ01	Baker	NV	Ranger Station	52	хххх
DZ02	Baker	NV	Lehman Caves		
DZ02	Ely	NV	City Park		
DZ03A	Ely	NV	County Courthouse	30	x
		NV	Ranger Station	62	xxxx
DZ04	Ely			99	XX
DZ04A	Ely	NV	Ranger Station		^ ^
DZ05	Ely	NV	across from H.S.		V V V V
DZ05A	Ely	NV	across from library	42	хххх
DZ06	Ely	NV	private pasture		
DZ07	Ely	NV	Cemetery	40	х
DZ08	McGill	NV	private lawn		
DZ09	McGill	NV	private lawn		
DZ09A	McGill	NV	private lawn	86	хххх
DZ10	Ibapah	UT	private pasture	108	хххх

DZ11	Ibapah	UT	private pasture	80	Х	
DZ12	Callao	UT	private ranch	66	x	
DZ13	Spring Valley	NV	private ranch		Χ	
DZ14	Spring Valley	NV	private pasture	48	х	
DZ15	Lages Station	NV	private lawn	58	x	
DZ16	Wendover	UT	private lawn	45	xxxx	
DZ17	Tooele	UT	City Hall	58		
DZ18	Tooele	UT	Tooele School	46	хххх	
DZ19	Tooele	UT	Cemetery	64	X	
DZ20	Dugway	UT	private pasture	119	x	
DZ21	Iosepa	UT	private pasture	53	XXXX	
EML3	St. George	UT	Old park	40	XXXX	
E20A	Kanab	UT	private lawn	46	хххх	
E26A	Parowan	UT	private lawn	46	хххх	
E35	Cedar City	UT	Railroad Station	32	хххх	
E132	Vernal	UT	Central Elem. School	37	хххх	
FM01	Kingman	AZ	County Courthouse	41	хххх	
FMO2	Kingman	AZ	Metcalf Park	22	х	
FMO3	Valentine	AZ	private ranch	13		
FM04	Valentine	AZ	private ranch	43	Х	
FM05	Peach Springs	AZ	open range	51	Х	
FMO6	Seligman	AZ	private ranch	57	Х	
FM07	GCNP, S. Rim	AZ	Hopi Tower	115	Х	
FM08	GCNP, S. Rim	AZ	Railroad siding	54	x	
FM09	GCNP, S. Rim	AZ	Clinic	107	Х	
FM10	GCNP, S. Rim	AZ	Grandview Tower Rd.	82	хх	
FM11	GCNP, S. Rim	AZ	Buggeln Hills P. A.	99	X	
FM12	GCNP, S. Rim	AZ	Tusayan ruin	95	x	
FM13	Tuba City	AZ	T.C. Recovery Center	14		
FM14	Tuba City	AZ	private lawn	23	хххх	
FM15	Window Rock	AZ	BIA Admin. Building	11		
FM16	Gallup	NM	Courthouse	35	XXXX	
FM17	Holbrook	AZ	old courthouse	25	XXXX	•
FM17A	Joseph City	AZ	private lawn	32	X	
FM18	Crystal	NM	Washington Pass	90	X	
FM19	Crystal	NM	Mountain meadow	62	Х	
FM20	Crystal	NM	Wash. Pass summit Sante Fe RR office	20		
FM21	Winslow	AZ	Sante Fe RR office	29 13		
FM22	Winslow	AZ	Sante Fe RR office	18		
FM23	Winslow	AZ AZ	Sante Fe RR office	16		
FM24 FM25	Winslow	AZ	Nurse's home	21		
FM25 FM26	Ganado Ganado	AZ	Ganado College Park	21	x	
FM20 FM27	Ganado	AZ	Summit House	28	~	
FM27 FM28	Ganado	AZ	behind Summit House			
			Coll. Admin. Bldg.	39	хххх	
FM29 FM20	Ganado	AZ NM	Soldier/Sailor Park	35		,
FM30	Albuquerque	NM NM	Albuquerque Zoo	41	хххх	
FM31	Albuquerque		Rio Grande Park	41 35		,
FM32	Albuquerque	NM NM	Bataan Park	35 49		
FM33	Albuquerque	NM	Dataan Falk	49	~ ~ ^ ^	•

FM34	Albuquerque	NM	McLellan Park	46	Х	Х	Х	
FM35	Albuquerque	NM	Roosevelt Park	48	Х	Х	Х	Х
FM36	Lukachakai	AZ	along road					
FM37	Lukachakai	AZ	along road					
FM38	Lukachakai	AZ	along road					
FM39	Chinle	ΑZ	Garcia Trading Post	35	X	Х	Х	Х
FM40	Sawmill	AZ	natural grassland	70	Х			
FM41	Navajo Mt.	AZ	cleared area					
FM42	Williams	ΑZ	private property	66	Х			
FM43	Williams	AZ	private lawn	77		х	Х	х
FM44	Williams	AZ	church lawn	80	х			
FM45	Flagstaff	AZ	Railway Station	36	Х	Х	Х	Х
FM46	Flagstaff	AZ	private lawn	108			Х	
FM47	Flagstaff	AZ	Citizens Cemetery	59	х			
FM48	Flagstaff	AZ	North. Arizona Univ.	39				
FM49	Flagstaff	AZ	private ranch	68	х			
FM50	Flagstaff	AZ	private lawn	75		х	х	
FM51	Flagstaff	AZ	private lawn	34	X			
FM52	Fort Defiance	AZ	Hospital lawn	43	x			
FM53	Fort Defiance	AZ	across from hospital	30				
FM54	Fort Defiance	AZ	BIA Park	32	х	х		
FM55	GCNP, S. Rim	AZ	Desert View junction	70	x			
GC01	Reno	NV	UNR Quad	28	X			
GC02	Reno	NV	Reno High School	34	x			
GC03	Sparks	NV	Sparks Jr. H. S.					
GC04	Reno	NV	private pasture	44	х			
GC05	Reno	NV	Virginia Lake Park	35		x	х	x
GC06	Reno	NV	Whitacre Park	30			x	
GC07	Reno	NV	Pickett Park	27	X	~	~	~
GC08	Gerlach	NV	private lawn	35		x	х	x
GC09	Gerlach	NV	saltgrass meadow	19	••		••	••
GC10	Lovelock	NV	County Courthouse	30	x	х		
GC11	Lovelock	NV	Elementary school		Λ	Λ		
GC12	Lovelock	NV	High School	54	Y	v	v	х
GC12 GC13	Fallon	NV	City Hall	24	x	Λ	Л	~
GC13 GC14	Fallon	NV	Old Post Office	24	~			
GC14 GC15	Fallon	NV	County Hospital	29	v	v	х	v
GC15 GC16	Gabbs		private lawn	29	~	Λ	Λ	Λ
GC18 GC17	Gabbs	NV	-	30	х			
		NV	private lawn		~			
GC18	Gabbs	NV	private lawn		v	v	v	v
GC19	Gabbs	NV	private lawn	36				X
GC20	Austin	NV	private lawn	59		Х	X	Х
GC21	Austin	NV	Cahill Sprg. meadow	207	X			
GC22	Austin	NV	Wolf Meadows	145	X		.,	••
GC23	Austin	NV	Bob Scott Spring	92		Х	Х	Х
GC24	Round Mountain	NV	private pasture	64	Х			
GC25	Round Mountain	NV	private pasture					
GC26	Tom's Place	CA	private lawn	39	X			
GC27	Tom's Place	CA	meadow	34	Х			
GC28	Tom´s Place	CA	meadow 2 miles north					

0000		~ .			
GC29	Bridgeport	CA	County Courthouse	38	ххх
GC30	Bridgeport	CA	private lawn	38	
GC31	Bridgeport	CA	private lawn		
GC32	Hawthorne	NV	AAD Parade Ground	30	
GC33	Hawthorne	NV	AAD Officer's Qtrs.	39	хххх
GC34	Hawthorne	NV	AAD Sr. Off. Qtrs.	24	
GC35	Hawthorne	NV	School Dist. office	29	
GC36	Hawthorne	NV	6th Street School	31	X
GC37	Hawthorne	NV	private lawn		
GC38	Yerington	NV	County Courthouse	18	
GC39	Yerington	NV	Swimming Pool Park	26	ХХ
GC40	Yerington	NV	old county maint. yard	18	Х
GC41	Minden	NV	County Courthouse	15	
GC42	Minden	NV	School District HQ	21	x
GC43	Gardnerville	NV	Junior High School	24	ХХ
GC44	Gardnerville	NV	Elementary School	26	Х
GC45	Carson City	NV	Nye Building	32	X
GC46	Carson City	NV	Supreme Court	22	Х
GC47	Carson City	NV	State Library	29	Х
GC48	Carson City	NV	Hospital lawn	36	хххх
GC49	Warm Springs	NV	private ranch		
GC49A	Warm Springs	NV	private ranch	58	х
GC50	Moore's Station		orchard	51	хххх
KM01	Memphis	TN	Overton Park	64	хх
KM02	Memphis	TN	Winchester North Park		
KM03	Memphis	TN	Confederate Park		
KM04	Memphis	TN	Pine Hill Park	62	
KM05	Memphis	TN	Charjean Park	70	
KM06	Memphis	TN	Audubon Park	75	хххх
KM07	Memphis	TN	Gaisman Park	61	
KM08	Memphis	TN	Douglass Park	63	
KM09	Dallas	ΤX	Kiest Park	77	
KM10	Dallas	ТΧ	Stevens Park	57	
KM11	Dallas	ТΧ	Lake Cliff Park	46	Х
KM12	Dallas	TX	Lee Park		
KM13	Dallas	ТX	Bachman Lake Park	57	хххх
KM14	Dallas	ТΧ	Churchill Park	27	
KM15	Dallas	ТΧ	White Rock Lake Park		
KM16	Dallas	ТΧ	Fair Park		
KM17	Dallas	ТΧ	S. Methodist Univ.	11	
KM18	Corpus Christi	ΤX	Del Mar College E.	47	ххх
KM19	Corpus Christi	ТΧ	Del Mar College W.	15	
KM20	Corpus Christi	ТΧ	Blucher Park	31	
KM21	Corpus Christi	ТΧ	Garza Park	36	хххх
KM22	Corpus Christi	тх	Wiggins Park		
KM23	Corpus Christi	TX	Oak Park		
KM24	Corpus Christi	TX	Bill Witt Park	33	
KM25	Corpus Christi	TX	Oso Golf Course	13	
KM26	Tucson	AZ	U. of Arizona		
KM27	Tucson	AZ	Gene Reid Park	19	

	_						
KM28	Tucson	AZ	Alvina Himmel Park	36	ХХ	X	Х
KM29	Tucson	AZ	LaMadera Park	28	ХХ		
KM30	Tucson	AZ	DeAnza Park	51	Х		
KM31	Tucson	AZ	Santa Rita Park	25			
KM32	Tucson	AZ	Rodeo Park	8			
KM33	Tucson	AZ	Mission Park	26	ХХ	X	Х
KM34	Tucson	AZ	Menlo Park	42	Х		
KS01	Fredonia	AZ	Elementary school	36	ХХ	X	Х
KS02	Fredonia	AZ	private lawn	35			
KS0 3	Fredonia	AZ	private lawn	35			
KS04	Fredonia	AZ	private lawn				
KS05	GCNP, N. Rim	AZ	Lodge	126	ХХ		
KS06	GCNP, N. Rim	AZ	meadow	27			
KS07	Moccasin	AZ	private lawn	41	X X	X	Х
KS08	Moccasin	AZ	private lawn				
KS09	Dry Park	AZ	meadow	118	Х		
KS09A	Dry Park	AZ	meadow	?	х		
KS10	GCNP, N. Rim	AZ	Entrance Station	196	хх	x	Х
KS11	Demotte Park	AZ	meadow	116	Х		
KS12	Big Spring	AZ	meadow near R.S.	89	х		
KS12A	Big Spring	AZ	meadow near R.S.	?	х		
KS13	Big Spring	AZ	Ranger Station	30	х		
KS14	Jacobs Lake	AZ	meadow	103	x		
KS15	Tuweep	AZ	pasture	32	x		
KS16	Tuweep	AZ	grassy field	67	x		
KS17	Mt. Trumbull	AZ	field 9 miles east	46	x		
KS18	Mt. Trumbull	AZ	field 6 miles east				
KS19	Wolf Hole	AZ	meadow	25			
KS20	Littlefield	AZ	Post Office	47	х		
KS21	Littlefield	AZ	private lawn	52	X X	x	х
KS22	Mesquite	NV	private lawn	32			
KS23	Mesquite	NV	private lawn	24			
KS24	Mesquite	NV	private lawn	43	хх	x	x
KS25	Bunkerville	NV	private lawn	63	XX		
KS26	Bunkerville	NV	private lawn	78	XX		
KS27	Logandale	NV	private lawn	15	XX		
KS28	Logandale	NV	church lawn	8		•	
KS29	Overton	NV	private lawn	26	х		
KS30	Overton	NV	church lawn	34	X X	· x	x
KS30 KS31	Warm Springs	NV	private yard	25	X		Λ
KS31 KS32	Alamo	NV	Pahranagat NWR	36	X		
KS32 KS33	Alamo	NV	private lawn	26	x x	· v	v
KS33	Alamo	NV	private lawn	18	XX		Λ
KS34 KS35	Alamo	NV	private lawn		~ ^	•	
	Hiko	NV	Pittman WMA Office	35	хх	v	v
KS36	Hiko			20	x		Λ
KS37		NV	Post Office	20 81	Λ		
MH01	Rosette	UT	private pasture		vv	· ·	v
MH02	Rosette	UT	private hayfield	82	XX		
MH03	Snowville	UT	cemetery	189	ХХ	N A	Λ
MH04	Snowville	UT	meadow	149			

.

MH05	Malad City	ID	Old high school	53	
MH06	Malad City	ID	Pioneer Park	50	
MH07	Malad City	ID	church lawn	54	хххх
MH08	Malad City	ID	City Park		
MH09	Malad City	ID	private pasture	68	Х
MH10	Burley	ID	cemetery	34	
MH11	Burley	ID	Burley Baseball Park	38	ХХ
MH12A	Burley	ID	Municipal Airport	120	хххх
MH12B	Burley	ID	Municipal Airport	93	
MH12C	Burley	ID	Municipal Airport	105	
MH12D	Burley	ID	Municipal Airport	123	
MH12E	Burley	ID	Municipal Airport	139	х
MH13	Burley	ID	County Fairgrounds	53	
MH14	Twin Falls	ID	County Courthouse	40	хххх
MH15	Twin Falls	ID	Sunset Memorial Park	36	
MH16	Twin Falls	ID	pasture	33	
MH17	Filer	ID	County Fairgrounds	34	хххх
MH18	Twin Falls	ID	private pasture	37	
MH19	Meridian	ID	M. Intermed. School	43	хххх
MH20	Boise	ID	pasture		
MH21	Boise	ID	Julia Davis Park	41	
MH 2 2	Boise	ID	State Capitol	73	хххх
MH23	Boise	ID	VA Hospital	37	
MH24	Boise	ID	private pasture		
MH25	Jordan Valley	OR	Union High School	66	хх
MH 2 6	Jordan Valley	OR	private pasture	63	
MH27	Burns	OR	Experiment Station	73	X
MH28	Hines	OR	private lawn	43	хххх
MH29	Basque Station	OR	Hwy. Maint. Station	36	хххх
MH30	McDermitt	NV	private ranch		
MH31	Winnemucca	NV	private lawn	42	
RB01	Scottsbluff	NB	Riverside Park	55	хххх
RB02	Scottsbluff	NB	Overland Park	45	
RB03	Scottsbluff	NB	Public Library		
RB04	Scottsbluff	NB	Band Park	45	
RB05	Scottsbluff	NB	Pioneer Park	46	X
RB06	Scottsbluff	NB	cemetery		
RB07	Rapid City	SD	Dinosaur Park		
RB08	Rapid City	SD	Halley Park	66	хххх
RB09	Rapid City	SD	Mountainview Cem.	113	X
RB10	Rapid City	SD	Lime Creek	11	
RB11	Rapid City	SD	church lawn	134	хх
RB12	Rapid City	SD	Wilderness Park		
RB13	Billings	MT	South Park	57	X
RB14	Billings	MT	Highland Park	42	
RB15	Billings	MT	Terry Park	49	
RB16	Billings	MT	Pioneer Park	59	хххх
RB17	Billings	MT	Swords Park		
RM01	Winnemucca	NV	Junior High School	42	
RM02	Winnemucca	NV	Municipal Park	58	хххх

RM03	Winnemucca	N117	Dest Office		
RM03 RM04	Winnemucca	NV	Post Office	29	
RM04 RM05	Winnemucca	NV NV	Elementary school		
RM06	Battle Mountain		Nixon Building Courthouse		V V V V
RM00 RM07	Battle Mountain			45	хххх
RM07	Carlin	NV	private ranch	59	VVVVV
RM09	Elko	NV	Football field	83	хххх
RM10	Elko	NV	cemetery city park	22 31	v v v v
RM10 RM11	Elko	NV	High School	36	хххх
RM11 RM12	Wells	NV	High School	36 62	хххх
RM12 RM13	Clover Valley	NV	private ranch	145	
RM14	Pioche	NV	County Courthouse	39	^ X X X X
RM15	Pioche	NV	housing project		~ ~ ^ ~
RM15A	Pioche	NV	private field	106	х
RM16	Pioche	NV	Masonic Cemetery	21	Λ
RM17	Panaca	NV	private lawn	23	
RM18	Panaca	NV	meadow	41	х
RM19	Panaca	NV	private lawn	30	^ X X X X
RM20	Panaca	NV	school auditorium	25	~ ~ ~ ~ ~
RM21	Caliente	NV	Dixon Athletic Field	37	хххх
RM22	Caliente	NV	Rose Memorial Park	32	ΛΛΛΛ
RM23	Alamo	NV	private ranch	59	х
SA01	Wichita	KS	Henry Park		Λ
SA01 SA02	Wichita	KS	Linwood Park	46	ххх
SA03	Wichita	KS	Linwood Park	63	ΛΛΛ
SA04	Wichita	KS	Clapp Golf Course	53	
SA05	Wichita	KS	Clapp Golf Course		
SA06	Wichita	KS	MacDonald Park		
SA07	Wichita	KS	MacDonald Park	56	хххх
SA08	Wichita	KS	Fairmount Park		
SA09	Wichita	KS	Oak Park	47	
SA10	Wichita	KS	Cent. Riverside Park	55	
SA11	Des Moines	IA	Greenwood Park		
SA12	Des Moines	IA	Greenwood Park	57	х
SA13	Des Moines	IA	Waveland Park		
SA14	Des Moines	IA	Waveland Park	49	
SA15	Des Moines	IA	Glendale Cemetery		
SA16	Des Moines	IA	Beaverdale Park	58	
SA17	Des Moines	IA	Union Park	34	
SA18	Des Moines	IA	Grandview Park		
SA19	Des Moines	IA	Pioneer Park	52	хххх
SA20	St. Louis	MO	Fairground Park	54	XXXX
SA21	St. Louis	MO	O'Fallon Park	57	
SA22	St. Louis	MO	Sherman Park		
SA23	St. Louis	MO	Forest Park	49	
SA24	St. Louis	MO	Francis Park	41	
SA25	St. Louis	MO	Willmore Park	32	
SA26	St. Louis	MO	Carondelet Park	46	хххх
SA27	St. Louis	MO	Lafayette Park		
SA28	St. Louis	MO	Tilles Park		
UTLO	50. 10015	1110	IIIION IGIN		

SA29	St. Louis	MO	Faust Park	_	
SH01	Las Vegas	NV	L.V. High School	?	
SH02	Las Vegas	NV	church lawn	?	
SH03	Las Vegas	NV	private lawn	?	
SH04	Las Vegas	NV	Courthouse	?	
SH05	Las Vegas	NV	Woodland Cemetery	?	x x
SH00	Las Vegas	NV	private lawn	? ?	~ ~
SH07	N. Las Vegas	NV	Washington School	40 40	хххх
SH07A	N. Las Vegas N. Las Vegas	NV	Washington School	40 ?	?
SH07R SH07B	-		Kit Carson School	?	
	N. Las Vegas	NV	Jefferson H. S.		X
SH08 SH09	N. Las Vegas Henderson	NV NV	Soccer Field	37 26	X X
SHU9 SH10	Henderson	NV	Morrell Park	20 31	xxxx
	Boulder City				
SH11 SH12	Boulder City Boulder City	NV NV	private lawn private lawn	35 46	XXXX
SH12 SH13		NV	private lawn	40 37	
SH13 SH14	Boulder City	NV	Squires Park	?	
SH14 SH15	Las Vegas Las Vegas	NV	S. Meadows Park	?	
SW01	Lund	NV	Elementary School	!	
SW01 SW02	Lund	NV	High School	29	хххх
SW02 SW03	Preston	NV	private lawn	29 	~ ~ ~ ~ ~
SW03A	Preston	NV	private lawn	40	хххх
SW03A SW04	Currant	NV	private pasture	26	
SW04 SW04R	Currant	NV	private pasture	46	х
SW04R SW05	Eureka	NV	High School	40 56	^ x x x x
SW05 SW06	Duckwater	NV	private ranch	49	XXXX
SWUO	DUCKWALEI		private ranen	49	~ ~ ~ ~ ~
AQ01	Albuquerque	NM	AL Complex	56	хххх
AQ02	Albuquerque	NM	KAFB Parade Gr. SE	72	ххх
AQ03	Albuquerque	NM	KAFB Parade Gr. NW	72	ххх
AQ04	Albuquerque	NM	Albuquerque Zoo	47	хххх
AQ05	Albuquerque	NM	Albuquerque Zoo	47	ххх
AQ06	Albuquerque	NM	Rio Grande Park	47	хххх
AQ07	Albuquerque	NM	Roosevelt Park	70	хххх
AQ08	Albuquerque	NM	Bataan Park	69	ххх
AQ09	Albuquerque	NM	McClellan Park	69	хххх
AQ10	Albuquerque	NM	private lawn	76	ххх
AQ11	Albuquerque	NM	Vista Sandia Sanit.	49	хххх
AQ12	Albuquerque	NM	private lawn	42	хххх
AQ13	Albuquerque	NM	church lawn	47	хххх
AQ14	Albuquerque	NM	Veteran's Hospital	50	хххх
AQ15	Albuquerque	NM	mortuary lawn	49	хххх
AQ16	Albuquerque	NM	private lawn	75	хххх
AQ17	Albuquerque	NM	Alb. Indian Hospital	49	хххх
AQ18	Albuquerque	NM	Harwood School	68	хххх
AQ19	Albuquerque	NM	Menaul School	33	хххх
AQ20	Albuquerque	NM	Sandia Mem. Gardens	39	хххх
AQ21	Albuquerque	NM	Sunset Mem. Park	28	хххх
AQ22	Albuquerque	NM	church lawn	22	ххх
AQ23	Albuquerque	NM	private lawn		XXXX
AQ24	Albuquerque	NM	K.O.C. Hall		XXXX
• • • • • • • • • • • • • • • • • • •					

AQ25	Albuquerque	NM	Job Corps Center		хххх
AQ26	Albuquerque	NM	mortuary lawn	41	XXX
AQ27	Albuquerque	NM	church lawn	85	XXXX
AQ28	Albuquerque	NM	State Fairgrounds	54	XXXX
AQ29	Albuquerque	NM	church lawn	54 61	XXXX
AQ29 AQ30	Albuquerque	NM	U. of NM, Tight Grove	25	
	Albuquerque	NM		25 36	~ ^ ^ ^ X X X X
AQ31			U. of NM, Pres. House		
AQ32	Albuquerque	NM	Memorial Hospital	45	XXXX
AQ33	Albuquerque	NM	Ridgecrest St. Merid.	48	XXXX
NM01	Estancia	NM	private lawn	51	XX
NMO2	Moriarty	NM	Old Otto Airport	107	XXXX
NMO3	Belen	NM	city property	38	хххх
NM04	Las Cruces	NM	NMSU old seed house	30	хххх
NM05	Solomonville	ΑZ	Sol. Elem. School	47	хххх
NMO6	Roswell	NM	Chavez Co. Courthouse	52	хххх
NMO7	Safford	AZ	City Hall	28	хххх
NMO8	Silver City	NM	Fort Bayard	61	ХХХХ
NM09	Socorro	NM	NMIMT, Brown Hall	35	хххх
NM10	Carlsbad	NM	Eddy Co. Courthouse	38	ХХ
NM11	Portales	NM	ENMU - Admin. Building	56	хххх
NM12	Tucumcari	NM	Quay Co. Courthouse	47	ХХ
NM13	Socorro	NM	NMIMT, Athletic Field	36	ХХ
NM14	Sante Fe	NM	SF Natl. Cemetery	67	хх
NM15	Sante Fe	NM	SF Natl. Cemetery	67	хххх
NM16	Sante Fe	NM	U.S. Courthouse	50	хххх
NM17	Raton	NM	Miner's Hospital	111	хххх
NM18	Cimarron	NM	Philmont Scout Ranch	49	хххх
NM19	Chama	NM	Little Creek Lodge	91	хххх
NM20	Farmington	NM	private property	56	ХХ
NM21	Farmington	NM	private lawn	76	хххх
NM22	Farmington	NM	private lawn	47	хххх
NM23	Tempe	AZ	ASU Univ. Archives	23	хх
NM24	Tempe	AZ	ASU Hayden Hall	27	XX
NM25	Mesa	AZ	church lawn	35	XXXX
NM26	Litchfield Park		Cultural Arts Society	24	XXXX
		- 19 ⁴	· · · · · · · · · · · · · · · · · · ·		

APPENDIX C

Analytical Results for Each Site

APPENDIX C Analytical Results for Each Site

The following pages list the results of the gamma-spectrometry and the plutonium analysis for each site that was analyzed. These data were used to compute the cesium and plutonium inventories in Tables 1 and 2.

Some of the gamma-counting results and nearly all of the plutonium results given here are variance-weighted averages of multiple counts of a sample bottle or platinum disk. The individual results from each separate count of every sample (including rejected results that were not used in the computations) are available for public inspection through the Coordination and Information Center at REECo: Coordination and Information Center

Reynolds Electrical and Engineering Co., Inc. P.O. Box 98521 Las Vegas, Nevada 89193-8521 phone: (702) 295-0731 street address: 3840 South Highland Drive, Las Vegas

. •

AF01 TALMAGE, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2332	3800	3859	13489
U-238 (PCI/G)	.66	.71	.71	.63
STDEV (PCT.)	4.1	3.8	3.7	4.2
TH-232 (PCI/G)	.57	.62	.59	.64
STDEV (PCT.)	6.2	5.8	5.9	5.6
K-40 (PCI/G)	9.3	9.3	8.7	9.6
STDEV (PCT.)	2.5	2.5	2.5	2.5
CS-137 (PCI/G)	.578	.500	.200	.052
STDEV (PCT.)	2.9	3.1	5.7	18.2
PLUTONIUM ANALYSIS	U	PPER	I	OWER
PU-239+240 (DPM/G)	.0	3923	.0	0678
STDEV (PCT.)		3.5		5.7

AF02 ASHLEY NATIONAL FOREST, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1324	1473	3269	7231
U-238 (PCI/G)	1.12	.74	1.13	1.34
STDEV (PCT.)	3.2	2.7	3.1	3.0
TH-232 (PCI/G)	1.34	.69	1.09	1.14
STDEV (PCT.)	3.8	4.0	4.2	4.3
K-40 (PCI/G)	14.8	7.7	12.2	14.2
STDEV (PCT.)	2.0	1.9	2.3	2.3
CS-137 (PCI/G)	3.013	3.176	.825	.036
STDEV (PCT.)	1.2	.8	2.5	30.7

**** NO PLUTONIUM ANALYSIS PERFORMED ****

AF05 TALMAGE, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2272	3913	3801	14140
U-238 (PCI/G)	.73	.85	.83	.80
STDEV (PCT.)	4.0	3.4	3.4	3.5
TH-232 (PCI/G)	.69	.78	.67	.77
STDEV (PCT.)	5.5	5.0	5.5	4.9
K-40 (PCI/G)	10.8	10.6	10.7	10.5
STDEV (PCT.)	2.3	2.3	2.3	2.3
CS-137 (PCI/G)	.372	.359	.212	.094
STDEV (PCT.)	3.9	3.9	5.5	10.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02731		LOWER .00827	
STDEV (PCT.)		4.0		7.2

AF14 MT. HOME, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1260	1442	3915	15566
U-238 (PCI/G)	.62	.61	.53	.54
STDEV (PCT.)	4.3	2.1	4.5	4.5
TH-232 (PCI/G)	.46	.54	.59	.53
STDEV (PCT.)	7.4	3.1	5.9	6.2
K-40 (PCI/G)	8.7	8.5	7.9	7.8
STDEV (PCT.)	2.6	1.3	2.6	2.7
CS-137 (PCI/G)	.533	.517	.404	.120
STDEV (PCT.)	3.0	1.5	3.5	8.2
PLUTONIUM ANALYSIS	U	PPER	I	LOWER
PU-239+240 (DPM/G)	.0	3180	.(01269
STDEV (PCT.)		5.2		7.1

AQ01 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1873 .79 3.9 .68 5.8 12.9 2.2 .423 3.8	2 3652 .75 3.8 .74 5.3 14.0 2.0 .384 4.1	3 3155 .84 3.6 .77 5.2 16.1 1.9 .250 5.5	4 13416 .78 3.7 .83 4.9 16.3 1.8 .068 15.5	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1981 4.5	_	LOWER 00385 7.9	

AQ02 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1744	3706	3717	13132	(694 SQ. CM.)
U-238 (PCI/G)	.92	.89	. 89	.71	•
STDEV (PCT.)	3.4	3.4	3.4	4.0	
TH-232 (PCI/G)	.84	.92	.90	.78	
STDEV (PCT.)	4.9	4.5	4.6	5.0	
K-40 (PCI/G)	13.0	15.8	15.7	13.6	
STDEV (PCT.)	2.2	1.9	1.9	2.1	
CS-137 (PCI/G)	.579	.349	.162	.047	
STDEV (PCT.)	3.1	4.3	7.9	22.4	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02101		LOWER .00491		
STDEV (PCT.)		4.3		6.4	

AQ03 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.)	1 1295 .91 3.5 .75 5.4	2 4231 1.05 3.1 .98 4.4	3 4013 .93 3.3 .91 4.6	4 14939 .99 3.2 .92 4.7	(694 SQ. CM.)
K-40 (PCI/G)	12.1	16.0	16.5	15.5	
STDEV (PCT.) CS-137 (PCI/G)	2.3 .565	1.9 .429	1.8 .137	1.9 .036	
STDEV (PCT.)	3.2	3.8	9.1	29.8	
5122 (1011)	3.2	3.0	2.1	29.0	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 2201		LOWER 00318	
STDEV (PCT.)		4.6		10.2	

AQ04 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2950 .66 4.1 .59 6.3 15.8 1.9 .388	2 4572 .65 4.0 .63 5.7 16.8 1.8 .300	3 4011 .59 4.1 .59 5.8 16.2 1.8 .085	4 13545 .63 4.1 .57 6.2 17.2 1.8 .022	(694 SQ. CM.)
STDEV (PCT.)	4.0	4.6	11.7	40.9	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 4375 3.8		LOWER 00227 9.4	

AQ05 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 2107 .97 3.4 .84	2 3544 1.11 3.1 .94	3 3052 1.13 3.1 .99	4 10791 1.09 3.1 .91	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	5.0 13.2 2.2 .590 3.2	4.7 15.5 2.0 .300 5.0	4.5 16.6 1.9 .122 10.2	4.7 16.0 1.9 .053 20.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 9117 2.9	-	LOWER 00998 5.2	

AQ06 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1705 .85 3.8 .60 6.5 11.6 2.4 .509	2 3968 .92 3.3 .81 5.0 16.4 1.8 .363	3 3752 .95 3.2 .81 5.0 17.6 1.8 .191	4 13870 1.16 3.1 .94 4.9 16.3 2.0 .066	(694 SQ. CM.)
STDEV (PCT.)	3.5	4.1	6.5	18.4	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 5960 4.5	-	LOWER 00857 5.5	

AQ07 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.)	1 1550 .75 4.1	2 3240 .89 3.5	3 3686 .92 3.3	4 14756 .91 3.3	(694 SQ. CM.)
TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	.68 5.8 8.9 2.8 .575	.82 5.1 13.6 2.1 .679	$1.00 \\ 4.3 \\ 15.5 \\ 1.9 \\ .151$.95 4.5 16.7 1.8 .039	
STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	•	2.8 PPER 1397 3.6		26.3 LOWER 01005 4.9	

AQ08 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1406 .76 4.2 .53 6.9 8.4 3.0 .620 3.1	2 3574 .97 3.2 .87 4.9 15.3 1.9 .697 2.8	3 3678 .84 3.5 .91 4.6 17.0 1.8 .178 6.9	4 15558 .88 3.4 1.02 4.2 18.2 1.7 .038 26.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	2.8 PPER 0087 3.3]	LOWER 00712 6.1	

AQ09 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1096 .69 4.7 .49 7.5 9.2 2.9 .313 5.1	2 2605 .97 3.5 .81 5.2 13.9 2.2 .871 2.5	3 2838 1.12 3.1 1.03 4.3 16.4 1.9 .250 5.9	4 11947 1.30 2.9 1.16 4.1 18.0 1.9 .051 23.4	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 6593 3.6		LOWER 01185 4.8	

AQ10 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2415	3783	3843	12630	(694 SQ. CM.)
U-238 (PCI/G)	.85	.85	.89	. 95	
STDEV (PCT.)	3.7	3.6	3.4	3.5	
TH-232 (PCI/G)	.75	.79	.84	. 94	
STDEV (PCT.)	5.5	5.2	4.9	4.7	
K-40 (PCI/G)	15.8	15.7	16.9	20.0	
STDEV (PCT.)	2.0	1.9	1.9	1.8	
CS-137 (PCI/G)	.408	.323	.122	.033	
STDEV (PCT.)	4.0	4.6	10.0	32.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	+	PPER 1969		LOWER	
STDEV (PCT.)		4.0		8.2	

AQ11 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2455	3966	4052	13226	(694 SQ. CM.)
U-238 (PCI/G)	.98	1.09	1.08	. 96	
STDEV (PCT.)	3.5	3.2	3.1	3.2	
TH-232 (PCI/G)	.96	.99	1.15	1.03	
STDEV (PCT.)	4.7	4.5	4.0	4.2	
K-40 (PCI/G)	15.2	17.0	17.2	17.5	
STDEV (PCT.)	2.0	1.9	1.9	1.8	
CS-137 (PCI/G)	.484	.309	.137	.051	
STDEV (PCT.)	3.6	5.1	9.3	21.0	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1945 4.2	-	LOWER 00319 8.0	

AQ12 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2462 .80 3.8 .79 5.2 15.8 1.9 .316 4.7	2 3864 .85 3.7 .81 5.2 18.2 1.8 .356 4.2	3 3724 .95 3.4 .90 4.8 18.3 1.8 .212 6.6	4 9118 1.09 3.2 1.05 4.4 17.8 1.9 .061 19.7	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	4.2 PPER 1702 4.1	L	19.7 OWER 0599 6.3	

AQ13 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	l	2	3	4	
DRY WEIGHT (GMS)	2528	4327	4019	13310	(694 SQ. CM.)
U-238 (PCI/G)	.59	.52	.52	.50	
STDEV (PCT.)	4.4	4.8	4.6	4.7	
TH-232 (PCI/G)	.57	.55	.56	.49	
STDEV (PCT.)	6.2	6.5	6.3	6.8	
K-40 (PCI/G)	14.7	15.2	15.9	15.5	
STDEV (PCT.)	1.9	1.9	1.8	1.8	
CS-137 (PCI/G)	.343	.364	. 226	.037	
STDEV (PCT.)	4.3	4.0	5.7	24.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 1721		LOWER	
STDEV (PCT.)		3.9		7.6	

AQ14 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2252 .79 3.8 .71 5.4 13.2 2.1	2 4275 .82 3.5 .81 4.9 15.2 1.9	3 4592 .74 3.7 .79 5.0 18.4 1.7	4 12377 .72 3.8 .75 5.1 17.0 1.8	(694 SQ. CM.)
CS-137 (PCI/G)	.451	.331	.149	.068	
STDEV (PCT.)	3.7	4.4	8.1	15.1	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1969 5.3	_	LOWER 00534 9.5	

AQ15 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1655 .83 3.7 .67 5.8 13.4 2.1 .340 4.5	2 3283 .80 3.6 .79 5.0 15.2 1.9 .332 4.5	3 3896 .85 3.5 .84 5.0 17.2 1.8 .262 5.3	4 11919 .73 3.8 .85 4.7 17.4 1.7 .064 17.2	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 1607 5.6	I	LOWER 00611 5.5	

AQ16 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1367 1.38 2.8 .56 7.1 11.7 2.4 1.149	2 3950 .90 3.3 .71 5.6 18.1 1.7 .351	3 3932 .86 3.3 .78 5.0 19.0 1.7 .145	4 10999 .84 3.4 .84 4.7 20.6 1.6 .026	(694 SQ. CM.)
STDEV (PCT.)	2.1	4.3	8.1	37.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1946 4.5	-	LOWER 05100 3.7	

AQ17 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2659 .77 3.8 .78 5.1 13.8 2.1 .473	2 4205 .78 3.6 .72 5.3 15.4 1.9 .281	3 4010 .75 3.7 .71 5.3 15.9 1.8 .115	4 11439 .71 3.8 .76 5.1 17.0 1.7 .012	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.473 3.5	.281 5.0	.115 9.5	.012 80.0	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1840 4.5	-	LOWER 00242 9.8	

AQ18 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G)	1 2067 .75 4.0 .56 6.6 13.8	2 4054 .77 3.7 .66 5.7 16.6	3 4308 .71 3.8 .70 5.4 17.2	4 14593 .74 3.6 .74 5.0 17.3	(694 SQ. CM.)
STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	2.1 .781 2.6 U	1.8 .290 4.7 PPER 2050	1.8 .113 9.7	1,.3 1.8 .016 60.7	
STDEV (PCT.)	.0	4.3		8.2	

AQ19 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2389 .80 3.8 .77 5.2 16.1 1.9 .374 4.2	2 4155 .81 3.7 .82 5.0 19.2 1.7 .330 4.6	3 4574 .80 3.7 .83 5.0 19.6 1.6 .253 5.5	4 15416 .76 3.8 .94 4.5 20.2 1.6 .099 11.4	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 1692 5.1	I	LOWER 00785 5.3	

AQ20 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G)	1 2260 .69	2 3880 .63	3 3900 .75	4 15053 .68	(694 SQ. CM.)
STDEV (PCT.) TH-232 (PCI/G)	4.0	4.2	3.7 .76	4.1 .77	
STDEV (PCT.) K-40 (PCI/G)	5.8 14.6	5.3 15.4	5.2 17.1	5.2 18.4	
STDEV (PCT.) CS-137 (PCI/G)	2.0 .325 4.5	1.9 .316 4.6	1.8 .200 6.7	1.7 .037 28.5	
STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	4.0 PPER 1678 4.7	I	LOWER 00398 8.4	

AQ21 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS						
DEPTH INCREMENT	1	2	3	4		
DRY WEIGHT (GMS)	2333	4245	3659	14801	(694 SQ.	CM.)
U-238 (PCI/G)	.90	.95	. 96	.98	·	,
STDEV (PCT.)	3.5	3.4	3.3	3.2		
TH-232 (PCI/G)	.86	.93	1.14	1.10		
STDEV (PCT.)	5.0	4.7	4.0	4.1		
K−40 (PCI/G)	17.2	19.3	19.5	19.9		
STDEV (PCT.)	1.8	1.7	1.7	1.7		
CS-137 (PCI/G)	. 239	.227	.210	.106		
STDEV (PCT.)	6.0	6.1	6.6	11.4		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 1144	-	LOWER		
STDEV (PCT.)		4.6		5.9		

AQ22 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2863 .80 3.6 .93 4.4 18.7 1.7 .175 7.4	2 4462 .82 3.5 .86 4.7 19.7 1.6 .137 9.2	3 3897 .81 3.5 .91 4.5 17.9 1.7 .063 17.1	4 14323 .66 4.1 .79 4.9 17.1 1.8 .008 116.4	(694 SQ.	СМ.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 0853 5.3	-	LOWER 00124 13.7		

AQ23 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2282 .75 3.8 .69 5.6 15.7 1.9 .905 2.3	2 4048 .75 3.8 .71 5.4 17.6 1.8 .279 5.0	3 3647 .76 3.6 .80 4.9 18.3 1.7 .065 16.6	4 13633 .73 3.7 .81 4.8 19.5 1.6 .010 99.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	+	PPER 2579 4.8	-	LOWER 00310 12.1	

AQ24 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2072 .82 3.7 .72 5.4 15.1 2.0 .431	2 4119 .85 3.4 .84 4.9 16.4 1.8 .321	3 3852 .80 3.7 .88 4.8 17.5 1.8 .146	4 8533 .75 3.9 .84 4.8 17.9 1.8 .064	(694 SQ.	CM.)
STDEV (PCT.)	3.9	4.5	8.6	17.3		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2433 4.7		OWER 0495 7.7		

AQ25 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1869 .81 3.8 .78 5.1 16.3 1.9 .162 7.7	2 4603 .90 3.5 .86 4.9 18.6 1.8 .188 6.9	3 3755 .99 3.2 .90 4.7 19.1 1.7 .226 6.2	4 11820 .99 3.3 .92 4.6 19.3 1.7 .100 12.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3226 4.3		OWER 02211 4.7	

AQ26 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.)	1 1438 .75 3.9 .76 5.2	2 3352 .89 3.4 .80 5.0	3 3482 .88 3.5 .84 4.9	4 14791 .81 3.5 .91 4.5	(694 SQ. CM.)
<pre>K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)</pre>	-	16.3 1.9 .366 4.1 PPER 1615 4.7		18.4 1.7 .088 12.6 COWER 00671 5.3	

AQ27 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1073	4233	4111	15771	(694 SQ. CM.)
U-238 (PCI/G)	.76	.86	.73	.85	· - /
STDEV (PCT.)	4.2	3.6	4.0	3.4	
TH-232 (PCI/G)	.60	.83	.88	.97	
STDEV (PCT.)	6.5	5.1	4.7	4.3	
K-40 (PCI/G)	11.1	17.0	17.2	16.7	
STDEV (PCT.)	2.5	1.8	1.8	1.8	
CS-137 (PCI/G)	1.277	.525	.064	.007	
STDEV (PCT.)	2.0	3.3	17.4	149.0	
	**	2222	-		
PLUTONIUM ANALYSIS	-	PPER	-	LOWER	
PU-239+240 (DPM/G)	.0	2856	. (00156	
STDEV (PCT.)		4.7		13.7	

AQ28 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2202 .85 3.6 .72 5.6 13.0 2.2	2 3929 .81 3.6 .81 4.9 15.5 1.9	3 3206 .84 3.5 .83 4.8 16.5 1.8	4 12818 .78 3.7 .88 4.6 17.3 1.8	(694 SQ. CM.)
CS-137 (PCI/G)	. 569	.510	. 239	.057	
STDEV (PCT.)	3.2	3.3	5.7	19.1	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2171 4.4		LOWER 00472 8.4	

AQ29 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS)	1 1845	2 3747	3 3972	4 14229	(694 SQ. CM.)
U-238 (PCI/G)	.81	.95	1.02	. 95	, ,
STDEV (PCT.)	3.8	3.3	3.0	3.3	
TH-232 (PCI/G)	.70	.84	.86	. 98	
STDEV (PCT.)	5.8	4.9	4.7	4.4	
K-40 (PCI/G)	13.2	16.0	16.3	18.4	
STDEV (PCT.)	2.2	1.9	1.8	1.7	
CS-137 (PCI/G)	.853	.375	.124	.023	
STDEV (PCT.)	2.5	4.2	9.7	47.4	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02487 5.2			LOWER 00301 9.0	

AQ30 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2311 .91 3.4 .75 5.3 13.7 2.1 .179 7 2	2 3189 .78 3.6 .75 5.2 14.8 1.9 .115	3 3875 .93 3.2 .93 4.4 16.0 1.8 .082	4 13444 .98 3.2 .99 4.3 16.1 1.9 .030 36 1	(694 SQ. CM.)
STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	.0	9.9 PPER 0750 10.0		36.1 LOWER 00242 12.4	

AQ31 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 1989 .75 3.8 .70	2 3521 .88 3.2 .23	3 3143 .73 3.8 .79	4 14091 .73 3.8 .88	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G)	5.5 13.7	8.1 14.4	5.0 16.1	4.5 16.3	
STDEV (PCT.)	2.1	2.0	1.8	1.9	
CS-137 (PCI/G)	.334	.321	.222	.076	
STDEV (PCT.)	4.4	4.5	5.9	14.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	1715 5.3	_	LOWER 01062 7.4	

AQ32 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1820	3582	3514	12426	(694 SQ. CM.)
U-238 (PCI/G)	.70	.72	.86	.76	
STDEV (PCT.)	4.0	4.0	3.5	3.8	
TH-232 (PCI/G)	.73	.76	.86	.88	
STDEV (PCT.)	5.3	5.3	4.8	4.7	
K-40 (PCI/G)	14.8	17.5	17.8	17.9	
STDEV (PCT.)	2.0	1.8	1.8	1.8	
CS-137 (PCI/G)	.419	.435	.217	.032	
STDEV (PCT.)	3.9	3.7	6.0	32.6	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02050 5.1		LOWER .00377 9.8		

AQ33 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1028 .76 4.4 .55 6.9 7.6 3.2 .351 4.7	2 2308 .93 3.6 .77 5.4 12.1 2.3 1.159 2.1	3 3901 .90 3.3 .95 4.5 18.7 1.7 .181 7.2	4 14698 .79 3.8 .86 4.8 16.5 1.9 .050 21.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .14778 4.6			LOWER 00969 6.6	

ASO1 FARMINGTON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G)	$ \begin{array}{r} 1\\ 2603\\ .94\\ 1.6\\ .87\\ 2.4\\ 24.2\\ 7 \end{array} $	2 4831 .75 2.7 .78 3.6 25.3 1.0	3 4848 .87 2.4 .90 3.3 26.7	4 16725 .77 1.8 .88 2.3 25.6 7	(694 SQ. CM.)
K-40 (PCI/G)	24.2	25.3	26.7	25.6	
STDEV (PCT.)	.7	1.0	1.0	.7	
CS-137 (PCI/G)	.355	.181	.232	.096	
STDEV (PCT.)	2.1	4.9	4.0	6.0	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

AS06 CORTEZ, COLORADO

GAMMA ANALYSIS		•	2		
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2871	3471	4266	14698	(694 SQ. CM.)
U-238 (PCI/G)	.99	1.10	1.07	1.16	
STDEV (PCT.)	3.3	3.0	3.1	2.9	
TH-232 (PCI/G)	.97	1.15	1.02	1.09	
STDEV (PCT.)	4.5	3.9	4.4	4.1	
K-40 (PCI/G)	17.3	16.3	16.5	17.2	
STDEV (PCT.)	1.8	1.9	1.9	1.8	
CS-137 (PCI/G)	.401	.376	.310	.094	
STDEV (PCT.)	3.8	4.0	4.7	12.0	
PLUTONIUM ANALYSIS	UPPER		LOWER		
PU-239+240 (DPM/G)	.0	4035	. (00934	
STDEV (PCT.)		3.2		5.6	

AS08 MANCOS, COLORADO

**** NO PLUTONIUM ANALYSIS PERFORMED ****

AS10 DURANGO, COLORADO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3117 1.95 2.2 .99 4.7 16.6 2.0 .485 3.6	2 3953 1.94 2.2 1.10 4.3 16.4 1.9 .430 3.8	3 4054 1.72 2.4 .91 5.0 15.9 1.9 .249 5.6	4 11926 1.57 2.4 1.06 4.2 16.5 1.9 .113 10.6	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2326 4.0		LOWER 00658 6.2	

AS13 SILVERTON, COLORADO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2202	3287	1384	6322	(694 SQ. CM.)
U-238 (PCI/G)	1.54	1.61	1.63	1.56	
STDEV (PCT.)	2.7	2.5	2.7	2.6	
TH-232 (PCI/G)	1.55	1.67	1.67	1.71	
STDEV (PCT.)	3.5	3.3	3.4	3.3	
K-40 (PCI/G)	20.1	21.5	24.4	23.6	
STDEV (PCT.)	1.8	1.7	1.7	1.6	
CS-137 (PCI/G)	.958	.865	.533	.335	
STDEV (PCT.)	2.4	2.4	3.6	4.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .04505		LOWER .01906		
STDEV (PCT.)	• -	3.1		4.1	

AS20 MONTROSE, COLORADO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2778 1.67 2.5 .97 4.7 15.4 2.1 .557	2 4077 1.73 2.4 1.04 4.5 15.9 2.0 .296	3 4139 1.84 2.4 1.02 4.6 16.5 2.0 .132	4 15916 1.91 1.1 1.16 2.0 17.5 1.0 .051	(694 SQ. CM.)
CS-137 (PCI/G)	.557	.296	.132	.051	
STDEV (PCT.)	3.3	5.0	9.9	12.1	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

AS21 FRUITA, COLORADO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2946 1.27 2.9 1.01 4.5 16.1 2.0 .495 3.4	2 4096 1.47 1.3 1.10 2.0 16.4 1.0 .349 2.3	3 4291 1.27 2.9 1.08 4.3 16.3 2.0 .162 7.9	4 14006 1.14 1.1 1.10 1.4 16.3 .7 .063 6.5	(694 SQ. CM.)	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2298 3.7	-	LOWER 00540 6.1		
		•				

AS26 MEEKER, COLORADO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1863	3459	3346	13562	(694 SQ. CM.)
U-238 (PCI/G)	.97	1.11	1.02	1.07	
STDEV (PCT.)	3.5	3.2	3.3	2.3	
TH-232 (PCI/G)	.90	1.03	1.08	1.08	
STDEV (PCT.)	4.9	4.4	4.1	3.0	
K-40 (PCI/G)	14.5	15.3	14.8	15.8	
STDEV (PCT.)	2.1	2.1	2.1	1.4	
CS-137 (PCI/G)	.712	.695	.379	.095	
STDEV (PCT.)	2.7	2.8	4.1	9.0	
			_		
PLUTONIUM ANALYSIS	-	PPER	-	LOWER	
PU-239+240 (DPM/G)	.0	3905	.0	01008	
STDEV (PCT.)		4.4		6.2	

AS27 CRAIG, COLORADO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	121961.123.21.134.416.52.01.6351.7	2 4100 1.29 3.0 1.24 4.1 18.5 1.9 .391 4.3	3 4329 1.31 2.9 1.38 3.7 18.2 1.9 .101 12.1	4 13792 1.33 2.9 1.36 3.8 17.8 1.9 .035 30.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 4187 3.4		LOWER 00226 9.0	

AS28 CRAIG, COLORADO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2715 1.07 3.2 1.09 4.3 18.0 1.8 .812	2 4419 1.10 3.2 1.19 4.0 18.6 1.8 .502	3 3059 1.13 1.4 1.21 1.8 19.0 .8 .302	4 13808 1.07 3.1 1.24 3.8 21.3 1.6 .078	(694 SQ. CM.)
STDEV (PCT.)	2.4	3.4	2.4	14.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

AS32 ROCK SPRINGS, WYOMING

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2421	3720	3690	12521	(694 SQ. CM.)
U-238 (PCI/G)	1.01	1.13	1.06	1.08	
STDEV (PCT.)	3.3	3.1	3.1	3.1	
TH-232 (PCI/G)	.87	.80	.91	.88	
STDEV (PCT.)	4.8	5.3	4.7	4.7	
K-40 (PCI/G)	13.3	13.4	13.3	14.6	
STDEV (PCT.)	2.1	2.2	2.1	2.0	
CS-137 (PCI/G)	.455	.405	.307	.091	
STDEV (PCT.)	3.5	3.9	4.5	11.7	
PLUTONIUM ANALYSIS	U	PPER	I	LOWER	
PU-239+240 (DPM/G)	-	2750		01105	
STDEV (PCT.)		3.8		4.5	

AS35 EVANSTON, WYOMING

GAMMA ANALYSIS	
DEPTH INCREMENT 1 2 3 4	
DRY WEIGHT (GMS) 2857 4542 4268 20464 (694	SQ. CM.)
U-238 (PCI/G) .96 .98 1.01 .85	
STDEV (PCT.) 2.3 3.3 3.1 1.6	
TH-232 (PCI/G) .93 1.02 1.01 .85	
STDEV (PCT.) 3.2 4.3 4.3 2.2	
K-40 (PCI/G) 13.5 13.8 13.7 11.5	
STDEV (PCT.) 1.5 2.1 2.0 1.1	
CS-137 (PCI/G) .547 .213 .119 .037	
STDEV (PCT.) 2.2 6.0 9.2 12.9	
PLUTONIUM ANALYSIS UPPER LOWER	
PU-239+240 (DPM/G) .01818 .00657	
STDEV (PCT.) 4.5 5.6	

AS36 KEMMERER, WYOMING

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	$ \begin{array}{r}1\\1086\\1.06\\1.7\\.87\\2.6\\14.0\\1.1\\2.232\\.7\end{array} $	2 1684 1.09 2.3 .91 3.5 13.4 1.6 .822 1.8	3 4157 1.04 3.3 .95 4.6 13.9 2.1 .124 9.7	$\begin{array}{r} 4\\ 18005\\ 1.19\\ 3.0\\ 1.09\\ 4.2\\ 15.3\\ 2.0\\ .039\\ 26.0 \end{array}$	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 6905 3.3		LOWER 00272 8.5	

AS41 AFTON, WYOMING

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2326 1.49 2.6 .83 5.3 17.3 1.9 .776 2.6	2 2775 1.34 2.7 .90 4.9 15.8 2.1 .745 2.6	3 2461 1.44 2.7 .75 5.7 17.0 1.9 .401 3.9	4 9034 1.24 2.9 .81 5.1 16.1 2.0 .159 7.6	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		PPER 4297 3.5		OWER 1400 4.6	

AS43 IDAHO FALLS, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G)	1 2848 .86 3.6 .95 4.6 15.3	$2 \\ 4460 \\ .99 \\ 3.2 \\ 1.02 \\ 4.4 \\ 15.3 $	3 4779 1.04 1.5 1.10 2.0 16.1	4 12966 1.13 2.9 1.24 3.7 16.2	(694 SQ. CM.)
STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1.9 .536 3.1	1.9 .521 3.1	.9 .322 2.3	1.9 .052 19.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2466 3.8		LOWER 00580 6.8	

AS50 POCATELLO, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2648 1.11 3.2 1.00 4.6 17.2 1.9 .770 2.6	2 3735 1.13 2.2 1.16 2.9 17.3 1.3 .629 2.1	3 3752 1.20 3.1 1.22 4.0 17.6 1.9 .347 4.5	4 14074 1.03 3.2 1.17 4.1 18.1 1.8 .071 15.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		PPER 3308 3.4		LOWER 00728 5.1	

BA03 SEATTLE, WASHINGTON

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1432 .42 6.1 .30 10.3 7.0 3.2 .756 2.6	2 3106 .48 5.4 .35 9.4 7.8 2.9 .624 2.9	3 3039 .49 5.3 .40 8.0 2.8 .298 4.6	4 8655 .52 5.1 .40 8.0 8.5 2.8 .082 12.4	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3090 3.8		OWER 0627 5.8	

BA11 MEDFORD, OREGON

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1882	3397	3374	9536	(694 SQ. CM.)
U-238 (PCI/G)	.50	.63	.60	.59	
STDEV (PCT.)	5.3	4.4	4.6	4.8	
TH-232 (PCI/G)	.47	.53	.65	.53	
STDEV (PCT.)	7.6	6.7	5.7	6.7	
K-40 (PCI/G)	10.6	12.2	13.0	11.7	
STDEV (PCT.)	2.4	2.2	2.2	2.4	
CS-137 (PCI/G)	.507	.342	.108	.023	
STDEV (PCT.)	3.2	4.1	10.3	41.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)		PPER 2052		OWER 0309	
STDEV (PCT.)		4.3		8.8	

BA13 SAN FRANCISCO, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.)	1 1796 .63 4.1	2 3430 .63 4.2	3 3384 .74 3.7	4 13433 .71 1.9	(694 SQ. CM.)
TH-232 (PCI/G)	.72	.75	.80	.75	
STDEV (PCT.)	5.1	5.1	4.7	2.5	
K-40 (PCI/G)	8.7	9.0	9.6	9.0	
STDEV (PCT.)	2.6	2.5	2.4	1.2	
CS-137 (PCI/G)	.320	.320	. 209	.035	
STDEV (PCT.)	4.2	4.3	5.6	14.2	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BA15 SAN FRANCISCO, CALIFORNIA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2276	3900	3467	13279	(694 SQ. CM.)
U-238 (PCI/G)	.68	.65	.66	.68	
STDEV (PCT.)	4.1	4.2	4.2	2.0	
TH-232 (PCI/G)	.64	.73	.69	.75	
STDEV (PCT.)	5.7	5.2	5.5	2.5	
K-40 (PCI/G)	8.8	9.4	9.9	9.3	
STDEV (PCT.)	2.7	2.5	2.4	1.2	
CS-137 (PCI/G)	.286	.318	.163	.024	
STDEV (PCT.)	4.7	4.3	7.1	21.6	
PLUTONIUM ANALYSIS	U	PPER	I	LOWER	
PU-239+240 (DPM/G)	.0	1405	.(00170	
STDEV (PCT.)		3.8		11.8	

.

BA18 LONG BEACH, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2769 .78 1.9 1.10 2.0 19.6 .9 .265	2 4833 .84 1.8 1.16 1.9 21.4 .8 .168	3 4289 .85 1.3 1.22 1.4 22.6 .6 .056	4 15413 .87 1.4 1.24 1.4 22.1 .6 .011	(694 SQ.	CM.)
CS-137 (PCI/G) STDEV (PCT.)	.265 2.7	.168 3.8	.056 7.8	.011 37.5		

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BA29 LOS ANGELES, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2380 .52 2.5 .99 2.1 17.9 .9	2 4232 .60 4.4 1.18 3.7 19.1 1.6	3 4042 .60 4.4 1.15 3.8 19.0 1.6	4 14972 .57 2.2 1.14 1.8 19.9 .8	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.276 2.5	.251 5.2	.122 9.0	.024 20.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 01365 5.6	1	LOWER 00191 8.5	

BA30 LOS ANGELES, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2411 1.33 1.4 .85 2.5 18.7 .9 .266 2.7	2 3870 1.47 2.7 .96 4.8 20.8 1.7 .199 6 6	3 3826 1.63 1.2 1.05 2.2 21.9 .8 .116 5.5	4 15323 1.68 1.1 1.07 2.1 22.5 .8 .029 19.6	(694 SQ. CM.)
STDEV (PCT.)	2.7	6.6 PPER		19.6 LOWER	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		1090 4.6		00209 8.5	

BEO1 FURNACE CREEK, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2295 .94 3.4 .79 5.1 18.1 1.8 .347 4.2	2 3836 .97 3.2 .75 5.2 18.4 1.8 .380 3.7	3 2174 .94 3.3 .71 5.5 18.1 1.8 .320 4.3	4 9304 .85 3.6 .60 6.1 15.4 2.0 .101 10.7	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2907 3.9		OWER 1258 4.7	

BE06 SHOSHONE, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2844 1.18 1.5 1.19 1.9 20.2 .9 254	2 3533 1.34 2.9 1.18 4.1 19.4 1.8 374	3 3623 1.54 2.6 1.15 4.3 21.7 1.7	4 10181 2.19 1.1 1.12 2.2 19.3 1.0	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.254 2.9	.374 4.2	.181 7.3	.038 17.7	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BE09 BULLHEAD CITY, ARIZONA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	3145	3450	4350	20220	(694 SQ. CM.)
U-238 (PCI/G)	.69	.69	.74	. 54	
STDEV (PCT.)	3.8	1.8	3.8	2.1	
TH-232 (PCI/G)	.63	.77	.95	1.22	
STDEV (PCT.)	5.7	2.4	4.4	1.5	
K-40 (PCI/G)	14.6	16.5	21.2	37.4	
STDEV (PCT.)	1.9	.9	1.6	.5	
CS-137 (PCI/G)	.278	. 223	.099	.003	
STDEV (PCT.)	4.6	2.7	11.2	171.0	
· · · ·					

`

BE10 INDIAN SPRINGS, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1974	3513	3567	14205	(694 SQ. CM.)
U-238 (PCI/G)	1.47	1.61	1.61	1.64	-
STDEV (PCT.)	2.7	2.5	2.5	1.1	
TH-232 (PCI/G)	.61	.73	.73	.70	
STDEV (PCT.)	6.5	5.6	5.6	2.8	
K-40 (PCI/G)	10.6	11.4	11.4	11.0	
STDEV (PCT.)	2.6	2.4	2.4	1.1	
CS-137 (PCI/G)	.433	.323	.120	.031	
STDEV (PCT.)	3.8	4.5	9.8	17.4	
PLUTONIUM ANALYSIS	U	PPER	I	LOWER	
PU-239+240 (DPM/G)	.0	5748	.0	0744	
STDEV (PCT.)		4.8		5.9	

BE22 BISHOP, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2518 1.28 1.3 1.28 1.8 20.2 .8 .262 2.7	2 3317 1.27 1.0 1.36 1.3 21.8 .6 .239 2.2	3 3882 1.14 2.9 1.25 3.8 22.8 1.5 .151 8.0	4 16155 1.16 1.1 1.23 1.4 25.7 .5 .029 14.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1464 3.5		LOWER 00330 10.3	

BE25 INDEPENDENCE, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 1506 1.06 1.5 1.29	2 3092 .82 1.3 .96	3 3704 .86 1.8 .99	4 21942 .74 1.4 .96	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G)	1.8 23.2	32.7	32.6	34.2	
STDEV (PCT.)	.8	. 4	.6	.5	
CS-137 (PCI/G)	.307	.176	.140	.035	
STDEV (PCT.)	2.4	2.7	4.6	11.9	

.

BE29 CHINA LAKE, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	$1 \\ 2776 \\ .97 \\ 1.2 \\ 1.01 \\ 1.6 \\ 22.4 \\ .6 \\ .152$	2 3523 .80 1.3 .86 1.7 23.3 .5 .102	3 4307 .74 1.4 .74 1.9 25.7 .5 .052	$\begin{array}{r} 4\\ 16905\\ .80\\ .8\\ 1.09\\ .9\\ 24.2\\ .3\\ .012\end{array}$	(694 SQ. CM.)
CS-137 (PCI/G)	.152	.102	.052	.012	
STDEV (PCT.)	3.1	4.2	7.8	19.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BE32 BEATTY, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) (S=137 (PCI/G)	1 1760 1.24 3.0 1.51 3.6 29.3 1.4 605	2 1765 1.26 3.0 1.67 3.3 30.7 1.4 327	3 4168 1.26 1.4 1.69 1.6 29.8 .7	4 15286 1.18 1.5 1.67 1.6 26.9 .7 012
CS-137 (PCI/G) STDEV (PCT.)	.605 3.2	.327 4.8	.100 6.6	.012 47.1
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 0513 3.0	I	LOWER 00429 7.7

BE34 CARVER'S, NEVADA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1848	1333	2747	14032
U-238 (PCI/G)	1.80	2.02	1.99	2.08
STDEV (PCT.)	1.7	2.3	2.5	2.4
TH-232 (PCI/G)	1.80	1.91	1.79	1.81
STDEV (PCT.)	2.3	3.1	3.4	3.3
K-40 (PCI/G)	26.1	24.3	22.7	26.7
STDEV (PCT.)	1.1	1.6	1.8	1.6
CS-137 (PCI/G)	.179	.293	.647	.098
STDEV (PCT.)	5.7	5.7	3.4	14.2

BE37 ALAMO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2248 1.35 2.8 1.33 3.8 19.5 1.8 .440 3.7	2 3573 1.40 2.8 1.39 3.7 21.2 1.7 .390 4.2	3 3384 1.52 1.2 1.46 1.7 22.8 .8 .265 2.9	4 13498 1.40 1.2 1.66 1.6 26.0 .7 .068 8.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 6839 2.1	I	LOWER 01526 4.6	

BE38 ALAMO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) (S=137 (PCI/G)	1 1712 1.34 1.3 1.27 1.8 18.3 .9 413	2 3561 1.42 2.7 1.48 3.5 22.4 1.6 302	3 3793 1.56 1.2 1.59 1.6 23.9 .8 123	4 15386 1.69 1.2 1.54 1.7 20.0 .9 027	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.413 2.0	.302	.123 5.4	.027 21.9	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BE39 ALAMO, NEVADA					
	1	2	3	4	
DRY WEIGHT (GMS)	2133	3471	2648	11080	(694 SQ. CM.)
U-238 (PCI/G)	2.08	2.04	1.87	1.83	
STDEV (PCT.)	2.2	2.2	2.3	2.3	
TH-232 (PCI/G)	1.43	1.52	1.53	1.51	
STDEV (PCT.)	3.7	3.5	3.5	3.5	
K-40 (PCI/G)	20.4	21.8	22.4	24.4	
STDEV (PCT.)	1.8	1.7	1.6	1.6	
CS-137 (PCI/G)	.383	.316	. 236	.080	
STDEV (PCT.)	4.3	5.0	6.3	15.7	

BE40 ALAMO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1934 1.08 3.2 1.40 3.6 20.4 1.7 276	2 3819 1.27 2.9 1.49 3.5 22.8 1.6 294	3 3530 1.36 2.8 1.53 3.5 24.4 1.5 255	4 10989 1.35 2.8 1.58 3.4 24.1 1.6	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.276 5.4	.294	.255	.129 10.0	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BF01 BLUEBELL, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1104	1476	4926	18417
U-238 (PCI/G)	.63	.68	.74	.76
STDEV (PCT.)	3.1	4.0	3.7	3.6
TH-232 (PCI/G)	.57	.66	.75	.81
STDEV (PCT.)	4.5	5.7	5.0	4.8
K-40 (PCI/G)	9.6	10.6	11.2	10.4
STDEV (PCT.)	1.8	2.3	2.2	2.3
CS-137 (PCI/G)	.569	.548	.469	.171
STDEV (PCT.)	2.2	3.0	3.3	6.7

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BF03 ARCADIA, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2982	4497	4062	13741
U-238 (PCI/G)	1.07	1.06	1.12	1.09
STDEV (PCT.)	2.3	3.5	3.1	3.0
TH-232 (PCI/G)	1.12	1.21	1.16	1.12
STDEV (PCT.)	2.9	4.0	4.0	4.0
K-40 (PCI/G)	15.3	16.1	15.8	15.1
STDEV (PCT.)	1.4	2.1	2.0	2.0
CS-137 (PCI/G)	.447	.474	. 244	.079
STDEV (PCT.)	2.6	3.7	5.7	13.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02700		-	LOWER
STDEV (PCT.)		5.2		8.1

..

BF05 ALTONAH, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2187	3654	3576	9990
U-238 (PCI/G)	.83	.81	.87	.82
STDEV (PCT.)	3.6	3.7	3.4	3.7
TH-232 (PCI/G)	.74	.79	.82	.74
STDEV (PCT.)	5.3	5.0	4.8	5.3
K-40 (PCI/G)	11.6	11.4	11.7	9.8
STDEV (PCT.)	2.2	2.3	2.2	2.6
CS-137 (PCI/G)	.502	.372	.212	.075
STDEV (PCT.)	3.2	4.0	5.9	13.7
PLUTONIUM ANALYSIS	U	PPER	L	OWER
PU-239+240 (DPM/G)	.0	3060	.0	0751
STDEV (PCT.)		4.0		5.6

BF09 ALTONAH, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1108	870	4128	18556
U-238 (PCI/G)	.58	.65	.61	.70
STDEV (PCT.)	4.4	4.1	4.1	3.8
TH-232 (PCI/G)	.48	.55	.51	.66
STDEV (PCT.)	6.9	6.2	6.5	5.3
K-40 (PCI/G)	7.3	7.7	7.4	8.6
STDEV (PCT.)	2.8	2.7	2.8	2.5
CS-137 (PCI/G)	.403	.453	.487	.076
STDEV (PCT.)	3.6	3.3	3.1	12.4

**** NO PLUTONIUM ANALYSIS PERFORMED ****

BF10 DUCHESNE, UTAH

i.

.

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2927 .99 3.3 1.05 4.3 16.7 1.9 .497 3.3	2 4488 1.02 3.2 1.01 4.4 15.7 2.0 .178 7.1	3 4355 1.01 3.3 1.07 4.3 16.6 1.9 .100 11.7	4 12974 1.02 1.6 1.08 2.0 15.9 1.0 .032 17.7
PLUTONIUM ANALYSIS	UPPER			LOWER
PU-239+240 (DPM/G)	.01950			00392
STDEV (PCT.)	5.8			10.0

BF13 RIVERTON, WYOMING

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	3124	3887	3595	13066
U-238 (PCI/G)	1.15	1.11	1.14	1.13
STDEV (PCT.)	3.0	3.1	3.0	3.0
TH-232 (PCI/G)	1.49	1.35	1.38	1.41
STDEV (PCT.)	3.4	3.7	3.6	3.6
K-40 (PCI/G)	18.2	17.8	18.2	19.2
STDEV (PCT.)	1.8	1.8	1.8	1.7
CS-137 (PCI/G)	.456	.345	.273	.054
STDEV (PCT.)	3.6	4.5	5.2	20.8
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .04192			OWER
STDEV (PCT.)		2.8		3.8

BF15 RAWLINS, WYOMING

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G)	1 2435 1.01 3.1 .84 5.0 15.0	2 3135 1.06 3.0 .87 4.7 14.2	3 2781 1.07 3.0 .88 4.6 15.2	4 10486 .98 3.1 .90 4.6 15.7
STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1.9 .485 3.4	2.0 .444 3.5	1.9 .393 3.8	1.8 .122 9.1
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2546 3.6		LOWER 00827 5.2

BF19 UPALCO, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) (S=137 (PCI/G)	1 1831 .45 5.2 .34 9.0 5.1 3.4 769	2 4240 .48 4.6 .43 7.0 5.6 3.1 558	3 3372 .49 4.4 .52 5.8 5.7 3.0 144	4 3455 .61 3.9 .61 5.4 7.6 2.6 097
CS-137 (PCI/G) STDEV (PCT.)	.769 2.3	.558	.144 6.8	.097 9.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 3870 3.7	L	OWER 0938 5.3

BF22 BLUEBELL, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2050	3111	4397	15582
U-238 (PCI/G)	.48	.44	.51	.50
STDEV (PCT.)	5.1	5.0	4.3	3.0
TH-232 (PCI/G)	.46	.43	.47	.42
STDEV (PCT.)	7.0	7.0	6.4	4.9
K-40 (PCI/G)	5.4	5.0	5.4	5.1
STDEV (PCT.)	3.4	3.4	3.1	2.3
CS-137 (PCI/G)	.677	.466	.148	.004
STDEV (PCT.)	2.6	3.1	6.6	138.4

**** NO PLUTONIUM ANALYSIS PERFORMED ****

DZO1 BAKER, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2579 .90 1.6 .89 2.3 15.5 .9 .680 1.3	2 2956 .88 2.4 .98 3.0 16.8 1.3 .445 2.5	3 3960 .78 3.7 .89 4.7 15.3 1.9 .228 5.5	4 14881 .78 3.6 .91 4.4 15.9 1.8 .067 14.5	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 4139 4.1		LOWER)1462 4.4	

DZ 04	ELY,	NEVADA
--------------	------	--------

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1903	2537	2776	12213	(694 SQ. CM.)
U-238 (PCI/G)	2.58	3.21	3.16	1.66	
STDEV (PCT.)	1.9	.8	1.2	1.4	
TH-232 (PCI/G)	1.07	1.12	1.16	1.02	
STDEV (PCT.)	4.5	2.2	3.1	2.6	
K-40 (PCI/G)	12.1	13.6	14.5	13.6	
STDEV (PCT.)	2.3	1.1	1.6	1.2	
CS-137 (PCI/G)	1.359	.689	.272	.038	
STDEV (PCT.)	1.8	1.5	4.0	16.0	
PLUTONIUM ANALYSIS	TT	PPER	т	OWER	
PU-239+240 (DPM/G)	-	1117		2385	
STDEV (PCT.)	• +	3.3	•••	3.7	

DZ04A ELY, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1313	1531	3687	19294	(694 SQ. CM.)
U-238 (PCI/G)	.96	.96	.84	1.32	,
STDEV (PCT.)	3.4	3.4	3.7	. 9	
TH-232 (PCI/G)	.88	.70	.62	1.29	
STDEV (PCT.)	4.8	5.7	6.0	1.2	
K-40 (PCI/G)	11.6	10.3	9.6	19.3	
STDEV (PCT.)	2.3	2.5	2.6	.5	
CS-137 (PCI/G)	1.602	.679	.058	.008	
STDEV (PCT.)	1.6	2.7	17.0	41.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

DZ05A ELY, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2192 1.42 1.3 1.02 2.3 15.7 1.0	2 3215 1.50 1.8 1.02 3.2 15.2 1.4	3 3322 1.50 1.5 1.09 2.5 16.7 1.1	4 8080 1.19 2.9 .90 4.8 14.4 2.1	(694 SQ.	CM.)
CS-137 (PCI/G) STDEV (PCT.)	.561	.542	.438	.140		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 0050 3.7	L	OWER 1428 5.5		

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 1778 1.64 2.6 .82	2 2739 1.30 3.0 1.03	3 3352 1.35 2.9 1.10	4 12468 1.23 3.0 1.06	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G)	5.6 20.8	4.5	4.4 17.1	4.4	
STDEV (PCT.) CS-137 (PCI/G)	1.8 2.222	1.8	2.0	2.1	
STDEV (PCT.)	1.4	7.6	32.2	50.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 8055 3.4		LOWER)0101 13.8	

DZ10 IBAPAH, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 957 .94 4.1 .91 5.3 13.6 2.3 3.084	2 1532 .94 2.7 .85 3.7 13.4 1.6 1.108	33593.963.7.934.712.42.4.124	4 13640 .93 3.7 .70 5.9 11.3 2.5 .021	(694 SQ. CM.)
STDEV (PCT.)	1.2	1.5	9.9	47.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		JPPER 10998 3.2		LOWER)0272 8.9	

DZ16 WENDOVER, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2340 1.14 2.2 1.06 3.1 14.8 1.5 .751 1.8	2 4181 1.01 2.4 1.51 2.4 19.8 1.2 .271 3.8	3 3505 1.04 1.6 1.42 1.8 17.3 .9 .249 2.9	4 15198 .96 2.3 .68 3.9 8.1 1.9 .064 10.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 3929 4.2	I	LOWER 00616 5.7	

DZ18 TOOELE, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2360 1.21 3.0 .80 5.3 13.0 2.2 .714	2 3842 1.30 2.7 .84 4.9 13.9 2.1 .648	3 3860 1.32 2.8 .89 4.8 13.8 2.1 .448	4 13701 1.22 2.9 .81 5.2 13.7 2.1 .105	(694 SQ. CM.)
STDEV (PCT.)	2.6	2.7	3.6	10.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	•	PPER 3847 3.6	-	LOWER 01135 4.4	

DZ21 IOSEPA, UTAH

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2420	3785	3185	13749	(694 SQ. CM.)
U-238 (PCI/G)	1.19	1.20	1.13	1.16	· · · · · ·
STDEV (PCT.)	3.0	2.9	3.1	2.1	
TH-232 (PCI/G)	1.00	1.11	1.00	1.02	
STDEV (PCT.)	4.5	4.1	4.6	3.0	
K-40 (PCI/G)	15.7	15.4	14.6	15.1	
STDEV (PCT.)	2.0	2.0	2.1	1.4	
CS-137 (PCI/G)	.676	.565	.379	.114	
STDEV (PCT.)	2.8	3.1	4.0	7.3	
PLUTONIUM ANALYSIS	-	PPER	I	LOWER	
PU-239+240 (DPM/G)	.0	5771	.0	01779	
STDEV (PCT.)		3.2		3.7	

EML3 ST. GEORGE, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1572 .48 5.3 .43 7.9 14.4 2.1 .574	2 3305 .51 5.1 .47 7.9 15.8 2.0 .622	3 3895 .53 5.0 .56 6.4 14.5 2.0 .360	4 10851 .48 3.6 .39 5.7 11.8 1.6 .058
STDEV (PCT.)	3.0	2.8	4.0	11.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 5305 3.3	-	LOWER 01081 4.7

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2249 .79 2.6 .66 4.1 16.6 1.3 .433 2.5	2 3554 .81 2.6 .72 3.9 17.5 1.3 .459 2.4	3 3370 .84 2.5 .77 3.7 17.5 1.3 .299 3.3	4 13069 .84 2.5 .78 3.7 19.0 1.2 .066 11.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	2735 3.6	_	LOWER 00783 5.2

E26A PAROWAN, UTAH

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2833	3910	3885	11380
U-238 (PCI/G)	.64	.69	.65	.55
STDEV (PCT.)	4.1	3.9	4.1	4.4
TH-232 (PCI/G)	.56	.54	.65	.56
STDEV (PCT.)	6.2	6.3	5.5	5.9
K-40 (PCI/G)	6.4	6.5	6.0	6.0
STDEV (PCT.)	3.0	3.0	3.2	3.1
CS-137 (PCI/G)	.483	.595	.382	.101
STDEV (PCT.)	3.2	2.7	3.8	9.3
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 2708		LOWER
STDEV (PCT.)		2.7	• •	4.7

E35 CEDAR CITY, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2353 .54 3.3 .49 4.9 11.0 1.6 .387	2 4090 .58 2.2 .54 3.2 11.5 1.1 .355	3 3784 .57 3.1 .55 4.4 11.5 1.6 .248	4 11899 .61 2.5 .58 3.5 12.9 1.2 .077
STDEV (PCT.)	2.6	2.0	3.5	7.7
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	+	PPER 1936 3.8		LOWER 00775 5.9

E132 VERNAL, UTAH

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2850 .97 3.3 .80 5.0 13.7 2.1 .477 3.3	2 4348 1.06 3.1 .72 5.7 13.4 2.1 .294 4.7	3 3881 .99 3.3 .74 5.4 13.5 2.1 .186 6.7	4 15105 .85 3.2 .73 5.1 11.8 2.1 .057 18.3
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2199 3.7		LOWER 00628 5.9

FM01 KINGMAN, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	$1 \\ 1396 \\ .81 \\ 4.2 \\ 1.39 \\ 3.8 \\ 20.2 \\ 1.8 \\ 1.159 $	2 4679 .84 1.8 1.50 1.7 28.3 .7 .122	3 4852 1.02 3.4 1.60 3.3 25.8 1.5 .072	4 16542 .95 1.7 1.65 1.6 28.4 .7 .048	(694 SQ.)	CM.)
STDEV (PCI/G)	2.1	5.3	17.1	.048 12.6		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1339 3.5		LOWER 00424 5.4		

FM08 SOUTH RIM GRAND CANYON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 606 .93 4.1 .76 5.5 11.7 2.6	2 1241 1.08 3.3 .97 4.8 16.3 2.0	3 3763 1.02 3.1 .98 4.4 16.1 1.9	4 15974 1.05 3.2 1.30 3.7 18.6 1.8	(694 SQ. CM.)
CS-137 (PCI/G)	1.439	1.244 2.0	.521 3.2	.090 13.3	
STDEV (PCT.)	1.9	2.0	3.4	13.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		JPPER 07202 3.2		LOWER 01270 4.7	

FM10 SOUTH RIM GRAND CANYON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.)	1 1505 .76 3.6	2 1662 .78 3.5	3 4390 .78 3.5	4 15460 .78 3.5	(694 SQ. CM.)
TH-232 (PCI/G)	.68	.76	.67	.72	
STDEV (PCT.)	5.5	4.9	5.4	5.0	
K-40 (PCI/G)	9.7	10.2	9.4	9.2	
STDEV (PCT.)	2.3	2.3	2.4	2.4	
CS-137 (PCI/G)	.888	.712	.303	.048	
STDEV (PCT.)	2.2	2.4	4.2	18.3	

FM14 TUBA CITY, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2825 .61 4.4 .51 7.0 15.5 1.9 .213	2 4558 .67 3.9 .63 5.7 14.8 2.0 .293	3 3854 .69 4.0 .60 6.1 15.1 1.9 .253	4 13164 .64 4.1 .58 6.2 15.2 1.9 .041	(694 SQ. CM.)
STDEV (PCT.)	5.6	4.6	4.9	23.1	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1138 4.8		LOWER)1224 4.9	

FM16 GALLUP, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2573 1.07 3.2 .94 4.8 16.2 1.9 1.095 2.1	2 3839 1.00 3.2 1.16 3.9 20.7 1.6 .241 5.6	3 3960 .96 3.2 1.13 3.9 20.3 1.6 .077 14.0	4 19317 1.22 2.8 1.30 3.7 15.8 1.9 .032 32.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3477 3.8		LOWER 00178 11.5	

FM17 HOLBROOK, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.)	1 2460 .78 3.7 .78 4.9	2 3262 .69 3.9 .67 5.5	3 3184 .64 4.1 .65 5.6	4 16699 .67 3.8 .70 5.2	(694 SQ. CM.)
<pre>K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)</pre>	-	12.5 2.1 .372 3.8 PPER 1787 4.1	-	12.8 2.0 .059 15.7 LOWER 00790 6.2	

FM29 GANADO, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3071 .73 3.9 .67 5.9 16.4 1.9 .608 2.9	2 4482 .78 3.7 .87 4.6 16.6 1.8 .227 5.5	3 4780 .83 3.5 .85 4.8 16.9 1.8 .110 9.6	4 20410 .65 1.9 .79 2.4 18.4 .8 .021 23.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 4609 3.3		LOWER 00275 7.7	

FM31 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2308 .99 3.5 .81 5.2 13.6 2.2 .806 2.5	2 3728 1.04 3.1 .94 4.5 15.7 1.9 .224 5.8	3 3953 1.00 3.3 .98 4.5 15.9 1.9 .112 10.8	4 15625 .86 1.7 .84 2.4 17.5 .9 .036 14.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	DPPER 06173 3.5		LOWER 00639 5.3	

FM32 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2298	4003	4847	16232	(694 SQ. CM.)
U-238 (PCI/G)	.79	.85	. 84	. 98	• - •
STDEV (PCT.)	3.9	3.5	3.5	3.3	
TH-232 (PCI/G)	.69	.80	.77	. 88	
STDEV (PCT.)	5.8	5.1	5.1	4.9	
K-40 (PCI/G)	14.7	15.9	16.7	16.4	
STDEV (PCT.)	2.1	1.9	1.8	1.9	
CS-137 (PCI/G)	.557	.323	.151	.040	
STDEV (PCT.)	3.2	4.6	8.1	27.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 9323		LOWER 00756	
STDEV (PCT.)		3.6		5.8	

FM33 ALBUQUERQUE, NEW MEXICO

1	2	3	4	
1481	3406	4647	21009	(694 SQ. CM.)
.71	.92	.82	.90	(111-12)
4.5	2.4	3.5	3.3	
.60	.84	.87	.97	
6.4	3.4	4.7	4.4	
9.3	14.8	17.3	18.0	
2.8	1.4	1.8	1.7	
.698	.727	.178	.053	
2.8	1.8	6.7	17.9	
+				
.0		.(
	2.9		7.0	
	.71 4.5 .60 6.4 9.3 2.8 .698 2.8	1481 3406 .71 .92 4.5 2.4 .60 .84 6.4 3.4 9.3 14.8 2.8 1.4 .698 .727	1481 3406 4647 .71 .92 .82 4.5 2.4 3.5 .60 .84 .87 6.4 3.4 4.7 9.3 14.8 17.3 2.8 1.4 1.8 .698 .727 .178 2.8 1.8 6.7 UPPER .09593 .0	1481 3406 4647 21009 .71 .92 .82 .90 4.5 2.4 3.5 3.3 .60 .84 .87 .97 6.4 3.4 4.7 4.4 9.3 14.8 17.3 18.0 2.8 1.4 1.8 1.7 .698 .727 .178 .053 2.8 1.8 6.7 17.9 UPPER LOWER .09593 .00474

FM33-R ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1481 .79 4.1 .56 6.9 8.9 2.9 .653 3.1	2 3406 .89 3.5 .80 5.2 14.7 2.0 .697 2.7	3 4647 .81 3.6 .93 4.4 16.6 1.8 .205 6.3	4 21009 .85 3.4 .95 4.4 17.7 1.7 .040 25.2	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	2.7 PPER 0254 2.9	I	25.2 LOWER 00700 4.7		

FM34 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS	1	2	3	4	(694 SQ. CM.)
DEPTH INCREMENT	1403	2977	3780	16698	
DRY WEIGHT (GMS)	.77	.98	1.07	1.10	
U-238 (PCI/G)	4.2	3.4	3.3	3.2	
STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G)	4.2 .63 6.2 9.6	.80 5.3 14.1	.98 4.6 16.6	1.06 4.3 17.8	
STDEV (PCT.)	2.8	2.1	2.0	1.8	
CS-137 (PCI/G)	.543	.812	.167	.051	
STDEV (PCT.)	3.4	2.6	8.2	22.6	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 6154 3.8	_	LOWER 00877 5.8	

FM35 ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1598	3579	3984	20880	(694 SQ. CM.)
U-238 (PCI/G)	.86	.84	.89	.78	,
STDEV (PCT.)	4.0	3.5	3.4	3.6	
TH-232 (PCI/G)	.64	.96	. 99	.87	
STDEV (PCT.)	6.2	4.4	4.3	4.6	
K-40 (PCI/G)	10.9	14.1	15.3	18.0	
STDEV (PCT.)	2.6	2.0	1.9	1.7	
CS-137 (PCI/G)	.837	.475	.187	.031	
STDEV (PCT.)	2.5	3.3	6.6	30.8	
PLUTONIUM ANALYSIS	-	PPER		LOWER	
PU-239+240 (DPM/G) STDEV (PCT.)	. 4	1524 1.7	. (01210 4.2	

FM35-R ALBUQUERQUE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1598 .81 4.2 .62 6.5 10.4 2.6 .818 2.7	2 3579 .94 3.3 .85 4.8 13.9 2.0 .481 3.4	3 3984 .86 3.5 .94 4.5 14.5 2.0 .162 7 7	4 20880 .71 4.0 .83 4.9 17.6 1.7 .040 24 9	(694 SQ. CM.)
STDEV (PCT.)	2.7	3.4 PPER	7.7	24.9 LOWER	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	2372 3.4)1090 5.2	

FM39 CHINLE, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3071 1.02 3.1 .96 4.5 14.0 2.0 .500 3.3	2 3843 .95 3.2 1.01 4.2 14.9 1.9 .404 3.7	3 4262 .95 3.3 .93 4.5 14.3 2.0 .163 7.3	4 16977 .81 3.6 1.05 4.1 14.7 1.9 .057 17.6	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3840 4.0		LOWER 00452 4.9	

FM43 WILLIAMS, ARIZONA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2337	3305	3304	10994	(694 SQ. CM.)
U-238 (PCI/G)	.81	.94	1.01	1.08	
STDEV (PCT.)	3.8	3.4	1.9	3.2	
TH-232 (PCI/G)	.80	1.01	1.07	1.38	
STDEV (PCT.)	5.1	4.3	2.4	3.5	
K-40 (PCI/G)	13.2	14.4	12.8	11.0	
STDEV (PCT.)	2.2	2.0	1.3	2.4	
CS-137 (PCI/G)	1.372	.539	.285	.069	
STDEV (PCT.)	1.8	3.2	2.9	15.9	
PLUTONIUM ANALYSIS	UPPER		LOWER		
PU-239+240 (DPM/G)	.03881		.00638		
STDEV (PCT.)		3.2		5.8	

FM45 FLAGSTAFF, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2288 .89 3.7 .93 4.7 13.7 2.2 569	2 3490 .92 2.5 1.01 3.1 14.3 1.5 478	3 3744 .91 3.5 1.04 4.2 14.6 2.0 290	4 15565 .95 3.4 1.13 4.0 14.8 2.0 076	(694 SQ. CM	.)
CS-137 (PCI/G) STDEV (PCT.)	.569 3.1	.478	.290	.076 14.2		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02428 3.6		LOWER .00628 5.1			

FM46 FLAGSTAFF, ARIZONA

1	2	3	4	
2002	3451	3847	12980	(694 SQ. CM.)
.78	1.00	1.09	.96	
4.2	3.3	3.3		
.82	1.10	1.20		
5.3	4.1	4.0	4.0	
11.5				
1.5	9.5	22.1	132.4	
UPPER .04665 2.8		LOWER .00196 11.3		
	.78 4.2 .82 5.3 11.5 2.4 2.157 1.5	2002 3451 .78 1.00 4.2 3.3 .82 1.10 5.3 4.1 11.5 12.6 2.4 2.2 2.157 .124 1.5 9.5 UPPER .04665	2002 3451 3847 .78 1.00 1.09 4.2 3.3 3.3 .82 1.10 1.20 5.3 4.1 4.0 11.5 12.6 12.5 2.4 2.2 2.3 2.157 .124 .049 1.5 9.5 22.1	2002 3451 3847 12980 .78 1.00 1.09 .96 4.2 3.3 3.3 3.3 .82 1.10 1.20 1.16 5.3 4.1 4.0 4.0 11.5 12.6 12.5 10.8 2.4 2.2 2.3 2.3 2.157 .124 .049 .007 1.5 9.5 22.1 132.4 UPPER .04665 .00196

FM50 FLAGSTAFF, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.)	1 2878 .93 3.5 .99 4.4	2 4084 1.08 3.3 1.12 4.1	3 3953 .95 3.4 1.00 4.4	4 16238 1.07 3.3 1.23 3.9	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	$ \begin{array}{r} 4.4 \\ 14.5 \\ 2.0 \\ 1.049 \\ 2.1 \\ \end{array} $	4.1 14.8 2.1 .085 13.6	$ \begin{array}{r} 4.4 \\ 14.7 \\ 2.0 \\ .277 \\ 5.0 \\ \end{array} $	3.9 14.7 2.1 .004 303.8	

)

**** NO PLUTONIUM ANALYSIS PERFORMED ****

FM54 FT. DEFIANCE, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G)	1 3464 .66	2 4751 .72	3 4668 .69	4 18586 .61	(694 SQ. CM.)
STDEV (PCT.) TH-232 (PCI/G)	2.0	1.9 .79	2.0 .76	2.1 .66	
STDEV (PCT.) K-40 (PCI/G)	2.6 21.4	2.4 22.5	2.5 23.4	2.8 23.6	
STDEV (PCT.)	.8	. 8	. 8	.7	
CS-137 (PCI/G) STDEV (PCT.)	.290 2.4	.175 3.6	.096 5.9	.026 19.0	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

GC05 RENO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2698 .94 1.2 1.24 1.4 16.1 .7 .309 1.7	2 3762 .91 1.6 1.22 1.8 17.8 .9 .257 2.6	3 4805 .86 3.5 1.16 4.0 24.1 1.5 .114 10.7	4 19151 1.02 1.5 1.38 1.7 21.6 .8 .033 16.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1369 5.8	-	LOWER 00292 8.4	

GC12 LOVELOCK, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1619	2506	3118	16182	(694 SQ. CM.)
U-238 (PCI/G)	1.21	1.32	1.38	1.17	/
STDEV (PCT.)	1.7	3.1	3.0	1.5	
TH-232 (PCI/G)	1.07	1.21	1.28	1.10	
STDEV (PCT.)	2.2	4.2	4.0	2.0	
K-40 (PCI/G)	16.5	19.2	20.1	21.3	
STDEV (PCT.)	1.1	1.9	1.9	.8	
CS-137 (PCI/G)	.914	.325	.186	.019	
STDEV (PCT.)	1.2	5.0	7.6	29.1	
PLUTONIUM ANALYSIS	Ĩ	PPER	1	LOWER	
PU-239+240 (DPM/G)	-	2620	-	00263	
STDEV (PCT.)		3.8	• `	8.4	
		0.0		011	

GC15 FALLON, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2374 .73 4.0 .86 4.8 20.6 1.7 .341 4.3	2 4452 .79 3.6 .92 4.5 23.0 1.5 .267 4.9	3 4344 .77 3.6 .84 4.8 22.9 1.5 .252 5.1	4 15644 .85 3.5 .91 4.6 22.6 1.5 .061 17.4	(694 SQ. CM.)
SIDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	4.9 PPER 1417 4.6	1	LOWER 00574 6.0	

GC19 GABBS, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1700 .95 3.3 .75 5.4 14.7 2.0 .367 4.0	2 3076 1.06 3.1 .75 5.3 16.0 1.9 .670 2 7	3 3501 .93 3.3 .73 5.4 16.9 1.8 .357 4.0	4 12514 .84 2.4 .79 3.5 17.4 1.2 .026 25.2	(694 SQ. CM.)
STDEV (PCT.) PLUTONIUM ANALYSIS	4.0 2.7 UPPER		I	LOWER	
PU-239+240 (DPM/G) STDEV (PCT.)	.0	4020 2.4	. (0325 7.0	

GC20 AUSTIN, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 1689 1.52 2.7 1.94 3.0 23.4 1.6	2 3063 1.50 2.6 1.85 3.0 27.6 1.4	3 3467 1.65 2.4 2.00 2.9 28.1 1.4	4 14573 1.67 1.3 2.40 1.4 25.6 .8	(694 SQ. CM.)
SIDEV (PCI.) CS-137 (PCI/G) STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	.808 2.6 U	.724 2.7 PPER 4035 5.6	.164 8.2	.057 12.2 LOWER 00413 7.3	

GC23 AUSTIN, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1064 1.34 2.9 1.16 4.2 20.0 1.8 .941 2.3	2 1263 1.37 2.9 1.25 4.1 22.0 1.7 .953 2.3	3 4101 1.42 2.9 1.26 4.1 22.4 1.7 .716 2.8	4 17959 1.45 2.7 1.22 4.1 25.6 1.6 .102 12.0	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 5001 3.4	-	LOWER 01271 4.8	

GC29 BRIDGEPORT, CALIFORNIA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1996 1.21 3.0 1.28 3.8 19.6 1.7 .725 2.7	2 2952 1.14 3.1 1.37 3.7 18.6 1.8 .940 2.3	3 3785 1.41 2.7 1.46 3.6 24.1 1.6 .157 8.5	4 16746 .97 3.4 .92 4.8 30.5 1.4 .012 84.3	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2692 3.7	-	LOWER 00286 9.5	

GC33 HAWTHORNE, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3207 1.54 2.4 1.55 3.3 22.6 1.6 .686 2.7	2 4694 1.13 1.4 1.22 1.8 25.1 .7 .111 5.2	348521.172.81.343.625.51.4.04524.8	4 17969 1.21 1.3 1.37 1.7 27.2 .7 .017 31.1	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1766 4.5	-	LOWER 00138 13.4	

GC39 YERINGTON, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2845 1.04 1.5 1.14 2.0 22.6 .7	2 4848 .98 1.6 1.17 1.9 24.9 .7	3 4630 1.05 2.9 1.22 3.8 25.0 1.4	4 18435 1.04 1.5 1.25 1.8 24.9 .7	(694 SQ. CM.)
	.7 .467 1.7	.163 3.7		.7 .018 28.6	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

GC43 GARDNERVILLE, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2038	3133	3582	15170	(694 SQ. CM.)
U-238 (PCI/G)	1.15	1.25	1.24	1.12	
STDEV (PCT.)	1.5	2.9	2.8	1.5	
TH-232 (PCI/G)	1.44	1.52	1.54	1.47	
STDEV (PCT.)	1.7	3.4	3.3	1.7	
K-40 (PCI/G)	16.0	17.1	17.7	18.6	
STDEV (PCT.)	1.0	1.9	1.8	.8	
CS-137 (PCI/G)	.358	.326	.199	.048	
STDEV (PCT.)	2.1	4.6	6.5	11.9	

GC48 STEWART, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1717 1.35 2.8 1.23 4.0 17.6 1.8 .583 3 1	2 3218 1.15 3.0 1.08 4.3 18.4 1.8 .457 3.5	3 3418 1.18 2.1 1.14 2.9 19.3 1.2 .272 3.5	4 14536 1.06 3.0 1.03 4.3 22.5 1.5 .042 23 6	(694 SQ. CM.)
STDEV (PCT.)	3.1			23.6	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2542 4.3		LOWER 00390 7.0	

GC50 MOORES STATION, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 2016 2.16 2.1 2.07	2 4179 2.35 2.0 2.13	3 3539 2.34 2.0 2.16	4 12050 2.31 1.0 2.30	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G)	2.9 28.7	2.9 29.8	2.8 29.0	1.3 30.0	
STDEV (PCT.)	1.4	1.4	1.4	.7	
CS-137 (PCI/G)	.697	.396	.065	.016	
STDEV (PCT.)	2.9	4.3	19.8	39.9	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3566 2.8	-	LOWER 00144 10.6	

KM01 MEMPHIS, TENNESEE

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2963	4218	4205	16360
U-238 (PCI/G)	1.21	1.20	1.24	1.24
STDEV (PCT.)	1.4	3.0	3.0	1.4
TH-232 (PCI/G)	1.08	1.25	1.23	1.27
STDEV (PCT.)	2.0	3.9	3.9	1.8
K-40 (PCI/G)	13.2	14.8	14.4	14.4
STDEV (PCT.)	1.1	2.1	2.1	1.0
CS-137 (PCI/G)	.301	.276	.220	.059
STDEV (PCT.)	2.5	5.2	6.3	10.0

KM06 MEMPHIS, TENNESSEE

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1926	3942	4150	14132
U-238 (PCI/G)	1.00	1.11	1.19	1.16
STDEV (PCT.)	3.4	3.1	3.0	3.0
TH-232 (PCI/G)	.79	.95	.93	.95
STDEV (PCT.)	5.4	4.5	4.8	4.6
K-40 (PCI/G)	12.2	13.6	15.0	14.0
STDEV (PCT.)	2.3	2.1	2.1	2.1
CS-137 (PCI/G)	1.107	.874	.330	.043
STDEV (PCT.)	2.1	2.3	4.4	25.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)		PPER 4117		LOWER
STDEV (PCT.)		3.4		7.8

KM13 DALLAS, TEXAS

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3147 .46 4.7 .40 7.5 3.5 4.0 .747 2.3	2 2750 .48 4.7 .45 6.7 3.3 4.3 .392 3.5	3 3339 .45 4.6 .37 7.7 2.7 4.6 .106 8.2	4 17557 .48 4.5 .51 6.0 3.0 4.3 .025 28.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2734 3.5	-	LOWER 00143 10.9	

KM18 CORPUS CHRISTI, TEXAS

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1204 .68 4.2 .67 5.7 9.7 2.6 .910 2.3	2 3378 .76 3.9 .88 4.6 9.9 2.5 .323 4.4	3 2683 .82 1.8 .87 2.3 9.9 1.2 .049 10.9	4 14122 .83 1.8 .85 2.4 9.4 1.2 .017 30.7	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 1971 3.1	1	LOWER 00086 25.7	

KM21 CORPUS CHRISTI, TEXAS

GAMMA ANALYSIS						
DEPTH INCREMENT	1	2	3	4		
DRY WEIGHT (GMS)	1438	3312	4314	14853	(694 SQ.	CM.)
U-238 (PCI/G)	.56	.56	.53	.47	• -	•
STDEV (PCT.)	4.6	3.1	4.4	3.4		
TH-232 (PCI/G)	.57	.58	.49	.52		
STDEV (PCT.)	6.1	4.2	6.4	4.4		
K-40 (PCI/G)	8.3	8.0	7.4	7.3		
STDEV (PCT.)	2.7	1.9	2.7	1.9		
CS-137 (PCI/G)	.496	.429	.118	.017		
STDEV (PCT.)	3.2	2.4	8.2	31.4		
			-			
PLUTONIUM ANALYSIS	=	PPER		LOWER		
PU-239+240 (DPM/G)	.0	2127	.(0195		
STDEV (PCT.)		3.8		10.1		

KM28 TUCSON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS)	1 2770	2 4481	3 4049	4 16983	(694 SQ. CM.)
U-238 (PCI/G)	.74	.76	.68	.69	(0) + 50. (41.)
STDEV (PCT.)	4.1	3.9	4.2	2.0	
TH-232 (PCI/G)	1.00	1.03	.88	.90	
STDEV (PCT.)	4.5	4.4	4.9	2.3	
K-40 (PCI/G)	22.8	25.2	24.9	23.4	
STDEV (PCT.)	1.6	1.5	1.5	.8	
CS-137 (PCI/G)	.373	.423	.081	.010	
STDEV (PCT.)	4.2	3.7	14.3	56.2	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1964 3.5	-	LOWER 00171 9.2	

KM29 TUCSON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	A	
DRY WEIGHT (GMS)	1900	4857	4316	13953	(694 SQ. CM.)
U-238 (PCI/G)	.94	.55	1.01	1.02	(0)4 00. 01.)
STDEV (PCT.)	3.5	2.3	1.6	1.6	
TH-232 (PCI/G)	1.17	.79	1.39	1.36	
STDEV (PCT.)	4.0	2.5	1.8	1.8	
K-40 (PCI/G)	20.5	31.3	27.9	28.4	
STDEV (PCT.)	1.7	.6	.7	.7	
CS-137 (PCI/G)	.671	.162	.046	.006	
STDEV (PCT.)	2.8	3.8	12.6	90.3	

KM33 TUCSON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2326 .90 3.6 1.07 4.3 21.6 1.7 .330	2 3851 .83 1.8 1.03 2.1 22.7 .8	3 3351 .87 1.7 1.14 2.0 23.8 .7 149	4 15915 .92 1.7 1.19 1.9 26.1 .7 033	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.330 4.6	.250	.149 4.2	.033 17.5	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1574 4.3	-	LOWER 00278 7.8	

KSO1 FREDONIA, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2614 .76 3.9 .79 5.1 13.9 2.1 .519 3.2	2 4268 1.10 1.9 1.03 2.6 16.4 1.2 .445 2.2	3 4355 1.05 1.5 1.05 2.0 16.3 .9 .200 3.1	4 16631 1.23 1.6 1.10 2.2 17.0 1.0 .058 10.2	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2580 5.4	-	LOWER 00590 6.5	

KS05 NORTH RIM GRAND CANYON, ARIZONA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1884	3395	4924	14263	(694 SQ. CM.)
U-238 (PCI/G)	.95	.92	.96	1.08	
STDEV (PCT.)	3.5	3.2	3.2	2.9	
TH-232 (PCI/G)	.62	.61	.78	.83	
STDEV (PCT.)	6.6	6.0	5.0	4.8	
K-40 (PCI/G)	9.0	10.4	10.9	11.2	
STDEV (PCT.)	2.6	2.3	2.3	2.2	
CS-137 (PCI/G)	3.725	.182	.049	.040	
STDEV (PCT.)	1.0	6.4	19.9	22.8	

KS07 MOCCASIN, ARIZONA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1681	3786	3910	12773
U-238 (PCI/G)	.29	.28	. 24	.21
STDEV (PCT.)	7.6	7.1	8.3	9.0
TH-232 (PCI/G)	.19	.19	.20	.18
STDEV (PCT.)	14.7	14.1	13.0	13.8
K-40 (PCI/G)	13.8	13.9	14.2	13.4
STDEV (PCT.)	2.1	2.0	2.0	2.0
CS-137 (PCI/G)	.511	.490	.245	.034
STDEV (PCT.)	3.2	3.0	4.8	23.4
PLUTONIUM ANALYSIS	-	PPER 5047		LOWER
PU-239+240 (DPM/G) STDEV (PCT.)	.0	3.2	. (00604 5.7

KS10 NORTH RIM GRAND CANYON, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 781 1.32 3.3 .85 5.9 12.4 2.5 7.033 .8	2 1347 1.14 1.5 .91 2.3 11.4 1.1 1.292 .9	3 2640 1.15 3.1 .93 4.7 11.6 2.4 .247 5.7	4 10418 1.16 2.2 .95 3.2 11.8 1.7 .044 16.6	(694 SQ. (CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	.8 .9 UPPER .21591 2.6		LOWER .00582 6.5			

KS21 LITTLEFIELD, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.)	1 3257 .70 4.1 .90 4.6	2 4489 .70 3.8 .85 4.6	3 4202 .70 3.9 .77 5.1 13.5	4 12863 .68 3.9 .65 5.5 13.5	(694 SQ. CM.)
K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.) PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	13.3 2.0 .489 3.2 PPER 3652 3.6	2.0 .359 4.0	2.0 .170 6.8 20001 3.8	

KS24 MESQUITE, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2766	3707	4484	14543	(694 SQ. CM.)
U-238 (PCI/G)	.80	.74	.72	.69	,
STDEV (PCT.)	3.9	4.1	4.0	2.9	
TH-232 (PCI/G)	.77	.75	.72	.69	
STDEV (PCT.)	5.5	5.3	5.3	3.9	
K-40 (PCI/G)	14.3	14.3	13.7	13.1	
STDEV (PCT.)	2.1	2.1	2.1	1.5	
CS-137 (PCI/G)	.496	.420	.242	.077	
STDEV (PCT.)	3.4	3.7	5.4	9.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02392		LOWER .00840		
STDEV (PCT.)		4.0		5.4	

KS25 BUNKERVILLE, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2385 1.21 3.1 .93 4.9 17.1 2.0 .808 2.6	2 3646 1.21 2.2 1.03 3.2 17.6 1.3 .864 1.7	3 3918 1.27 1.4 1.11 2.1 18.8 .9 .703 1.4	4 12979 1.09 3.3 1.11 4.3 19.1 1.8 .183 7.5	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 5077 3.6	-	LOWER)2380 3.9	

KS26 BUNKERVILLE, NEVADA

1	2	3	4	
				(694 SQ. CM.)
1.6	2.2	3.1		
1.02	1.04	1.01	. 96	
2.3	3.3	4.6	4.6	
18.2	18.8	18.3	18.7	
1.0	1.3	1.8	1.8	
1.100	.848	.383	.105	
1.1	1.8	4.1	10.9	
UPPER .06258 3.5		LOWER .01674 4.3		
	2.3 18.2 1.0 1.100 1.1	2938 4361 1.21 1.27 1.6 2.2 1.02 1.04 2.3 3.3 18.2 18.8 1.0 1.3 1.100 .848 1.1 1.8 UPPER .06258	2938 4361 4187 1.21 1.27 1.17 1.6 2.2 3.1 1.02 1.04 1.01 2.3 3.3 4.6 18.2 18.8 18.3 1.0 1.3 1.8 1.100 .848 .383 1.1 1.8 4.1 UPPER .06258 .0	2938 4361 4187 12176 1.21 1.27 1.17 1.02 1.6 2.2 3.1 3.2 1.02 1.04 1.01 .96 2.3 3.3 4.6 4.6 18.2 18.8 18.3 18.7 1.0 1.3 1.8 1.8 1.100 .848 .383 .105 1.1 1.8 4.1 10.9 UPPER LOWER .06258 .01674

KS27 LOGANDALE, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 3120 1.13 1.5 1.09 2.0 17.1 1.0	2 4315 1.18 1.1 1.17 1.5 18.1 .7	3 4205 1.12 2.2 1.23 2.8 18.8 1.3	4 11935 1.26 1.5 1.41 1.8 21.3 .8	(694 SQ. CM.)
STDEV (PCT.) CS-137 (PCI/G)	1.0 .172	.7 .168	1.3 .166	.8 .064	
STDEV (PCT.)	3.9	3.1	5.5	9.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

KS30 OVERTON, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	$ \begin{array}{r}1\\2349\\.91\\3.6\\.68\\6.0\\15.3\\2.0\\.586\\.\end{array} $	2 4112 .72 1.8 .60 2.9 12.7 1.1 .291	3 4309 .69 2.8 .62 4.2 13.5 1.4 .151	4 17012 .70 3.9 .72 5.2 14.5 2.0 .040
STDEV (PCT.)	3.0	2.3	5.2	24.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2779 2.8		OWER 00440 6.0

KS33 ALAMO, NEVADA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2194	3750	3694	13931	(694 SQ. CM.)
U-238 (PCI/G)	1.56	1.69	1.55	1.39	
STDEV (PCT.)	2.6	2.4	2.5	1.3	
TH-232 (PCI/G)	1.45	1.56	1.57	1.77	
STDEV (PCT.)	3.6	3.4	3.4	1.3	
K-40 (PCI/G)	19.1	21.4	21.9	25.3	
STDEV (PCT.)	1.8	1.7	1.6	.6	
CS-137 (PCI/G)	.312	.233	.174	.042	
STDEV (PCT.)	4.9	6.1	7.6	12.4	
PLUTONIUM ANALYSIS	UPPER		-	LOWER	
PU-239+240 (DPM/G) STDEV (PCT.)	.0	5351 5.2	.(01092 4.9	

KS34 ALAMO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	$ \begin{array}{c} 1\\ 2518\\ 1.14\\ 3.1\\ 1.45\\ 3.5\\ 21.5\\ 1.7\\ 202 \end{array} $	2 3744 1.15 3.0 1.55 3.4 22.5 1.6	3 4313 1.27 2.9 1.39 3.7 22.8 1.6	4 12910 1.43 2.7 1.51 3.5 21.6 1.7	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	.203	.206	.191 6.8	.156 8.4	

- **** NO PLUTONIUM ANALYSIS PERFORMED ****
- KS36 HIKO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	$ \begin{array}{r} 1\\ 2647\\ 1.94\\ 2.3\\ 1.11\\ 4.3\\ 14.0\\ 2.2\\ .375\\ 4.3\\ \end{array} $	2 3626 1.86 2.3 1.15 4.1 14.5 2.1 .300 5.0	3 3618 1.75 2.4 1.03 4.5 14.3 2.1 .268 5.2	4 9309 .98 3.3 .93 4.6 12.8 2.2 .089 12.1	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 4166 4.1		OWER 1593 4.8	

. •

MH02 ROSETTE, UI	AH						
GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 797 1.40 2.9 1.42 3.7 14.9 2.2 1.099 2.2	2 1064 1.82 2.4 1.70 3.4 17.3 1.9 1.906 1.5	3 3221 1.84 2.4 1.80 3.2 18.0 1.9 1.636 1.7	4 3415 1.82 2.4 1.72 3.3 18.1 1.9 .411 4.1	1.60 3.4 16.4 1.9	(694 SQ.	CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		UPPER .07118 2.8		LOWI .0144 4			

MH03 SNOWVILLE, UTAH

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1040	1428	3832	17458	(694 SQ. CM.)
U-238 (PCI/G)	1.19	1.33	1.15	. 98	
STDEV (PCT.)	3.3	2.9	3.1	3.5	
TH-232 (PCI/G)	1.10	1.26	1.14	1.02	
STDEV (PCT.)	4.6	3.9	4.2	4.4	
K-40 (PCI/G)	16.1	17.8	17.0	15.3	
STDEV (PCT.)	2.0	1.9	1.9	2.1	
CS-137 (PCI/G)	4.561	.958	.255	.062	
STDEV (PCT.)	1.0	2.3	5.6	17.0	
PLUTONIUM ANALYSIS	-	PPER	-	LOWER	
PU-239+240 (DPM/G)	.1	2775	.0	0441	
STDEV (PCT.)		3.5		6.9	

MH07 MALAD CITY, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2667 1.37 1.6 1.59 1.9 20.8 1.0 .784 1.5	2 3248 1.51 1.3 1.85 1.5 22.6 .8 .505 1.8	3 3611 1.42 2.0 1.80 2.2 23.1 1.1 .276 4.0	4 11139 1.53 1.3 1.84 1.5 23.0 .8 .081 8.0	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 93944 5.1		LOWER 00871 9.9	

MH11 BURLEY, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2356	3883	3246	9834
U-238 (PCI/G)	1.71	1.89	1.92	1.90
STDEV (PCT.)	2.5	1.7	2.4	2.4
TH-232 (PCI/G)	1.99	2.13	2.21	2.24
STDEV (PCT.)	3.0	2.1	2.8	2.8
K-40 (PCI/G)	23.0	24.7	24.5	24.9
STDEV (PCT.)	2.2	1.1	1.6	1.6
CS-137 (PCI/G)	.487	.279	.433	.062
STDEV (PCT.)	3.8	4.2	4.1	21.4

MH12 BURLEY, IDAHO

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	972	1715	3506	15605
U-238 (PCI/G)	.83	.96	.95	.99
STDEV (PCT.)	4.3	3.5	3.6	1.3
TH-232 (PCI/G)	.78	.89	.95	.97
STDEV (PCT.)	5.8	5.0	4.7	1.7
K-40 (PCI/G)	15.4	16.6	18.4	18.7
STDEV (PCT.)	2.2	1.9	1.9	.7
CS-137 (PCI/G)	1.739	1.233	.288	.008
STDEV (PCT.)	1.7	1.7	4.9	47.8
PLUTONIUM ANALYSIS	τ	JPPER	I	LOWER
PU-239+240 (DPM/G)	.(09934	.0	0076
STDEV (PCT.)		2.9		14.7

MH14 TWIN FALLS, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2495 .97 3.5 1.01 4.5 14.8 2.1 .567 3.0	2 3871 1.05 2.3 1.08 3.0 14.7 1.4 .545 2.3	3 3887 1.19 3.0 1.22 3.9 15.0 2.0 .260 5.5	4 12455 1.12 1.5 1.13 1.9 15.4 1.0 .043 12.6
PLUTONIUM ANALYSIS	U	PPER	I	LOWER
PU-239+240 (DPM/G) STDEV (PCT.)	.0	1819 4.5	.(0446 8.4

MH17 FILER, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3126 1.15 3.1 1.12 4.3 16.1 2.0 .511 3.4	2 3992 1.18 3.0 1.21 4.0 16.4 2.0 .331 4.6	3 4419 1.23 2.9 1.24 3.8 17.1 1.9 .183 6.9	4 12338 1.20 1.4 1.18 1.9 15.8 1.0 .054 10.7
PLUTONIUM ANALYSIS		PPER		LOWER
PU-239+240 (DPM/G) STDEV (PCT.)	-	2102 4.3	. (00476 6.9

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2493 1.08 3.2 1.40 3.6 15.5 2.0 .879 2.4	$\begin{array}{r} 2\\ 3413\\ 1.01\\ 3.5\\ 1.16\\ 4.2\\ 15.5\\ 2.1\\ .233\\ 6.0 \end{array}$	3 3603 1.16 3.1 1.35 3.7 16.6 2.0 .123 10.1	4 10262 1.30 1.4 1.41 1.7 16.7 1.0 .044 13.6
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	+	PPER 2561 4.2		OWER 00318 6.2

MH22 BOISE, IDAHO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 1879 .73 3.0 .91 3.4 19.0 1.2	2 4290 .64 3.0 .70 3.9 21.8 1.1	3 4695 .57 3.3 .65 4.2 23.5 1.1	4 14356 .50 1.4 .63 1.7 23.2 .4
CS-137 (PCI/G) STDEV (PCT.)	1.775	.209	.063	.013
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3420 4.8	-	LOWER)0264 9.5

MH25 JORDAN VALLEY, OREGON

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1664	2745	2877	10424
U-238 (PCI/G)	.67	.76	.72	.76
STDEV (PCT.)	4.7	2.5	4.4	2.0
TH-232 (PCI/G)	.62	.69	.60	.68
STDEV (PCT.)	б.4	3.5	6.5	2.9
K-40 (PCI/G)	15.3	17.1	16.5	16.6
STDEV (PCT.)	2.1	1.2	2.0	1.0
CS-137 (PCI/G)	1.147	.555	.287	.071
STDEV (PCT.)	2.1	1.9	5.0	7.8

MH28 HINES, OREGON

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1580 .46 6.2 .49 7.3 12.3 2.4 .774	2 2489 .60 4.7 .59 6.3 13.3 2.3 .647	3 2388 .62 3.3 .59 4.4 15.3 1.4 .255	$\begin{array}{r} 4\\ 10509\\ .63\\ 4.6\\ .58\\ 6.4\\ 14.5\\ 2.1\\ .047\end{array}$
STDEV (PCT.)	2.6	2.9	3.7	19.0
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3333 3.2		OWER 00456 7.4

MH29 BASQUE STATION, OREGON

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2156 1.00 3.5 .98 4.6 17.2 1.9 .592	2 3178 1.10 3.2 .93 4.8 18.3 1.8 .558	3 3184 1.15 3.1 1.01 4.5 19.0 1.8 .354	4 11949 1.26 2.8 1.15 4.1 20.8 1.7 .071
STDEV (PCT.)	3.1	3.1	4.3	16.1
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2705 4.2		LOWER 00510 5.2

NMO1 ESTANCIA, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1859	3095	2953	12535	(694 SQ. CM.)
U-238 (PCI/G)	.64	.71	.76	.70	
STDEV (PCT.)	4.4	3.9	3.7	4.0	
TH-232 (PCI/G)	.59	.64	.70	.68	
STDEV (PCT.)	6.0	5.7	5.2	5.5	
K-40 (PCI/G)	11.5	12.5	13.1	13.9	
STDEV (PCT.)	2.3	2.1	2.1	2.0	
CS-137 (PCI/G)	.303	.355	.350	.232	
STDEV (PCT.)	4.9	4.2	4.2	5.7	

NM02 MORIARTY, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2490 .92 3.4 1.04 4.3 18.6 1.7 1.326	2 4822 .95 3.2 1.00 4.3 19.2 1.7 .147	3 4070 .98 3.1 .98 4.5 18.8 1.7 .024	4 15791 .90 3.4 1.04 4.2 18.7 1.7 007	(694 SQ. CM.	.)
STDEV (PCT.)	1.320	8.6	43.8	-157.7		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2673 3.9		LOWER 00015 54.7		

NM03 BELEN, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2168 .86 3.7 .80 5.3 15.9 2.0 .427 3.9	2 4395 .95 3.5 .95 4.7 17.6 1.9 .254 5.9	3 3510 1.08 1.6 .99 2.2 18.6 .9 .102 6.4	4 16840 1.06 1.5 1.04 2.1 19.2 .9 .030 19.3	(694 SQ.	CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1986 4.5		LOWER 0280 9.0		

NM04 LAS CRUCES, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2732 .92 3.4 .91 4.6 16.8 1.9	2 4587 .90 3.4 1.00 4.3 18.7 1.7	3 4140 .84 1.7 .93 2.1 18.6 .8	4 15723 .85 1.7 .92 2.2 18.7 .9	(694 SQ. CM.)
CS-137 (PCI/G)	.252	.138	.060	.010	
STDEV (PCT.)	5.6	9.2	9.6	58.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	•	PPER 1046 5.0		LOWER 00127 12.4	

NM05 SOLOMONVILLE, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1777 .85 4.0 1.22 4.1 17.8 2.0 .422 4.2	2 2930 .97 3.7 1.47 3.5 18.8 1.9 .363	3 2152 1.01 3.6 1.39 3.8 19.1 1.9 .214	4 9061 1.13 3.2 1.51 3.5 22.9 1.7 .039 32.8	(694 SQ. CM.)
STDEV (PCT.)	4.2	4.8	6.9	32.8	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1865 4.5	.0	OWER 0102 12.6	

NM06 ROSWELL, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1754 1.10 3.1 .85 5.0 14.7 2.1 .526 3.4	2 3750 1.09 3.1 1.00 4.5 17.1 1.9 .434 3.8	3 3248 1.25 2.9 1.04 4.4 17.0 1.9 .160 8.5	4 12580 1.30 3.1 1.20 4.1 18.9 1.9 .034 35.6	(694 SQ.	CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2269 4.0	-	LOWER 00369 7.6		

NM07 SAFFORD, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1497 .64 4.7 1.00 4.4 17.0 1.9 .307 5.0	2 3655 .73 4.0 1.18 3.9 21.2 1.6 .296 5.1	3 3335 .70 4.3 1.14 4.1 23.4 1.6 .222 6.3	4 15226 .70 2.0 1.13 1.9 22.6 .8 .034 17.5	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	•	PPER 1369 4.5		LOWER 00325 7.9	

NM08 SILVER CITY, NEW MEXICO

GAMMA ANALYSIS	_	_			
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2284	3680	3572	15614	(694 SQ. CM.)
U-238 (PCI/G)	.82	.86	.84	.69	• – •
STDEV (PCT.)	3.8	3.5	3.6	4.1	
TH-232 (PCI/G)	.95	1.03	1.04	1.06	
STDEV (PCT.)	4.7	4.2	4.2	4.1	
K-40 (PCI/G)	22.4	22.6	23.0	22.8	
STDEV (PCT.)	1.6	1.6	1.5	1.5	
CS-137 (PCI/G)	.391	.374	.213	.061	
STDEV (PCT.)	4.3	4.3	6.3	18.8	
PLUTONIUM ANALYSIS	-	PPER	-	LOWER	
PU-239+240 (DPM/G)	.0	1915	.0	0485	
STDEV (PCT.)		4.2		7.4	

NM09 SOCORRO, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2370 1.12 3.0 .98 4.6 22.3 1.6 .295 5.1	2 3682 1.04 3.3 1.03 4.4 23.5 1.6 .243 6.0	3 2950 1.07 3.2 1.08 4.3 26.2 1.5 .178 7.6	4 13663 1.03 1.6 1.09 2.1 28.0 .7 .059 10.9	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 1827 4.2	I	LOWER 00615 5.9	

NM10 CARLSBAD, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1535 1.04 3.1 .69 5.5 13.0 2.2 .404	2 3003 1.11 3.0 .87 4.8 14.0 2.0 .308	3 3012 1.10 1.5 .90 2.3 15.0 1.0 .145	4 12932 .77 1.7 .65 2.7 12.2 1.0 .008	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	4.0	4.8	4.4	66.4	

NM11 PORTALES, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2346	4197	4184	16879	(694 SQ. CM.)
U-238 (PCI/G)	.70	.75	.76	.83	
STDEV (PCT.)	4	3.7	3.6	3.4	
TH-232 (PCI/G)	.67	.65	.83	.78	
STDEV (PCT.)	5.7	5.9	4.7	4.8	
K-40 (PCI/G)	11.6	12.5	12.9	12.8	
STDEV (PCT.)	2.3	2.1	2.0	2.0	
CS-137 (PCI/G)	.394	.377	.274	.054	
STDEV (PCT.)	4.0	4.0	4.9	19.2	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 1872		LOWER	
STDEV (PCT.)	•••	3.9		6.6	

NM12 TUCUMCARI, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G)	1 2303 .51 4.9 .38	2 3564 .53 4.6 .41	3 3868 .49 4.9 .47	4 14971 .53 4.7 .52	(694 SQ. CM.)
STDEV (PCT.) K-40 (PCI/G)	8.3 9.4	10.1	10.2	11.0	
STDEV (PCT.) CS-137 (PCI/G)	2.5	2.3	2.3 .250	.196	
STDEV (PCT.)	4.3	4.1	5.0	6.2	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

NM13 SOCORRO, NEW MEXICO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	1794	3636	2703	11284	(694 SQ. CM.)
U-238 (PCI/G)	.86	.95	.91	. 87	
STDEV (PCT.)	3.5	3.4	1.6	1.8	
TH-232 (PCI/G)	.79	.89	1.08	1.08	
STDEV (PCT.)	5.2	4.9	2.1	2.1	
K-40 (PCI/G)	22.8	27.0	32.9	31.0	
STDEV (PCT.)	1.5	1.4	.6	.6	
CS-137 (PCI/G)	.355	.345	.146	.029	
STDEV (PCT.)	4.3	4.6	4.7	21.4	

NM14 SANTE FE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1950 .57 4.5 .51 6.9 13.8 2.0 .831 2.4	$\begin{array}{c} 2\\ 3344\\ .54\\ 4.6\\ .53\\ 6.7\\ 15.1\\ 1.9\\ .430\\ 3.6\end{array}$	3 3091 .57 4.3 .50 6.7 16.7 1.8 .173 6 7	4 13255 .52 4.7 .52 6.5 17.1 1.7 .040 23 8	(694 SQ. CM.)
STDEV (PCT.)	2.4	3.6	6.7	23.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

NM15 SANTE FE, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEY (PCT.)	1 1825 .67 4.2 .52 6.9 13.7 2.1 .843 2.4	2 2980 .66 4.0 .58 6.2 16.0 1.9 .233 5.6	3 3017 .67 3.9 .58 6.2 17.2 1.8 .116 9.5	4 9710 .56 4.5 .52 6.5 15.7 1.9 .028 34.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS	U	2065	L	34.8 OWER 0337	
PU-239+240 (DPM/G) STDEV (PCT.)	.0	3.8	.0	7.9	

NM16 SANTE FE, NEW MEXICO

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2641	4186	2912	11417	(694 SQ. CM.)
U-238 (PCI/G)	.80	.90	.90	.80	
STDEV (PCT.)	3.7	3.4	3.4	3.7	
TH-232 (PCI/G)	.88	1.01	.93	.84	
STDEV (PCT.)	4.7	4.2	4.7	4.9	
K-40 (PCI/G)	17.1	17.0	18.4	20.0	
STDEV (PCT.)	1.8	1.8	1.7	1.7	
CS-137 (PCI/G)	.465	.274	.170	.050	
STDEV (PCT.)	3.7	5.2	7.5	22.6	
PLUTONIUM ANALYSIS	U	PPER	I	LOWER	
PU-239+240 (DPM/G)	.0	1685	.0	0433	
STDEV (PCT.)		4.2		8.4	

NM17 RATON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS)	1 1687	2 3384	3 3352	4 11084	(694 SQ.	СМ.)
U-238 (PCI/G)	.98	.93	1.01	1.10		
STDEV (PCT.)	3.6	3.5	3.3	3.1		
TH-232 (PCI/G)	.98	1.21	1.20	1.24		
STDEV (PCT.)	4.7	3.9	3.9	3.8		
K-40 (PCI/G)	14.1	16.2	16.5	17.4		
STDEV (PCT.)	2.2	2.0	1.9	1.9		
CS-137 (PCI/G)	1.875	.240	.135	.044		
STDEV (PCT.)	1.6	6.2	9.8	27.5		
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	UPPER 03740	-	LOWER		
STDEV (PCT.)		3.9		5.7		

NM18 CIMARRON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1955 1.06 3.3 .80 5.2 17.4 1.9 .453	235851.073.3.894.918.21.9.405	3 3621 1.08 3.1 .96 4.6 19.2 1.8 .313	4 14183 .91 3.6 .85 5.1 17.9 1.8 .091	(694 SQ. CM.)
STDEV (PCT.)	3.8	4.1	5.0	13.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2005 4.0		LOWER 00691 5.8	

NM19 CHAMA, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2002 .77 4.2 .74 5.6 17.0 1.9 1.243	2 3187 .85 3.8 .84 5.1 16.3 2.0 .414	3 3347 .84 3.8 .84 5.0 17.7 1.9 .184	4 12811 .86 3.8 .81 5.2 16.0 2.0 .076	(694 SQ. CM.)
CS-137 (PCI/G) STDEV (PCT.)	$\begin{array}{r} 1.243 \\ 2.0 \end{array}$.414 4.1	.184 7.5	.076 15.4	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 3734 3.6	I	LOWER 00314 5.9	

NM20 FARMINGTON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	$1 \\ 2351 \\ 1.67 \\ 2.3 \\ 1.14 \\ 4.1 \\ 17.1 \\ 1.8 \\ .440 \\ 2$	$\begin{array}{c} 2\\ 4148\\ 1.60\\ 2.4\\ 1.11\\ 4.2\\ 17.7\\ 1.8\\ .380\end{array}$	3 3243 1.61 2.3 1.13 4.0 18.3 1.7 .283	4 6013 1.42 2.6 1.03 4.5 18.2 1.8 .154	(694 SQ. CM.)
STDEV (PCI.)	.440	4.3	.283	8.8	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

NM21 FARMINGTON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1737 .95 3.3 .74 5.4 20.6 1.7 .802	2 3789 .83 3.5 .77 5.2 23.4 1.5 .218	3 3604 .80 3.5 .80 5.0 23.1 1.5 .095	4 10474 .69 4.0 .83 4.9 25.7 1.4 .033	(694 SQ. CM.)
STDEV (PCT.)	2.5	6.0	11.9	31.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2330 4.0	_	LOWER 00337 7.7	

NM22 FARMINGTON, NEW MEXICO

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2539 1.35 1.8 .97 3.2 18.2 1.3 .341	2 3956 1.31 2.7 .91 4.7 18.0 1.8 .296	3 3597 1.21 2.8 1.02 4.3 19.0 1.7 .177	4 14425 1.06 3.1 1.01 4.4 20.3 1.7 .071	(694 SQ. CM.)
STDEV (PCT.)	3.2	5.0	7.5	15.9	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)		PPER 1659 4.3	-	LOWER 00447 6.5	

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2189 .78 3.8 .79 5.1 15.3 2.0 .129	23906.873.6.964.415.12.0.199	3 3807 .96 3.3 .96 4.5 16.8 1.9 .152	4 16426 .99 1.7 1.15 1.9 18.8 .9 .028	(694 SQ. CM.)
CS-137 (PCI/G)	.129	.199	.152	.028	
STDEV (PCT.)	9.5	6.6	8.4	21.3	

**** NO PLUTONIUM ANALYSIS PERFORMED ****

NM24 TEMPE, ARIZONA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS)	1 1736	2 3558	3 3704	4 15846	(694 SQ. CM.)
U-238 (PCI/G)	.86	.86	.85	.94	,
STDEV (PCT.)	3.8	3.8	3.8	1.7	
TH-232 (PCI/G)	.92	.97	.98	1.01	
STDEV (PCT.)	4.8	4.7	4.5	2.2	
K-40 (PCI/G)	16.8	18.8	18.5	19.4	
STDEV (PCT.)	2.0	1.8	1.8	.9	
CS-137 (PCI/G)	.204	.158	.240	.032	
STDEV (PCT.)	7.1	8.4	6.0	18.6	

-

**** NO PLUTONIUM ANALYSIS PERFORMED ****

NM25 MESA, ARIZONA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2842	3840	3670	8948	(694 SQ. CM.)
U-238 (PCI/G)	.93	.97	.96	.87	
STDEV (PCT.)	3.7	3.6	3.6	3.9	
TH-232 (PCI/G)	1.15	1.07	1.18	1.09	
STDEV (PCT.)	4.2	4.4	4.0	4.4	
K-40 (PCI/G)	19.9	20.1	20.3	20.5	
STDEV (PCT.)	1.8	1.8	1.8	1.8	
CS-137 (PCI/G)	.286	.242	.139	.043	
STDEV (PCT.)	5.5	6.2	9.8	27.2	
PLUTONIUM ANALYSIS	**	PPER	т	OWER	
	-	1250		0351	
PU-239+240 (DPM/G)	.0	4.8	.0	7.8	
STDEV (PCT.)		T. 0		1.0	

NM26 LITCHFIELD PARK, ARIZONA

GAMMA ANALYSIS					
DEPTH INCREMENT	1	2	3	4	
DRY WEIGHT (GMS)	2251	3456	3594	15564	(694 SQ. CN
U-238 (PCI/G)	.70	.78	.78	.77	•
STDEV (PCT.)	4.3	3.7	1.8	1.8	
TH-232 (PCI/G)	.79	.83	.85	.82	
STDEV (PCT.)	5.3	5.0	2.3	2.4	
K-40 (PCI/G)	19.0	21.7	21.9	22.1	
STDEV (PCT.)	1.8	1.6	.8	.8	
CS-137 (PCI/G)	.174	.180	.109	.023	
STDEV (PCT.)	7.8	7.3	5.7	23.6	
PLUTONIUM ANALYSIS	U	PPER	I	LOWER	
PU-239+240 (DPM/G)	.0	0839	.0	0200	
STDEV (PCT.)		5.3		10.0	

RB01 SCOTTSBLUFF, NEBRASKA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3175 .84 3.5 .96 4.5 19.6 1.7 .551 3.0	2 4603 .78 2.6 .96 3.1 20.5 1.1 .453 2.5	3 4624 .76 3.8 .90 4.7 20.1 1.6 .287 4.7	4 13592 .74 3.8 .77 5.2 22.0 1.6 .042 24.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02049		I	LOWER
STDEV (PCT.)	.0	4.3		5.0

RB08 RAPID CITY, SOUTH DAKOTA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2746 1.09 3.2 1.02 4.4 14.3 2.1 .710 2.7	$\begin{array}{c} 2\\ 4032\\ 1.16\\ 3.0\\ 1.00\\ 4.6\\ 14.1\\ 2.1\\ .685\\ 2.8 \end{array}$	3 4006 1.12 3.1 .95 4.7 14.6 2.1 .561 3.2	4 16030 1.10 3.1 .88 4.9 14.1 2.1 .307 4.6	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	+	PPER 3065 2.8		LOWER 01745 3.5	

RB11 RAPID CITY, SOUTH DAKOTA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1359	1497	3904	15688
U-238 (PCI/G)	1.09	1.23	1.16	1.14
STDEV (PCT.)	3.2	2.9	3.0	3.0
TH-232 (PCI/G)	.98	1.08	1.06	1.22
STDEV (PCT.)	4.6	4.3	4.4	3.9
K-40 (PCI/G)	16.6	17.7	17.6	17.7
STDEV (PCT.)	1.9	1.9	1.8	1.8
CS-137 (PCI/G)	.791	.779	.574	.502
STDEV (PCT.)	2.6	2.6	3.1	3.3

**** NO PLUTONIUM ANALYSIS PERFORMED ****

RB16 BILLINGS, MONTANA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 3123 .78 3.7 .79 5.2 15.8 1.9	2 4103 .83 3.6 .91 4.6 17.2 1.8	3 4359 .84 3.6 .92 4.5 16.7 1.8	4 13662 .84 3.6 .92 4.5 16.7 1.9
CS-137 (PCI/G) STDEV (PCT.)	.959	.291	.196	.054 19.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02611 3.6		I	LOWER 00380 7.1

RM02 WINNEMUCCA, NEVADA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2484	3965	4425	12396
U-238 (PCI/G)	1.13	1.22	1.20	1.19
STDEV (PCT.)	3.1	2.9	2.0	1.4
TH-232 (PCI/G)	1.19	1.16	1.33	1.33
STDEV (PCT.)	4.0	4.1	2.6	1.7
K-40 (PCI/G)	19.4	20.0	22.1	21.4
STDEV (PCT.)	1.8	1.7	1.1	.8
CS-137 (PCI/G)	.725	.326	.125	.049
STDEV (PCT.)	2.6	4.4	6.7	11.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02527		_	LOWER
STDEV (PCT.)		3.3		6.7

RM06 BATTLE MOUNTAIN, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 3118 1.27 2.9 1.26 4.0 23.3 1.6	2 3939 1.43 2.6 1.32 3.8 24.8 1.5	3 4143 1.35 2.8 1.33 3.8 25.3 1.5	4 12835 1.39 1.3 1.40 1.8 25.0 .7
CS-137 (PCI/G)	.570	.346	.129	.025
STDEV (PCT.)	3.1	4.4	9.8	22.8
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .01968 3.2		_	LOWER)0340 5.9

RM08 CARLIN, NEVADA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1382	3262	3510	9807
U-238 (PCI/G)	1.54	1.46	1.31	1.39
STDEV (PCT.)	2.8	1.9	2.9	2.8
TH-232 (PCI/G)	.96	1.24	1.29	1.11
STDEV (PCT.)	5.1	2.9	3.8	4.3
K-40 (PCI/G)	14.1	18.2	18.0	16.3
STDEV (PCT.)	2.2	1.3	1.9	2.0
CS-137 (PCI/G)	2.892	.157	.038	.019
STDEV (PCT.)	1.3	6.1	28.2	56.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	-	PPER 4189		OWER 0090
STDEV (PCT.)		5.2		13.9

RM10 ELKO, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2871 1.22 2.2 1.22 2.8 18.2 1.3 .422 2.8	2 3891 1.18 3.0 1.15 4.1 17.9 1.8 .358	3738 1.15 3.0 1.19 4.0 17.5 1.9 .273 5 1	4 10649 1.09 3.1 1.13 4.1 16.5 1.9 .091 12.5
STDEV (PCT.)	2.8	4.4	5.1	12.5
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 1915 4.7		LOWER 00629 10.0

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2701	3798	4030	10771
U-238 (PCI/G)	1.36	1.35	1.34	1.42
STDEV (PCT.)	2.9	2.7	2.8	2.0
TH-232 (PCI/G)	1.49	1.40	1.39	1.63
STDEV (PCT.)	3.6	3.6	3.7	2.4
K-40 (PCI/G)	19.2	19.0	19.4	20.8
STDEV (PCT.)	1.8	1.8	1.8	1.2
CS-137 (PCI/G)	.965	.259	.134	.075
STDEV (PCT.)	2.3	5.6	9.5	11.4
PLUTONIUM ANALYSIS	Ŭ	IPPER	I	LOWER
PU-239+240 (DPM/G)	.0	3013	.(0515
STDEV (PCT.)		7.4		9.9

RM14 PIOCHE, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1581 1.25 3.0 1.33 3.8 23.7 1.6 .511 3.5	$\begin{array}{c} 2\\ 3717\\ 1.25\\ 3.0\\ 1.98\\ 2.9\\ 24.0\\ 1.6\\ .533\\ 3.4 \end{array}$	3 5464 1.36 2.8 2.03 2.9 25.9 1.5 .154 8.8	4 10775 1.32 3.0 2.16 2.9 25.8 1.6 .032 39.0	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 3957 3.4		LOWER 00730 5.3	

RM19 PANACA, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2543 2.57 .9 1.18 2.1 21.0 .8	2 3550 2.91 .8 1.28 1.8 22.1 .7	3 4268 3.19 1.7 1.31 4.1 21.9 1.8	4 12389 2.89 1.8 1.32 4.0 22.9 1.6	(694 SQ. CM.)
CS-137 (PCI/G)	.302	.290	.225	.112	
STDEV (PCT.)	2.6	2.4	6.8	11.7	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 2035 3.6		LOWER 00792 4.4	

RM21 CALIENTE, NEVADA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2754	3660	4360	12929
U-238 (PCI/G)	1.22	1.36	1.42	1.37
STDEV (PCT.)	3.0	2.7	2.8	1.3
TH-232 (PCI/G)	1.87	1.83	2.13	2.28
STDEV (PCT.)	3.0	3.1	2.8	1.3
K-40 (PCI/G)	25.7	26.6	28.2	29.5
STDEV (PCT.)	1.5	1.4	1.4	.6
CS-137 (PCI/G)	.520	.361	.119	.024
STDEV (PCT.)	3.4	4.3	11.4	25.2
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02875		LOWER .00399	
STDEV (PCT.)		3.7		10.0

(694 SQ. CM.)

SA02 WICHITA, KANSAS

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	11975.704.2.904.822.31.6.5713.0	2 3965 .78 3.7 .92 4.7 23.5 1.5 .525	3 4085 .77 3.7 .88 4.8 22.9 1.5 .358 4.0	4 13897 .66 4.1 .86 4.7 24.2 1.5 .096
STDEV (PCT.)	3.0	3.1	4.0	11.4
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02356 . 4.1			LOWER 00626 5.8

SA07 WICHITA, KANSAS

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.)	1 2661 .83 3.9 1.24 3.9 15.9 2.0	2 3448 .87 3.7 1.19 4.0 15.6 2.0	3 3344 .81 3.9 1.32 3.7 15.3 2.0	4 10001 .89 3.8 1.44 3.5 15.7 2.1
CS-137 (PCI/G)	.873	.417	.245	.082
STDEV (PCT.)	2.4	3.9	5.7	14.4
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02636 3.6		-	LOWER 00522 6.8

SA19 DES MOINES, IOWA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	2852	4090	3723	11247
U-238 (PCI/G)	1.07	1.08	1.10	1.13
STDEV (PCT.)	3.2	3.2	3.1	3.1
TH-232 (PCI/G)	.95	1.00	1.13	1.02
STDEV (PCT.)	4.7	4.5	4.0	4.3
K-40 (PCI/G)	15.0	15.1	15.6	15.2
STDEV (PCT.)	2.0	2.0	1.9	2.0
CS-137 (PCI/G)	.647	.633	.346	.117
STDEV (PCT.)	2.9	2.9	4.4	10.0
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02505 3.1		-	LOWER 00763 4.6
SIDEV (PCI.)		J. T		т.0

SA20 ST. LOUIS, MISSOURI

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 2471 1.04 3.3 .95 4.6 14.9 2.0 .614	2 3843 1.19 2.9 1.07 4.2 16.1 1.9 .634	3 3430 1.32 2.8 1.09 4.2 16.7 1.9 .335	4 12453 1.22 3.0 1.04 4.4 16.6 1.9 .118
STDEV (PCT.)	3.0	2.9	4.5	10.1
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .02815 2.8			LOWER 00554 6.3

SA26 ST. LOUIS, MISSOURI

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 3150 1.14 3.1 .98 4.5 15.5 2.0 .645 2.9	$\begin{array}{c} 2\\ 3845\\ 1.14\\ 3.1\\ 1.01\\ 4.5\\ 15.7\\ 2.0\\ .651\\ 2.9\end{array}$	3 4188 1.08 3.1 1.03 4.3 15.8 1.9 .382 4.0	4 11872 1.15 3.0 1.00 4.6 16.2 2.0 .126 9.6
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	2936 2.8	I	LOWER 00890 4.2

SH05 LAS VEGAS, NEVADA

1	2	3	4
2040	3900	3777	11818
1.18	1.17	1.27	1.25
2.9	2.8	2.8	1.3
.58	.59	.57	.66
6.3	6.3	6.5	2.7
8.7	9.3	9.3	10.0
2.7	2.5	2.6	1.2
.497	.203	.008	.004
3.3	6.0	105.7	120.6
	1.18 2.9 .58 6.3 8.7 2.7 .497	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

**** NO PLUTONIUM ANALYSIS PERFORMED ****

SH07 LAS VEGAS, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	1 1419 .94 3.4 .56 6.5 9.6 2.6 .257	$\begin{array}{r} 2\\ 4007\\ 1.04\\ 3.1\\ .65\\ 5.8\\ 10.5\\ 2.4\\ .310\end{array}$	3 3775 1.13 3.0 .70 5.7 10.0 2.5 .158	4 11117 1.02 1.2 .62 2.2 10.0 .9 .026
STDEV (PCT.)	5.0	4.5	7.5	14.9
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .03086 3.0			OWER 0707 4.4

SH10 HENDERSON, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2062 1.01 3.2 1.18 3.9 16.8 1.8 .414 3.7	2 3086 1.08 1.5 1.43 1.7 21.1 .8 .279 2.5	3 3681 .98 3.5 1.56 3.4 25.9 1.5 .028 41.8	4 14443 1.01 1.6 1.76 1.5 25.8 .7 .019 30.1
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	VPPER 12006 4.4		LOWER 00106 16.3

SH11 BOULDER CITY, NEVADA

GAMMA ANALYSIS				
DEPTH INCREMENT	1	2	3	4
DRY WEIGHT (GMS)	1930	3102	3560	10713
U-238 (PCI/G)	1.10	1.10	1.12	.87
STDEV (PCT.)	3.1	3.1	3.0	1.7
TH-232 (PCI/G)	1.04	1.12	1.25	1.38
STDEV (PCT.)	4.3	4.2	3.8	1.7
K-40 (PCI/G)	18.1	20.6	22.7	23.9
STDEV (PCT.)	1.8	1.6	1.5	.7
CS-137 (PCI/G)	.372	.328	.095	.015
STDEV (PCT.)	4.1	4.4	12.2	36.0
PLUTONIUM ANALYSIS PU-239+240 (DPM/G)	UPPER .02694		-	LOWER 00234
STDEV (PCT.)		3.8		9.3

SW02 LUND, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G)	$ \begin{array}{r}1\\2476\\1.53\\2.7\\1.09\\4.5\\16.9\\2.0\\.414\end{array} $	2 3891 1.62 2.6 1.12 4.4 18.2 1.9 .398	3 3301 1.55 2.6 1.19 4.1 17.9 1.9 .289	4 12669 1.52 2.7 1.33 3.8 19.1 1.9 .086	(694 SQ. CM.)
STDEV (PCT.)	3.9	4.2	5.2	14.3	
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	-	PPER 3237 3.9		LOWER 01156 3.9	

SW03 PRESTON, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 2708 1.50 2.6 1.53 3.4 20.4 1.7 .603 3.1	2 3466 1.53 2.6 1.57 3.4 21.1 1.7 .436 3.8	3 3529 1.59 2.6 1.55 3.5 21.3 1.7 .226 6.4	4 14896 1.60 2.5 1.64 3.3 24.8 1.5 .063 18.8	(694 SQ. CM.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	U	PPER 3379 2.8	1	LOWER 00729 5.6	

SW05 EUREKA, NEVADA

GAMMA ANALYSIS						
DEPTH INCREMENT	1	2	3	4		
DRY WEIGHT (GMS)	1046	2792	3215	11401	(694 SQ.	CM.)
U-238 (PCI/G)	1.03	1.25	1.46	1.43		
STDEV (PCT.)	3.7	1.7	1.3	1.1		
TH-232 (PCI/G)	.86	1.08	1.20	1.55		
STDEV (PCT.)	5.3	2.5	2.0	1.7		
K-40 (PCI/G)	11.1	14.9	17.9	21.0		
STDEV (PCT.)	2.6	1.2	. 9	.8		
CS-137 (PCI/G)	3.080	.324	.076	.012		
STDEV (PCT.)	1.2	2.8	7.9	47.0		
			-			
PLUTONIUM ANALYSIS	U-239+240 (DPM/G) .04608		LOWER .00121			
STDEV (PCT.)		5.2		25.0		

SW06 DUCKWATER, NEVADA

GAMMA ANALYSIS DEPTH INCREMENT DRY WEIGHT (GMS) U-238 (PCI/G) STDEV (PCT.) TH-232 (PCI/G) STDEV (PCT.) K-40 (PCI/G) STDEV (PCT.) CS-137 (PCI/G) STDEV (PCT.)	1 1206 1.22 2.9 1.03 4.5 17.0 1.9 1.224 1.9	2 1140 1.37 2.7 1.08 4.3 17.3 1.8 1.307 1.8	3 3605 1.38 2.6 1.10 4.2 17.2 1.8 .373 4.0	4 17188 1.05 3.0 1.12 4.0 18.3 1.7 .011 87.8	(694 SQ. C	M.)
PLUTONIUM ANALYSIS PU-239+240 (DPM/G) STDEV (PCT.)	UPPER .23566 2.7		LOWER .00716 6.4			