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SPECTRA OVER COMPLEX TERRAIN IN THE SURFACE LAYER 

H. A. Panofsky 
J. A. Dutton 
David Larko 
Robert Lipschutz 
Gregory Stone 

I. INTRODUCTION 

For design and control of Wind Energy Conversion Systems (WECS), consid
erable information about wind characteristics is needed. Wind engineers are 
most interested in wind profiles and turbulence intensities, that is, ratios 
of standard deviations of velocity components to mean wind speed, over various 
types of complex terrains where wind characteristics are favorable. 

Without additional information, however, estimates of standard deviations 

are not particularly useful. The averaging procedure and sampling procedure 

are not uniform, so many different standard deviations can be derived in the 
same situation. Further, standard deviations are made up of fluctuations of 
different frequencies, and different frequency ranges have different effects 
on WECS control and stability. Two situations may have the same turbulence 
intensity, but have co~pletely different effects on WECS. In addition to a 
knowledge of velocity variances, the spectral distribution over frequencies 
needs to be known. Therefore, we concentrate in this report on estimating 
velocity spectra over complex terrain, and the consequences of such spectra 
on response of mechanical systems. 

In a previous report by Dutton et al. (1979), techniques were described 
for estimation of profiles, variance spectra, and frequency distributions of 
wind components, primarily over uniform terrain. Such estimates are possible, 
given the wind speed at one level, the roughness length, and a measure of 
atmospheric stability. For very strong winds, of primary interest to WECS 
engineers, stability is relatively unimportant close to the ground. But at 

heights above 100 feet or so, stability effects on wind statistics may be 



important even in strong winds. Dutton et al. (1979) discussed practical 
methods for estimating the stability parameters needed: the Monin-Obukhov 
length, L, and the height of the lowest inversion (mixing depth), zi' 

The report also contained some measurements of variances of velocity 
components over rolling farmland, and downstream of a low mountain ridge. 
Here, the variances of the horizontal wind components (but not of the vertical) 
exceed those expected over uniform terrain under the same conditions. 

In this report, we will concentrate on spectra and other velocity statistics 
over three types of complex terrain: on tops of hills or escarpments; on 
land, a short distance downwind from a water body; and over rolling farmland. 
Of these, the first two terrain types are of special interest to WECS engineers. 

In order to put the complex terrain information in perspective, we briefly 
summarize in Section II the most important characteristics of turbulence 
models over uniform terrain; Section III discusses theoretical aspects of 
spectral characteristics over complex terrain, and the following sections 
discuss in detail observations over complex terrain and procedures suggested 
for their estimation. Finally, a theory is presented for calculation of 
response of engineering systems to wind fluctuations. 
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II. SUMMARY OF SPECTRAL CHARACTERISTICS OVER UNIFORM TERRAIN 

Over uniform terrain, profiles, variances, and spectral densities in the 

surface layer (the lower 10% of the planetary boundary layer) depend on surface 

roughness, Monin-Obukhov L, friction velocity, u*, and height of the lowest 
inversion, zi' The relationships between variances, profiles, and these 
predictors were discussed by Dutton et a1. (1979). In this report, also, new 
spectral models were proposed. However, these have now been modified by 
project personnel, and others, so that we will give here a brief summary of 
the most promising models. 

1 . VERTICAL VELOCITIES 

There has been relatively little change in our interpretation of spectra 
of vertical velocities, and previously published models (Kaimal et a1. 1972) 
will be used for comparison with spectra over complex terrain. However, there 
is some indication that the 1pw-frequency behavior of such spectra may have to 
be modified in the presence of organized "large" eddies. It is not yet possible 
to infer the existence of such eddies from usually available information. 
Thus, current models of vertical velocity spectra are based on Monin-Obukhov 

theory, with zo' u*, and L as predictors. 

2. HORIZONTAL VELOCITY SPECTRA, STABLE AIR 

In stable air, spectra of the horizontal wind component are also usually 

described in terms of Monin-Obukhov theory. However, it is also clear that 
this theory cannot account for the behavior of these spectra at very low 
frequencies. At such frequencies, secondary peaks develop in logarithmic 
spectra, nS(n) (where n is frequency and S is spectral density) as shown, for 
example, in Figure 2.1, based on Larsen's observations in the Kansas experiments. 
The same phenomenon has also been described recently by Caughey (1977), and 
has actually been known for some time (see, e.g., Lumley and Panofsky 1964). 
Thus, horizontal fluctuations include slow meanders, which may be gravity 

waves, as suggested by Caughey (1977), or just meanders around obstacles. In 
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any case, these large, quasi-horizontal "eddies" cannot be estimated in terms 
of the conventional surface-layer predictors. 

Models for stable spectra of the horizontal velocity components were 

first described (in terms of Monin-Obukhov theory) by Kaimal et al. (1972), 
and Kaimal (1973). We will use these models (particularly their neutral 
limit) later for comparison with spectra over complex terrain. In addition, 
however, we have developed new models that have been particularly designed to 

fit observations in New Zealand (see Flay 1978), and in Minnesota (kindly 
supplied by J. C. Kaimal). The main difference in the new models is that the 

slopes of nS(n) as function of ln n, on a log-log plot, are 1/4 at frequencies 
less than the peak frequency, as opposed to the slope of one appearing in 
Kaimal's model. 

We propose the following general expression: 

nS(n) 
u* 

( 2. 1 ) 

where f = nz/U (n frequency, U mean wind speed), fm is 

point where nS(n)/u*2 reaches its maximum value, given 
fm and p/u*2, are given by the following expressions: 

the value of f at a 
2 by P/u*. The quantities, 

_P- = 0.29 f +0.25,j, 0.67/[11/(8 + 3 f -6.5)]0.14 (2.2) 
2 m ~€ m 

u* 

u-spectrum 
=~0.09 + 0.6 (z/L) 

f m l 
0.5 

for 0 ~ z/L ~ 0.7 

(2.3) 
for 0.7 ~z/L ~ 1 
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v-spectrum 

~2 = ° 39 f +0.25 ¢ 0.67 / (8 + 3 f -6.5)0.14 
• m E: m 

u* 

JO.3 + 1.6 (z/L) 

fm 1 
l.l 

for a ~ z/L ~ o.S 

for O.S < z/L ~ 

In these expressions, ¢ = (1 + 2.S (z/L)3/ S)3/2. 
E: 

Equation (2.1) provides an excellent fit to the observations which, 

however, are limited to the range ° ~ z/L ~ 1. However, these observations 
have poor resolution at low frequencies; thus the small power of f at low 

frequencies may be due to the separate peaks at very low frequencies. At 

(2.4) 

(2.S) 

hi gher frequenci es, there is very 1 ittl e difference between these formul ae and 
Ka i mall s. 

3. SPECTRA OF THE HORIZONTAL COMPONENTS IN UNSTABLE AIR 

Kaimal et al. (1972) already noted that spectra of the horizontal wind 
component in unstable stratification did not change monotonically with z/L, so 
that Monin-Obukhov theory was called into question. 

Later (1978), Kaima1 proposed a model, according to which the high
frequency components obeyed Kolmogorov and Monin-Obokhov scaling, but the low 
frequencies depended on height of the lowest inversion (approximately mixed

layer depth), zi' rather than height above the surface, z. Between the 10w
frequency and high-frequency portions, Kaima1 interpolated linearly, on log-log 
paper. Kaimal also suggested that there was a discontinuity between neutral 
limits of the spectra, when approached from the stable and unstable sides. 

Si nce the interpol ati on scheme is somewhat unsati sfactory physi ca lly, 
H¢jstrup (1981) described the horizontal spectra as sums of a low-frequency 

and a high-frequency function: the low frequency function depends 
nz· 

and ~, and the high-frequency function on z/L and zn/U. H¢jstrup 
avoids the dependence on z/L, thus producing simpler formulae. 

S 

z· 
on -' L 
further 



In our formulation, there is a discontinuity between the neutral limits 
from the two sides; in H~jstrupls model, there is no discontinuity, just a 

rapid variation of spectral densities. There is some unpublished evidence 

(Larsen, personal communication) that spectra do occur in the IIgapll, thus 

contradicting the existence of a discontinuity. 

The two sets of spectral models are, in practice, quite similar provided 
z/L < -0.1. For near-neutral conditions, the differences can be substantial, 
with H~jstrupls spectral densities smaller at low frequencies than Shirer and 
Rossi1s. 

We will give here only H~jstrupls model. because of its greater simplicity, 

and because of its presumably more realistic behavior under very slightly 

unstable conditions. His equations are: 

For the u-component: = 
0.5 fi (Zi\2/3 + 105 f 

+ 2.2 f. 5/ 3 -Lj (1 + 33 f)5/3 
1 

(2.6) 

and, 
for the v-component: (2.7) 

nz. 
h f - 1 were i - -U-
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III. WIND PROFILES AND STRESS OVER COMPLEX TERRAIN 

1 . AIR OVER LAND DOWNSTREAM OF A WATER BODY 

As air moves over land after a previous over-water trajectory, its prop
erties will be changed for several reasons: change of surface roughness, 

change of surface slope, change of heat flux, and change of moisture flux. Of 

these, effects of change of slope and roughness have received most attention 

and are best understood (for a summary, see, e.g., Jensen and Peterson 1979). 

The effect of the increasing roughness change is to increase the shear up 

to a level h, the height of the "interface". Over land, h increases with 
fetch. Under neutral conditions, the slope of the interface height is well 
described, according to Elliott (1958) by the approximate formula: 

(3.1 ) 

where z is the roughness length over the land and a is given by 0.75 - 0.03 
Zo 0 

ln --" where z ' is the roughness length over the water. H~jstrup (1981) has 
Zo 0 

generalized this expression for unstable stratification. For small x, the 
effect of instability on h is not important. Later, h increases more rapidly 
than in neutral air. 

Below z = h, the profile is, to a very crude approximation, logarithmic 
with a slope of k/u* , where k is the von Karman constant (0.35 - 0.40) and 

o 
u* is the friction velocity at the surface. The friction velocity decreases 

o 
with height, reaching its upstream value at the interface height, z = h. How-
ever, both rigorous theory and observations suggest that some significant 
systematic deviations from this behavior occur. 

Even a small terrain slope has a pronounced effect on wind profile (see, 
e.g., Jackson and Hunt 1975). In an inner layer of height b, the wind shear 

is increased approximately by a factor 1 + 2s, where s is the slope of the 
hill. This factor is nearly independent of height, so that the profile, in 

neutral air, remains approximately logarithmic. The surface friction velocity 
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also increases by the factor 1 + 2s, so that the slope of the modified wind 

profile is still k/u*. In neutral air. Jackson and Hunt give, approximately: 
o 

b ( L )0.9 ° 3 -. z 
o 

(3.2) 

for wind on top of a hill. In this notation, L is the horizontal distance 
from the hilltop to the point where the height of the hillside is half that of 

the hilltop. For our purpose, L is about x/2. 

The combined effects of roughness change and slight slope on wind profiles 
observed at Ris¢ are shown in Figure 3.1 (taken from Peterson et al. 1980). 

To the author's knowledge, effects of changes of surface fluxes of heat 
and moisture on the wind profiles have not been analyzed quantitatively. 
Presumably, the effects are least pronounced in strong winds. 

In application to WECS, these results suggest that rotor blades should 
remain above z = hand z = b to avoid regions of weak winds, strong shear, and 
strong turbulence. 

2. CHARACTERISTICS ON TOPS OF HILLS AND ESCARPMENTS 

Although most theories of upslope flow apply to gentle slopes (e.g., 
Jackson and Hunt 1975), Bradley (1980) has shown from his observations on 
Black Mountain, Canberra, Australia, that the theory gives an excellent indi
cation of conditions on a steep hill. 

In particular, there is an inner layer with strong wind shear, the thick
ness of which agrees with Equation (3.2); but the speed-up factor from the 
lowland upstream to the hilltop, calculated from the theory, also agrees well 
with observations; the fractional velocity increase is roughly twice the 

slope. Further, the speed-up factor is almost independent of height, and the 
surface friction velocity increases by the same factor as the wind. Hence, 
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the wind profile for z < b is essentially logarithmic under neutral conditions, 

so that the effective roughness and surface stress can be estimated from the 

wind profile. This stress agrees with directly measured Reynolds stress. On 
hilltops, theory and observations agree in that the stress decreases signifi

cantly with height. For z > b, wind shears are weak. 

As was mentioned by Dutton et a1. (1979), variances on hilltops tend to 

decrease upward in the inner layer, perhaps proportionally to the stress. For 

all these reasons, blades of WECS mounted on hilltops should avoid the region 

z < b. 

3. CHARACTERISTICS OVER ROLLING FARMLAND 

Wind profiles over rolling farmland (Dutton et a1. 1979, also Schotz and 

Panofsky 1980) tend to remain logarithmic under near-neutral conditions. 

However, there is some indication that the "effective" roughness length is not 

just a measure of ground cover, but may be increased by larger-scale topography. 

For example, at the 300-m tower east of Boulder, Colorado, the roughness 

length varies from about 4 cm for west winds to about 25 cm for south winds, 

even though the ground cover is the same; but there is a slight rise just 

south of the tower, whereas the terrain up to 1 km to the west of the tower is 
essentially horizontal. 

There is no significant variation of stress with height in the surface 

layer over rolling terrain, except in locally flat terrain downstream of 

rolling terrain, where the stress tends to increase slowly upwards. 

As was suggested by Dutton et a1. (1979), turbulence over rolling terrain 
differs from that over flat terrain in that the variances of the horizontal 
wind components are increased relative to the Reynolds stress by up to 50%. 
In contrast, vertical-velocity variances are not increased . 
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IV. SPECTRA OVER COMPLEX TERRAIN: GENERAL CONSIDERATIONS 

When spectra over complex terrain are compared with corresponding spectra 

over uniform terrain, the following characteristics emerge: 

1) Near the surface, the high frequencies (wavelength much less than 

fetch over the changed terrain) are in local equilibrium; methods 

used for estimating spectral characteristics over uniform terrain 

apply also to these frequencies. Higher up, this rapid modification 

begins after the lIinterface ll has been reached. 

2) Since vertical-velocity spectra, in contrast to those of the hori

zontal components, have most of their energy in relatively high 
frequencies, over these types of terrain they closely resemble those 

over uniform terrain. 

3) The low frequencies of the spectra of the horizontal component are 

affected by the upstream terrain characteristics. In this respect, 
there are important differences among the three terrain types con

sidered in this report. Qualitatively, these properties suggest 
that small lIeddies ll , in contrast, have longer memory. 

When air travels from water to land, the low frequencies remain substan
tially unchanged. This is shown in Figure 4.1, which compares spectra at the 
u-component of wind 2 m over water, and with 70-m fetch over land. Clearly, 
the two spectra show no significant differences at low frequencies, but the 
high-frequency spectral densities have increased. In the next section, we 
will consider the over-water to over-land transition in more detail. 

When air flows uphill, there is horizontal divergence. According to 

rapid distortion theory, this causes the low-frequency spectral densities of 
the longitudinal velocity component to decrease, but not those of the other 

components. Britter et ale (1981) present some evidence of this phenomenon . 

Near the surface, high frequencies rapidly reach equilibrium with the increased 
surface stress, as before. Thus, compared to upstream, spectral densities of 

the longitudinal velocity on hilltops near the surface (in the inner layer) 
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should show increased values at high frequencies and decreased values at low 

frequencies. Unfortunately, we have no observations to make such comparisons. 

As before, spectra of vertical velocity should be in equilibrium with 

local terrain, at least in the range of frequency responsible for most of the 
energy. For the lateral spectra, the low frequencies should resemble upstream 

spectra, and the high frequencies in the "inner" layer should be in equilibrium 
with local terrain. In Chapter VI, we will consider spectra on hills and 
escarpments in more detail. 

Over rolling terrain, we would again expect high-frequency horizontal 
spectra near the surface, and therefore most of the vertical spectra to be in 

local equilibrium. In contrast, low-frequency horizontal spectral densities 
could be enhanced by the two-dimensional meandering produced by the terrain 
irregularities. This effect should be especially pronounced in stable air. 
Further magnification of the effect could occur when the terrain is relatively 
flat at the point of observation, and the low frequencies "remember" the rolling 
terrain upstream. Finally, we will discuss observations downstream of a low 
mountain ridge. Here, even larger low-frequency turbulence is possible because 
of the wake produced by the hill. More detail for spectra over rolling farmland 
is given in Section VII. 
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V. SPECTRA OVER LAND. DOWNWIND OF WATER 

When air moves from water to land, many surface properties change. We 
will deal here first with strong winds, that is, with small Iz/LI, where z is 
the height and L the Monin-Obukhov length. In that case, the most important 
change, by far, is that of roughness length, zoo Over water, Zo is typically 
0.01 cm, and over land considered here, Zo is about 3 cm. 

In June-July 1978, a surface-layer wind experiment was conducted at the 
Ris¢ National Laboratory, Denmark, directed by E. W. Peterson, Oregon State 
University. Many members of the Ris¢ staff and of the Department of Meteorology, 
The Pennsylvania State University, cooperated in this experiment. The general 
purpose was to study the properties of changes in air crossing from water to 
slightly sloping land. 

Profiles of wind are being analyzed elsewhere. It is already clear that 
both roughness change and slope affect the development of the wind profile, as 
required by theory (see, e.g., Jackson and Hunt 1975; Peterson 1969; Taylor 
and Bent 1974; Jensen and Peterson 1978). However, the development of the 
spectra in the lowest 12 m can be explained entirely by the roughness change, 
provided z/ILI is small. 

Figure 5.1 shows the plan of the Ris¢ experiments. Three masts were 
instrumented, mast 0 in the water, mast I at the beach, and mast II inland. 
The fetch over land to mast II varied from 50 m to 70 m. depending on wind 
direction. According to Equation (3.1), the height of the interface was about 
6 m. This height agrees well with the height inferred from profile measurements. 

The spectral measurements used here were based on wind fluctuation records 
produced by Norman thrust, three-dimensional drag anemometers (see Perry et al. 
1978). High-frequency measurements were made on mast 0 at 2 m, mast I at 2 and 
4 m, and mast II at 2, 4, 8, and 12 m height. The runs lasted about 45 minutes, 
and data were recorded at 10 Hz, later block-averaged over 3/10 seconds. 

In Figure 4.1, we saw a spectrum of the u-component with small z/!L! over 

water and 70 m downwind of the water, at 2 m height. The abscissa was the 
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normalized frequency, f = nz/V, where n is the natural frequency and V the 
local wind speed. The ordinate was the spectral density multiplied by n. As 
was noted in Section IV, the figure shows that there is no significant dif

ference between the two spectra at low frequencies. However, the increased 
roughness of the land has produced increased spectral densities at high fre
quencies, in accordance with the suggestion made above that low-frequency 

turbulence responds very slowly to changing conditions, whereas high-frequency 
turbulence adjusts rapidly. 

We will now present a crude hypothesis to describe the modification of 

spectra by terrain change, under neutral conditions. Under these conditions, 

spectral densities at a given wave number and height are proportional to the 
surface stress, u*2 (where u* is the surface friction velocity). In a separate 
paper, H¢jstrup (1981) has extended the hypothesis to unstable conditions. 

Now consider a sudden change of surface stress, which a parcel of air 

would encounter when it passes the line of changing roughness. Then its 

spectral density at a given wave number will change in the same sense, but 

adjust gradually to the new stress. We now postulate that the spectral density 

will respond in the same manner as a first-order mechanical system (assuming 
steady-state conditions): 

dS(k l ) 

dt = (5.1 ) 

Here, S(kl ) is the spectral density at the one-dimensional wave number, 

k" and Sl(kl ) is the spectral density that would be in equilibrium with its 
environment. The quantity liT" is a response time. It would be small for 
small eddies (large kl ), and larger for the large eddies (small kl ). Thus, 

for example, as air moves from smooth to rough terrain, the surface stress 

suddenly increases. Therefore, the spectral densities at high wave numbers 
will increase rapidly, and low wave numbers very slowly. Hence, e.g., 70 m 

downwind of the roughness change and close to the ground, spectral densities 

will have increased at high frequencies but not at low frequencies. 
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We now speculate further concerning the characteristics of the response 
time, T. This quantity is inversely proportional to eddy velocity and propor
tional to wave length, l/kl . The eddy velocity was assumed to be proportional 
to the standard deviation of the longitudinal velocity component, cr, for large 

eddies (small kl ) only. For small eddies, we assume conditions of the inertial 
subrange, so that the eddy velocity is proportional to (s/k l l / 3), where s is 

the dissipation rate. Therefore, we have for large eddies: 

(5.2) 

and, for small eddies: 

(5.3) 

where a and S are constants. 

In order to put Equations (5.1) to (5.3) on a quantitative basis, we have 
considered a roughness change at which the surface stress changes suddenly 
from u* 2 to u* 2, and integrated Equation (5.1) from the terrain change at 

o 1 
x = 0 to an arbitrary distance, x = t/V. It will be assumed that neither Sl 
nor V change significantly with x. This is only a crude approximation. 
Essentially the same result can be obtained by assuming that Sl/V is independent 

at x, a somewhat less unrealistic assumption. The mo'del by H¢jstrup (1981) is 
more realistic in this respect. 

With these simple assumptions, the solution of Equation (5.1) is: 

(5.4) 

Here, So is the spectral density upwind of the terrain change. 

This equation has been used to estimate T-values, separately at different 

wavelengths, from the data in Figure 4.1. So was obtained from the over-water 
spectrum at 2 m; Sl/So was assumed equal to the ratio of the downstream to 
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upstream spectral densities at very high frequencies, which was about four, 
in quite good agreement with the ratio of land and water surface stresses 

measured directly. Figure 5.2 shows the variation of T with (oukl)-l, at 2 m 
height. According to Equations (5.2) and (5.3), T should be proportional to 

-1 . -2/3 kl at low kl , and be proportlonal to kl for large kl . The figure shows 
that the data are in surprisingly good agreement with these conclusions, agree

ment which, in view of the crude nature of some of the assumptions, may be 
partly fortuitous. Also, inertial-subrange scaling applies to lower wavenumbers 
than would have been expected from the hypothesis. 

H¢jstrup (1981) has generalized this theory. First, he scales the 
"response time" somewhat differently: 

(5.5) 

Here, IklS(k l ) represents the "eddy velocity" in a band centered at kl , 
When the logarithmic spectrum is flat, (5.5) reduces to (5.2); in the inertial 
range, it is equivalent to (5.3). H¢jstrup determines Sl(k l ) in (5.1) from 

his spectral model, which is valid in unstable as well as neutral conditions. 

In order to use this model, the distribution of u* and heat flux must be known. 
He assumes that these values are varying linearly between their known values 
at the surface and at the interface. 

Figures 5.3, 5.4 and 5.5 show spectra of the three velocity components 
under near-neutral conditions. Each spectrum is the average of spectra in 
three separate periods. 

In all cases, the spectra on the inland mast at heights of 8 m and 12 m 
are not significantly different from the upstream spectra at 2 m. The high

frequency portions of the 2-m spectra have been strongly raised from their 
upstream values, and those at 4 m much less so. This is consistent with an 
interface height of about 6 m, as expected from Equation (3.1). The modifi
cation at 2 m is much more apparent for longitudinal than for lateral spectra. 
This can be explained from H¢jstrup's theory (Eq. 5.5) above, for the spectral 
densities of the v-components are relatively low, leading to larger response 

times, T. In Figures 5.3 to 5.5, spectra expected from H¢jstrup's model are 
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also given. The fit is quite good, for the v- and w-components. For the 
u-component, there are some deviations. But in another period, not shown 
here, the fit is much better. 

Figures 5.6 to 5.8 show spectra under unstable conditions, again, compared 

to H~jstrup's model. Once more, the fit is good. 

The original data suggested that the effect of the changed terrain in 
unstable air had reached 12 m, higher tha~ expected from H~jstrup's model. 
This result now appears doubtful, as it was based on comparison with data on 
the upstream mast. These observations have now been questioned for other 
reasons. However, this development still leaves the large differences between 
spectra at 2 m and 12 m on the inland mast much larger than in neutral air. 
This difference is probably due to the large heat flux over land. 

In summary, spectral observations on land downstream of a water surface 
can be well estimated by H~jstrup's model, which begins with estimation of 

the equilibrium spectra over water and then allows for gradual modification 
of the spectra over land. 
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VI. VELOCITY SPECTRA ON HILLS AND ESCARPMENTS 

The properties of the turbulence on hilltops in neutral conditions are 

now quite well understood, with theoretical studies (Jackson and Hunt 1975; 
Mason and Sykes 1979), and observations (Bradley 1980; Mason and Sykes 1979) 

in good agreement. Generally, there is an "inner" layer of strong shear in 
which variances and stress decrease with height. This layer has a thickness 
essentially proportional to the fetch over the slope. Above this layer, 
there is an "outer" region with weak shear where the mean stream-lines follow 
potential flow theory, and the turbulence may be obtained by rapid-distortion 
theory (Jackson and Hunt 1975). 

As Britter et al. (1981) suggest, we would expect spectral densities of 
the longitudinal wind component to be depressed, due to horizontal stretching, 

provided that the response time, T, exceeds travel time, T. With Equation (5.2), 
this condition implies that the wavelength in the x direction, A, exceeds XGu/V. 

For shorter wavelengths, the turbulence is in equilibrium with the local surface, 

as it was over terrain downstream of a water surface. 

We first consider spectra obtained in neutral air on Black Mountain, 
Canberra. This site has been described in detail by Bradley (1980). The hill 
is about 170 m above the surrounding plain, and the "inner layer", both theo
retically and from observations, is about 28 m thick. There is a 100-m mast 
on the hill and a smaller mast on the plain upwind. Unfortunately, spectra 
are available only on the hilltop, and not on the plain upstream. 

Figure 6.1 shows spectra of longitudinal wind components on Black Mountain 
at two levels, one within the inner layer, and the other above the inner layer. 
The spectra are normalized by their variances, and therefore have areas of 
unity. Both spectra are underestimated at very high frequencies (particularly 
at the lower level) due to the low-pass filter used in the recording system . 

The model spectrum proposed by Kaima1 et a1. (1972)(a), for the neutral 
limit approached from the unstable side, is also shown. It has been shifted 

parallel to the ordinate axis until it coincided with the observed spectra at 
high frequencies, but below frequencies affected by instrumental response. 

(a) The model by H¢jstrup (1981) for neutral air is nearly the same. 
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The basis of this fit is that, at high frequencies, both model and obser
vations obey the conditions of the inertial range. Thus, at high frequencies, 
for a 11 curves: 

where a l is the Kolmogorov constant, with a value around 0.5. 

We now assume that, in the inner layer, and of course, for the model, 
there is equilibrium between production and dissipation, so that: 

(6. 1 ) 

2 av 
E = u*~ az (6.2) 

where u* is the local friction velocity. Since the wind profile in the inner 
~ av _ u* 

layer is logarithmic, az - kz ' so that: 

Since Bradley's spectra were originally normalized by 0u2, the shift 
required to fit the model to the spectra at high frequencies should imply a 
multiplication of the model spectra by (u*~2u*)2/3/0U2. This ratio could be 
evaluated from direct measurements of variances and covariances, and the 
required shift agreed with this hypothesis within the inner layer. 

In the outer layer, the dissipation cannot be in balance with production, 
since the wind shear is zero or very small, either positive or negative. 
Instead, Figure 6.1 shows that the spectral characteristics at the top of the 
inner layer continue without significant change into the outer layer. 

The figure also shows a low-frequency deficit of spectral density, as 
expected from the theory by Britter et al. (1981) for \>0UX/V. In contrast, 
Figure 6.2 shows spectra of vertical velocity, again compared to the model by 
Kaimal et al. (1972). The figures suggest no significant differences between 
spectra on the hill and over uniform terrain, except for the filter loss at 
very high frequencies. This result, again, agrees with the theory of Britter 

et al. (1981) and the discussion in the Introduction. 
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Bowen (1979a) has made measurements of wind characteristics on two escarp
ments, about 10 m high: one has a vertical face, the other a slope of 1 
(vertical) to 2 (horizontal). Experimental details are given in this paper, 

and in his Ph.D. thesis (Bowen 1979b). Suffice it to say here that measure
ments were made, up to 20 m, on three masts: one upwind, the second 5 m past 
the upper edge of the escarpments, and the third 40 m past this edge. Because 
of the short fetch up the escarpments, the thickness of the lIinner ll layer is 
only about 1 m for the sloping escarpment and essentially zero (and rather 
meaningless) for the cliff. Hence, all observations were made in the lI ou ter ll 

layer. 

Figure 6.3 compares un-normalized spectra of the longitudinal velocity 
components at the three positions for the gentle escarpment. No spectra 
of lateral velocity components were available. The figure shows the decrease 
in low-frequency energy from the upwind mast to the first mast on the escarp
ment. Again, rapid-distortion theory accounts for this change. 

However, the high-frequency energy remains unchanged, even though the 
wind, and presumably also u*, increase by about 30%. This result is caused 
by the fact that, even for the shorter wavelength, ~>aux/V (where x is the 
short uphill fetch), so that these eddies are not in local equilibrium. 

Figure 6.4 shows an analogous graph for the vertical cliff. This time, 
the decrease of low-frequency spectral density, 5 m beyond the edge, is more 
spectacular, and again, spectral densities are restored further along the top 
of the cliff. This time, however, the high-frequency energy is increased 
greatly. Theories quoted earlier do not apply to this situation. The increase 
is probably due to the fact that the instrument is submerged in the strong 
wake generated by the sharp cliff edge. 

Next, we consider an escarpment on a much larger scale, within the White 
Sands Missile Range, New Mexico. Vertical cross-sections from the SSW and 
from the east are given in Figure 6.5. These directions were chosen because 
relatively reliable data were available when winds blew in these directions. 

The data set for this study consisted of 95 days of observations made by 
the U.S. Army between January 15 and December 15, 1977. The wind was sampled 
every second and the data reduced to 10-second, nonoverlapping block averages. 
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Thus, the data imposed rather severe restrictions on the possible analysis. 
Without temperature information, it is impossible to organize results according 
to atmospheric stability. Therefore, the study was limited to near-neutral 
conditions, which were assumed to exist whenever the wind at the 8-m height 
exceeded 4 m/s between the hours of sunset and sunrise. And, because of the 
lack of high-frequency information, it was decided to limit the study to the 
horizontal velocity components. 

To compile data sets for each flow direction, results of the initial 
scan were used to identify 4-hour periods that met the criteria for data quality, 
stability, and direction. Selected periods were then divided into runs approxi
mately 43 minutes in length, consisting of 256 ten-second averages. For each 
run, the coordinate system at each height was rotated twice (once about the 
vertical axis and once about the y-axis), to align the x-axis with the 
43-minute mean wind vector, u. 

Forty-eight runs, clustered around an azimuth of 200°, were identified. In 
this group, six instances of positive uw-covariance were noted, and the wind 
always increased with height. Also, erratic and IIflatll spectra were quite 

common; about 32% of the u spectra and 37% of the v spectra fell into this 
category. 

These runs were eliminated. Finally, 16 runs were chosen to represent 
near-neutral flow up the escarpment surface. Selection was based primarily 
on general spectral shape. Runs in which one or more of the four horizontal 
velocity spectra (u and v at 8 and 16 m) displayed excessive scatter and a 
slope less than or equal to zero (on a log-log plot) were rejected. The wind 
directions represented ranged from 187° to 221°, and as a group will be referred 
to as the south-southwest sector. 

The search for observations during easterly winds was carried out in the 
same manner. Although some of the peculiarities found in the southwest and 

the south-southwest were also observed in easterly flow, they were comparatively 
rare (again, they occurred in February after midnight). Fourteen strong-wind 

runs form the data set for easterly flow. 

Since only 10-second average velocity components were available, only the 
low-frequency portions of the spectra could be obtained. Because spectra were 
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only computed in relatively strong winds, effects of z/ILI were neglected. 
Values of "effective" U*I S were computed from the logarithmic wind profile, 
fitted to the wind speeds at 8 m and 16 m. Measurements at various non

equilibrium sites (Ris¢, and Black Mountain, Australia) have shown that such 
measurements are in good agreement with those computed from the inertial sub

range in spectra, and from directly measured Reynoldls stresses, extrapolated 
downwind to the surface. At White Sands, only rough estimates of local 
Reynoldl.s stresses could be made, because large fractions in the high frequencies 

had to be estimated from a co-spectral model (Panofsky and Mares 1968). Still, 

the agreement between surface stresses estimated in this way and from the wind 
profiles was quite good considering the crudeness of the approximations. 

The spectra of the horizontal wind components normalized by (u* 2u*)2/3 
9-

stresses are shown in Figures 6.6 and 6.7. Kaimal et al. IS neutral limit of 

stable-air spectra (1972) over uniform terrain is shown for comparison, since 
all observations were made at night. 

Figure 6.6 shows spectra for winds from the south-southwest. As Figure 6.5 
shows, the slope in this direction is steep, and the fetch about 200 m. Thus, 
the wavelengths are long enough to be affected by distortion, and the spectral 
densities, properly normalized, should lie below the corresponding equilibrium 
spectra, for the longitudinal component, but not for the lateral component. 
The figure agrees with this hypothesis. 

Figure 6.7 shows spectra with winds from the east. Here, the fetch is 

2000 m and the slope gentle. In this case, the fetch is so long that the 
spectra should be in local equilibrium. The observations, again, are in good 
agreement with this hypothesis. 

Finally, we have a very small sample of spectra of the longitudinal 
components on a hill near Boone, North Carolina. This hill is of special 
interest because a WECS is being tested on this hill . 

First, there are a few spectra with generally westerly winds. Figure 6.8 

shows the terrain cross-section in this direction. Apparently, the up-hill 

fetch is only about 600 m. Preceding this fetch, the air is moving downhill. 
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Therefore, one would not expect the spectral densities to exhibit the low
frequency deficit characteristics of hilltops. In fact, the spectra are well 
described by uniform-terrain models (see Figures 6.9 through 6.11). 

In addition, two spectra were available for winds from the south-southwest. 
The terrain cross-section in this direction is shown in Figure 6.12. In this 
case, there is a rather steep ascent without preceding downslope motion. 

Figure 6.13, showing the spectrum at 18 m in this wind direction, does show 
the low-frequency deficit required by theory, which is also shown on other 
hills and escarpments studied so far. Unfortunately, the simultaneous spectrum 
at 76 m (Figure 6.14) does not show this deficit at low frequencies. The reason 
is not clear at present. 
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VII. SPECTRAL CHARACTERISTICS OVER ROLLING TERRAIN 

Spectra of all velocity components were obtained at a rural site at 
Rock Springs, Pennsylvania, (near State College) by members of the Meteorology 
Department of The Pennsylvania State University, under the direction of 
John Norman (now at The University of Nebraska). The site has been described 
elsewhere (see, e.g., Perry et a1. 1978). 

Suffice it to say here that the observations were obtained in locally 
flat terrain, with roughness length of 1 cm, surrounded by rolling farmland. 

To the south and southeast of the site, there was a nearly two-dimensional 
wooded ridge, extending about 200 m above the surrounding plain. The closest 
approach of the foot of the ridge to the measuring site was about 400 m. 

Spectra of all three velocity components were computed from measurements 
by Norman dragmeters at 2 m, with data-handling very similar to that at Ris~. 

However, in contrast to most of the measurements discussed so far, spectra 
were obtained also in non-neutral stability conditions. Therefore, the spectra 
were normalized by u*2¢ 2/3, as is customary over uniform terrain (see, e.g., 

E 

Kaima1 et a1. 1972). ¢ is defined as: 
E 

(7 .1 ) 

where k is von Karman's constant. When spectra are normalized in this way, 
and expressed in terms of f = nz/V, they become independent of z/L at high 
frequencies and are again described by 0.30 f- 2/ 3 for longitudinal components, 
and by 0.40 f- 2/ 3 for the lateral components, at sufficiently low levels where 
u* does not differ significantly from u* . 

!I, 

For these observations, u*2 was estimated 
assumption that fS(f)/u*2¢ 2/3 = 0.3 at f=l. 

E 
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from the u-spectra under the 

¢ was prescribed by: 
E 

(7.2) 



in stable air, and from: 

(7.3) 

in unstable air. 

The formula for stable air comes from Kaimal et al. (1972), and the one 
for unstable air is a compromise derived from Kaimal et al. (1972), Kaimal et al. 
(1976), and unpublished observations at the Boulder Atmospheric Observatory, 
supplied by Kaimal. 

Figures 7.1 to 7.6 show envelopes of spectra of the horizontal velocity 
components in stable and unstable air, which have not crossed the ridge. 
Models by Dutton et al. (1979) developed for uniform terrain, differing only 
slightly from Kaimal·s model, are shown for comparison in the stable cases, 
Figures 7.1 and 7.2. 

The model curve is based on the average value of z/L in each sample. Due 
to the procedure used, model and observations agree at high frequencies; essen
tially, we have assumed that the spectral densities have adjusted to local 
terrain there. 

In contrast, the spectral densities in stable air exceed those over 
uniform terrain at low frequencies. This is consistent with the result by 
Panofsky et al. (1978) that the normalized variances at the same site are 
larger than expected over uniform terrain. The reason is, again, that low 
frequencies are IIconservativell and remember the more rolling terrain upstream. 
The excess of low-frequency turbulence over that in uniform terrain appears to 
be largest for the v-components. 

Figures 7.3 through 7.6 show spectra of the horizontal velocity components 
for unstable conditions, for air which had not crossed the ridge. Corresponding 
spectra for air that had crossed the ridge were not available. 

Also shown in the figures are two uniform terrain models. For large -z/L, 
the two theoretical models for the u-spectra agree well with each other, and 
with the observations. Apparently, rolling terrain has no significant effect 
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on u-spectra when turbulence is primarily of convective origin. But, for 

slightly unstable conditions, the situation is not clear because the models 
disagree. For the v-spectra, rolling terrain appears to increase low-frequency 
energy, even in unstable air, but again, this effect is observed by the 

disagreement between the models. 

Figures 7.7 and 7.8 show the spectra of vertical velocities under the 
same conditions. They also show a slight excess of low-frequency spectral 
densities. But this occurs with spectral densities low enough to have a 
negligible effect on the variances of vertical velocity (see, again, Panofsky 

et a1. 1978). 

Figures 7.9 and 7.10 show spectra of the two horizontal components in 
stable air after it has crossed the ridge. Clearly, the low-frequency excess 
of the spectral densities is much larger than for air, which has trajectories 
over the plain only. 

In summary, low-frequency spectral densities of the horizontal components 
in neutral and stable air over rolling farmland exceed those over uniform 
terrain. This effect is opposite to the behavior in the other two categories 

discussed here. The reason for this increase may be a combination of three 

factors: memory of the layer roughness upstream, gravity waves, and horizontal 
meandering around terrain irregularities. In very unstable air, this effect 
is much less pronounced and may disappear entirely. 

As in the other categories, however, high frequencies are in local equi
librium, and therefore vertical velocity spectra closely resemble spectra over 
uniform terrain . 
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VIII. SIMULATED RESPONSE TO AERODYNAMIC FORCING 

Systems built to stand or operate in the wind are subject to aerodynamic 

forces composed of both a quasi-steady and a fluctuating or turbulent component. 
Prediction of the response of the system, both in major structural modes and in 
fatigue modes, is necessary to optimize the design with respect to performance, 
reliability, and longevity. 

The essential difficulty is that the response is a weighted integral of 

the loads imposed by aerodynamic forces--either lift or drag forces. In order 

to obtain the statistical characteristics of the anticipated response, a means 
must be found for translating knowledge about the statistical characteristics 
of the forcing into those of the response. 

This endeavor poses formidable mathematical difficulties, as we shall see 
below. These difficulties have often been circumvented by assumptions that 

linearization and use of a Gaussian model provide adequate approximations. 

The results that are thus obtained have been tested only rarely, to our knowledge, 

against measurements or more realistic computations schemes of greater complexity 
that presumably would produce more accurate results. 

The aim, then, of the the present study is to compare the results obtained 
with the aid of the usual approximations against more accurate computations, 

in order to assess whether these approximations are acceptable and whether the 
design of improved computational schemes might be beneficial, or even essential. 

1. MODELS OF RESPONSE 

The response of the system we consider here is described by a linear 
differential equation, with constant coefficients of the form: 

LY(t) = v(t) 

where L is a linear nth order differential operator, Y(t) is a response 

variable such as displacement, and v(t) is the aerodynamic forcing, usually 
given by: 
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1 2 v(t) = ~ CpAu (8.2) 

with C a lift or drag coefficient, p the density, A the cross-sectional area, 
and u(t) the fluctuating wind velocity. 

The solution of the linear system may be represented as: 

00 

y(t) = J W(T)v(t-T)dT (8.3) 

o 

and the statistics of Yare obtained from this integral. For the covariance 
function, we have: 

Ry(t,t+T) = E{y(t)Y(t+T)} 

00 00 

= ~ ~ W(T,)W(T2) E{V(t-T,) v(t-T2+T)}dTl dT2 . (8.4) 

o 0 

If the forcing is second-order stationary, then: 

(8.5) 

Now, (8.4) implies that: 

00 

=JUr W(Tl)W(T2) Rv(T,-T2+T)dTl dT2 (8.6) 

o 

and so Y is also second-order stationary. The Fourier transform of (8.6) gives 
the spectral density as: 
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More generally, we may want statistics that depend on the probability 
density function. Then we might attempt to calculate the characteristic 
function: 

co 

= E{exp[is f W(T)v(t-T)dT]}. 
o 

(8.7) 

(8.8) 

There is no known way to evaluate this expectation in general, and we must 

resort to finite-dimensional approximations involving expansion of the exponen
tial function to obtain moments or to use an N-point joint distribution of v(t). 

One of the major reasons for obtaining the probability density functions is 
to determine probabilities of large responses. A convenient statistic is N(Y), 
defined as the frequency with which the value Y is exceeded by the time history 
Y(t). It can be shown that: 

• 00 

N(Y) = J 
o 

. . 
Yp(Y,Y)dY (8.9) 

where Y = dY/dt. Thus to calculate N(Y) from (8.9), we would have to obtain 
a characteristic function ~Y'Y (sl,s2) in the form (8.8) and transform to find 
p(y,y). 

Two approximations have been in common use. The first is that the aero
dynamic force can be linearized through use of u(t) = U + u' where U is the 

average U = U. With: 

1 2 2 v(t) = 2 CpA(U + 2 Uu' + u' ) (8.10) 

we define: 
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y + y = ~(t)/(~pA) ~ U2 + 2Uu ' 

where y is the steady response to the mean U2 and y(t) is the response to the 
linearized fluctuation 2Uu ' . The argument is that U,2 is small compared to 
2Uu ' because ul/U is generally small, at least for strong winds U. Now we have: 

00 

y(t) = 2U~ W(T)u'(t-T)dT (8.11) 

o 

and so the response is a linear function of the fluctuating velocity ul(t). 
If u1(t) were a realization of a Gaussian process, then y(t) would be Gaussian 
with spectrum (see (8.7)) 

(8.12) 

and by Fourier transform we would find the covariance function and thus have 
complete information about the statistics of y. In particular, for Gaussian 
processes it is well known that: 

00 

~ 1/2 
w2su I (w)dw 1 2 

o - - (y / (J ) 

N (y) - 2'TT 00 e 2 y 

~ Su I (w)dw 

(8.13) 

o 

Many systems are essentially damped harmonic oscillators (or their modes 
behave as oscillators). Thus we restrict further analysis to systems that are 
described by the second-order differential equation: 

. 
Y + 2bY + cY = v(t) (8.14) 

where Y is the displacement, 2b the damping coefficient, and c the square of 
the natural frequency (rad/s)2 and, as before, v(t) is the aerodynamic force. 
Upon normalization, we shall have: 
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__ j/ -7 y + 2by + cy 
2Uu ' 

nonlinear 
(8.15) 

linearized 

When the damping ratio, R, equals b//C < 1, the motion is underdamped, and the 
solution is: 

y(t) = e JOO -bT 

o 

si n!;h 
n (8.16) 

Data obtained from measurements of turbulent wind fields were used to 
specify the forcing v(t) in the two forms (8.15) and the integral in (8.16) 
was valuated by summation over records with resolution of 51Hz. The sums were 

d d '1 -bT a ( a exten e untl e < € where € = 0.0 1 two exceptions in which € < 0.0 1 were 
necessary to avoid excessive use of computer time). The integrations were 
performed for various choices of damping ratio and natural frequency typical 
of those found in structural design, thus producing responses that are repre

sentative of the exact and approximate solutions. 

2. CALCULATED RESULTS 

The wind fluctuation data used in this study was composed of two separate 
time histories--one measured at the Ris¢ National Laboratory in Denmark, the 
other at the Penn State Rock Springs site. The characteristics of the data 
are shown in Table 8.1. 

Spectral density functions for the forcing functions u2 7 and 2Uu ' 
were computed and are shown in Figures 8.1 and 8.2 for the two data sets. 

A smoothed version of the observed spectrum was obtained for the Rock 
Springs data by fitting to it the Pen State model described in Dutton et al. 

(1979). For the second-order equation, the transfer function is: 

(8.17) 
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and the response spectrum is then obtained from (8.7). Figure 8.3 shows the 
model spectrum and the resulting response spectra in the linear case (v = 2Uu') 
for three choices of natural frequency. 

The responses were computed for the Rock Springs data for the choices of 

natural frequency and damping ratio shown in Table 8.2. 

For the rest of this subsection we consider exceedance statistics. The 
Gaussian form: 

_ 1 (y/a )2 
N(y) = N(O)e 2 y (8.l8) 

would evidently produce a straight line if In[N(y)/N(O)] were plotted against 
} (y/ay )2. Hence deviations from the Gaussian case are readily revealed by 
using these coordinates. The exceedance statistics for a time history f(t) 
are determined by counting, with a computer, the number of times f(t) crosses 
predetermined levels. Figure 8.4 shows N(u)/N(O) for the velocity component u', 
some deviation being evident. The exceedance curves for the forcing variables 
2Uu' and u2 - ~ are shown in Figure 8.5 with the exact, nonlinear version 
being markedly different from the linear approximation. 

Figures 8.6 to 8.10 depict the calculated responses for the Gaussian linear 

case, the linear case, and the exact nonlinear case. It is evident that the two 
approximations cannot be used throughout the range of natural frequencies and 
damping ratios considered here. Deviations of an order of magnitude in fre
quency of occurrence at large y/ay appear on some of the plots. The Gaussian 
and linear approximations often, but not always, give serious underestimates 
of the frequency of large deflections. 

The same sequence of results is shown for the Ris~ data in Figures 8.11 
through 8.18. The smooth model used in Figure 8.11 is the neutral limit of 
Kaimal 
nearly 
Figure 

cases. 

et al. (1972). Figure 8.12 shows that the velocities, u', are more 
those of a Gaussian distribution than were the Rock Springs data. 
8.13 demonstrates the difference in N(v) for the linear and nonlinear 
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The calculated responses are shown in Figures 8.14 to 8.16. For this 
data, there is generally fair agreement between the linear and nonlinear cases, 
and they are reasonably well represented by the Gaussian case. The strongest 
deviations occur in Figure 8.14. Here, the frequency of occurrence for the 
nonlinear case exceeds that of the linear case by half an order of magnitude 
at most. 

3. CONCLUSIONS AND IMPLICATIONS 

The responses of a second-order system to aerodynamic forcing by actual 
turbulence were calculated both on exact method and through a method involving 
two approximations often used in applications. The main result of the comparison 
was that the approximations can, in some cases, lead to serious error in estimating 
the frequency of large responses. 

Of the two sets of data considered, the linearization and Gaussian approxi
mations produced acceptable results with the Ris~ data, but were unacceptable 
when utilized with the Rock Springs data. One difference between the two cases 
that is immediately evident from Figures 8.3 and 8.11 is that the Rock Springs 

data have much more energy at low frequencies. Upon taking the transfer func
tions into account, we see that this is reflected in the responses having more 
low-frequency energy. The differences in the spectral shapes have been explained 
earlier in this report. 

The evident result that the accuracy of the approximations depends on the 
shape of the spectra of the forcing leads to three conclusions. The first is 
that a detailed analysis of the effect of spectral shape is necessary to know 
in advance which cases are amenable to use of the approximations. Second, we 
must be able to model spectral shapes accurately. The third is that we must 

develop accurate and efficient methods for calculating response statistics 
that do not depend on the usual approximations. 

The development of such techniques is not a trivial task; the difficulties 
are inherent in the need to estimate statistics of integrals over random 

functions, which necessitates taking joint probability density functions into 
account. 
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Despite the difficulties. there is no escaping the need to be able to 
estimate the responses of systems to aerodynamic forcing. To do so. as 
manifested by this study. requires that we consider both new forms of turbulence 
statistics and new methods of working with them. 
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TABLE 8.1. Characteristics of the Turbulence Data Records 

Sample Period 

Number of Points 

Frequency 

Wind Direction 

Height, z 

Wind Speed, u 
Standard Deviation 
After linear Trend 
Removal 

Friction Velocity 

Riss6 Data 
(PSU Tape RIS01. File 1) 

44.9 mi nutes 

13472 

5 Hz 
obtained from 30 Hz raw data 
by 2-pt. block averaging 

344 0 

2 meters 

7.57 mls 

1.21 mls 

0.46 mls 

Rock Springs Data 
(PSU Tape VMIXI2, File MD10Rl) 

60 minutes 

18000 

5 Hz 
obtained from 30 Hz raw data 
by 6-pt. block averaging 

277° 
(non-mountain trajectory) 

2 meters 

4.76 mls 

1.25 mls 

0.36 mls 

z·/l -27.65 
1 

z/l -0.042 

Note: Instrumental filtering resulted in a half-power cut-off frequency at about 
3 Hz, explaining the rapid drop-off of the velocity and forcing spectra. 



TABLE 8.2. Responses Calculated for the Rock Springs Data 

Squared Natural Frequency c (rad2/s2) 

3.55 35.5 355.0 

* @ * 
Damping 0.001 

E = 0.01 
Ratio 

R 0.01 * @ * @ * @ 

O. 1 * * @ * 

* Responses and exceedance statistics computed for 
nonlinear forcing 

@ Responses and exceedance statistics computed for 
linear forcing 
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TABLE 8.3. Responses Calculated for the Ris~ Data 

Squared Natural Frequency c (rad2js2) 

3.55 35.5 355.0 

* * @ * 
Damping 0.001 

E: = 0.005 
Ratio 

R 0.01 * @ * @ I * @ 

0.1 * * @ * 

* Responses and exceedance statistics computed for 
nonlinear forcing 

@ Responses and exceedance statistics computed for 
linear forcing 
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