Spectra over complex terrain in the surface layer

PDF Version Also Available for Download.

Description

For design and control of Wind Energy Conversion Systems (WECS), the spectral distribution of wind speeds over frequencies needs to be known as well as velocity variances. Velocity spectra and other velocity statistics are estimated over three types of complex terrain: on tops of hills or escarpments; on land a short distance downwind from a water body; and over rolling farm land. The most important characteristics of turbulence models over uniform terrain are summarized briefly. Theoretical aspects of spectral characteristics over complex terrain are discussed, followed by detailed observations over complex terrain and procedures for their estimation. A theory is … continued below

Creation Information

Panofsky, H.A.; Dutton, J.A.; Larko, D.; Lipschutz, R. & Stone, G. September 1, 1982.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

For design and control of Wind Energy Conversion Systems (WECS), the spectral distribution of wind speeds over frequencies needs to be known as well as velocity variances. Velocity spectra and other velocity statistics are estimated over three types of complex terrain: on tops of hills or escarpments; on land a short distance downwind from a water body; and over rolling farm land. The most important characteristics of turbulence models over uniform terrain are summarized briefly. Theoretical aspects of spectral characteristics over complex terrain are discussed, followed by detailed observations over complex terrain and procedures for their estimation. A theory is presented for calculation of response of engineering systems to wind fluctuations. (LEW)

Notes

NTIS, PC A05/MF A01.

Source

  • Other Information: Portions of document are illegible

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1982

Added to The UNT Digital Library

  • July 2, 2018, 10:52 p.m.

Description Last Updated

  • Oct. 26, 2018, 1:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Panofsky, H.A.; Dutton, J.A.; Larko, D.; Lipschutz, R. & Stone, G. Spectra over complex terrain in the surface layer, report, September 1, 1982; United States. (https://digital.library.unt.edu/ark:/67531/metadc1186607/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen